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Abstract

Market diversification is a strategy according to which a company seeks growth by adding

products and markets that are in a certain sense “uncorrelated” to its existing products and

markets. Bonds play a major role a in well-balanced diversified portfolio because of their

low correlation to other asset classes. While the correlations vary widely over time, bonds

are not highly correlated with any other asset classes. Even in the simplest diversified

portfolio, bonds can reduce volatility due to their low or negative correlation with stocks.

Because companies can create robust diversified portfolios with bonds it is imperative that

different bonds are studied simultaneously, so that portfolios can be created in a coherent

manner. This can facilitate optimal allocation of investments for multinational and public

companies. In fact many economic studies have revealed that geographical diversification is

more effective in reducing portfolio risk than any of the other investment strategies tested.

In this thesis, we present the well-known Heath-Jarrow-Morton (HJM) model which allows

for the evolution of the entire yield curve by modeling interest rate dynamics in continuous

time under no arbitrage condition. We extend the classical HJM model to multi-bond case

in order to study multiple zero coupon bonds simultaneously. We provide tools to estimate

the correlation structure that may or may not be strongly pronounced. We first assess the

predictive power of a non-parametric estimation for the HJM model by applying it to the

Euro coupon bonds which allows observation of negative interest rate. We also extend the

same scheme to the multi-bond case by applying it to Euro coupon and US coupon bonds,

and specify the evolution of the short rates by a multivariate Vasicek model. We perform

statistical estimation and inference for multi-bond extension of the classical HJM model

and discuss its predictive performance.

Keywords: Heath-Jarrow-Morton model; zero-coupon bonds; forward rates; multivariate

Vasicek model; SPDE; arbitrage-free
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Chapter 1

Introduction

The bond market (also termed debt or credit market) is a financial market where par-

ticipants can issue new debt, called the primary market, or buy and sell debt securities,

termed as the secondary market. Bonds provide major long-term funding for public and

private expenditures. A bond could be a debt security, under which the issuer owes the

holders a debt and (depending on the terms of the bond) is obliged to pay them interest

(coupon) or to repay the principal at a later date, called the maturity date. Interest is

typically payable at fixed intervals (semiannually, annually, or monthly, etc). Oftentimes

the bond is negotiable, i.e., the ownership of the instrument is transferred in the secondary

market. If the market price of a bond is less than its face value, we say the bond trades at

a discount. In this case, its yield is over the coupon rate. If its market price is higher than

its face value, we say the bond trades trade at a premium. In this case, its yield is under

the coupon rate. Also, there are bonds that do not pay an intermediate interest but are

traded at a deep discount, and there is profit at the maturity once they are redeemed for

their full face value, see Longstaff (2002).

A stock is a security that represents the ownership of a fraction or fragment of a corpo-

ration. This authorizes the owner of the stock to a proportion of the corporation’s assets

and profits equal to how much stock they own. Stocks are bought and sold mainly on

stock exchanges, though there are private sales as well, and are the foundation of many

individual investors’ portfolios, see Barsky (1986).

We see that bonds fundamentally differ from stocks in a very number of ways. First,

bondholders are creditors to the corporation and are entitled to interest and repayment of

principal as well. Creditors are given legal priority over other stakeholders in the event of a

1



bankruptcy and will be settled first if a corporation is forced to sell assets. Shareholders, on

the other hand, are last to be considered and often receive nothing, or small dollar amount,

in the event of bankruptcy.

Filipović (2000) noted that, while stock markets are built up by a finite number of traded

assets, the underlying basis of a bond market is the entire term structure of interest rates:

an infinite-dimensional state variable that is not directly observable. Because of the in-

verse relationship between bond valuation and interest rates (or yields), the bond market

is normally used to indicate changes in interest rates or the shape of the yield curve, i.e.,

the measure of “cost of funding.” Under a yield curve we understand the graphical rep-

resentation of different interest rates paid by bonds with the identical levels of risk but

at different maturities. Yield curves may be normal, inverted, or flat. Upward sloping

yield curves are where longer-term bonds have higher yields than short-term ones. While

normal curves may point to economic expansion, downward sloping curves may point to

economic recession. The yield curve is extremely important owing to the fact it is used as a

benchmark for other debt in the market, such as mortgage rates or bank lending rates, and

it is normally used to predict changes in economic output and growth. The main use of the

yield curve, from a monetary policy perspective, is to get an empirical representation of the

term structure of interest rates, which might be interpreted in terms of market expecta-

tions of monetary policy, economic activity and inflation expectations over the short-term,

medium-term and long-term horizons, see Nymand-Andersen (2018).

1.1 Term Structure of Interest Rates

In this section we discuss various concepts related to the dynamics of the term structure

of interest rates and introduce some notation that will be used throughout this thesis. We

follow Carmona and Tehranchi (2007) and Filipović (2000).

Definition 1.1.1 (Discount Factors) The quantities used at a given point in time to

obtain the present value of future cash flows are the discount factors. At a given time t,

2



the discount factor dt,m with time to maturity m, or maturity date T = t + m, is given by

the formula:

dt,m =
1

(1 + rt,m)m
(1.1)

where rt,m is the yearly spot interest rate in force at time t for this time to maturity.

The spot rate rt,m at time t for time to maturity m, and the time of maturity is T = t+m

can be defined as in Equation (1.1). Given observed values of discount factor dj’s and

dropping the t, the spot yields can computed from Equation (1.1) as:

rm =

(
1

d
1/m
m

− 1

)
(1.2)

The sequence of spot rates {rj}j=1,...,m, where m is the time of maturity is called the term

structure of (spot) interest rate. It is usually plotted against the time to maturity Tj − t in

years. Carmona and Tehranchi (2007) noted though that plotting the historical changes in

time t of the yield for time to maturity Tj−t depicts a graph which looks like a sample path

of a stochastic diffusion process rather than a piece-wise linear interpolation of a smooth

curve.

Equation (1.1) can also rewritten in the form:

log(1 + rt,m) = − 1

m
log dt,m

Invoking Taylor’s formula, log(1 + x) ∼ x as x → 0, the former relation gives an approxi-

mate identity:

rt,m ∼ −
1

m
log dt,m

which becomes an exact equality if we use continuous compounding, see Carmona and

Tehranchi (2007).

The rates ft,1, ft,2, . . . ft,j implied by the discount factors dt,1, dt,2, . . . dt,j are termed as

implied forward rates, with the ratios given by

ft,j =
dt,j−1 − dt,j

dt,j
= −∆dt,j

dt,j
(1.3)

3



For each given t, we denote by x ↪→ Pt,x, the price of a zero coupon bond with unit nominal

as a function of time to maturity x = T − t and write Equation (1.3) as:

f(t, x) = −∂Pt,x
Pt,x

= − ∂

∂x
lnPt,x

Integrating both sides, we obtain the following expression for the discount factor

Pt,x = exp

(
−
∫ x

0

f(t, s)

)
ds (1.4)

and the spot rate

rt,x =
1

x

∫ x

0

f(t, s)ds. (1.5)

This relation can be inverted to express the forward rates as function of the spot rate:

f(t, x) = rt,x + x
∂rt
∂x

. (1.6)

The essential difference between the spot rate rt,j and the forward rate ft,j can be best

restated by saying that rt,j gives the average rate of return of the next j periods while the

forward rate ft,j gives the marginal rate of return over the j-th period.

1.2 Term Structure Models

The level of complexity of the bond market is higher than that of a stock market: one

simple reason lies in the fact that the underlying instruments on which the derivatives are

written are more sophisticated than mere stock shares. Indeed, at each given period t,

instead of being represented by a single number St as the price of one share of a common

stock, the term structure of interest rates is given as a curve, typically evaluated on a finite

grid or discrete set. This curve is interpreted as the sampling of the graph of a function

T 7→ P (t, T ) over the dates of maturity of the instrument (Carmona and Tehranchi, 2007).

We can see that there is a one-to-one relation between the time t term structure of bond

prices and the time t term structure of interest rates or forward curve {f(t, T ) | t ≤ T}

given by

P (t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
(1.7)

4



where f(t, T ) is the continuously compounded instantaneous forward rate and P (t, T ) is

the price of a zero-coupon bond for maturity date T prevailing at time t. The forward

curve contains all necessary information for pricing bonds of all maturities, see Filipović

(2000).

