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ABSTRACT 

Calcium ions (Ca2+) play an important role in eukaryote cell signaling and regulation of 

physiological functions. Although evidence of a similar role for Ca2+ in prokaryotes has been 

difficult to demonstrate, there is mounting evidence that Ca2+ acts as a cell regulator in bacteria. 

The purpose of this study was to investigate Ca2+ signaling and the effect of Ca2+ on gene 

expression of various multidrug resistant (MDR) efflux pumps and their regulator MgrA in 

Staphylococcus aureus and clinically isolated MRSA. We hypothesized that the presence of Ca2+ 

increased gene expression of multidrug resistance pumps, LmrS, NorA, and the regulator, MgrA. 

This hypothesis was based on our previous evidence of unique intracellular Ca2+concentration 

signatures in response to various antibiotics and the enhancement of ethidium bromide efflux by 

Ca2+ in S. aureus. The effect of Ca2+ on efflux gene expression was evaluated by the addition of 

increasing concentrations of CaCl2, and the Ca2+ chelator, EGTA. Gene expression of the efflux 

genes and the regulator, MgrA were measured and compared to housekeeping genes, GMK and 

GyrA under the same conditions. Our results indicate that the presence of Ca2+ significantly 

enhanced gene expression of MDR efflux genes as compared to untreated and EGTA treated cells. 

The results indicate that the presence of EGTA significantly decreased efflux gene activity as 

compared to untreated cells and Ca2+ treated cells. We conclude that Ca2+ may be a signaling 

molecule for the regulation of gene expression of efflux in S. aureus. Transcriptomic studies are 

needed to determine the proteins involved in potential calcium transduction pathways for genetic 

regulation of efflux in S. aureus 
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CHAPTER 1: INTRODUCTION: 

1.1 Properties of Calcium 

The chemical properties of calcium made it the best candidate as a secondary messenger 
in the evolution of cell signaling. To fully understand Ca2+ homeostasis, one must consider the 
chemical properties of Ca2+ as an explanation of how living cells have evolved signaling 
mechanisms. 

Figure 1: (Carafoli, E., 2016) Illustrates the chemical properties that contribute to the binding differences between 
Ca2+ and Mg2+. The higher Ca-O distances allows for a larger variety of binding to proteins with an irregular pattern 
of binding 

 Calcium is the third most abundant metal on earth and was available in large quantities when life 

began (Carafoli, E., 1987). The ability of metals to bind to ligands depends on hydration energy 

(this is the easiness of water molecules being stripped off from the metal, polarizability, and the 

radius of the metal with a hydrogen atom, which determines charge density (Carafoli, E. 2016).  

Most importantly, Ca2+ has a unique coordination flexibility that is much higher than other ions 

such as Mg2+ and Na+ that are commonly used in eukaryote functions.  The coordination 

flexibility is defined as the ability of a metal to bind to proteins. (Carafoli, E., 2016). The 

coordination flexibility of Ca2+ is due to how the bond length and angle of Ca2+ can easily change 

to accommodate different ligand binding sites of proteins. In order to be used as a signaling 

agent, the metal ion must bind to the protein target both tightly and with high specificity. These 



2 

properties combined explain why it is easier for Ca2+ to bind to complex proteins. The specific 

chemical properties of Ca2+ have more flexibility than Mg2+ for proteins to bind and disassociate 

easily allowing cells to control their intracellular concentration. Hence, allowing for the 

intracellular concentration to be easily manipulated and to maintain cytosolic Ca2+ in the nM 

range and is crucial for the cell to maintain low levels of intracellular Ca2+ concentrations despite 

higher concentration levels outside the cell. Typically, bacterial cells regulate intracellular Ca2+ 

concentrations in a range between approximately 100-300 nM (Knight et. al., 1991; Torrecilla et. 

al., 2000). When a signal or environmental stimulus is transmitted cytosolic Ca2+ increases 

(Figure 2) allowing the cell to influx Ca2+ through ion transporters or release Ca2+ from Ca2+ 

storing compartments. Hence, tight regulation of intracellular Ca2+ ions is essential for cell 

signaling. 

Figure 2: Cell response to many stimuli by transient changes in cytosolic Ca 2+ Janssen P M et al. Cardiovasc Res 
2000; 47:99-107
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1.2 Calcium and Eukaryote signaling: 

For many years, calcium signaling was believed only to exist in eukaryotes. However, 

recently it has been demonstrated that prokaryotes are equipped with similar proteins and 

sensory mechanisms (Domínguez, et. al., 2004; 2015). Both, eukaryotes, and prokaryotes have 

transmembrane signaling proteins that lead to effector proteins that either change gene 

expression or catalyze biochemical pathways (Figure 3). The importance of signal transduction 

in cells is the ability to sense stress and effect a change to cope with changing environmental 

pressures. Cells need a variety of different sensors to detect differences in temperature, pH, 

osmolarity and drought. In all three types of cells: plants, mammalian and bacterial, there is a 

basic idea governing signal transduction, consisting of a signal being sensed followed by 

transduction or a conformational change in the sensor protein and finally a cellular response 

(Verkhratsky, A., 2007). Calcium binding proteins are an integral part of this cellular response.  

In the following section, the basic mechanism of signal transduction of the three cell types will 

be discussed. 
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Figure 3: Used with permission from Dominguez, D.C (2021). The various functions of calcium binding proteins 
(CaBP). The EF hand structure motif is present in CaBP and binds directly to calcium. The function of the protein 
can vary from enzyme activation to transport each eliciting a different physiological response. 

    1.3 Eukaryotic G-Protein Coupled Receptors (GPCRs) 

Sensing and transmitting signals are important for the survival of prokaryotes and 

eukaryotes. The ever-changing environment exposes cells to different insults and conditions. 

As a result, both eukaryotes and prokaryotes have evolved signaling mechanisms to sense and 

distinguish each specific environmental condition (Oh, S., 2018). The beginning of the 

transduction pathway for both eukaryotes and prokaryotes begins with a sensing protein which 

acts as a transmembrane receptor and signaling device. Signals in the environment are often 

molecules that bind to the receptor part of the protein. Signals can also be fluctuations in pH, 

salinity and temperature along with other physiological changes. In mammals, this protein is 

known as a G-protein coupled receptor (GPCR). GPCRs consist of approximately 7-8 

transmembrane helices (Palczewski, K., 2014). GPCRs consist of receptors, which bind to a 

ligand that binds in a specific pocket of the receptor. The receptor binds to the ligand and a 
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conformational change occurs in the cytoplasmic domain. The conformational change causes 

an exchange of guanidine diphosphate (GDP) for guanidine triphosphate (GTP) and activates a 

specific transduction pathway depending on the ligand that it binds to. Phosphorylation is 

crucial for both eukaryote and prokaryote signal transduction (Urao, T, 2000). 

Figure 4: The basic steps in GPCR transduction signaling (Siderovski, D.P., 2005) 

Classical Ca2+ pathways begin with a stimulus of the GPCR. The result increases the 

inositol triphosphate (IP3) levels when phospholipase C cleaves phosphatidylinositol 

bisphosphate (PIP2) into IP3 and Diacylglyceride (DAG). Higher concentrations of IP3 result in 

higher levels of cytosolic Ca2+. When IP3 binds to the IP3 receptor on the endoplasmic 

reticulum, Ca2+ is released (Palczewski, et al., 2000). Once IP3 binds to the IP3 receptor, 

restoration of normal Ca2+ concentrations begin by exporting Ca2+ through the plasma membrane 

through Na+/ Ca2+ transporters. The Calcium ATPase, sarco endoplasmic reticulum Ca2+ ATPase 

(SERCA) then refills the endoplasmic reticulum. Ca2+ acts as a secondary messenger to activate 

different pathways. For example, calcium signaling occurs when hormones bind to GPCRs. IP3 

triggers the release of calcium from storage compartments such as the endoplasmic reticulum 



6 

and is responsible for various functions including muscle contraction and metabolism (Berridge, 

M., 2003, 2016). 

1.4 Plant two component systems (TCS) 

Despite the multicellularity of plants, their signaling mechanism is more like prokaryotes 

than animal GPCRs. Plants have two component regulation systems that upon activation, become 

phosphorylated at a Histidine residue (Lohrmann, J., 2002). The Arabidosis plant is perhaps the 

most well studied plant due to its small and easily manipulated genome. The two-component 

signaling system ETR1, has been well described and consists of ethylene receptors. There have 

been two kinds of TCSs described in plants. The simple step TCS is very similar to the bacterial 

TCS. In a similar way, an input signal is received, and the histidine kinase domain induces 

autophosphorylation by ATP.   The phosphate is then transferred to the response regulator which 

initiates an output response. In the multistep two-component signaling system, the Histidine 

containing phosphotransferase (HPt) domain serves as an intermediate step of transferring the 

phosphate from the kinase to the response regulator (Lohrmann, J., 2002). 
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 Figure 5: A diagram of the simple and multistep two component signaling system in plants retrieved from 
(Lohrmann, J., 2002).  

Salt stress, mechanical injury and insect damage cause cell depolarization and an increase 

in cytosolic Ca2+ transients (Gilroy, S., 2016).  These signals travel in waves through the cells in 

the various plant structures (Gilroy, S., 2016). As with prokaryotes, plants also have proteins 

such as ion exchange transporters, Ca2+ binding proteins, vacuoles for Ca2+ storage and proteins 

that function as Ca2+ buffers.  Many of these proteins have similar motifs as calmodulin or EF 

hand (Tujeta, N., 2007). Calcium specific pathways in plants have not been fully elucidated as in 

mammalian cells. However, an overarching hypothesis in plant Calcium signaling is the calcium 

signature switch hypothesis (Tuteja, N., 2007). The signature switch hypothesis states that 

specific genetic sequences encoded in DNA determine the type and stimulus of the Ca2+. Further, 

specific genes determine how to interpret these varied signals. These Ca2+ signals differ in 

duration, amplitude, and frequency.  
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1. 5 Prokaryote Two Component Regulatory Systems (TCS) and Transduction

The sensory and response mechanisms of prokaryotes have many similarities to 

eukaryote GPCRs. The TCS consist of two parts a sensor kinase for sensing changes in the 

environment and a response regulator to effect change. Like eukaryote GPCRs, bacterial TCS 

consist of a receptor, transmembrane helices, and a cytoplasmic region. The other component in 

the TCS is the response regulator and is unique to prokaryotes and plants despite that the 

functionality is similar to G-proteins. When a ligand binds to the receptor the response regulator 

becomes phosphorylated by the sensor kinase and due to a conformational change, is considered 

activated. Phosphorylation is crucial for both eukaryote and prokaryote signal transduction 

(Urao, T, 2000). Proteins can then bind to DNA to carry out a response to the signal or facilitate 

biochemical reactions.  

The TCS of prokaryotes also exchanges a nucleotide upon activation and conformational 

change. However, the nucleotide in this case is adenine diphosphate exchanged for adenine 

triphosphate. The sensor kinase of the TCS becomes auto phosphorylated usually at a Histidine 

residue but Tyrosine and Serine kinases have been discovered in bacteria. In prokaryotes, the 

transduction pathway consists only of the TCS and actual gene activators and repressors.  

Calcium transduction pathways have not yet been found in bacteria. However, various 

studies have found a link between Ca2+ and physiological processes. These physiological 

processes include efflux, chemotaxis, and virulence (Nava et al., 2020; Martins, A., 2011; 

Holland, I., 1991; Alcalde-Rico, M., 2016). Changes in intracellular Ca2+ in bacteria as a 

response to heat and cold shock as well as other environmental changes implies that Ca2+ 

signaling is occurring. Further evidence of this is intracellular Ca2+ concentrations in prokaryotes 

are at very similar ranges as eukaryotes between 100-300nM.  Since eukaryotes utilize Ca2+ in 
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signaling for transduction pathways, similarities between eukaryotes and prokaryotes implies 

prokaryote utilization of Ca2+ for signaling and gene expression. Both prokaryotes and 

eukaryotes keep tightly controlled intracellular Ca2+ despite environmental signals causing 

increases cytosolic Ca2+ (Domínguez, D.C., 2018).   

Figure 6: The potential roles of calcium in the physiological functions of   prokaryotes. Retrieved   from 
(Dominguez, D.C., 2018) 

1.6 Staphylococcus aureus: 

Staphylococcus aureus is one of many drug resistant bacterial human pathogens. S. 

aureus is a gram-positive, non-motile and non-spore forming cocci that is catalase and coagulase 

positive. S. aureus is found in the normal flora of humans as well as in the environment. 

According to the Center for Disease Control and Prevention (CDC), methicillin resistant S. 

aureus (MRSA) can be acquired in community settings or in health care settings (Klevens, et al., 

2007). Staphylococcus aureus is a versatile pathogen that can cause a wide variety of infections 

and is able to survive in various environments (Onyango et al 2018; Dastgheyb and Otto, 2015; 

Li, et al., 2015). The unique adaptability of S. aureus makes this organism one of the most 
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important bacterial pathogens worldwide (Hassan et al., 2018; Onyango & Alreshidi, 2018; 

Dastgheyb et al., 2015; Kobayashi et al., 2015). The survival strategies of this organism are 

diverse including the ability to replicate in phagosomes, production of a number of virulence 

factors such hemolysins, immune evasion factors and resistance to cationic antimicrobial 

peptides, which leads to survival in host cells (Kobayashi et al., 2015; Fraunholz & Sinha, 2012). 

It is important to point out that Ca2+ plays an important role in S. aureus cell adhesion, 

modulation of biofilm architecture, modulation of α-hemolysin and autophagy (Fraunholz & 

Sinha, 2012; Eichstaedt et al., 2009; Arrizubieta et al., 2004; Thomas et al., 1993) 

S. aureus can develop resistance to numerous antimicrobial compounds, including

antibiotics and biocides (Foster, T.J., 2009; Conceição et al., 2016; Jang, 2016; Santos Costa et 

al., 2013; Esposito et al., 2011). Although the resistance developed by S. aureus strains may be 

due to different resistance mechanisms, multi-drug resistant efflux pumps (MDREP) play a 

major role in mediating cross-resistance to antibiotics and biocides (Foster, 2017, T.J.; 

Conceição et al., 2016; Sapula & Brown, 2016) .In this dissertation, we will focus on one of the 

four major mechanisms of resistance, efflux, and the role of calcium in the regulation of efflux. 

