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Abstract

Variable selection has been studied using different approaches. Its growing importance

lies in numerous applications to high-dimensional data from experiments and natural

phenomena. Often, models are to be constructed from such data based on significant

variables for estimation or prediction purposes. This demands not just any variable selection

method, but one that is robust, computationally efficient and with other desirable statistical

properties. Besides the high-dimensionality of such data, the presence of outliers is common

due to heterogeneous sources. Though outliers often contain useful information, they can

unduly influence non-robust estimators to produce misleading results. This is the case

for ordinary least squares regression which is biased and inefficient under assumption

violations. Many robust loss functions and penalization selection techniques have been

proposed in literature. However, the choice of loss function, penalty function, optimal

tuning parameter and their implementation are paramount to the robustness and efficiency

of variable selection. This work proposes a penalized robust variable selection method for

multiple linear regression through the least trimmed squares loss function. The proposed

method employs a robust tuning parameter criterion constructed through BIC for model

selection. It is implemented via a fast computation algorithm with high breakdown point

which does not depend on the number of predictors in the data.

Key words and phrases : Breakdown point, penalization, outliers, robust, contamination.
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Chapter 1

Introduction

Robust variable selection is a topic of high importance in modern data science and Statistics

due to the increasing availability of data with large number of variables (Alfons et al.,

2013). Attempts to use all variables in multivariate data often become tedious and result

in over-fitting when modeling. Though over-fitting is known to provide unbiased estimates

for parameters, it also produces inflated variance which inflates the mean square error

(MSE) of the estimator. As such, there is no reason for all variables in a dataset to be

included in a model since some are noise and others are redundant. Moreover, not only

does the high-dimensionality of such data become a challenge but also, the presence of

outliers (Alfons et al., 2013) and other sources of heterogeneity. Modeling based on such

data to either study the relationship between the response variable and predictor variables

or for prediction purposes often encounters issues like inaccurate estimation or misleading

predictions. Such problems arise from model misspecification and non-robustness of variable

selection techniques in the presence of severe outliers, heavy-tailed data or under other

model assumption violations. For instance, the commonly used ordinary least squares

(OLS) procedure becomes problematic when the errors deviate from the normal distribution

or severe outliers are present in the data.

In attempt to address the above issues, other variable selection techniques have been

proposed in literature referred to as penalization methods. Penalization methods known in

literature include ridge regression (Hoerl and Kennard, 1970), bridge estimator (Frank and

Friedman, 1993), Least Absolute Shrinkage and Selection Operator (Lasso) (Tibshirani,

1996), the Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001), the elastic

net or Enet (Zou and Hastie, 2005), the adaptive Lasso (Zou, 2006), the Minimax Concave
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Penalty (MCP) approach (Zhang, 2010) and many others. However, most penalization

methods add a penalty function to a classical loss function like that of the OLS. As such,

these classical-based variable selection methods also break down when variance of the error

in the regression model tends to infinity (Chen et al., 2014). According to Lambert-Lacroix

et al. (2011), not only do these methods break down in the presence of outliers but also

the effect of outliers is not well studied for many variable selection techniques. Researchers

have therefore, proposed to use robust loss functions including Huber’s loss function (Fan

and Li, 2001), least absolute deviation (Wang et al., 2007; Gao and Feng, 2018; Jiang

and Liao, 2020), quantile loss (Li and Zhu, 2008; Zou et al., 2008; Wu and Liu, 2009),

Jaeckel’s dispersion function (Johnson and Peng, 2008; Leng, 2010), exponential squared

loss (Wang et al., 2013) and density power divergence function (Mandal and Ghosh, 2019)

with one or more penalties like Lasso, SCAD or adaptive Lasso on the regression coefficients.

Some of these existing approaches are designed to handle specific nature of the data like

the penalized least-squares or penalized likelihood (Fan and Lv, 2011) which is suitable

for light-tailed distributions. The choice of loss and penalty function is paramount for

both estimation and variable selection accuracy. Robust variable selection methods that

can withstand the effect of assumption violations, produce sparse estimates and enjoy the

statistical oracle properties are important to model and analyze such data. This work

therefore, proposes a robust variable selection for multiple linear regression via penalized

least trimmed squares.

The rest of the thesis is organized as follows. Chapter 2 gives a literature review on some

variable selection methods, loss functions, outliers and penalty functions. The proposed

methodology for robust variable selection is presented in Chapter 3 including the algorithm

for its computation. A simulation study and a real data analysis are respectively presented

in Chapter 4 and Chapter 5 to explore the effectiveness of the proposed method. Finally,

Chapter 6 gives the discussion and summary of results.
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Chapter 2

Literature Review

This chapter discusses and identifies the gap in robust variable selection methods in known

literature. It covers loss functions, outliers, breakdown point and also provide insight on

methods of penalization.

2.1 Variable Selection Methods

New variables often emerge during the study of natural or experimental phenomena. This

has created interest to study and understand such new variables either independently or

in relation to existing variables. The latter case often produces high-dimensional data

when used as predictors as they add to existing predictor variables in some data. Also,

high-dimensional data occur naturally in studies like genome sequencing. In fields like

ecology, medicine and biology, most data contain large number of predictor variables where

the predictors sometimes far exceed the number of observations. Nonetheless, since some

predictors may not be significantly related to the response, there is the need to select

relevant ones. As a result, the choice of predictors in linear regression has attracted

considerable attention in literature (Brown et al., 1999) and this has become necessary

due to the high-dimensionality of most data. In practice, the best model is hidden in a

subset of all variables and this is particularly true when there are many predictor variables.

According to Alfons et al. (2013), not only does the high dimension of such data become a

challenge but also the presence of outliers. The presence of outliers is also contributed by

other sources of heterogeneity of the data.
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2.2 Outliers

One way of achieving a coherent data analysis from large number of variables during data

collection is the detection of outlying observations (Ben-Gal, 2005). Outlier detection

is a basic step in many statistical analyses often performed when exploratory the data.

According to Ben-Gal (2005), an exact definition of outlier often depends on hidden

assumptions regarding the data structure and the applied detection method. However, some

definitions are considered general enough to cope with various types of data and methods.

Enderlein (1987) defines outlier as an observation which deviates from other observations

so significantly to arouse suspicions that it was generated by a different mechanism. Also,

Gladitz (1988) indicates that an outlying observation, or outlier, is one that appears

to deviate markedly from other members of the sample in which it occurs. Outliers

often carry relevant information despite being regarded as errors. Detected outliers are

candidates for aberrant data that may otherwise adversely lead to model misspecification,

biased parameter estimation and incorrect results (Ben-Gal, 2005). Chatterjee and Hadi

(2009) report that the presence of outliers can lead to biased parameter estimation and

inappropriate predictions for classical methods. In fact, outliers can mislead regression

results as they pull the regression line towards themselves and this can result in a solution

that is more precise for the outlier and imprecise for other cases in the data set (Ben-Gal,

2005). It is therefore important to identify them prior to modeling and analysis (Williams

et al., 2002; Liu et al., 2004).

Outliers can occur in either the response variable, predictor variables or both (Chatterjee

and Hadi, 2009). Real dataset may contain about 1% to 10% outliers (Hampel et al., 2011).

That notwithstanding, detection of outliers is dimensional related. That is, it can either be

univariate or multivariate outlier detection. Appropriate methods are designed to handle

them. Another fundamental taxonomy of outlier detection methods is between parametric

methods and non-parametric methods that are model-free (e.g., see (Williams et al., 2002)).

Statistical parametric methods assume a known underlying distribution of the observations
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(e.g. (Hawkins, 1980; Leroy and Rousseeuw, 1987; Barnett and Lewis, 1984)) or, at least,

they are based on statistical estimates of unknown distribution parameters (Hadi, 1992;

Caussinus and Ruiz, 1990). Observations that deviate from the model assumptions are

flagged as outliers by these methods. They are often unsuitable for high-dimensional data

sets and for arbitrary data sets without prior knowledge of the underlying data distribution

(Papadimitriou et al., 2003).

2.2.1 Univariate Outlier Detection Methods

Most of the earlier univariate methods including current ones for outlier detection rely

on the assumption of an underlying known distribution of the data, which is assumed

to be identically and independently distributed. Moreover, many discordance tests for

detecting univariate outliers further assume that the distribution parameters and the type

of expected outliers are also known (Barnett and Lewis, 1984). Needless to say, in real

world data mining applications, these assumptions are often violated (Ben-Gal, 2005).

Tukey et al. (1977) introduced the ”boxplot” as a graphical display on which outliers

can be indicated. The boxplot, which is being extensively used up to date, is based

on the distribution quadrants. Liu et al. (2004) also proposed an outlier-resistant data

filter-cleaner based on the earlier work of (Martin and Thomson, 1982). The proposed

data filter-cleaner includes an on-line outlier-resistant estimate of the process model and

combines it with a modified Kalman filter to detect and “clean” outliers which does not

require an apriori knowledge of the process model.

2.2.2 Multivariate Outlier Detection Methods

In many cases, multivariate observations can not be detected as outliers when each variable

is considered independently. Outlier detection is possible only when multivariate analysis

is performed, and the interactions among different variables are compared within the class

of data (Ben-Gal, 2005). Data sets containing multiple outliers are subject to masking
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and swamping effects. The concept of masking (Acuna and Rodriguez, 2004; Hawkins,

1980; Iglewicz and Martinez, 1982; Davies and Gather, 1993; Barnett and Lewis, 1984)

and swamping (Iglewicz and Martinez, 1982) are well discussed by these authors. The

Mahalanobis distance is one well-known criterion for multivariate outlier detection which

depends on estimated parameters of the multivariate distribution. However, this technique

uses the mean and variance-covariance matrix which are all influenced by outliers and

hence, not robust. Many researchers have therefore, proposed robust estimators of the

variance-covariance matrix or used other efficient techniques. Caussinus and Ruiz (1990)

proposed a robust estimate for the covariance matrix based on weighted observations

according to their distance from the center. The authors also proposed a method for

low-dimensional projections of the dataset. They used the Generalized Principal Component

Analysis to reveal dimensions which display outliers. Other robust location and scatter

(covariance matrix) estimators include minimum covariance determinant (MCD) and the

minimum volume ellipsoid (MVE) (Rousseeuw, 1985; Leroy and Rousseeuw, 1987; Acuna

and Rodriguez, 2004).

2.3 Statistical Setting

Suppose the pair (xi, yi) denotes the measurement from the i-th experimental unit, where

yi ∈ R is the response variable and xi ∈ Rp is the vector of predictors with xi typically

modified to include the model intercept. Consider the following linear regression model:

yi = xTi β + εi for i = 1, 2, . . . , n such that n > p (2.1)

where β = (β0, β1, . . . , βp)
T are the regression coefficients, y = (y1, y2, . . . , yn)T is the

response vector, X = (x1,x2, . . . ,xn)T is the design matrix and εi are the random errors.