Many models have been developed to describe the term structure of interest rate, e.g.,

Mamon (2004), Overbeck and Ryden (1997) and Boyle et al. (2001). These capture the

dynamics of the short-term rate. Also popular models include the whole-yield models. The

approach adopted in whole-yield models is to directly describe the forward-rate processes

f(t, T ), where 0 ≤ t ≤ T . One of the main models is the Heath-Jarrow-Morton (HJM)

model. The HJM model is a very general framework used for pricing interest interests

and credits derivatives. It is a powerful instrument for describing the stochastic evolution

of interest rate curves under no-arbitrage assumption. An important feature of the HJM

approach is the fact that the drifts can be expressed as functions of respective volatilities and

the underlying correlation structure. Models developed according to the HJM framework

models capture the full dynamics of the entire forward rate curve. The framework for

modeling the interest rate term structure is to take the (instantaneous) forward rate as the

underlying state variable. With suitable assumptions, Heath et al. (1992) demonstrated

that f(t, T ), interpreted as the forward rate prevailing at time t for the maturity T , can

be modeled as a Markovian diffusion that evolves according to the following stochastic

differential equation (SDE):df(t, T ) = α(t, T )dt+ σ(t, T ) · dW (t),

f(0, T ) = f 0(T ),

(1.8)

where (W (t))t∈[0,T ] is a d-dimensional standard Brownian motion, T 7→ f 0(T ) is the mar-

ket instantaneous forward curve at time t = 0, (α(t, T ))[t,T ] and (σ(t, T ))[t,T ] are 1- and

d-dimensional stochastic processes adapted to the natural filtration of (W (t))t∈[0,T ] and

σ(t, T ) · dW (t) =
∑d

k=1 σk(t, T )dWk(t) is formally defined as a scalar product.

Formally, integrating Equation(1.8) over [0, t] for t ∈ [0, T ], the instantaneous forward rate

5



f(t, T ) can be represented as an Itô-process

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T ) · dW (s). (1.9)

The entire interest dynamics captured by Equation(1.7) is not necessarily arbitrage-free.

Heath et al. (1992) addressed the following question: What are the conditions on the

dynamics of the Equation (1.9) such that the implied bond market

P (t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
is arbitrage-free. Arbitrage opportunity is the existence of a self-financing strategy which

yields a positive income in the future without investing a positive amount today or taking

advantage of a price difference between two or more markets. With arbitrage we mean a

predictable process

(φ1, φ2, . . . , φn)

yielding a profit without risk, that is

V (T ) := B(T )
∑
i

∫ T

0

φi(t)d

(
P (t, Ti)

B(t)

)
≥ 0 and P[V (t) ≥ 0] > 0

for some n ∈ N and 0 < T1 < · · · < Tn ≤ T , where B(t) is the value of a bank account at

time t ≤ 0 and the contract value at time t < T is denoted by P (t, T ). See Björk (2009).

Carmona and Tehranchi (2007) showed under some technical conditions that (P (t,T )
B(t)

) is

equivalent to the HJM Drift Condition:

α(t, T ) = σ(t, T ) ·
∫ T

t

σ(t, s)ds for all t ∈ [0, T ]. (1.10)

Harrison and Pliska (1981) proved that the existence of an equivalent martingale measure

implies the absence of arbitrage opportunities. Also, Brigo and Mercurio (2007) showed

that the unique equivalent martingale measure exists if the drift depends on the volatility.

In particular, the requirement that the evolution in Equation (1.9) is taking place under a

risk-neutral measure Q helps us to restate it as

α(t, T ) = σ(t, T ) ·
∫ T

t

σ(t, s)ds =
d∑

k=1

σk(t, T )

∫ T

t

σk(t, s)ds for all t ∈ [0, T ]

6



Therefore, for all t ∈ [0, T ], they concluded that f(t, T ) is fully specified (as a stochastic

process) as long as the volatility vector σ is provided:

f(t, T ) = f(0, T ) +
d∑

k=1

∫ t

0

σk(τ, s)

∫ T

z

σk(τ, s)dsdτ +
d∑

k=1

∫ t

0

σk(s, T ) · dWk(s).

Recalling Equation(1.7), Itô’s lemma furnishes an SDE for the zero-coupon bond P (t, T )

for all t ∈ [0, T ] :

dP (t, T ) = P (t, T )

(
rtdt−

(∫ T

t

σ(t, T )ds

)
dW (t)

)
,

where rt is the instantaneous short-term interest rate at t given by

rt = f(t, t) = f(0, t) +

∫ t

0

σ(τ, t) ·
∫ t

τ

σ(τ, s)dsdτ +
d∑

k=1

∫ t

0

σk(s, t)dWk(s)

= f(0, t) +
d∑

k=1

∫ t

0

σk(τ, s) ·
∫ t

τ

σ(τ, s)dsdτ +
d∑

k=1

∫ t

0

σk(s, t)dWk(s).

The forward curve x 7→ f(t, t + x) cannot be directly observed on the market and has to

be estimated, on a day-by-day basis, from coupon bearing bond prices and other related

data. Filipović (2000), therefore, proposed in his dissertation to extend HJM to an infinite-

dimensional framework and consider the following stochastic partial differential equation

(SPDE) to allow for even richer dynamics


dft(x) =

(
∂

∂x
ft(x) + αt(x)

)
dt+ σt(x) · dW (t),

ft(x) = f 0(x),

(1.11)

with the Musiela’s notation (Musiela (1993)), ft(x) := f(t, t + x), x ∈ [0, T − t]. Here,

(W (t))t∈[0,T ] is an infinite-dimensional vector which is countably many independent real-

valued Brownian motions, the forward rate curve x 7→ ft(x) is a random variable taking its

values in a function space H and the drift α is given by the no-arbitrage condition

αt(x) := α(t, t+ x) =
∞∑
k=1

σk(t, t+ x)

(∫ x

0

σk(t, t+ s)ds

)
.

7



To facilitate the analytic treatment of Equation (1.11), Filipović (2000) and Carmona and

Tehranchi (2007) proposed to put Equation (1.11) into the framework of abstract functional

SDEs with operator-valued coefficientsdXt = (AXt + F (t,Xt))dt+B(t,Xt)dW (t),

X0 = h0,

(1.12)

and study the existence and uniqueness of mild solutions. We assume that U , F are

separable Hilbert spaces. X is an H-valued random process, h0 is a random H-valued

F0-measurable initial value, A : H → H is a linear (possibly unbounded) operator, and

(W (t))t∈[0,T ] is a standard cylindrical Wiener process over U . Also, the spaces U , H,

LHS(H,U) generate respectively the following Borel σ-algebra B(U), B(H), B (LHS(H,U))).

The main challenge when building a model to describe the evolution of the yield curve is

the large number of degrees of freedom. The dynamics which drives the term structure is

inherently multivariate and thus one needs to model both the volatility of the individual

yields and the correlation among yields with different maturities, see (Sabelli et al., 2018).

In this thesis we intend to develop an extension of Filipović HJM formulation from Equation

(1.11) to the multi-bond case. The proposed model reads as


df it (x) =

(
∂

∂x
f it (x) + αit(x)

)
dt+

∑∞
k=1

∑p
j=1 σ

ijk
t (x) · dW jk(t),

f it (x) = f 0,i(x),

i = 1, . . . , p.

(1.13)

Here, p is the number of zero-coupon bonds, (W j(t))t∈[0,T ] is an infinite-dimensional vector

of (countably many) independent real-valued Brownian motions, the forward rate curve

x 7→ f it (x) (for i = 1, . . . , p) are random variables taking their values in the function space

H and the drift α is given by the no-arbitrage condition

αit(x) := αi(t, t+ x) =
∞∑
k=1

p∑
j=1

σijk(t, t+ x)

(∫ x

0

σijk(t, t+ s)ds

)
.
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It suffices to put the Equation (1.13) into the framework of abstract operator SDEs with

stochastic coefficients to facilitate its analytic treatment which follows from Equation (1.12):dX i
t = (AX i

t + F (t,X i
t))dt+B(t,X i

t)dW (t)

X i
0 = hi0.

(1.14)

1.3 Well-Posedness for the Abstract Heath-Jarrow-

Morton Model

In this section, we introduce the abstract HJM model following the presentation of (Fil-

ipović, 2000, Chapter 1 and 2) and (Carmona and Tehranchi, 2007, Chapter 7). The

resulting model is a semilinear stochastic SPDE driven by the standard cylindrical Wiener

process. The abstract HJM model is well-posed in the class of mild solutions on the

strength of the results from (Da Prato and Zabczyk, 2014, Chapter 7). The abstract HJM

model is an instantaneous forward rate of a zero-coupon bond modeled through an infinite-

dimensional SDE driven by the standard cylindrical Wiener process which was proposed

by Filipović (2000). The underlying bond market of this framework captures the entire dy-

namics interest term structure. There are many advantages by modeling the term structure

in this way. First, there is no “maturity specific risk” as present in the finite-dimensional

models, also this framework helps better reflect the observed dynamics, not by the model

parameters alone but also captures the non-trivial topological aspects thereby improving

the predictive power and allowing for regularization without making use of ad hoc penalties

in empirical sense, refer to Maltsev and Pokojovy (2021) for more details.
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1.3.1 Existence and Uniqueness of Mild Solution to Semilinear

SPED

The abstract SPDE we consider isdXt = (AXt + F (t,Xt))dt+B(t,Xt)dW (t),

X0 = h0.

(1.15)

We briefly discuss the existence and uniqueness of mild solution established by (Filipović,

2000, Chapter 4). Let
(
Ω,F , {Ft}t≥0,P

)
be a filtered probability space and let T > 0.