1.7 Methicillin Resistant S. aureus (MRSA) and Mechanisms of Pathogenesis 

The rise of MRSA first began in the 1960’s and evolved into two strains that could be 

acquired nosocomial or from community sources (Abraham, J., 2004). The community acquired 

MRSA were susceptible to non-β-lactam antibiotics. Interestingly, these community acquired 

MRSA strains also carried the virulence factor, Panton-Valentine leucocidin (PVL) and these 

strains were designated USA300, USA400, USA1000 and USA1100 (Morgan, M.S., 2007). 

Panton-Valentine leucocidin has been found to be an indicator of the disease-causing strain of 
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community acquired MRSA. However, a 2006 study by Voyich, et. al. showed that the type and 

severity of disease-causing community acquired MRSA did not have any correlation to PVL but 

consented that it might be involved in the epidemiology of necrotizing pneumonia. The 

nosocomial strains of MRSA were designated as strains USA100, USA200 and USA500 

(Klevens, et al., 2007; Murray et. al. 2009). Penicillin binding proteins (PBPs), specifically 

PBP2, play a major role in methicillin resistance (Hiramatsu, K., 1995; Sekiguchi, K, 1995). 

MRSA confers resistance to methicillin mainly through the mecA gene (Hiramatsu, K., 1995). 

The mecA gene codes for PBP2. PBPs have a high affinity for β-lactams however, PBP2 has a 

very low affinity for virtually all beta lactams (Hiramatsu, K., 1995; Yao, X., 2012; Bush, K., 

2016). Once bound to β-lactams the transpeptidase domain stops the synthesis of peptidoglycan 

ceases. Moderate resistance to methicillin is achieved through penicillinase, an enzyme that 

cleaves the lactam ring rendering it harmless. Penicillinase allows for partial resistance by 

hydrolyzing the antibiotic but is not completely resistant. The acquisition of MecA is important 

as it confers resistance through modification of the target proteins, PBPs. The mecA gene is 

present in MRSA but not in clinically isolated strains of methicillin susceptible S. aureus 

(MSSA). The acquisition of mecA is not solely responsible for resistance but rather the level to 

which the gene is expressed. According to Hiramatsu, K., 1995, the level of expression can vary 

the MIC producing ranges from MIC<16 to MIC>2000. This is due in part to the S. aureus strain 

as well. According to the same study, if the S. aureus strain has the N315-type mec-region of 

DNA, the strain is considered susceptible to methicillin.   

Biofilm deposition is a key strategy of antimicrobial resistance. Biofilms offer a 

protective layer that allows for evasion of biocides. Biofilms are a complex matrix of 

polysaccharides that adhere to surfaces. These biofilms are a community of sessile bacteria and 
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result from molecular communication between bacteria, known as quorum sensing (Bodelon, et 

al., 2016; Shirtliff, M., 2002, Verderosa, A., 2019). Quorum sensing is crucial for survival as it is 

a way for bacteria to communicate in response to cell density and growth as well as changes in 

the environment (Waters, C., 2005; Bodelon, G., 2016). The phenomenon of quorum sensing 

also involves the production of small molecules, known as autoinducers (Verderosa, A., 2019) 

such as acyl-homo serine lactone (Schaefer, et al.,2008). The result of the small molecules 

moving into the matrix is the simultaneous up-regulation of genes to secrete exopolysaccharides 

and other polymeric substances for the making of biofilms. Quorum sensing in gram positive 

bacteria involves the up regulation of a two-component regulatory system (Waters, C., 2005). 

Gram positive quorum sensing is accomplished through oligopeptides which require transport 

systems since they do not diffuse across the membrane (Waters, C, 2005; Wai-Leung, N.G., 

2015). For S. aureus, communication at high concentrations initiates the release of the 

autoinducing peptide that secretes toxins and proteases (Ji, G., 1995; Jarraud, et. al., 2002; Peng, 

et al., 1988). S. aureus secretes an octapeptide which is a ligand for the transduction pathway 

controlled by the agr gene (Ji et al., 1995). 

Biofilms have been studied and have shown structural complexities. These complexities 

include differences in shape mushroom or pillar (Ben-Ari, E.T., 1999). The biofilm also has 

many complex channels that allow for nutrient capture and can grow on living or abiotic 

surfaces. Biofilms are also produced as a response to stressful conditions and often, in addition to 

other functions, provide a buffer zone from the harsh environmental pressures. Bacteria that are 

embedded in biofilms have a decided advantage. Biofilms can disperse and form microcolonies 

in other areas by becoming unattached. The colonization strategy for many bacteria is to simply 

release motile bacteria into the environment to colonize other surfaces. This allows for a constant 



13 

supply of colonizing bacteria and biofilms hence, increasing the density of a species in a 

particular niche (Nadell, C., 2016). Nested within the matrix of the polysaccharide biofilm, 

bacteria are protected from immune cells as well as antibiotics which are restricted to the outside 

of the biofilm. Other advantages include protection from bactericides, a changing environment 

and effective cell communication for gene expression (Ji, G., 1995).  

The importance of efflux in biofilm formation has been studied in various bacteria. There 

are key roles such as extrusion of exopolysaccharides and quorem quenching molecules (Alav, I., 

2018). One of the first studies by Ren et. al., 2003 found that efflux pumps are more highly 

expressed in biofilm bacteria than in planktonic bacteria. Indicating the importance of efflux 

pumps in biofilm formation. The efflux genes mdtF and lsrA were both highly expressed during 

the formation and growth of the biofilm.   
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Figure 7: retrieved from Alav, I., 2018. The potential roles of efflux pumps in biofilm formation. This is 
accomplished through influencing aggregation, extrusion of EPS and QS molecules and indirect regulation of 
biofilm genes through efflux of inducer molecules.   

1.8 Bacterial efflux pumps: 

Efflux pumps have been identified in both gram-negative and gram-positive pathogens. 

In the literature, it is understood that efflux pumps have other important physiological roles 

besides the extrusion of antibiotics and biocides. These roles include biofilm formation, 

transporting toxins and lipids, as well as cell signaling (Du, et al., 2018). The efflux mechanism 

is particularly important because bacteria are able to reduce intracellular concentrations of 

biocides but also increase the potential for mutation allowing for the evolution of resistance 

(Sun, J., 2014). 

There are generally two main classes of efflux pumps in bacteria. The primary active 

transporters which utilize ATP as an energy source to transport substrates across the membrane. 

The other class consists of secondary transporters that utilize ion or electrochemical gradients to 

transport substrates across the membrane (Kumar, et al., 2016).  Seven types of multidrug 

resistance efflux pumps have been identified in S. aureus: the Major Facilitator Superfamily 

(MSF), ATP-Binding Cassette (ABC) Superfamily, Multidrug and Toxin Extrusion (MATE) 

family, The Resistance Nodulation Division (RND) and the Small Multidrug Resistant (SMR) 
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family. More recently, the Proteobacterial Antimicrobial Compound Efflux (PACE) family has 

been identified as a major family of efflux pumps and the P-aminobenzoyl-glutamate transporter 

(AbgT) (Hassan, et al., 2015; 2018).  

Efflux pumps are thought to be present in all bacteria. This implies that there are other 

physiological roles for efflux pumps. In general, the primary role of efflux pumps is 

detoxification (Sun, J., 2014; Jang, S., 2016). This is especially true when bacterial organisms 

are trying to adapt to harsh environmental conditions. The study of the ArcAB-TolC efflux 

pumps in clinical strains of E. coli have allowed for the assumption that efflux pumps in 

clinically relevant bacterial pathogens can efflux antimicrobial compounds from the host (Ma, et 

al., 1995; Okusu, H., 1996). There is an implied connection between bacterial efflux and 

virulence (Piddock, L., 2006; 2014). Other studies have demonstrated this with mutations of 

efflux pumps. This was demonstrated in N. gonorrhea, which resulted in poor colonization of the 

mouse urogenital track (Jerse, A.E., 2003).  
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1.9 Efflux Pumps in Gram Negative and Gram Positive Bacteria 

Primary Efflux Pumps Families: 

Figure 8: Efflux pumps and substrates from (Andersen, J., 2015) Efflux pumps of Salmonella from four different 
transporter families. The transport mechanisms, location, families, and substrates are shown. Abbreviations used in 
the figure indicate the following: aminoglycosides (AMG), novobiocin (NVB), sodium dodecyl sulfate (SDS), 
sodium deoxycholate (SDC), acriflavine (ACF), crystal violet (CV), methylene blue (MB), rhodamine 6G (R6G), 
benzalkonium chloride (BNKC), nalidixic acid (NAL), tetracycline (TET), chloramphenicol (CLP), norfloxacin 
(NOR), doxorubicin (DOX), and macrolides (MAC). Key for antibiotics obtained from (Andersen, et al., 2015) 

1.9.1 The Major Facilitator Superfamily (MFS) 

 MFS are found in nearly all living organisms. All of the permeases of the MFS contain a 

conserved motif of alpha helical spanners (Saier, et. al., 1998). These permeases can extrude or 

import different substrates from cations, metabolites, drugs, and amino acids by interacting with 

the various compounds through amino acid residues. The MFS family includes symporters, 

antiporters, as well as uniporters (Quistgaard, et al., 2016). The MFS transporters found in 
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bacteria are closely related to eukaryote sugar transporters and have a common mechanism of 

transport (Kumar, et al., 2016). MFS efflux transporters utilize a proton gradient across the 

membrane in order to export a large variety of substrates. 

 Some of the most well studied MFS pumps in S. aureus include NorA, and QacA 

(Dymek, A., 2012; Santos Costa, S., 2013). The NorA pump is resistant to numerous biocides 

but is especially known for resistance against fluoroquinolones. The increased resistance is due 

to the overexpression of the NorA gene through mutations in the regulatory proteins of this 

pump. The mutation occurs approximately 89bp upstream from the initiation codon (DeMarco, et 

al., 2007). These mutations are in the promoter region and have also led to constitutive 

expression. Similar to other efflux pumps, the NorA utilizes an H+ antiporter (Ng, EY., 1994) 

and has twelve transmembrane portions (Santos Costa, et al., 2013).  

1.9.2 Small Molecule Resistant Efflux Pumps (SMR) 

The Small Molecule Resistant Efflux Pumps (SMR) family is comprised of genes that are 

usually obtained horizontally through integrons located on plasmids (Slipski, et. al., 2019). These 

pumps are usually given the name Qac, due to the ability to pump out molecules in the 

quaternary ammonia compounds. These genes may have arisen from various species. These 

specific pumps also provide resistance to guanididium containing biocides (Kermani, et al., 

2018).  

The SMR family consists of proteins that span the membrane at least four times with 

helices that have both hydrophilic and hydrophobic properties (Paulsen, et al., 1996). The four 

transmembrane helices are approximately 150 amino acids in length and where the small 

designation is derived in name. The hydrophobic transmembrane α-helices allow for the import 
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of organic solvents (Bay, D., 2008). The SMR family is further divided into two types based on 

phenotype. These are small multidrug pumps and inhibition of groEL proteins (SUG) (Greener, 

T., 1993). The SMR homologues comprise a large variety of protein sequences and have been 

found in both prokaryotes and some eukaryotes. These genes are found on plasmids, integrons 

and chromosomal DNA (Bay, D., 2008). Interestingly, another sub-class has been found in 

addition to the ones mentioned above. This subclass is known as the paired SMR protein 

(PSMR) (Bay,D., 2008). 

Figure 9: Retrieved from (Bay, D., 2008) The protein topology of E. coli Eco-emrE (A) and C. freundii (B). The 
figure is a depiction of the transmembrane helices that predict a periplasm and cytoplasmic domain. The residues in 
red depict amino acids capable of combined drug resistance. The figure demonstrates the homology of the protein 
both in function and structure among bacterial species. 

In gram-positive bacteria, the Qac genes C and D, along with Ebr gene were among the 

first SMR genes discovered (Wassenaar, et al., 2015). In S. aureus, the Sau-Smr protein has been 

characterized as an SMR efflux pump. This gene has a remarkable similarity in function to the 

M. tuberculosis gene Mtu-Smr. The SMR family of pumps utilizes proton motive force as a

means of energy. Simply stated, the energy from one proton entering the cell from a natural 

gradient is harnessed in order to exchange it for a molecule of antibiotic substance.  
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1.9.3 Multi Drug and Toxic Compound Extrusion (MATE) 

The MATE family confers resistance to a number of dissimilar compounds including 

biocides, antibiotics and other toxic chemicals. Extrusion is coupled with a Na+. The most well 

studied S. aureus efflux pump from the MATE family is MepA. The efflux pump MepA confers 

resistance to quaternary ammonium compounds. It was thought that MepA was regulated by 

MepR and within the mepRAB operon (Katz, et al., 2005). The MepA protein also spans the 

membrane twelve times. Other MATE family efflux pumps are NorM from V. cholerae and V. 

parahaemolyticus, which were among the first to be discovered (Ogawa, et al., 2016). The 

MATE family transporters consist of 12 transmembrane hydrophobic domains (Kuroda & 

Tsuchiya, 2009). 

1.9.4 ATP Binding Cassette (ABC)  

The ABC efflux family utilizes ATP to drive the export or import of various substrates 

across the membrane. The main mechanism behind efflux is to harness proton motive force to 

hydrolyze ATP providing the energy to transport any substrate across the membrane. Some of 

the ABC efflux pumps often affect other transporters that import and exportsignaling molecules 

in eukaryote ABC transporters (Oevermann, et al., 2009) This may potentially be true for 

prokaryote cells as well. 

The majority of efflux pumps in the ABC family can be divided into two classes, homo- and 

hetero-dimeric. The literature determined the function of these efflux pumps depends on the 

conformational changes of the transmembrane efflux protein. It alternates from an open outward 

to an occluded state then to an open outward confirmation to transport substrates in or out of the 

cell. 
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Figure 10: from (Yang, J., 2015) showing the three conformational states of the ABC efflux transmembrane protein. 
The protein consists of three parts: TMD transmembrane domain, NBD nucleotide binding domain and finally, the 
Regulatory domain. 

