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Abstract

Solar active regions are areas on the Sun’s surface that have especially strong magnetic

fields. Several phenomena that can have significant negative effects on technology and

subsequently on human life, such as solar flares and coronal mass ejections (CMEs), are

often associated with active regions. Since the physical phenomena underlying the evolution

of active regions are still poorly understood, the accurate prediction of solar flares and

coronal mass ejections remains an open problem.

Extracting insights from the available datasets of solar activity that can lead to a better

understanding of solar active regions has been an important research goal at the intersection

of artificial intelligence and solar physics. With the advancement in artificial intelligence,

some machine learning models have been applied to predict solar flares from a 6-hour to

48-hour window. Support Vector Machine (SVM) [6,42], K-Nearest-Neighbor (KNN) [29],

Extremely Randomized Trees (ERT) [37], and deep neural network [36] are some of the

machine learning models that have been used in predicting solar flare but results are not

good. This can be attributed to the fact that the models are trained using a selection of

Active regions parameters and an imbalance data (few positive flare examples).

As a result, there is a need to understand space weather and the basis by which these

events occur. In this study, we applied a deep learning architecture originally designed

for video prediction to predict the changes happening on the Sun in continuous time by

using time series Helioseismic and Magnetic Imager data captured by Solar Dynamics

Observatory (SDO) and compared it against a no-change baseline and a regression baseline.

These three approaches were compared against one another based on their mean squared

error (MSE) and structural similarity index measure (SSIM) and it was found out that the

regression model outperforms the others in MSE whilst the deep learning model outperforms

the rest in SSIM.

From this, we seek to continue our work by adapting deep learning models used in solving
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image-to-image translation problems to produce high-quality synthetic data to solve the

class imbalance data problem and incorporate other time-series data of the Sun to improve

upon the predictions of the spatiotemporal changes of active regions on the Sun.
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Chapter 1

Introduction

The dynamic conditions and events on the Sun in near-Earth space and in our upper

atmosphere have a significant role in both human lives and innovation. This phenomenon

is depicted by space weather. Solar activities give rise to different kinds of space weather.

These activities are solar flares, coronal mass ejections, high-speed solar wind, and solar

energetic particles. The solar magnetic field is the definitive wellspring of all of these

activities.

1.1 Active Regions

1.1.1 What Is An Active Region

An Active Region is an area on the Sun with especially strong magnetic field. It is known

that most solar storms -solar flares and coronal mass ejections(CME) erupt from active

regions. Active Regions are most common during the peak of the sunspot or solar cycle

when the Sun’s magnetic field is highly disturbed. Active Regions can be seen in X-ray and

ultraviolet images of the Sun as bright areas. The powerful magnetic fields around active

regions release intense bursts of energy, which often take the form of high-energy X-ray and

UV photons. Sunspots are visual indicators of active regions but not all active regions have

sunspots. Also other solar features such as solar prominences and coronal loops sometimes

do appear around Active regions [48].
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Figure 1.1: Sunspots (left) and Coronal loops (Right).

Credit: Royal Swedish Academy of Sciences - Göran Scharmer and Mats Löfdahl (sunspots)

and NASA/SDO and the AIA, EVE, and HMI science teams (coronal loops)

1.1.2 What Is A Sunspot

Sunspots are regions on the surface of the Sun found in the photosphere which appear

darker and also cooler compared to other areas on the Sun. Their dark characteristic is

due to the fact that whilst other areas have average temperature of 5,800 degrees Kelvin,

sunspots have average temperature of 3,800 degrees Kelvin. Though Sunspots appear with

small in solar images, their diameter can be as large as 50,000 kilometers. Formation of

Sunspots is not fully understood but it is known to be formed in areas on the Sun with

intense magnetic activity [51] (Figure 1.1).
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1.2 Solar Flares

1.2.1 What Are Solar Flares

A sudden release of distorted magnetic fields that produces a huge amount of energy and

drives that energy into space creates a sudden flash of light known as a solar flare. Solar

flares are considered as the largest explosive events of our solar system. Flares can last from

minutes to hours. This electromagnetic emission travels at the speed of light. Sometimes

the released energy accelerates very high energy particles such as protons and electrons. It

takes about tens of minutes for these high energy particles to reach the Earth [35].

The energy emitted by a solar flare is more than a million times greater than the energy

from a volcanic explosion on Earth. Although solar flares can be visible in white light, they

are often more readily noticed via their bright X-ray and ultraviolet emissions.

1.2.2 Classification Of Solar Flares

The eruption and the associated storms with solar flare can carry huge radiation to the earth

and/or travel long distances in space. Due to this, the National Oceanic and Atmospheric

Administration (NOAA) has devised categories to classify flares and the various storms.

The letters A, B, C, M and X are used in the classification of solar flares with the biggest

flares classified as ”X-class flares” and the smallest ones as ”A-class flares”. Just like the

Richter scale for earthquake, each letter represents a 10-fold increase in energy output. A,

B and C are the weak ones having less noticeable effect on the Earth. The ”M-class flares”

can cause brief radio blackouts at the poles and minor radiation storms that might endanger

astronauts. Table 1.1 shows the various categories and their respective measurements.

1.2.3 Prominent Solar Flare Events

Solar flares strongly influence the local space weather in the vicinity of the Earth.They can

produce streams of highly energetic particles in the solar wind or stellar wind, known as a
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Table 1.1: Solar Flare Classes

Class W/m2 between 1 & 8 Ångströms

A < 10−7

B ≥ 10−7 < 10−6

C ≥ 10−6 < 10−5

M ≥ 10−5 < 10−4

X ≥ 10−4

solar proton event. These particles can impact the Earth’s magnetosphere. Also, massive

solar flares are sometimes accompanied by coronal mass ejections (CMEs) which can trigger

geomagnetic storms that have been known to disable satellites and knock out terrestrial

electric power grids for extended periods of time. These events have been recorded for the

past one hundred and fifty years. Below are some of the serious solar flare events that was

felt on earth or by satellite in space:

1. One of the most powerful solar flare events happened on September 1, 1859. This

event is known as the ”Carrington event”. The event was first reported by one of

England’s foremost solar astronomers named Richard Carrington. Because of that

event, high energy particles entered into Earth’s atmosphere and overpowered the

Earth’s protective magnetic field which resulted in a huge destruction on the ground.

Telegraph system disrupted worldwide. Telegraph offices were ignited by the spark.

Colorful aurora were seen at near tropical latitudes over Cuba, the Bahamas, Jamaica,

El Salvador, and Hawaii. Even when batteries were disconnected, the messages were

transmitted because of electric currents in the wires induced by Aurora [10].

