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Abstract

Market diversification is a strategy according to which a company seeks growth by adding
products and markets that are in a certain sense “uncorrelated” to its existing products and
markets. Bonds play a major role a in well-balanced diversified portfolio because of their
low correlation to other asset classes. While the correlations vary widely over time, bonds
are not highly correlated with any other asset classes. Even in the simplest diversified
portfolio, bonds can reduce volatility due to their low or negative correlation with stocks.
Because companies can create robust diversified portfolios with bonds it is imperative that
different bonds are studied simultaneously, so that portfolios can be created in a coherent
manner. This can facilitate optimal allocation of investments for multinational and public
companies. In fact many economic studies have revealed that geographical diversification is
more effective in reducing portfolio risk than any of the other investment strategies tested.
In this thesis, we present the well-known Heath-Jarrow-Morton (HJM) model which allows
for the evolution of the entire yield curve by modeling interest rate dynamics in continuous
time under no arbitrage condition. We extend the classical HIM model to multi-bond case
in order to study multiple zero coupon bonds simultaneously. We provide tools to estimate
the correlation structure that may or may not be strongly pronounced. We first assess the
predictive power of a non-parametric estimation for the HJM model by applying it to the
Euro coupon bonds which allows observation of negative interest rate. We also extend the
same scheme to the multi-bond case by applying it to Euro coupon and US coupon bonds,
and specify the evolution of the short rates by a multivariate Vasicek model. We perform
statistical estimation and inference for multi-bond extension of the classical HIM model

and discuss its predictive performance.

Keywords: Heath-Jarrow-Morton model; zero-coupon bonds; forward rates; multivariate

Vasicek model; SPDE; arbitrage-free
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Chapter 1

Introduction

The bond market (also termed debt or credit market) is a financial market where par-
ticipants can issue new debt, called the primary market, or buy and sell debt securities,
termed as the secondary market. Bonds provide major long-term funding for public and
private expenditures. A bond could be a debt security, under which the issuer owes the
holders a debt and (depending on the terms of the bond) is obliged to pay them interest
(coupon) or to repay the principal at a later date, called the maturity date. Interest is
typically payable at fixed intervals (semiannually, annually, or monthly, etc). Oftentimes
the bond is negotiable, i.e., the ownership of the instrument is transferred in the secondary
market. If the market price of a bond is less than its face value, we say the bond trades at
a discount. In this case, its yield is over the coupon rate. If its market price is higher than
its face value, we say the bond trades trade at a premium. In this case, its yield is under
the coupon rate. Also, there are bonds that do not pay an intermediate interest but are
traded at a deep discount, and there is profit at the maturity once they are redeemed for
their full face value, see Longstaff| (2002).

A stock is a security that represents the ownership of a fraction or fragment of a corpo-
ration. This authorizes the owner of the stock to a proportion of the corporation’s assets
and profits equal to how much stock they own. Stocks are bought and sold mainly on
stock exchanges, though there are private sales as well, and are the foundation of many
individual investors’ portfolios, see Barsky| (1986)).

We see that bonds fundamentally differ from stocks in a very number of ways. First,
bondholders are creditors to the corporation and are entitled to interest and repayment of

principal as well. Creditors are given legal priority over other stakeholders in the event of a



bankruptcy and will be settled first if a corporation is forced to sell assets. Shareholders, on
the other hand, are last to be considered and often receive nothing, or small dollar amount,
in the event of bankruptcy.

Filipovic (2000) noted that, while stock markets are built up by a finite number of traded
assets, the underlying basis of a bond market is the entire term structure of interest rates:
an infinite-dimensional state variable that is not directly observable. Because of the in-
verse relationship between bond valuation and interest rates (or yields), the bond market
is normally used to indicate changes in interest rates or the shape of the yield curve, i.e.,
the measure of “cost of funding.” Under a yield curve we understand the graphical rep-
resentation of different interest rates paid by bonds with the identical levels of risk but
at different maturities. Yield curves may be normal, inverted, or flat. Upward sloping
yield curves are where longer-term bonds have higher yields than short-term ones. While
normal curves may point to economic expansion, downward sloping curves may point to
economic recession. The yield curve is extremely important owing to the fact it is used as a
benchmark for other debt in the market, such as mortgage rates or bank lending rates, and
it is normally used to predict changes in economic output and growth. The main use of the
yield curve, from a monetary policy perspective, is to get an empirical representation of the
term structure of interest rates, which might be interpreted in terms of market expecta-
tions of monetary policy, economic activity and inflation expectations over the short-term,

medium-term and long-term horizons, see [Nymand-Andersen! (2018)).

1.1 Term Structure of Interest Rates

In this section we discuss various concepts related to the dynamics of the term structure
of interest rates and introduce some notation that will be used throughout this thesis. We

follow (Carmona and Tehranchi (2007) and [Filipovi¢ (2000).

Definition 1.1.1 (Discount Factors) The quantities used at a given point in time to

obtain the present value of future cash flows are the discount factors. At a given time t,



the discount factor di,, with time to maturity m, or maturity date T' =t +m, is given by

the formula:

1
Ay = 77—
“ (14 rem)™

where 1., s the yearly spot interest rate in force at time t for this time to maturity.

(1.1)

The spot rate 7, at time ¢ for time to maturity m, and the time of maturity is 7' =t +m
can be defined as in Equation (1.1). Given observed values of discount factor d;’s and

dropping the ¢, the spot yields can computed from Equation (1.1)) as:

o = (d}n% - 1) (12)

The sequence of spot rates {r;};—1.m, where m is the time of maturity is called the term
structure of (spot) interest rate. It is usually plotted against the time to maturity 7; —t in
years. (Carmona and Tehranchi (2007) noted though that plotting the historical changes in
time ¢ of the yield for time to maturity 7; —¢ depicts a graph which looks like a sample path
of a stochastic diffusion process rather than a piece-wise linear interpolation of a smooth
curve.

Equation (|I.1)) can also rewritten in the form:
1
log(1 4 rim) = ——logdim
m

Invoking Taylor’s formula, log(1 + x) ~ = as x — 0, the former relation gives an approxi-
mate identity:

Ttm ~ —— log di m,
m

which becomes an exact equality if we use continuous compounding, see (Carmona and
Tehranchi| (2007)).

The rates fi1, fi2,... fr; implied by the discount factors d;1,d;s,...d;; are termed as
implied forward rates, with the ratios given by

dt,j—l — dtJ' B _Adt,j

- = 1.3
fth? dtd dtd ( )




For each given ¢, we denote by x < P, ,, the price of a zero coupon bond with unit nominal
as a function of time to maturity © = 7' — ¢ and write Equation (1.3) as:

oP,. 9
__Zw_ 9 p
1t @) P o b

)

Integrating both sides, we obtain the following expression for the discount factor

P = exp ( - [ e s>)ds (1.4)

1 x
Tio = —/ f(t, s)ds. (1.5)
T Jo
This relation can be inverted to express the forward rates as function of the spot rate:

or,
oxr’

The essential difference between the spot rate r;; and the forward rate f;; can be best

and the spot rate

flt,x) =r, +x (1.6)

restated by saying that r,; gives the average rate of return of the next j periods while the

forward rate f;; gives the marginal rate of return over the j-th period.

1.2 Term Structure Models

The level of complexity of the bond market is higher than that of a stock market: one
simple reason lies in the fact that the underlying instruments on which the derivatives are
written are more sophisticated than mere stock shares. Indeed, at each given period t,
instead of being represented by a single number S; as the price of one share of a common
stock, the term structure of interest rates is given as a curve, typically evaluated on a finite
grid or discrete set. This curve is interpreted as the sampling of the graph of a function
T — P(t,T) over the dates of maturity of the instrument (Carmona and Tehranchi, 2007).
We can see that there is a one-to-one relation between the time t term structure of bond
prices and the time ¢ term structure of interest rates or forward curve {f(¢,7) | t < T}
given by

P(,T) = exp < - /t e s)ds) (1.7)



where f(t,T) is the continuously compounded instantaneous forward rate and P(t,T) is
the price of a zero-coupon bond for maturity date T' prevailing at time ¢. The forward
curve contains all necessary information for pricing bonds of all maturities, see |Filipovic
(2000)).

Many models have been developed to describe the term structure of interest rate, e.g.,
Mamon| (2004)), |Overbeck and Ryden| (1997) and Boyle et al| (2001). These capture the
dynamics of the short-term rate. Also popular models include the whole-yield models. The
approach adopted in whole-yield models is to directly describe the forward-rate processes
f(t,T), where 0 < t < T. One of the main models is the Heath-Jarrow-Morton (HJM)
model. The HJM model is a very general framework used for pricing interest interests
and credits derivatives. It is a powerful instrument for describing the stochastic evolution
of interest rate curves under no-arbitrage assumption. An important feature of the HJM
approach is the fact that the drifts can be expressed as functions of respective volatilities and
the underlying correlation structure. Models developed according to the HIM framework
models capture the full dynamics of the entire forward rate curve. The framework for
modeling the interest rate term structure is to take the (instantaneous) forward rate as the
underlying state variable. With suitable assumptions, Heath et al. (1992) demonstrated
that f(¢t,T), interpreted as the forward rate prevailing at time ¢ for the maturity 7', can
be modeled as a Markovian diffusion that evolves according to the following stochastic

differential equation (SDE):

df(t, T) = a(t, T)dt + o(t, T) - dW (1),

£0,7) = fA(T),

(1.8)

where (W (t))eo1) is a d-dimensional standard Brownian motion, T — f%(T') is the mar-
ket instantaneous forward curve at time ¢ = 0, («(t,T))pr and (o(¢, 7))y are 1- and
d-dimensional stochastic processes adapted to the natural filtration of (W(t))eor) and
o(t,T)-dW(t) = Zzzl ok (t, T)dWy(t) is formally defined as a scalar product.