1.9.5 Resistance Nodulation Division (RND) 

Until very recently, it was thought that RND pumps only existed in gram-negative 

bacteria. However, recent studies have identified the presence of RND pumps in gram-positive 

bacteria as well (Schindler & Katz, 2016). Similar to other efflux pumps, the RND family 

confers resistance to a number of biocides that are dissimilar in terms of chemistry and structure 

(Bohnert, et al., 2008). In terms of structure, the RND family are usually homotrimers but do 

have members in the eukaryote organisms that have heterodimeric proteins (Du, et al., 2018). All 

RND transporters are typically secondary transporters either utilizing PMF or antiport 

mechanisms (Du, et al., 2018).  

The mechanism of the RND efflux pump, ArcB relies on cooperation of the three 

different structural states of the protein. In the Loose (L) state, the drug accesses the pump in a 

binding pocket located in the periplasmic space. Once they are further into the binding pocket the 

conformation changes into the Tight (T) state. Once in the T state, the protein conformation 

changes into the Open (O) state. In this state, antimicrobials can be moved into a funnel shaped 

area where they are expelled outside the cell (Wong et. al., 2014) 
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1.9.6 Proteobacterial Antimicrobial Compound Efflux (PACE) 

The PACE family is a recent discovery of transport proteins that give resistance to 

disinfectants and biocides. More importantly, the PACE family confers resistance to 

chlorhexidine. Chlorhexidine is considered an important medicine by the World Health 

Organization as it is present in mouthwashes and hand soaps. 

 Interestingly, this highly conserved amino acid sequence is in the chromosomal DNA 

that implies an important function (Hassan, et al., 2018). One of the first discoveries of the 

PACE pump was a protein isolated from Acinetobacter baumannii. This novel protein was later 

named AceI (Acinetobacter chlorohexidine efflux protein) and other homologues were found in 

Klebsiella, Enterobacter, Salmonella and Pseudomonas (Hassan, et al., 2015). These 

homologues also extended resistance beyond chlorohexidine to other compounds such as: 

benzalkonium, proflavine and acriflavine among others (Hassan, et al., 2018). The AceI 

homologous regions are highly conserved across gram-negative bacteria. 

The 3D structure of PACE has not been solved; however, it is predicted to have four 

transmembrane α-helices followed by what is known as Bacterial Transmembrane Pair (BTP) 

domains (Haasan, et al., 2019). There are four highly conserved motifs in the PACE family 

proteins among genera. The capital letters signify that it is conserved in over 90% of the genera 

of bacteria while lowercase letters signify around 65% conservation (Hassan, et al., 2018). In 

Helix 1 they are RxxhaxxfE and in Helix 2 the motif is WNxxy or fNxxFd. In Transmembrane 3, 

the motif is RxxHaxxFe and is like the motif in Helix 1 (Hassan, et al., 2018). In Helix 4, the 

motif is Ytxxf or ynwxyD. These are similar to the motif in Helix 2. The x signifies any amino 

acid. 
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The PACE family of efflux proteins are very different from other efflux families because 

they appear to be somewhat limited to specific biocides such as chlorohexidine. This is in 

contrast with the other efflux families that can efflux a wide variety of dissimilar substrates. The 

presence of PACE family proteins in the genome of bacteria rather than mobile plasmid elements 

demonstrates a possibly crucial physiological function not yet determined (Hassan, et al., 2015). 

1.9.7 p-Aminobenzoyl-Glutamate Transporter (AbgT) 

The primary purpose of this transporter is the importation of p-aminobenzoyl-glutamate 

to synthesize folate. This transporter has distinct features from any other family of efflux pumps 

(Delmar, J., 2016). Recent X-ray structures of transporters, YdaH from Alcanivorax borkumensis 

and MtrF from Neisseria gonorrhoeae, show the bowl-shaped dimers spanning from the 

cytoplasm through the membrane layer. Each dimer consists of nine transmembrane helices and 

two hairpins (Su, et al., 2015). The main substrate that MtrF effluxes is PABA. 

While experiments reveal that that YdaH and MtrF can remove p-aminobenzoic acid 

from the cell, other assays have demonstrated the ability to efflux sulfonamides. The structure of 

YdaH contains two hairpins and nine transmembrane helices. The dimer forms a concave liquid 

filled structure. Interestingly, the MtrF also has nine transmembrane helices and two helical 

hairpins which closely resemble the YdaH transporter.  

A CLUSTAL W alignment revealed that the transporter could exist in other bacteria 

including pathogens. The alignments revealed over 65% homology in other bacteria including, S. 

aureus, Escherichia coli, Clostridium difficile, Bacillus halodurans, Vibrio. cholerae, 

Caulobacter crescentus and Neisseria. meningitidis among others (Delmar, J., 2016). There are 
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approximately 13,000 AbgT-like proteins have been found in gram positive, gram negative 

bacteria as well as yeast (Su, et al., 2015).  

Efflux pumps are important for antimicrobial resistance because they can bind to 

different substrates that are chemically dissimilar. While efflux pumps are present in both 

susceptible and antimicrobial resistance, it is the expression level that makes them resistant to 

antibiotics (Webber & Piddock., 2003). The presence of efflux genes in the chromosome of 

antibiotic susceptible bacteria indicates an ancient ability to adapt and survive in a hostile 

environment (Lomovskaya, et al., 2001).  

1.10 Statement of the Problem: 

S. aureus and methicillin resistant Staphylococcus aureus (MRSA) are significant global

health pathogens that remain a burden due to an ability to persist in healthcare and community 

environments. Some of this persistence is largely due to the ability of MRSA to efflux 

bactericides, while obtaining sources of energy. Among many mechanisms of antibiotic 

resistance, efflux pumps are important for survival in harsh environments. Regulation of efflux is 

not well-known, and the level of expression is directly related to virulence. Although indirectly, 

Ca2+ homeostasis has been shown to be important in bacterial functions including efflux. The 

role of calcium signaling in efflux pumps is unknown. The study aims to determine if Ca2+ 

regulates efflux activity in S. aureus. The direct link between Ca2+ and gene regulation of efflux 

or other important bacterial physiological processes has not been demonstrated. Therefore, this 

study will focus on how Ca2+ are involved in the regulation of gene expression of efflux pumps. 

The link between Ca2+ and gene regulation needs to be established before proteins in a Ca2+ 

signaling transduction pathway can be explored.  
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1.11 Significance: 

Calcium and efflux: 

The proposed research seeks to demonstrate that Ca2+ regulates efflux of antibiotics in 

Staphylococcus aureus. The present study investigated calcium regulation of efflux pumps in 

multi-drug resistant S. aureus clinical isolates. In addition the present study has advanced our 

understanding in antimicrobial resistance (AMR) mechanisms and has the potential to contribute 

to the design of alternative therapeutic approaches by targeting Ca2+ signaling pathways in 

bacteria mitigating the need for antibiotics. In addition, this work will advance knowledge in 

microbial physiology and will establish Ca2+ as the universal regulator. To date, Ca2+ and efflux 

have only been indirectly linked to an enhancement of efflux in several bacteria including E. coli 

and S. aureus. Transduction signaling in bacteria is only limited to the two component systems 

that directly influence genetic expression. Very little is known about other proteins involved 

between the initial two component regulatory systems (TCSs) response to genetic expression 

after sensing a stimulus. Some bacterial secondary messengers have been identified such as the 

cyclins. However, the influence of Ca2+ as a secondary messenger in gene regulation of bacterial 

physiological processes is not known. The present study is the first to establish the link between 

Ca2+ and gene expression of efflux pumps.  

1.12 Hypotheses: 

1) Antibiotics act by increasing cytosolic Ca2+ concentration, which in turn enhance the

efflux activity of the S. aureus efflux pump LmrS

2) Calcium ions mediate efflux pump expression in S. aureus
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CHAPTER 2: LITERATURE REVIEW 

2.1 Potential role of Ca2+ in the regulation of efflux and transport systems in prokaryotes 

In a challenging environment, intracellular homeostasis is crucial for bacteria. The ability to 

transport trace elements and nutrients as well as efflux harmful substances is crucial to survival. 

Like eukaryotes, the concentration of calcium within prokaryotic cells is tightly regulated. 

Previous studies have correlated calcium signaling and regulation of various important bacterial 

physiological functions. Efflux studies in E. coli have indirectly shown that Ca2+ enhances efflux 

and that Ca2+ homeostasis is maintained in some genera of bacteria. In this review, we discuss 

the possible role of Ca2+ in signaling and regulatory processes, transporters of Ca2+, and the 

possibility of calcium regulation of bacterial efflux systems.  

2.2 Prokaryote Regulation of Calcium and Calcium Signaling in Bacteria 

Calcium is important in eukaryote cell signaling and is involved in adenylate cyclase 

pathways that activate Protein Kinase A (PKA) and also in GPCR signaling. The current 

research in bacterial transduction pathways is limited to two component regulatory systems 

which are “GPCR” like and consist of a 5-7 transmembrane domain sensor kinase and a response 

regulator (Pec, S. 1996).  Similar to eukaryote GPCRs, TCs relay a signal from the sensor protein 

to the response regulator through autophosphorylation. Once a stimulus is intercepted, the 

cytoplasmic region of the sensor kinase undergoes a conformational change and ATP is 

exchanged for ADP (Dev, A., 2014). The similarity of this process to eukaryotes seems obvious 

considering function. However, very little is known about what proteins are involved before gene 

regulation occurs. Some studies imply arrestin like proteins called antikinases that reset these 

sensors, once tripped (Pec, S. 1996). Interestingly, stopping this function in eukaryote cells will 

often re-set GPCR signals.  
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Various studies have demonstrated that bacteria regulate cytosolic Ca2+ in response to 

environmental fluctuations (Torrecilla, I., 2000; 2001). Regulation of cytosolic Ca2+ is 

accomplished through acidocalcisomes, Ca2+ binding proteins, transporters, and the periplasm 

(Bruni, G., 2017; Jones, H.E., 2002). For example, the NaChBac transporter, isolated from B. 

halodurans, is very similar in functionality to eukaryote voltage gated Ca2+ channels (Ren, D., 

2009). It is thought that these low affinity channels are symporters that export Na+ to import 

Ca2+. In a study by Bruni, et al.  (2017), a Ca2+ voltage flux in E. coli allowed for the ability to 

“sense” changes in environmental shear or pulling forces.  

Some Ca2+ binding proteins contain the putative EF hand motif present in eukaryote 

proteins (Sariskova, S.A., 2014; Dominguez et al 2015). Other regulatory proteins such as 

calmodulin like proteins imply that prokaryotes are regulating cytosolic Ca2+. Many of these 

strategies such as binding to Ca2+, buffering and storage are like eukaryote strategies and 

suggests that Ca2+ signaling is occurring.  

Intracellular concentrations of Ca2+ under normal circumstances are very similar for both 

prokaryotes and eukaryotes. This is in the range of about 100-300nM (Naseem, R., 2008; 

Dominguez, D.C., 2015). The extra cellular Ca 2+ can have as much as 1-5mM. The ability of 

prokaryotes to maintain Ca2+ homeostasis implies that bacteria, like eukaryotes, have Ca2+ 

binding proteins, storage spaces, buffers and transporters that may be used for maintaining these 

cytosolic levels that are yet to be discovered. High intracellular calcium levels result in 

disruption of pH, ion concentration (Na+, K+) and enzymes in both eukaryotes and prokaryotes. 

Ca2+ ions are also highly regulated due to their interactions with regulatory proteins, which 

control cellular metabolic reactions  
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In order to maintain low levels of Ca2+ concentration, eukaryote cells rely on three classes 

of proteins. These are proteins in the cytoplasm that have a high and low affinity for Ca2+   

buffering the intracellular Ca2+ concentration to the nM range. The other type of Ca2+ proteins are 

transporters: ion exchangers, pumps and channels that maintain intracellular Ca2+ concentrations 

(Carafoli & Krebs, 2016 ). Calcium ATPases pump out Ca2+ from the cytosol by hydrolysis of 

ATP (Jones, H.E., 2002). Another calcium transporter are secondary transporters that utilize the 

energy from the flow of an ion (Na+) along a concentration gradient in exchange for Ca2+ against 

the concentration gradient (Cai & Litton, 2004).  

For prokaryotes, high intracellular Ca2+ is also toxic and maintenance of Ca2+ 

concentration is crucial for survival. Bacteria have three types of Ca2+ transport systems. These 

are ATPases, polyhydroxybutyrate-polyphosphates and low affinity Ca2+ exchangers (Guragain, 

et al, 2013, Domínguez et al 2015, Dominguez, 2018). These are very similar to eukaryote cells 

to efflux high levels of Ca2+. Bacteria also apparently have transporters to influx Ca2+ as 

demonstrated in a study which showed that polyphosphate complexes were able to form Ca2+ 

channels that were controlled by voltage in E. coli (Reusch, RN., 1988).  A study by Guragain, et 

al., 2013 demonstrated that Ca2+ homeostasis was achieved through different transporters. This 

was apparent when inhibitors of F and P type ATPases and Ca2+ showed impaired Ca2+ 

homeostasis. Ultimately, the most convincing evidence of this study was that Ca2+ homeostasis 

was significantly inhibited by the genetic disruption of P. aeruginosa P-type ATPases, PA2435 

and PA3920 along with the ion exchange transporter, PA2092. This was significant as it 

demonstrates that bacteria, like eukaryotes, also have mechanisms of Ca2+ influx and efflux to 

maintain a specific concentration.  
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Other studies have shown that bacteria utilize ATPases, Ca2+ exchangers and proton 

motif force to efflux calcium. Naseem et. al. (2009) demonstrated that ATP may be regulating 

Ca2+ concentrations. Interestingly, Ca2+ exporters utilizing an ion chemical gradient has been 

described and evidence of Ca2+ efflux has been illustrated in various bacteria (Shiner, E. 2006). 