2. One of the historical powerful series of solar storms happened in August 1972. The

solar storms were associated with solar flare, geomagnetic storm and high energy

particles. This storm set off sea mines in Vietnam. This event disrupted satellite,

4



hindered communication-grid and electric service. This event occurred between the

Apollo 16 and Apollo 17 lunar missions. If this would happen during one of the

mission, the particles could have hit astronauts outside of Earth’s protective magnetic

field and the result could have been life-threatening.

3. Another example of space weather events is the collapse of the Hydro-Québec power

network on March 13, 1989 due to geomagnetically induced currents (GICs). Caused

by a transformer failure, this event led to a general blackout that lasted more than 9

hours and affected over 6 million people. The geomagnetic storm causing this event

was itself the result of a CME ejected from the sun on March 9, 1989. [35]

4. From mid-October to early November 2003, one of the largest solar flare events oc-

curred. This is actually the largest solar flare event that has been recorded by Geosta-

tionary Operational Environmental Satellite (GOES) system. This event saturated

the GOES detectors, and because of this its classification is only approximate. The

Sun’s magnetic field lines were stretched because of the flare and then all of a sudden

the magnetic field lines stretched beyond their limit. Due to this, a giant explosion

occurred on the Sun’s surface leading to coronal mass ejections(CME). CMEs are

capable of exploding billions of tons of electrified gas and subatomic particles into

space at a speed of five million miles per hour. This event disrupted communication,

satellite-based system. A 90-minute blackout in Sweden was caused because of this

event. Aircraft controllers changed their route to avoid high altitudes near the polar

regions.

5. The solar storm of 2012 was an unusually large and strong coronal mass ejection

(CME) event that occurred on July 23 that year. It missed the Earth with a margin

of approximately nine days, as the equator of the Sun rotates around its own axis

with a period of about 25 days. The region that produced the outburst was thus not

pointed directly towards the Earth at that time. The strength of the eruption was

comparable to the 1859 Carrington event that caused damage to electric equipment

5



worldwide, which at that time consisted mostly of telegraph stations.

1.2.4 Goal

In this research work, we seek to predict the changes in Active region by employing deep

learning methods created for video predictions. For this purpose, we will utilize Solar

Dynamics Observatory (SDO) images produced from Helioseismic and Magnetic Imager

Instrument with a cadence of 12 minutes.

1.2.5 Significance of The Goal

The physical phenomenon underlying the evolution of active regions is still an open problem

and a lot of work has been done to model and predict the changes in active regions.

Researchers such as Bobra et al. [6], Qahwaji et al. [42], Li et al. [29] and Nishizuka et al. [36]

have been pioneering works in feature selection of parameters of active regions and applying

machine learning models to predict solar flares. Also Rempel et al. [45] have investigated

the use of numerical simulations in modeling active region scale flux emergence. Despite all

these advancements, there is a poor understanding of the phenomenon surrounding active

regions. In this project, we seek to predict the changes of active regions to help improve

the understanding of active regions and the prediction of solar flare.

1.3 Thesis Statement

Deep learning models that have been created for video prediction can be adapted to the

problem of predicting the evolution of active solar regions, providing a valuable source of

information towards better space weather understanding and forecasting.

1.4 Research Questions

In this research, we are looking for the answers to the following questions:

6



1. Could deep learning models designed for solving next frame prediction be adapted

to predict the changes in active regions and produce practical results better than

conventional baseline approaches?

2. Could we solve the data sparsity problem associated with solar flare prediction by

generating high-quality synthetic data to improve results in solar flare prediction?

3. Could we incorporate the knowledge of the 3D viewing geometry and the Sun’s rota-

tion to simplify the learning process of predicting the changes in Active regions?

4. Could we improve the predictions of the changes in active regions by modifying the

architecture of deep learning models made for video prediction to exploit information

from other data sources such as x-ray time series?

5. Could deep learning methods developed to predict changes in active regions in Mag-

netograms from Helioseismic and Magnetic Imager (HMI) be successfully applied to

images in other wavelengths from Atmospheric Imaging Assembly (AIA)?

1.5 Outline

This write-up is structured as follows:

• Chapter 2 describes the background of this proposal.

• Chapter 3 presents some related works to this research.

• Chapter 4 describes the data used and methodologies that are implemented to achieve

the expectations of this work.

• Chapter 5 discusses some groundwork done and the results obtained.

• Finally, my work plan and the timeline are shown in chapter 6

7



Chapter 2

Background

Neural network is one of the important components in Artificial Intelligence (AI). A neural

network model (or neural model) as that term is used refers to a connectionist model

that simulates the biophysical information processing occurring in the nervous system. A

preliminary definition of neural network is given by Kevin Gurney in his course package

(1999) as follows:

A Neural Network is an interconnected assembly of simple processing elements, units

or nodes, whose functionality is loosely based on the animal neuron. The processing ability

of the network is stored in the inter-unit connection strengths, or weights, obtained by a

process of adaptation to, or learning from, a set of training patterns.

Generally, a neural network consists of three layers - input layer, hidden layers and out-

put layer. Input layer receives input of various formats, for example, number, text, audio,

image pixels and so on. Hidden layer does data manipulation, mathematical calculation,

feature extraction and so on based on the information it receives from input layer. Output

layer receives information from hidden layer and based on that it generates the desired

output.

Given input values x1, ..., xp, where x1, ..., xp represents an external input, a processing

unit computes its output as y = f(z). Here, f is called activation function and z is obtained

by applying a propagation rule(activation function and any intermediate function) which

maps all the inputs to the intermediate input z. Neural networks can be visualized in

the means of a directed graph called network graph. Each unit is represented by a node

labeled according to its output and the units are interconnected by directed edges. This

is illustrated in (Figure 2.1). An input unit computes the output y := x where x is the

8



Figure 2.1: Neural Network Representation

single input value of the unit whilst output units might accept an arbitrary number of input

values. The network represents a function y(x) whose dimensions are fixed by the number

of input and output units.

Each node in the network carries some weights to the next layer and there is an assigned

bias to each layer. Result of the weighted sum of inputs with an addition of bias is passed

to activation functions and based on that the output layer generates the final output. Then

a cost function calculates the error. To minimize the error, weights need to adjust. To do

this, we backpropagate the error through the network.

Since the inception of neural networks, many models have been created based on the task

at hand using the underlying computations explained above. Out of them Convolutional

Neural Network (CNN) and Recurrent Neural Network (RNN) stand out and serves as

basis for most.
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2.1 Convolutional Neural Network (CNN)

2.1.1 Convolution Operation

The convolution operation is usually denoted by asterisk. The convolution of f and g is

defined as follows

s(t) = (f ∗ g)(t) =

∫ ∞
−∞

f(a)g(t− a)da (2.1)

and described as weighted average of f(a) at the moment t where the weighting is given

by g(−a) with a shift of amount t. The weighting function emphasizes different parts of

the input function based on the value of t.

