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Abstract

With the growing interest in personalized or precision medicine, it is indispensable that

moderation analysis which is primarily related to the study of differential treatment ef-

fects among patients with different characteristics, also serves as the bedrock for precision

medicine is taken more seriously. Concerning moderation analysis with binary outcomes,

we start with an interesting observation, which shows that heterogeneous treatment effects

could be equivalently estimated via a role exchange between the outcome and the treatment

variable. The result holds for both experimental data and observational data, yet with an

important difference in interpretation. Two estimators of moderating effects corresponding

to two GLM models can be obtained. We combine the two models into a single model

and employ the GEE approach to simultaneously obtain parameter estimates associated

with the moderating effects (interaction terms), on which basis of refined inference can be

made. The improved efficiency is helpful in addressing the lack-of-power problem that is

common in the search for moderators. We investigate the proposed method by simulation

and provide an illustration with data from a randomized trial concerning wart treatment.

Essentially, the new revelation about the ‘role swapping’ technique can be useful by offer-

ing more flexible and computational ease in scenarios where direct modeling of interactions

encounters difficulties and becomes inconvenient, owing to modeling complexity, numerical

difficulty, or unavailability of implementation.
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Chapter 1

Introduction

1.1 Background and Statement of Problem

Moderation analysis has gained a lot of referrals in different fields of study owning to the

enormous advantages it offers in recent times. However, these advantages have never been

completely or fully archived or perceived by analysts, clinicians, and students in training.

The concept of moderation analysis is one of the theories employed to better refine and

comprehend a causal relationship empirically. In fact, moderation analysis is fundamental

to precision medicine or assessment of differential causal effects. It is highly needed in

clinical examination settings today and a similar origination has been stretched out to

investigations in different fields.

Customizing healthcare, treatments, medical decisions, or products tailored to a sub-

group of patients is the new quest in the health industry which has gained a lot of traction

in political domain. With this growing interest in personalized or precision medicine, re-

searchers and clinicians look for best practices that are aimed at advancing and proposing

models that seek to alleviate the “one-drug-fits-for-all” approach. Moderation analysis is

basically concerned with differential treatment effects among patients with different char-

acteristics, supplying the foundation for precision medicine. Best practices aimed at ad-

vancing precision in the medical field for instance, requires that a distinction is made to

better identify significant moderators or mediators in order to understand their impacts

on the treatment effects. In reviewing the concept of moderation analysis, some basic

references are made to related ideas which include but not limited to subgroup investiga-

tion, prognostic or prescriptive components, stratified/individualized treatment effects, and
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treatment-by-covariates interactions. Moderation analysis is plagued with the challenges

of multicollinearity and lack of power.

1.2 Motivation of the Study

The primary goal of this study is aimed at investigating moderation analysis with a bi-

nary endpoint, where the effect of a binary treatment is estimated by relative risk (RR) or

odds ratio (OR). The evaluation of the treatment effect relies on whether the information

gathered is from a randomized trial or an observational study. We present an intriguing

result related to moderation analysis, which shows that heterogeneous treatment effect can

be studied by an interaction model that regresses the treatment variable on the response

variable and covariates. In simple terms, the ‘role swap’ between the response and the

treatment is harnessed to this effect. Meaningful interpretation can be achieved via the

resultant interaction model using RR or OR, and this conclusion varies with the source of

data and thus has several useful implications. Essentially, estimates of parameters with

smaller standard errors could be obtained using this new approach or method of conduct-

ing moderation analysis. In situations where direct modeling of interactions encounters

difficulties, the role-swapping technique offers a more flexible and computational ease.

1.3 Outline of Thesis

The remaining parts of the thesis are organized in this manner. Chapter 2 provides a

literature review on moderation analysis. In Chapter 3, our proposed method, the role

swapping technique and the refined moderation analysis via the generalized estimating

equations (GEE) approach is presented and explained in detail. A simulation study that

verifies the performance of the proposed method is analyzed and compared in Chapter 4.

Chapter 5 provides a report on validation of our findings with an illustrative example from

a randomized wart treatment trial (real-world data). Finally, a summary of our study and

2



future work directions are discussed in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we present a literature review on moderation analysis. We explore briefly

literature related to moderation analysis which includes subgroup analysis, predictive or

prescriptive factors, effect modification, treatment-by-covariates interactions and precision

medicine as well as generalised and independent estimating equations.

2.1 Moderation Analysis

Three key concepts arise in research which are related to associations or relationships

between variables- and these are confounding, mediation, and moderation (or effect mod-

ification, interaction). The study of mediation, moderation, and confounding analysis are

methodologies that are employed to identify how a third variable may be incorporated

in statistical analyses to explore the underlying mechanisms leading to the alteration of

an effect on a subgroup of the population or specifically to ascertain the instances where

an effect may be strong or weak. In the area of research, determining not only whether

predictors affect the response, but then, how and when that association exists (whether

strong or weak), is more crucial to our understanding of the outcome of an empirical study.

The concept of moderator variables is very essential according to most researchers, how-

ever, confusion arises as to what a moderator variable particularly is and how it operates

specifically to affect the classical validation model. This confusion in particular renders

the comparison of studies of results relatively difficult. For instance, Bennett and Harrell

(1975), Ghiselli (1963), and Hobert and Dunnette (1967) suggested a way that tries to

ignore the interaction controversy by using an analytic procedure to examine differences
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between individuals grouped on the basis of some hypothesized moderator variable.

Two types of moderator variables are known in literature: A homologizer variable, a

termed coined by Zedeck (1971), is one that affects or influences the strength rather than

the form of the relationship between predictors and outcome (criterion) variable. Pure and

Quasi Moderator Variable on the other hand is one which modifies essentially the form of

the relationship between the criterion and predictor variables (Sharma et al., 1981).

They proposed a framework for identifying the two types of moderator variables which

incorporates moderated regression analysis(MRA) and subgroup analysis with a validation

of results via Monte Carlo simulation.

Moderation analysis is a statistical and analytical technique used to ascertain whether

the relationship (strength and size) between an independent variables (covariate) and the

response or outcome depends a third variable called the moderator. A relationship may

apply to some subgroup of a population but not to others and in such scenario, the rela-

tionship is said to be moderated. M is said to be a moderator, if the size, sign, or strength

of the effect of X on some variable Y depends on or can be predicted by M. Thus M and X

interact to influence Y. The primary goal in moderation analysis is to measure and test the

differential effect of the independent variable (covariate) on the response (outcome) variable

as a function of the moderator. Within the framework of correlational analysis, a third

variable that has an effect on the zero-order association or correlation between two different

other variables or better still the magnitude of the slope parameter of the response variable

on the covariate (independent variable) is a moderator (Baron and Kenny, 1986). The

interaction between a covariate (independent variable) and a factor that basically identifies

the settings for its operation is usually employed as a yardstick to measure the moderator

effect within the context of analysis of variance (ANOVA).
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2.2 Treatment-by-Covariate Interactions

The key to understanding moderation is simply by modeling interactions between treat-

ment and covariates. According to Royston and Sauerbrei (2008), in developing strategies

or procedures for precision or personalized medicine, it is essential to identify the treat-

ment and covariate interactions in the setting of randomized clinical trials. The interest

of analysts and clinicians in research is to hypothesize the effect of a moderator, where

the value of a moderator variable determines the effect of an independent variable on an

outcome. This effect according to (Hayes and Matthes, 2009), reveals itself statistically as

an interaction between the independent variable and moderator variables in a model of the

outcome variable.

In regression analysis, interactions (i.e., product between predictors, usually between

treatment and covariates) can be explored along with the original predictor variables where

statistical significance is further be examined via hypothesis testing, e.g., the Wald test.

For instance, suppose Paracetamol (X) has more effect on adults than on children in treat-

ing headache (Y), then we say that age (M), moderates the effects of the treatment. In this

regard, moderation is shown by an interaction between X and M in predicting Y, which

would show that the association or relationship between X and Y depends on the level of

M. Describing the overall treatment effects without taking into account group membership

could be misleading whenever there is interaction. A construction of a unique term associ-

ated with the interaction of X and M in moderation analysis is often employed to determine

whether the contribution of this term goes beyond the main effects of X and M in predict-

ing Y. In regression analysis, one way of quantifying this interactions mathematically is via

the cross-product of X and M, which are then included in the model. In reality, complex

interactions may also present themselves in higher order and in other forms.

There are two usual approaches which are the exploratory and analytic approaches that

are practically used to categorize the potential treatment-by-covariate interactions. In the

exploratory approach, a cohort of patient subgroup analyses is carried out, where a compar-
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ison between the treatment and control arms is explored in the different subgroups defined

a priori, such as young and adult, asthmatic and non-asthmatic may be performed which

usually follows the main comparison. This approach focuses on mainly simple interactions

between treatment and binary covariate and more often than not this leads to false-positive

findings as a result of the multiple testings as well as failing to solve the problem of un-

masking complicated treatment-by-covariates interactions. In the analytic approach, the

binary treatment indicator and the baseline covariates are considered as a product and

included in the regression model to examine the treatment-by-covariates interactions via

multivariate regression analysis (Tian et al., 2014). Owning to the complexity in identify-

ing and modeling directly (via multivariate regression) the interactions between treatment

and high dimensional covariates, Tian et al. (2014), proposed to identify moderators with

regularization.

2.3 Subgroup Analysis

It is crucial to a have guidelines in the emerging area of precision medicine that cov-

ers the issues of subgroup analyses to better understand how the framework of theory and

methodology interacts with empirics. Subgroup analysis refers to any comparison of patient

outcomes between treatment groups across subsets of patients defined by patient charac-

teristics. Prevention and intervention studies requires that an investigation is launched

to determine whether treatment effects vary among subgroups of patients defined by in-

dividual characteristics (Wang and Ware, 2013). Subgroup analysis is a technique that is

used to provide an information on how to employ a new program related to prevention or

intervention studies. Ferreira and Patino (2017) cautions on common mistakes that either

lead to false negative or positive findings, especially when they are not pre-specified in the

analysis plan. Various limitations regarding the use of the traditional subgroup analysis

have been widely explored (Sleight, 2000; Assmann et al., 2000; Lagakos et al., 2006).

Owning to the controversies (the frequency of risky and inappropriate “false-positive” or
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“false-negative” conclusions) that underscore decisions or results based on subgroup anal-

yses (encountered frequently and routinely in reports of observational studies and clinical

trials), this anomaly presents some level of difficulties for clinicians and physicians to make

inferences from such conclusions. These false conclusions mainly stem from naive uses of

subgroup analysis. New developments in subgroup analysis address the issues such as Type

I and Type II errors in these naive approaches via cross validation. Though subgroup anal-

yses are widely known to be highly misleading with the tendency to overemphasize results,

they can in fact be very informative when results are accurate.

In this era where the quest for precision medicine in the healthcare industry is on the

rampage and remains a topical issue, it is essential that guidelines regarding decisions based

on subgroup analyses be clearly spelt out. Oxman and Guyatt (1992) presented extensive

guidelines on when to act on recommendations based on subgroup analyses and when

to ignore them particularly when deciding about how believable the results of subgroup

analyses are. In their paper, they highlighted seven main guidelines that could reveal the

strength of inference regarding a proposed difference in treatment effect among subgroups,

which could be used as a yardstick for concluding on treatment decision based on overall

results or on the results of a subgroup analysis.

2.4 Predictive versus Prognostic Factors

Definitions of the terms “predictive” and “prognostic” are rarely defined and more often

than not used interchangeably, despite their wide usage in a large number of publications in

describing relationships or associations that exist between biomarkers and clinical outcomes.