For non-contaminated data, assume εi
i.i.d∼ N (0, σ2) and that yi ∼ N (xTi β, σ

2). Conversely,

εi are independently distributed with unknown distribution, say, G, where G is assumed to

be symmetric about 0 as it is often the case in literature, see (Wang et al., 2013).
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2.4 Classical Variable Selection Methods

OLS is a basic and commonly used variable selection method which minimizes the sum

of squared error of the residuals. Under the classical setup when the dimension is low

(n� p), the OLS estimate of β is obtained by minimizing the squared error loss function

‖y −Xβ‖2, where ‖ · ‖ is the standard `2 norm. The OLS estimator is unbiased, but

for small to moderate sample sizes, it often exhibits large variance. It is easy to see that

this estimator is not robust, because single observation can change the estimator to any

desired value. When there are outliers in the response or influential points in the predictors,

which the latter can be encountered in, for example microarray gene expression studies,

regular procedures are not appropriate (Wu and Ma, 2015). Therefore, OLS has both a

low breakdown point and unbounded influence function, however, with the advantage of

having the highest possible efficiency when the error distribution function, F , is Gaussian

(Coakley and Hettmansperger, 1993). One of the goals of robust regression estimation,

according to Yohai and Zamar (1988), is to simultaneously achieve (a) a breakdown point

of roughly 0.50; (b) a bounded influence function; and (c) a high efficiency (say, 0.95)

versus least squares when F is Gaussian. Since possible data contamination and model

misspecification can affect the result of most methods, the development of robust modeling

must be sought. Under data contamination, the idea is to down weigh the influence of

outliers while model misspecification tends to build a loss function that can accommodate

a class of models (as opposed to a single specific one) (Wu and Ma, 2015).

2.5 Breakdown Point

One global measure of an estimator’s robustness is the breakdown value or point (Maronna

et al., 2019). The proportion of outliers or contamination in a data affects the breakdown

point of estimators in variable selection; a very essential component for estimators to achieve

robustness. Hampel (1971, 1974) introduced the concept of breakdown point as a measure
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for robustness of an estimator against outliers. The breakdown point of an estimator is

roughly, the smallest amount of contamination that may cause it to take on arbitrarily

large aberrant values (Donoho and Huber, 1983). The range of possible breakdown value is

between 1
n

and 1
2
. So ideally, the higher the breakdown value, the more robust a regression

approach or estimator is. Donoho and Huber (1983) further report that, breakdown point

provides only a very crude quantification of the robustness properties of an estimator in

which lies its generality and strength. Many methods have been developed to detect outliers

in the multiple linear regression (Gürünlü Alma et al., 2011; Riani et al., 2009; Nurunnabi

et al., 2014; Millar and Hamilton, 1999; Jobe and Pokojovy, 2015; Imon and Hadi, 2013).

These and other robust methods are important and effective estimation techniques for

analyzing high-dimensional data contaminated with outliers.

2.6 Robust Loss Functions

One means of achieving robust modeling is through the development of a robust loss

function say, L(β; y, x) with y and x as defined in Equation (2.1). According to Wu

and Ma (2015), a robust loss function differs from an ordinary loss function by its ability

to accommodate irregularities in data and model settings. Under asymptotic settings,

the loss function produces consistent estimate of the unknown regression parameter when

minimized. As such, the construction of loss function has no strict rules but with the basic

requirement to possess consistency (Wu and Ma, 2015). Now, when consistency is available,

statistical and computational efficiency is also of interest. The following subsections discuss

some well known loss functions in literature.

2.6.1 Check Loss Function

Perhaps the most extensively examined robust loss function is the check loss function in

quantile regression (QR). This idea was proposed by (Koenker, 2005). Define ρτ (t) =

t{τ − I(t < 0)} at any given quantile level 0 < τ < 1. With such choice, the loss function
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for the i-th subject becomes

ρτ (yi − xTi β) =

 τ(yi − xTi β), if yi − xTi β > 0,

−(1− τ)(yi − xTi β), otherwise.
(2.2)

The overall loss function is defined as
∑n

i=1 ρ(yi − xTi β). By emphasizing more on the

relative rank as opposed to absolute magnitude, this loss function is able to ‘tolerate’

outliers and influential points to a much greater extent than the OLS. The unique advantage

of robust procedures built on QR lies in the ability to capture the heterogeneity of data

through different quantiles. For example, with the presence of data heterogeneity, different

sets of important genes can be associated with the response at different quantiles (Wu

and Ma, 2015). Quantile-based regression aims to estimate the conditional “quantile” of a

response variable given certain values of predictor variables. Researchers have extended the

QR approach to multiple dimension. The check loss function has been adopted in multiple

studies (Zou and Yuan, 2008; Zou et al., 2008) with multiple conditional quantile functions

estimated simultaneously.

2.6.2 LAD Loss Function

The least absolute deviation (LAD) regression is known to be robust when there are outliers

in the response variable or for heavy-tailed error data. The LAD loss function is defined

as follows:
n∑
i=1

|yi − xTi β|. (2.3)

This loss function have been used in many studies such as (Wang et al., 2007; Gao and

Huang, 2010; Wang et al., 2013; Jiang et al., 2021). LAD regression provides estimate

for the conditional median function. It is the foundation for the development of QR and

can be viewed as a special case of QR. Despite the robustness of the LAD loss function,

Lambert-Lacroix et al. (2011) pointed out that this criterion suffers a loss of efficiency with

normally distributed data.
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2.6.3 Huber’s Loss Function

The Huber’s loss function is a loss function used in robust regression that is less sensitive

to outliers in data than the squared error loss. The Huber’s loss function describes the

penalty incurred by an estimation procedure f . Huber (1992) defines the loss function

piecewise by

Lδ(a) =

 1
2
a2, for |a| ≤ δ,

δ(|a| − 1
2
δ), otherwise.

(2.4)

This function is quadratic for small values of a, and linear for large values, with equal

values and slopes of the different sections at the two points where |a| = δ. The Huber’s

loss function is strongly convex in a uniform neighborhood of its minimum a = 0; at

the boundary of this uniform neighborhood, the Huber’s loss function has a differentiable

extension to an affine function at points a = −δ and a = δ. These properties allow it

to combine much of the sensitivity of the mean-unbiased, minimum-variance estimator of

the mean (using the quadratic loss function) and the robustness of the median-unbiased

estimator (using the absolute value function). The variable a often refers to the residuals,

that is to the difference between the observed and predicted values a = y − f(x), so the

former according to Hastie et al. (2009), can be expanded to

Lδ(y, f(x)) =

 1
2
(y − f(x))2, for |y − f(x)| ≤ δ,

δ(|y − f(x)| − 1
2
δ2), otherwise.

(2.5)

Pseudo-Huber loss function is another approach that can be used as smooth approximation

of the Huber’s loss function. It combines the best properties of `2 squared loss and `1

absolute loss by being strongly convex when close to the target or minimum and less steep

for extreme values. The scale at which the pseudo-Huber loss function transits from `2 loss

for values close to the minimum to `1 loss for extreme values and the steepness at extreme

values can be controlled by the δ value. The Pseudo-Huber loss function ensures that

derivatives are continuous for all degrees defined according to Charbonnier et al. (1997);
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Schmid and Zisserman (2000) as

Lδ(a) = δ2
(√

1 + (a/δ)2 − 1
)

(2.6)

As such, this function approximates a
2

for small values of a, and approximates a straight

line with slope δ for large values of a. While the above is the most common form, other

smooth approximations of the Huber’s loss function also exist (Lange, 1990). Sometimes a

variant for classification is also used.

2.6.4 Rank-Based Loss Function

The rank-based loss function is another type of robust procedures in regression. Jaeckel

(1972) was among the first authors to propose rank-based regression as a robust and

non-parametric alternative to classical OLS and likelihood-based approaches. The dispersion

function proposed by Jaeckel (1972) has been adopted by Johnson and Peng (2008); Leng

(2010) as a loss function
n∑
i=1

ε

[
R(εi)

n+ 1
− 1

2

]
εi (2.7)

where εi = yi − xTi β, ε(·) is a non-decreasing weight function and R(εi) is the rank of εi

in {εi, . . . εn}. Equation (2.7) reduces to the regular Wilcoxon statistic when ε(·) is the

identity function. In an independent work, Wang and Li (2009) investigated the weighted

Wilcoxon loss function
1

n

∑
i<j

bij|εi − εj| (2.8)

where b′ijs are the positive and symmetric weights. They pointed out that when b′ijs are

constants, the minimization of Equation (2.8) is equivalent to that of Equation (2.7) with

the identity weight function.
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2.6.5 Density Power Divergence Function

Mandal and Ghosh (2019) proposed the density power divergence (DPD) function between

the model density fθ with θ ∈ Θ and the empirical or true density g given by

dα(fθ, g) =


∫
y
{f 1+α
θ (y)− (1 + 1

α
)fαθ g(y) + 1

α
g1+α(y)}dy, for α > 0∫

y
g(y)log

(
g(y)
fθ(y)

)
dy, for α = 0

(2.9)

where α is a tuning parameter (Basu et al., 1998). For α = 0, the DPD is obtained as a

limiting case of α → 0+; and the measure reduces to Kullback-Leibler divergence. For a

parametric model, Mandal and Ghosh (2019) estimated θ by minimizing the DPD measure

with respect to θ over its parametric space and referred to the estimator as the minimum

density power divergence estimator (MDPDE). For α = 0, they found it to be equivalent

to maximizing the log-likelihood function and concluded that the MLE is a special case of

the MDPDE. Moreover, the tuning parameter α controls the trade-off between efficiency

and robustness of the MDPDE – robustness measure increases if α increases, but at the

same time efficiency decreases.

2.6.6 Least Trimmed Squares

Least trimmed squares (LTS) also known as least trimmed sum of squares is one of the

number of methods for robust regression. It is a robust statistical method that fits a

function to a set of data whilst not being unduly affected by the presence of outliers. Instead

of the standard least squares method, which minimizes the sum of squared residuals over

n points, the LTS method attempt to minimize the sum of squared residuals over a subset,

say, k of those points where k < n and the (n− k) unused points do not influence the fit.

This method has no closed-form solution due to its binary nature for data points as points

are either included or excluded. As a result, methods for finding the LTS solution sift

through combinations of the data, attempting to find the k subset that yields the lowest

sum of squared residuals. Methods exist for finding the exact solution at low n; however,

as n increases, the number of combinations grow rapidly yielding methods that provide

12



approximate but generally sufficient solutions. Jung (2007) proposed Orthogonal Least

Trimmed Squares estimator which has high breakdown point and appropriate equivariance

properties.

2.7 Penalization Methods

Intuitively, it has been shown that shrinking or setting some regression coefficients to zero

improves the mean squared error and that is what the penalization methods do. Variable

selection and estimation of β in Equation (2.1) are achieved simultaneously by computing

β̂, the estimate of β under subjected penalty constraints which minimizes the penalized

loss function. Under penalization, small bias is incorporated into a loss function in the

form of a penalty to achieve greater reduction in the variance term which then improves

the mean squared error. Ridge regression is an example of such penalization methods

classified as a special case of Tikhonov regularization. Ridge regression is particularly

useful for linear regression of data that has multicollinearity and usually large numbers of

parameters. In general, the method provides improved efficiency in parameter estimation

problems in exchange for a tolerable amount of bias (Gruber, 1998). A penalized variable

selection method uses a regularized parameter in the penalty function which controls the

model complexity. The general framework is

β̂ = arg min
β∈Rp+1

[L(β; y, x) + Pλ(β)] (2.10)

where L(β; y, x) is the loss function and Pλ(β) is the penalty function depending on the

tuning parameter λ ∈ (0,∞). Here, Pλ(β) controls the model complexity by forcing some

components of β̂ to exactly zero. For many penalties, Pλ(β) = λP (β). This shows how

λ balances the model complexity and the goodness of fit at least on training data. Thus,

more predictors are included as λ→ 0, which leads to models with better goodness of fit.