The function f is known as the input, the function g is called the kernel and the output

is referred to as the feature map in convolutional network terminology.

t will be discretized while working with data and then t can only take on integer values.

In that case the discrete convolution can be defined as:

s(t) = (f ∗ g)(t) =
∞∑

a=−∞

f(a)g(t− a) (2.2)

When the input is a multidimensional array, then the kernel is also a multidimensional

array. These multidimensional arrays are referred to tensors. Both input and kernel ele-

ments are stored separately. It is assumed that both input and kernel functions are zero

everywhere but the finite set of points for which the values are stored. Consequently, the

infinite summation can be expressed as a summation over a finite number of array elements.

In this case convolution is defined as

S(i, j) = (F ∗G)(i, j) =
∑
m

∑
n

F (m,n)G(i−m, j − n) (2.3)

One of the nice property of convolution is commutative property. So the previous

equation is equivalent to (2.4).
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S(i, j) = (G ∗ F )(i, j) =
∑
m

∑
n

F (i−m, j − n)G(m,n) (2.4)

The following figure shows how 2-D convolution works where x is the input and y is the

feature map produced with h′′ as the kernel.

Figure 2.2: An example of 2-D convolution

2.1.2 Pooling

After performing several convolutions in parallel to produce a set of linear activations, each

linear activation is run through a nonlinear activation function, for example, the rectified

linear unit. This is called detector stage. Then pooling function is used to replace the

output of the network at a certain location with a summary statistic of the nearby outputs.

To implement pooling there are several non-linear functions - max pooling, average pool-

ing, L2 norm, weighted average. Max pooling uses the maximum value of a rectangular

neighborhood and average pooling takes the average of a rectangular neighborhood.
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Figure 2.3: Max pooling vs Average Pooling

It is assumed that the presence of some feature is more important than its exact location

relative to other features. In this case translation invariance property is very useful. And

pooling helps to make the representation approximately translation invariant.

Pooling over spatial regions produces invariance to translation, but pooling over the

outputs helps the features to learn which transformations to become invariant to.

Usually pooling units are fewer than detector units because pooling uses the summary

statistics for pooling regions spaced k pixels apart rather than 1 pixel apart. That means

the next layer has approximately k times fewer inputs to process which is computationally

efficient as well as statistically efficient. This also reduce the memory requirements to store

the bottlenecks.
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2.1.3 Activation

Sigmoid or Logistic Activation Function

The mathematical form of sigmoid function is

σ(z) =
1

1 + e−z
(2.5)

This activation function is very popular among deep learning researchers and engineers

because of its advantages -

• By nature sigmoid function is nonlinear, so the linear combination of this function is

also nonlinear. This function has smooth gradient also.

• This function takes any real value as input and output is always in the range (0, 1),

while the range for linear function is (−∞,∞).

• From the figure 2.4 of the sigmoid function, it is clear that the function is very steep

in the range (−2, 2). That means in this range the function will change significantly

for a small change in z. Consequently, there will be gradient which is greater than

zero. It is also clear that the output of this function is between 0 and 1, which is

good for a classifiers as this function is making a clear distinctions on prediction.

The main drawback of this activation function is outside of the range (−2, 2), the func-

tion changes very little for any amount of change in z. That means the gradient will be

close to zero. This problem is called ”vanishing gradients” problem. This is an undesirable

property. In this case the gradient becomes zero and there will be no flow of signal to its

weights and recursively to its data.

Hyperbolic tangent

Mathematically hyperbolic tangent is expressed as

tanh(x) =
2

1 + e−2x
− 1 (2.6)
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Figure 2.4: Sigmoid

which can be written as

tanh(x) = 2σ(2x)− 1 (2.7)

That means tanh is scaled sigmoid function. The characteristics of this activation func-

tion is similar to sigmoid function. This function also takes any real value and the output

range is (−1, 1). The gradient of this function is stronger than the sigmoid function. In

addition to this, tanh is zero centered unlike sigmoid function.

Rectified Linear Units (ReLU)

ReLU is the most popular and widely used activation function. This function is defined

as the positive part of its argument, R(x) = max(0, x). That means this function takes

real-valued number and the output is x if x is greater than or equal to zero and zero if x

is less than zero.

Sigmoid or tanh activation is dense meaning that to describe the output of a network

almost all the activations are processed, which is costly. But ReLU makes the network
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Figure 2.5: Hyperbolic tangent

lighter and efficient by not activating some neurons in the network.

The characteristic of the ReLU is that for negative values of x, this function is zero,

which means the gradient zero. This will result in not adjusting the weights of the neurons

during backpropagation. So these neurons will never activate again. This gives rise to

”dying ReLU” problem.

Leaky ReLU

This function was proposed to solve the ”dying ReLU” problem. To solve this, leaky ReLU

is designed to have a small negative slope at the point where in ReLU will evaluate to zero,

that is, at x < 0. The range of the Leaky ReLU is (−∞,∞). Usually the slope is set to

be at 0.01. If the slope is not at 0.01, then it is called Randomized ReLU. This leak as

can be seen in figure 2.7 helps to increase the range of the ReLU function. Also the slope

can be made into a parameter of each neuron as seen in Parametric Rectified Linear Unit

(PReLU).
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Figure 2.6: Rectified Linear Units

Leaky ReLU is defined as ax if x < 0 where a is 0.01

x if x ≥ 0

(2.8)

Figure 2.7: ReLU vs Leaky Reaky ReLU
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2.1.4 Loss Function

Loss function measures the performance of the predicted result. Our objective is to min-

imize the loss function. The loss is used to calculate the gradients and the gradients are

used to update the weights of the neural network. Through this update the neural network

is trained.

Mean Squared Error (MSE) is used as the loss function to measure the distance

between the predicted result and true result. It is mostly used in regression task. MSE is

given by,

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (2.9)

where y′is are the true values and ŷ′is are the predicted values.

Another loss function is Mean Absolute Error (MAE), which is given by,

MAE =| yi − ŷi |, (2.10)

where y′is and ŷ′is are the true and predicted values respectively.

Binary Crossentropy loss is used for Binary Classification tasks. This loss is imple-

mented using the sigmoid activation function.

Categorical Crossentropy is also used in multi-class classification tasks. The final

layer output is passed through a softmax activation so that each node output a probability

value between (0-1). The softmax is represented as

σ(~zi) =
ezi∑K
j=1 e

zj
, where z is the final layer (2.11)
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2.2 Recurrent Neural Network

Recurrent Neural Network (RNN), a specialized kind of neural network, is used in pro-

cessing a sequence of values x(1),x(2), ...,x(n). This has the ability to process sequences of

variable length.

The key idea of recurrent neural networks is to share the parameters across different

parts of the model. This sharing plays a crucial role when there is a correlation of data

appearing at multiple places in a sequence.