According to Clark et al. (2006), a predictive factor is a measurement that is associated

with response or lack of response (clinical endpoints commonly used in clinical trials) to

a particular therapy while a prognostic factor is a measurement that is associated with

clinical outcome in the absence of therapy or with the application of a standard therapy

that patients are likely to receive. To clinicians and physicians in the medical world, the
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knowledge about prognostic and predictive factors serves as an essential key in making

well-informed decisions about a patient on specifically when to start, stop or change a

particular therapy (i.e., prognostic factors) or which particular therapy to prescribe for a

patient in question (i.e., prescriptive factors)

Prior to an inclusion of a particular factor in guidelines for treatment selection, it is

essential to distinguish its prognostic effects from its ability to predict a differential clinical

benefit from the specific treatment (Clark, 2008). Prognostic factors are indispensable in

the healthcare of patients and research activities of various diseases such as cancer control

as well as many clinical trials. Specifically, a prognostic factor in simple terms, measures

or tracks the natural and underlying history of a particular disease and in such studies, a

control group from a randomized clinical trial setting is ideal for evaluating the prognostic

effect of a biomarker. In the framework of statistics and medical research, Clark (2008), a

predictive factor is best evaluated in a randomized clinical trial with a control group and

particularly constitutes an interaction between biomarker status and treatment benefit.

The assessment that leads to categorizing a baseline factor into prognostic or prescrip-

tive Simms et al. (2013) is done usually in a prospective or a retrospective way, where

respectively, a hypothesis testing prespecifying this analysis in the statistical analysis plan

or a hypothesis-generating using exploratory analyses is carried out. Essentially, regression

methods such as Cox regression (i.e., used for time-to event endpoints such as survival),

logistic regression (i.e., used for binary endpoints such as death/survival outcome) and lin-

ear regression (i.e., used for continuous endpoints such as change in tumor size) are useful

statistical techniques that are employed to determine whether a factor is prognostic and/or

predictive.

2.5 Precision Medicine

With the growing interest in personalized or precision medicine, researchers and clinicians

look for best practices that are aimed at advancing and proposing models that alleviate
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the “one-drug-fits-for-all” approach and instead customize healthcare, treatments, medical

decisions, or products tailored to a subgroup of patients.

Precision medicine as a field of medicine has been structured to consider differences in

individual’s genetic make-up, microbiomes, environments, family history, as well as their

lifestyles when employing diagnostic and therapeutic approaches which are tailored specif-

ically to individual patients (Zhang, 2015). Precision medicine is a newer term that has

changed the face of the medical world in recent times and has been envisioned to improve

healthcare delivery and treatment of diseases.

The term, ‘personalized medicine’ which is closely related to precision medicine accord-

ing to Jain (2002) made waves in the public domain in 1999 when the first publication on

the subject came into the limelight, with the creation of some of the core concepts related

to the field even dating back to the early 1960s. Personalized medicine originates from

the concept that selection of a particular treatment should not be geared towards a deci-

sion based on ‘standards of care’ which is only a derivation of averaging responses across

large cohorts of individuals in clinical trials, but instead be tailored according to individual

patient’s specific characteristics, such as age, gender, height, weight, ethnicity, diet, and

environment (Jain and Jain, 2009).

The business strategist, Clayton Christensen, of Harvard Business School in Boston,

first coined the expression ‘precision medicine’ in 2008 which has become popular in the

scientific dictionary today, to describe how molecular diagnostics allows health profession-

als to diagnose the cause of a disease in an unambiguous way without necessarily relying on

intuition. In particular, the name gained traction and became more popular in 2011 after

a blueprint aimed at modernizing the taxonomy of disease based on molecular information

rather than a symptom-based classification system was laid out a by committee of the US

National Research Council (Katsnelson, 2013).

Zhang (2011) noted that, following the report of the US National Research Council pub-

lished in 2011 on the topic, “Toward Precision Medicine: Building a Knowledge Network
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for Biomedical Research and a New Taxonomy of Disease”, some scientists and researchers

began to retire the phrase “personalized medicine” and replace it with “precision medicine”,

alluding to the fact that molecular information improves the precision with which patients

are categorized (based on certain characteristics) and treated (Katsnelson, 2013).

The Obama administration on January 30, 2015, unveiled details about the Precision

Medicine Initiative. With a $215 investment in the US President’s 2016 budget, the Preci-

sion Medicine Initiative is aimed to champion a new model of patient-powered research that

will essentially help deliver the required treatment to the right patient at the right time

(The White House: Office of the Press Secretary, 2015). This is a big feat and very innova-

tive idea on the part of government in ensuring a very robust healthcare customization and

effective control and treatment of diseases by taking into account the variation that exists

in individual’s environments, genetic make-up, and lifestyles. According to Jameson and

Longo (2015), the most daunting challenge that is associated with precision medicine is how

to manage the complexity that underscores the progressively refined classification of disease

and thus this complexity associated with data supporting precision medicine will require

that provisions are made within the health systems to provide diagnostics, informatics, and

decision to buttress healthcare providers.

2.6 Independent Estimating Equations versus Gener-

alized Estimating Equations

As a matter of concern, researchers sometimes come face-to-face with the challenge in sta-

tistical modeling of longitudinal or clustered data which normally requires that successive

measurements on the same or related subjects enrolled in clinical studies.

In statistical modeling, failing to take into account the correlation between repeated mea-

sures often leads to making invalid inferences as estimates of parameters may not be con-
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sistent and precise (Dobson and Barnett, 2018).

The Generalized Estimating Equations (GEE) and Independence Estimating Equations

(IEE) have gained a lot referrals over the past two decades owning to their wide usage and

application in longitudinal and clustered data (where repeated observations for a subject are

known to be correlated) analysis. With the growing interest of research in the biomedical

and health sciences where mostly clustered binary data occur, generalized estimating equa-

tions (GEE) as a technique to analysing multivariate binary responses (Liang and Zeger,

1986; Zeger and Liang, 1986) is employed, where the complete specification of the joint

distribution of the responses is not required. Like the GEE, the independence estimating

equations (IEE) estimator is based on the assumption that the responses are independent,

which has be shown by Fitzmaurice (1995) to be nearly efficient relative to the maximum

likelihood estimation in a varied number of settings and also outlined an instance where ig-

noring the independence assumption can cause substantial losses of efficiency of parameter

estimates. Particularly, in situations where the correlation between responses is moderate

to weak, Zeger (1988) suggests that this estimator should be nearly efficient.

For the regression analysis of correlated observations, Liang and Zeger (1986) intro-

duced the GEE approach which is an extension of the generalised linear model (GLMs)

and in spite of the fact that the responses on units within the same cluster are usually

(positively) correlated, ordinary logistic regression employs maximum likelihood estima-

tion (which assumes the within- cluster responses are independent) yields estimates which

are consistent and asymptotically normal. An interesting fact about the estimator of the

GEE approach is that, it is statistically consistent even if the working correlation struc-

ture is misspecified. Just like the GEE approach, the penalized GEE procedure requires a

specification of the first couple of marginal moments as well as a working correlation ma-

trix. This approach generalized the estimation method of quasi-likelihood of Wedderburn

(1974) to correlated data. The quasi-likelihood as a function, has similar properties like

that of the log-likelihood function, however, it does not conform to any actual or exact

probability distribution. The GEE is not bounded by the exponential family assumption

12



that underscores the use of GLM; here, the specification of only the first couple of moments

is required. In particular, with a quasi-likelihood function, a relation between the mean

and variance of the observations (where the variance is given as a function of the mean) is

usually specified, and used for estimation. Ziegler et al. (1998) gave an extensive review

of the development of the GEE approach. The quasi-likelihood methods provide relatively

more computational ease, robustness as well as speed, because the methods use more direct

and developed algorithms to fit GLMs. For high-dimensional correlated data, specifying

the full joint likelihood is not required, making it more appealing for modeling correlated

discrete responses (Wang et al., 2012).
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Chapter 3

Proposed Method

(Refined Moderation Analysis with

Binary Outcomes)

3.1 Role-Swapping

Let
{

(yi, ti, xi)
}n

i=1
be an n-independent and identically distributed copies of (y, t, x),

where both y and t are binary variables and x ∈ Rp be a p-dimensional covariate vector.

The variable y is measured on 0/1 as the response or outcome with value 1 indicating the

occurrence of an event of interest (such as death) and 0 indicating the absence of the event

(e.g., survival) and t, the 0/1 treatment assignment variable with value 1 for the treated

and 0 for the untreated. In the domain of clinicians, participants with the event are termed

as cases and those without the condition/event are otherwise referred to as controls. The

focus is to evaluate the efficacy or effectiveness of t on y. The two commonly used scales

for measuring the effectiveness of treatment on an outcome are the relative risks (RR) scale

and the odds ratio (OR) scale.

For a fixed covariates at X = x, two measures associated with RR, depending on

whether the death rate or the survival rate is considered and could be defined as,

RR1,x =
Pr(Y = 1|T = 1,X = x)

Pr(Y = 1|T = 0,X = x)

and

RR0,x =
Pr(Y = 0|T = 1,X = x)

Pr(Y = 0|T = 0,X = x)
,
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In the same vein, a measure of OR is given by,

OR(Y )
x =

Pr(Y = 1|T = 1,X = x)/Pr(Y = 0|T = 1,X = x)

Pr(Y = 1|Y = 0,X = x)/Pr(Y = 0|Y = 0,X = x)
=
RR1,x

RR0,x

. (3.1)

It could be seen from the above results that OR
(Y )
x ≈ RR1,x when cases (with Y = 1) are

rare or Pr(Y = 0|T,X) ≈ 1 and OR
(Y )
x ≈ 1/RR0,x when controls (with Y = 0) are rare or

Pr(Y = 1|T,X) ≈ 1.

It is worth noting that, a measure of the differential treatment effects among patients

with heterogeneous characteristics is the primary objective in the studies related to mod-

eration analysis. In evaluating the differential treatment effects, the ratio of relative risks

(RRR) and the ratio of odds ratio (ROR) are commonly used as the natural measures.

Let examine two sets of patients or individuals; one with covariates x and the other with

covariates x′. By defining the RRR for death or case (Y = 1) between individuals with

covariates x and individuals with covariates x′,we have,

RRR(Y=1)(x : x′) =
RR1,x

RR1,x′
=

Pr(Y = 1|T = 1,X = x)/Pr(Y = 1|T = 0,X = x)

Pr(Y = 1|T = 1,X = x′)/Pr(Y = 1|Y = 0,X = x′)
(3.2)

In a similar scenario for the survival or control (Y = 0), we have,

RRR(Y=0)(x : x′) =
RR0,x

RR0,x′
=

Pr(Y = 0|T = 1,X = x)/Pr(Y = 0|T = 0,X = x)

Pr(Y = 0|T = 1,X = x′)/Pr(Y = 0|Y = 0,X = x′)
(3.3)

A key note to observe is that, if RR1,x ≥ 1, then we must have RR0,x ≤ 1 related to

assessing the treatment effect; however, if RRR1(x : x′) ≥ 1 does not necessarily mean a

one-to-one correspondence such that RRR0(x : x′) ≤ 1 concerning moderation.

On the other hand, by comparing the OR of individuals with covariates x against those

with covariates x′, which is a measure of the ratio of odds ratio (ROR) can be defined as,

ROR(Y )(x : x′) =
OR

(Y )
x

OR
(Y )
x′

=
RR1,x/RR0,x

RR1,x′/RR0,x′
=
RRR(Y=1)(x : x′)

RRR(Y=0)(x : x′)
. (3.4)

It is clear to note that defining separate ROR(Y )(x : x′) for cases and for controls is not

necessary owning to the invariance property of odds ratio. Particularly, these are simply

reciprocal of each other.
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By employing the role-swap of T and Y , the odds ratios for event T = 1 that compares

cases (Y = 1) with X = x and cases with X = x′ is defined as,

OR
(T )
Y=1(x : x′) =

Pr(T = 1|Y = 1,X = x)/Pr(T = 0|Y = 1,X = x)

Pr(T = 1|Y = 1,X = x′)/Pr(T = 0|Y = 1,X = x′)
(3.5)

In the same manner, the odds ratios for event T = 1 that compares controls (Y = 0) with

X = x and controls with X = x′ is defined as,

OR
(T )
Y=0(x : x′) =

Pr(T = 1|Y = 0,X = x)/Pr(T = 0|Y = 0,X = x)

Pr(T = 1|Y = 0,X = x′)/Pr(T = 0|Y = 0,X = x′)
(3.6)

In reference to Rosenbaum and Rubin (1983), let π(x) = Pr(T = 1|X = x) denote the

propensity score. We have the following lemma.