Let PT and P∞ denote the predictable σ-algebra on [0, T ]× Ω. We assume that U , H are

separable Hilbert spaces and (W (t))t∈[0,T ] is a cylindrical Wiener process over U .

Assumption 1.3.1 Let A, F and B in Equation (1.15) satisfy:

• F : [0, T ] × Ω × H → H measurable from
(
[0, T ] × Ω × H,PT × B(H)

)
to

(H,B(H)),

• B : [0, T ]× Ω×H 7→ LHS(U ,H) is measurable from

(
[0, T ]× Ω×H,PT ×B(H)

)
to

(
LHS

(
U ,H

)
,B
(
LHS(U ,H)

))
• There is exists a constant C > 0 such that for all u, v ∈ H, t ∈ [0, T ], ω ∈ Ω we have

‖F (t, ω, u)− F (t, ω, v)‖+ ‖B(t, ω, u)−B(t, ω, v)‖LHS(U ,H ≤ C‖u− v‖H

‖F (t, ω, u)‖2
H + ‖B(t, ω, u)‖2

LHS(U ,H) ≤ C2(1 + ‖u‖2
H),

• A is the generator of a strongly continuous operator semigroup (St)t≥0 on H

where, we let Q = I and U0 = Q 1
2U ≡ U . The spaces U ,H,LHS(U ,H) induce correspond-

ing Borel σ-algebras B(U), B(H), B(LHS(U ,H)), where LHS

(
·, ·
)

denotes the space of

Hilbert-Schmidt operators.
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Definition 1.3.1 (Mild Solution) AnH-valued predictable stochastic process
(
X(t)

)
t∈[0,T ]

with

P
(∫ T

0

‖X(s)‖2
Hds <∞

)
= 1

is referred to as a mild solution to resulting model is a semilinear stochastic PDE (SPDE)

driven by the standard cylindrical Wiener process. It satisfies the abstract integral equation:

Xt = Sth0 +

∫ t

0

St−sF (s,XS)ds+

∫ t

0

St−sB(s,Xs)dW (s) for all t ∈ [0, T ]

P-almost surely.

We will note that the predictability of (X(t))t∈[0,T ] implies it admits a continuous modifi-

cation essential for latter integral to be well-defined.

Theorem 1.3.1 (Da Prato and Zabczyk (2014)) Under Assumption 1.3.1, there exists a

unique H-valued mild solution
(
X(t)

)
t∈[0,T ]

to Equation (1.15). Also, for any p ≥ 2, there

exists a positive constant K, which only depends on p and T , such that

sup
t∈[0,T ]

E
[
‖X(t)‖pH

]
≤ K

(
1 + E

[
‖h0‖pH

])
.

1.3.2 Definition of Abstract HJM Model

The following assumption can be made if we let I either be a compact interval of the form

[0, t0] for some positive t0 or of the interval [0,∞) and we have already defined (W (t))t∈I

be a standard cylindrical Wiener process over a separable Hilbert space H. Let S be a

state space and PI be a predictable σ-algebra on I × Ω, refer to (Filipović, 2000, Chapter

4).

Assumption 1.3.2 Suppose:

• S is a separable Hilbert space consisting of continuous, real-valued functions f : I 7→

Rp. Additionally, we assume that for every x ∈ I the linear functionals

δx(f) = f(x), Ix(f) =

∫ x

0

f(η)dη

11



are continuous on S.

• The left shift semigroup (St)t≥0 defined by

(Stf)(x) = f(t+ x)

is a strongly continuous operator semigroup on S generated by a linear operator A.

• FHJM is a measurable mapping from a non-empty subset of LHS(U ,S) into S and

defined by

FHJM(σ)(x) = 〈σ∗δx, σ∗Ix〉U

for all σ ∈ LHS(U ,S).

Assumption 1.3.3 Assume there exist a subspace S? of S such that the binary operator

? defined by (
f?g

)
(x) = f(x)

∫ x

0

g(s)ds,

mapping from S? × S? into S, is bounded, i.e., there exist C > 0 such that the following

bound

||f ? g||S ≤ C||f ||S ||g||S

holds for all f, g ∈ S?.

The following result is cited from Maltsev and Pokojovy (2021):

Definition 1.3.2 (The abstract HJM model) The HJM model in a functional space

S is a pair of measurable functions (λ, σ) on the strength of a Assumption 1.3.1 such

that there exist a non-empty set of S-valued F0-measurable initial datum h0 with a unique

time-continuous mild S-valued solution (ht)t∈I to the HJM equation:
dht = Aht(x) + α(t, ht)dt+ σ(t, ht)dWt,

α(t, ht) = FHJM(σ(t, ht) + σ(t, ht)λ(t, ht),

h0 = h0,

(1.16)
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The mild formulation of Equation (1.16) is given by
ht = Sth0 +

∫ t
0
Stt−sα(s, ht)ds+

∫ t
0
St−sσ(s, ht)dWs,

α(t, ht) = FHJM(σ(t, ht)) + σ(t, ht)σ(t, ht),

h0 = h0.

(1.17)

By imposing typical Lipschitz and boundedness assumptions, we obtain as a direct conse-

quence from Theorem 1.3.1.

Preposition 1.3.1 (Sufficient well-posedness condition) Let S satisfy Assumption

1.3.3 with a closed subspace S? ⊂ S such that ||f ? ||S ≤ C||f ||S ||g||S for f, g ∈ S?. Let

the operator σ map into S? for every (t, ω, f) ∈ I × Ω × S. Assume σ is bounded and

Lipschitzian

‖σ(t, f)− σ(t, g)‖LHS(U ,S) ≤ C‖f − g‖S ,

‖σ(t, f)λ(t, f)− σ(t, g)λ(t, g)‖S ≤ C‖f − g‖S ,

for some constant C > 0 and all t ∈ I, f, g ∈ S?, then the pair (λ, σ) is an abstract

HJM model on S. Also, for any initial S-valued forward curve h0 there exist a unique

time-continuous mild solution (ht)t∈I to Equation (1.16) such that

E
[
sup
t∈I
‖ht‖pS

]
<∞

for all finite p ≥ 0.

The rest of this thesis is structured as follows. Chapter 2 is dedicated to extending the usual

Vasicek model to the multivariate case and estimating its parameters by the maximum

likelihood approach. A discussion of theorems and lemmas leading to the derivation of

the parameter estimates of the multivariate Vasicek model is also presented. We end this

Chapter by applying the model to 1-month term-to-maturity yields for 2019 using real data

(2018 historical Euro area yields). Chapter 3 is dedicated to forecasting Euro area yield

curves. We discretize Equation (1.11) with a (semi-)implicit difference scheme and apply
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it to real data from the European Central Bank (European Central Bank (2021)). We

estimate the model parameters and perform dimension reduction through a custom least-

squares-like method involving principal component analysis. The model is then tested and

employed to forecast future yield curve rates, estimate the mean future yield curve and

compute prediction regions. Chapter 4 is the main focus of this paper. We repeat the

scheme from Chapter 3 but extend the procedure to multi-bond case and apply it to Euro

bonds data (provided by European Central Bank (2021)) and US treasuries data (provided

by US Department of the Treasury (2021)).
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Chapter 2

Multivariate Vasicek Model

2.1 Motivation

In order to predict the future forward curve using Heath-Jarrow-Morton model, we need to

specify the evolution of the short rate Rt = f(t, t). Maltsev and Pokojovy (2021) proposed

to use classical Vasicek model for univariate short rates. Assuming rt is a scalar Itô process

with respect to a Wiener process (W (t))t≥0, the classical Vasicek’s short rate model is given

by:

drt = α(r̃∗ − rt) + βdWt , t ≥ 0

r0 = r0,

(2.1)

where α, β, r̃∗ ∈ 0 are parameters, r0 is a given random variable independent of the standard

Wiener process (W (t))t≥0, Vasicek (1977).

The solution to the stochastic differential equation is

rt = r0e
−αt + r̃∗(1− e−αt) + βe−αt

∫ t

0

e−αsdWs,

where the state variable rt to distributed normally with mean

E[rt] = r0e
−αt + r̃∗(1− e−αt)

and variance

Var[rt] =
β2

2α
(1− e−2αt).

In order to extend the HJM model to the multi-bond case, we will need to specify the

evolution of Rt according to the multivariate Vasicek’s or Ornstein-Uhlenbeck model. We
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are not aware of any works that have discuss parameter estimation for multivariate Vasicek’s

or Ornstein-Uhlenbeck model to multivariate case.

In the extension of the single-curve Vasicek and HJM model to the multi-curve case, we

maintain the no-arbitrage principle for mathematical convenience. The model we studied

under the single curve/bond Vasicek and HJM model achieves the desirable feature of no-

arbitrage opportunity as noted by Filipović (2000). However, in the study of the multiple

curve/bond Vasicek/HJM model, we are often faced with foreign exchange rates disparity

which may give rise to an arbitrage opportunity. The work done by Yu (2012) demonstrated

how to incorporates the properties of interest rate term structure and foreign exchange rates

simultaneously within one arbitrage-free framework. This and other aspects of arbitrage

versus no-arbitrage conditions are beyond the scope of this thesis.