Formally, integrating Equation(1.8)) over [0, ¢] for ¢ € [0, T], the instantaneous forward rate



f(t,T) can be represented as an It6-process

f&,T)=f(0,T)+ /Ota(s,T)ds + /Ota(s,T) ~dW(s). (1.9)

The entire interest dynamics captured by Equation(|1.7)) is not necessarily arbitrage-free.
Heath et al, (1992) addressed the following question: What are the conditions on the
dynamics of the Equation (|1.9) such that the implied bond market

P(LT) = exp < _ /t e s)ds)

is arbitrage-free. Arbitrage opportunity is the existence of a self-financing strategy which
yields a positive income in the future without investing a positive amount today or taking
advantage of a price difference between two or more markets. With arbitrage we mean a

predictable process
(qbla ¢2a s 7¢n)

yielding a profit without risk, that is

V(T) = B(T)Xi:/o ngi(t)d(Pg—Egi)) >0 and P[V(t)>0] >0

for somen € Nand 0 < Ty < --- < T,, <T, where B(t) is the value of a bank account at

time ¢t < 0 and the contract value at time ¢t < T" is denoted by P(¢,T). See Bjork (2009).

Carmona and Tehranchi (2007) showed under some technical conditions that (%) is
equivalent to the HJM Drift Condition:
T
a(t.T) = o(t,T) / o(t,s)ds for all ¢ € [0,T]. (1.10)
t

Harrison and Pliskal (1981)) proved that the existence of an equivalent martingale measure
implies the absence of arbitrage opportunities. Also, Brigo and Mercurio (2007) showed
that the unique equivalent martingale measure exists if the drift depends on the volatility.
In particular, the requirement that the evolution in Equation ([1.9) is taking place under a

risk-neutral measure Q helps us to restate it as

alt, T)=0o(t,T) - /tT o(t,s)ds = Zak(t,T) /tT ok(t,s)ds forall te[0,T]



Therefore, for all ¢t € [0,7], they concluded that f(t,7) is fully specified (as a stochastic

process) as long as the volatility vector o is provided:

d t T d t
ft,T)=f(0,T)+ ok (7, s) ok (7, s)dsdT + ok (s, T) - dWi(s).

Recalling Equation(|1.7)), It6’s lemma furnishes an SDE for the zero-coupon bond P(t,T)
for all ¢ € [0, 7] :

dP(t,T) = P(t,T) (rtdt - ( /t Ta(t,T)ds) dW(t)),

where r; is the instantaneous short-term interest rate at ¢ given by

t t d t
rt:f(t,t):f(O,t)Jr/O U(T,t)-/ o(r, s)dsdT+Z/O ok (s, t)dWy(s)

— £(0,1) +i/0t ou(7, 5) - /:a(f,smsdT + i/ot ou(5, ) AT (s).

The forward curve x +— f(t,t 4+ x) cannot be directly observed on the market and has to
be estimated, on a day-by-day basis, from coupon bearing bond prices and other related
data. [Filipovi¢ (2000)), therefore, proposed in his dissertation to extend HJM to an infinite-
dimensional framework and consider the following stochastic partial differential equation

(SPDE) to allow for even richer dynamics

dfi(x) = (%ft(l') + ozt(x)) dt + oy (z) - AW (2),

f(x) = f(x),
with the Musiela’s notation (Musielal (1993)), fi(z) := f(t,t + ),z € [0,T — t]. Here,

(1.11)

(W(t))tcpo,m is an infinite-dimensional vector which is countably many independent real-
valued Brownian motions, the forward rate curve z — f;(x) is a random variable taking its

values in a function space H and the drift « is given by the no-arbitrage condition

a(z) = alt,t +1z) = iak(t,ﬂ— x)(/ox ox(t,t + s)ds).



To facilitate the analytic treatment of Equation (1.11)), Filipovid| (2000)) and (Carmona and
Tehranchi (2007) proposed to put Equation (1.11]) into the framework of abstract functional
SDEs with operator-valued coefficients

dX, = (AX, + F(t, X,))dt + B(t, X,)dW (1), (1.12)

Xo = ho,
and study the existence and uniqueness of mild solutions. We assume that U, F are
separable Hilbert spaces. X is an H-valued random process, hg is a random H-valued
Fo-measurable initial value, A : H — H is a linear (possibly unbounded) operator, and
(W(t))tcp,m is a standard cylindrical Wiener process over Y. Also, the spaces U, H,
Lus(H,U) generate respectively the following Borel o-algebra Z(U), B(H), B (Lus(H,U))).
The main challenge when building a model to describe the evolution of the yield curve is
the large number of degrees of freedom. The dynamics which drives the term structure is
inherently multivariate and thus one needs to model both the volatility of the individual
yields and the correlation among yields with different maturities, see (Sabelli et al.;, 2018]).
In this thesis we intend to develop an extension of Filipovi¢ HIM formulation from Equation

(1.11)) to the multi-bond case. The proposed model reads as

(4710) = (1 fia) + (o) Jdt + S, 57, o) - ()
fi(@) = (), (1.13)

1=1,...,p.

\

Here, p is the number of zero-coupon bonds, (W7 (t)):co.r] is an infinite-dimensional vector
of (countably many) independent real-valued Brownian motions, the forward rate curve
x— fi(x)(for i =1,...,p) are random variables taking their values in the function space

‘H and the drift « is given by the no-arbitrage condition

ai(z) = ai(t,t+ ) = izp:aijk(t,t + ) (/j o' (t b+ s)ds).



It suffices to put the Equation (1.13) into the framework of abstract operator SDEs with
stochastic coefficients to facilitate its analytic treatment which follows from Equation (1.12):

dX} = (AX! + F(t, X}))dt + B(t, X})dW (t) 114)

Xi = hi.
1.3 Well-Posedness for the Abstract Heath-Jarrow-
Morton Model

In this section, we introduce the abstract HJM model following the presentation of (Fil-
ipovi¢, 2000, Chapter 1 and 2) and (Carmona and Tehranchi, 2007, Chapter 7). The
resulting model is a semilinear stochastic SPDE driven by the standard cylindrical Wiener
process. The abstract HJM model is well-posed in the class of mild solutions on the
strength of the results from (Da Prato and Zabczyk, 2014, Chapter 7). The abstract HJIM
model is an instantaneous forward rate of a zero-coupon bond modeled through an infinite-
dimensional SDE driven by the standard cylindrical Wiener process which was proposed
by Filipovi¢ (2000). The underlying bond market of this framework captures the entire dy-
namics interest term structure. There are many advantages by modeling the term structure
in this way. First, there is no “maturity specific risk” as present in the finite-dimensional
models, also this framework helps better reflect the observed dynamics, not by the model
parameters alone but also captures the non-trivial topological aspects thereby improving
the predictive power and allowing for regularization without making use of ad hoc penalties

in empirical sense, refer to Maltsev and Pokojovy| (2021) for more details.



1.3.1 Existence and Uniqueness of Mild Solution to Semilinear

SPED

The abstract SPDE we consider is

dX, = (AX, + F(t, X,))dt + B(t, X,)dW (), (1.15)

X() == ho.

We briefly discuss the existence and uniqueness of mild solution established by (Filipovid,
2000, Chapter 4). Let (Q,]—", {Ft}tZO,IP’) be a filtered probability space and let T > 0.
Let Pr and P, denote the predictable o-algebra on [0,7] x Q. We assume that U, H are

separable Hilbert spaces and (W (t)).cjo,r7 is a cylindrical Wiener process over U.

Assumption 1.3.1 Let A, F and B in Equation (1.15|) satisfy:

o F: [0,T] x Q x H — H measurable from ([0,T] x Q@ x H,Pr x B(H)) to
(H, 2(H)),

e B:[0,T] x QxHw Lus(U,H) is measurable from ([O,T] X QX H,Pr x %’(7—[))
to <$HS(U,H),<%’($HS(U,H))>
e There is exists a constant C' > 0 such that for all u,v € H,t € [0,T],w € Q we have
[E(t, w,u) = F(t,w,0)|| + | B(t, w, u) = B(t,w,v)|| s < Cllu— vl
1F(t,w, w3, + 1B w, )| e @ragy < C*(L A+ Ilull3y),
o A is the generator of a strongly continuous operator semigroup (St)i>o on H

where, we let Q =7 and Uy = Q:U =U. The spaces U, H, %us(U, H) induce correspond-
ing Borel o-algebras B(U), B(H), B(Lus(U,H)), where Zs(+,-) denotes the space of
Hilbert-Schmidt operators.