These exchangers utilize Na+ and H+ to efflux Ca2+ (Ivey, et. al., 1993). In these types of 

transporters, Ca2+ is imported against a chemical gradient.  

Another method of regulating Ca2+ intracellular concentration are vacuoles and the 

endoplasmic reticulum. As mentioned above, some bacteria store excess Ca2+ as a strategy to 

control Ca2+ levels in acidocalcisomes. Rhodospirillum rubrum have been described as having 

acidocalcisomes which utilize an H+ pump and polyphosphates to regulate intracellular 

concentrations (Seufferheld, M., 2004).  Polyphosphates and poly-b-hydroxybutyrate have been 

known to form Ca2+ channels across the membranes of various organisms (Seufferheld, M., 

2004). Polyphosphates also provide phosphate energy reserves to help prokaryotes deal with 

environmental changes (Jones, HE., 2002). Another space for storing Ca2+ has been 

demonstrated in E. coli where Ca2+ measurements in the periplasmic space (Jones, HE., 2002). In 

this study, aequorin was targeted to the periplasmic space by using the Outer Membrane protein 

T (OmpT) signal sequence. The significance of this study was that E. coli was able to 

concentrate Ca2+ in the periplasm even when the external concentration was less than 1uM. This 

suggests that the periplasm may be acting as a store for Ca2+ in a similar manner than the 

endoplasmic reticulum does for eukaryote cells.  
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2.3 Calcium Binding Proteins in Bacteria 

Calcium binding proteins such as calmodulin and Troponin C bind to calcium using the 

EF hand motif.  This helix-loop-helix motif is highly specific to Ca2+ due to the six oxygen atoms 

in the side chains of amino acids like aspartate and glutamate. These negative side chains bind to 

the positive Ca2+. The binding of Ca2+ causes a conformational change allowing effector proteins 

to regulate functions (Fleischer, J., 2009). For bacteria, Michiels, et. al. 2002 did an in-silico 

analysis of potential Ca2+ binding proteins. The study identified potential Ca2+ binding proteins 

that may play a possible role in intracellular Ca2+ homeostasis. A proteome analysis by 

Dominguez, D.C., et. al., 2011, revealed total protein transcriptional changes as a result of 

treatment with Ca2+ or EGTA in B. subtilis. The study identified six potential Ca2+ binding 

proteins that were made in the presence of Ca2+. Interestingly, there was a change on molecular 

weight of the proteins when incubated with either Ca2+ or EGTA. In addition, other studies have 

identified proteins that have conserved structural domains similar to eukaryote Ca2+ binding 

proteins with the same helix-loop-helix motif and serve a variety of functions including interact 

with eukaryote cells.  A specific example is the highly conserved structural domains in RapA of 

Rhizobium leguminosarum. This protein is responsible for aggregation and adhesion to plant root 

cells. These conserved structural domains are common bacterial proteins that bare a remarkable 

similarity to eukaryote cadherins or adhesion proteins (Abdian, et al., 2013). The cadherin like β-

sheet conformation in the RapA proteins in Rhizobium interact with glycoproteins of plants in a 

Ca2+ dependent manner. Moreover, this implies possible molecular cross talk between the plant 

and the symbiont through Ca2+ proteins (Abdian, et al., 2013).  

To date there have been seven different classes of Ca2+ proteins identified in prokaryotes. 

Due to the variety of structures in these proteins it is thought that there are a wide range of 
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functions. The role of Ca2+ appears to play a role in adhesion, regulating biofilm expression, 

confers resistance and mediates heterocyst formation among many other processes. The 

following table from (Dominguez, D.C., 2015) lists these proteins, the organisms where they 

were isolated and the possible role that Ca2+ plays in the function. 
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Table 1: Proteins and their role in physiology and relationship to calcium ions retrieved from Dominguez, et. al., 
2015
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2.4 The Indirect Association of Calcium and Efflux 

Previous research has illustrated that Ca2+ are indirectly associated with efflux in 

bacteria. To date, some publications have identified Ca2+ as capable of enhancing efflux capacity 

in E. coli (Holland, B. et.al., 1999; Martins, A., 2011). Conversely, Ca2+ channel inhibitors and 

chelators have been reported as inhibiting efflux activity  in some bacteria (Couto, et al., 2008; 

Sun, J., 2014). For example, the Ca2+ channel blocker Verampil, can inhibit efflux in 

Mycobacterium tuberculosis that confers resistance to many anti-tubercule drugs (Adams, K., 

2014). The study identifies efflux pumps such as Rv1258c as a major contributing factor to 

antibiotic resistance in M. tuberculosis. Interestingly, the study showed that Ca2+ blockers also 

inhibited growth in M. tuberculosis. The results of these studies demonstrate an indirect link 

between efflux and Ca2+ hence, implying that calcium may be involved in the regulation of 

efflux. 

Figure 11:  The effects of Ca2+ by proton de-coupler 2,4-dinitrophenol. Illustrating the importance of protons in 
efflux. (Guragain, M. 2013) 

 An important association between pH and efflux activity has recently been documented. At 

lower pH, due to Proton Motive Force (PMF), bacteria are able to efflux without the addition of 

Ca2+ or metabolic energy (glucose) (Martin, A. 2015; Holland, B et. al., 1999). The preference 

for Ca2+decreases with pH. At more alkaline pH, efflux is less efficient as many H+ ions are lost 
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in solution, illustrating that hydrolysis of ATP with hydronium ions is crucial for efflux 

mechanisms as efflux is metabolically expensive (Piddock, L.J., 2006). The same effect of pH is 

seen in cytosolic Ca2+ levels. In a study by Naseem et. al. (2008), at a higher pH of 9.5, more 

Ca2+ transients were measured than at pH 5 or 7. The pH did not appear to affect Ca2+ efflux 

however, the influx was considerably smaller at a more acidic pH of 5. The study cited a 

competition between Ca2+ and H+ as the reason as was evident with higher cytosolic Ca2+ levels 

at higher pH.  

Across different species of bacteria Ca2+ transients occur in reponse to environmental and 

stressful conditions. Heat and cold shock raise the cytosolic Ca2+ levels of cyanobacteria 

(Torecilla, et. al. 2000). In response to a repellent, intercellular Ca2+ levels rise, and chemotaxis 

increases away from a repellent in E. coli (Watkins, J., 1995; Tisa, L.S. 1993)). This is a strong 

implication for cell signaling as there is a Ca2+ transient followed by a physiological response. 

The photoprotein, aequorin has been used in several bacteria to demonstrate that bacteria are able 

to sense changes in the environment (Torecilla, I., 2000, 2001; Shiner, E.K., 2006; Guragain, M., 

2013). Moreover, an example of calcium signaling exists in the legume-Rhizobium symbiosis. 

The possibility of Ca2+ mediated signaling pathway between legume plants and R. 

leguminosarum was discussed in (Moscatiello, R., 2010). In this work Moscatiello (2010), used 

aequorin to determine if a calcium pathway was involved in Nod gene transcription. Flavonoids 

from the plant, known to induce upregulation of Nod genes were added to the aequorin 

Rhizobium strains. Upon addition of flavonoids, the bacterial strains produced calcium transients 

suggesting a Ca2+ dependent pathway leading to gene up-regulation.  Interestingly, other 

molecules not specific to the symbiosis failed to produce Ca2+ transients. This data suggests that 

Ca2+ is crucial for sensing and transducing flavonoids from the legume plant 
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CHAPTER 3: MATERIAL AND METHODS: 

Experimental design overview 3.1: 

The project’s main purpose was to explore how Calcium ions (Ca2+) ultimately influence 

efflux pump activity and gene expression in S. aureus and clinically isolated MRSA. Ca2+ 

pathways in bacteria are unknown. However, many implications in previous studies suggest that 

Ca2+ effects or modulates many physiological processes. These include chemotaxis, virulence 

and cell division (Sarsikova, et al., 2005; Lemovskaya, O. 2001). The process of designing the 

basic ideas behind this research are to connect the known and implicated knowledge with more 

direct evidence of Ca2+ regulation of gene expression of efflux. This hypothesis was an extension 

of theories rooted in eukaryote studies where Ca2+ ions are a fundamental part of transduction 

pathways and ultimately, gene expression in many cellular functions (Fleischer, J., 2009; Oh, S., 

2018). This is important to determine if Ca2+ influences gene expression and to demonstrate that 

Ca2+ homeostasis is maintained in the cell. Ca2+ homeostasis is simply a spike in intracellular 

Ca2+ in response to external stimuli followed by a slow return to basal Ca2+ levels. The 

experiment would need to capture a signal that intracellular Ca2+ has increased in response to a 

stimulus or treatment. In this case, different concentrations of extracellular Ca2+ ions (CaCl2) 

were added at a specific time to measure a subsequent increase in cytosolic Ca2+. The successful 

experiment would also test how a Ca2+ specific chelator would affect Ca2+ homeostasis. It is also 

necessary to control for pH to see if proton availability influences the concentration of Ca2+ 

being imported into the cell. Finally, our experiments included injections of different antibiotics 

to measure the response in intracellular Ca2+.  This implied the possibility of a transduction 

pathway. The experiment proceeded starting with the determination of basal levels of cytosolic 

Ca2+ in S. aureus. This was determined using a calcium specific photo-protein which was 
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transformed into S. aureus. These experiments determined the cells response to increasing 

concentrations of Ca2+, differences in pH and the removal of cytosolic Ca2+by EGTA. 

Evidence of intracellular Ca2+ homeostasis was determined to be manipulated by external 

concentrations of Ca2+ and also manipulated efflux activity in S. aureus. The efflux experiments 

were designed to measure efflux both indirectly and directly. A dye was chosen that would allow 

measurement of accumulation and extrusion in real time. The experiments included measuring 

efflux with treatments including Ca2+, Ca2+ specific inhibitors, with or without metabolic energy 

(glucose) and finally, adjusting the pH to 5,7, and 8. Controlling for glucose, pH and Ca2+ would 

allow for the visualization of the contribution of each. These controls helped distinguish the sole 

contribution of Ca2+ as compared to the other variables. 

Finally, Ca2+ was determined to influence efflux, so that experiments could proceed to the 

measurement of efflux gene expression. The influence of Ca2+ on gene expression of efflux set a 

precedence for possible regulation of other physiological processes. In this experiment we 

demonstrated that efflux regulation increases with added external Ca2+.  Total RNA was extracted 

under the following conditions: when the bacterium was incubated in EtBr with or without Ca2+ 

and addition of Ca2+ specific chelators. The positive control of efflux regulation would be the 

EtBr. The negative control would be the S. aureus under normal conditions (without EtBr). This 

represents one main gap in research to date. Once the baseline of efflux is established, 

manipulation of Ca2+ concentration was assessed by adding different concentrations of Ca2+, Ca2+ 

inhibitors and chelators to the media. The purpose of this was to observe whether the addition or 

absence of Ca2+ affects the ability of S. aureus to efflux EtBr. S. aureus ATCC 25923 and 

clinical isolate EBSA78 were grown in Brain Heart Infusion (BHI) broth. The E. coli strain 

JM109 containing the expression vector pMMB66EH with the apoaequorin coding sequence was 
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used to conjugate into S. aureus cells. The E. coli cells were grown in Luria-Bertani (LB) broth 

with carbenicillin or ampicillin (100 μg/ml).  

3.2 Table 2: Bacterial Strains and Media 

Bacterial Strains Experiment Media 

S. aureus ATCC 25923 Aquorin and Efflux BHI, HEPES and PBS 

MRSA EBSA 78 (Clinically 
Isolated Strain) 

Efflux/ Gene expression BHI, PBS 

E. coli DH5α MIC and Direct Efflux LB, PBS 

E.coli LmrS clone MIC and Direct Efflux LB, PBS 

S. aureus AEQ IntracellularCa2+    
Measurements 

BHI and HEPES 

S. aureus/MRSA EBSA 78 Gene expression BHI 
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3.3 Table 3: Experiment variables and AIMS 

Experiment Independent Variables Dependent Variable Hypothesis 

Efflux [Ca2+], Ca2+inhibitors, 
pH (5,7&8) 

Efflux and extrusion 
of EtBr 

Ca2+ ions modulate 
efflux capacity in S. 
aureus and clinically 
isolated MRSA 

Intracellular Calcium Ca2+ inhibitors and 
chelators, pHs (5,7, 
and 8), with and 
without EtBr 
incubation, [Ca2+] 

Cytosolic free Ca2+ S. aureus imports
Ca2+ions in higher
extracellular [Ca2+] 

and under stressful
conditions that
induce efflux

Gene 
Expression 

Incubated in EtBr, 
EtBr + Ca2+ Normal + 
1mM Ca2+, EtBr + 
Ca2+ inhibitor/chelator, 
EtBr + Ca2+ 
inhibitor/chelator + 
Ca2+ rescue 

Gene expression of 
efflux pump genes as 
compared to 
housekeeping genes 

Gene expression is 
higher when Ca2+ is 
added externally. S. 
aureus can efflux 
EtBr more efficiently 

LmrS efflux clone Normal conditions pH 
7, With and without 
Ca2+ specific 
inhibitors, 1mM Ca2+

Direct efflux of EtBr 
under various 
conditions where the 
concentrations of 
Ca2+ are manipulated 

Ca2+ enhances the 
efflux activity of the 
LmrS efflux protein. 
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3.4 Identification of S. aureus 

S. aureus was confirmed after conjugation by culture in Mannitol Salts Agar (MSA), sequencing,

testing for coagulase production and latex agglutination. After sequencing, the FASTA files were 

compared to the S. aureus genome using the NCBI BLAST software. Muller-Hinton broth was 

used to determine the Minimum inhibitory concentration (MIC) for ethidium bromide and 

inhibitors 

3.5 Efflux Experiments Direct and Indirect   

To determine the effect of Ca2+ in the efflux systems of S. aureus, EtBr was used as a substrate, 

followed by various treatments with CaCl2, Ca2+-chelators and Ca2+-dependent inhibitors.  The 

MIC for EtBr was done using the broth dilution method and as recommended by the Clinical 

Laboratory Standards Institute. A final concentration of 2.5 mg/L EtBr was used for all efflux 

experiments and was previously published by (Martins et al., 2011) as the MIC for E. coli and S. 