All theoretical calculations in this chapter follow Pokojovy (2021). We will proceed to

extend the Vasicek model and estimate the parameters by maximum likelihood approach.

The multivariate Vasicek’s model by simple extension can be expressed as:dRt = A(R∗ −Rt) +BdW t, t ≥ 0

R0 = R0,

(2.2)

where R∗ ∈ Rd and A,B ∈ Rd×d are the parameters, W t ∈ Rd is d-variate standard

Wiener process. To estimate the parameters, we obtain the discrete form of Multivariate

Vasicek’s model by employing the explicit Euler & Maruyama scheme. The discrete time

Vasicek model is given by:

Rtj+1
−Rtj

∆t
= A

(
R∗ −Rtj

)
+B

W tj+1
−W tj

∆t
, j = 0, . . . n− 1. (2.3)

Let Σ = (BB′) and assume Σ ∈ Rd×d is positive definite. Provided Σ is known, B can be

computed as:

B = Σ
1
2 .

We can further express Equation (2.3) as

Rtj+1
−Rtj = A(R∗ −Rtj) ·∆t+B(W tj+1

−W tj). (2.4)

16



From Equation (2.4), we further observe that

(Rtj+1
−Rtj)−A(R∗ −Rtj) ·∆t = B(W tj+1

−W tj),

where W tj+1
− W tj

i.i.d∼ N (0,∆tΣ). We will, therefore, specify and work with X =

(Rtj+1
−Rtj)−A(R∗ −Rtj) ·∆t.

2.2 Auxiliary Results

In the section, we introduce all mathematical tools that will be used in the estimation

of the multivariate Vasicek model. As a result, we give some basic concepts in matrix

differentiation and optimization and outline the proofs of various theorems and lemmas

that will be used in the derivation.

Theorem 2.2.1 (Fermat’s first-order necessary optimality condition)[Eberhard and Mor-

dukhovich (2011)]

If x∗ local minimizer or maximizer of a differentiable function f : V ⊂ Rn → R, where

V ⊂ Rn is non-empty open set, then we must have:

Of(x∗) = 0.

Lemma 2.2.1 Suppose Σ ∈ Rd×d is symmetric, A ∈ Rd×d and u,v ∈ Rd, we consider the

following functions:

1. f(A) = 〈Σ−1u,Av〉,

2. g(A) =
(
Av)′Σ−1(Av

)
= ||Σ−1/2(Av)||2.

Then f(·) , g(·) are smooth with

1. ∂f(A)
∂A

= (Σ−1u)v′,

2. ∂g(A)
∂A

= 2Σ−1A(vv′).
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Figure 4.7: Observed yield curve rates (left) and estimated mean yield curve rates (right)

for January 2019 European yields

Figure 4.8: Observed yield curve rates (left) and estimated mean yield curve rates (right)

for January 2019 US yields

The left panel of Figures 4.7 and 4.8 show the historical yield curve rates for January

2019 (23 business days), The right panel of Figures 4.7 and 4.8 shows the estimated mean
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yield curve rate for the same time window based on 10,000 replications. We see that

the estimated mean yield curves rate based on 10,000 for both Figures 4.7 and 4.8 are

reasonable prediction to the historical yield curve rates. We also observe some smoothness

over the period predicted. We can therefore deploy our scheme for future prediction. Based

on visual evaluation, we can see that the prediction bounds for the yield curve improved

or reduced as compare to studying them independently, but assessment and quantification

of this reduction or improvement in variability is beyond the scope of this thesis and is left

for future studies.
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Chapter 5

Conclusions

One major challenge with estimation methods and stochastic factor models for the term

structure of interest rates within the Heath-Jarrow-Morton framework is the complex con-

sistency problems introduced by Björk (2009). We closely followed Filipovic’s work on

consistency problems for HJM interest rate models to overcome this challenge and extend

both the Vasicek model and Heath-Jarrow-Morton (HJM) model to the multi-bond/multi-

curve. We examined the effectiveness and predictive power of the HJM model following

the idea of Maltsev and Pokojovy (2021). We modified the original strategy by interpo-

lating yields for weekends, and holidays making them consistent with the assumption of

equidistant time partition ∆tj = tj − tj−1 used in the maximum likelihood estimates of

the Vasiček’s model and the (semi-) implicit numerical scheme. By doing so, we avoided

“jumps” and ensured continuous time intervals. Based on real data, we also demonstrated

how the single-curve HJM model could be calibrated and applied to forecasting Euro Area

yield curve rates alone and also examined Euro Area yield curve rates and US Treasuries

together with the multi-curve model. Thus, we have explored and given tools to examining

how different bond markets are related. Our future work will include empirical investi-

gation of how to quantify the variability of predicting yield curves as we study multiple

zero-coupon bonds and seek ways to improve them.
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Appendix

Matlab Codes

This code has been forked from: https://github.com/mpokojovy/abstract.HJM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Short Rate prediction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set random seed for reproducibility
rng(1);

%% Loading and plotting Euro bonds 2018 data
yield2018_Euro_bonds = readmatrix (" yield2018_Euro_bonds.csv");
yield2018_Euro_bonds = yield2018_Euro_bonds (:, 3:( end - 1));

%Search and interpolate empty weekends and holidays
[Row , Col] = size(yield2018_Euro_bonds);

Cal_T = 1: Row;
dif = setdiff(Cal_T , find(isnan(yield2018_Euro_bonds(Cal_T , 3)

)));
No_data_Euro = find(isnan(yield2018_Euro_bonds (1:364 , 3)));

for r = 1: length(No_data_Euro)
for k = 3:Col

yield2018_Euro_bonds(No_data_Euro(r), k) = interp1(dif ,
yield2018_Euro_bonds(dif ,k), No_data_Euro(r),'

linear ','extrap ');
end

end

n = length(yield2018_Euro_bonds);

month = [1 2 3 4 5 6 7 8 9 10 11 12*[1 2 3 4 5 6 7 8 9 10 15 20 25
30]];

%Constant interpolation for month 1 and 2 with month 3

yield2018_Euro_bonds (:, 1) = yield2018_Euro_bonds (:, 3);
yield2018_Euro_bonds (:, 2) = yield2018_Euro_bonds (:, 3);

%% Loading and plotting US treasury bonds 2018 data
yield2018_US_bonds = readmatrix (" yield2018_US_bonds.csv");
yield2018_US_bonds = yield2018_US_bonds (:, 3:(end - 1));

%Search and interpolate empty weekends and holidays
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[Row , Col]= size(yield2018_US_bonds);
Cal_T = 1: Row;
dif = setdiff(Cal_T ,find(isnan(yield2018_US_bonds(Cal_T ,1))))

;

No_data_Euro = find(isnan(yield2018_US_bonds (1:364 , 1)));

for r= 1: length(No_data_Euro)

for k = 1:Col

yield2018_US_bonds(No_data_Euro(r), k) = interp1(dif ,
yield2018_US_bonds(dif ,k), No_data_Euro(r),'linear ','
extrap ');

end
end

%Interpolate the second column which is half empty
[~, ind_nan] = min(isnan(yield2018_US_bonds (:, 2)));
ind_nan = ind_nan - 1;

month_1= [1 2 3 6];
month_1 = [month_1 12*[1 2 3 5 7 10 20 30]];

I = 1: length(month_1);
I = setdiff(I, 2);
for i = 1: ind_nan

yield2018_US_bonds(i, 2) = interp1(month_1(I),
yield2018_US_bonds(i, I), month_1 (2));

end

yield2018_2 = zeros (364, length(month));

for i = 1:364
yield2018_2(i, :) = interp1(month_1 , yield2018_US_bonds(i, 1:

length(month_1)), month);
end

yield2018_US_bonds = yield2018_2;

%% Loading 2019 data
%Euro yields

Reading_Euro_Date_data = readmatrix ("
yield2019_Euro_bonds_to_delete.csv");

Reading_Euro_Date_data = Reading_Euro_Date_data (:, 3:(end - 1));

%Search and interpolate empty rows
[Row , Col]= size(Reading_Euro_Date_data);
Cal_TT = 1: Row;
No_data_Euro = find(isnan(Reading_Euro_Date_data (1:Row , 5))) ';

Interpolated_data_Euro = 1: length(Reading_Euro_Date_data);
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Actual_data_Euro = setdiff(Interpolated_data_Euro ,
No_data_Euro);

yield2019_Euro_bonds = readmatrix (" yield2019_Euro_bonds.csv");
yield2019_Euro_bonds = yield2019_Euro_bonds (:, 2:( end - 1));

yield2019_Euro_bonds (:, 1) = yield2019_Euro_bonds (:, 3);
yield2019_Euro_bonds (:, 2) = yield2019_Euro_bonds (:, 3);

%% Loading 2019 data
%US Treasuries
Reading_US_Date_data = readmatrix (" yield2019_US_bonds_to_delete ");
Reading_US_Date_data = Reading_US_Date_data (:,3: (end -1));