10



Definition 1.3.1 (Mild Solution) An H-valued predictable stochastic process <X(t))te[0 7]

B[ Ixas <o) =1

is referred to as a mild solution to resulting model is a semilinear stochastic PDE (SPDE)

with

driven by the standard cylindrical Wiener process. It satisfies the abstract integral equation:

t t
X, = S;ho —l—/ Si—sF (s, Xg)ds —|—/ Si—sB(s, Xs)dW(s) forall t € [0,T]
0 0

P-almost surely.
We will note that the predictability of (X (f)):cjo,r] implies it admits a continuous modifi-

cation essential for latter integral to be well-defined.

Theorem 1.3.1 (Da Prato and Zabczyk (2014)) Under Assumption there exists a
unique H-valued mild solution (X(t))te[0 1 to Equation (1.15)). Also, for any p > 2, there

exists a positive constant K, which only depends on p and T, such that

sup E[IX()1%] < & 1+ E[lull] ).

te[0,7)

1.3.2 Definition of Abstract HIM Model

The following assumption can be made if we let Z either be a compact interval of the form
0,t0] for some positive ¢y or of the interval [0,00) and we have already defined (W (t));er
be a standard cylindrical Wiener process over a separable Hilbert space H. Let S be a
state space and Pr be a predictable o-algebra on Z x ), refer to (Filipovid, 2000, Chapter
4).

Assumption 1.3.2 Suppose:

e S is a separable Hilbert space consisting of continuous, real-valued functions f : 71 —

RP. Additionally, we assume that for every x € I the linear functionals

5.(f) = f(2), T(f) = / " fmdy
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are continuous on S.

o The left shift semigroup (St)i>o defined by

(Sef)(x) = f(t + )
is a strongly continuous operator semigroup on S generated by a linear operator A.

o Fujy is a measurable mapping from a non-empty subset of Lus(U,S) into S and
defined by
FHJM(O')($) = <O'*(Sx,0'*1'x>u

for all o € Lys(U,S).

Assumption 1.3.3 Assume there exist a subspace S* of S such that the binary operator

* defined by
(Fra) () = 7o) [ glo)ds.
0
mapping from S8* x §* into S, is bounded, i.e., there exist C > 0 such that the following

bound

1f > glls < ClIfllsllglls

holds for all f,g € S*.

The following result is cited from Maltsev and Pokojovy| (2021)):

Definition 1.3.2 (The abstract HIM model) The HJM model in a functional space
S is a pair of measurable functions (\,0) on the strength of a Assumption such
that there exist a non-empty set of S-valued Fy-measurable initial datum hy with a unique

time-continuous mild S-valued solution (h;)ier to the HIM equation:

(

dht = Aht($> + O[(t, ht)dt + O'(t, ht)th7

S alt, ) = Fum(o(t, hy) + o(t, h)A(E, hy), (1.16)

hO = h07

\
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The mild formulation of Equation (1.16) is given by

(

he = Siho + [3 St_c(s, he)ds + [7 Sy—so (s, hy)dWs,

a(t, hy) = Fuplo(t, hy)) 4+ o(t, hy)o(t, hy), (1.17)

ho = hy.

\
By imposing typical Lipschitz and boundedness assumptions, we obtain as a direct conse-

quence from Theorem [1.3.1]

Preposition 1.3.1 (Sufficient well-posedness condition) Let S satisfy Assumption
with a closed subspace S* C S such that ||f % ||s < C||fl|s|lglls for f,g € Si. Let
the operator o map into S, for every (t,w,f) € T x Q x S. Assume o is bounded and

Lipschitzian

lot, f) = ot 9)ll zusw.s) < ClIf = glls,

lo(t, FIAE ) = alt, g)AE 9)lls < CIf = glls,

for some constant C > 0 and all t € I,f,g € S*, then the pair (\,0) is an abstract
HJM model on S. Also, for any initial S-valued forward curve hg there exist a unique

time-continuous mild solution (hy)iez to Equation (1.16|) such that
B sup 3] < oo
teT
for all finite p > 0.

The rest of this thesis is structured as follows. Chapter [2|is dedicated to extending the usual
Vasicek model to the multivariate case and estimating its parameters by the maximum
likelihood approach. A discussion of theorems and lemmas leading to the derivation of
the parameter estimates of the multivariate Vasicek model is also presented. We end this
Chapter by applying the model to 1-month term-to-maturity yields for 2019 using real data
(2018 historical Euro area yields). Chapter 3] is dedicated to forecasting Euro area yield

curves. We discretize Equation ((1.11)) with a (semi-)implicit difference scheme and apply

13



it to real data from the European Central Bank (European Central Bank (2021))). We
estimate the model parameters and perform dimension reduction through a custom least-
squares-like method involving principal component analysis. The model is then tested and
employed to forecast future yield curve rates, estimate the mean future yield curve and
compute prediction regions. Chapter 4| is the main focus of this paper. We repeat the
scheme from Chapter [3| but extend the procedure to multi-bond case and apply it to Euro
bonds data (provided by |[European Central Bank (2021)) and US treasuries data (provided
by \US Department of the Treasury| (2021))).
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Chapter 2

Multivariate Vasicek Model

2.1 Motivation

In order to predict the future forward curve using Heath-Jarrow-Morton model, we need to
specify the evolution of the short rate R, = f(¢,t). Maltsev and Pokojovy| (2021)) proposed
to use classical Vasicek model for univariate short rates. Assuming 7, is a scalar [t6 process
with respect to a Wiener process (W (t));>o, the classical Vasicek’s short rate model is given

by:

d'f’t = Oé(f* — Tt) + Bth s t Z 0
(2.1)

Ty = TO7

where o, 8, 7* € 0 are parameters, r( is a given random variable independent of the standard
Wiener process (W (t)):>o, [Vasicek (1977)).

The solution to the stochastic differential equation is
t
Ty = roe” " + (1 — e ) + ﬁe_o‘t/ e “*dWy,
0
where the state variable r; to distributed normally with mean
E[r)] = roe”® +7 (1 —e™ )

and variance
2

Var(r,| = g—a(l — e,

In order to extend the HJM model to the multi-bond case, we will need to specify the

evolution of R; according to the multivariate Vasicek’s or Ornstein-Uhlenbeck model. We
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are not aware of any works that have discuss parameter estimation for multivariate Vasicek’s
or Ornstein-Uhlenbeck model to multivariate case.

In the extension of the single-curve Vasicek and HJM model to the multi-curve case, we
maintain the no-arbitrage principle for mathematical convenience. The model we studied
under the single curve/bond Vasicek and HJM model achieves the desirable feature of no-
arbitrage opportunity as noted by [Filipovi¢ (2000)). However, in the study of the multiple
curve/bond Vasicek/HJM model, we are often faced with foreign exchange rates disparity
which may give rise to an arbitrage opportunity. The work done by Yu/(2012)) demonstrated
how to incorporates the properties of interest rate term structure and foreign exchange rates
simultaneously within one arbitrage-free framework. This and other aspects of arbitrage
versus no-arbitrage conditions are beyond the scope of this thesis.

All theoretical calculations in this chapter follow Pokojovy (2021). We will proceed to
extend the Vasicek model and estimate the parameters by maximum likelihood approach.

The multivariate Vasicek’s model by simple extension can be expressed as:

dR, = A(R" — R,) + BAW,, >0 22)

R, =R’
where R* € R? and A, B € R%? are the parameters, W, € R? is d-variate standard
Wiener process. To estimate the parameters, we obtain the discrete form of Multivariate
Vasicek’s model by employing the explicit Euler & Maruyama scheme. The discrete time

Vasicek model is given by:

R, ., — R, W, —W,
% AR -R,)+B—*—, j=0,...n—1. 2.
N (R —Ry,) + A J=0.m (2.3)

Let 3 = (BB') and assume X € R%*? is positive definite. Provided X is known, B can be

computed as:

N

B = 3>,

We can further express Equation (2.3)) as

Rt Rt. :A(R*—Rt])At+B(Wt

j+1 T A

W.). (2.4)

J+1 j
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From Equation (2.4), we further observe that
(Rtj+1 - Rt].) - 14(R>k - Rtj) : At — B(V‘/_t].+1 - Wtj)a

where W,
(R,

i — Wy, P N(0,AtX). We will, therefore, specify and work with X =
~R,)- AR —R,) At

Jj+1

2.2 Auxiliary Results

In the section, we introduce all mathematical tools that will be used in the estimation
of the multivariate Vasicek model. As a result, we give some basic concepts in matrix
differentiation and optimization and outline the proofs of various theorems and lemmas

that will be used in the derivation.

Theorem 2.2.1 (Fermat’s first-order necessary optimality condition){Eberhard and Mor-
dukhovich| (2011)]
If * local minimizer or maximizer of a differentiable function f 'V C R™ — R, where

V C R" is non-empty open set, then we must have:
vVf(x*) =0.