aureus respectively. Bacterial strains were cultured overnight in BHI broth at 37°C in a Gyromax 

rotatory shaker (Amerex Instruments) at 220 rpm. Overnight cultures (1:100) were inoculated 

into 250 ml triple-baffled flasks containing 50 mL fresh BHI broth and grown to reach an OD600 

of 0.8. Bacterial cells were harvested by centrifugation at 5000 rpm for 5 min (Beckman Coulter 

Allegra, rotor C0650). Cells were washed three times in Phosphate buffer solution PBS (137 mM 

NaCl, 10 mM phosphate, 2.7 mM KCl) adjusting to the different experimental pHs 5.0, 7.0 and 

8.0. Bacterial cell concentration was adjusted to an OD600 of 0.6 for each pH. Efflux pump 

activity of EtBr was measured by fluorescence at 585nm in 96 microtiter fluorescent-based 

plates (Thermo Fischer Scientific) using a Glomax 3000 fluorometer (Promega). Calcium levels 

in media were manipulated by addition of CaCl2 (Sigma Aldrich) at 1.0 and 5.0 mM. Ca2+-
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chelators EGTA and EDTA (Thermo Fisher) were added at concentrations of 10 mM for both 1 

and 5mM. To investigate Ca2+-dependent transport inhibitors, the phenothiazines, CPZ and TFP 

(Sigma Aldrich), were added at 20 mg/mL (CPZ) and 50μM (TFP).  The Ca2+ channel blocker, 

verapamil (Sigma Aldrich) was added at 30 μM. Efflux assays were conducted at the different 

pHs, 5.0, 7.0 and 8.0. Glucose (.4%) was used as a control for the contribution of metabolic 

energy to efflux. CCCP (Sigman Aldrich), a proton de-coupler was used to a final concentration 

50µM to illustrate proton motive force disruption. Bacterial cells in Aliquots of 100 μL were 

placed in 96 microtiter plates and fluorescence was recorded at 580nm. For measurement of 

direct efflux in E. coli and S. aureus, the cells were inoculated and grown in Luria broth 

overnight at 37° C. The following morning the cells were sub-cultured and adjusted to 0.6 OD at 

600nm. Cells were then incubated in EtBr with or without Ca2+ inhibitors, chlorpromazine and 

calmidazolium or Ca2+ chelator, EGTA for 30 minutes. As a control, E. coli cells without Ca2+ 

inhibitors and EtBr were measured to understand the effects of Ca2+ on efflux. After 30 minutes 

the cells were pelleted and washed twice with PBS at pH 7 or the indicated pH for the S. aureus 

experiments. Both E. coli wildtype and the LmrS clone were also measured for direct efflux as 

described above. 

3.6 Cytosolic free Ca2+ measurements 

Construction and expression of apoaequorin in S. aureus. 

S. aureus cells were streaked and transformed by conjugation using E. coli cells containing the

apoaequorin coding sequence (apoaequorin is the protein without its prosthetic group, 

coelenterazine). Conjugation was performed according to the two protocols developed in this 

study. In the first protocol, S. aureus cells were grown in BHI broth over night at 37°C at 220 rpm. 
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E. coli cells containing the pMMBEH plasmid with the aequorin gene were grown overnight in

LB broth  at 37°C at 220 rpms. S. aureus and E. coli cells  were subculture at a 1:100 dilution and 

grown to about .8OD. The OD was then adjusted to .5 and conjugation of pMMBEH proceeded 

using either of the following two methods. In the first method, 50µls of Carbenicillin (100ug/ml) 

was plated onto Chocolate agar plates and allowed to absorb into them for approximately 3 hrs. 

After absorption of the antibiotic into the agar, the E. coli culture containing the aequorin gene 

was streaked into an X pattern on the agar. The S. aureus culture was then streaked on the chocolate 

agar in a continuous pattern starting at the top and continuing to streak through the X pattern of 

the E. coli streak a several times.  Transformed S. aureus was isolated by harvesting the white 

colonies growing next to the E. coli X pattern. Half of the colony was inoculated into BHI with 

100µg/mL and the other half was streaked onto MSA agar plates and incubated for 48-72 h at 

37°C. The S. aureus was easily distinguishable from E. coli due to the differences in color as 

compared to the grey color of E. coli when grown on chocolate agar. It should be noted that the 

yellow large colonies are the MRSA strain struggling to efflux carbenicillin due to no natural 

resistance to the antibiotic. These colonies were not selected because due to lack of presence of 

the plasmid 

Figure 12: A. S. aureus (yellow and off white colonies) streaked through the E. coli X  pattern. 
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In the second protocol, E. coli and S. aureus were grown in 250 mL triple-baffled flasks 

containing 50 ml LB (Becton Dickinson Difco™) broth with 100μg/mL carbenicillin (Sigma 

Aldrich) and BHI broth (Remel Thermo Fisher) respectively, at 37°C, in a rotatory shaker at 220 

rpm overnight. After 18-20 hrs of incubation, E. coli and S. aureus cultures were adjusted to an 

OD600 of 0.5. A 1:5 dilution (100 μL of E. coli and 400 μL S. aureus cells) of the bacterial cultures 

were incubated in 10 mL of BHI with 100 μg/mL carbenicillin and incubated for three hours at 

37°C (220 rpm). The culture was dotted (25 μl) onto BHI agar plates containing 100 μg/mL 

carbenicillin (Remel Thermo Fisher; Sigma Aldrich) and incubated for 48-72 h at 37°C. 

Transformed S. aureus was isolated by subculturing onto MSA (Beckton Dickinson Difco™) for 

48-72 hrs at 37°C. Bacterial colonies that fermented mannitol were selected and further tested for

coagulase (Beckton Dickinson BBL™) and S. aureus latex agglutination (Prolex™ Pro-Lab 

diagnostics). The presence of the plasmid containing the apoaequorin coding sequence was 

confirmed by PCR (BioRad iCycler Thermalcycler, BioRad, Hercules CA., USA) after extracting 

the plasmid. Confirmation of the presence of the aequorin sequence was amplified with the 

primers:  

AQ440LICS: 5’-AAGGAGGAAGCAGGTATGGTCAAGCTTACATCAGACTTCGAC-3’ 

AQ440LICS-CAS 3’-GACACGCACGAGGTTTAGGGGACAGCTCCACCGTAG-5’ were 

used (Dominguez, D.C., 2011). The following PCR conditions were utilized to amplify the gene: 

Initial denaturation 95°C for 4.0 min., 30 cycles of 95° denaturation for 30 sec, annealing at 

50°C for 30 sec, extension at 72°C for 1min and final extension for 10min at 72°C.  The 

aequorin protein was used to monitor the amount of intracellular free Ca2+.  Aequorin is a protein 

that luminesces (λmax = 469 nm) when it binds to Ca2+. The Ca2+ concentration of the cytosol was 

measured at rest (basal levels) and after adding increasing concentrations of Ca2Cl2. The 
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luminescence produced is directly proportional to the concentration of free Ca2+ within the 

cytosol.  

Figure 13: The function of aequorin and the prosthetic group, coelenterazine to produce luminescence when 
calcium enters the cell. Retrieved from https://www.tebu-bio.com/blog/2014/06/30/how-to-measure-calcium-in-cell-
based-assays/  Baya, Ali El  copyright 2018 

3.7 Expression and Reconstitution of aequorin in S. aureus cells 

 Twenty five mls of transformed S. aureus were grown in BHI-carbenicillin broth overnight at 

37° (220 rpm). Cells were diluted 1:100 in BHI-carbenicillin broth and incubated (same 

conditions) until the culture reached an OD600 of .25. The aequorin gene was induced by adding 

IPTG at 1 mM final concentration and incubated for additional 2 hrs. After two hours, cells were 

washed twice with 20 mL of ice cold (0-4°C) HEPES buffer buffer (25mM HEPES, 1mM MgCl 

and 125mM NaCl, pH 7.0 or at the respective experimental pHs (5, 7, and 8) and pelleted by 

https://www.tebu-bio.com/blog/2014/06/30/how-to-measure-calcium-in-cell-based-assays/
https://www.tebu-bio.com/blog/2014/06/30/how-to-measure-calcium-in-cell-based-assays/
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centrifugation at 4500 rpm rotor C0650. Bacterial cells were re-suspended in 1 mL HEPES and 

2.5 μM coelenterazine and incubated in the dark for 1h at room temperature. After incubation, 

cells were washed twice in 1 mL HEPES buffer and adjusted to an OD600 0.4 at the appropriate 

pH (according to the experiments performed) and stored on ice for subsequent readings. 

 

3.8 Detection and Quantification of Intracellular Ca2+ 

Chemiluminescence was measured using a digital luminometer Glomax 3000 (Promega) 

equipped with two dispensers and allowing the reading on 96-well microfluor microtiter plates 

(Thermo Fisher Scientific). Measurements were done in triplicates on 100 μL aeqorin-loaded 

cells once every ten seconds for 60 sec to determine resting cytosolic free Ca2+ levels. Cells were 

then injected with a total concentration of 1.0 mM CaCl2 and chemiluminescence was monitored 

for an additional 300-500 seconds according to the experiment pHs 5,7 and 8. At the end of each 

experiment the remaining amount of aequorin was determined by adding equal volumes of 

discharge buffer (100mM of CaCl2, 5.0% v/v Triton X-100) as described by (Dominguez, D.C., 

2011). Total lysis of cells was also checked using light microscopy at a magnification of 100X 

oil immersion. The total chemiluminescence represented by the available aequorin was used to 

calibrate the concentration of cytosolic Ca2+. Relative light units were converted to Ca2+ 

concentrations utilizing a matrix created by Dr. Anthony Campbell based on the formula: (pCa = 

0.612x + 3.745, where x = (-log10k) and k = a constant for the rate of decay measured in per sec) 

(Jones, et. al., 1999). To understand the effect of the calcium chelator, EGTA on intracellular 

Ca2+, S. aureus cells were injected 1mM final concentration of Ca2+ at the indicated time and 

after 60 seconds of monitoring they were injected with 5mM of EGTA. The luminescence was 

then tracked for an additional 250seconds. The negative control was S. aureus cells without the 
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apoaequorin plasmid. To control for differences in Ca2+ a measurement of the baseline 

luminescence was established by taking 10 consecutive readings without treatment. 

3.9 Cloning of lmrS gene 
For the investigation of the S. aureus efflux pump, the lmrS gene was amplified and cloned 

into the expression vector pRMC2 with primer:   5’-

GCAAGCTTATGGCTAAAGTTGAATTAACAAC-3’ and 3’-

GCGGATCCTTAAAATTTCCTTCTATTACTTT-5’ (Floyd, J., 2010) and transformed into E. 

coli strain DH5-α.  The following thermocycler conditions were used: 95°C 1 min, 35 cycles of 

95° C 30 seconds, 51°C for 1 minute followed by 1 minute of extension at 72°C and a final 

extension step for 5 minutes at 72°C. Efflux activity of both E. coli-lmrS and E. coli DH5αwas 

measured as previously described. Cells not incubated in 1.5mg/L of EtBr were also used as a 

control. Direct assays of EtBr efflux were done. Briefly, the cells were incubated for 30 minutes 

in EtBr and inhibitor. The cells were subsequently pelleted by centrifugation, washed twice and 

resuspended in PBS buffer. Fluorescence was measured as described above. After 5 minutes 

cells were injected with 1mM of CaCl2. Fluorescence was then monitored for an additional 20 

minutes. The amount of EtBr to use was determined through other publications that measured 

fluorescence using S. aureus or E. coli. 
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3.10 Measurement of gene Expression of Efflux Pumps, NorA, NorB, MgrA and 

Endogenous Control Genes, GyrA and GMK 

MRSA clinical isolate, EBSA 78 and S. aureus ATCC 95923 cells were grown in BHI 

media overnight at 250 rpm. The cells were sub-cultured and grown for an additional 2 hrs at 37º 

C and 225 rpms so that the cells would reach log phase. The OD was adjusted to 0.6 (600nm) for 

each sample replicate. Four conditions were tested for gene expression. These are: EtBr (final 

concentration 2.5mg/mL) alone, EtBr and .5mM of CaCl2, 1mM of CaCl2 and EtBr and 5mM of 

EGTA. The cells were incubated in each treatment for an additional 45minutes to establish the 

cell’s genetic response to each treatment. Total RNA was extracted under each condition 

utilizing an RNA extraction kit, Qiagen Ribopure based on acid guanidinium thiocyanate-phenol 

chloroform extraction. Briefly, 180µl of trizol was added to the pelleted bacteria. The bacteria 

was then vortexed using glass beads to break up the membrane. After the addition of chloroform, 

the upper aqueous layer containing the RNA was put in a column for purification. The RNA was 

washed with isopropanol and ethanol and finally eluted with TAE buffer. cDNA at a 

concentration of 1000ng was reverse transcribed as according to specifications for Quantibio 

XLT cDNA supermix under the following parameters: 5mins at 25° C, 60mins at 42°C, 5mins at 

85°C and hold at 4°C. 

 The real-time PCR was conducted according to the specifications of Forget-Me-Not 

EvaGreen qPCR Master Mix under the following cycle parameters:  of cDNA per sample at 2 

min at 95°C, followed by 40 cycles of 2-5s at 95°C; 10s at 55°C; 20s at 72°C using a 

Quantstudio 7 real-time PCR system. The annealing temperature was done at 55°C according to 

the specifications of the master mix. The treatment conditions were assessed for efflux pump 

gene expression of NorA and NorB and their regulator MgrA. The gmk and GyrA genes were 
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used as the endogenous controls to serve as a standard of normal expression levels for 

comparison. 

 Primers (shown below) were designed to have the same amplicon length in order for the 

expression levels of these genes to be accurately measured in comparison to the endogenous 

controls (housekeeping gene expression). For the eva green studies, the fluoroprobe primer was 

not added to the reaction. Relative quantification and qualitative analysis were performed to 

ensure that there are similar concentrations, and that the quality of the RNA was good. The 

quality was good if it is relatively pure and not containing any contaminants from the extraction 

process or from genomic DNA. RNA was quantified and the quality were determined using a 

nanodrop and an RNA denaturing gel.  