Lemma 1. Concerning moderation analysis on the RRR scale,

RRR(Y=1)(x : x′) = OR
(T )
Y=1(x : x′) · π(x′)/(1− π(x′))

π(x)/(1− π(x))
. (3.7)

and

RRR(Y=0)(x : x′) = OR
(T )
Y=0(x : x′) · π(x′)/(1− π(x′))

π(x)/(1− π(x))
. (3.8)

Concerning moderation analysis on the ROR scale,

ROR(Y )(x : x′) = ROR(T )(x : x′), (3.9)

where ROR(T )(x : x′) is the ratio of odds ratio (ROR) after the role exchange of T and Y .

If we further define the odds ratio on propensity as

OR(T )(x : x′) =
π(x)/(1− π(x))

π(x′)/(1− π(x′))
, (3.10)

equations (3.8) and (3.7) in Lemma 1 can be rewritten as

RRR(Y=0)(x : x′) =
OR

(T )
Y=0(x : x′)

OR(T )(x : x′)
and RRR(Y=1)(x : x′) =

OR
(T )
Y=1(x : x′)

OR(T )(x : x′)
.

The results of Lemma 1 hold no matter whether data are obtained from a randomized

experiment or from an observational study. Moreover, the OR-based equation (3.9) is

applicable to retrospective matched case control studies; (see, e.g., Hosmer Jr et al., 2013).
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This propensity score is a constant in study of randomized experiments. That is for

π ∈ (0, 1), π(x) = π(x′). Note that Equation (3.7), simplifies to RRR(Y=1)(x : x′) =

OR
(T )
Y=1(x : x′), and in literature, it is commonly called ”the case-only analysis.” In the case

of rare events, RRR(Y=1)(x : x′) ≈ ROR(Y )(x : x′), implying that RRR(Y=1)(x : x′) can be

roughly construed as ROR(Y )(x : x′). This phenomenon is first observed by Piegorsch et al.

(1994) and its applications and extensions are further explored by several authors including

Vittinghoff and Bauer (2006), Dai et al. (2014), Dai et al. (2018), and Dai and LeBlanc

(2019). Clearly, control-only analysis could be proceeded similarly by reducing Equation

(3.8) to RRR(Y=0)(x : x′) = OR
(T )
Y=0(x : x′). With rare control events, 1/RRR(Y=0)(x :

x′) ≈ ROR(Y )(x : x′).

The above RRR and ROR quantities can be naturally connected to generalized linear

models (GLM), as prescribed by the following two propositions.

Proposition 1. Consider the usual logistic regression model for moderation analysis on

the odds ratio (OR) scale, where the conditional distribution of Y |T,X is formulated by

log
Pr(Y = 1|T,X)

Pr(Y = 0|T,X)
= β0 + β1T + XTβ2 + T ·XTβ3. (3.11)

Suppose that the conditional distribution of T |Y,X is formulated by the logistic regression

model

log
Pr(T = 1|Y,X)

Pr(T = 0|Y,X)
= α0 + α1Y + XTα2 + Y ·XTα3. (3.12)

Then we must have

β3 = α3,

regardless of whether data come from a randomized experiment or from an observational

study.

Proposition 1 indicates that the moderation analysis can be conducted via the interac-

tion model (3.12) that regresses the treatment variable T on the outcome Y and covariates

X. This amounts to a role exchange between the treatment variable T and the outcome

variable Y . This result generally holds for both experimental data and observational data,
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under one necessary condition that that the same set of covariates X is used in both models

of (3.11) and (3.12). Since model (3.12) involves an inverse regression by swapping the roles

of T and Y , we refer to its related analysis as the ‘inverse method’ for simplicity while the

approach based on model (3.11) is referred to as the ‘direct method’.

Model (3.12) may seem surprising at first glance. One key to understand the inverse

method is to note that the distribution of T |X is different from that of T |X, Y. For example,

T ⊥⊥ X when T is randomized, but T 6⊥⊥ X |Y. For randomized experiments, additional

interpretations concerning moderation analysis on the relative risk scale can be extracted

from model (3.12), as stated in Proposition 2.

Proposition 2. For experiments where the assignment mechanism of treatment T is ran-

dom, consider either of the following two log-linear regression models for moderation anal-

ysis on the relative risk (RR) scale, one for the control event and the other for the case

event, 
log Pr(Y = 0|T,X) = γ

(0)
0 + γ

(0)
1 T + XTγ

(0)
2 + T ·XTγ

(0)
3 ,

log Pr(Y = 1|T,X) = γ
(1)
0 + γ

(1)
1 T + XTγ

(1)
2 + T ·XTγ

(1)
3 .

(3.13)

Furthermore assume that model (3.12) formulates the conditional distribution of T |Y,X.

Then we must have

γ
(0)
3 = α2 or γ

(1)
3 = α2 + α3.

Proposition 2 essentially breaks model (3.12) into two equations,

log
Pr(T = 1|Y,X)

Pr(T = 0|Y,X)
=


α0 + XTα2, if Y = 0;

(α0 + α1) + XT (α2 + α3), if Y = 1,

one for controls only and the other for cases only. It requires, either of, not necessarily

both, the two models in (3.13) hold. Since Pr(Y = 0|T,X) + Pr(Y = 1|T,X) = 1, one is

sufficient. If both models in (3.13) hold, then the parameters can be reduced by introducing
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constraints. In this case, model (3.11) must hold with αj = γ
(1)
j − γ

(0)
j for j = 0, 1, 2, 3,

but not vice versa.

The proofs of the above lemma and propositions are outlined in the Appendix and

essentially involve applications of Bayes’s rule. The similar arguments have been used to

derive the case-only analysis (Piegorsch et al., 1994) and show equivalence of the conditional

odds ratio obtained from a prospective study and that from a retrospective study (see, e.g.,

Hosmer Jr et al., 2013). As seen from the proofs, the results are also directly applicable to

categorical outcomes and treatments with multiple levels.

In terms of inverse regression with role swapping, Efron (1975) has shown that the

logistic regression for Y |X have the same coefficients as the Gaussian linear discriminant

analysis that models X|Y , under the assumption that X follows a multivariate normal dis-

tribution. Our results are derived in the same spirit of Bayes’ rule, but are quite different in

that the logistic model (3.11) for Y |T,X has the same set of coefficients only for interaction

terms as the logistic model (3.12) for T |Y,X, regardless of the distribution of X.

We have shown that moderation analysis could be equivalently obtained by swapping

the roles of the response and the treatment in theory. One should be aware that the specific

estimates of β3 in Model (3.11) and α3 in Model (3.12) could be different since logistic

regression is solved numerically, but this difference is inconsequential. Nevertheless, the

standard errors (SE) of these estimates could be systematically different, when switching

the roles of response and treatment. The difference in SE is relevant and meaningful.

This implies that the role swapping strategy facilitates a new estimation method for the

parameters involved in moderation analysis, in which possibly more precise estimates could

be obtained.

3.2 Refined moderation analysis with GEE

We have a clear trajectory or path on how moderation analysis could be equivalently done

by employing the role-swapping technique between the response and the treatment variable.
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This gives an insight on possibly how inference could be made on the moderating effects in a

more efficient way. Refined estimators associated with the interaction terms are attainable

by combining both Model (3.11) and Model (3.12) and estimating the resulting model

equation via GEE the approach. This approach generalized the estimation method of the

quasi-likelihood of Wedderburn (1974) to correlated data which has similar properties like

that of the log-likelihood function, however, it does not conform to any actual or exact

probability distribution and also provides relatively more computational ease, robustness

as well as speed, because the methods use more direct and developed algorithms to fit

GLMs. In particular, with a quasi-likelihood function, a relation between the mean and

variance of the observations (where the variance is given as a function of the mean) is

usually specified, and used for estimation.
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Table 3.1: Data Layout for the Direct Model

ID (i) Response (Yi) Treatment(Ti) Covariates (Xij)

1 Y1 T1 X11 X12 . . . X1p

2 Y2 T2 X21 X22 . . . X2p

...
...

...
...

... . . .
...

n Yn Tn Xn1 Xn2 . . . Xnp

Table 3.2: Data Layout for the Inverse Model

ID (i) Response (Ti) Treatment (Yi) Covariates (Xij)

1 T1 Y1 X11 X12 . . . X1p

2 T2 Y2 X21 X22 . . . X2p

...
...

...
...

... . . .
...

n Tn Yn Xn1 Xn2 . . . Xnp
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Table 3.3: Data Layout (Set-Up) for the GEE Model

ID (i) j Response (Y ′ij) Treatment (T ′ij) Covariates (X ′ijl)

1
1 Y ′11 T ′11 X111 X112 . . . X11p

2 Y ′12 T ′12 X121 X122 . . . X12p

2
1 Y ′21 T ′21 X211 X212 . . . X21p

2 Y ′22 T ′22 X221 X222 . . . X22p

...
...

...
...

...
...

. . . ...

k
1 Y ′k1 T ′k1 Xk11 Xk12 . . . Xk1p

2 Y ′k2 T ′k2 Xk21 Xk22 . . . Xk2p

To serve the purpose of the study which aims at making inference that is more efficient

on the interaction terms, a combined dataset is churned out from the two data structure

corresponding to the direct and indirect models in Table (3.1) and Table (3.2) .

Using the fact that Y ′ij = Yi if j = 1 and Y ′ij = Ti if j = 2 and j = 1, 2. Similarly T ′ij = Ti if

j = 1 and T ′ij = Yi for j = 2. with i = 1, . . . , n, we obtain the layout for the data in Table

(3.3) to fit for the GEE model. The basic data layout for the GEE model presented in the

table is such that we have are repeated measures (2 observations) for K subjects so that

we have a total of 2K observations.

We consider a longitudinal or clustered data consisting of K subjects or clusters. Now

for each subject i, i = 1, 2, . . . , K, there are ni = 2 observations and Yij denotes the jth

observation from the ith subject with j = 1 . . . kni, and let Xij = Xij1, Xij2, . . . , Xijp de-

note a p× 1 vector of covariates.

Denote Yi = (Yi1, Yi2 . . . Yi2ni
)T to be the response vector for the ith subject with mean

vector given by µi = (µi1, µi2, . . . , µi2ni
)T , where µij is the corresponding jth mean and in-

dependence of responses across subjects/clusters but correlated within each subject/cluster
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are assumed. Here, the marginal model specifies a relation between µij and the covariates

Xij = (Xij1, Xij2, . . . , Xijp)
T which is given by:

g(µij) = logit Pr(Yij = 1|Xij, Ti) = log
Pr
(
Y ′ij = 1|T ′ij,Xi

)
Pr
(
Y ′ij = 0|T ′ij,Xi

) = XT
ijβ, (3.14)

where g denote the logit link function and β is an unknown p × 1 vector of regression

coefficients with the true value as β0. We denote the conditional variance of Yij given Xij

as ν(µij)φ, where ν is a specified variance function of the marginal mean, µij and φ is a

scale parameter to be estimated. Usually, ν and φ depend on the distributions of outcome

variable. For e.g., given that Yij is continuous, ν(µij) is specified to be 1, while φ denotes

the error variance. Similarly, for a count response, Yij, we have that ν(µij) = µij, with

φ = 1. In our setting, we have a logistic model and binary data, hence var(Yi) = µij(1−µij)

with scale parameter, φ = 1.