However, prediction performance and interpretability can be sacrificed under more complex

models. On the other hand, fewer predictors remain in the model as λ → ∞. Now, with
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a properly tuned λ, satisfactory prediction performance and model interpretability can be

achieved. A similar pattern follows when Pλ(·) takes other formats.

A commonly used method to select the tuning parameter is the cross-validation technique

where the model parameters are estimated from the training data, and then the regularized

parameter is selected from the remaining test data (Golub et al., 1979). The generalized

cross validation (GCV) criterion is often used to compute the optimal λ especially in ridge

regression and Lasso. That notwithstanding, both estimation and inference may be severely

affected if there are outliers in the data. Therefore, the classical cross-validation technique

may not work properly in the presence of outliers. Besides, the cross-validation technique

is computationally intensive. For the same reason, the classical bootstrap-based methods

may also fail in the presence of outliers.

Another widely used technique is the information based criteria for the model selection.

The Mallows’ Cp statistic (Mallows, 1973), the Akaike information criterion (AIC) (Beatty

et al., 2018) and the Bayes information criterion (BIC) (Schwarz et al., 1978) play an

important role in high-dimensional data analysis. Unfortunately, as most selection criteria

are developed based on the ordinary least squares estimates, their performance under

heavy-tailed errors is very poor. Ronchetti (1985), Ronchetti and Staudte (1994) modified

the classical selection criteria using the Huber’s M-estimator. Consequently, Hurvich and

Tsai (1990) derived a set of useful model selection criteria based on the LAD estimates.

Despite their usefulness, these LAD-based variable selection criteria, have some limitations

with the major one being the computational burden (Wang et al., 2007).

2.7.1 Penalty Functions

Penalization, also referred to as regularization, works by biasing parameter estimator

towards particular values (such as small values near zero) by the use of a tuning constant.

Many of such penalty terms added to the classical methods have been proposed with few

major ones captured below.
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`1 regularization: This approach adds a penalty equal to the sum of the absolute values

of the more prominent coefficients. It usually yields sparse models (models with few

coefficients) since some coefficients become zero and, thus, are eliminated. Example of

regularization method that uses this penalty function is that of the Lasso.

`2 regularization: This method adds a penalty equal to the sum of squares of the

magnitude of the coefficients. In this context, sparse models are not produced since

coefficients only get very close to zero but unlikely to vanish. Ridge regression and Support

Vector Machines are known methods that use this approach.

A combination of both `1 and `2 regularization is also possible which leads to the elastic net.

However, it achieves that by introducing additional hyperparameter whose value define the

form of regularization applied.

2.7.2 Lasso

Actually, in the sense of Lagrange’s necessary optimality conditions, the Lasso regression

(Tibshirani, 1996) is merely a constrained variant of least squares regression. Comparatively,

the ridge regression makes the selection process continuous by varying a shrinkage parameter

which makes it more stable. On the other hand, since ridge regression does not set any

coefficients to 0, it does not give an easy interpretable model as in subset selection. The

Lasso technique is intended to balance and retain the favorable features of both subset

selection and ridge regression by shrinking some coefficients and setting others to 0. The

Lasso estimator of β is obtained by

β̂ = arg min
β∈Rp+1

‖y −Xβ‖2 + λ

p∑
i=1

|βi| s.t

p∑
i=1

|βi| ≤ t for t > 0. (2.11)

In this method, the estimates are the same as the least square estimates when t is chosen

to be greater than or equal to
∑p

i=1 |βi| . Conversely, choosing t smaller than
∑p

i=1 |βi|

shrinks the solutions towards 0.
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2.7.3 Enet

The elastic net proposed by Zou and Hastie (2003) considers for fixed non-negative λ1 and

λ2 the objective function

L(λ1, λ2,β) = ‖y −Xβ‖2 + λ2‖β‖22 + λ1‖β‖1 (2.12)

yielding the minimizer for β̂ = arg min
β∈Rp+1

L(λ1, λ2,β). This procedure can be viewed as a

constrained ridge regression. Here, letting α = λ2
λ1+λ2

and solving for β in Equation (2.12)

is equivalent to the constrained optimization problem

β̂ = arg min
β∈Rp+1

‖y −Xβ‖2 subject to α‖β‖1 + (1− α)‖β‖22 ≤ t for some t > 0. (2.13)

The function α‖β‖1 + (1 − α)‖β‖22 is called the ”elastic net penalty” which is a convex

combination of the Lasso and ridge penalties. Now, when α = 0, the elastic net simply

becomes a ridge regression and reduces to LASSO regression when α = 1.

2.7.4 Alasso

Zou (2006) proposed the Adaptive Lasso (Alasso) penalty to improve the performance of

Lasso. Consider the Lasso with penalty weights (w), where w is a known weights vector.

Zou (2006) showed that if the weights are data-dependent and suitably chosen, the weighted

Lasso can possess the so-called oracle property. That is, the asymptotic consistency (almost

sure) in correct variable selection with large samples when selecting the penalty parameter

λ ≡ λ(n) appropriately. The methodology is defined as follows:

Suppose β̂ is an
√
n-consistent estimator of β. Pick γ > 0, where often γ = 1 is chosen

and define the weight vector ŵ componentwise as ŵi = |β̂i|−γ. The Alasso estimator β̂ is

given by

β̂ = arg min
β∈Rp+1

(∥∥∥y − p∑
i=1

βixi

∥∥∥2 + λ

p∑
i=1

wi|βi|

)
. (2.14)

It is worth emphasizing that Equation (2.14) is a convex optimization problem and its

global minimizer can be efficiently computed.
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2.7.5 SCAD and MCP

The statistical properties of Lasso have been explored in depth. It has been found that `1

regularization may not provide satisfactory variable selection, especially when predictors

are highly correlated. Moreover, stringent conditions are needed in order for Lasso to

enjoy oracle properties. From the perspective of sparse estimation, a desirable penalty

function is expected to help achieve three key goals as spelled out in Fan and Li (2001):

(1) unbiasedness in estimating nonzero parameters, (2) sparsity in terms of enforcing zero

estimates, and (3) continuity in terms of the model spectrum under consideration. This

motivated them to propose the SCAD non-convex penalty. Later on, Zhang (2010) proposed

a similarly shaped penalty called MCP. Both SCAD and MCP yield very similar empirical

performance in terms of sparse estimation, leading to substantial improvement over Lasso.

Both penalties are even functions. For β > 0, the SCAD penalty function is given by

wa,b(β) =


αβ if β ≤ a,

2abβ−a2−β2

2(b−1) if a < β ≤ ab,

a2(b+ 1)/2 if β > ab

(2.15)

with the first derivative ∂
∂β
wa,b(β) = a{I(β ≤ a) + (ab−β)

a(b−1) + I(β > a)}, for a ≥ 0 and b > 2.

It corresponds to a quadratic spline function with knots at a and ab.

For β > 0, the MCP penalty is given by

wa,b(β) =

 aβ − β2

2b
if β ≤ ab,

ba2

2
if β ≥ ab,

(2.16)

with first derivative ∂
∂β
wa,b(β) = (a− β

b
)(β ≤ {I(β ≤ a) + (ab−β)

a(b−1) + I(β > a)}, for a ≥ 0 and

b > 1. Both SCAD and MCP penalties are smooth in β ≥ 0 with singularity at β = 0.

The SCAD or MCP estimator is given as

β̂ = arg min
β∈Rp+1

(
‖ y −Xβ‖2 + λ

p∑
i=1

wa,b(βi)
)
. (2.17)

The oracle properties of β̂, which imply both consistency in variable selection and efficiency

in estimating non-zero coefficients have been established.
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Chapter 3

Proposed Method

We consider the linear regression model in Equation (2.12) for some given data (xi, yi) with

xi ∈ Rp and yi ∈ R and propose the Robust Penalized Least Trimmed Squares (RPLTS)

method that minimizes the penalized objective function

(β̂rob, ŵ) = arg min
β∈Rp+1

w∈{0,1}n:
∑n

i=1
wi=h

{
n∑
i=1

wi(yi − βTxi)2 + λP (β)

}
(3.1)

where β ∈ Rp+1, λP (β) is a penalty term which shrinks regression coefficients towards

zero. Here, the penalty function can be Lasso, SCAD or MCP. For 1 ≤ i ≤ n, the weights

wi represents the heterogeneity of the errors. A good observation is assigned a value of 1

and an outlier a value of 0. That is, w ∈ {0, 1}n represents the weights quantifying the

outlying effect of each observation with ŵ the minimizer for w. Moreover, h denotes the

total size of good observations which is simply the sum of all 1’s in ŵ with n+1
2
≤ h ≤ n.

We define the residual estimates as

ε̂i = yi − β̂
T

robxi for i = 1, 2, . . . , n (3.2)

and compute the degrees of freedom (ν̂) as the number of non-zero regression coefficients

at the optimal tuning parameter. Clearly, ν̂ takes values from 0 to p. We further estimate

the error scale σ via

σ̂2
rob =

c2n,h,ν̂
h− ν̂

n∑
i=1

ŵiε̂
2
i (3.3)

According to Croux and Haesbroeck (1999), c2n,h,ν̂ in Equation (3.3) is given by

c2n,h,ν̂ =
1∫ ξ

−ξ x
2φ(x) dx

=
1

P (χ2
3 ≤ χ2

1,1−α)
(3.4)
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with φ(·) being the standard Gaussian density and Φ−10 (·) the standard Gaussian cumulative

distribution function. Also, ξ = Φ−10 (1 − α
2
) where α = 1 − h−ν̂

n−ν̂ and that simplifies to

ξ = Φ−10 (1 − n−h
2(n−ν̂)) by substituting the value of α. The estimator c2n,h,ν̂ was chosen to

assure the asymptotic unbiasedness of σ̂2
rob after trimming with the weights.

By simply writing c2n,h,ν̂ as c2, Equation (3.3) can be written as

σ̂2
rob(h− ν̂) = c2

n∑
i=1

ŵiε̂
2
i (3.5)

Under the classical setting,

log L(θ|y,X) =
n∑
i=1

log φ(yi,xi|θ) where θ = (β, σ2)

=
n∑
i=1

log

[
1

(2πσ2)
1
2

exp
(
− 1

2σ2
(yi − βTxi)2

)]

= −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(yi − βTxi)2.

(3.6)

For the trimmed log-likelihood (näıve version), we have

log Ltr(θ|y,X) =
n∑
i=1

wilog φ(yi,xi|θ)

= −h
2

log(2πσ2)− 1

2σ2

n∑
i=1

wi(yi − βTxi)2.
(3.7)

Also, for the trimmed log-likelihood (asymptotically unbiased version)

log Ltr(θ|y,X) = −

[
h

2
log(2πσ2)− c2

2σ2

n∑
i=1

wi(yi − βTxi)2
]

(3.8)

Plugging Equation (3.1) and (3.2) into Equation (3.5) gives

log Ltr(θ̂rob|y,X) =
n

h

[
− h

2
log(2πσ̂2

rob)− c2

2σ̂2
rob

n∑
i=1

ŵi(yi − β̂
T

robxi)
2

]

=
n

h

[
− h

2
log(2πσ̂2

rob)− 1

2
(h− ν̂)

]

= −n
2

[
log(2πσ̂2

rob) + 1− ν̂

h

]
.