%Search and interpolate empty rows
[Roww , Coll] = size(Reading_Euro_Date_data);
Cal_TTT = 1: Roww;
No_data_US = find(isnan(Reading_US_Date_data (1:364 ,5))) ';

Interpolated_data_US = 1: length(Reading_Euro_Date_data);

Actual_data_US = setdiff(Interpolated_data_US , No_data_US)
;

yield2019_US_bonds = readmatrix (" yield2019_US_bonds.csv");
yield2019_US_bonds = yield2019_US_bonds (:, 2:(end - 1));

%% Defining the Time and Maturity Grid
T_grid = linspace(0, 12, n);
X_grid = linspace(0, month(end), month(end)*360/ month(end));

dx = X_grid (2) - X_grid (1);
dt = T_grid (2) - T_grid (1);

n_month = 25;
month = month (1: n_month);
%% Preparing the forward curves for Euro
yield_obs = zeros(length(T_grid), length(X_grid));
Y_obs = zeros(size(yield_obs));

for i = 1: length(T_grid)
yield_obs(i, :) = interp1 ([0 month], [yield2018_Euro_bonds(i,

1) yield2018_Euro_bonds(i, 1: n_month)], X_grid , 'spline ');
Y_obs(i, :) = X_grid .* yield_obs(i, :);

end
%% Preparing the forward curves for Us Treasury
yield_obs_1 = zeros(length(T_grid), length(X_grid));
Y_obs_1 = zeros(size(yield_obs_1));

for i = 1: length(T_grid)
yield_obs_1(i, :) = interp1 ([0 month], [yield2018_2(i, 1)

yield2018_2(i, 1: n_month)], X_grid , 'spline ');
Y_obs_1(i, :) = X_grid .* yield_obs_1(i, :);

end
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%% Estimation of Vasicek 's model
r_obs = yield_obs(:, 1);
r_obs_1 = yield_obs_1 (:,1);

R0 = [r_obs(end , 1);r_obs_1(end , 1)];
R = [r_obs ,r_obs_1 ];

[R_ast , A, Sigma] = Vasicek_Multivariate_Inverse_map(R,dt);

%% Predicting the short rates f_{t}(0) with Vasicek 's model
n_rep = 10000;
conf = 0.99;
X_pred =1;

pred0 = Vasicek_forward_mativariate_map(T_grid , R_ast , A,
Sigma , R0, n, n_rep);

yield_pred_euro = reshape(pred0 (1,:,:) ,364 ,10000);

yield_lq_euro = zeros(size(T_grid));
yield_hq_euro = zeros(size(T_grid));
yield_avg_euro = zeros(size(T_grid));

for i = 1: length(T_grid)
yield_lq_euro(i) = quantile(yield_pred_euro(i, :), (1 - conf)

/2);
yield_hq_euro(i) = quantile(yield_pred_euro(i, :), 1 - (1 -

conf)/2);
yield_avg_euro(i) = mean(yield_pred_euro(i, :));

end

I_X = Actual_data_Euro;

% One -month time to Maturity prediction for 2019 Euro yields
figure (1);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 28; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);

hold on;

xlabel ({'Calendar time $t$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({'Predicted yields $y_{t}(x=1$ m)' '(One -month time -to-
maturity , $2019$) ' '(in \%)'}, 'FontSize ', 25, 'interpreter ', '
latex ');

axis([min(T_grid(I_X)) max(T_grid(I_X)) -1 1]);
%title('One -Month Time -to -Maturity Euro yield curve Prediction ','

FontSize ', 25)
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plot(T_grid(I_X),yield2019_Euro_bonds (:,1),'r','LineWidth ', 3);
plot(T_grid(I_X), yield_lq_euro(I_X), 'k:', 'LineWidth ', 2);
plot(T_grid(I_X), yield_hq_euro(I_X), 'k:', 'LineWidth ', 2);
plot(T_grid(I_X), yield_avg_euro(I_X), 'k-.', 'LineWidth ', 2);

for i = 1:5
plot(T_grid(I_X), yield_pred_euro(I_X , i));

end

legend ({'Observed yield curve ',
['Lower $', num2str (100* conf), '\%$ pointwise prediction

bound '],
['Upper $', num2str (100* conf), '\%$ pointwise prediction

bound '],
['Estimated mean yield curve '],
['Five sample yield curve forecasts ']}, ...
'FontSize ', 20, 'interpreter ', 'latex ', 'Location ', '

NorthWest ');

yield_pred_us = reshape(pred0 (2,:,:) ,364 ,10000);

yield_lq_us = zeros(size(T_grid));
yield_hq_us = zeros(size(T_grid));
yield_avg_us = zeros(size(T_grid));

for i = 1: length(T_grid)
yield_lq_us(i) = quantile(yield_pred_us(i, :), (1 - conf)/2);
yield_hq_us(i) = quantile(yield_pred_us(i, :), 1 - (1 - conf)

/2);
yield_avg_us(i) = mean(yield_pred_us(i, :));

end

% One -month time to Maturity prediction for 2019 Euro yields
I_XX = Actual_data_US;

figure (2);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 28; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);

hold on;

xlabel ({'Calendar time $t$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({'Predicted yields $y_{t}(x=1$ m)' '(One -month time -to-
maturity , $2019$) ' '(in \%)'}, 'FontSize ', 25, 'interpreter ', '
latex ');

axis([min(T_grid(I_XX)) max(T_grid(I_XX)) 0 4]);

plot(T_grid(I_XX),yield2019_US_bonds (:,1),'r','LineWidth ', 3);
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plot(T_grid(I_XX), yield_lq_us(I_XX), 'k:', 'LineWidth ', 2);
plot(T_grid(I_XX), yield_hq_us(I_XX), 'k:', 'LineWidth ', 2);
plot(T_grid(I_XX), yield_avg_us(I_XX), 'k-.', 'LineWidth ', 2);

for i = 1:5
plot(T_grid(I_XX), yield_pred_us(I_XX , i));

end

legend ({'Observed yield curve ',
['Lower $', num2str (100* conf), '\%$ pointwise prediction

bound '],
['Upper $', num2str (100* conf), '\%$ pointwise prediction

bound '],
['Estimated mean yield curve '],
['Five sample yield curve forecasts ']}, ...
'FontSize ', 20, 'interpreter ', 'latex ', 'Location ', '

SouthWest ');

function [R_ast , A, Sigma] = Initial_Quess_Parameters(R, dt)

%Initialising Parameters
[n, p] = size(R);
r_cur = R(2:end ,:) '; % r_cur is the r_(t_(j+1))

vector
r_lag = R(1:( end - 1) ,:) '; % r_lag is the r_(t_(j))

vector
A1 = zeros(p,p);
A2 = zeros(p,p);
Sigma = zeros(p,p);

%An estimate for R_ast
R_ast = (1/n)*sum(r_lag , 2);

%An estimate for A
for i= 1 :n-1

A1 = A1 + ((r_cur(:, i)-r_lag(:, i))*(R_ast -r_lag(:,
i)) ');

A2 = A2 + ((( R_ast - r_lag(:, i))*( R_ast - r_lag(:,
i)) '));

end

A = (1/dt) * (A1/A2);

%An estimate for Sigma
for i=1 : n-1

Sigma = Sigma + (( r_cur(:, i)-r_lag(:, i))-A*(R_ast -
r_lag(:, i))*dt)*(( r_cur(:, i)-r_lag(:, i))-A*(R_ast
-r_lag(:, i))*dt) ';

end
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Sigma = (1/(n*dt)) * (Sigma);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Vasicek Multivariate Inverse Function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [R_ast , A, Sigma] = Vasicek_Multivariate_Inverse_map(R, dt
)

%% Obtaining the initial R, R_ast , A, and Sigma

[R_ast , A, Sigma] = Initial_Quess_Parameters(R, dt);

%% Vasicek Short rate curve with the approximate values

[n, p] = size(R);
r_cur = R(2: end ,:) ';
r_lag = R(1: (end - 1), :) ';

%% Implementing Fsolve

x0 =[ R_ast (1,1) R_ast (2,1) A(1,1) A(2,1) A(1,2) A(2,2)
Sigma (1,1) Sigma (2,1) Sigma (2,1) Sigma (2,2)];

options = optimoptions('fsolve ');
options.MaxIter = 100000;
options.MaxFunEvals = 1000000;

[sol , fval , exitflag , output] = fsolve (@( theta)ML_est_eqs(
theta , R, dt , n, r_lag , r_cur), x0 , options); % p + p^2
+p^2

R_ast = sol(1: p) ';
A = reshape(sol((p+1): (p+1 + p^2 -1)), p, p);
Sigma = reshape(sol((p+p^2+1: end)), p, p);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Vasicek Multivariate Forward Map
% Use to generate the short rates
% R_ast , A, Sigma : the Vasicek estimates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [sol] = Vasicek_forward_mativariate_map(T_grid , R_ast , A,