Let Vi denote the variance-covariance matrix for Yi, where Vi = φD
1/2
i Ri(λ)D

1/2
i with

Di = diag{ν(µi2) . . . ν(µini
)}, and Ri(λ) represents the working correlation structure that

describes the pattern of measures within cluster or subjects which depends on a vector of

association parameters, λ.

With biological data sets, (ÖNDER et al., 2010 & Park and Shin, 1999), revealed indepen-

dent and exchangeable correlation structures as good candidates. In particular, we specify

the independence correlation matrix, Ri(λ) = I, a T × T identity matrix with no values

of λ to be estimated, because the intra-cluster correlation is actually considered to be zero

but then yields estimates similar to those from simple “pooled” models (Zorn, 2001). Thus

variance-covariance matrix simply becomes Vi = diag(µij(1− µij)).

Asymptotically, GEE yields a consistent β̃ even in the case where the working correla-

tion structure is misspecified Liang and Zeger (1986) and estimating the value of β requires

solving the estimating equation below:

Q(β) =
K∑
i=1

(
∂µi

∂βT

)T

V−1i (Yi − µi) = 0 (3.15)

β̃ is asymptotically normally distributed with a mean β0 with a covariance matrix estimated
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based on the sandwich estimator and this holds under mild regularity conditions.Thus,

Σ̂i =

[
K∑
i=1

(
∂µi

∂βT

)T

V −1i

(
∂µi

∂βT

)]−1
M̂

[
K∑
i=1

(
∂µi

∂βT

)T

V −1i

(
∂µi

∂βT

)]−1
(3.16)

where,

M̂ =
K∑
i=1

(
∂µi

∂βT

)T

V −1i Cov(Yi)V
−1
i

(
∂µi

∂βT

)
(3.17)

with cov(Yi) = (Yi− µ̂i)(Yi− µ̂i)
T , which is an estimator of the variance-covariance matrix

of Yi (Liang and Zeger,1986 and Qu et al., 2000). The robustness of the sandwich estimator

is such that it is consistent even if the correlation structure, Vi is misspecified. It is however

worth noting that, if Vi is correctly specified, then Σ̂i reduces to:[
K∑
i=1

(
∂µi

∂βT

)T

V −1i

(
∂µi

∂βT

)]−1
, which is called the model-based variance estimator (Kauermann and Carroll, 2001).

3.3 Computation using available GEE packages

The goal is to make a more efficient inference on the moderating effects. To this effect, we

consider and use the R package “geepak”, which provides a flexible approach to estimat-

ing equations and also estimating the covariates depending mean, scale and correlations

parameters of correlated observations (Halekoh et al., 2006).

3.4 Computing Trick

More generally, since α3 = β3, we rewrite Model (3.11) and Model (3.12) as below;
log

Pr(Yi = 1|Ti,Xi)
Pr(Yi = 0|Ti,Xi)

= β0 + β1Ti + XT
i β2 + Ti ·XT

i β3

log
Pr(Ti = 1|Yi,Xi)
Pr(Ti = 0|Yi,Xi)

= α0 + α1Yi + XT
i α2 + Yi ·XT

i β3.

(3.18)
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To estimate simultaneously the interaction coefficients, with α3 = β3 via the GEE ap-

proach, we formulate a model that combines Model (3.11) and Model (3.12) into model

equation.

Let Y ′ij = Yi if j = 1 and Y ′ij = Ti if j = 2 for i = 1, . . . , n and j = 1, 2. Similarly, let

T ′ij = Ti if j = 1 and T ′ij = Yi for j = 2. And define Zij = 0 if j = 1 and Zij = 1 if j = 2.

Let Xij = Xi. Consider the model below:

log
Pr
(
Y ′ij = 1|T ′ij,Xi

)
Pr
(
Y ′ij = 0|T ′ij,Xi

) = γ0 + γ1Zij + γ2T
′
ij + XT

i γ3+

+ γ4T
′
ij · Zij + XT

i γ5 · Zij + T ′ij ·XT
i γ6

(3.19)

where γ6 denotes the coefficients associated with the interaction term in Model (3.19) is

equivalent to β3 in Model (3.18).

It can further be observed that, with j = 1 and Zij = 0, we have a result from Model

(3.19), which is equivalent to Model (3.11), where γ0 = β0, γ2 = β1, γ3 = β2 and γ6 = β3.

Similarly, with j = 2 and Zij = 1, a similar result is obtained from (3.19) which is equivalent

to the Model (3.12). In particular, we have that (γ0+γ1) = α0, (γ2+γ4) = α1, (γ3+γ5) =

α2 and γ6 = α3, with an interesting observation showing that γ6 = α3 = β3.

The above deductions clearly shows how we can combine the two Models in (3.11) and

(3.12) into Model (3.19) and employ the GEE approach to simultaneously obtain a more

refined parameter estimates associated with the interaction terms.
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Chapter 4

Simulation Studies

4.1 Numerical Results

We validate the finding that the role-swapping yields estimates of the same parameters and

illustrate the difference in standard errors by simulation.

4.1.1 Simulation Studies

We generate data from model (3.11), with X = (X1, X2, X3)
T , β0 = −1, β1 = 0.5,

β2 = (0.5,−1, 1)T , and β3 = (−0.5, 1, 0)T . Three covariates generated from multivariate

uniform[0, 1] distribution with correlation matrix
(
ρ|j−j

′|) for j, j′ = 1, 2, 3 with different

choices of ρ = {0, 0.2, 0.5, 0.8}; see Falk (1999) and implementation in R (Team et al., 2013)

package MultiRNG. To mimic observational studies, the binary treatment T is generated

from the following logistic model

log
Pr(T = 1|X)

Pr(T = 0|X)
= θ0 + XTθ1, (4.1)

where θ0 = −0.5 and θ1 = (1,−0.5, 1)T . To have data from randomized experiments, we

set θ1 = 0, as well as θ0 = 0.

For each model configuration, a number of sample sizes with n ∈ (100, 200, . . . 1000) are

examined and for each setting, a total of 1,000 simulation runs are considered. For each

simulated data set, we fit model (3.11), model (3.12) together with model (3.19) and extract

the estimates β̂3, α̂3 and β̃3 of coefficients associated with the interaction terms, as well

as some performance measures such as the standard errors (SE). In particular, β̂3 and α̂3

and β̃3 are the empirical estimates of β3 = (−0.5, 1, 0)T . Essentially, setting β33 = 0 helps
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in the evaluation of the ‘size’ issue in hypothesis testing, while the two nonzero coefficients

(β31 and β32) help address the ‘power’ issue. In this regard, the p-values from the Wald z

test for each coefficient is also computed. The empirical power and size are calculated as

the proportion of p-values smaller than the set significance level, α = 0.05.

4.2 Verifying the Equivalence Between Direct and In-

verse Estimators and Comparing Results to the

GEE Estimator

The performance measures employed in evaluating the effectiveness and precision of the

estimated means of the model parameters include the standard deviation (SD) of the esti-

mates, the averaged standard error value as well as the empirical size and power associated

with interaction terms. Respectively, Tables 4.1 and 4.2 present the aggregated results

corresponding to randomized experimental data and observational data over 1000 simula-

tion runs for each setting with ρ ∈ {0, 0.5, 0.8} and n ∈ {100, 500, 800}. It can be seen

that the direct estimates β̂3 and the inverse estimates α̂3 are generally close to each other.

The estimation performance improves with larger sample sizes. In terms of precision of

these estimates, the inverse method gives smaller averaged standard errors than the direct

approach most of the time. More generally, α̂3 and β̂3 match each other by and large.

In fact, it is worth noting that, there exist some level of bias in estimating moderation

parameters (mean value of estimates) in both the direct and inverse methods in some sce-

narios especially in the case of observational data. This can be seen for e.g., when n = 100,

n = 500 and n = 1000 at different levels of the correlation ρ among covariates.

However, by analyzing and comparing estimates of both the direct and indirect with

those obtained by the GEE approach (i.e, β̃3), it is clear that the performance measures

(the mean and standard deviation (SD) of the estimates together with the averaged SE

value) corresponding to the GEE approach produces relatively precise and better estimates
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to a large extent.This revelation for the most part is true for randomized experimental data.

Unfortunately, there exist some estimation gaps using the GEE approach for observational

data in the same setting as shown in Table (4.2). This may partly be due to the issue

of confounders that may be present since observational studies are not randomized to

eliminate imbalances due to chance. An attempt via the propensity scores approach was

employed to adjust or account for any issues of confounding that may be present with the

study, however, the method could not yield any much promising results.

The evaluation of the size and power issue associated with moderation analysis has

always been a major issue in hypothesis testing. It is well known in any statistical analysis

or inference that, when assessing the issue associated with ‘power’, higher values constitute

a high probability to reject a false null hypothesis and particularly in our case, that is the

hypothesized values of β31 and β32 (i.e., reducing type II error). Though these values are

generally low, the empirical power estimates associated with the GEE, for the most part

are higher. Similarly, with the ‘size’ issue, it is observed that most of the estimates are

within the neighborhood of (or close to) the nominal level (the set significance level, i.e.,

0.05 in our setting) which is mostly desired in hypothesis testing (i.e., with β33 = 0 in our

scenario) which in practice offers the maximum probability of committing a Type I error.
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Table 4.1: Simulation results with randomized experimental data based on

1,000 simulation runs. The regression coefficient β3 associated with moder-

ation analysis were estimated with three methods: (I) the direct estimator

β̂3 with model (3.11); (II) the inverse estimator α̂3 with model (3.12) and

(III) the GEE estimator β̃3 with Model (3.19).

Estimate (Mean) SD ASE (Mean) Size & Power

ρ n D I GEE D I GEE D I GEE D I GEE

β31 −0.585 −0.604 −0.590 1.775 1.776 1.732 1.630 1.624 1.572 0.072 0.068 0.079

100 β32 1.050 1.024 1.028 1.779 1.794 1.741 1.640 1.630 1.577 0.099 0.098 0.118

β33 −0.087 0.114 0.107 1.810 1.766 1.746 1.647 1.636 1.581 0.053 0.052 0.057

β31 −0.518 −0.511 −0.514 0.673 0.664 0.665 0.664 0.657 0.656 0.119 0.108 0.116

0 500 β32 1.031 1.010 1.019 0.680 0.673 0.673 0.668 0.660 0.659 0.333 0.324 0.332

β33 0.002 0.018 0.011 0.653 0.647 0.647 0.669 0.663 0.661 0.043 0.044 0.043

β31 −0.499 −0.486 −0.493 0.515 0.512 0.511 0.521 0.515 0.515 0.159 0.161 0.164

800 β32 0.982 0.959 0.970 0.536 0.531 0.531 0.523 0.517 0.517 0.475 0.462 0.470

β33 0.022 0.034 0.028 0.535 0.530 0.530 0.525 0.520 0.519 0.057 0.056 0.058

β31 −0.565 −0.541 −0.550 1.979 1.975 1.925 1.865 1.861 1.792 0.062 0.054 0.064

100 β32 1.078 1.069 1.066 2.308 2.311 2.246 2.086 2.081 2.001 0.089 0.093 0.109

β33 −0.017 −0.024 −0.015 2.023 2.015 1.967 1.881 1.874 1.811 0.065 0.061 0.076

β31 −0.528 −0.528 −0.528 0.789 0.783 0.782 0.757 0.752 0.749 0.122 0.119 0.120

0.5 500 β32 1.016 0.997 1.005 0.851 0.845 0.843 0.843 0.835 0.832 0.229 0.223 0.232

β33 0.015 0.020 0.018 0.768 0.762 0.761 0.762 0.756 0.753 0.043 0.049 0.051

β31 −0.514 −0.506 −0.510 0.590 0.586 0.586 0.593 0.589 0.588 0.133 0.132 0.135

800 β32 1.048 1.034 1.040 0.654 0.647 0.647 0.660 0.654 0.653 0.349 0.349 0.354

β33 −0.021 −0.016 −0.018 0.593 0.586 0.587 0.597 0.592 0.591 0.047 0.045 0.048

β31 −0.662 −0.640 −0.647 2.845 2.997 2.812 2.672 2.685 2.566 0.054 0.054 0.064

100 β32 1.188 1.167 1.166 3.549 3.579 3.451 3.392 3.388 3.238 0.056 0.060 0.071

β33 −0.060 −0.062 −0.053 2.921 2.908 2.829 2.682 2.669 2.552 0.053 0.060 0.064

β31 −0.518 −0.511 −0.514 1.118 1.122 1.116 1.069 1.066 1.060 0.080 0.085 0.085

0.8 500 β32 1.025 1.017 1.020 1.419 1.433 1.420 1.358 1.352 1.344 0.125 0.128 0.131

β33 −0.014 −0.015 −0.013 1.074 1.090 1.078 1.073 1.069 1.064 0.050 0.056 0.054

β31 −0.515 −0.513 −0.514 0.821 0.818 0.817 0.840 0.837 0.834 0.083 0.077 0.081

800 β32 0.993 0.984 0.988 1.094 1.083 1.085 1.064 1.058 1.055 0.157 0.161 0.159

β33 0.032 0.034 0.034 0.883 0.875 0.876 0.842 0.837 0.835 0.058 0.058 0.058
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Table 4.2: Simulation results with observational data based on 1,000 simula-

tion runs. The regression coefficient β3 associated with moderation analysis

were estimated with three methods: (I) the direct estimator β̂3 with model

(3.11); (II) the inverse estimator α̂3 with model (3.12) and (III) the GEE

estimator β̃3 with Model (3.19).