Lemma 2.2.1 Suppose ¥ € R™? is symmetric, A € R and u,v € R, we consider the

following functions:

1. f(A) = (X7 u, Av),

2. g(A) = (Av)T 7' (Av) = =72 (Av)| .
Then f(-) ,g(-) are smooth with

1. % = (7 ),

2. 8%(2) =257 A(v).
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Figure 4.7: Observed yield curve rates (left) and estimated mean yield curve rates (right)

for January 2019 European yields
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Figure 4.8: Observed yield curve rates (left) and estimated mean yield curve rates (right)

for January 2019 US yields

The left panel of Figures 4.7 and 4.8 show the historical yield curve rates for January
2019 (23 business days), The right panel of Figures 4.7 and 4.8 shows the estimated mean
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yield curve rate for the same time window based on 10,000 replications. We see that
the estimated mean yield curves rate based on 10,000 for both Figures and are
reasonable prediction to the historical yield curve rates. We also observe some smoothness
over the period predicted. We can therefore deploy our scheme for future prediction. Based
on visual evaluation, we can see that the prediction bounds for the yield curve improved
or reduced as compare to studying them independently, but assessment and quantification
of this reduction or improvement in variability is beyond the scope of this thesis and is left

for future studies.
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Chapter 5

Conclusions

One major challenge with estimation methods and stochastic factor models for the term
structure of interest rates within the Heath-Jarrow-Morton framework is the complex con-
sistency problems introduced by Bjork (2009). We closely followed Filipovic’s work on
consistency problems for HJM interest rate models to overcome this challenge and extend
both the Vasicek model and Heath-Jarrow-Morton (HJM) model to the multi-bond /multi-
curve. We examined the effectiveness and predictive power of the HJM model following
the idea of Maltsev and Pokojovy| (2021). We modified the original strategy by interpo-
lating yields for weekends, and holidays making them consistent with the assumption of
equidistant time partition At; = ¢; — t;_; used in the maximum likelihood estimates of
the Vasicek’s model and the (semi-) implicit numerical scheme. By doing so, we avoided
“jumps” and ensured continuous time intervals. Based on real data, we also demonstrated
how the single-curve HJM model could be calibrated and applied to forecasting Euro Area
yield curve rates alone and also examined Euro Area yield curve rates and US Treasuries
together with the multi-curve model. Thus, we have explored and given tools to examining
how different bond markets are related. Our future work will include empirical investi-
gation of how to quantify the variability of predicting yield curves as we study multiple

zero-coupon bonds and seek ways to improve them.
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Appendix

Matlab Codes

This code has been forked from: |https://github.com/mpokojovy /abstract.HJM]

Dot hTololohToToto %ol ToTotohoToTo T To To 161 T To 1o 1o ho To To 1o o To To 16 1o ho To 1o 1o o To 1o 16 %o o To 76 %o o To 1o 1o %o o o
% Short Rate prediction

Dot hToTo Tl ToTototeToTotohohoToTo Tl To To 16 %o T To 1o 1o fo To To 1o o To To 1o 1o o To 16 %o o To To 16 %o o To %6 %o o To 1o 1o %o o o
%% Set random seed for reproducibility

rng (1) ;

%% Loading and plotting Euro bonds 2018 data

yield2018_Euro_bonds = readmatrix("yield2018_Euro_bonds.csv");

yield2018_Euro_bonds yield2018_Euro_bonds(:, 3:(end -

%Search and interpolate empty weekends and holidays
[Row, Col] = size(yield2018_Euro_bonds);

Cal_T = 1: Row;

dif = setdiff (Cal_T, find(isnan(yield2018_Euro_bonds (Cal_T,
D))

No_data_Euro = find(isnan(yield2018_Euro_bonds (1:364, 3)));

for r = 1: length(No_data_Euro)
for k = 3:Col

1))

3)

yield2018_Euro_bonds (No_data_Euro(r), k) = interpl (dif,
yield2018_Euro_bonds (dif ,k), No_data_Euro(r),'

linear', 'extrap');
end
end

n = length(yield2018_Euro_bonds) ;

month = [1 2 3 45 6 7 8 9 10 11 12x[1 2 3 4 5 6 7 8 9 10 15 20 25

3011;
%Constant interpolation for month 1 and 2 with month 3

yield2018_Euro_bonds (:, 1)
yield2018_Euro_bonds (:, 2)

yield2018_Euro_bonds (:, 3);
yield2018_Euro_bonds (:, 3);

%% Loading and plotting US treasury bonds 2018 data
yield2018_US_bonds = readmatrix("yield2018_US_bonds.csv")
yield2018_US_bonds = yield2018_US_bonds(:, 3:(end - 1));

%Search and interpolate empty weekends and holidays
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[Row, Coll= size(yield2018_US_bonds) ;
Cal_T = 1: Row;
dif = setdiff (Cal_T,find(isnan(yield2018_US_bonds(Cal_T,1))))

No_data_Euro = find(isnan(yield2018_US_bonds (1:364, 1)));
for r= 1: length(No_data_Euro)
for k = 1:Col

yield2018_US_bonds (No_data_Euro(r), k) = interpl (dif,
yield2018_US_bonds (dif ,k), No_data_Euro(r),'linear','
extrap');
end
end

%Interpolate the second column which is half empty
[*, ind_nan] = min(isnan(yield2018_US_bonds(:, 2)));
ind_nan = ind_nan - 1;

month_1= [1 2 3 6];
month_1 = [month_1 12x[1 2 3 5 7 10 20 30]1];

1:1length(month_1);

setdiff (I, 2);

for i = 1: ind_nan

yield2018_US_bonds (i, 2) = interpl (month_1(I),
yield2018_US_bonds (i, I), month_1(2));

end
yield2018_2 = zeros (364, length(month));
for i = 1:364
yield2018_2(i, :) = interpl(month_1, yield2018_US_bonds (i, 1:

length (month_1)), month);
end

yield2018_US_bonds = yield2018_2;

%% Loading 2019 data
%Euro yields

Reading_Euro_Date_data = readmatrix("
yield2019_Euro_bonds_to_delete.csv");
Reading_FEuro_Date_data = Reading_Euro_Date_data(:, 3:(end - 1));

%Search and interpolate empty rows
[Row, Col]= size(Reading_Euro_Date_data);

Cal_TT = 1: Row;
No_data_Euro = find(isnan(Reading_Euro_Date_data(l1:Row, 5)))';
Interpolated_data_Euro = 1: length(Reading_Euro_Date_data);
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Actual_data_Euro = setdiff (Interpolated_data_Euro,
No_data_Euro);

yield2019_Euro_bonds
yield2019_Euro_bonds

readmatrix ("yield2019_Euro_bonds.csv");
yield2019_Euro_bonds(:, 2:(end - 1));

yield2019_Euro_bonds (:, 1)
yield2019_Euro_bonds (:, 2)

yield2019_Euro_bonds (:, 3);
yield2019_Euro_bonds (:, 3);

%% Loading 2019 data
%US Treasuries

Reading _US_Date_data
Reading_US_Date_data

readmatrix("yield2019_US_bonds_to_delete");
Reading_US_Date_data(:,3: (end-1));

%Search and interpolate empty rows
[Roww, Coll] = size(Reading_Euro_Date_data);
Cal_TTT = 1: Roww;

No_data_US = find(isnan(Reading_US_Date_data(1:364,5)))"';
Interpolated_data_US = 1: length(Reading_Euro_Date_data);

Actual_data_US

b

setdiff (Interpolated_data_US, No_data_US)

yield2019_US_bonds
yield2019_US_bonds

readmatrix ("yield2019_US_bonds.csv");
yield2019_US_bonds(:, 2:(end - 1));

%% Defining the Time and Maturity Grid

T_grid = linspace (0, 12, n);
X_grid = linspace (0, month(end), month(end)*360/ month(end));
dx X_grid(2) - X_grid(1);

dt T_grid(2) - T_grid(1);

n_month = 25;

month = month(1:n_month);

%% Preparing the forward curves for Euro

yield_obs = zeros(length(T_grid), length(X_grid));
Y_obs = zeros(size(yield_obs));

for i = 1:length(T_grid)

yield_obs(i, :) = interpl ([0 month], [yield2018_Euro_bonds (i,
1) yield2018_Euro_bonds (i, 1:n_month)], X_grid, 'spline');

Y_obs (i, :) = X_grid.xyield_obs (i, :);

end

%% Preparing the forward curves for Us Treasury

yield_obs_1 = zeros(length(T_grid), length(X_grid));

Y_obs_1 = zeros(size(yield_obs_1));

for i = 1:length(T_grid)
yield_obs_1(i, :) = interpl ([0 month], [yield2018_2(i, 1)
yield2018_2(1i, :n_month)], X_grid, 'spline');
Y_obs_1(i, :) X_grid.xyield_obs_1(i, :);

=

end
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%% Estimation of Vasicek's model

r_obs = yield_obs(:, 1);

r_obs_1 = yield_obs_1(:,1);

RO = [r_obs(end, 1);r_obs_1(end, 1)]1;

R = [r_obs,r_obs_1];

[R_ast, A, Sigmal] = Vasicek_Multivariate_Inverse_map(R,dt);

%% Predicting the short rates f_{t}(0) with Vasicek's model
n_rep = 10000;

conf = 0.99;