The output of a recurrent network is a sequence, where each member of the output is

a function of previous members of the output and the output is obtained from using the

same rule applied to the previous outputs.

There are various kinds of recurrent neural network. For examples:

Example - 1 : Recurrent networks with recurrent connections between hidden units

produce an output at each time step (Figure 2.8). This maps an input sequence of x values

to a corresponding sequence of output o values. Loss L is the measurement of the variation

of the output o values with the target values y.

Figure 2.8: Recurrent Neural Network - Type 1

In the figure x(t) represents the input, h(t) represents the hidden layer activations, o(t)
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represents the output, y(t) represents the target and L(t) represents the loss at each time

step t.

To develop the forward propagation equations for this recurrent network, we assume the

hyperbolic tangent activation function as the activation function for the hidden units. We

also assume the output is discrete. The output is the unnormalized log probabilities of each

possible targets. Then the softmax operation is applied to obtain a vector ŷ of normalized

probabilities over the output. h(0) is the initial state. And the updated equations are the

following:

a(t) = b + Wh(t−1) + Ux(t) (2.12)

h(t) = tanh(a(t)) (2.13)

o(t) = c + V h(t) (2.14)

ŷ(t) = softmax(o(t)) (2.15)

Here, U , V and W represent the input-to-hidden, hidden-to-output and hidden-to-

hidden connections respectively. And b and c are the bias vector along with the weight

matrices.

Example - 2 : Recurrent networks having recurrent connections only from the output

at one time step to the hidden units at the next time step to produce an output at each

time step (Figure 2.9).

This recurrent network is trained to put a specific output into o and only the informa-

tion in o is allowed to send to the future. The previous h is connected to the current h

through the output produced by the previous h. There is a lack of important information

from the past unless o is very high-dimensional. It may be easier to train but this makes

the recurrent network less powerful [24].
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Figure 2.9: Recurrent Neural Network - Type 2

Figure 2.10: Standard RNN

2.2.1 LSTM

Generally, recurrent neural networks have a chain form of repeating modules of neural

network [38]. In standard RNNs, the structure of this repeating module is very simple,

such as a single hyperbolic tangent layer (Figure 2.10).

But in LSTM, this repeating module has four layers and they are interacting in a very

special way (Figure 2.11).

The first step of LSTM is to decide what information it needs to throw away from the

cell state. This cell state is the key to LSTM (Figure 2.12). The cell state runs straight

down the entire chain, with very little linear interactions. So the information flows along
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Figure 2.11: LSTM

Figure 2.12: Cell of LSTM

it without any change. One of the structure of LSTM, called gates, controls the process of

removing or adding information in the cell states. Gates are consisting of a sigmoid layer

and and a pointwise multiplication operation (Figure 2.13). The sigmoid layer decides how

much of each component should go through. The output of sigmoid layer is between 0 and

1, where 0 means no information is going through and 1 means all information are going

through. In the first step forget gate layer (Figure 2.14) decides what information needs to

be remove from the cell state.

f j
t = σ

(
bjf +

∑
k

U j,k
f xkt +

∑
k

W j,k
f hkt−1

)
, (2.16)

where bf , Uf and Wf represents the biases, input weights and recurrent weight for the

forget gates respectively, xt is the current input vector and ht is the current hidden layer

vector that contains the outputs of all the LSTM cells.
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Figure 2.13: Structure of gate of LSTM

Figure 2.14: Forget gate of LSTM
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In the next step, LSTM decides what new information needs to store in the cell state.

This is done in two parts - input gate layer decides what values need to update (Figure 2.15)

and tanh layer creates a vector of new candidates value, C̃t, to update.

ijt = σ

(
bji +

∑
k

U j,k
i xkt +

∑
k

W j,k
i hkt−1

)
, (2.17)

C̃j
t = tanh

(
bjC +

∑
k

U j,k
C xkt +

∑
k

W j,k
C hkt−1

)
, (2.18)

where bi, Ui and Wi represents the biases, input weights and recurrent weight for the

input gates respectively. bC , UC and WC are the biases, input weights and recurrent weights

for the hyperbolic tangent layer to create the candidate values.

Figure 2.15: Input gate of LSTM

With all theses information cell state will be updated (Figure 2.16).

Cj
t = σ

(
f j
t ∗ C

j
t−1 + ijt ∗ C̃

j
t

)
, (2.19)

The output gate ojt that uses a sigmoid unit for gating stops the output hjt of the LSTM

cell:

hjt = tanh

(
Cj

t

)
ojt (2.20)
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Figure 2.16: Updated state of LSTM

ojt = σ

(
bjo +

∑
k

U j,k
o xjt +

∑
k

W j,k
o hkt−1

)
, (2.21)

where bo, Uo and Wo represents the biases, input weights and recurrent weight for the

output gates respectively.

24



Chapter 3

Related Work

3.1 Active region and Solar Flare Prediction

Solar flares associated with energetic charged particles and electromagnetic radiation could

affect radio communication, the precision of Global Positioning Systems, and the safety of

satellites and astronauts within minutes. Solar flares are of economic importance, therefore

steps have been taken to reduce or prevent damages by them. The steps taken include

research to understand the origin, processes, and effects of solar flares and development of

solar flare forecasting technology.

Research on solar flares and the energies release mechanisms associated with them shows

that a high correlation between them and magnetic activity exists [41]. Thus, in under-

standing and predicting solar flares it is crucial to study the magnetic field configuration

of the solar atmosphere. Though there is no direct mapping of the magnetic field in the

corona, the magnetic field in photosphere can be mapped. For sometime, most photospheric

magnetic field data contained only the line-of-sight component of the magnetic field and

those that contained full vector components either contained data with gaps in time or cap-

tured only part of the solar disk. The Helioseismic and Magnetic Imager (HMI) onboard

the Solar Dynamics Observatory (SDO), which began its mission in 2010, has continuously

map the full-disk photospheric vector magnetic field [46]. From the start of its operation

in May, 2010, HMI has mapped the vector magnetic field every 12 minutes 98.44% of the

time [18].

Most studies done so far in solar flare prediction use photospheric magnetic field data to

parameterize active regions (ARs). In the parameterization, some use the energy, helicity,
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currents, and shear angles [16,23,28,34], while some also use the magnetic field topology [47]

and others use the integrated Lorentz force exerted by an AR [13]. The ultimate goal of

these parameterization is to find a connection between the behavior of the photospheric

magnetic field and solar activity, which usually take place in the chromosphere, and the

transition region of the solar corona.

The relationship that exist between the photospheric and coronal magnetic field when a

solar flare happens is not fully understood. Due to this, flare prediction has been based on

statistical and machine learning approaches to find relationships rather than on theoretical

models from which causal relationships could be obtained [6].