3.10.1 Analysis of gene expression 

A comparative method was performed to quantify expression. We determined the 

threshold cycle (Ct) which is the point at which a fluorescent reporter has reached a value that is 

significantly different from the normalized value.  Relative gene expression was quantified using 

the Livak  2-∆∆CT method (Livak, K., 2001) . This method is commonly used with a standard that 

includes an endogenous control gene that would not be affected by the treatments used in the 

experiment as previously stated. For the preliminary data Syber green fluorescence was used. 

This may be problematic as software usually automatically removes fluorescent background. 

Primer dimers can also affect the results since the fluorescent background is usually unknown. 

Other methods include absolute quantification which estimates gene expression based on a 

standard curve (Bustin, S., 2009). For this study we will use the ΔΔCT method as described 

below. 
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The statistical analysis for this gene expression experiment was an ANOVA test where 

the gene of interest was statistically tested for differences in expression levels under the different 

treatments. Reference genes (Endogenous controls) should include housekeeping genes that are 

not up regulated during any of the EtBr, Ca2+ or inhibitor treatments. Since more than one 

condition was analyzed, an ANOVA was used to see how all the genes compare to each other as 

well as the control. A correlation analysis could also be used to elucidate how a treatment affects 

multiple efflux genes (Rocha, D., 2015). Normalization of the samples is imperative. It requires 

analysis of mRNA ratios of target genes to reference genes. Use of one reference gene is not 

enough when studying expression (Bustin, S. 2009).  

The primers were designed in a similar manner as (Patel, D., 2010) to provide a more 

precise measure of fluorescence in a signature wavelength. Primers with fluorescent TaqMan® 

probes were designed that target the specific efflux genes, LmrS, NorA and its regulator, MgrA 

(Truong-Bolduc, Q.C., 2011). Housekeeping genes, GMK and GyrA were used to set up a 

standard for base expression of genes not associated with efflux. These genes have been 

previously identified by (Theis, T., 2007; Truong-Bolduc, Q.C., 2011) as suitable for measuring 

gene expression under EtBr. cDNA dilution curves were utilized by taking known amounts of 

cDNA and running them under the above cycle parameters for qRT-PCR. The amount of cDNA 

has a direct proportional relationship to the log fold change in genetic expression of efflux. 

Relative genetic expression will be determined utilizing the ΔΔCT method as described in 

(Livak, K., 2001; Xiayu, R., 2014). The change in threshold cycle (ΔCT) is determined by 

subtracting the CT of the housekeeping gene from the CT of the target efflux gene under each 

condition.  
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ΔΔCT = ΔCT(Average of target efflux genetreatment)−ΔCT( average of referencetreatment) (Livak, 

K., 2001;Rao, X., 2013;Xiayu, R., 2014). The ΔΔCT is calculated by the differences in ΔCT of 

the target genes and reference or control condition of each gene under the same treatment minus 

the average ΔCT. The control condition was EtBr alone without CaCl2 or inhibitors and the fold 

change in gene expression was determined by the formula 2^ (- ΔΔCT). (Livak, K., 2001) 

Incubation in EtBr links efflux preliminary data to intracellular Ca2+ and genetic 

expression of efflux. A more direct role that Ca2+ plays in efflux expression was determined by 

measuring genetic expression under the different conditions described above. 
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Table 4: Fluoroprobe Primersa JOE, 6-carboxy-4_,5_-dichloro-2_,7_-dimethoxyfluorescein; BHQ black hole 
quencher 534nm, 6-carboxyfluorescein; 6- FAM, TAMRA, 6-carboxytetramethylrhodamine; Source: (IDT 
technologies) a genes published in (this study) 
Gene   5’-3’ Forward    5’-3’ Reverse Taqman Reporter 

Sequencesa,b 

MgrAb AGC TGA AGC GAC 
TTT GTC AGA TGC 

AGC GTG AAC GTT 
CCG AAG TCG A 

 JOE-

AATTGTAGCACCACGA

CCTTGCCCAGTC-BHQ1 

NorAb GAC ATT TCA CCA 
AGC CAT CAA 

 TGC CAT AAA TCC ACC 
AAT CC 

6FAM-

AGGCATAACCATACCA

GCACTCATACCACC-

BHQ1 

LmrSb

Gmkb

 GCT AAC GAT GTT 
 GTA GGT GA 

GGTGAAACAGACGAA
GAG 

TTA CCA GTT CCG 
ATT GCC  

TTACCAGTTCCGATT
GCC 

6FAM-

ACCGATTGCGATCATT

GCCATTAT-BHQ1 

6FAM-

ACCGATTGCGATCATT

GCCATTAT-BHQ1 
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3.11 Statistical Methods and MIC 

For the fluorescent experiments a non-parametric Kruskall-Wallis was conducted to determine 

the differences in Ca2+ treatments (CaCl2 0.5, 1.0 and 5.0 mM), Ca2+ inhibitor treatments 

(phenothiazines, verapamil and Ca2+ chelators) compared to the controls. For the cytosolic free 

Ca2+ measurement experiments, a Kruskal-Wallis non-parametric analysis was used to determine 

significant differences in intracellular Ca2+ levels at concentrations: 0.5mM, 1.0mM and 5.0 mM. 

To determine significant differences of cytosolic Ca2+ at each pH (5.0, 7.0, and 8.0) a one sample 

t-test and Wilcoxon test was conducted. Both the efflux and cytosolic free Ca2+ experiments

were analyzed using the statistical and graphics software, Graph Pad 8.0. Gene expression 

experiments were analyzed using a two-way ANOVA. 

3.11.1 MICs 

To determine the MIC for each antibiotic, S. aureus cells containing the aequorin plasmid 

were grown overnight in BHI then subcultured into Mueller-Hinton and grown to an OD600 0.8. 

The culture was then adjusted to a 0.5 McFarland standard (aprox. 108 CFU/mL) in 5 mL. The 

MIC was determined using MicroScan autoSCAN-4 automated system using MIC panels for 

Gram positive bacteria PBCP20.  

The MIC for the antibiotics for the E. coli DH5α and E. coli-lmrS was determined using 

the MicroScan autoSCAN-4 automated system using PBCP-34 panels. Both of the strains were 

grown in Mueller-Hinton broth overnight and were subcultured and grown to an OD600 0.8 and 

subsequently adjusted to a 0.5 McFarland standard (aprox. 108 CFU/mL).  
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The MIC for EtBr and inhibitors CCCP, Ver and CPZ were determined from similar or 

less concentrations as used in (Couto, et al., 2008) for S. aureus. The MIC for the inhibitor 

trifluoperazine was determined using similar or less concentrations as (Mazumbder et al., 2001).  

The MIC for inhibitor CDZ was done using the broth dilution method and as recommended by 

the Clinical Laboratory Standards Institute and also with references using similar concentration. 

The MIC was determined as the highest dilution where S. aureus or MRSA failed to grow. A 

final concentration of 2.5 mg/L EtBr was used for both direct and indirect efflux experiments. 
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3.12 Chemicals and Biochemicals used in the study 

Table 5: Chemicals Used in The Experiments 

Chemical Name Abbreviation 

Ethidium bromide EtBr 

ethylene glycol-bis (β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid EGTA 

ethylenediaminetetraacetatic acid EDTA 

isopropyl-β-D-thiogalactoside IPTG 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid HEPES 

, Carbonyl cyanide m-chlorophenylhydrazone CCCP 

Calmidazolium CDZ 

Trifluoperazine TPZ 

Verapamil Ver 

Phosphate Buffer Solution PBS 

Tris-Acetate EDTA buffer TAE 

Chlorpromazine CPZ 

coelerenterazine, CTZ 

Verampamil Ver 

Trifluoperazine TPZ 
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CHAPTER 4: RESULTS 

4.1 The effects of Ca2+ and pH on intracellular calcium and calcium homeostasis 

The measurement of cytosolic Ca 2+ is essential in establishing that Ca 2+ might serve as 

an intracellular signal. For this reason, the amount of intracellular calcium [Ca2+]i was monitored 

to establish the possibility that S. aureus is utilyzing Ca2+ as an intracellular signal to upregulate 

specific genes. Based on this assumption we determined if S. aureus, was able to maintain [Ca2+]i 

homeostasis in response to increasing levels of extracellular Ca2+ and pH. To accomplish this, we 

used the photoprotein, aequorin to measure [Ca2+i]. Increasing luminescence was directly 

proportional to increasing concentrations of external CaCl2. The [Ca2+i] values ranged from 6.79, 

16.98 and 20.65µM for .5, 1 and 5mM of extracellular calium, respectively. This rapid spike was 

followed by a sharp decline in [Ca2+i] after a few seconds until it reached baseline levels of about 

.69-.80µM. This indicated the cells’ ability to maintain calcium homeostasis despite a high 

concentration of external CaCl2 (Figure 14A) Incubation with EGTA  showed a significantly 

decreased amount of [Ca2+i] at 4.97µM as compared to cells without EGTA at 16.98µM. (Figure 

14B). Our results are consistent with (Guragain et al., 2013; Dominguez, 2011; Torrecilla et al., 

2001, 2000; Holland et. al., 1999)  demostrating the ability of S. aureus to maintain [Ca2+i] 

despite the addition of of CaCl2 in the range of 0.5-5mM.   

The effect of pH was also examined since S. aureus MFS and MATE transporter families 

have been shown to use electrochemical gradients and proton motive force as the driving force 

for extrusion of toxic compounds (toxic compound/H+) (Jang, 2016; Santos Costa et al., 2013). 

We investigated the ability of S. aureus to maintain [Ca2+]i in the pHs 5, 7 and 9 to observe any 

significant changes due to loss of proton motive force. The cells were adjusted to pH 5, 7 and 8 
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(Figure 14C) and baseline [Ca2+]i was monitored for 10s followed by the injection of  external 

CaCl2 to a final concentration of 1mM. After injection a peak was observed in response then 

followed by a sharp decline in Relative Light Units(RLUs) until baseline [Ca2+]i levels were 

restored. Significant differences were observed by conducting a student’s T test for each peak 

produced under the varying conditions and at each pH. At pH 9 [Ca2+]i reached 23µM, at pH 7, 

17µM and finally at pH 5 the [Ca2+i] levels rose to 9.5µM (+/- SD.127, .261 and .162, 

respectively) (Figure 14C). Finally, the effects of EGTA injection on cells to determine the 

effect of [Ca2+]i (Figure 14D). The results show that EGTA induced a peak at 23.1µM before 

quickly declining to basal levels of about 3µM. Our results also demonstrate that S. aureus 

mainatins [Ca2+]i homeostasis in the micromolar range  
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Figure 14: S. aureus cells demonstrate Ca2+ homeostasis in differing CaCl2 concentrations and pHs (A) Intracellular 
Ca2+ concentrations respond proportionately to CaCl2 concentration .5, 1 and 5mM. (B) Cytosolic Ca2+ transients are 
lower when incubated in EGTA after CaCl2 is added. (C) Intracellular Ca2+ response to pHs 5,7 and 9. (D) 
Intracellular Ca2+ response to the addition of EGTA at pH 9. The results presented here are the mean of three 
biological replicates. A student t test was conducted to detect significant differences in peak heights among the 
different treatments. (p<.0001) 

4.2 Unique [Ca2+]i signals in response to various antibiotics in S. aureus cells. 

In order to survive, bacteria must be able to sense and respond to different environmental 

conditions. These environmental conditions illicit unique responses in the form of [Ca2+]i 

changes (Naseem et al., 2009; Torrecilla et al., 2000; Herbaud et al., 1998). Similar to eukaryotic 

cells, cytosolic Ca2+ transients are very dynamic and vary in shape, amplitude, speed and 

spatiotemporal patterns. The response to different antibiotics was investigated to determine if S. 

aureus [Ca2+]i was capable of sensing each antibiotic (Figure 14). The antibiotics tested were 

erythromycin, gentamycin, kanamycin, vancomycin, streptomycin and ciprofloxacin. The results 
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obtained demonstrate unique [Ca2+]i responses in terms of amplitude, wavelength, oscillation 

patterns and peak duration times. Table 6 shows the peak differences in [Ca2+]i ,which ranged 

from 2.65 to 12.82µM. The lowest was streptomycin at 2.65µM and 40s in length and oscillation 

pattern. The highest peak at 12.82µM elicited by erythromycin demonstrated the shortest peak 

length at 20s with no oscillation patterns. All of the antibiotics with the exception of 

erythromycin, elicited an initial peak followed specific oscillation pattern at different lengths in 

seconds. Gentamycin, kanamycin and vancomycin induced a specific peak amplitude at 4.01, 

5.32 and 3.65µM respectively and differed in peak lengths of 70s, 30s and 130s respectively. 

Ciprofloxacin induced two large peaks at 3.37µM at a length of 130s each. These results 

demonstrate that the antibiotics are eliciting unique responses as indicated by the differences in 

oscillation patterns, speed, amplitude, and spatiotemporal patterns that each antibiotic elicited 

(Table 6).  
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Figure 15: Intracellular Ca2+ responses to different antibiotics. The results presented represent the mean of 
biological replicates. 
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Table 6: Unique intracellular Ca2+ response to different classes of antibiotics 
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4.3 Effect of Ca2+ and Ca2+ inhibitors in MRSA efflux of EtBr 
To assess the level of efflux activity, we measured EtBr accumulation and extrusion of 

clinically isolated MRSA cells using fluorometry. For reference, the higher the cells accumulated 

EtBr, the higher the fluorescence. Conversely, the more the cells extruded EtBr, the lower the 

fluorescence. Efflux pump activity was measured directly and indirectly in MRSA cells. In the 

direct method bacterial cells were pre-incubated with EtBr in the presence of an inhibitor of the 

Ca2+ or pump energy source at the appropriate pH. The cells were then washed and fluorescence 

was monitored for 5 minutes to establish basal fluorescence levels. After 5 minutes the media 

was injected with CaCl2. In the indirect assays, the fluorescence was recorded after the pre-

incubation period with EtBr and the treatment. 