X_pred=1;

predO = Vasicek_forward_mativariate_map(T_grid, R_ast, A,
Sigma, RO, n, n_rep);

yield_pred_euro = reshape(pred0(1,:,:) ,364,10000);
zeros (size(T_grid));

zeros (size(T_grid));
zeros (size(T_grid)) ;

yield_1lqg_euro
yield_hqg_euro
yield_avg_euro

for i = 1:length(T_grid)

yield_lq_euro(i) = quantile(yield_pred_euro(i, :), (1 - conf)
/2) ;

yield_hq_euro(i) = quantile(yield_pred_euro(i, :), 1 - (1 -
conf) /2);

yield_avg_euro(i) = mean(yield_pred_euro(i, :));

end

I_X = Actual_data_Euro;

% One-month time to Maturity prediction for 2019 Euro yields
figure (1) ;

set (gcf, 'PaperUnits', 'centimeters');

xSize = 28; ySize = 16;

xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;

set (gcf, 'PaperPosition', [xLeft yTop xSize ySizel]);
set(gcf, 'Position', [0 0 xSize*50 ySizex*50]) ;

hold on;

xlabel ({'Calendar time $t$', '(in months) '}, 'FontSize',6 25, '
interpreter', 'latex');

ylabel ({'Predicted yields $y_{t}(x=1$ m)' '(One-month time-to-
maturity, $2019%$)' '(in \%)'}, 'FontSize', 25, 'interpreter',
latex');

axis ([min(T_grid(I_X)) max(T_grid(I_X)) -1 11);

%title ('One-Month Time-to-Maturity Euro yield curve Prediction',
FontSize', 25)
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plot(T_grid(I_X),yield2019_Euro_bonds(:,1),'r', " 'LineWidth', 3);
plot(T_grid(I_X), yield_lq_euro(I_X), 'k: ', '"LineWidth', 2);
plot(T_grid(I_X), yield_hq_euro(I_X), 'k:!', 'LineWidth', 2);
plot(T_grid(I_X), yield_avg_euro(I_X), 'k-.', 'LineWidth', 2);

for i = 1:5
plot(T_grid(I_X), yield_pred_euro(I_X, i));
end

legend ({'Observed yield curve',

['Lower $', num2str (100*xconf), '\%$ pointwise prediction
bound '],

['Upper $', num2str (100*xconf), '\%$ pointwise prediction
bound '],

['Estimated mean yield curve'l],

['Five sample yield curve forecasts']l},

'FontSize', 20, 'interpreter', 'latex', 'Location',
NorthWest ') ;

yield_pred_us = reshape(pred0(2,:,:) ,364,10000);

yield_lq_us = zeros(size(T_grid));
yield_hq_us = zeros(size(T_grid));
yield_avg_us = zeros(size(T_grid));

for i = 1:length(T_grid)
yield_1lq_us (i) quantile(yield_pred_us (i, :), (1 - conf)/2);
yield_hq_us (i) quantile(yield_pred_us(i, :), 1 - (1 - conf)
/2);
yield_avg_us (i)

mean(yield_pred_us (i, :));
end

% One-month time to Maturity prediction for 2019 Euro yields
I_XX = Actual_data_US;

figure (2);

set (gcf, 'PaperUnits', 'centimeters');

xSize = 28; ySize = 16;

xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;

set (gcf, 'PaperPosition', [xLeft yTop xSize ySizel]);
set(gcf, 'Position', [0 0 xSize*50 ySizex*50]) ;

hold on;

xlabel ({'Calendar time $t$', '(in months) '}, 'FontSize',6 25, '
interpreter', 'latex');

ylabel ({'Predicted yields $y_{t}(x=1$ m)' '(One-month time-to-
maturity, $2019%$)' '(in \%)'}, 'FontSize', 25, 'interpreter',
latex');

axis ([min(T_grid(I_XX)) max(T_grid(I_XX)) 0 4]1);

plot(T_grid(I_XX),yield2019_US_bonds (:,1),'r','LineWidth', 3);
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plot(T_grid(I_XX), yield_lq_us(I_XX), 'k:', 'LineWidth',
plot(T_grid(I_XX), yield_hq_us(I_XX), 'k:', 'LineWidth',
plot(T_grid(I_XX), yield_avg_us(I_XX), 'k-.', 'LineWidth',

for i = 1:5
plot (T_grid(I_XX), yield_pred_us(I_XX, i));
end

legend ({'Observed yield curve',

2);
2);
2);

['Lower $', num2str (100*xconf), '\%$ pointwise prediction

bound '],

['Upper $', num2str (100*xconf), '\%$ pointwise prediction

bound '],
['Estimated mean yield curve'l],
['Five sample yield curve forecasts'l},

'FontSize', 20, 'interpreter', 'latex', 'Location',

SouthWest ') ;

function [R_ast, A, Sigmal] = 1Initial_Quess_Parameters(R, dt)

%Initialising Parameters

[n, pl = size (R);

r_cur = R(2:end,:)'; % r_cur is the r_(t_(j+1))
vector

r_lag = R(1:(end - 1),:)'; % r_lag is the r_(t_(j))
vector

Al = zeros(p,p);

A2 = zeros(p,p);

Sigma = zeros(p,p);

%An estimate for R_ast

R_ast = (1/n)*sum(r_lag, 2);

%An estimate for A

for i= 1 :n-1
Al = A1+ ((r_cur(:, i)-r_lag(:, i))*(R_ast-r_lag(:,

i)) ')
A2 = A2 + (((R_ast - r_lag(:, i))*(R_ast - r_lag(:,
i)) "))

end

A = (1/dt) * (A1/A2);

%An estimate for Sigma
for i=1 : n-1

Sigma = Sigma + ((r_cur(:, i)-r_lag(:, i))-Ax(R_ast-
r_lag(:, i))*dt)*((r_cur(:, i)-r_lag(:, i))-A*(R_ast

-r_lag(:, i))*dt)';

end
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Sigma = (1/(n*dt)) * (Sigma);
end
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% Vasicek Multivariate Inverse Function
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function [R_ast, A, Sigmal] = Vasicek_Multivariate_Inverse_map(R, dt

)
%% Obtaining the initial R, R_ast, A, and Sigma

[R_ast, A, Sigmal] = Initial_Quess_Parameters(R, dt);

%% Vasicek Short rate curve with the approximate values

[n, pl] = size (R);
r_cur = R(2: end,:)"';
r_lag = R(1: (end - 1), :)';

%% Implementing Fsolve

x0 =[R_ast(1,1) R_ast(2,1) A(1,1) A(2,1) A(1,2) A(2,2)
Sigma(1l,1) Sigma(2,1) Sigma(2,1) Sigma(2,2)];

options = optimoptions('fsolve');
options.MaxIter = 100000;
options.MaxFunEvals = 1000000;

[sol, fval, exitflag, output] = fsolve(@(theta)ML_est_eqgs(
theta, R, dt, n, r_lag, r_cur), x0, options); % p + p~2

+pA2
R_ast = sol(1: p)';
A = reshape(sol((p+1): (p+1 + p~2 -1)), p, p);
Sigma = reshape(sol((p+p~2+1: end)), p, p),

end

Tl Tt Tt ot TolotoTotoTo o toTotoTo o tofo toTo b Tofo toTo to To o 1o To 1o To o %o fo 0o To To To o 16 o %o o o

% Vasicek Multivariate Forward Map

% Use to generate the short rates

% R_ast, A, Sigma : the Vasicek estimates

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [sol] = Vasicek_forward_mativariate_map(T_grid, R_ast, A,
Sigma, RO, n, nrep)

dt = T_grid(2)-T_grid(1);
a = AxR_astx*xdt;

b = Axdt;

c = sqrtm(Sigma)*sqrt (dt);
P = length(R_ast);

sol = zeros(p, n, nrep);
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for rep = 1 : nrep

sol(:, 1 , rep) = RO;

for i = 2:n
sol(:, i, rep) = a + sol(:, i-1, rep)- b*sol(:, i
-1, rep)+ c*randn(p,1);
end
end
end
function res = ML_est_eqs(theta, R, dt, n, r_lag, r_cur)
dim length (theta);

h

h

h

h

h

h

P int32 ((-1+sqrt (1+8*dim)) /4) ;
delta_t = dt;

Paramters to be Estimated

R_ast = reshape(theta(l:p),p,1);
A = reshape(theta((p+1):(p+1 + p~2-1)),p,p);
Sigma = reshape(theta((p+p~2+1) :end),p,p);

Defining the summations for R_ast, A and Sigma

Eqq2 = zeros(p,p);
Eqqq2 = zeros(p,p);
Eqq3 = zeros(p,p);

Equation for R_ast
Eql = R_ast -((1/n)*sum(r_lag,2) + (A\sum((r_cur-r_lag),2))/(n
xdelta_t));

Summation for A
for i=1:(length(R)-1)

Eqq2 = Eqg2 + ((r_cur(1:2,i)- r_lag(1:2,i))*(R_ast- r_lag(1l:2,
1)) "5

Eqqq2 = Eqqq2 + (((R_ast-r_lag(1:2,i))*(R_ast- r_lag(1:2,i))"'))

end

Equation for A
Eq_2 (1/delta_t)*(Eqq2/Eqqq2);
Eq2 A - Eq_2;