Most machine learning approaches have posed the problem as a binary classification

problem, where an active region belongs to the positive class if it leads to one or more

flares in a given time frame or it belongs to the negative class otherwise. Li et al. [30],

Qahwaji et al. [42], Song et al. [50], Yu et al. [59], Yuan et al. [60], Ahmed et al. [1] used

nonlinear Machine Learning (ML) algorithms to forecast solar flares. These studies were

made using line-of-sight magnetic field data, solar radio flux or metadata (eg., McIntosh

class, sunspot number) to characterize their features. Leka et al. [27] started the use of

vector magnetic field data for flare prediction by using vector magnetic field data from the

Mees Solar Observatory Imaging Vector Magnetograph with a prediction technique known

as discriminant analysis, which is a linear classifier. Other prediction models used so far

include the superposed epoch analysis [32], statistical analyses [5, 12] and support vector

machine (SVM) [6, 30,37].

These forecasting methods usually utilize morphological or physical parameters ex-

tracted from active regions. Research has been ongoing to find out the best and effective

predicting parameters to be used in training statistical or machine learning models. The

idea of sunspots classification as proposed by McIntosh et al. [33] led Lee et al. [26] to exam-

ine the relationship between classifications of sunspots and solar flares. From the findings

obtained so far, it is known that the physical parameters such as the length of the neutral

line [11], the gradient of the magnetic field [8], the highly stressed longitudinal magnetic
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field [19], the distance between active regions and predicted active longitudes [19], and the

Zernike moment of magnetograms [43], provide better predictive capabilities when used in

predictive models.

Moreover, the changes in the physical parameters in active regions were analyzed by

Yu et al. [59], and Huang et al. [20]. Apart from that, Wheatland et al. [58] proposed that

the history of solar flares is a significant parameter in predicting subsequent flares. Despite

the use of all these parameters, most of the information obtained from active regions show

that they were not much different from each other and therefore they did not perform

better than the others when used in solar flare predicting models [4, 28]. The extraction

of the effective predicting parameters from ARs has become a bottleneck to improving the

accuracy of solar flare predicting models.

The physical and morphological parameters show a weak relationship with solar flare.

However, one field in machine learning, which has gain ground due to the increase in

computational resources, has created the opportunity to fish out effective predicting pa-

rameters from data with little to no human intervention. This field is known as deep

learning [2, 17, 24]. Therefore Nishizuka et al. [36] proposed a deep neural network for

solar flare prediction which they called Deep Flare Net (DeFN). This architecture utilize

manually calculated features selected from automatically detected sunspots. The detec-

tion of sunspots were done by setting the threshold value to 140 G in addition to rules

outlined by [37]. They evaluated their results using the operational setting, that is, the

chronological splitting of the dataset into training and testing. They achieved a better

TSS (True skill statistic) as compared to other machine learning models like SVM, KNN

(k-nearest-neighbor) and ERT (extremely randomized trees).

Active regions change from their time of emergence to disappearance. They disappear

either by dying out or moving out of the face of the visible Sun disk. Appearance changes are

complex spatiotemporal non-stationary processes, since the joint distribution of adjacent

pixel values changes in both space and time [40]. These processes can be broken down into

deterministic and stochastic components. Research works in neural networks have explored
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spatiotemporal prediction from these two aspects within the context of video classification

and next frame prediction. Modeling such features has been done using Convolutional

Neural Networks (CNN) [22] and Recurrent Neural Networks (RNN) [53].

3.2 Next Frame Prediction

Next frame prediction combines two deep learning techniques, namely predictive learning

and image generation. In predictive learning, we seek to model the different possibilities of

the future by using information from the past. By using recurrent networks, patterns in

sequence data are captured and used as basis for predicting the future. In image generation,

new images are generated by extracting attributes from an existing dataset to create new

images. The two most commonly used networks in image generation are autoencoders

and Generative Adversarial Networks (GANs) [15]. The autoencoder is made up of the

encoder part and the decoder part. The encoder takes the image and encodes it into a

latent variable, whilst the decoder takes the latent variable to recreate the original image.

GANs are composed of two parts, the generator model and the discriminator model. The

generator model generates new images that look real, whilst the discriminator classifies the

generated images and the samples from the generator model as either real or fake.

Ranzato et al. [44] proposed using a recurrent model to predict frames in a discrete space

of patch clusters. Then, following the success of sequence-to-sequence mapping in language

modeling using Long Short-Term Memory (LSTM) networks, Srivastava et al. [52] adapted

the approach to video prediction. Shi et al. [49] introduced the integration of the convo-

lution operator into recurrent state transition functions and proposed the Convolutional

LSTM. With Convolutional LSTM as the base idea, Villegas et al. [54] and Patraucean et

al. [39] developed recurrent models to leverage optical flow guided features. Kalchbrenner

et al. [21] presented the idea of encoding the time, space, and color structures of videos. The

proposed network called Video Pixel Network (VPN) produced good predictions but had

a high computational complexity. The PredNet model proposed by Lotter et al. [31] used
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Convolutional LSTM units in a top-down and bottom-up approach to create next frame

prediction of a video sequence. Wang et al. [55] added the zig-zag memory flow to the

Convolutional LSTM, which increased modeling capability for short-term video dynamics.

These deep learning models stated above developed for next frame prediction can be

divided into two architectures based on how prediction of future images or frames is done;

they are sequence-to-one and sequence-to-sequence architecture. The first group, takes a

sequence of images, say from time step t to t + h, and makes a frame/image prediction of

the next time step, t + h + 1. This architecture primarily focuses on the spatial structure

of the input frames. In the second architecture group, sequence-to-sequence architecture,

temporal frames are inputted into the model separately where frame at time step t is fed

into the network and prediction is made for time step t + 1. This is continued until the

frame at a specified time step is achieved. This architecture focus primarily on temporal

sequence. Autoencoders are widely used in these two types of architectures.

The recurrent model developed by Villegas et al. [54] is an example of sequence-to-one

architecture which was able to predict up to 128 frames into the future. PredNet [31] is

an example of sequence-to-sequence architecture which can make a prediction of up to 5

frames into the future.
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Chapter 4

Data and Methodologies

4.1 Data

In this work, we utilize the data produced by the Helioseismic and Magnetic Imager (HMI)

on board NASA’s Solar Dynamics Observatory(SDO). The NASA’s SDO is a satellite

launched in 2010 under Living With a Star (LWS) program to observe and record the

Sun’s activities. The three instruments on board this satellite used in monitoring the Sun

are:

• The Atmospheric Imaging Assembly takes pictures of the Sun at the following wave-

lengths 94, 131, 171, 193, 211, 304, 335, 1600, 1700 and 4500 Å at a resolution of

4096×4096 pixels (approximately 1 arcsec).