Estimate (Mean) SD ASE (Mean) Size & Power

ρ n D I GEE D I GEE D I GEE D I GEE

β31 −0.508 −0.408 −0.481 1.717 1.922 1.705 1.683 1.849 1.646 0.064 0.051 0.065

100 β32 1.072 1.201 1.094 1.837 2.124 1.846 1.711 1.899 1.675 0.103 0.091 0.113

β33 −0.064 0.013 −0.027 1.782 1.975 1.777 1.641 1.786 1.604 0.058 0.063 0.064

β31 −0.487 −0.475 −0.483 0.699 0.748 0.703 0.684 0.731 0.686 0.114 0.101 0.116

0 500 β32 1.053 1.041 1.043 0.710 0.755 0.712 0.695 0.742 0.697 0.338 0.284 0.315

β33 0.016 0.032 0.024 0.675 0.731 0.685 0.667 0.713 0.671 0.058 0.062 0.062

β31 −0.505 −0.476 −0.493 0.539 0.575 0.542 0.536 0.572 0.539 0.156 0.135 0.150

800 β32 1.004 1.008 1.003 0.548 0.581 0.550 0.545 0.580 0.547 0.445 0.390 0.444

β33 0.006 0.012 0.009 0.536 0.577 0.543 0.523 0.558 0.526 0.058 0.061 0.062

β31 −0.567 −0.440 −0.542 2.079 2.403 2.077 1.923 2.135 1.873 0.068 0.063 0.080

100 β32 1.222 1.358 1.230 2.250 2.690 2.279 2.147 2.384 2.084 0.075 0.079 0.102

β33 −0.049 −0.084 −0.053 1.940 2.290 1.949 1.867 2.117 1.831 0.051 0.050 0.059

β31 −0.507 −0.502 −0.507 0.784 0.854 0.799 0.776 0.828 0.780 0.106 0.104 0.114

0.5 500 β32 1.038 1.017 1.025 0.879 0.928 0.880 0.866 0.924 0.868 0.214 0.195 0.211

β33 −0.006 0.003 −0.001 0.742 0.800 0.744 0.758 0.832 0.766 0.046 0.045 0.041

β31 −0.470 −0.443 −0.458 0.602 0.639 0.607 0.608 0.648 0.613 0.116 0.102 0.117

800 β32 1.011 0.999 1.003 0.657 0.721 0.670 0.678 0.721 0.681 0.322 0.292 0.323

β33 −0.011 0.003 −0.004 0.573 0.632 0.583 0.595 0.652 0.602 0.046 0.039 0.040

β31 −0.388 −0.202 −0.342 2.968 3.382 2.950 2.724 3.010 2.647 0.054 0.048 0.062

100 β32 1.051 1.230 1.069 3.909 4.426 3.886 3.459 3.833 3.341 0.065 0.059 0.083

β33 −0.037 −0.142 −0.055 2.918 3.381 2.904 2.691 3.025 2.616 0.057 0.052 0.059

β31 −0.496 −0.499 −0.500 1.102 1.167 1.109 1.086 1.158 1.093 0.076 0.077 0.086

0.8 500 β32 1.036 1.034 1.030 1.407 1.500 1.416 1.375 1.471 1.383 0.125 0.106 0.119

β33 −0.013 −0.002 −0.006 1.101 1.208 1.119 1.073 1.176 1.085 0.045 0.044 0.049

β31 −0.569 −0.548 −0.561 0.860 0.901 0.862 0.851 0.906 0.858 0.108 0.098 0.100

800 β32 1.088 1.092 1.087 1.085 1.176 1.104 1.077 1.150 1.086 0.170 0.152 0.165

β33 −0.030 −0.032 −0.030 0.854 0.932 0.867 0.841 0.919 0.852 0.049 0.049 0.049

30



4.2.1 Assessment of Sample Size Effect on Simulated Results via

Graphical Display
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Figure 4.1: Simulation results for assessing the effect of sample size of ran-

domized experimental data with ρ = 0.

The box plots in the first case show the standard error estimates associated

with each of the 1000 simulation runs, with the lines showing the corre-

sponding standard deviation in each scenario.
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Figure 4.2: Simulation results for assessing the effect of sample size of ob-

servational data with ρ = 0.

The box plots in the first case show the standard error estimates associated

with each of the 1000 simulation runs, with the lines showing the associated

standard deviation in each scenario.
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Figures (4.1) and (4.2) above represent the visual display of simulation results for assessing

the effect of sample size n = 100, 200, . . . , 1000 for two model configuration, (3.11) and

(3.19) corresponding to the randomized experimental and observational data respectively.

For each setting, 1,000 simulation runs were considered.

To this effect, the average standard errors (SEs) and standard deviations (SDs) (perfor-

mance measures) of the mean estimates (interaction terms) corresponding to Model (3.11)

and Model (3.19) were pooled together and compared with various sample sizes (with the

boxplot in the first plot in each figure showing the standard errors obtained for each of

the 1000 simulation runs and the lines corresponding to standard deviation in each sce-

nario) . The overlaid plots above reveals clearly how the performance measures improve

significantly with increased sample size with no particular respect to data source (whether

randomized experimental trials or observational studies are considered). More particularly,

the estimator of Model (3.19) produces estimates with relatively and consistently smaller

errors (which suggest possibly more precision for the GEE estimator) with our randomized

experimental trials as shown by the box plots and the curved lines in Figures (4.1).

However, the same conclusion cannot be made concerning observational data as revealed

by the performance measures (SEs and SDs) that characterize the mean estimates (inter-

action terms), as the GEE estimator could not consistently produce smaller errors across

the varying sample sizes that are considered. A confirmation of this result is indicated by

the overlaid graph of the relative difference in the SDs (that is computed as the arithmetic

difference between SDs of the estimates of direct and the GEE, divided by the SDs of the

estimates of direct) versus the sample size shown in the above figures. In our convention,

the GEE estimator of Model (3.19) is expected to produce more precise estimates compared

to that of the direct estimator of Model (3.11), the relative difference in SD will be positive.

The case for the randomized experimental data in Figure (4.1) validates in a way, our ap-

proach of simultaneously finding a more refined parameter estimates associated with the

moderating effects on which basis of refined inference could be made.
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Chapter 5

An Illustrative Example using the

Wart dataset

To validate our results, we illustrate with a real-world data collected from a randomized

wart treatment trial, as reported in Khozeimeh et al. (2017). In this study, n = 180 patients

were randomized to be treated with either the cryotherapy (cryo = 1) or immunotherapy

(cryo = 0) method, with 90 patients in either treatment group. These are two known

and popular therapeutic approaches for the treatment of wart. Even though they lack the

ability to treating all category of patients, they offer to a large extent higher prospect in

dealing with wart in about 80% of people who suffer from the disease. As noted about

the deficiencies about these therapies, with each lacking the ability to heal all patients,

moderation analysis in the face of precision medicine is therefore crucial in designing more

effective and customized treatments to help solve this problem. In our data set, the outcome

variable response is binary with 1 indicating a positive response to the treatment and 0

otherwise. Also included are six covariates: patient gender (sex), age (age), self-reported

time in months before treatment (time), the number of warts (nwarts), an indicator of

whether or not patient has mixed types of warts (type), and surface area in mm2 of the

warts (area). Prior to experimenting with the wart data, a variable selection procedure

via regularization is harnessed to come up with two important covariates; age and type

for moderation analysis.
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Table 5.1: Analysis of Wart Trial Data. Model I is obtained with the direct

method; Model II from the inverse method; Model III is obtained by the

GEE approach.

Model Term Estimate SE z p-value OR / RR

intercept 2.383 0.802 2.969 0.003 10.833

cryo 1.684 1.230 1.369 0.171 5.389

I age −0.035 0.021 −1.651 0.099 0.965

type 0.458 0.699 0.655 0.513 1.580

cryo × age −0.087 0.039 −2.217 0.027 0.917

cryo × type −2.635 0.976 −2.701 0.007 0.072

intercept 0.345 0.849 0.407 0.684 1.413

response 1.594 1.038 1.535 0.125 4.922

II age −0.005 0.023 −0.223 0.823 0.995

type 1.887 0.710 2.660 0.008 6.600

response × age −0.078 0.032 −2.415 0.016 0.925

response × type −3.423 0.942 −3.635 0.000 0.033

intercept0 2.387 0.703 3.396 0.001 10.885

cryo0 1.618 0.983 1.647 0.100 5.044

age0 −0.037 0.019 −1.927 0.054 0.964

type0 0.673 0.743 0.906 0.365 1.960

III intercept1 −2.098 0.728 −2.881 0.004 0.123

cryo1 0.043 0.056 0.781 0.435 1.044

age1 0.035 0.019 1.781 0.075 1.035

type1 0.996 0.438 2.276 0.023 2.708

cryo × age −0.082 0.031 −2.674 0.008 0.921

cryo × type −3.052 0.914 −3.340 0.001 0.047
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Table 5.1 presents the fitting results from three models, including the parameter esti-

mates, standard errors, the Wald z test, the resultant p-value, and the exponential of the

estimates (as shown in the last column).

In Model I, a logistic regression model was fit on response, examining the interactions be-

tween the treatment variable cryo and the covariates. In Model II, the roles of response

and cryo are swapped. By viewing the parameter estimates associated with the interaction

terms in these two models, we note that they are within the ballpark of each other despite

certain differences. It is interesting to see that the SEs for these estimates in Model II

are generally lower than those in Model I. As a result, the interaction terms become more

significant in Model II.

It is also worth noting that the main cardinal reason for employing the GEE approach

in Model III is to find a way that seeks to combine the two Models in (3.11) and (3.12) into

one, Model (3.19) (Model III) and simultaneously find more refined parameter estimates

associated with the moderating effects. Owning to this goal, we skip discussion on details

associated with the terms of main effects and only focus on interactions in Model III. It

is however important to note that, in model III, we have two slope estimates for each of

the four main effect terms (i.e., intercept, cryo, age, and type), where the first and second

sets of these terms essentially corresponds with the direct and inverse models respectively.