(3.9)
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3.1 Optimal Tuning Parameter Selection

The most common approach to the comparison and selection of statistical models is standard

significance testing of nested models since such test are theoretically well understood and

almost universally established in quantitative data analysis (Kuha, 2004). However, the

author further opines that for large sample size, significance tests are sensitive to quite

small deviations from the null hypothesis and that all reasonably parsimonious models

may be rejected as having a statistically significant lack of fit which is an undesirable

property. As such, one common alternative has been the use of so-called penalized model

selection criteria. Thus, three penalized tuning parameter selection criteria were developed

based on the Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC)

and Mallows’ Cp using estimators from the proposed method. This was necessary to see

which criterion provides the optimal tuning parameter under the same condition.

3.1.1 Robust BIC for Tuning Parameter Selection

Bayesian information criterion (BIC) or Schwarz information criterion is a criterion for

model selection among a finite set of models whereby the model with the lowest BIC value

is preferred. It is based, in part, on the likelihood function and it is closely related to

the Akaike information criterion (AIC). When fitting models, it is possible to increase the

likelihood by adding parameters, but doing so may result in overfitting. Both BIC and

AIC attempt to resolve this problem by introducing a penalty term for the number of

parameters in the model; the penalty term is larger in BIC than in AIC. BIC is classically

defined as

BIC = k log(n)− 2 log L(θ|y,X) (3.10)

where k is the number of non-zero coefficients in the regression model and L, the estimated

likelihood function. Despite the many desired properties, Giraud (2014) reports (a) the

above approximation is only valid for sample size n much larger than the number k of

parameters in the model and (b) the BIC cannot handle complex collections of models
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as in the variable selection (or feature selection) problem in high-dimension as the two

main limitations of the criterion. We arrive at the robust BIC by substituting the robust

log-likelihood function from Equation (3.9) into the classical log-likelihood function as

below.

BICrob(ν) = ν log(n)− 2 log Ltr(θ̂rob|y,X)

= νlog(n) + n

[
log(2πσ̂2

rob) + 1− ν

h

]
.

(3.11)

3.1.2 Robust AIC for Tuning Parameter Selection

Similarly, we define and make substitution for the AIC criterion. AIC is classically defined

as

AIC = 2k − 2 log L(θ|y,X) (3.12)

where k is the number of non-zero coefficients in the regression model and L, the estimated

likelihood function. Thus, upon substituting the appropriate estimators gives

AICrob(ν) = 2ν log(n)− 2 log Ltr(θ̂rob|y,X)

= 2ν + n

[
log(2πσ̂2

rob) + 1− ν

h

]
.

(3.13)

3.1.3 Robust Mallows’ Cp for Tuning Parameter Selection

Mallows’ Cp is the other estimator for the tuning parameter selection. From the classical

definition, Cp = SSEp

s2
−n+ 2(p+ 1) where SSEp =

∑n
i=1(yi− ŷi)2. Here, SSEp is the sum of

squared error for the selected k predictors in the fitted model and s2 is the mean squared

error of the full model. In the robust case using the asymptotically unbiased estimator, we

have SSEp, rob = c2
∑n

i=1 ŵi(yi− β̂
T

robxi)
2 = σ̂2

rob(h− ν). Since, s2 can be estimated by σ̂2
rob,

we now have

Cp, rob(ν) =
σ̂2
rob(h− ν)

σ̂2
rob

− n+ 2(p+ 1)

= (h− ν)− n+ 2(ν)

= h+ ν − n.

(3.14)
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3.2 Computation Algorithm

The algorithm for computing the Robust Penalized Least Trimmed Squares for variable

selection in multiple linear regression is presented below.

Algorithm 1: RPLTS algorithm

1 Input: Data D = {(xi, yi) ∈ Rp × R}ni=1

2 Given: Initial estimate β̂
(0)

, λ > 0

3 begin

4 Set k ← 1

5 Compute residuals

6 ε̂i = yi − (β̂
(k−1)

)Txi, i = 1, 2, . . . , n

7 Concentration step

8 Find the smallest h residuals ε̂i1 , . . . , ε̂ih where n+1
2
≤ h ≤ n

9 Let ŵ
(k)
i = 1, if i ∈ {i1, . . . , ih} and ŵ

(k)
i = 0, otherwise

10 Fit the usual non-robust penalized regression model with λP (·) to {xij , yij}hj=1

11 Update β̂
(k)

with the resulting β̂

12 If ‖β̂(k) − β̂(k−1)‖∞ < ε stop, otherwise k ← k + 1 and go to 5

13 end

14 Output (β̂
(k)
, ŵ(k))

The R implementation was provided by Pokojovy (2021).

3.3 Breakdown Point of the Proposed Method

According to the work of Alfons et al. (2013), the breakdown point (bdp) of the RPLTS

method was determined to be n−h+1
n

for n+1
2
≤ h ≤ n since loss function of the proposed

method (LTS) satisfies their proposed assumptions. This conclusion was based on the

inference for the LTS loss function employed in their method. Clearly, the breakdown
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point does not depend on the dimension p. However, the breakdown point increases with

increasing value of h. According to Alfons et al. (2013), taking h small enough can possibly

produce a breakdown point larger than 50%. It is required for h > n
2

since robust statistics

aim for models that fit the majority of the data by taking h equal to a fraction α of

the sample size, with α = 0.75 such that the final estimate is based on a sufficiently

large number of observations. This suggestion was shown to guarantee a sufficiently high

statistical efficiency in their simulation study with a resulting breakdown point of about 1−

α = 25%. As such, with larger predictor variables than the sample size, a high breakdown

point is guaranteed.

3.4 Bulk Size Selection

According to Chatterjee and Hadi (2009), the presence of outliers can lead to biased

parameter estimation and inappropriate predictions for classical methods. Since outliers

pull the regression line towards themselves, they can interfere and produce misleading

regression results. The proposed method takes such undesirable effect into account by

employing the LTS loss function with an assumption on the maximal percentage of outliers.

With this loss function, observations detected as potential outliers are trimmed leaving good

observations for modeling. One common way of modeling outliers is through the weights of

the observations. The RPLTS algorithm uses (robustbase::h.alpha.n(0.5 + bdp, n,

1L) from the robustbase package. A corresponding potential outlier is then assigned 0 and

a good observation assigned 1 to form the the minimizer for the weight vector in trimming

the data. Thus, observations with weight w = 1 are in the bulk whilst those with weight

w = 0 are not in the bulk. Also, the method only determines bulk points and thus, more

careful analysis is needed to decide if they are actually outliers. As seen in the arguments

of (robustbase::h.alpha.n(0.5 + bdp, n, 1L) is the breakdown point represented as

bdp. The bdp influences the amount of potential outliers the algorithm can accommodate.

For this study, the bdp takes values from 0 to 0.5. Also, it is worth mentioning that the
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primer of the proposed algorithm is adaptive to the nvcreg package when there are no

outliers in the data (i.e, h = n and bdp set to 0) using the same optimal tuning parameter

value. Since robust statistics aim for models that fit the majority of the data (Alfons et al.,

2013), the maximum threshold value of 0.5 was carefully chosen such that there will not

be more potential outliers than 50% of the sample size.

3.5 Performance Metrics for the Proposed Method

One way to measure the performance of an algorithm is through some performance metrics.

Botchkarev (2018b) report that performance metrics (error measures) are vital components

of the evaluation frameworks in various fields. A performance metric can be defined as a

logical and mathematical construct designed to measure how close the actual results are

from what has been expected or predicted (Botchkarev, 2019). With regression experiments

in machine learning, performance metrics are used to compare the trained model predictions

with the actual data from the testing data set (Makridakis et al., 2018; Botchkarev, 2018a).

Forecasting employ performance metrics to measure how much forecasts deviate from

observations in order to assess quality and choose forecasting methods, especially in support

of supply chain or predicting workload for software development (Carbone and Armstrong,

1982; De Gooijer and Hyndman, 2006).

A vast variety of performance metrics have been described in academic literature. The

most commonly mentioned metrics in research studies are Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), etc. Knowledge about a metric’s properties need to

be systematized to simplify the design and use of the metric (Botchkarev, 2019).

3.5.1 Confusion Matrix

According to Algamal and Lee (2015), confusion matrix is one of the ways to measure

the performance of a classification problem where the output can be of two or more type

of classes. We restrict ourselves to two classes here. In the field of machine learning

24



and specifically the problem of statistical classification, a confusion matrix, also known as

an error matrix, is a specific table layout that allows visualization of the performance of

an algorithm, typically a supervised learning one (Stehman, 1997). Confusion matrix is

formed from four outcomes of binary classification of all data instances of a test dataset

as either positive or negative. This classification (or prediction) produces four outcomes

which are termed as true positive (TP), true negative (TN), false positive (FP) and false

negative (FN). Here, true positive refers to the correct positive prediction whilst false

positive represents the incorrect positive predictions. Also, true negative are the correct

negative prediction while false negative indicate the incorrect negative prediction. This

metric was used to assess how well our method can estimate an initial set number of known

or true (actual) zero coefficients in a given model. Other measures are computed from the

four outcomes and are detailed below.

1. Error rate (ERR) is calculated as the number of all incorrect predictions divided by

the total size of the data. The best error rate is 0.0, whereas the worst is 1.0.

2. Accuracy (ACC) is calculated as the number of correct predictions divided by the

total size of the data. The best accuracy is 1.0, whereas the worst is 0.0. It can also

be calculated by 1 – ERR. Error costs of positives and negatives are usually different.

For instance, one wants to avoid false negatives more than false positives or vice versa.

Other basic measures, such as sensitivity and specificity, are more informative than

accuracy and error rate in such cases.

3. Sensitivity (SN) is calculated as the number of correct positive predictions divided

by the total number of positives. It is also called recall (REC) or true positive rate

(TPR). The best sensitivity is 1.0, whereas the worst is 0.0.

4. Specificity (SP) is calculated as the number of correct negative predictions divided

by the total number of negatives. It is also called true negative rate (TNR). The best

specificity is 1.0, whereas the worst is 0.0.
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5. Precision (PREC) is calculated as the number of correct positive predictions divided

by the total number of positive predictions. It is also called positive predictive value

(PPV). The best precision is 1.0, whereas the worst is 0.0.

6. False positive rate (FPR) is calculated as the number of incorrect positive predictions

divided by the total number of negatives. The best false positive rate is 0.0 whereas

the worst is 1.0. It can also be calculated as 1 – Specificity.

3.5.2 Mean Squared Error

Mean squared error (MSE) or mean squared deviation (MSD) is a measure of the quality

of an estimator. It measures the average squared difference between the estimated values

and the actual value. In fact, MSE is a risk function which is equal to the expected value

of the squared error loss. According to Lehmann and Casella (2006), the fact that MSE is

almost always strictly positive (and not zero) is because of the randomness or the estimator

not accounting for information that could produce a more accurate estimate. It is worth

noting that MSE is always non-negative due to the squared function and values closer to

zero are better. MSE is the second moment about the origin of the error, and thus, account

for both variance and squared bias of the estimator.