Summation for Sigma
for i=1:(length(R)-1)

Eqq3 = Eqq3 + ((r_cur(1:2, i) - r_lag(l:2, i))-Ax(R_ast- r_lag
12, 1)) .*xdelta_t)*((r_cur(1:2, i)- r_lag(1l:2, i))-Ax*(
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R_ast- r_lag(1:2, i)).*xdelta_t)';
end
Eqq3 = (1/(n*delta_t))*(Eqq3);
b Equation for Sigma
Eq3 = Sigma - Eqq3;

YA Summary of function
res = [Eql; reshape(Eq2,p"2,1); reshape(Eq3,p~2,1)1];

end
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% Principal Component

% HIM Inverse parameter estimation

% HIM forward curve prediction

% One-month prediction

% One-month avg. rate curve estimation
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%% Set random seed for reproducibility

rng (1) ;

%% Loading and plotting Euro bonds 2018 data
yield2018_Euro_bonds = readmatrix("yield2018_Euro_bonds.csv");
yield2018_Euro_bonds = yield2018_Euro_bonds(:, 3:(end - 1));

%Search and interpolate empty rows
[Row, Col] = size(yield2018_Euro_bonds);

Cal_T = 1:Row;

dif = setdiff(Cal_T,find(isnan(yield2018_Euro_bonds(Cal_T, 3))
D)

No_data_Euro = find(isnan(yield2018_Euro_bonds (1:364, 3)));

for r = 1: length(No_data_Euro)

for k = 3:Col
yield2018_Euro_bonds (No_data_Euro(r), k) = interpl(dif,
yield2018_Euro_bonds (dif ,k), No_data_Euro(r),'
linear', 'extrap');
end
end

n = length(yield2018_Euro_bonds);
month = [1 2 3 4 5 6 7 8 9 10 11 12x[1 2 3 4 5 6 7 8 9 10 15 20 25
3011;

% I
% I

1:length (month) ;
setdiff (I, [1 2]);

yield2018_Euro_bonds (:, 1)
yield2018_Euro_bonds (:, 2)

yield2018_Euro_bonds (:, 3);
yield2018_Euro_bonds (:, 3);
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%% Loading and plotting US treasury bonds 2018 data
yield2018_US_bonds = readmatrix("yield2018_US_bonds.csv");
yield2018_US_bonds yield2018_US_bonds(:, 3:(end - 1));

%Search and interpolate empty rows
[Row, Coll=size(yield2018_US_bonds);

Cal_T = 1: Row;
dif = setdiff(Cal_T,find(isnan(yield2018_US_bonds(Cal_T,1))))
No_data_Euro = find(isnan(yield2018_US_bonds (1:364, 1)));

for r= 1: length(No_data_Euro)
for k=1:Col
yield2018_US_bonds (No_data_Euro(r), k) = interpl(dif,
yield2018_US_bonds (dif ,k), No_data_Euro(r),'linear','
extrap');
end
end

%Interpolate the second column which is half empty

[7, ind_nan] = min(isnan(yield2018_US_bonds(:, 2)));
ind_nan = ind_nan - 1;

month_1= [1 2 3 6];
month_1 = [month_1 12x[1 2 3 5 7 10 20 30]17;

1:length (month_1);

setdiff (I, 2);

for i = 1:ind_nan

yield2018_US_bonds (i, 2) = interpl(month_1(I),
yield2018_US_bonds (i, I), month_1(2));

H
nn

end

yield2018_2= zeros (364, length(month));
for 1 = 1:364
yield2018_2(i, :) = interpl(month_1, yield2018_US_bonds (i, 1:
length (month_1)), month);
end

yield2018_US_bonds = yield2018_2;

%% Loading 2019 data
% Euro yields

yield2019_Euro_bonds
yield2019_Euro_bonds

readmatrix ("yield2019_Euro_bonds.csv") ;
yield2019_Euro_bonds (:, 2:(end - 1));

yield2019_Euro_bonds (:, 1)
yield2019_Euro_bonds (:, 2)

yield2019_Euro_bonds (:, 3);
yield2019_Euro_bonds (:, 3);

%% Loading 2019 data
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readmatrix ("yield2019_US_bonds.csv");
yield2019_US_bonds(:, 2:(end - 1));

yield2019_US_bonds =
yield2019_US_bonds =
%% Defining the Time and Maturity Grid

T_grid linspace (0, 12, n);

X_grid linspace (0, month(end), month(end)*360/ month(end));

dx
dt

X_grid(2) - X_grid(1);
T_grid(2) - T_grid(1);

n_month = 25;

n_monthl = 12;

month = month(l:n_month);

month_1 = month_1(1:n_monthl);

%% Preparing the forward curves for Euro

yield_obs zeros (length(T_grid), length(X_grid));
Y_obs zeros (size(yield_obs));

for 1 = 1: length(T_grid)
yield_obs(i, :) = interpl ([0 month], [yield2018_Euro_bonds (i,
1) yield2018_Euro_bonds (i, 1:n_month)], X_grid, 'spline');
Y_obs (i, :) = X_grid.xyield_obs (i, :);
end
%% Preparing the forward curves for Us Treasury
yield_obs_1 = zeros(length(T_grid), length(X_grid));
Y_obs_1 = zeros(size(yield_obs_1));
for i = 1:length(T_grid)
yield_obs_1(i, :) = interpl ([0 month], [yield2018_2(i, 1)
yield2018_2(i, 1:n_month)], X_grid, 'spline');
Y_obs_1(i, :) = X_grid.xyield_obs_1(i, :);
end

%% Estimation of Vasicek's model

r_obs = yield_obs(:, 1);

r_obs_1 = yield_obs_1(:,1);

RO = [r_obs(end, 1);r_obs_1(end, 1)];

R = [r_obs,r_obs_1];

P = size(RO,1); %%Number of different yield market
[R_ast, A,Sigma] = Vasicek_Multivariate_Inverse_map(R,dt);

%% Predicting the short rates f_{t}(0) with Vasicek's model
conf = 0.99;

%% Inverse problem for the abstract Heath-Jarrow-Morton model
[I_sigma_hat_EU, I_sigma_hat_US, lambda_hat_EU, lambda_hat_US,

var_rat] = Multivariate_HJM_inv_map(T_grid, X_grid,Y_obs ,
Y _ obs_1, r_obs, r_obs_1, conf,P);
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n_mode = size(I_sigma_hat_EU, 1);

display (['HJM model: lambda-hat_Euro = ', num2str ((lambda_hat_EU) ')
1

%Principal component for Euro yields

figure (1) ;

set (gcf, 'PaperUnits', 'centimeters');

xSize = 28; ySize = 16;

xLeft = (21 - xS8ize)/2; yTop = (30 - ySize)/2;
set(gcf, 'PaperPosition', [xLeft yTop xSize ySizel);
set(gcf, 'Position', [0 O xSizex*50 ySizex*50]);

hold on;

xlabel ('$x$', 'FontSize', 25, 'interpreter', 'latex');

ylabel ('Principal curves $\mathcal{I}_{x} \sigma_{n}$', 'FontSize',
25, 'interpreter', 'latex');

axis ([min(X_grid) max(X_grid) min(I_sigma_hat_EU, [], 'all') max(
I_sigma_hat_EU, [], 'all')]1);

for i = 1:n_mode
plot(X_grid, I_sigma_hat_EU(i, :), 'LineWidth', 2, 'MarkerSize'
, 0.01);
end

legend ({'$\mathcal{I}_{x} \sigma_{1}$', '$\mathcal{I}_{x} \sigma_
{2}$', '$\mathcal{I}_{x} \sigma_{3}$', ...
"$\mathcal{I}_{x} \sigma_{4}$', '$\mathcal{I}_{x} \sigma_
{5}$', ...
"$\mathcal{I}_{x} \sigma_{6}$', '$\mathcal{I}_{x} \sigma_
{73$"', "$\mathcal{I}_{x} \sigma_{8}$',...
"$\mathcal{I}_{x} \sigma_{9}$', '$\mathcal{I}_{x} \sigma_

{10}$',...
"$\mathcal{I}_{x} \sigma_{11}$','$\mathcal{I}_{x} \sigma_
{12}$'}, 'FontSize', 10, 'interpreter', 'latex',6 '
Location', 'NorthWest');
display (['HJM model: lambda-hat_US = ', num2str ((lambda_hat_US) ')]1)

b

%Principal component for US yields
n_mode = size(I_sigma_hat_US, 1);

figure (2);

set (gcf, 'PaperUnits', 'centimeters');

xSize = 28; ySize = 16;

xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf, 'PaperPosition', [xLeft yTop xSize ySizel);
set(gcf, 'Position', [0 0 xSize*50 ySizex*50]) ;
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hold on;

xlabel ('$x$', 'FontSize', 25, 'interpreter', 'latex');
ylabel ('Principal curves $\mathcal{I}_{x} \sigma_{n}$', 'FontSize',
25, 'interpreter', 'latex');

axis ([min(X_grid) max(X_grid) min(I_sigma_hat_US, [], 'all') max(
I_sigma_hat_US, [], 'all')1);

for i = 1:n_mode
plot(X_grid, I_sigma_hat_US(i, :), 'LineWidth',6 2, '
MarkerSize', 0.01);

end
legend ({'$\mathcal{I}_{x} \sigma_{1}$', '$\mathcal{I}_{x} \sigma_
{2}$', '$\mathcal{I}_{x} \sigma_{3}$', ...
"$\mathcal{I}_{x} \sigma_{4}3$', '$\mathcal{I}_{x} \sigma_
{5}$"