Sigma , R0, n, nrep)

dt = T_grid (2)-T_grid (1);
a = A*R_ast*dt;
b = A*dt;
c = sqrtm(Sigma)*sqrt(dt);
p = length(R_ast);

sol = zeros(p, n, nrep);
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for rep = 1 : nrep

sol(:, 1 , rep) = R0;

for i = 2:n
sol(:, i, rep) = a + sol(:, i-1, rep)- b*sol(:, i

-1, rep)+ c*randn(p,1);
end

end
end

function res = ML_est_eqs(theta , R, dt, n, r_lag , r_cur)

dim = length(theta);
p = int32 ((-1+ sqrt (1+8* dim))/4);
delta_t = dt;

% Paramters to be Estimated
R_ast = reshape(theta (1:p),p,1);
A = reshape(theta ((p+1):(p+1 + p^2-1)),p,p);
Sigma = reshape(theta ((p+p^2+1):end),p,p);

% Defining the summations for R_ast , A and Sigma
Eqq2 = zeros(p,p);
Eqqq2 = zeros(p,p);
Eqq3 = zeros(p,p);

% Equation for R_ast
Eq1 = R_ast -((1/n)*sum(r_lag ,2) + (A\sum((r_cur -r_lag) ,2))/(n

*delta_t));

% Summation for A
for i=1:( length(R) -1)

Eqq2 = Eqq2 + ((r_cur (1:2,i)- r_lag (1:2,i))*(R_ast - r_lag (1:2,
i)) ');

Eqqq2 = Eqqq2 + (((R_ast -r_lag (1:2,i))*(R_ast - r_lag (1:2,i)) '))
;

end

% Equation for A
Eq_2 = (1/ delta_t)*(Eqq2/Eqqq2);
Eq2 = A - Eq_2;

% Summation for Sigma

for i=1:( length(R) -1)

Eqq3 = Eqq3 + (( r_cur (1:2, i) - r_lag (1:2, i))-A*(R_ast - r_lag
(1:2, i)).* delta_t)*(( r_cur (1:2, i)- r_lag (1:2, i))-A*(
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R_ast - r_lag (1:2, i)).* delta_t) ';

end

Eqq3 = (1/(n*delta_t))*(Eqq3);

% Equation for Sigma

Eq3 = Sigma - Eqq3;

% Summary of function
res = [Eq1; reshape(Eq2 ,p^2,1); reshape(Eq3 ,p^2,1)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Principal Component
% HJM Inverse parameter estimation
% HJM forward curve prediction
% One -month prediction
% One -month avg. rate curve estimation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set random seed for reproducibility
rng(1);

%% Loading and plotting Euro bonds 2018 data
yield2018_Euro_bonds = readmatrix (" yield2018_Euro_bonds.csv");
yield2018_Euro_bonds = yield2018_Euro_bonds (:, 3:( end - 1));

%Search and interpolate empty rows
[Row , Col] = size(yield2018_Euro_bonds);
Cal_T = 1:Row;
dif = setdiff(Cal_T ,find(isnan(yield2018_Euro_bonds(Cal_T , 3))

));
No_data_Euro = find(isnan(yield2018_Euro_bonds (1:364 , 3)));

for r = 1: length(No_data_Euro)

for k = 3:Col
yield2018_Euro_bonds(No_data_Euro(r), k) = interp1(dif ,

yield2018_Euro_bonds(dif ,k), No_data_Euro(r),'
linear ','extrap ');

end
end

n = length(yield2018_Euro_bonds);
month = [1 2 3 4 5 6 7 8 9 10 11 12*[1 2 3 4 5 6 7 8 9 10 15 20 25

30]];

% I = 1: length(month);
% I = setdiff(I, [1 2]);

yield2018_Euro_bonds (:, 1) = yield2018_Euro_bonds (:, 3);
yield2018_Euro_bonds (:, 2) = yield2018_Euro_bonds (:, 3);
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%% Loading and plotting US treasury bonds 2018 data
yield2018_US_bonds = readmatrix (" yield2018_US_bonds.csv");
yield2018_US_bonds = yield2018_US_bonds (:, 3:(end - 1));

%Search and interpolate empty rows
[Row , Col]=size(yield2018_US_bonds);

Cal_T = 1: Row;
dif = setdiff(Cal_T ,find(isnan(yield2018_US_bonds(Cal_T ,1))))

;
No_data_Euro = find(isnan(yield2018_US_bonds (1:364 , 1)));

for r= 1: length(No_data_Euro)
for k=1:Col

yield2018_US_bonds(No_data_Euro(r), k) = interp1(dif ,
yield2018_US_bonds(dif ,k), No_data_Euro(r),'linear ','
extrap ');

end
end

%Interpolate the second column which is half empty

[~, ind_nan] = min(isnan(yield2018_US_bonds (:, 2)));
ind_nan = ind_nan - 1;

month_1= [1 2 3 6];
month_1 = [month_1 12*[1 2 3 5 7 10 20 30]];

I = 1: length(month_1);
I = setdiff(I, 2);
for i = 1: ind_nan

yield2018_US_bonds(i, 2) = interp1(month_1(I),
yield2018_US_bonds(i, I), month_1 (2));

end

yield2018_2= zeros (364, length(month));
for i = 1:364

yield2018_2(i, :) = interp1(month_1 , yield2018_US_bonds(i, 1:
length(month_1)), month);

end

yield2018_US_bonds = yield2018_2;

%% Loading 2019 data
% Euro yields
yield2019_Euro_bonds = readmatrix (" yield2019_Euro_bonds.csv");
yield2019_Euro_bonds = yield2019_Euro_bonds (:, 2:( end - 1));

yield2019_Euro_bonds (:, 1) = yield2019_Euro_bonds (:, 3);
yield2019_Euro_bonds (:, 2) = yield2019_Euro_bonds (:, 3);

%% Loading 2019 data
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yield2019_US_bonds = readmatrix (" yield2019_US_bonds.csv");
yield2019_US_bonds = yield2019_US_bonds (:, 2:(end - 1));

%% Defining the Time and Maturity Grid
T_grid = linspace(0, 12, n);
X_grid = linspace(0, month(end), month(end)*360/ month(end));

dx = X_grid (2) - X_grid (1);
dt = T_grid (2) - T_grid (1);

n_month = 25;
n_month1 = 12;
month = month (1: n_month);
month_1 = month_1 (1: n_month1);
%% Preparing the forward curves for Euro
yield_obs = zeros(length(T_grid), length(X_grid));
Y_obs = zeros(size(yield_obs));

for i = 1: length(T_grid)
yield_obs(i, :) = interp1 ([0 month], [yield2018_Euro_bonds(i,

1) yield2018_Euro_bonds(i, 1: n_month)], X_grid , 'spline ');
Y_obs(i, :) = X_grid .* yield_obs(i, :);

end
%% Preparing the forward curves for Us Treasury
yield_obs_1 = zeros(length(T_grid), length(X_grid));
Y_obs_1 = zeros(size(yield_obs_1));

for i = 1: length(T_grid)
yield_obs_1(i, :) = interp1 ([0 month], [yield2018_2(i, 1)

yield2018_2(i, 1: n_month)], X_grid , 'spline ');
Y_obs_1(i, :) = X_grid .* yield_obs_1(i, :);

end

%% Estimation of Vasicek 's model
r_obs = yield_obs(:, 1);
r_obs_1 = yield_obs_1 (:,1);

R0 = [r_obs(end , 1);r_obs_1(end , 1)];
R = [r_obs ,r_obs_1 ];
P = size(R0 ,1); %%Number of different yield market

[R_ast , A,Sigma] = Vasicek_Multivariate_Inverse_map(R,dt);

%% Predicting the short rates f_{t}(0) with Vasicek 's model
conf = 0.99;

%% Inverse problem for the abstract Heath -Jarrow -Morton model

[I_sigma_hat_EU , I_sigma_hat_US , lambda_hat_EU , lambda_hat_US ,
var_rat] = Multivariate_HJM_inv_map(T_grid , X_grid ,Y_obs ,
Y_obs_1 , r_obs , r_obs_1 , conf ,P);
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n_mode = size(I_sigma_hat_EU , 1);

display (['HJM model: lambda -hat_Euro = ', num2str (( lambda_hat_EU) ')
]);

%Principal component for Euro yields
figure (1);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 28; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);

hold on;

xlabel('$x$', 'FontSize ', 25, 'interpreter ', 'latex ');
ylabel('Principal curves $\ mathcal{I}_{x} \sigma_{n}$', 'FontSize ',

25, 'interpreter ', 'latex ');

axis([min(X_grid) max(X_grid) min(I_sigma_hat_EU , [], 'all') max(
I_sigma_hat_EU , [], 'all')]);

for i = 1: n_mode
plot(X_grid , I_sigma_hat_EU(i, :), 'LineWidth ', 2, 'MarkerSize '

, 0.01);
end

legend ({'$\ mathcal{I}_{x} \sigma_ {1}$ ', '$\ mathcal{I}_{x} \sigma_
{2}$ ', '$\ mathcal{I}_{x} \sigma_ {3}$ ', ...