Looking at the result from a broad spectrum, it is very important to note the GEE approach

in Model III generally produced estimates of the interaction terms (with relatively smaller

SE), which is quite an interesting observation we sought to establish with our findings in

this study. More importantly, it is revealed that both age and type (whether a patient has a

mixed type of warts) have significant moderating effect on the treatment of wart. The odds

of having a positive response decreases by a factor of 0.921 per every year of the patient’s

age if the patient do not take cryotherapy (i.e., take immunotherapy), and increase by a

factor of 0.921 × 5.044 = 4.646 for every year they take cryotherapy. Similarly, patients

with type 1 form of warts have a 46% less odds of having a positive response than patients

with type 2 form of warts.
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Since the treatment assignment is randomized in this study, Proposition 2 holds. By

plugging response = 0 and response = 1 into Model II, we break it down into the

control-only analysis and the case-only analysis respectively. However, we have skipped

this related studies entirely, because the setting of Proposition 2, applying only to data

from randomized experiment, has been partly investigated elsewhere; see, e.g., Dai et al.

(2014), Dai et al. (2018), and Dai and LeBlanc (2019) for studies that are designed to

verify the case-only analysis of which the control-only analysis, albeit new, holds naturally

by symmetry.
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Chapter 6

Discussion

6.1 Summary of Results

An interesting observation is made concerning moderation analysis with binary outcomes.

We have shown that, the role swap between the outcome variable and the treatment variable

does not alter the regression coefficients associated with the interaction terms in logistic

regression models. The resultant model (3.12) is highly informative of treatment effect

moderation and meaningful interpretations can be extracted depending on whether data

are experimental or observational. Furthermore, it offers a new way of estimating the

moderation-related parameters, relatively with more precision. Since both β̂3 and α̂3

estimate the same parameters, we have further shown that this can easily be estimated by

combining the two models and employ the generalized estimating equation (GEE) approach

as an estimation technique to find a more refined parameter estimates corresponding to the

interaction terms.

The trick of ‘role swapping’ can be useful in other scenarios where a direct study of

moderation is inconvenient owing to modeling complexity, numerical difficulty, or unavail-

ability of implementation. To elaborate, two immediate applications are outlined for fu-

ture research avenues. First, consider a study that involves a categorical outcome and

a binary treatment. Since the implementation of multinomial logistic regression related

methods is not widely available, switching the roles allows us to conduct moderation anal-

ysis with binary logistic regression, where regularization (Tibshirani, 1996) can be used

to select moderators (Lim and Hastie, 2015). Along the same lines, tree-based model-

ing (Su et al., 2009, 2012) can be developed for subgroup analysis as well. Secondly, the
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study of gene-environment interactions (Ottman, 1996) presents a scenario with multiple

treatments which are important genetic biomarkers. In common approaches on basis of

hypothesis testings, the main challenge stems from multiplicity of inferences. If we swap

the roles and treat multiple genetic variables as clustered binary outcomes, a generalized

linear mixed model (GLMM) may facilitate an overall interaction test for environmental

variables conveniently.

6.2 Future work

Future work could involve employing the role-swap technique which allows the estimation

of regression coefficients associated with the interaction terms to revisit observational data

(by accounting for possible confounders) with binary outcome/treatment via the GEE

approach. Similar work in the same domain could be extended to both experimental

and observational study with nominal outcomes or treatment as well as mediation and

confounding analysis, where perhaps a national health data could be be considered.
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APPENDIX

Proofs

To prove Lemma 1, apply Bayes’s rule to rewrite the relative risk (RR) terms as

RR1,x =
Pr(Y = 1|T = 1,X = x)

Pr(Y = 1|T = 0,X = x)

=
Pr(Y = 1, T = 1,X = x)/Pr(T = 1,X = x)

Pr(Y = 1, T = 0,X = x)/Pr(T = 0,X = x)

=
Pr(T = 1|Y = 1,X = x) · Pr(Y = 1,X = x)/Pr(T = 1|X = x)

Pr(T = 0|Y = 1,X = x) · Pr(Y = 1,X = x)/Pr(T = 0|X = x)

=
Pr(T = 1|Y = 1,X = x)

Pr(T = 0|Y = 1,X = x)
· 1− π(x)

π(x)

Similarly,

RR1,x′ =
Pr(T = 1|Y = 1,X = x′)

Pr(T = 0|Y = 1,X = x′)
· 1− π(x′)

π(x′)
.

Therefore,

RRR(Y=1)(x : x′) =
RR1,x

RR1,x′
=
OR

(T )
Y=1(x : x′)

OR(T )(x : x′)
,

where OR(T )(x : x′) as given in (3.10) is the odds ratio on basis of the propensity scores.

This establishes equation (3.7). Similar arguments can be used to establish RRR(Y=1)(x :

x′) in equation (3.8). Equation (3.9) follows since

ROR(Y )(x : x′) =
RRR(Y=1)(x : x′)

RRR(Y=0)(x : x′)
=
OR

(T )
Y=1(x : x′)

OR
(T )
Y=0(x : x′)

= ROR(T )(x : x′)

.

Denote β3 = (β31, . . . , β3j, . . . , β3p)
T ∈ Rp in model (3.11) and α3 = (α31, . . . , α3j, . . . , α3p)

T

in model (3.12). Let x = (x1, . . . , xj, . . . , xp)
T and set x′ = (x1, . . . , xj−1, xj+1, xj+1, . . . , xp)

T .

Then

β3j = ROR(Y )(x : x′) = ROR(T )(x : x′) = α3j.
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Since this holds for every j = 1, . . . , p, conclude that β3 = α3, which completes the proof

of Proposition 1.

Proposition 2 follows equations (3.7) and (3.8) in Lemma 1. With data collected from

a randomized experiment, the term OR(T )(x : x′) in (3.10) equals 1 and can be removed.

It follows

RRR(Y=0)(x : x′) = OR
(T )
Y=0(x : x′) and RRR(Y=1)(x : x′) = OR

(T )
Y=1(x : x′).

Setting x and x′ equal except that the j-th component of x′ is one unit larger than that of

x and comparing the loglinear model (3.13) with the logistic model (3.12) yield

γ
(0)
3j = RRR(Y=0)(x : x′) = OR

(T )
Y=0(x : x′) = α2j

and

γ
(1)
3j = RRR(Y=1)(x : x′) = OR

(T )
Y=1(x : x′) = α2j + α3j,

for every j = 1, . . . , p, where γ
(0)
3 =

(
γ
(0)
3j

)
, γ

(1)
3 =

(
γ
(1)
3j

)
, and α2 = (α2j). This completes

the proof of Proposition 2.
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R Codes

1 # install.packages (" MultiRNG ")

2 # require(MASS) # TO USE FUNCTION mvrnorm ()

3 library(MultiRNG) # MULTIVARIATE UNIFORM DISTRIBUTION WITH GIVEN

CORRELATION MATRIX

4

5 # ======================================

6 # FUNCTION rdat

7 # ======================================

8

9 is.even <- function(x) x %% 2 == 0

10

11 expit <- function(x) (tanh(x/2)+1)/2 # CORRECT & VERIFIED

12 # expit0 <- function(x) exp(x)/(1+exp(x)) # LOGISTIC FUNCTION , INVERSE

OF LOGIT FUNCTION

13

14 rdat <- function(n=100,

15 b0=c(-1, 0.5, 0.5, -1, 1, -0.5, 1, 0),

16 link.function="logistic",

17 rho=0.2, # UNIFORM COVARIATES

18 observational=FALSE , trt.p=0.5, a0=c(-2, 2, 2, 0), details=FALSE) #

TRT ASSIGNMENT

19 {

20 # GENERATE X

21 if (!is.even(length(b0)) || length(b0) <2) stop("Length of b0 should

be an even number!")

22 p <- (length(b0) -2)/2 # NUMBER OF COVARIATES

23 S <- matrix(1, p, p)

24 for (i in 1:p){

25 for (j in 1:p){

26 S[i, j] <- rho^(abs(i-j))

27 }

28 }
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29 X <- draw.d.variate.uniform(no.row=n,d=p,cov.mat=S)

30

31 # TREATMENT (RANDOM)

32 if (observational) {

33 if (length(a0)!=(p+1)) stop("Lenght of a0 must be consistent with

b0.")

34 eta.trt <- as.vector(cbind(1, X)%*%a0);

35 pi.trt <- expit(eta.trt)

36 trt <- rbinom(n=n, size=1, prob=pi.trt)

37 if (details) print(cbind(p.treatment=mean(pi.trt), p.trt=mean(trt))

)

38 } else {trt <- rbinom(n=n, size=1, prob=trt.p)}

39

40 # MODEL

41 X0 <- cbind(1, trt , X, trt*X)

42 eta <- as.vector(X0%*%b0);

43 if (details) print(cbind(eta.mean=mean(eta), eta.min=max(eta), prop.

positive=sum(eta >0)/length(eta)))

44 if (link.function =="exp") pi0 <- exp(eta*(eta <=0)) # LOGLINEAR

45 else pi0 <- exp(eta)/(1+ exp(eta)) # LOGISTIC

46 y <- rbinom(n, size=1, prob=as.vector(pi0));

47 if (details) print(cbind(p.respone=mean(pi0), p.y=mean(y)))

48

49 dat <- data.frame(cbind(y, trt , X))

50 colnames(dat) <- c("y", "trt", paste("x", 1:NCOL(X), sep=""))

51 dat

52 }

53

54

55

56

57 # -----------------------------------

58 # FUNCTION swap() SWAPS TWO COLUMNS

59 # -----------------------------------
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60 swap <- function(DF , n, m)

61 {

62 n <- if (class(n)=="character" & is.na(suppressWarnings(as.integer(n)

))) which(colnames(DF)==n) else as.integer(n)

63 m <- if (class(m)=="character" & is.na(suppressWarnings(as.integer(m)

))) which(colnames(DF)==m) else as.integer(m)

64

65 if (!(1<=n & n<= length(DF))) stop( "‘n‘ represents invalid index!" )

66 if (!(1<=m & m<= length(DF))) stop( "‘m‘ represents invalid index!" )

67

68 return (DF[ if (n==m) 1: length(DF) else c( (if (min(n,m)==1) c() else

1:( min(n,m) -1) ), (if (min(n,m)+1 == max(n,m)) (min(n,m)+1):(max(n,m)

-1) else c( max(n,m), (min(n,m)+1):(max(n,m) -1), min(n,m))), (if (max(

n,m)== length(DF)) c() else (max(n,m)+1):length(DF) ) ) ])

69 }

70

71

72 arrange.data <- function(dat , y="y", trt="trt") {

73 n <- NROW(dat)

74 dat1 <- swap(dat , y, trt)

75 names(dat1) <- names(dat)

76 dat <- data.frame(rbind(dat , dat1))

77 dat$group <- rep(c(0,1), c(n, n))

78 dat$ID <- rep (1:n, 2)

79 return(dat)

80 }

81

82 # ---------------------

83 # GENERATE SOME DATA

84 # ---------------------

85 set.seed (777)

86 b0 <- c(-1, 0.5, 0.5, -1, 1, -0.5, 1, 0)

87 a0 <- c(-2, 2, 2, 0)

88 n <- 500

50



89 dat <- rdat(n=n, b0=b0 , link.function="logistic",

90 rho=0.2, # UNIFORM COVARIATES

91 observational=FALSE , trt.p=0.5, a0=a0, details=TRUE)

92 head(dat); dim(dat)

93

94

95 # ------------------------

96 # DIRECT/INVERSE REGRESS

97 # ------------------------

98

99 fit.direct <- glm(y~trt + x1 + x2 + x3 + trt:x1 + trt:x2 + trt:x3 , data=

dat ,

100 family=binomial(link = "logit"))

101 summary(fit.direct)

102

103 fit.inverse <- glm(trt~y + x1 + x2 + x3 + y:x1 + y:x2 + y:x3 , data=dat ,

104 family=binomial(link = "logit"))

105 summary(fit.inverse)

106

107

108

109 # ----------------------------------

110 # COMMON ESTIMATORS FOR MODERATION

111 # ----------------------------------

112

113 library(geepack)

114 dat0 <- arrange.data(dat)

115 dim(dat0); dim(dat)

116 head(dat0)

117

118 fit <- glm(y~ (trt + x1 + x2 + x3)*group + trt:x1 + trt:x2 + trt:x3 , data

=dat0 ,

119 family=binomial(link = "logit"))

120 summary(fit)
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121

122 fit.ind <- geeglm(y~ (trt + x1 + x2 + x3)*group + trt:x1 + trt:x2 + trt:

x3 ,

123 id=ID, data=dat0 , corstr="independence",

124 family=binomial(link = "logit"))

125 summary(fit.ind)

126

127 # USER -DEFINED WORKING CORRELATION

128 rho <- rep (0.65 , n)

129 fit.gee <- geeglm(y~ (trt + x1 + x2 + x3)*group + trt:x1 + trt:x2 + trt:

x3 ,

130 id=ID, data=dat0 ,

131 corstr="fixed", zcor=rho ,

132 family=binomial(link = "logit"))

133 summary(fit.gee)

134

135

136 betas <- cbind(coef(fit.direct)[6:8] , coef(fit.inverse)[6:8] ,

137 coef(fit)[11:13] , coef(fit.ind)[11:13] , coef(fit.gee)[11:13])

138

139 SE <- cbind(summary(fit.direct)$coefficients [6:8, 2],

140 summary(fit.inverse)$coefficients [6:8, 2],

141 summary(fit)$coefficients [11:13 , 2],

142 summary(fit.ind)$coefficients [11:13 , 2],

143 summary(fit.gee)$coefficients [11:13 , 2])

144 out <- data.frame(betas , SE)

145 colnames(out) <- c(paste("beta", c("direct", "inverse", "common", "ind",

"gee"), sep="."),

146 paste("se", c("direct", "inverse", "common", "ind", "gee"), sep="."))