'$\mathcal{I}_{x} \sigma_{6}$"', '$\mathcal{I}_{x} \sigma_
{7}3$', '$\mathcal{I}_{x} \51gma {81r$',
'$\mathcal{I} {x} \sigma_{9}$"', '$\mathcal{I} {x} \sigma_

{103}$"',

'$\mathcal{I} {x} \sigma_ {11}$' "$\mathcal{I}_{x} \sigma_
{12}$'}, 'FontSize', 10, 1nterpreter’, 'latex',
Location', 'NorthWest‘);

%% Prediction for Y
n_rep = 10000;
conf = 0.99;

T_pred =31; Y February 1, 2019 - corresponds to 31/250%12 = 1.0560
month in 2019
date = 'February 1, 2019"';

T_grid_pred = T_grid(1l:ceil(T_pred*length(T_grid)/size(
yield2018_Euro_bonds, 1)));
t_pred = T_grid_pred(end);

% Predicting the short rates f_{t}(0) with Vasicek's model

predO = Vasicek_forward_mativariate_map(T_grid_pred, R_ast , A
, Sigma, RO, n ,n_rep);

% Predicting integrated forward rates with HJM model
[sol_1, so0l_2 ] = Multivariate_HJIM_fwd_map(T_grid_pred, X_grid,
Y_obs(end, :), Y_obs_1(end, :),
pred0, I_sigma_ hat _EU, I_sigma_hat_US,
lambda_hat_EU, 1ambda_hat_US, n_rep);

predl=sol_1;

yield_pred = zeros(length(X_grid), n_rep);

for j = 1l:n_rep
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yield_pred(:, j) = predl(end, :, j)./X_grid;
yield_pred (1, j) = yield_pred(2, j);

end

yield_1q = zeros(size(X_grid));

yield_hq = zeros(size(X_grid));

yield_avg = zeros(size(X_grid));

for i = 1:length(X_grid)
yield_1q (i) quantile(yield_pred (i
yield_hq (i) quantile(yield_pred (i

D (1 - conf)/2);
yield_avg (i) mean (yield_pred (i, :)5;

:): 1 - (1 - conf)/2);

end

I_X = find(ismember (X_grid, X_grid));

% One-month prediction for Euro yields

figure (3);

set(gcf, 'PaperUnits', 'centimeters');

xSize = 28; ySize = 16;

xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;

set (gcf, 'PaperPosition', [xLeft yTop xSize ySizel);
set (gcf, 'Position', [0 O xSizex50 ySizex*50]) ;

hold on;

xlabel ({'Time to maturity $x$', '(in months) '}, 'FontSize', 25, '
interpreter', 'latex');

ylabel ({['Predicted yields $y_{t}(x)$ on $t = \textrm{', date, '}$'
1, '"(in \%) '}, 'FontSize', 25, 'interpreter', 'latex');

axis ([min(X_grid(I_X)) max(X_grid(I_X)) -1 3.5]);

T_pred_actual_euro= 23;

plot (X_grid, interpl (month, yield2019_Euro_bonds(T_pred_actual_euro
, 1:n_month), X_grid), 'k', 'LineWidth', 3);

plot(X_grid(I_X), yield_1q(I_X), 'k: ', 'LineWidth', 2);

plot (X_grid(I_X), yield_hq(I_X), 'k: ', 'LineWidth', 2);

plot(X_grid(I_X), yield_avg(I_X), 'k-.', 'LineWidth',6 2);

for i = 1:5
plot (X_grid(I_X), yield_pred(I_X, 1i));
end

legend ({'Observed yield curve',

['Lower $', num2str (100*xconf), '\%$ pointwise prediction
bound '],

['Upper $', num2str (100*xconf), '\%$ pointwise prediction
bound '],

['Estimated mean yield curve'l],

['Five sample yield curve forecasts'l},

'FontSize', 25, 'interpreter', 'latex', 'Location',
SouthWest ') ;
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pred2 = sol_2;
yield_pred_1 = zeros(length(X_grid), n_rep);

for j = 1:n_rep
yield_pred_1(:

D) pred2(end, :, j)./X_grid;
yield_pred_1(1, j)

yield_pred_1(2, j);

end

yield_1q = zeros(size(X_grid));
yield_hq = zeros(size(X_grid));
yield_avg = zeros(size(X_grid));

for i = 1:length(X_grid)
yield_1q (i) quantile(yield_pred_1(i, :), (1 - conf)/2);
yield_hq (i) quantile(yield_pred_1(i, :), 1 - (1 - conf)/2);
yield_avg (i) mean (yield_pred_1(i, :)

end

I_X = find(ismember (X_grid, X_grid));

% One-month prediction for Euro yields

figure (4);

set (gcf, 'PaperUnits', 'centimeters');

xSize = 28; ySize = 16;

xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;

set (gcf, 'PaperPosition', [xLeft yTop xSize ySizel]);
set(gcf, 'Position', [0 0 xSize*50 ySizex*50]) ;

hold on;

xlabel ({'Time to maturity $x$', '(in months)'}, 'FontSize',6 25, '
interpreter', 'latex');

ylabel ({['Predicted yields $y_{t}(x)$ on $t = \textrm{', date, 'I}$'
1, '"(in \%) '}, 'FontSize', 25, 'interpreter', 'latex');

axis ([min(X_grid(I_X)) max(X_grid(I_X)) 0 41);

T_pred_actual_US= 22;

plot(X_grid, interpl (month_1, yield2019_US_bonds(T_pred_actual_US,
1:n_monthl), X_grid), 'k', 'LineWidth', 3);

plot(X_grid(I_X), yield_1q(I_X), 'k: ', 'LineWidth', 2);

plot(X_grid(I_X), yield_hq(I_X), 'k: ', '"LineWidth', 2);

plot (X_grid(I_X), yield_avg(I_X), 'k-.', 'LineWidth', 2);

for i = 1:5
plot(X_grid(I_X), yield_pred_1(I_X, 1i));
end
legend ({'Observed yield curve',
['Lower $', num2str (100*conf), '\%$ pointwise prediction
bound '],
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['Upper $', num2str (100*xconf), '\%$ pointwise prediction
bound '],
['Estimated mean yield curve'l],
['Five sample yield curve forecasts'l}, ...
'FontSize', 25, 'interpreter', 'latex', 'Location',
SouthWest ') ;

% One-month avg. rate curve estimation for Euro yields
figure (5);

set (gcf, 'PaperUnits', 'centimeters');

xSize = 36; ySize = 16;

xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf, 'PaperPosition', [xLeft yTop xSize ySizel]);
set(gcf, 'Position', [0 0 xSize*50 ySizex*50]);

% Observed
subplot (1, 2, 1);
hold on;

xlabel ({'Calendar time $t$', '(in months) '}, 'FontSize',6 25, '
interpreter', 'latex');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize', 25, '
interpreter', 'latex');

zlabel ({'0Obs. yield rate $y_{t}(x)$', '(in \%)'}, 'FontSize',6 25, '
interpreter', 'latex');

[Time, Horizon] = meshgrid(T_grid_pred, month);

surf (Time, Horizon, yield2019_Euro_bonds(1:T_pred, 1:n_month)');

axis ([min(T_grid_pred) max(T_grid_pred), min(month) max(month), 0.0
2.91);

view (-20, 50);

% Estimated mean
subplot (1, 2, 2);
hold on;

xlabel ({'Calendar time $t$', '(in months) '}, 'FontSize',6 25, '
interpreter', 'latex');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize', 25, '
interpreter', 'latex');

zlabel ({'Est. mean yield rate $\widehat{\mathrm{E}\bigly_{t}(x)\big
1}¢', '"(in \%) '}, 'FontSize', 25, 'interpreter', 'latex');

mean_yield_pred = mean(predl, 3);
for i = 1:size(predl, 1)
mean_yield_pred(i, :) = mean_yield_pred(i, :)./X_grid;

end

1:length(T_grid_pred) ;
ceil(linspace (1, length(X_grid), 20));
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[Time, Horizon] = meshgrid(T_grid_pred(I_T), X_grid(I_X));

surf (Time, Horizon, mean_yield_pred(I_T, I_X)');

axis ([min(T_grid_pred(I_T)) max(T_grid_pred(I_T)), min(X_grid(I_X))
max (X_grid(I_X)), 0.0 2.91);

view(-20, 50);

% One-month avg. rate curve estimation for US yields
figure (6);

set (gcf, 'PaperUnits', 'centimeters');

xS3ize = 36; ySize = 16;

xLeft = (21 - xSize)/2; yTop = (30 - ySize)/2;
set(gcf, 'PaperPosition', [xLeft yTop xSize ySizel]);
set(gcf, 'Position', [0 O xSize*50 ySizex*50]) ;