• The Helioseismic and Magnetic Imager (HMI) which captures the oscillations and

magnetic field of the Sun with a resolution of 4096×4096 pixels (pixel size of 0.5

arcsec) [46].

• The Extreme Ultraviolet Variability Experiment (EVE) measures the Sun’s extreme

ultraviolet spectral irradiance from 1 to 1050 Å.

Images produced by the HMI, AIA, and EVE instruments can be accessed at the Joint

Science Operations Center (JSOC) at Stanford University, Lockheed Martin Solar & As-

trophysics Laboratory (LMSAL) and the Laboratory for Atmospheric and Space Physics

(LASP) at the University of Colorado, Boulder.
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As of late 2020, there were over four thousand eight hundred refereed scientific publi-

cations using data from SDO. This great scientific contribution can be attributed to the

reliability of the spacecraft and its instruments since it launched over ten years ago, the

consistency and quality of the data captured, the mission’s open data policy, and the tools

readily available by the various science data centers and science institutions to researchers

and anyone interested in studying the sun [14].

4.1.1 HMI Instrument

SDO/HMI is a space-based instrument designed to succeed the Michelson Doppler Imager

on the Solar and Heliospheric Observatory. This instrument measures the oscillations and

magnetic field of the Sun. Both measurements are taken from the photosphere providing a

full-disk photospheric vector magnetic field data. Processing of the data from HMI is done

at JSOC. Documentations, tools and APIs needed to access and work on the data stored

at JSOC are available to aid people in their research. APIs such as Astropy and Sunpy

designed for the python programming environment are examples of the resources to help

researchers work with the data from the HMI instrument.

Two camera setups in the HMI instrument capture full-disk images of the Sun after the

images have moved through a series of bandpass filters. A 12-filtergram is created every 45

seconds from the two cameras. One camera measures the six polarization states whilst the

other measures the right and left circular polarization for six different wavelengths.

Before the filtergrams get to JSOC, they are first sent to a ground station at White

Sands, New Mexico after the data has been processed at the satellite level. At White Sands,

further processing is done before the data is forwarded to JSOC. When the data arrives

at JSOC, it is combined with flight dynamics data of the satellite to generate calibrated

Level 1 filtergrams. From this set of filtergrams, four data products are produced, namely,

continuum filtergrams, dopplergram, Line-of-Sight(LoS), and vector magnetograms. Using

the LoS observables code, HMI observables such as the Doppler velocity and LoS magnetic

field strength are calculated. Couvidat et al [7] talks of a MDI-like algorithm for computing
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the LoS observables. The Line-of-Sight magnetograms has a cadence of 12 minutes.

In a magnetogram, grey areas indicate that there is no/weak magnetic field, while black

and white areas indicate regions where there is a strong magnetic field. The grey-black-

white is a convention normally used by astrophysicists. The darkest areas are regions of

”south” magnetic polarity (inward directed, moving toward the center of the Sun, negative)

and the whiter regions ”north” (outward directed, moving toward us, positive) polarity.

From the time of the launch of the SDO mission, the HMI instrument has not stopped

working, producing approximately one terabyte of data per day. The times during which

flow of data has paused includes the eclipse of the Sun by the Earth, poor weather conditions

at the ground station, ground equipment failures, and maintenance.

4.2 Data Processing

In order to carryout the experiments, we curated a dataset which ranges from May 2010 to

December 2018 from the dataset that was preprocessed and made available by Galvez et al

[14]. Preprocessing included elimination of corrupt frames, correction for orbital variations

and sensor degradation, and downsampling from the original image size of 4096× 4096 to

512× 512. The date range was chosen because it covered almost one complete Solar Cycle

which is Cycle 24 as shown in figure 4.1. We used the LoS magnetograms portion, that

is, the data obtained from Helioseismic Magnetic Imager (HMI). Regions of size 96×128

centered above the equator were cut out of the magnetograms figure 4.2.

Therefore in creating a sequence of say 10 magnetograms, a missing magnetogram makes

that sequence invalid. Since the size of the sequence is arbitrary, the number chosen de-

termines the number of sequences you can generate from the dataset. In our experiments,

we use a sequence of length 10. We used two different scaling functions along with three

different time interval when processing the data. Therefore for each time interval, there

were two different scaling used, namely:
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Figure 4.1: Graph of the number of sunspots for Solar Cycles ranging from March 1911 to

March 2021
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Figure 4.2: Region cutout shown with the red rectangle
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• Minimum-Maximum Normalization (Min-Max Norm) - Using the minimum and max-

imum values of the images to normalize them to 0 − 1 range as shown in equation

(4.1).

• Sigmoid Normalization (Sig-Norm)- Using the sigmoid function to normalize them to

0 − 1 range as shown in equation (4.2).

The operations done on an image, X, in equation (4.1) and equation (4.2) are carried

out in an element-wise fashion. Since the images are of size 96×128, the matrices returned

in the two equations are of the same size as the image. The value of k is set to be 0.03

in equation (4.2). And the maximum pixel value of the images is known to be as high as

5000 [46] therefore b is set to be 5000 whilst a, representing the minimum value, is set to

be −5000.

min max =
X− a

b− a
. (4.1)

sig norm =
1

1 + e−X∗k
(4.2)

We applied different values of k in equation 4.2 to see how the distribution of the data

were affected. Two magnetograms where randomly chosen, one from the solar minimum

and one from the solar maximum. We then picked two values of k, 0.01 and 0.001 with a

stepsize of 0.01 and 0.001 respectively. Now, to select which value to use for k, we consider

the graph in figures 4.3 and 4.4 by focusing more on the graph from the solar minimum.

Specifically, we chose 0.03 since there was a desirable bell-shape characteristic and small

changes to the extreme values (0, 1) but with values from 0.001 to 0.007 there was not an

appreciable change in the distribution of the pixel values as seen in figures 4.5 and 4.6.

Also in processing the data, we used the following time intervals:

• input = 1 hour; output = 1 hour
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Figure 4.3: Plot of distribution of pixel values of image from solar maximum after trans-

formation using k ranging from 0.01− 0.07.
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Figure 4.4: Plot of distribution of pixel values of image from solar minimum after trans-

formation using k ranging from 0.01− 0.07.
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Figure 4.5: Plot of distribution of pixel values of image from solar maximum after trans-

formation using k ranging from 0.001− 0.007.
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Figure 4.6: Plot of distribution of pixel values of image from solar minimum after trans-

formation using k ranging from 0.001− 0.007.
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• input = 3 hour; output = 3 hour

• input = 6 hour; output = 6 hour

In order to maintain the length of the sequence to be 10, we increased the cadence of

the dataset to 36 minutes and 72 minutes for the time interval 3 hour input; 3 hour output

and 6 hour input; 6 hour output respectively. For the 1 hour input; 1 hour output we

kept the 12 minutes cadence used in the original dataset. The dataset curated based on

the parameters above gave us six different datasets to perform our experiment. Table 4.1

shows the number of sequences generated for each time interval.