To assess the effect of Ca2+ had on efflux of EtBr, the cells were incubated in different 

concentrations of CaCl2, with or without glucose (0.4%) and Ca2+ specific inhibitors or chelators. 

Glucose was used as a control to distinguish the role of Ca2+ from metabolic energy. The Ca2+ 

inhibitors included the Ca2+-chelator EGTA and the phenothiazines, chlorpromazine (CPZ) 

trifluoperazine (TFP), which are known to inhibit efflux pump activity in various pathogens 

including S. aureus (Koul et al., 2009; Martins et al., 2011; Naseem et al., 2008; Pule et al., 

2016). Phenothiazines are chemicals known to bind to Ca2+-binding proteins and target 

prokaryotic cell membranes (Amaral, Leonard, et al., 2010; Kaatz, et al., 2003). These chemicals 

affect the bacterial cells by interfering with Ca2+ related processes such as reducing the ability of 

Ca2+ to bind to transporter proteins as well as Ca2+ dependent enzymes involved in ATP 

hydrolysis. We also used calmidazolium which inhibits calmodulin, a eukaryote protein and 

verapamil, a Ca2+ channel blocker (Sunagawa, et al., 2000; Mctavish, D., 1989). We monitored 

how these inhibitors affected efflux at pHs 5, 7 and 8 to distinguish the contribution of proton 

motive force (PMF) to efflux. We monitored the efflux activity of S. aureus according to the 
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Martins et. al., 2011 protocols but with modifications. At pH 7 the cells were able to efflux EtBr 

but significantly less than at pH 5 (Figure 16 A-D) as indicated by fluorescence values between 

over 1000 as compared to pH 5 with values below 500. The addition of CDZ, Ver, TFP and 

EGTA showed a significant decrease in the ability of MRSA to efflux EtBr, indicated by the 

increase of relative fluorescence (RF) significantly higher ranging between 1000 and 1500 at pH 

5. This was in comparison to cells treated with CaCl2 and the control cells which were cells that

contained EtBr alone (untreated). We also tested efflux activity at pH 7.6 to see if there were any 

changes with a slight increase in pH (Figure 16A). These cells did demonstrate a significant 

amount of accumulation at a slightly higher pH and increasing with time from 800 to higher than 

2000. The effect of pH was examined since MRSA MFS and MATE transporter families utilize 

proton motive force as the energy for efflux of toxic compounds at pH 5 (toxic compound/H+) 

(Jang, 2016; Santos Costa et al., 2013). The cells were also significantly more efficient at EtBr 

efflux than at pHs 7 or 8 (Figure 17A). This was especially true at pH 8 where proton 

availability was decreased due to protons being lost in the alkaline solution (Figure 17B). To 

determine statistical significance, we used a Kruskall-Wallis statistical analysis. S. aureus cells 

that were treated with either a Ca2+ chelator or inhibitor showed significantly less ability to efflux 

as compared to cells treated with 1mM of CaCl2.  

A rescue assay was conducted to see if efflux could be restored by the addition of Ca2+ after 

being treated by a Ca2+ chelator at pH 8 and the addition of the Ca2+ antagonist CPZ (0.1µM) 

(Figure 18). The cells were monitored for accumulation with EDTA at pH 8 and one of the 

following was added: CPZ, CPZ + 1mM of CaCl2 and CaCl2. Before the addition of the 

treatment, the cells showed a steady and rapid accumulation of EtBr reaching to over 2000 

fluorescent units. The addition of CaCl2 was able to rescue efflux in MRSA at pH 8 as was 
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evident in the fluorescence values decreasing to1500 and showing a trend of steadily decreasing 

in florescence after the addition of CaCl2. This was true for the treatment with both CPZ and 

CaCl2. In this treatment, the fluorescence values were slightly higher than with CaCl2. The 

treatment with CPZ continued to increase in fluorescence indicating accumulation of EtBr. Our 

results are also consistent with Martins et al., 2011 which showed similar results with E. coli. 

Direct efflux experiments where the cells were pre-incubated in treatment followed by 

washing of the cells showed similar results (Figure 19 A-C).  The experiments were conducted 

to measure efflux of EtBr within the cells directly by removing excess treatment from the media 

and resuspending in PBS buffer at the given pH. Similar differences were observed at each pH as 

with the indirect methods. Here we injected the media with 1mM of CaCl2 and monitored the 

fluorescence in real time. All of the EtBr experiments demonstrated lower fluorescence values 

with each concentration of CaCl2 despite the pH. At pH 8, the cells fluoresced at 3076 arbitrary 

fluorescence values as opposed to 2485 (+/- SD 99) without the addition of EGTA. At pH 7 

differences between the the cells at pH 7 or with CDZ were significant at 145.2 and 646.2, 

respectively (+/- SD 25.4). Finally, at pH 5 significant differences between the cells at pH 5 and 

with the proton de-coupler CCCP showed a difference of 93.5 and 124.6, respectively (+/- SD 

6.5). The results indicate that calcium was important for efflux irrespective of pH.  
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Figure 16: EtBr efflux and extrusion measured in response to Ca2+ inhibitors at pH 7 (A) The effect of CaCl2, 
Glucose (4%), EGTA on efflux of EtBr at 7.6 (B) The effect of CDZ, CaCl2 and glucose on the ability of MRSA to 
efflux EtBr efflux at pH 7. (C) The effects of CaCl2, TFP and glucose on EtBr efflux at pH 7. (D) The effects of 
CaCl2, Ver and glucose on EtBr efflux at pH 7. The results represent the average of three biological replicates at 
each time point. Significant differences were seen between calcium, calcium inhibitors and controls (p<.0001) 
Kruskal-Wallis, non-parametric. 

Figure 17: EtBr efflux and extrusion at pHs 5 and 8. (A) S. aureus cells were treated with CaCl2, 1 and 5mM, CCCP 
(50uM) and glucose at pH 5 (B) EtBr efflux was measured at pH 8 after the addition of CaCl2 (1 and 5mM), CPZ 
(20mg/L) and EDTA (10mM). The results presented are an average of three biological replicates. A non-parametric 
Kruskall-Wallis test was conducted to find significant differences between CaCl2 treatments and inhibitors (p < 
.0001). 
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Figure 18: Rescue assay where fluorescent measurements were taken at pH 8. The cells were incubated in EtBr and 
EDTA and fluorescence was measured for 20 minutes. The experiments were then paused and 0.1µM of CPZ, 
0.1µM of CPZ + CaCl2 1mM or CaCl2 1mM was added to the media and fluorescent monitoring was resumed for an 
additional 20 minutes. 

Figure 19: Direct efflux with MRSA clinical isolate EBSA78. MRSA cells were incubated at pHs 5, 7 and 8 in EtBr 
and CCCP, CDZ or EGTA. After 5 minutes of recording fluorescence, CaCl2 injected at a final concentration of 
1mM. Fluorescence was then monitored for an addition 20 minutes to obseerve the effects of calcium on efflux in 
different pHs and inhibitors and chelators of calcium 

4.4 Calcium enhances efflux of Ethidium Bromide (EtBr) in LmrS efflux pump 

In order to evaluate the effect of Ca2+ in the efflux of EtBr more directly, we cloned the S. 

aureus multi-drug resistant pump lmrS gene into E. coli cells. We then evaluated if the LmrS 

pump conferred antimicrobial resist ance to the E. coli cells (E. coli DH5α-lmrS containing the 

efflux pump and the control E. coli DH5 α, without the pump) by determining the MIC using the 

micro broth dilution method described in the materials and methods. The resulting MIC 

illustrated that the lmrS gene conferred resistance to all the antibiotics tested (Table 6). This data 
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was expected considering that the LmrS pump can efflux a wide variety of dissimilar substances 

across the membrane with the help of pmf/electrochemical gradient. As previously mentioned, 

the LmrS pump is a member of the MFS family of efflux pumps and relies on pmf to transport 

substances across the membrane. 

4.5 Differences of EtBr Efflux between E. coli DH5α and cloned lmrS recombinant E. coli 
(DH5α-lmrS) 

We assessed the direct efflux of EtBr with both wild type and recombinant E. coli cells as 

indicated in materials and methods. Briefly, the cells were incubated in EtBr (1.5 mg/L) then 

pelleted and resuspended with PBS to remove any excess EtBr or inhibitors from the media. This 

allowed for the monitoring of actual efflux and accumulation of EtBr that was already inside the 

cells. The cells were then monitored for basal fluorescence levels for 5 minutes before injecting 

the media with CaCl2 to a final concentration of 1mM. Fluorescence was then monitored for an 

additional 30 min. Both the recombinant and wildtype cells showed a decrease in fluorescence 

indicating an immediate enhancement of efflux after the addition of CaCl2. Differences at each 

pH were similar to those done with MRSA studies.  A Kruskall-Wallis test showed significant 

differences in starting efflux between the wildtype (DH5α) and recombinant (DH5α-lmrS) cells 

(Figure 21) at 244.6 and 163.3, respectively (SD +/- 11.8) thus demonstrating that the 

expression of lmrS significantly increases the capacity of efflux. 

Direct efflux was also utilized to observe the effects of the Ca2+ chelator EGTA and the 

phenothiazine chlorpromazine (CPZ) as described in materials and methods. The cells were 

incubated in either EGTA (Figure 21A) or CPZ (Figure 21B) resulting in an increase in 

accumulation for both the wildtype and recombinant cells as compared to Figure 20 where no 

inhibitors were used for the experiment. Differences in fluorescence between DH5α-lmrS  and 
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wildtype cells incubated in EGTA were 290 and 763 (SD +/- 24.06). The results for CPZ also 

showed similar differences at 242.5 for recombinant cells and 722 (SD +/- 17.14). As with 

Figure 19, a Kruskall-Wallis was conducted to determine significant differences in efflux 

between wild type and recombinant cells. After 5 minutes of recording basal levels of 

fluorescence, 1mM of CaCl2 was injected into the media and fluorescence was observed for an 

additional 30 minutes. The addition of CaCl2 to the media resulted in a rapid increase of efflux 

indicated by a decrease in fluorescence.  

Figure 20: Direct measurement of efflux and accumulation of EtBr in both wildtype and recombinant cells. The 
addition of 1mM CaCl2 demonstrate an increase in efflux. A Kruskal-Wallis non-parametric test revealed significant 
differences in efflux rate between wildtype and recombinant cells. (p<.0001) 
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Figure 21: The wildtype and recombinant cells were incubated in either EGTA (A) or CPZ (B) to demonstrate the 
enhancing effects of CaCl2. Significant differences in the rate of efflux were observed between wildtype and 
recombinant cells. The data represents the mean of three biological replicates (p<.0001). 

Table 7: Cloning of the LmrS efflux pump gene into E. coli resulted in significantly higher resistance to different 
classes of antibiotics as compared to the wildtype strain.  
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4.6 The effects of Ca2+ on gene expression of the efflux pump, NorA, LmrS and MgrA 

Significant differences in efflux expression were seen with the addition of Ca2Cl to the 

media as compared to EGTA and trifluoperazine. The NorA gene demonstrated significantly 

higher upregulation with 0.5 and 1mM of Ca2Cl than with the control expression with EtBr 

alone. All genes tested showed a significant upregulation with Ca2Cl as compared to calcium 

specific chelator, EGTA (Figures 22-24). The fold change of expression between 0.5mM CaCl2

and EtBr alone is 1.5 (SD +/- .1) for NorA (Figure 22). The fold change in expression leves for 

NorA were as follows, 5.79 (SD +/- .78) EtBr control, 18.64 (SD +/- .45) .5mM CaCl2, 11.59 

(SD +/- 1.21) 1mM CaCl2 and finally 3.6 (SD +/- .4) EGTA. A one-way ANOVA test revealed 

significant differences between the means including the control, CaCl2 concentrations and EGTA 

p<.0001).  The greatest differences were seen between the CaCl2 concentrations 0.5mM and 

1mM treatments and EGTA which resulted in a 15.04 fold change difference. Significant fold 

change differences were also observed between CaCl2 concentrations and control resulting in a 

12.85 fold change difference. The lowest expression level was observed with the calcium 

chelator, EGTA indicating the importance of CaCl2 for efflux expression. Both CaCl2

concentrations were also significantly higher that the control (EtBr alone). 

The MgrA gene, when phosphorylated modulates the expression both NorA and NorB 

efflux pumps (Truong-Buldoc, Q., 2010).  Here, we measured the expression levels of the MgrA 

regulator in different calcium concentrations as well as the chelator, EGTA to see if there were 

differences in expression levels. The fold changes are as follows, The control with EtBr at 3.7 

(SD +/- 1.8), .5mM CaCl2 at 9 (SD +/- 1.1), 1mM of CaCl2 (SD +/- .5) and EGTA at .64 (SD +/- 

2.1). The highest fold change difference of 8.36 was observed between 0.5 mM of Ca2+ and 
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EGTA (Figure 23). Interestingly, the removal of trace calcium resulted in significant 

downregulation as compared to calcium treatments and the control (EtBr alone). The results 

indicate modulation of expression of MgrA by calcium and directly links calcium to expression 

of the regulator and to the regulation of genes under its control (NorA).  

Finally, we measured expression levels under the same conditions where calcium 

concentrations were manipulated to understand the influence of calcium on lmrS efflux gene 

expression. The results presented show an unprecedented concentration dependent expression 

with calcium. The expression level of lmrS went up 2 fold between .5mM and 1mM of calcium 

respectively (Figure 24). This result was not seen in NorA or in MgrA. The results for the 

expression levels under the four conditions were 3.5 (SD +/- .3) for the control, 6.08 (SD +/- .5) 

for .5MM CaCl2, 7.92 (SD +/- .31) for 1mM CaCl2 and finally 2.64 (SD +/- .4) for EGTA. The 

expression of lmrS in the Prescence of EGTA resulted in an almost 5.28 fold reduction from 

1mM CaCl2 to 5mM of EGTA.  
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Figure 22: The NorA gene expression levels with the EtBr control (EtBr alone), 0.5 and 1mM of Ca2Cl  and5mM 
EGTA. The results presented demonstrate significant differences between Ca2Cl and inhibitors. An ANOVA was 
used to analyze the means across treatments. The CT values of three replicates were averaged for each treatment 
(p<.0001).  