% Observed
subplot (1, 2, 1);
hold on;

xlabel ({'Calendar time $t$', '(in months) '}, 'FontSize',6 25, '
interpreter', 'latex');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize', 25, '
interpreter', 'latex');

zlabel ({'Obs. yield rate $y_{t}r(x)$', '(in \%) '}, 'FontSize', 25, '
interpreter', 'latex');

[Time, Horizon] = meshgrid(T_grid_pred, month_1);

surf (Time, Horizon, yield2019_US_bonds (1:T_pred, 1l:n_monthl)');

axis ([min(T_grid_pred) max(T_grid_pred), min(month_1) max(month_1),
0.0 3.91);

view (-20, 50);

% Estimated mean
subplot (1, 2, 2);
hold on;

xlabel ({'Calendar time $t$', '(in months) '}, 'FontSize',6 25, '
interpreter', 'latex');

ylabel ({'Time to maturity $x$', '(in months)'}, 'FontSize', 25, '
interpreter', 'latex');

zlabel ({'Est. mean yield rate $\widehat{\mathrm{E}\bigly_{t}(x)\big
1}¢', '"(in \%) '}, 'FontSize', 25, 'interpreter', 'latex');

mean_yield_pred_1 = mean(pred2, 3);
for i = 1:size(pred2, 1)
mean_yield_pred_1(i, :) = mean_yield_pred_1(i, :)./X_grid;

end

1:length(T_grid_pred) ;
ceil(linspace (1, length(X_grid), 20));

I_T
I X
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[Time, Horizon] = meshgrid(T_grid_pred(I_T), X_grid(I_X));

surf (Time, Horizon, mean_yield_pred_1(I_T, I_X)');

axis ([min(T_grid_pred(I_T)) max(T_grid_pred(I_T)), min(X_grid(I_X))
max (X_grid(I_X)), 0.0 3.91);

view(-20, 50);

A YN YN Y YN
% HIM Forward prediction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [sol_1, sol_2 ]= Multivariate HJM_fwd_map(T_grid, X_grid,
YO, YO_1, pred0, I_sigma_hat_EU, I_sigma_hat_US, lambda_hat_EU,
lambda_hat_US, n_rep)

dt
dx

T_grid(2) - T_grid(1);
X_grid(2) - X_grid(1);

n = length(X_grid) - 1;

A = speye(n)/dx - sparse(2:n, 1:(n - 1), ones(l, n - 1), n, n
) /dx;
Adt = speye(n) + Axdt;

sol_1 = zeros(length(T_grid), length(X_grid), n_rep);
sol_2 = zeros(length(T_grid), length(X_grid), n_rep);

yO = reshape(pred0(1,:,:) ,364,10000);
lambda_1 = 1lambda_hat_EU;

I_sigma_1 = I_sigma_hat_EU;

k = size(I_sigma_1, 1);

yl = reshape(pred0(2,:,:),364,10000);
lambda_2 = lambda_hat_US;

I_sigma_2 = I_sigma_hat_US;

k1 = size(I_sigma_2, 1);

for j = 1l:n_rep
sol_1(1, :, j) = YO;

for i = 2:length(T_grid)
dW = randn (1, k);

% Solve with (semi-)implicit Euler—Maruyama
rhs = sol_1(i - 1, 2:end, J) + ..
dt*(0.5%(1 + lambda_1')*(I_ 31gma 1(:, 2:end)."2)
+ y0o(i - 1, j)) + sqrt(dt)*dW*I 51gma_1(:, 2:
end) ;
rhs = rhs';

sol_1(i, :, j) = [0 (Adt\rhs) '];
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end

end
for j = 1l:n_rep
sol_2(1, :, j) = YO_1;
for i = 2:length(T_grid)
dW = randn (1, ki1);
% Solve with (semi-)implicit Euler-Maruyama
rhs = so0l_2(i - 1, 2:end, j) + ...
dt*(0.5%(1 + lambda_2')*(I_sigma_2(:, 2:end)."2)
+ y1(i - 1, j)) + sqrt(dt)*dW*xI_sigma_2(:, 2:
end) ;
rhs = rhs';
sol_2(i, :, j) = [0 (Adt\rhs)'];
end
end

end
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% HIM Inverse estimations

To bt to oot To o ot Tofo b To o o b To fo to To To o 0o To o to 1o To o 0o 1o o T 1o T o 0o 1o o to 0o T o 0o T o Yo 06 To o 16 %o o o %6 o o

function [I_sigma_hat_US, I_sigma_hat_EU, A_I_lambda_hat_EU,
A_T_lambda_hat_US, var_rat] = Multivariate_HJM_inv_map(T_grid,
X_grid, Y_obs , Y_obs_1, r_obs, r_obs_1, pc_var, P)

dx
dt

X_grid(2) - X_grid(1);
T_grid(2) - T_grid(1);

% Predictor vectors
predl = zeros(length(T_grid) - 1, length(X_grid));

for i = 2:length(T_grid)
f1 = Y_obs (i, 1)
fO = Y_obs(i - 1, :);
Af1 = [0 (f1(2:end) - f1(1:(end - 1)))/dx];

predi(i - 1, :) = (f1 - £0)/dt + Afl1 - r_obs(i);
end

pred2 = zeros(length(T_grid) - 1, length(X_grid));

for i = 2:length(T_grid)
f1 = Y_obs_1(i, 2);
fO = Y_obs_1(i - 1, :);
Af1 = [0 (f1(2:end) - fO0(1:(end - 1)))/dx];

pred2(i - 1, :) = (f1 - £0)/dt + Afl1 - r_obs_1(i);
end
%% Estimate I sigma

% Transform to D(A)for predl

lenl = size(predl, 1);
for i = 1:(lenl)
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predl (i, :) = A(predl(i, :));
end

% Transform to D(A)for pred?2
len2 = size(pred2, 1);
for i = 1:(len2)

pred2(i, :) = A(pred2(i, :));
end

pred = [predl pred2];
pred = [pred2; predil];
S = cov(pred);
[V, DI = eig(S);
V = V/sqrt(dx); % normalize the discrete L"2 norm

d = diag(D)*dx; % scale the eigenvalues

var_rat = cumsum(flip(d)) ./sum(d);
n_mode = min(find(var_rat >= pc_var));
%mode_div = round(n_mode/2) ;
sigma_hat = diag(sqrt(d((end - n_mode + 1):end)x*dt))*V(:,
(end - n_mode + 1):end)'; % Note the normalization
factor dt

sigma_hat(:, 1:(size(sigma_hat, 2)/2));

sigma_hat_EU
sigma_hat (:, ((size(sigma_hat, 2)/2) + 1):end

sigma_hat_US
)

I_sigma_hat zeros (size(sigma_hat));

sigma_size size(I_sigma_hat ,1); %Total number of
signicance sigma

hsigma_div = sigma_size/2; %#Dividing into equal
part

I_sigma_hat_EU
I_sigma_hat_US

zeros (sigma_size, length(X_grid));
zeros (sigma_size, length(X_grid));

% Transform back to H

for i = 1:n_mode
I_sigma_hat_EU(i,
I_sigma_hat_US(i,

I(sigma_hat_EU(i,
I(sigma_hat_US (i,

N
N
N
e we

end

%% Estimate lambda
loc = mean(pred, 1);
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% Transform to D(A)
A_T_sigma_hat_EU
A_T_sigma_hat_US

zeros (sigma_size, length(X_grid));
zeros (sigma_size, length(X_grid));

for i = 1:n_mode
A_I_sigma_hat_EU(i, :)
A T _sigma_hat_US(i, :)
end

A(I_sigma_hat_EU(i, :));
A(I_sigma_hat_US(i, :));

A_T_sigma_hat2 = zeros(n_mode,size(I_sigma_hat,2)/2,2,2)

b

for i = 1:n_mode
A_T_sigma_hat2(i,:,2,1) = A_TI_sigma_hat EU(i,:).=*
A_T_sigma_hat_US(i,:);
A_T_sigma_hat2(i,:,2,2) = A_I_sigma_hat_EU(i,:).=*
A_T_sigma_hat_EU(i,:);
A_T_sigma_hat2(i,:,1,1) = A_I_sigma_hat_US(i,:).=*
A_T_sigma_hat_US(i,:);
A_T_sigma_hat2(i,:,1,2) = A_TI_sigma_hat _US(i,:).=*
A_TI_sigma_hat_EUC(i,:);
end

S = size(A_I_sigma_hat2);
A_TI_sigma_hat2_1 = reshape(permute(A_I_sigma_hat2
,[1,4,2,3]),2%8(1:2));

lambda_hat = 2*sqrtm(A_I_sigma_hat2_1*A_TI_sigma_hat2_1"')\(
A_I_sigma_hat2_1x*loc') - 1;

A_T_lambda_hat = reshape(permute(reshape(lambda_hat ,4,2,3)
,[1,2,3,4]) ,n_mode ,P);

A_TI_lambda_hat_EU A_TI_lambda_hat (:,1);

A_TI_lambda_hat_US

A_TI_lambda_hat(:,2);

function res = A(y)
res = [0 (y(2:end) - y(1:(end - 1)))/dx];
end

function res = I(y)
res = dx*cumsum(y) ;
end
end
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