3.5.3 Mean Squared Prediction Error

Mean squared prediction error (MSPE) summarizes the predictive ability of a model. It is

a measure of a predictor’s fit or how well it predicts the true value. Ideally, the closer the

value to zero, the closer the prediction is to the true value. For this study, the trimmed

MSPE was used to account for the presence of potential outliers.
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Chapter 4

Simulation Study

This chapter presents a simulation study to validate our proposed method. The efficiency

and robustness of our method is compared with two variable selection methods under the

same data condition to demonstrate its advantages.

4.1 Simulated Data: Case Studies

The simulated data was based on the regression model in Equation (2.1) with varying

number of predictors (p) and observations (n) where n > p. Representations of the

variables, their dimensions and statistical distribution follow the description in Section

2.3. The method was evaluated using clean and contaminated data. Two different samples

(n = 200, p = 40) and (n = 800, p = 200) were chosen. These sample sizes were selected

to observe the performance of the proposed method for both small and large sample sizes.

First, regression coefficients were independently generated from the uniform distribution,

U(a = 2, b = 10), where a < b. Here a denotes the minimum bound or value whilst b

represents the maximum value for the distribution. For estimation purposes, 40% of the

predictors were chosen to be zeroes as a means to check how well the methods estimate the

zero coefficients, i.e, assuming those zero coefficients were the true regression coefficients.

The remaining 60% predictors were then taken to be greater than zero so not to interfere

with the fixed number of zero predictors. This specific idea and the R program was obtained

from (Mandal and Ghosh, 2019). The predictor variables were then generated from a

multivariate normal distribution where each xi follows the standard normal distribution.

The values of εi were chosen from standard normal distribution.
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4.1.1 Clean Data

Under clean data condition, εi were chosen from standard normal distribution without any

noise added. The figure below shows the distribution of the response variable in the clean

data for the sample (n = 800, p = 200).

Figure 4.1: Plot of the response variable for the large sample in the clean data.

Figure 4.1 above shows no considerable outliers from a boxplot. This provides satisfactory

evidence of no contamination in the response variable.

4.1.2 Data Contamination

To model contaminated data, 0.95-quantile of the y values were taken as noise and added

to randomly sampled response values in the data to make them outliers. Exactly 10% of

these extreme values were generated in each sample. The plot of the simulated error for

the sample (n = 800, p = 200) is shown in Figure 4.2 below.

From Figure 4.2, the outliers were large positive values and clustered at the left top corner.
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Figure 4.2: Plot of the response variable for the large sample after contamination.

4.2 Tuning Parameter Selection Criterion Used

The behavior of the three proposed tuning parameter criteria were all explored under both

data conditions with different samples. However, only the robust BIC criterion showed

consistency with its optimal tuning parameter selection and enforced sparsity in the models.

The method used the BIC criterion through a robust analog of the homotopy path, where it

chooses the optimal lambda from a range of provided lambdas that gives the best model fit.

Figure 4.3 shows the robust BIC path using the sample (n = 800, p = 200) at bdp = 25%

with contaminated data.

In Figure 4.3, the graph exhibits convexity and a local minimum which aligns with the

convex nature of Lasso. The red line indicates the optimal value to use in the penalty

function of the proposed method. Figure 4.4 also shows the number of significant predictors

selected by the method for the regression model. Therefore, the robust BIC criterion was

used in the proposed method for the analyses.
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Figure 4.3: Robust BIC optimal tuning parameter selection.

Figure 4.4: Number of significant predictors selected at the optimal tuning parameter.
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4.2.1 Method of Evaluation

The performance of the proposed method was tested against LAD-Lasso and the ncvreg

using statistics from their confusion matrix and MSE as discussed in 3.3. The LAD-Lasso

and ncvreg were chosen for comparison based on the loss function employed by them.

In the proposed method, least trimmed squares is the loss function whereas least absolute

deviation is the loss the function in LAD-Lasso. Moreover, the ncvreg uses the least squares

loss function. Despite all methods being penalization techniques and, thus, uses penalty

functions, the ncvreg and proposed method accommodate variable penalty functions which

are Lasso, SCAD and MCP while the LAD-Lasso uses only the Lasso penalty function.

Thus, for fair comparison, the common penalty function employed by them, Lasso, was

used in all three methods under each data condition and sample.

4.3 Simulation Results

This section presents the results obtained from the simulation studies under each model.

The first subsection covers the results for the clean data.

4.3.1 Results for Clean Data Samples

The selected samples were analyzed among the three penalized variable selection methods.

Here, 15 of the initial regression coefficients (true) were set to zero to in (n = 200, p = 40)

whilst 80(10%) for the sample (n = 800, p = 200) was chosen to be zeroes. This was done

to see how well the methods can estimate these zero regression coefficients. To further

check the effect of the breakdown point on the proposed method, the bdp was set at 10%

and 25% while keeping other values constant. The results are as shown in Table 4.1. Table

4.1 contains the confusion matrix for each method in each situation. Crucial statistics

computed from the confusion matrix as performance measures are displayed in Table 4.2.
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Table 4.1: Confusion matrix for the methods for clean data (one sample).

LAD-Lasso ncvreg

Proposed method

at bdp = 10%

Proposed method

at bdp = 25%

True False True False True False True False

n = 200 True 15 0 14 0 0 0 3 0

p = 40 False 0 25 1 25 15 25 12 25

n = 800 True 80 1 78 0 3 0 3 0

p = 200 False 0 119 2 120 77 120 77 120

Table 4.2: Statistics from the confusion matrix for clean data (one sample).

LAD-Lasso ncvreg

Proposed method

at bdp = 10%

Proposed method

at bdp = 25%

Accuracy 1.000 0.975 0.625 0.700

n = 200 Sensitivity 1.000 0.933 0.000 0.200

p = 40 Specificity 1.000 1.000 1.000 1.000

MSE (β̂) 1.17523 0.00024 0.01079 0.01099

Accuracy 0.995 0.990 0.615 0.615

n = 800 Sensitivity 1.000 0.975 0.038 0.038

p = 200 Specificity 0.992 1.000 1.000 1.000

MSE (β̂) 1.23627 0.00025 0.00044 0.00043

Results for the sample (n = 200, p = 40) clearly indicate that ncvreg was most efficient

and accurate as it recorded higher scores with the minimum MSE. Though, LAD-Lasso

recorded perfect scores for the sensitivity, accuracy and specificty, however, its MSE was

the largest among the competitors. The proposed method performed good in terms of

accuracy, perfect with specificity but poor at sensitivity. For the same sample size, the

performance was better with large bdp value for the proposed method. Similarly, the

results for (n = 800, p = 200) show that ncvreg performed very closely with LAD-Lasso

for accuracy, sensitivity and specificity despite LAD-lasso having the maximum for accuracy
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and sensitivity. However, ncvreg had very small MSE and that should be preferred. The

accuracy and specificity score slightly reduced for both ncvreg and the proposed method

as sample size and number of predictors increased. However, the MSE for the methods

reduces with large p and n except for ncvreg.

4.3.2 Result for Contaminated Data Samples

Same analyses were performed for both samples, however, under the condition of data

contamination. The confusion matrix obtained and its statistics for the three methods are

displayed in Tables 4.3 and 4.4, respectively.

Table 4.3: Confusion matrix for the methods under contamination (single sample).

LAD-Lasso ncvreg

Proposed method

at bdp = 10%

Proposed method

at bdp = 25%

True False True False True False True False

n = 200 True 6 4 15 25 6 0 8 0

p = 40 False 9 21 0 0 9 25 7 25

n = 800 True 8 13 75 113 45 0 70 0

p = 200 False 72 107 5 7 35 120 10 120

It is evident from Table 4.4 that the proposed method outperformed its competitors under

the condition of contamination except for sensitivity score in the sample (n = 200, p = 40).

This performance was better at bdp value of 25%. Also, the proposed method was good

at classifying the observation as shown in the confusion matrix in Table 4.3 for the large

sample (n = 800, p = 200). Resulting performance of the methods for this sample as

displayed in 4.4 also reveal the proposed method as a better estimator among them. It

only recorded a slightly lower sensitivity than the other two methods while achieving the

highest accuracy with least MSE. This result improved with the larger bdp value of 25%.
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Table 4.4: Statistics from the confusion matrix under contamination (single sample).

LAD-Lasso ncvreg

Proposed method

at bdp = 10%

Proposed method

at bdp = 25%

Accuracy 0.675 0.375 0.775 0.825

n = 200 Sensitivity 0.400 1.000 0.400 0.533

p = 40 Specificity 0.840 0.000 1.000 1.000

MSE (β̂) 79.0730 26.3718 0.0105 0.0100

Accuracy 0.575 0.410 0.825 0.950

n = 800 Sensitivity 0.100 0.938 0.563 0.875

p = 200 Specificity 0.892 0.058 1.000 1.000

MSE (β̂) 149.8613 28.0336 0.0022 0.0006

4.3.3 Average Performance of the Methods

The average performance of the methods were studied for 100 replications of the respective

models under the data conditions with results presented in Table 4.5.

Table 4.5: Average performance of the methods for 100 replications.

Clean Contaminated

Lad-Lasso ncvreg RPLTS1 RPLTS2 Lad-Lasso ncvreg RPLTS1 RPLTS2

Accuracy 0.995 0.940 0.638 0.659 0.578 0.423 0.646 0.681

n = 200

p = 40

Sensitivity 0.993 0.850 0.094 0.146 0.164 0.928 0.115 0.201

Specificity 0.993 0.851 0.102 0.155 0.170 0.918 0.124 0.209

MSE(β̂) 1.438 0.00016 0.00258 0.00258 103.330 28.661 0.00246 0.00239

Accuracy 0.991 0.985 0.614 0.613 0.579 0.420 0.826 0.927

n = 800

p = 200

Sensitivity 0.982 0.962 0.036 0.033 0.137 0.971 0.564 0.818

Specificity 0.982 0.963 0.045 0.043 0.144 0.963 0.568 0.820

MSE(β̂) 1.165 0.00022 0.00014 0.00013 146.245 25.624 0.00431 0.00517

In the above table, RPLTS1 and RPLTS2 represent the proposed method at 10% and 25%

respectively. The proposed method did not perform well with the clean data but showed

most efficiency at bdp of 25% among the competitors with large p and n.
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Chapter 5

Illustrative Example for a Real

Dataset

To give a practical illustration, further analyses were performed on a real-world data. The

data was collected on acute aquatic toxicity towards the fish Pimephales promelas (fathead

minnow) on a set of 908 chemicals as reported in Cassotti et al. (2014) and available on

the UCI data platform. The dataset contains 9 variables and 546 observations. Thus,

8 attributes (molecular descriptors) of 546 chemicals were used to predict quantitative

acute aquatic toxicity towards LC50 (Daphnia Magna). The variable description indicates

LC50 as the response variable which shows the concentration that causes death in 50%

of test Daphnia magna over a test duration of 48 hours. The eight molecular descriptors

which formed the predictors were; TPSA(Tot) (Molecular properties), SAacc (Molecular

properties), H-050 (Atom-centred fragments), MLOGP (Molecular properties), RDCHI

(Connectivity indices), GATS1p (2D autocorrelations), nN (Constitutional indices) and

C-040 (Atom-centred fragments). All values were measured on a continuous scale which

meets the basic requirement for use as linear regression problem.