'$\ mathcal{I}_{x} \sigma_ {4}$ ', '$\ mathcal{I}_{x} \sigma_
{5}$ ', ...

'$\ mathcal{I}_{x} \sigma_ {6}$ ','$\ mathcal{I}_{x} \sigma_
{7}$ ','$\ mathcal{I}_{x} \sigma_ {8}$ ',...

'$\ mathcal{I}_{x} \sigma_ {9}$ ','$\ mathcal{I}_{x} \sigma_
{10}$ ',...

'$\ mathcal{I}_{x} \sigma_ {11}$ ','$\ mathcal{I}_{x} \sigma_
{12}$ '},'FontSize ', 10, 'interpreter ', 'latex ', '
Location ', 'NorthWest ');

display (['HJM model: lambda -hat_US = ', num2str (( lambda_hat_US) ')])
;

%Principal component for US yields
n_mode = size(I_sigma_hat_US , 1);

figure (2);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 28; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);
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hold on;

xlabel('$x$', 'FontSize ', 25, 'interpreter ', 'latex ');
ylabel('Principal curves $\ mathcal{I}_{x} \sigma_{n}$', 'FontSize ',

25, 'interpreter ', 'latex ');

axis([min(X_grid) max(X_grid) min(I_sigma_hat_US , [], 'all') max(
I_sigma_hat_US , [], 'all')]);

for i = 1: n_mode
plot(X_grid , I_sigma_hat_US(i, :), 'LineWidth ', 2, '

MarkerSize ', 0.01);
end

legend ({'$\ mathcal{I}_{x} \sigma_ {1}$ ', '$\ mathcal{I}_{x} \sigma_
{2}$ ', '$\ mathcal{I}_{x} \sigma_ {3}$ ', ...

'$\ mathcal{I}_{x} \sigma_ {4}$ ', '$\ mathcal{I}_{x} \sigma_
{5}$ ', ...

'$\ mathcal{I}_{x} \sigma_ {6}$ ','$\ mathcal{I}_{x} \sigma_
{7}$ ','$\ mathcal{I}_{x} \sigma_ {8}$ ',...

'$\ mathcal{I}_{x} \sigma_ {9}$ ','$\ mathcal{I}_{x} \sigma_
{10}$ ',...

'$\ mathcal{I}_{x} \sigma_ {11}$ ','$\ mathcal{I}_{x} \sigma_
{12}$ '},'FontSize ', 10, 'interpreter ', 'latex ', '
Location ', 'NorthWest ');

%% Prediction for Y
n_rep = 10000;
conf = 0.99;

T_pred =31; % February 1, 2019 - corresponds to 31/250*12 = 1.0560
month in 2019

date = 'February 1, 2019 ';

T_grid_pred = T_grid (1: ceil(T_pred*length(T_grid)/size(
yield2018_Euro_bonds , 1)));

t_pred = T_grid_pred(end);

% Predicting the short rates f_{t}(0) with Vasicek 's model
pred0 = Vasicek_forward_mativariate_map(T_grid_pred , R_ast , A

, Sigma , R0, n ,n_rep);

% Predicting integrated forward rates with HJM model
[sol_1 , sol_2 ] = Multivariate_HJM_fwd_map(T_grid_pred , X_grid ,

Y_obs(end , :), Y_obs_1(end , :),...
pred0 , I_sigma_hat_EU , I_sigma_hat_US ,

lambda_hat_EU , lambda_hat_US , n_rep);

pred1=sol_1;

yield_pred = zeros(length(X_grid), n_rep);

for j = 1: n_rep
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yield_pred (:, j) = pred1(end , :, j)./ X_grid;
yield_pred (1, j) = yield_pred (2, j);

end

yield_lq = zeros(size(X_grid));
yield_hq = zeros(size(X_grid));
yield_avg = zeros(size(X_grid));

for i = 1: length(X_grid)
yield_lq(i) = quantile(yield_pred(i, :), (1 - conf)/2);
yield_hq(i) = quantile(yield_pred(i, :), 1 - (1 - conf)/2);
yield_avg(i) = mean(yield_pred(i, :));

end

I_X = find(ismember(X_grid , X_grid));

% One -month prediction for Euro yields
figure (3);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 28; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);

hold on;

xlabel ({'Time to maturity $x$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({['Predicted yields $y_{t}(x)$ on $t = \textrm{', date , '}$'
], '(in \%)'}, 'FontSize ', 25, 'interpreter ', 'latex ');

axis([min(X_grid(I_X)) max(X_grid(I_X)) -1 3.5]);

T_pred_actual_euro= 23;
plot(X_grid , interp1(month , yield2019_Euro_bonds(T_pred_actual_euro

, 1: n_month), X_grid), 'k', 'LineWidth ', 3);
plot(X_grid(I_X), yield_lq(I_X), 'k:', 'LineWidth ', 2);
plot(X_grid(I_X), yield_hq(I_X), 'k:', 'LineWidth ', 2);
plot(X_grid(I_X), yield_avg(I_X), 'k-.', 'LineWidth ', 2);

for i = 1:5
plot(X_grid(I_X), yield_pred(I_X , i));

end

legend ({'Observed yield curve ',
['Lower $', num2str (100* conf), '\%$ pointwise prediction

bound '],
['Upper $', num2str (100* conf), '\%$ pointwise prediction

bound '],
['Estimated mean yield curve '],
['Five sample yield curve forecasts ']}, ...
'FontSize ', 25, 'interpreter ', 'latex ', 'Location ', '

SouthWest ');
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pred2 = sol_2;

yield_pred_1 = zeros(length(X_grid), n_rep);

for j = 1: n_rep
yield_pred_1 (:, j) = pred2(end , :, j)./ X_grid;
yield_pred_1 (1, j) = yield_pred_1 (2, j);

end

yield_lq = zeros(size(X_grid));
yield_hq = zeros(size(X_grid));
yield_avg = zeros(size(X_grid));

for i = 1: length(X_grid)
yield_lq(i) = quantile(yield_pred_1(i, :), (1 - conf)/2);
yield_hq(i) = quantile(yield_pred_1(i, :), 1 - (1 - conf)/2);
yield_avg(i) = mean(yield_pred_1(i, :));

end

I_X = find(ismember(X_grid , X_grid));

% One -month prediction for Euro yields
figure (4);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 28; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);

hold on;

xlabel ({'Time to maturity $x$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({['Predicted yields $y_{t}(x)$ on $t = \textrm{', date , '}$'
], '(in \%)'}, 'FontSize ', 25, 'interpreter ', 'latex ');

axis([min(X_grid(I_X)) max(X_grid(I_X)) 0 4]);

T_pred_actual_US= 22;
plot(X_grid , interp1(month_1 , yield2019_US_bonds(T_pred_actual_US ,

1: n_month1), X_grid), 'k', 'LineWidth ', 3);
plot(X_grid(I_X), yield_lq(I_X), 'k:', 'LineWidth ', 2);
plot(X_grid(I_X), yield_hq(I_X), 'k:', 'LineWidth ', 2);
plot(X_grid(I_X), yield_avg(I_X), 'k-.', 'LineWidth ', 2);

for i = 1:5
plot(X_grid(I_X), yield_pred_1(I_X , i));

end

legend ({'Observed yield curve ',
['Lower $', num2str (100* conf), '\%$ pointwise prediction

bound '],
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['Upper $', num2str (100* conf), '\%$ pointwise prediction
bound '],

['Estimated mean yield curve '],
['Five sample yield curve forecasts ']}, ...
'FontSize ', 25, 'interpreter ', 'latex ', 'Location ', '

SouthWest ');

% One -month avg. rate curve estimation for Euro yields
figure (5);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 36; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);

% Observed
subplot(1, 2, 1);
hold on;

xlabel ({'Calendar time $t$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

zlabel ({'Obs. yield rate $y_{t}(x)$', '(in \%)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

[Time , Horizon] = meshgrid(T_grid_pred , month);

surf(Time , Horizon , yield2019_Euro_bonds (1: T_pred , 1: n_month) ');
axis([min(T_grid_pred) max(T_grid_pred), min(month) max(month), 0.0

2.9]);
view(-20, 50);

% Estimated mean
subplot(1, 2, 2);
hold on;

xlabel ({'Calendar time $t$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

zlabel ({'Est. mean yield rate $\ widehat {\ mathrm{E}\big[y_{t}(x)\big
]}$ ', '(in \%)'}, 'FontSize ', 25, 'interpreter ', 'latex ');

mean_yield_pred = mean(pred1 , 3);

for i = 1:size(pred1 , 1)
mean_yield_pred(i, :) = mean_yield_pred(i, :)./ X_grid;

end

I_T = 1: length(T_grid_pred);
I_X = ceil(linspace(1, length(X_grid), 20));
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[Time , Horizon] = meshgrid(T_grid_pred(I_T), X_grid(I_X));

surf(Time , Horizon , mean_yield_pred(I_T , I_X) ');
axis([min(T_grid_pred(I_T)) max(T_grid_pred(I_T)), min(X_grid(I_X))

max(X_grid(I_X)), 0.0 2.9]);
view(-20, 50);