Figure 23: MgrA is the regulator of NorA and NorB. Here significant differences are seen between the Ca2+

treatments, EGTA and EtBr control. The highest fold change difference of 8.36 was observed between 0.5 mM of 
Ca2+ and EGTA. The removal of Ca2+ by the chelator, EGTA shows a significant downregulation as compared with 
the other treatments indicating that Ca2+ may be crucial for efflux regulation. ANOVA (p=.0008) 
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Figure 24: lmrS gene expression is concentration dependent on Ca2+. EGTA significantly downregulated gene 
expression as compared to Ca2+ and the control. Significant differences were observed between all the means. 
ANOVA (p<.0001) 
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CHAPTER 5: DISCUSSION 

5.1 [Ca2+]i homeostasis 

The results presented in this dissertation demonstrate for the first time that expression of 

efflux is a Ca2+medited process in S. aureus. We were also the first to demonstrate that the 

extrusion of EtBr by the multi-drug transporter LmrS is enhanced by Ca2+ ions as well as the 

tight control of cytosolic Ca2+ by S. aureus cells.  Based on eukaryote studies, Ca2+ has been 

identified as a signaling messenger. Environmental signals cause changes in cytosolic free Ca2+ 

in order to transmit signals, which lead to a physiological response (Torecilla et al., 2000; 

Naseem et al., 2009). The maintenance of control of cytosolic Ca2+ is important because it is a 

pre-requisite for cell signaling. This was evidenced by the Ca2+-mediated responses to different 

types of antibiotics, which showed unique spatial and temporal oscillation patterns. The results 

presented here are in agreement with other studies that have measured [Ca2+]i in other bacteria 

(Torecilla et al., 2000, 2001;Dominguez, 2004; Bruni et. al., 2017; Gonzalez-Pleiter et al., 2017). 

In agreement with previous studies, our results show that S. aureus maintains [Ca2+]i in the 

micromolar range in the presence of 0.5-5 mM external CaCl2. Maintaining low levels of  [Ca2+]i 

in the micromolar range protects the cells from the toxic effects of high concentrations of 

[Ca2+]i. Low levels of cytosolic Ca 2+ are also needed for signal transduction. Increases in 

cytosolic Ca2+ must quickly disappear for the second signal to take place (Carafoli, 1987; 

Torrecilla et al., 2000) .The implications of this work suggest that the same coordination and 

signaling transduction pathways observed in eukaryotes are also occurring in bacteria and may 

be utilized to upregulate specific genes (Campbell, A.K., 2014; Torecilla et al., 2000; Holland, 

et. al., 1999). The maintenance of low [Ca2+]i levels after a spike despite flooding the media with 
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high CaCl2 concentrations is further evidence of calcium signaling and is also demonstrated by a 

consistent [Ca2+]i value after the peak subsides for seconds after the initial addition of CaCl2 to 

the media.  

5.2 The effects of pH on [Ca2+]i  

The observation that Ca2+ transients occur as a result of pH fluctuations (pH 5,7,9) 

suggest that S. aureus is able to sense pH environmental conditions through changes in cytosolic 

Ca2+. We saw that different pH levels influenced the  [Ca2+]i transients. These signals may be 

important for the organism to adapt and survive in different conditions such as in the human 

host. It is known that pH is important in various infection processes, wound healing and skin 

colonization  (Foulston et al., 2014). Moreover, the phagosome-lysosome environment is highly 

acidic implying that S. aureus must have sensor systems in response to the acidic conditions to 

adjust gene expression for survival (M. Martins et al., 2008; Venditri et al., 2003) . It is 

interesting to note that pH triggers gene expression in various bacteria (A. Martins et al., 2009; 

Perez & Groisman, 2007; Serra-Cardona et al., 2015; Weinrick et al., 2004) including genes 

involved in cell envelope structure, ion transporters and multidrug transporters (Hayes et al., 

2006; Truong-Bolduc et al., 2011; Weinrick et al., 2004).  However, the regulatory pathways by 

which bacteria sense and respond to pH stimuli have not been elucidated.  

Another important aspect of pH is that bacteria utilize electrochemical gradients to 

transport Ca2+ ions into the cell exchanging H+ or Na+ for Ca2+(Dominguez, et al., 2015; Colinet 

et al., 2016). Our results show an increasing amount of [Ca2+]i directly proportional to the pH. 

The lowest level of [Ca2+]i at pH 5 (9.5 μM Ca2+) and highest for pH 9 (23 μM Ca2+). These 

results demonstrate a potential competition between Ca2+ and H+ for access into the cell at pH 5. . 
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These results imply that Ca2+ and H+ are competing for influx into the cell resulting in lower 

[Ca2+]i at pH 5 in comparison to pH 7 and pH8 resulting in increasing levels of [Ca2+]i 

respectively This also demonstrates the importance of proton motive force in bacterial efflux and 

influx (Martins, et al., 2011; Griffith et al., 2018; Nové et. al., 2020).  

5.3 Antibiotics and Calcium signaling in S. aureus 

The cells were exposed to different classes of antibiotics, which elicited unique [Ca2+]i 

responses. These cytosolic transient showed differences in peak amplitude, duration of peaks 

(spatiotemporal) as well as oscillation patterns of [Ca2+]i. This was more evident when S. aureus 

transients were exposed to antibiotics of the same class. For example, different oscillation 

patterns were observed in response to gentamycin and kanamycin which belong to the antibiotic 

class, aminoglycosides. Thus, implying that S. aureus is capable of sensing and distinguishing 

within antibiotic classes. The importance of cell signaling in bacteria is crucial for survival 

allowing bacteria to sense and respond to environmental stimuli by modulating calcium 

oscillation patterns in response to different stimuli. 

Intracellular calcium oscillations are considered a universal sign of calcium cell signaling 

in eukaryote cells and increase the efficiency and specificity of gene regulation. This is true for 

both non-excitable and excitable cells. (Dolmetsch, R., 1998). Oscillation patterns are important 

for cell signaling because they prevent desensitization of the cell to calcium as well as the toxic 

effect of high concentrations of calcium inside the cell (Dolmetsch, R., 1998). The results 

presented in this study are in agreement with other work in the cyanobacteria Anabaena, (Barrán-

Berdón et al., 2011; Gonzalez-Pleiter et al., 2017) which demonstrated [Ca2+]i specific transients  

To other antibiotics.  
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5.4 Ca2+ enhancement and the negative effects of Ca2+ inhibitors, antagonists, and chelators 

on S. aureus efflux of EtBr 

As previously mentioned, Ca2+ plays a very important role in the regulation of various 

metabolic processes including transport. Here we utilized various Ca2+ inhibitors such as the 

pheothiazines and EGTA to study Ca2+ efflux in S. aureus. Grimsy and Piddock, 2019 described 

phenothiazines as having damaging effects on bacteria, such as damaging bacterial membranes, 

acting as Ca-dependent transporter inhibitors, and antagonists of Ca2+ -binding proteins. For this 

reason, we tested different phenothiazines to observe any effect on the ability of S. aureus to 

efflux EtBr. The phenothiazines used disrupted Ca2+ dependent process. This was evident in the 

rapid accumulation of EtBr when these inhibitors or the calcium specific chelator, EGTA were 

added. The absence of calcium or blocking calcium from being imported into the cell resulted in 

accumulation of EtBr. 

5.5 Proton motive force and Ca2+ 

 The pH environmental conditions are due to the fact that many efflux pump families rely 

on proton motive force (pmf) (Griffith, et al., 2018; Martins et al., 2011). This is evident when at 

low pHs, the bacteria maintained a high degree of efflux as compared to pH 8 where protons are 

lost in solution. At pH 7, a moderate amount of efflux was evident and major differences were 

observed between pH 7 and pH 7.6. This indicates that at higher pHs where protons are lost, the 

bacteria are unable to maintain a higher rate of efflux. This is also reinforced by significant 

differences in the control and CaCl2 treatments at pH 5 as compared to pH 8.  The addition of 

Ca2+ resulted in significantly increased efflux enhancement than the control even at pH 5. This 

implies that the efflux potential is pH dependent due to the availability of protons at lower pHs 
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(Nové, et al., 2020). In addition, significant EtBr accumulation was observed when the proton 

uncoupler, CCCP, was added at pH 5. This observation also implies that S. aureus sense 

environmental pH through cytosolic calcium. 

5.6 Ca2+ enhancement of the overexpressed efflux pump, LmrS in recombinant strains of E. 

coli. 

Cloning of the lmrS gene and expressing it in E. coli resulted in clinical resistance to a 

wide variety of antibiotics as compared with the control E. coli strain. The evidence in the LmrS 

experiments show that even under EtBr pressure and with inhibitors, Ca2+ significantly aids in 

efflux. The reversal of the inhibition of efflux by inhibitors after the addition of Ca2+ further 

demonstrates this and is in agreement with other studies (Martins, et al., 2009, 2011). This is 

evidence that efflux is not only an important strategy but also that Ca2+ enhances efflux 

specifically for the LmrS pump and may be modulating the genetic expression of LmrS. 

5.7 The influence of Ca2+ , Ca2+ inhibitors and EGTA on gene expression of efflux pumps, 

LmrS, NorA and MgrA 

Significant differences between CaCl2 treatments, the control with EtBr alone and EGTA, 

were seen in the expression levels of efflux pumps, NorA, MgrA and LmrS. The highest level of 

efflux expression differences was observed between treatments of CaCl2 and the calcium 

chelator, EGTA for all three pumps. The greater fold change between calcium and EGTA 

implies a more significant role of calcium in efflux regulation. EGTA chelates available calcium 

from the media thus taking effect on the system where very trace levels of calcium may exist in 
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the media. This provides further evidence that calcium is entering the bacteria in order to 

regulate efflux expression.  

Interestingly, the lmrS gene expression was concentration dependent on calcium which 

was not observed with the other two pumps. The implications here are that some expression of 

pumps may be completely calcium dependent or that the LmrS pump is in some way involved in 

calcium translocation.  The L. lactis MFS efflux pump LmrP, mediates selective H+/calcium 

antiport. Moreover, the purified protein LmrP has a high affinity for calcium binding and is 

dependent on the membrane proton electrochemical gradient (Schaedler et. al., 2012). The 

evidence presented here demonstrates that like the LmrP, LmrS may have an affinity for calcium 

binding and is also dependent on proton motive force. The LmrS protein, as with the LmrP are 

both members of the MFS superfamily which relies on pmf for cation exchange. More studies on 

the H+/cation exchange properties as well as the affinity for calcium binding in LmrS are needed 

to derive the same conclusion. However, the calcium concentration dependent expression implies 

that LmrS may hold similar properties as the LmrP efflux transporter. 

5.8 Limitations 

Certain limitations exist within the various experiments presented in this dissertation. For 

both the aequorin and EtBr studies the data presented reflects luminescence and fluorescence 

values that may be specific to the plate reader used and may vary across the different instruments 

utilized. For this reason, we labeled our data results as either relative light units or arbitrary 

fluorescent units to indicate the importance of how the cells responded in comparison to the 

various treatments rather than the specific fluorescence or luminescence values. Different 

concentrations of cells were used across experiments to verify that the same significant response 
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was elicited by the treatments and readers should be aware that the importance of the research is 

how the cells responded rather than specific values. 

For expression studies, the drawback to using syber green is that the instrument also 

picks up fluorescence from primer dimers. Primer dimers are defined as primers with enough 

similarity that they anneal to each other. Extraneous fluorescence is inevitable and may skew the 

results. To address these limitations, the second round of gene measurement would utilize 

fluorescent probes to tag the efflux genes. Fluorescent tags would eliminate the fluorescent 

interference from primer dimers and would give more accurate data for gene expression analysis. 

Due to limitations and lack of access to a qPCR machine with specific sensors that correlated to 

the different fluorescent probes of each primer, we were unable to conduct the second round of 

gene expression using the probes. To address this problem the primers were designed to have 

very minimal primer dimers, if any. They were designed to have the same amplicon size and 

were checked for the presence of primer dimers on an agarose gel.   

5.9 Conclusion 

In conclusion the evidence presented here demonstrates that Ca2+ homeostasis is 

maintained in S. aureus, antibiotics induce a unique Ca2+ mediated response through transients in 

cytosolic Ca2+ and that the LmrS efflux pump is enhanced by Ca2+. The likelihood that Ca2+ ions 

are involved in the regulation of efflux is suggested by the expression data and is the first to 

report a direct link between Ca2+ and efflux regulation of the NorA, MgrA and LmrS efflux 

pumps. More importantly, this research also strongly implies that there may be Ca2+ transduction 

pathways in bacteria that have yet to be discovered. 
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Further study of global regulation with RNA seq. is needed to determine the proteins 

involved in efflux regulation with calcium. This would enable researchers to identify potential 

proteins involved with calcium sensing, the transporters involved in [Ca2+]i homeostasis as well 

as the potential proteins involved in effecting the genes needed to respond to the external 

environmental signal. The research is significant because understanding how bacteria regulate 

physiological responses especially those related to virulence and antibiotic resistance 

mechanisms would enable mitigation of the global crisis of antibiotic resistance. The results 

presented conjecture the global coordination of calcium transporters in various patterns to elicit 

an appropriate genetic response from the cell.  

The data presented in this study also suggests that further analysis of the effect of Ca2+ on 

the regulation of efflux pumps and the mechanism of action of efflux regulators could help 

mollify the antimicrobial resistance dilemma. This is evident in different studies that have 

demonstrated that various physiological processes including antibiotic resistance mechanisms, as 

presented here with efflux, are regulated by calcium. Moreover, new therapeutic approaches can 

be developed targeting specific proteins within this pathway that may not have a lethal effect on 

bacteria thus slowing the evolution of resistance. Perhaps the next generation of antibiotics 

would more successfully interfere with virulence regulation rather than interfering with vital 

physiological processes. Moreover, the synergistic effect of an antibiotic coupled with calcium 

regulation interruption may prove to heighten the antimicrobial effects of antibiotics on bacteria. 

Thus, increasing the chance for clearance of bacterial infections. 
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