5.1 Exploratory Analyses

First, the data was explored as often done in most statistical analyses to get a fair idea of

the nature of the data. Here, the check for missing values was inevitable as the presence of

one or more has to be computed by appropriate technique. The result, however, revealed

no missing value in the data which was highly desirable for the analyses.
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Figure 5.1: Scatterplot matrix among the variables.

Figure 5.1 above shows the scatterplot matrix between the variables in the data providing

a visualization on how the data points are distributed in each pair of variables. A bivariate

correlation was performed on the predictors to check how the variables are associated in a

linear fashion.

Figure 5.2 shows the linear association between the variables computed using robust statistics

from the covMcd function at bulk size (alpha = 0.8) in the robustbase package. Except

for TPSA which showed strong positive linear association with SAacc and moderate postive

linear association with Nn, the remaining predictors had either weak positive or negative

linear relationship among themselves. However, the predictors were standardized to reduce

the effect of correlation before fitting the models. A further check on the distribution of

the response variable showed no severe outlying values. To validate the performance of the

methods under contamination, noise was added to random samples of the response variable
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Figure 5.2: Robust linear correlation between the variables.

as did in the simulation.

The next thing was to split the data to constitute the training set and test set. The training

set was used to fit the regression model while the test set was used to evaluate the model.

The choice of partition for data is not fixed with common choices among researchers like

80 : 20, 70 : 30 and 60 : 40. In such partitions, the training set is chosen larger than the

test set. In this study, the data partition was chosen such that the training set constituted
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2
3

of the data which represent about 67% while the remaining 1
3

formed the test set.

5.2 Model Fit and Evaluation

To compare the performance of the methods, a regression model was fitted with the training

dataset for each method and the sparsity of the models considered. Thus, the number of

significant variables selected and those excluded in the model by each method based on the

values of the estimated regression coefficients were tabulated. Moreover, the trimmed mean

square prediction error was finally used to evaluate how well the model performed. Here

10% of the test data was trimmed based on the response to make the prediction. Summary

of the model fits are presented in Table 5.1.

Table 5.1 shows that the ncvreg and the proposed method at bdp = 25% selected six (6)

variables each as significant with 5 variables being same for both methods. Accordingly,

two predictors were in the linear model for these two methods. On the other hand,

the LAD-Lasso selected only two of the eight predictors while excluding the remaining

predictors which does not seem convincing. Moreover, the proposed method at bdp = 10%

selected all variables as significant. A sure way to choose an efficient method was through

the trimmed MSPE. The method with least trimmed MSPE is considered best and that

gives the best model fit for the data. Clearly, the proposed method at bdp =25% had the

least trimmed MSPE and thus, the best method for the real data with contamination.
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Table 5.1: Summary of model fit by the methods.

Variables

selected

Variables

excluded Trimmed MSPE

LAD-Lasso TPSA, MLOGP SAacc, H-050, RDCHI,

GATS1p, nN, C-040

22.36

ncvreg TPSA, H-050, MLOGP,

RDCHI, GATS1p, nN

SAacc, C-040 34.36

Proposed method

at bdp = 10%

TPSA, SAacc, MLOGP,

RDCHI, GATS1p, nN

H-050, C-040

10.48

Proposed method

at bdp = 25%

TPSA, SAacc, MLOGP,

RDCHI, GATS1p, nN

H-050, C-040 6.72
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Chapter 6

Discussion and Conclusion

This chapter concludes this work by summarizing the results and providing directions for

future study.

6.1 Summary

The attempt to implement robust variable selection methods has been an interesting study

with many proposed methods known in literature. This is due to the challenges of analyzing

high-dimensional data for estimation and modeling purposes. Classical methods like the

OLS have been shown to perform poorly under assumption violations and in the presence

of severe outliers. In this study, we proposed a robust variable selection in multiple linear

regression via penalized least trimmed squares. The proposed method is a penalization

technique which employs varying penalty functions (Lasso, MCP, SCAD). Since the choice

of optimal tuning parameter affects the performance of variable selection techniques, a

robust BIC criterion was developed and used for the selection. The method has high

breakdown point that does not depend on the number of predictors.

In evaluating the performance of the proposed method, it was compared with the ncvreg

and LAD-Lasso under the conditions of clean and contaminated data. The estimation

accuracy of the proposed method was good, though, not optimal under clean data. However,

its efficiency increased with increasing sample size, predictors and breakdown point. Also,

with contaminated data, the proposed method outperformed its counterparts with very high

estimation accuracy and very small MSE. Again, it was observed that the method performed

better with increasing sample size and breakdown point with contaminated data. A real
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dataset was selected to practically validate the simulation results, now with trimmed MSPE

used as the performance metric. With 10% of the test data trimmed, the trimmed MSPE

from the model fit for each method was computed and it revealed the proposed method at

bdp = 25% to possess the least value. In fact, the trimmed MSPE of the proposed method

at bdp = 25% was about three times smaller than that of LAD-Lasso and approximately

four times smaller than that of the ncvreg. This undoubtedly indicates the proposed

method as efficient for variable selection especially under severe outliers contamination.

6.2 Future Work

The study identifies the following directions for future work. Though the robust BIC

criterion performed well, a more robust optimal tuning parameter selection criterion can be

constructed through bootstrap which will improve the efficiency of the method. Moreover,

the proposed method can be extended to the multivariate case since such method is

currently not known or implemented.
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Appendix

Code for Real Data Illustration

setwd("C:/ Users/Kojo Asiamah/Desktop/attempt/simulation

/Real data")

require(robustbase)

library(caTools)

real <- read.csv(file = "qsar_aquatic_toxicity.csv",

header = F, stringsAsFactors = F)

dim(real)

names(real)<-c("TPSA", "SAacc", "H_050", "MLOGP",

"RDCHI", "GATS1p", "nN", "C_040", "LC50")

anyNA(real) # checking for missing values

head(real) # viewing the first 6 observations

cor(real) # checking the bivariate correlation

# -------------------

# Data partitioning

# -------------------

set.seed(11)

split = sample.split(real , SplitRatio = 2/3)

D1 = subset(real , split == TRUE) # training set

D2 = subset(real , split == FALSE) # test set

dim(D1)

D1 <- as.matrix(D1)

y <- D1[ , 9] # response variable

X <- D1[ , -9] # predictors

# Trimming D2
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D2 <- real[order(D2[,9]), ]

D2 <- D2[-c(1: floor(0.05*nrow(D2)), nrow(D2),

ceiling(0.95*nrow(D2)): nrow(D2)), ]

# -----------------------------------------------------

# Checking the distribution of error terms

# -----------------------------------------------------

plot(y)

boxplot(y)

# -------------------------------------------

# Generating and adding noise to the response

# -------------------------------------------

noise = rep(quantile(y, 0.55)*10, floor(0.1*length(y)))

y[1:floor(0.1*length(y))] = sample(y,

floor(0.1*length(y)),

replace = F) + noise

plot(y) # nature of error terms after adding noise

# --------------------------------------

# Robust regression for the FULL model

# --------------------------------------

ncvreg.robust.full = function(X, y,

bdp = 0.25,

verbose = F) {

n = nrow(X)

p = ncol(X)

h = robustbase ::h.alpha.n(0.5 + bdp , n, 1L)

#fit = robustbase ::lmrob.fit(X, y, control =

robustbase ::lmrob.control ())

fit = robustbase :: lmrob.fit(cbind(1, apply(X, 2, scale ,

center= s_Qn(X, mu.too = TRUE)[1],

scale = Qn(X, finite.corr = FALSE ))),
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y, control = robustbase :: lmrob.control ())

# Intercept is added to X

beta.hat = fit$coefficients # Non -sparse beta estimate

sigma.hat = fit$scale # Should be used as the

# error estimate

# with ALL predictors included

df.hat = sum(abs(beta.hat) >= .Machine$double.eps)

# Equal to p with probability 1

epsilon.hat = fit$residuals

return(list(beta.hat = beta.hat , sigma.hat = sigma.hat ,

df.hat = df.hat , epsilon.hat = epsilon.hat))

}

# ----------------------------

# Penalized robust regression

# ----------------------------

ncvreg.robust = function(X,

y,

full.model = NULL , # Provide full model

# to improve efficiency

beta.hat.init = NULL ,

penalty = c("MCP", "SCAD", "lasso"),

gamma = switch(penalty , SCAD = 3.7, 3),

alpha = 1.0,lambda ,eps = 1.0E-06,

max.iter = 1000L,max.iter.C.step = 500L,

penalty.factor = rep(1.0, ncol(X)),

warn = TRUE , bdp = 0.25,

# breakdown points (between

# 0 = least robust and 0.5 = most robust)

verbose = F){
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n = nrow(X)

p = ncol(X)

h = robustbase ::h.alpha.n(0.5 + bdp , n, 1L)

if (is.null(full.model)) {

full.model = ncvreg.robust.full(X, y, bdp , verbose)

}

if (is.null(beta.hat.init)) {

beta.hat.init = full.model$beta.hat

}

X = cbind(1, apply(X, 2, scale , center =

s_Qn(X, mu.too = TRUE)[1],

scale = Qn(X, finite.corr = FALSE )))

residuals = as.vector(y - X %*% beta.hat.init)

best = order(residuals , decreasing = FALSE)[1:h]

beta = beta.hat.init

for (iter in 1:max.iter.C.step) {

fit = ncvreg :: ncvfit(X = X[best , ], y = y[best],

init = beta ,

penalty , gamma , alpha , lambda , eps , max.iter ,

penalty.factor , warn)

dbeta = max(abs(as.vector(fit$beta) - beta))

beta = as.vector(fit$beta)

residuals = (y - X %*% matrix(beta , nrow = p + 1))^2

best = order(residuals , decreasing = FALSE)[1:h]

loss = sum(residuals[best])

if (verbose) {

cat("C-step iter = ", iter , ": ",

"loss = ", loss , ",beta = (", paste(beta ,

collapse = ", "), ")\n", sep = "")

}
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if ((dbeta < eps) || (iter == max.iter.C.step)) {

res = fit

break

}

}

if (warn && (iter == max.iter.C.step)) {

warning("Maximum number of C-steps achieved.