147 out

148

149

150 # ------------------------------

151 # EXTRACT VCOV FROM gee FITTING
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152 # ------------------------------

153

154 summary(fit.gee)

155 V <- summary(fit.gee)$cov.scaled

156 sqrt(diag(V))

157 V0 <- V[11:13 , 11:13]

158 sqrt(diag(V0))

159

160

161

162

163 # ===========================

164 # A SIMULATION STUDY

165 # ===========================

166

167

168 source("Functions -Moderation.R")

169

170 set.seed (777)

171 b0 <- c(-1, 0.5, 0.5, -1, 1, -0.5, 1, 0)

172 a0 <- c(-2, 2, 2, 0)

173 RHO <- c(0, 0.2, 0.5, 0.8)

174 nrun <- 1000

175 STUDY.obs <- c(FALSE , TRUE)

176 N <- (1:10)*100

177 BETA <- SE <- array(0, dim=c(nrun , 12, length(N), length(RHO), length(

STUDY.obs)))

178 VCOV <- array(0, dim=c(3, 3, nrun , length(N), length(RHO), length(STUDY.

obs)))

179 OUT <- NULL

180 for (i in 1: length(STUDY.obs)) {

181 study <- STUDY.obs[i]

182 for (m in 1: length(RHO)){

183 rho <- RHO[m]
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184 for (j in 1: length(N)){

185 n <- N[j]

186 Beta <- Se <- matrix(0, nrun , 9)

187 for (k in 1:nrun) {

188 print(cbind(study=ifelse(study , "Observational", "Experimental"),

rho=rho , n=n, run=k))

189 dat <- rdat(n=n, b0=b0 , link.function="logistic", rho=rho ,

observational=study ,

190 trt.p=0.5, a0=a0 , details=TRUE)

191 # DIRECT

192 fit.direct <- glm(y~trt + x1 + x2 + x3 + trt:x1 + trt:x2 + trt:x3

, data=dat ,

193 family=binomial(link = "logit"))

194 beta.direct <- coef(fit.direct)[6:8]

195 se.direct <- summary(fit.direct)$coefficients [6:8, 2]

196 # INVERSE

197 fit.inverse <- glm(trt~y + x1 + x2 + x3 + y:x1 + y:x2 + y:x3 ,

data=dat ,

198 family=binomial(link = "logit"))

199 beta.inverse <- coef(fit.inverse)[6:8]

200 se.inverse <- summary(fit.inverse)$coefficients [6:8, 2]

201 # GEE - IND

202 dat0 <- arrange.data(dat)

203 fit.gee <- geeglm(y~ (trt + x1 + x2 + x3)*group + trt:x1 + trt:x2

+ trt:x3,

204 id=ID , data=dat0 , corstr="independence",

205 family=binomial(link = "logit"))

206 beta.gee <- coef(fit.gee)[11:13]

207 se.gee <- summary(fit.gee)$coefficients [11:13 , 2]

208 vcov <- (summary(fit.gee)$cov.scaled)[11:13 , 11:13]

209 VCOV[, ,k,j,m,i] <- vcov

210

211 # UPDATE RESULT

212 Beta[k,] <- c(beta.direct , beta.inverse , beta.gee)
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213 Se[k,] <- c(se.direct , se.inverse , se.gee)

214 }

215 BETA[, ,j,m,i] <- cbind(study=ifelse(study , "Observational", "

Experimental"), rho=rho , n=n, Beta)

216 SE[, ,j,m,i] <- cbind(study=ifelse(study , "Observational", "

Experimental"), rho=rho , n=n, Se);

217 out <- c(study=ifelse(study , "Observational", "Experimental"), rho=

rho , n=n, apply(Beta , 2, mean),

218 apply(Beta , 2, sd), apply(Se, 2, mean), apply(Se, 2, median))

219 OUT <- rbind(OUT , out)

220 }

221 }

222 }

223 OUT <- as.data.frame(OUT)

224 colnames(OUT) <- c("study", "rho", "n",

225 paste("b", 1:3, "-direct", sep=""), paste("b", 1:3, "-inverse", sep=""),

paste("b", 1:3, "-gee", sep=""),

226 paste("sd", 1:3, "-direct", sep=""), paste("sd", 1:3, "-inverse", sep="")

, paste("sd", 1:3, "-gee", sep=""),

227 paste("ase", 1:3, "-direct", sep=""), paste("ase", 1:3, "-inverse", sep="

"), paste("ase", 1:3, "-gee", sep=""),

228 paste("median -se", 1:3, "-direct", sep=""), paste("median -se", 1:3, "-

inverse", sep=""), paste("median -se", 1:3, "-gee", sep=""))

229 OUT

230

231 save(BETA , SE , VCOV , OUT , file="result.Rdat")

232

233 ###################################################

234 # SUMMARY OF THE SIMULATION RESULTS

235 ###################################################

236

237

238 # rm(list=ls(all=TRUE))

239
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240 load("result.Rdat")

241 ls()

242

243 dim(BETA)

244

245 # ==============

246 # NUMERICAL

247 # ==============

248

249 dim(OUT)

250 write.csv(OUT , file="resul1.csv", row.names=FALSE)

251

252 n.study <- dim(BETA)[[5]]

253 n.rho <- dim(BETA)[[4]]

254 ns <- dim(BETA)[[3]]

255 RHO <- c(0, 0.2, 0.5, 0.8)

256 N <- 1:10*100

257 alpha <- 0.05

258 OUT <- NULL

259 for (i in 1:n.study) {

260 study <- ifelse(i==1, "Experimental", "Observational")

261 for (j in 1:n.rho) {

262 rho <- RHO[j]

263 for (k in 1:ns){

264 n <- N[k]

265 print(cbind(i, j, k, study=study , rho=rho , n=n))

266 Beta <- BETA[, 4:12, k, j, i]

267 Se <- SE[, 4:12, k, j, i]

268 Vcov <- VCOV[, , , k, j, i]

269 storage.mode(Beta) <- storage.mode(Se) <- "double"

270

271 beta <- matrix(apply(Beta , 2, mean), nrow=3, byrow=FALSE)

272 sd <- matrix(apply(Beta , 2, sd), nrow=3, byrow=FALSE)

273 se.mean <- matrix(apply(Se , 2, mean), nrow=3, byrow=FALSE)
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274 se.median <- matrix(apply(Se , 2, median), nrow=3, byrow=FALSE)

275

276 storage.mode(Vcov) <- "double"

277 vcov.avg <- apply(Vcov , c(1, 2), mean)

278 vcov.median <- apply(Vcov , c(1, 2), median)

279 vcov <- cov(Beta[, 7:9])

280

281 # WALD Z TEST

282 Z <- (Beta/Se)^2

283 pvalue <- pchisq(Z, df=1, lower.tail =FALSE)

284 power.size <- matrix(apply(pvalue < alpha , 2, mean), nrow=3, byrow=

FALSE)

285

286 # COLLECT RESULTS

287 out <- cbind(study , rho , n, beta , sd , se.mean , se.median , power.

size ,

288 vcov , vcov.avg , vcov.median)

289 OUT <- rbind(OUT , out)

290 }

291 }

292 }

293 OUT <- as.data.frame(OUT)

294 methods <- c("direct", "inverse", "gee")

295 colnames(OUT) <- c("study", "rho", "n", paste("beta.", methods , sep=""),

296 paste("sd.", methods , sep=""), paste("se.mean.", methods , sep=""),

297 paste("se.median.", methods , sep=""), paste("power.size.", methods , sep="

"),

298 paste("vcov.", 1:3, sep=""), paste("vcov.avg.", 1:3, sep=""),

299 paste("vcov.median.", 1:3, sep=""))

300 head(OUT)

301

302 write.csv(OUT , file="results.csv", row.names=FALSE)

303

304
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305

306

307 # ==============

308 # GRAPHICAL

309 # ==============

310

311 dim(OUT)

312 head(OUT)

313 # ==========================

314 # PLOTTING THE RAW RESULTS

315 # ==========================

316 load("result.Rdat")

317 ls()

318

319 n.study <- dim(BETA)[[5]]

320 n.rho <- dim(BETA)[[4]]

321 RHO <- c(0, 0.2, 0.5, 0.8)

322 for (k in 1:n.study) {

323 study <- ifelse(k==1, "exp", "obs")

324 for (m in 1:n.rho){

325 rho <- RHO[m]

326 print(cbind(k=k, m=m, study=study , rho=rho))

327 filename <- paste("fig -", study , "-", rho , ".eps", sep="")

328 BETA0 <- BETA[,, , m, k]; SE0 <- SE[,, , m, k]

329

330 # SD & CORR

331 ns <- dim(BETA0)[[3]]

332 N <- (1:ns)*100

333 SD <- matrix(0, ns , 9)

334 CORR <- matrix(0, ns , 3)

335 for (i in 1:ns){

336 Beta <- as.matrix(BETA0[, 4:12,i])

337 storage.mode(Beta) <- "numeric"

338 SD[i, ] <- apply(Beta , 2, sd)
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339 CORR[i, 1] <- cor(Beta[,1], Beta[,7], method="pearson")

340 CORR[i, 2] <- cor(Beta[,2], Beta[,8], method="pearson")

341 CORR[i, 3] <- cor(Beta[,3], Beta[,9], method="pearson")

342 }

343 # AVERAGED SE

344 AvgSe <- matrix(0, ns , 9)

345 for (i in 1:ns){

346 Se <- as.data.frame(SE0[, 4:12,i])

347 Se <- as.data.frame(sapply(Se , function(x) as.numeric(as.character(

x))))

348 AvgSe[i, ] <- apply(Se , 2, mean)

349 }

350 # PREPARE BOXPLOT DATA WITH SE

351 dat0 <- NULL

352 for (i in 1:ns) dat0 <- rbind(dat0 , as.matrix(SE0[, ,i]))

353 dat0 <- as.data.frame(dat0)

354 dat0[, 4:12] <- as.data.frame(sapply(dat0[, 4:12], function(x) as.

numeric(as.character(x))))

355 names(dat0) <- c("study", "rho", "n", paste("x", 1:9, sep=""))

356 # dat0$n <- ordered(dat0$n, levels =as.character ((1:10)*100))

357 dat0$n <- as.numeric(as.character(dat0$n))