Table 4.1: Number of Sequences

Input/Output Training Testing Validation

1 Hour / 1 Hour 161880 76457 17040

3 Hour / 3 Hour 39330 18442 4140

6 Hour / 6 Hour 9120 4050 922

Each dataset was subdivided into training, testing and validation using contiguous

sampling figure as illustrated in figure 4.7. For example, for 1000 sequences generated, the

first 20 sequences are placed in the training portion, the next 5 in the validation portion

and the next 10 after that in the testing portion, and the process repeats until all the

1000 sequences are partitioned. This was done to capture the changes on the Sun as it

moves from solar minimum to solar maximum in each partition and also prevent leakages

of information from the testing portion into the training portion.
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Figure 4.7: Contiguous Sampling from 2011 to 2013

4.3 Models

4.3.1 Memory In Memory Network (MIM)

Memory In Memory (MIM) Network is a variant of RNN architecture and also sequence-to-

sequence architecture. It was designed as an update to Predrnn [55] to solve the problems

such as saturation that occurs in forget gates.

To solve the problem of saturation, memory units are arranged in a cascaded fashion

which also helps in modeling the non-stationary variations. The MIM network is composed

of two main parts, that is, the non-stationary module (MIM-N) and the stationary module

(MIM-S) illustrated in figures 4.8 and 4.9 respectively. These two parts together form

the MIM-block. Two consecutive hidden states serving as inputs to the MIM-N module

(H l−1
t and H l−1

t−1) are differenced to capture the non-stationary variations. This leads to

the generation of Dl
t as seen in figure 4.8. In the other module, MIM-S, the output Dl

t of

the MIM-N module is taken as input together with the outer temporal memory C l
t−1 to

represent the approximate stationary variations in spatiotemporal sequences.

S andN denote the horizontally-transited memory, D represents the differential features

and C represents the memory cells. The following shows the calculations taking place in

MIM-N and MIM-S:
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MIN-N

gt = tanh(Wxg ∗ (H l−1
t −H l−1

t−1) +Wng ∗N t−1
l + bg)

it = σ(Wxi ∗ (H l−1
t −H l−1

t−1) +Wni ∗N l
t−1 + bi)

ft = σ(Wxf ∗ (H l−1
t −H l−1

t−1) +Wnf ∗N l
t−1 + bf ))

N l
t = ft

⊙
N l

t−1 + it
⊙

gt

ot = σ(Wxo ∗ (H l−1
t −H l−1

t−1) +Wno ∗N l
t + bo)

Dl
t =MIM-N(H l−1

t , H l−1
t−1 , N

l
t−1) = ot

⊙
tanh(N l

t),

MIM-S

gt = tanh(Wdg ∗Dl
t +Wcg ∗ C l

t−1 + bg)

it = σ(Wdi ∗Dl
t +Wci ∗ C l

t−1 + bi)

ft = σ(Wdf ∗Dl
t +Wcf ∗ C l

t−1 + bf )

St
l = ft

⊙
Sl
t−1 + it

⊙
gt

ot = σ(Wdo ∗Dl
t +Wco ∗ C l

t−1 +Wso ∗ Sl
t + bo)

T l
t = MIM-S(Dl

t, C
l
t−1, S

l
t−1) = ot

⊙
tanh(Sl

t),

The MIM network is created by stacking multiple MIM blocks together to help create

a representation for the spatiotemporal process and increase the accuracy of future frame

prediction. Figure 4.10 shows how the MIM blocks are setup to create the network. The

hidden states H l−1
t−1 and H l−1

t are sent to MIM block at timestamp t 6= 1 and layer l 6= 1

to generate the differenced features for further processing and are shown as green arrows

in figure 4.10. The spatiotemporal LSTM (ST-LSTM) is used to generate the hidden

representations in the first layer since there is no layer before that. Also by differencing

temporally adjacent hidden representations, the non-stationarity of the sequence becomes

more evident as the spatiotemporal dynamics in local areas are encoded into the hidden

states through the bottom ST-LSTM layer [56].

The learned stationary and non-stationary features by the MIM-N and MIM-S are sent

along the yellow arrows in figure 4.10. The MIM network produces one frame at one

42



Figure 4.8: Schematic of MIM-N [56]
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Figure 4.9: Schematic of MIM-S [56]
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timestamp. The green arrows in figure 4.10 show the diagonal state transition paths of

hidden representations for differential modeling. The black arrows in figure 4.10 represent

the zigzag state transition paths of the memory module. The input to the network as shown

in figure 4.10 can either be the ground truth frame for input sequence or the generated

frame at previous timestamp [56].

Figure 4.10: A MIM network with two MIMs and one ST-LSTM. [56]

4.3.2 Baseline

Since this work is the first of its kind, we could not compare our work against others.

We therefore utilized a simple baseline by which we can compare our work. Based on the

complexity of the spatiotemporal dynamics on the surface of the Sun, that is, the rotation

and the changes of the magnetic field on the Sun, our baseline is to repeat the last input

frame as the predicted image for the output sequence. Basically, we used a no-change
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baseline where the predicted images are the same as the last input frame.

4.3.3 Regression

Additional to the no-change baseline, we use the regression model to model the spatiotem-

poral changes on Sun. To do this, we pick the first rows of the sequences in the training set,

then we trained a regression model to map the inputs (the first five rows) to the output(the

last five rows). After this training, we apply it to the first row of the input testing portion

of the dataset. This done for each row till the last row for a total of 96 rows.
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Chapter 5

Preliminary Results

We first applied the no-change baseline on the testing portion for each dataset and we

trained the regression model and the Memory In Memory (MIM) Network using the train-

ing portion of each dataset and compare their performance against each other. We use the

structural similarity index measure (SSIM) [57] and the mean square error (MSE) averag-

ing over their respective test sets for evaluation. MSE gives an indication of how different

two images are and SSIM provides a quantitative evaluation of the similarity of two im-

ages. Therefore a lower MSE and a higher SSIM indicates a better prediction. The time

interval (cadence) between say t = 1 and t = 2 as presented in the results is 12 minutes.

Subsequently, t = 3 and t = 6 presents a time interval of 36 minutes and so on.

Figure 5.1: Sequence tested at different iteration step

Changing the batch size to 1, total length of the sequence to 10 and input length to

5 and keeping all other parameters same as used by [56]including the L1 loss function,

we trained the MIM network for 170000, 160000 and 80000 iterations for 1 hour, 3 hour

and 6 six hour time interval respectively on a single NVIDIA GeForce RTX 2080 Ti and

it took about 3 to 8 days to finish training. The difference in the number of iterations is
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due to the difference in the number of sequences available for each time interval and one

iteration represent a pass through of one sequence through the network. Figure 5.1 shows

a validation of the network after 1000 and 5000 iterations during training of the network

using the sig-norm 3 hour time interval dataset.