    # Consider increasing max.iter.C.step.")

}

res$n = n

res$best = best

res$loss = loss

res$residualss = residuals

res$beta.hat = res$beta

res[["beta"]] = NULL

res$nu.hat = sum(abs(fit$beta[-1])

>= .Machine$double.eps)

res$w.hat = rep(0.0, n)

res$w.hat[best] = 1.0

alpha = 1 - (h - res$nu.hat )/(n - res$nu.hat)

res$sigma.hat = sqrt(res$loss/(h - res$nu.hat)/

pchisq(qchisq(1 - alpha , 1), 3))

# for optimal tuning parameter selection

res$BIC = res$nu.hat*(log(n)) + n*(log(2*pi*res$sigma.hat)

+ 1 - (res$nu.hat/h))

res$AIC = 2*res$nu.hat + n*(log(2*pi*res$sigma.hat)
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+ 1 - (res$nu.hat/h))

res$BIC = n*(res$sigma.hat/full.model$sigma.hat)^2 -

n + 2*(res$nu.hat+1)

return(res)

}

# -----------------

# "Homotopy" path

# -----------------

full.model = ncvreg.robust.full(X = apply(X, 2, scale ,

center =s_Qn(X, mu.too = TRUE)[1], scale = Qn(X,

finite.corr = FALSE)), y = y)

lambda.grid = exp(seq(from =

log(0.0001), to = log(0.99), length.out = 100L))

BIC.grid = rep(0.0, 100L)

nu.hat.grid = rep(0.0, 100L)

beta.grid <- rep(0.0, 100L)

beta.hat = full.model$beta.hat

BIC.opt = Inf

lambda.opt = NULL

beta.hat.opt = NULL

nu.hat.opt = NULL

for (i in 1:length(lambda.grid)) {

lambda = lambda.grid[i]

fit = ncvreg.robust(X = apply(X, 2, scale ,

center = s_Qn(X, mu.too = TRUE)[1], scale =

Qn(X, finite.corr = FALSE)),

y = y, full.model = full.model , beta.hat.
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init = beta.hat , penalty = "lasso",

lambda = lambda , verbose = FALSE)

beta.grid = fit$beta.hat[i]

beta.hat = fit$beta.hat

BIC.grid[i] = fit$BIC

nu.hat.grid[i] = fit$nu.hat

if (fit$BIC < BIC.opt) {

BIC.opt = fit$BIC

lambda.opt = lambda

beta.hat.opt = fit$beta.hat

nu.hat.opt = fit$nu.hat

}

}

plot(log(lambda.grid), BIC.grid , type = "l",

xlab = expression(paste("log (",lambda ,")"))

, ylab = "BIC")

abline(v = log(lambda.opt), col = "red")

plot(log(lambda.grid), nu.hat.grid , type = "l",

xlab = expression(paste("log (",lambda ,")")),

ylab = "nu -hat")

points(log(lambda.grid), nu.hat.grid)

abline(v = log(lambda.opt), col = "red")

cat("\n\n\n")

cat("lambda opt = ", lambda.opt , "\n", sep = "")

cat("beta -hat opt = (", paste(beta.hat.opt ,

collapse = ", "), ")\n", sep = "")

cat("nu -hat opt = ", nu.hat.opt , "\n", sep = "")
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# -----------------------------------

# Fitting model with optimal lambda

# -----------------------------------

fit.rob = ncvreg.robust(X = 2, scale ,

center = s_Qn(X, mu.too = TRUE)[1], scale =

Qn(X, finite.corr = FALSE)),

, y = y, penalty = "lasso", lambda = lambda.opt)

cat("robust beta -hat w/ outliers =

(", paste(fit.rob$beta , collapse = ", ")

, ")\n", sep = "")

# ---------------------------------------

# Computing the MSPE for proposed method

# ---------------------------------------

yhat.prop <- as.matrix(cbind(1,D2[ ,-9]))

%*% as.matrix(fit.rob$beta.hat)

yobs <- as.matrix(D2[, 9])

MSPE.prop <- mean((yobs -yhat.prop)^2)

MSPE.prop

# ---------------------------------------------

# Using the LAD -lasso package to fit same data

# --------------------------------------------

library("flare")

mod1 = slim(X=X, Y=y, nlambda = 5, lambda = NULL ,

lambda.min.ratio=0.3,

method ="lasso", # Lasso shrinkage

q=1) # LAD loss

# ------------------------------

# Computing the MSPE for LAD -lasso

# ------------------------------
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bhat <-c(mod1$intercept[ , 2], mod1$beta[ , 2]); bhat

yhat.lad <- as.matrix(cbind(1,D2[ ,-9]))

%*% as.matrix(bhat)

yobs <- as.matrix(D2[, 9])

MSPE.lad <- mean((yobs -yhat.lad)^2)

MSPE.lad

# -----------------------------------------

# Using the ncvreg package to fit same data

# -----------------------------------------

require(ncvreg)

newfit <- ncvreg(X, y, family = "gaussian",

penalty = "lasso")

cvfit <- cv.ncvreg(X, y, family = "gaussian",

penalty = "lasso")

summary(newfit , cvfit$lambda.min)

# ------------------------------

# Computing the MSPE for ncvreg

# ------------------------------

yhat.ncv <-predict(newfit , as.matrix(D2[ ,-9]),

type="response", lambda = cvfit$lambda.min)

yobs <- as.matrix(D2[, 9])

MSPE.ncv <- mean((yobs -yhat.ncv)^2)

MSPE.ncv
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# -----------------------------------------------

# Alternative way to compute the MSPE for ncvreg

# -----------------------------------------------

bh <- coef(newfit , cvfit$lambda.min)

yhatp <- as.matrix(cbind(1,D2[ ,-9])) %*% as.matrix(bh)

yobs <- as.matrix(D2[, 9])

MSPE.prop <- mean((yobs -yhatp)^2)

MSPE.prop

Code for Simulation (one sample)

# ________________

# Code for RPWLTS

# install.packages (" ncvreg ")

# install.packages (" robustbase ")

# ----------------------------

# Penalized robust regression

# ----------------------------

ncvreg.robust = function(X,

y,

full.model = NULL , # Provide full model

# to improve efficiency

beta.hat.init = NULL ,

penalty = c("MCP", "SCAD", "lasso"),

gamma = switch(penalty , SCAD = 3.7, 3),

alpha = 1.0,lambda ,eps = 1.0E-06,
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max.iter = 1000L,max.iter.C.step = 500L,

penalty.factor = rep(1.0, ncol(X)),

warn = TRUE , bdp = 0.25,

# breakdown points (between

# 0 = least robust and 0.5 = most robust)

verbose = F){

n = nrow(X)

p = ncol(X)

h = robustbase ::h.alpha.n(0.5 + bdp , n, 1L)

if (is.null(full.model)) {

full.model = ncvreg.robust.full(X, y, bdp , verbose)

}

if (is.null(beta.hat.init)) {

beta.hat.init = full.model$beta.hat

}

X = cbind(1, apply(X, 2, scale , center =

s_Qn(X, mu.too = TRUE)[1],

scale = Qn(X, finite.corr = FALSE )))

residuals = as.vector(y - X %*% beta.hat.init)

best = order(residuals , decreasing = FALSE)[1:h]

beta = beta.hat.init

for (iter in 1:max.iter.C.step) {

fit = ncvreg :: ncvfit(X = X[best , ], y = y[best], init = beta ,

penalty , gamma , alpha , lambda , eps , max.iter ,

penalty.factor , warn)

dbeta = max(abs(as.vector(fit$beta) - beta))

beta = as.vector(fit$beta)

residuals = (y - X %*% matrix(beta , nrow = p + 1))^2

best = order(residuals , decreasing = FALSE)[1:h]

loss = sum(residuals[best])
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if (verbose) {

cat("C-step iter = ", iter , ": ",

"loss = ", loss , ",beta = (", paste(beta ,

collapse = ", "), ")\n", sep = "")

}

if ((dbeta < eps) || (iter == max.iter.C.step)) {

res = fit

break

}

}

if (warn && (iter == max.iter.C.step)) {

warning("Maximum number of C-steps achieved.

    # Consider increasing max.iter.C.step.")

}

res$n = n

res$best = best

res$loss = loss

res$residualss = residuals

res$beta.hat = res$beta

res[["beta"]] = NULL

res$nu.hat = sum(abs(fit$beta[-1])

>= .Machine$double.eps)

res$w.hat = rep(0.0, n)

res$w.hat[best] = 1.0

alpha = 1 - (h - res$nu.hat )/(n - res$nu.hat)

res$sigma.hat = sqrt(res$loss/(h - res$nu.hat)/

pchisq(qchisq(1 - alpha , 1), 3))
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# for optimal tuning parameter selection

res$BIC = res$nu.hat*(log(n)) + n*(log(2*pi*res$sigma.hat)

+ 1 - (res$nu.hat/h))

res$AIC = 2*res$nu.hat + n*(log(2*pi*res$sigma.hat)

+ 1 - (res$nu.hat/h))

res$BIC = n*(res$sigma.hat/full.model$sigma.hat)^2 -

n + 2*(res$nu.hat+1)

return(res)

}

# ______________________________

# Data Generation - One Sample

# ------------------------------

set.seed(1)

p = 200

n = 800

X = matrix(rnorm(n*p), nrow = n, ncol = p)

# Design Matrix

beta = c(runif(120, 2, 10), rep(0, 80)) # beta

eps = 0.1*matrix(rnorm(n), nrow = n, ncol = 1)

# random error

y = X %*% matrix(beta , nrow = p, ncol = 1) + eps

# response variable

X1 <- scale(X, center = T, scale = T)

# ----------

# Adding noise

# ----------

noise = rep(quantile(y, 0.95)*10, floor(0.1*length(y)))

y[1:floor(0.1*length(y))] = sample(y, floor(0.1*length(y))
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, replace = F) + noise

# ----------

# LAD -lasso

# ----------

library("flare")

mod1 = slim(X=X1, Y=y, nlambda = 3, lambda = NULL ,

lambda.min.ratio=0.3,

method ="lasso", # Lasso shrinkage

q=1) # LAD loss

beta.hat.lad <- as.vector(c(mod1$intercept[ , 2],

mod1$beta[ , 2]))

sum((beta==0) & (mod1$beta[ , 2] == 0))

# MSE for lad -lasso

mse_lad = mean((beta - beta.hat.lad[-1])^2)

mse_lad

# Generating the confusion matrix for LAD -lasso

TP <- sum((beta==0) & (mod1$beta[ , 2] == 0)) # TP

FP <- sum((beta!=0) & (mod1$beta[ , 2] == 0)) # FP

FN <- sum((beta==0) & (mod1$beta[ , 2] != 0)) # FN

TN <- sum((beta!=0) & (mod1$beta[ , 2] != 0)) # TN

conf_mat <- matrix(c(TP , FP , FN , TN),

ncol = 2, byrow = T)

conf_mat <- as.table(conf_mat)

rownames(conf_mat)<-c("TRUE", "FALSE")

colnames(conf_mat)<-c("TRUE", "FALSE")

# computing the metrics from confusion matrix

require(caret)

require(robustbase)

confusionMatrix(conf_mat)

require(ncvreg)
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nfi <- ncvreg(X, y, family = "gaussian",

penalty = "lasso")

cvfit <- cv.ncvreg(X, y, family = "gaussian",

penalty = "lasso")

nfi2 <- ncvreg(X, y, family = "gaussian",

penalty = "lasso")

nc_nonrob <-coef(nfi2, cvfit$lambda.min)

mse_nc = mean((beta - nc_nonrob[-1])^2)

mse_nc

# Generating the confusion matrix

TP <- sum((beta==0) & (nc_nonrob[-1]==0)) # TP

FP <- sum((beta!=0) & (nc_nonrob[-1]==0)) # FP

FN <- sum((beta ==0) & (nc_nonrob[-1]!=0)) # FN

TN <- sum((beta!=0) & (nc_nonrob[-1]!=0)) # TN

conf_mat <- matrix(c(TP , FP , FN , TN), ncol = 2, byrow = T)

conf_mat <- as.table(conf_mat)

rownames(conf_mat)<-c("TRUE", "FALSE")

colnames(conf_mat)<-c("TRUE", "FALSE")