358 dat0$rd1 <- (dat0$x1 - dat0$x7)/dat0$x1

359 dat0$rd2 <- (dat0$x2 - dat0$x8)/dat0$x2

360 dat0$rd3 <- (dat0$x3 - dat0$x9)/dat0$x3

361

362 # -------------

363 # 2 x 3 PLOT

364 # -------------

365 postscript(file=filename , horizontal=TRUE)

366 par(mfrow=c(2, 3), mar=c(4, 4, 3, 2))

367 # SD

368 for (j in 1:3){

369 # BOXPLOTS OF SE

370 form <- as.formula(paste(paste("x", j, sep=""), " ~ ", "n"))
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371 boxplot(form , data=dat0 , boxwex =0.2, border="coral1", col="coral1",

xlab="n", ylab="", notch=TRUE ,

372 xaxt="n", outline=FALSE , at=(1:ns) -0.15, add=FALSE , cex.lab=1.2,

lty=1)

373 if(j==1) mtext(text="SD & SEs", side=2, line =2.1, col="black", cex

=0.8)

374 if (j==3) legend(6, 2.0, fill=c("coral3", "cadetblue3"), border=c("

coral3", "cadetblue3"),

375 legend=c("direct", "GEE"), cex =1.2)

376 beta.j <- substitute(list(hat(beta))[list(3,j0)], list(j0=j))

377 text(5, par("usr")[4] + 0.15, srt=0, adj = 0, labels=beta.j, xpd =

TRUE , col="blue", cex =1.5)

378 # mtext(text=beta.j, side=4, line=1, col="blue", cex=2)

379 axis(1, at=1:10, labels=N, tick=FALSE , cex =0.3)

380 form0 <- as.formula(paste(paste("x", j+6, sep=""), " ~ ", "n"))

381 boxplot(form0 , data=dat0 , boxwex =0.2, border="cadetblue2", col="

cadetblue2", xaxt="n", notch=TRUE ,

382 add=TRUE , at=(1:ns)+0.15 , outline=FALSE , lty=1)

383 # Averaged SE

384 # lines (1:ns, AvgSe [1:ns,j], col=" tomato", lty=1, lwd =0.5)

385 # lines(N, AvgSe [1:ns, j+3], col=" green4", lwd=0.5, lty=2)

386 # lines (1:ns, AvgSe [1:ns, j+6], col=" skyblue2", lwd=0.5, lty=1)

387 # SD

388 lines (1:ns , SD[1:ns , j], col="coral4", type="l", lwd=1, ylab="SD",

xlab="n", cex =0.5)

389 grid()

390 # lines(N, SD[1:ns, j+3], col=" green4", lwd =0.5)

391 lines (1:ns , SD[1:ns , j+6], col="cadetblue4", lwd=1, type="l", pch

=20, cex =0.5)

392 }

393

394 for (j in 1:3){

395 # BOXPLOT OF RELATIVE DIFFERENCE IN SE

396 form <- as.formula(paste(paste("rd", j, sep=""), " ~ ", "n"))
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397 boxplot(form , data=dat0 , boxwex =0.35, border="darkseagreen", col="

palegreen2",

398 xlab="n", ylab="", notch=TRUE , cex.lab=1.2, lty=1,

399 xaxt="n", outline=FALSE , at=(1:ns), add=FALSE)

400 axis(1, at=1:10, labels=N, tick=FALSE , cex =0.3)

401 if(j==1) mtext(text="Relative Diff in SD", side=2, line =2.1, col="

black", cex =0.8)

402 if(j==2) mtext(text="Correlation", side=2, line =2.2, col="gray65",

cex =0.8)

403

404 # RELATIVE DIFFERENCE

405 rd.sd <- (SD[1:ns , j]-SD[1:ns , j+6])/SD[1:ns , j]

406 lines (1:ns , rd.sd , col="darkseagreen4", type="b", lwd =1.5);

407 grid()

408 # rd.ase <- (AvgSe [1:ns, j]-AvgSe [1:ns, j+6])/AvgSe [1:ns, j]

409 # lines (1:ns, rd.ase , col="blue", type="b", lwd =1.5)

410 par(new=T)

411 plot (1:ns , CORR[ , j], lwd=2, col="gray75", xlab="", ylab="", type=

"b", # ylim=c(0.90 , 1.00) ,

412 pch=20, cex=0.8, cex.lab=1.2, lty=1, axes=F)

413 axis(4,col="gray75", col.ticks="gray75", col.axis="gray75")

414

415 }

416 dev.off()

417 }

418 }

419

420

421 ###################################################################

422 # REAL DATA EXPLORATION - MODERATION ANALYSIS OF WART DATA

423 ###################################################################

424 library(MASS)

425 library(geepack)

426 # rm(list=ls(all=TRUE))
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427 getwd ()

428 dat <- read.csv(file="wart.csv", header=TRUE)

429

430 dim(dat); head(dat)

431 table(dat$response)/NROW(dat)

432 table(dat$cryo)/NROW(dat)

433

434 table(dat$response , dat$cryo , dat$type)

435 table(dat$response , dat$type)

436

437 # MERGE TYPE 1&2 TOGETHER; type=type3

438 dat$type <- ifelse(dat$type==3, 1, 0)

439

440 dat$agegrp <- cut(dat$age , breaks=quantile(dat$age , probs = seq(0, 1,

0.25)),

441 labels = 1:4)

442

443 table(dat$response , dat$cryo , dat$agegrp)

444

445

446 # ===================================================================

447 # GENERAL DIRECT LOGISTIC REGRESSION

448 # ===================================================================

449

450 fit0 <- glm(response ~ cryo + sex + age + time + nwarts + type + area ,

data=dat , family=binomial(link = "logit"))

451 summary(fit0)

452

453 =====================================================================

454 #VARIABLE SELECTION METHODS

455 =====================================================================

456 # BEST SUBSET SELECTION

457 install.packages("glmulti")

458 library(glmulti)
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459 out.BSS <- glmulti(response ~ cryo + sex + age + time + nwarts + type +

area , data=dat ,

460 fitfunc = glm , family=binomial , intercept = TRUE ,

461 crit = bic , level = 1, method="g", plotty=FALSE ,

462 confsetsize =1) # SELECT ONLY ONE BEST MODEL

463 fit.BSS <- attributes(out.BSS)$objects [[1]]

464 fit.BSS$coef

465 summary(fit.BSS)

466

467

468

469 fit.direct <- glm(response ~ cryo + sex + age + time + type + cryo:age +

cryo:time + cryo:type , data=dat ,

470 family=binomial(link = "logit"))

471 summary(fit.direct)

472

473

474 fit.direct <- glm(response ~ cryo + age + time + factor(type) + cryo:time

+ cryo:age , data=dat ,

475 family=binomial(link = "logit"))

476 summary(fit.direct)

477

478 =======================================================================

479 #STEPWISE SELECTION

480 =======================================================================

481 fit.stepwise <- stepAIC(fit.direct , direction = "both", k=log(nrow(dat))

)

482 # names(fit.stepwise)

483 fit.stepwise$anova

484 summary(fit.stepwise)

485

486

487 fit.direct <- glm(response ~ cryo + age + time + type + cryo:age + cryo:

time + cryo:type , data=dat ,
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488 family=binomial(link = "logit"))

489 summary(fit.direct)

490

491

492 control0.glm <- glm.control(epsilon = 1e-8, maxit =100, trace = FALSE)

493 fit.direct <- glm(response ~ cryo + age + type + cryo:age + cryo:type ,

data=dat ,

494 family=binomial(link = "logit"), control =control0.glm)

495 summary(fit.direct)$coefficients

496

497

498 ## LASSO

499

500 library(glmnet)

501 formula0 <- response~.

502 X <- model.matrix (as.formula(formula0), data = dat)

503 y <- dat$response

504 #response ~ cryo + sex + age + time + nwarts + factor(type) + area , data=

dat ,

505 fit.lasso <- glmnet(x=X, y=y, family= binomial(link = "logit"), alpha=1,

506 lambda.min = 1e-6, nlambda = 100, standardize=T, thresh =

507 1e-07, maxit =1000)

508 plot(fit.lasso)

509

510

511 #We then determine the optimal tuning parameter.

512 CV <- cv.glmnet(x=X, y=y, family=binomial(link = "logit"), alpha = 1,

513 lambda.min = 1e-4, nlambda = 200, standardize = T, thresh = 1e-07,

514 maxit =100)

515 plot(CV)

516

517 #I select the best tuning parameter ($\lambda$) and use it in the final

model.

518
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519 b.lambda <- CV$lambda .1se; b.lambda

520 fit.best <- glmnet(x=X, y=train$outcome , family="binomial", alpha = 1,

521 lambda=b.lambda , standardize = T, thresh = 1e-07,

522 maxit =1000)

523 fit.best$beta

524 ==========================================================================

525

526

527 # FITTING DIRECT AND INVERSE MODEL WITH

528 control0.glm <- glm.control(epsilon = 1e-8, maxit =100, trace = FALSE)

529 fit.direct <- glm(response ~ cryo + age + type + cryo:age + cryo:type ,

data=dat ,

530 family=binomial(link = "logit"), control =control0.glm)

531 summary(fit.direct)$coefficients

532

533 form.inverse <- cryo ~ response + age + type + response:age + response:

type

534 fit.inverse <- glm(form.inverse , data=dat ,

535 family=binomial(link = "logit"), control =control0.glm)

536 summary(fit.inverse)$coefficients

537

538 fit0.inverse <- glm(cryo ~ age + type , data=dat , subset =( response ==0),

539 family=binomial(link = "logit"), control =control0.glm)

540 summary(fit0.inverse)$coefficients

541

542 fit1.inverse <- glm(cryo ~ age + type , data=dat , subset =( response ==1),

543 family=binomial(link = "logit"), control =control0.glm)

544 summary(fit1.inverse)$coefficients

545

546

547 #=============================== GEE Model

=================================

548
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549

550 arrange.data <- function(dat , y="response", trt="cryo") {

551 n <- NROW(dat)

552 dat1 <- swap(dat , y, trt)

553 names(dat1) <- names(dat)

554 dat <- data.frame(rbind(dat , dat1))

555 dat$group <- rep(c(0,1), c(n, n)) #Rearranging data

556 dat$ID <- rep (1:n, 2)

557 dat <- dat[order(dat$ID), ]

558 return(dat)

559 }

560

561 dat0 <- arrange.data(dat)

562 dim(dat0); dim(dat)

563 head(dat0)

564

565 # Fitting the GEE model

566 fit.gee <- geeglm(response ~ (cryo + age + type)*group + cryo:age + cryo

:type ,

567 id=ID, data=dat0 , corstr="independence",

568 family=binomial(link = "logit"))

569 summary(fit.gee)

570 result.gee <-(summary(fit.gee)$coefficients)

571 names(result.gee)

572 result.gee$Wald <-(result.gee$Estimate)/(result.gee$Std.err)

573 result.gee$‘Pr(>|W|)‘<-2*pnorm(-abs(result.gee$Wald))

574

575 #result.gee$OR <- exp(as.numeric(result.gee[, 1]))

576 #result.gee$"z value" <- result.gee[, 3]

577 names(result.gee)[names(result.gee) == "Wald"] <- "z value"

578 names(result.gee)[names(result.gee) == "Pr(>|W|)"] <- "Pr(>|z|)"

579 names(result.gee)[names(result.gee) == "Std.err"] <- "Std. Error"

580 #result.gee

581
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582 # RESULTS

583 OUT <- rbind(summary(fit.direct)$coefficients , NA ,

584 summary(fit.inverse)$coefficients , NA ,

585 summary(fit0.inverse)$coefficients , NA ,

586 summary(fit1.inverse)$coefficients , NA ,

587 result.gee)

588 OUT <- as.data.frame(OUT)

589

590 OUT$OR <- exp(as.numeric(OUT[, 1]))

591

592 Wart_data_results <-write.csv(OUT , file="result2 -wart.csv", row.names=TRUE

)
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