% One -month avg. rate curve estimation for US yields
figure (6);
set(gcf , 'PaperUnits ', 'centimeters ');
xSize = 36; ySize = 16;
xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf , 'PaperPosition ', [xLeft yTop xSize ySize]);
set(gcf , 'Position ', [0 0 xSize *50 ySize *50]);

% Observed
subplot(1, 2, 1);
hold on;

xlabel ({'Calendar time $t$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

zlabel ({'Obs. yield rate $y_{t}(x)$', '(in \%)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

[Time , Horizon] = meshgrid(T_grid_pred , month_1);

surf(Time , Horizon , yield2019_US_bonds (1: T_pred , 1: n_month1) ');
axis([min(T_grid_pred) max(T_grid_pred), min(month_1) max(month_1),

0.0 3.9]);
view(-20, 50);

% Estimated mean
subplot(1, 2, 2);
hold on;

xlabel ({'Calendar time $t$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize ', 25, '
interpreter ', 'latex ');

zlabel ({'Est. mean yield rate $\ widehat {\ mathrm{E}\big[y_{t}(x)\big
]}$ ', '(in \%)'}, 'FontSize ', 25, 'interpreter ', 'latex ');

mean_yield_pred_1 = mean(pred2 , 3);

for i = 1:size(pred2 , 1)
mean_yield_pred_1(i, :) = mean_yield_pred_1(i, :)./ X_grid;

end

I_T = 1: length(T_grid_pred);
I_X = ceil(linspace(1, length(X_grid), 20));
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[Time , Horizon] = meshgrid(T_grid_pred(I_T), X_grid(I_X));

surf(Time , Horizon , mean_yield_pred_1(I_T , I_X) ');
axis([min(T_grid_pred(I_T)) max(T_grid_pred(I_T)), min(X_grid(I_X))

max(X_grid(I_X)), 0.0 3.9]);
view(-20, 50);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HJM Forward prediction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [sol_1 , sol_2 ]= Multivariate_HJM_fwd_map(T_grid , X_grid ,
Y0, Y0_1 , pred0 , I_sigma_hat_EU , I_sigma_hat_US , lambda_hat_EU ,
lambda_hat_US , n_rep)

dt = T_grid (2) - T_grid (1);
dx = X_grid (2) - X_grid (1);

n = length(X_grid) - 1;

A = speye(n)/dx - sparse (2:n, 1:(n - 1), ones(1, n - 1), n, n
)/dx;

Adt = speye(n) + A*dt;

sol_1 = zeros(length(T_grid), length(X_grid), n_rep);
sol_2 = zeros(length(T_grid), length(X_grid), n_rep);

y0 = reshape(pred0 (1,:,:) ,364 ,10000);
lambda_1 = lambda_hat_EU;
I_sigma_1 = I_sigma_hat_EU;
k = size(I_sigma_1 , 1);

y1 = reshape(pred0 (2,:,:) ,364 ,10000);
lambda_2 = lambda_hat_US;
I_sigma_2 = I_sigma_hat_US;
k1 = size(I_sigma_2 , 1);

for j = 1: n_rep
sol_1(1, :, j) = Y0;

for i = 2: length(T_grid)
dW = randn(1, k);

% Solve with (semi -) implicit Euler -Maruyama
rhs = sol_1(i - 1, 2:end , j) + ...

dt *(0.5*(1 + lambda_1 ')*( I_sigma_1 (:, 2:end).^2)
+ y0(i - 1, j)) + sqrt(dt)*dW*I_sigma_1 (:, 2:
end);

rhs = rhs ';

sol_1(i, :, j) = [0 (Adt\rhs) '];
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end
end
for j = 1: n_rep

sol_2(1, :, j) = Y0_1;

for i = 2: length(T_grid)
dW = randn(1, k1);

% Solve with (semi -) implicit Euler -Maruyama
rhs = sol_2(i - 1, 2:end , j) + ...

dt *(0.5*(1 + lambda_2 ')*( I_sigma_2 (:, 2:end).^2)
+ y1(i - 1, j)) + sqrt(dt)*dW*I_sigma_2 (:, 2:
end);

rhs = rhs ';

sol_2(i, :, j) = [0 (Adt\rhs) '];
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HJM Inverse estimations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [I_sigma_hat_US , I_sigma_hat_EU , A_I_lambda_hat_EU ,

A_I_lambda_hat_US , var_rat] = Multivariate_HJM_inv_map(T_grid ,
X_grid , Y_obs , Y_obs_1 , r_obs , r_obs_1 , pc_var , P)

dx = X_grid (2) - X_grid (1);
dt = T_grid (2) - T_grid (1);

% Predictor vectors
pred1 = zeros(length(T_grid) - 1, length(X_grid));

for i = 2: length(T_grid)
f1 = Y_obs(i, :);
f0 = Y_obs(i - 1, :);
Af1 = [0 (f1(2:end) - f1(1:( end - 1)))/dx];

pred1(i - 1, :) = (f1 - f0)/dt + Af1 - r_obs(i);
end

pred2 = zeros(length(T_grid) - 1, length(X_grid));

for i = 2: length(T_grid)
f1 = Y_obs_1(i, :);
f0 = Y_obs_1(i - 1, :);
Af1 = [0 (f1(2:end) - f0(1:( end - 1)))/dx];

pred2(i - 1, :) = (f1 - f0)/dt + Af1 - r_obs_1(i);
end
%% Estimate I sigma

% Transform to D(A)for pred1
len1 = size(pred1 , 1);
for i = 1:( len1)
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pred1(i, :) = A(pred1(i, :));
end

% Transform to D(A)for pred2
len2 = size(pred2 , 1);
for i = 1:( len2)

pred2(i, :) = A(pred2(i, :));
end

pred = [pred1 pred2];
% pred = [pred2; pred1 ];

S = cov(pred);

[V, D] = eig(S);

V = V/sqrt(dx); % normalize the discrete L^2 norm

d = diag(D)*dx; % scale the eigenvalues

var_rat = cumsum(flip(d))./sum(d);
n_mode = min(find(var_rat >= pc_var));

%mode_div = round(n_mode /2);

sigma_hat = diag(sqrt(d((end - n_mode + 1):end)*dt))*V(:,
(end - n_mode + 1):end) '; % Note the normalization

factor dt

sigma_hat_EU = sigma_hat(:, 1:( size(sigma_hat , 2)/2));
sigma_hat_US = sigma_hat(:, ((size(sigma_hat , 2)/2) + 1):end

);

I_sigma_hat = zeros(size(sigma_hat));

sigma_size = size(I_sigma_hat ,1); %Total number of
signicance sigma

%sigma_div = sigma_size /2; %Dividing into equal
part

I_sigma_hat_EU = zeros(sigma_size , length(X_grid));
I_sigma_hat_US = zeros(sigma_size , length(X_grid));

% Transform back to H
for i = 1: n_mode

I_sigma_hat_EU(i, :) = I(sigma_hat_EU(i, :));
I_sigma_hat_US(i, :) = I(sigma_hat_US(i, :));

end

%% Estimate lambda
loc = mean(pred , 1);
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% Transform to D(A)
A_I_sigma_hat_EU = zeros(sigma_size , length(X_grid));
A_I_sigma_hat_US = zeros(sigma_size , length(X_grid));

for i = 1: n_mode
A_I_sigma_hat_EU(i, :) = A(I_sigma_hat_EU(i, :));
A_I_sigma_hat_US(i, :) = A(I_sigma_hat_US(i, :));

end

A_I_sigma_hat2 = zeros(n_mode ,size(I_sigma_hat ,2)/2,2,2)
;

for i = 1: n_mode
A_I_sigma_hat2(i,:,2,1) = A_I_sigma_hat_EU(i,:).*

A_I_sigma_hat_US(i,:);
A_I_sigma_hat2(i,:,2,2) = A_I_sigma_hat_EU(i,:).*

A_I_sigma_hat_EU(i,:);
A_I_sigma_hat2(i,:,1,1) = A_I_sigma_hat_US(i,:).*

A_I_sigma_hat_US(i,:);
A_I_sigma_hat2(i,:,1,2) = A_I_sigma_hat_US(i,:).*

A_I_sigma_hat_EU(i,:);
end

S = size(A_I_sigma_hat2);
A_I_sigma_hat2_1 = reshape(permute(A_I_sigma_hat2

,[1,4,2,3]) ,2*S(1:2));

lambda_hat = 2*sqrtm(A_I_sigma_hat2_1*A_I_sigma_hat2_1 ')\(
A_I_sigma_hat2_1*loc ') - 1;

A_I_lambda_hat = reshape(permute(reshape(lambda_hat ,4,2,3)
,[1,2,3,4]),n_mode ,P);

A_I_lambda_hat_EU = A_I_lambda_hat (:,1);

A_I_lambda_hat_US = A_I_lambda_hat (:,2);

function res = A(y)
res = [0 (y(2:end) - y(1:( end - 1)))/dx];

end

function res = I(y)
res = dx*cumsum(y);

end
end
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