# computing the metrics from confusion matrix

confusionMatrix(conf_mat)

# -----------------

# "Homotopy" path

# -----------------

full.model = ncvreg.robust.full(X = apply(X, 2, scale ,

center =s_Qn(X, mu.too = TRUE)[1], scale = Qn(X,

finite.corr = FALSE)), y = y)

lambda.grid = exp(seq(from =

log(0.0001), to = log(0.99), length.out = 100L))

BIC.grid = rep(0.0, 100L)
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nu.hat.grid = rep(0.0, 100L)

beta.grid <- rep(0.0, 100L)

beta.hat = full.model$beta.hat

BIC.opt = Inf

lambda.opt = NULL

beta.hat.opt = NULL

nu.hat.opt = NULL

for (i in 1:length(lambda.grid)) {

lambda = lambda.grid[i]

fit = ncvreg.robust(X = apply(X, 2, scale ,

center = s_Qn(X, mu.too = TRUE)[1], scale =

Qn(X, finite.corr = FALSE)),

y = y, full.model = full.model , beta.hat.

init = beta.hat , penalty = "lasso",

lambda = lambda , verbose = FALSE)

beta.grid = fit$beta.hat[i]

beta.hat = fit$beta.hat

BIC.grid[i] = fit$BIC

nu.hat.grid[i] = fit$nu.hat

if (fit$BIC < BIC.opt) {

BIC.opt = fit$BIC

lambda.opt = lambda

beta.hat.opt = fit$beta.hat

nu.hat.opt = fit$nu.hat

}

}

plot(log(lambda.grid), BIC.grid , type = "l",
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xlab = expression(paste("log (",lambda ,")"))

, ylab = "BIC")

abline(v = log(lambda.opt), col = "red")

plot(log(lambda.grid), nu.hat.grid , type = "l",

xlab = expression(paste("log (",lambda ,")")),

ylab = "nu -hat")

points(log(lambda.grid), nu.hat.grid)

abline(v = log(lambda.opt), col = "red")

cat("\n\n\n")

cat("lambda opt = ", lambda.opt , "\n", sep = "")

cat("beta -hat opt = (", paste(beta.hat.opt ,

collapse = ", "), ")\n", sep = "")

cat("nu -hat opt = ", nu.hat.opt , "\n", sep = "")

# Generating the confusion matrix

TP <- sum((beta==0) & (beta.hat.opt[-1]==0)) # TP

FP <- sum((beta!=0) & (beta.hat.opt[-1]==0)) # FP

FN <- sum((beta ==0) & (beta.hat.opt[-1]!=0)) # FN

TN <- sum((beta!=0) & (beta.hat.opt[-1]!=0)) # TN

conf_mat <- matrix(c(TP , FP , FN , TN),

ncol = 2, byrow = T)

conf_mat <- as.table(conf_mat)

rownames(conf_mat)<-c("TRUE", "FALSE")

colnames(conf_mat)<-c("TRUE", "FALSE")

# computing the metrics from confusion matrix

mse_prop_method = mean((beta -beta.hat.opt[-1])^2)

mse_prop_method

confusionMatrix(conf_mat)
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# ----------------------------

# Robust with outliers

# ----------------------------

fit.rob = ncvreg.robust(X = X, y = y,

penalty = "lasso", lambda = lambda.opt )

cat("robust beta -hat w/ outliers =

 (", paste(fit.rob$beta , collapse = ", "), ")

 \n", sep = "")

sum(fit.rob$beta[-1]==0)

mse_p2 = mean((beta - fit.rob$beta[-1])^2)

mse_p2

# Generating the confusion matrix

TP <- sum((beta==0) & (fit.rob$beta[-1]==0)) # TP

FP <- sum((beta!=0) & (fit.rob$beta[-1]==0)) # FP

FN <- sum((beta ==0) & (fit.rob$beta[-1]!=0)) # FN

TN <- sum((beta!=0) & (fit.rob$beta[-1]!=0)) # TN

conf_mat <- matrix(c(TP , FP , FN , TN), ncol = 2, byrow = T)

conf_mat <- as.table(conf_mat)

rownames(conf_mat)<-c("TRUE", "FALSE")

colnames(conf_mat)<-c("TRUE", "FALSE")

# computing the metrics from confusion matrix

confusionMatrix(conf_mat)
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Code for Simulation (100 replications)

# ----------------------------

# Penalized robust regression

# ----------------------------

ncvreg.robust = function(X,

y,

full.model = NULL , # Provide full model

# to improve efficiency

beta.hat.init = NULL ,

penalty = c("MCP", "SCAD", "lasso"),

gamma = switch(penalty , SCAD = 3.7, 3),

alpha = 1.0,lambda ,eps = 1.0E-06,

max.iter = 1000L,max.iter.C.step = 500L,

penalty.factor = rep(1.0, ncol(X)),

warn = TRUE , bdp = 0.25,

# breakdown points (between

# 0 = least robust and 0.5 = most robust)

verbose = F){

n = nrow(X)

p = ncol(X)

h = robustbase ::h.alpha.n(0.5 + bdp , n, 1L)

if (is.null(full.model)) {

full.model = ncvreg.robust.full(X, y, bdp , verbose)

}

if (is.null(beta.hat.init)) {

beta.hat.init = full.model$beta.hat

}

X = cbind(1, apply(X, 2, scale , center =
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s_Qn(X, mu.too = TRUE)[1],

scale = Qn(X, finite.corr = FALSE )))

residuals = as.vector(y - X %*% beta.hat.init)

best = order(residuals , decreasing = FALSE)[1:h]

beta = beta.hat.init

for (iter in 1:max.iter.C.step) {

fit = ncvreg :: ncvfit(X = X[best , ], y = y[best], init = beta ,

penalty , gamma , alpha , lambda , eps , max.iter ,

penalty.factor , warn)

dbeta = max(abs(as.vector(fit$beta) - beta))

beta = as.vector(fit$beta)

residuals = (y - X %*% matrix(beta , nrow = p + 1))^2

best = order(residuals , decreasing = FALSE)[1:h]

loss = sum(residuals[best])

if (verbose) {

cat("C-step iter = ", iter , ": ",

"loss = ", loss , ",beta = (", paste(beta ,

collapse = ", "), ")\n", sep = "")

}

if ((dbeta < eps) || (iter == max.iter.C.step)) {

res = fit

break

}

}

if (warn && (iter == max.iter.C.step)) {

warning("Maximum number of C-steps achieved.

    # Consider increasing max.iter.C.step.")

}

res$n = n
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res$best = best

res$loss = loss

res$residualss = residuals

res$beta.hat = res$beta

res[["beta"]] = NULL

res$nu.hat = sum(abs(fit$beta[-1])

>= .Machine$double.eps)

res$w.hat = rep(0.0, n)

res$w.hat[best] = 1.0

alpha = 1 - (h - res$nu.hat )/(n - res$nu.hat)

res$sigma.hat = sqrt(res$loss/(h - res$nu.hat)/

pchisq(qchisq(1 - alpha , 1), 3))

# for optimal tuning parameter selection

res$BIC = res$nu.hat*(log(n)) + n*(log(2*pi*res$sigma.hat)

+ 1 - (res$nu.hat/h))

res$AIC = 2*res$nu.hat + n*(log(2*pi*res$sigma.hat)

+ 1 - (res$nu.hat/h))

res$BIC = n*(res$sigma.hat/full.model$sigma.hat)^2 -

n + 2*(res$nu.hat+1)

return(res)

}

set.seed(1)

p = 40

n = 200

nrep = 100
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for (ii in 1:length(p)) {

for (jj in 1:length(n)) {

Accuracy <- c()

Sensitivity <- c()

Specificity <- c()

mse_rob = c()

for (rep in 1:nrep) {

np <- n[jj]*p[ii]

X = matrix(rnorm( np, 0, 1),

nrow = n[jj], ncol = p[ii])

# Design Matrix

# beta = c(runif(120, 2, 10),

rep(0, 80)) # beta

beta = c(runif(floor(.6*p[ii]), 2, 10),

rep(0, ceiling(0.4*p[ii])))

# beta

eps = 0.1*matrix(rnorm(n[jj], 0, 1),

nrow = n[jj], ncol = 1)

# random error

y = X %*% matrix(beta , nrow = p[ii],

ncol = 1) + eps # response variable

noise = rep(quantile(y, 0.95)*10, floor(0.1*length(y)))

y[1:floor(0.1*length(y))] = sample(y,

floor(0.1*length(y)), replace = F) + noise

# -----------------

# "Homotopy" path

# -----------------
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full.model = ncvreg.robust.full(X = apply(X, 2, scale ,

center =s_Qn(X, mu.too = TRUE)[1], scale = Qn(X,

finite.corr = FALSE)), y = y)

lambda.grid = exp(seq(from =

log(0.0001), to = log(0.99), length.out = 100L))

BIC.grid = rep(0.0, 100L)

nu.hat.grid = rep(0.0, 100L)

beta.grid <- rep(0.0, 100L)

beta.hat = full.model$beta.hat

BIC.opt = Inf

lambda.opt = NULL

beta.hat.opt = NULL

nu.hat.opt = NULL

for (i in 1:length(lambda.grid)) {

lambda = lambda.grid[i]

fit = ncvreg.robust(X = apply(X, 2, scale ,

center = s_Qn(X, mu.too = TRUE)[1], scale =

Qn(X, finite.corr = FALSE)),

y = y, full.model = full.model , beta.hat.

init = beta.hat , penalty = "lasso",

lambda = lambda , verbose = FALSE)

beta.grid = fit$beta.hat[i]

beta.hat = fit$beta.hat

BIC.grid[i] = fit$BIC

nu.hat.grid[i] = fit$nu.hat

if (fit$BIC < BIC.opt) {

BIC.opt = fit$BIC
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lambda.opt = lambda

beta.hat.opt = fit$beta.hat

nu.hat.opt = fit$nu.hat

}

}

TP <- sum((beta==0) & (beta.hat.opt[-1]==0)) # TP

FP <- sum((beta!=0) & (beta.hat.opt[-1]==0)) # FP

FN <- sum((beta ==0) & (beta.hat.opt[-1]!=0)) # FN

TN <- sum((beta!=0) & (beta.hat.opt[-1]!=0)) # TN

conf_mat <- matrix(c(TP , FP , FN , TN),

ncol = 2, byrow = T)

conf_mat <- as.table(conf_mat)

rownames(conf_mat)<-c("TRUE", "FALSE")

colnames(conf_mat)<-c("TRUE", "FALSE")

# computing the metrics from confusion matrix

Accuracy <- append(Accuracy , (TP+TN)/(TP+TN +FP+FN))

Sensitivity <- append(Sensitivity , TP/(TP+FN) )

Specificity <- append(Sensitivity , TN/(TN+FP) )

mse_rob <- append(mse_rob , (beta - beta.hat.opt[-1])^2)

}

}

matrix(1:4, nrow=2, byrow = T)

cat("\n\n")

print(mean(Accuracy ))

print(mean(Sensitivity ))

74



print(mean(Specificity ))

}

mean(mse_rob)
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