Also, the figures 5.1, 5.2, 5.3 and 5.4 shown have been color-coded with 1 being white

and 0 being black to help visualize the changes in images both in the ground truth and the

predicted one. The ground truths are presented in the first row, whilst the predicted ones

are shown in the second and/or third row.

Upon visual inspection in figure 5.3 for example, it can be seen that the sig-norm images

show good detail on what is happening and produced good prediction visually though it

performed poorly against the min-max Norm in all reported metrics.

Deep neural network tend to work well when images are normalized to the 0-1 range.

Since the values in the images ranges from −5000 to 5000, we apply the min-max norm to

normalize them. But the distribution of the pixel values are not evenly distributed since

most values lie between the 0.4 − 0.6 range. This brings about the problem where values

appear similar especially during training when values are round-off. Therefore the network

predicted that nothing happened in the image predicting similar pixel values centered

around the midpoint (0.5). In figure 5.2, that is the min-max norm for time interval of 6

hours, this problem becomes more evident as the network fails to make a good prediction.

In this figure 5.2, gray images (almost no visual changes) were predicted which shows that

the network predicted the images to have pixel values within a very small range. This led

to the application of sig-norm (equation(4.2)) to help solve this issue. Based on the results

as seen in Figure 5.3, that is, sig-norm for 6 hour time interval, sig-norm help solve this

issue in normalization.

For the results obtained for MIM network in tables 5.1, 5.2, and 5.3, the SSIM for

min-max norm is close to 1 and shows slight improvement over the baseline but in their

corresponding MSEs there is over 43% improvement.

In terms of the regression model used, it perform significantly better than the baseline
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both in MSE and SSIM but only in MSE when it is compared against MIM. This good

performance in MSE can be attributed to the fact that regression model seek to minimize

the mean square error whilst the MIM minimize L1 error. There is a slight deviation in

performance in table 5.3 where the regression model did better than MIM in SSIM by

0.0002. Figure 5.4 shows a prediction made with the trained regression model. This figure

is the same test sample used in figure 5.3. Comparatively, figure 5.3 shows greater detail

especially around the upper areas and the sunspot area at the bottom right of the predicted

images.

Since MIM network was created and trained for perceptual task, it shows this charac-

teristic in the SSIM metric where it did better than the baseline and the regression model

in almost all the results.

In figures 5.2 and 5.3 for the 6 hour interval, the test sample captured a sunspot. From

the ground truth row in all the figures, it can be seen that the sunspot is moving towards

the right(rotation of the Sun). This non-stationarity is captured by the MIM network and

it is seen in the row showing the predicted images.

In the SSIM and MSE metrics under sig-norm in tables 5.1, 5.2 and 5.3, the MIM

network and the regression model did well not to deviate by higher margins as the time

intervals were increased.
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Table 5.1: One Hour Input to Predict the Next One Hour

Model
Min-Max Norm Sig Norm

MSE SSIM MSE SSIM

Baseline 4.52e-05 0.9927 0.0408 0.2845

Reg Row-Row 2.23e-06 0.9979 3.18e-03 0.4930

MIM 9.62e-06 0.9982 0.0145 0.5778

% Improvement

Against Baseline

Reg Row-Row 95.1 0.52 92.2 73.3

MIM 78.7 0.55 64.5 103.1

Table 5.2: Three Hour Input to Predict the Next Three Hour

Model
Min-Max Norm Sig Norm

MSE SSIM MSE SSIM

Baseline 6.09e-05 0.9914 0.0502 0.1404

Reg Row-Row 3.44e-06 0.9969 3.97e-03 0.3898

MIM 1.51e-05 0.9973 0.0182 0.4478

% Improvement

Against Baseline

Reg Row-Row 94.4 0.55 92.1 177.6

MIM 75.2 0.60 63.7 218.9
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Table 5.3: Six Hour Input to Predict the Next Six Hour

Model
Min-Max Norm Sig Norm

MSE SSIM MSE SSIM

Baseline 3.13e-05 0.9949 0.0427 0.1274

Reg Row-Row 2.61e-06 0.9975 4.01e-03 0.3135

MIM 1.76e-05 0.9973 0.0184 0.3668

% Improvement

Against Baseline

Reg Row-Row 91.7 0.26 90.6 146.1

MIM 43.8 0.24 56.9 187.9

Figure 5.2: MIM: Min-Max Norm - Input: 6 Hour Output: 6 Hour

Figure 5.3: MIM: Sig Norm - Input: 6 Hour Output: 6 Hour

Figure 5.4: Regression: Sig Norm - Input: 6 Hour Output: 6 Hour

51



Chapter 6

Research Plan

6.1 Proposed Work

In order to achieve the research objectives, the following steps have been outlined to serve

as guidelines:

• Generating high quality synthetic data: Generative Adversarial Networks(GANs)

have made impressive gains since it inception in 2014 [15] and now are known to pro-

duce plausible realistic images. This has provided an alternative to previous methods

used in data augmentation which involves crops, flips, rotation, cutouts and other

image transforming techniques. This data augmentation steps are usually applied

to datasets with limited number of examples especially in the case of categorical

datasets. Most solar-related datasets suffers from this limitation such as solar flare

dataset where there are more examples of A, B, and C class flares than M and X

class flares. Therefore we seek to employ the GAN architecture to create more real-

istic examples for Solar Data. In the work done by Diaz Baso et al. [9], they use a

deep fully convolutional neural network called Enhance to super-resolve HMI data.

Enhance was able to produce good HMI images after up-scaling them by a factor of

2. Their network is basically an autoencoder with residual components and skip con-

nections. Using their idea and we will modify their network to incorporate the GAN

architecture to produce high quality synthetic data since GANs are known to pro-

duce good and domain-specific images. Specifically we will be modifying the SRGAN

architecture proposed by [25] to fit solar images domain.
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• Incorporating the knowledge of the 3D viewing geometry and the Sun’s rotation: Data

from Helioseismic and Magnetic Imager (HMI) are mapped using the Helioprojective-

cartesian coordinates. World Coordinate System (WCS) has been implemented in

the Astropy [3] library which contains functions for converting from one coordinate

system to the other. In the results obtained so far, we found that the network was

able to learn the Sun rotation which might prevent the network from learning other

non-stationarity of active regions. We seek take out this information from the dataset

by leveraging on the Astropy library to warp the images. In warping the images, we

will do linear translation by interpolating the pixels from one frame to other where the

temporal difference will be 12 minutes in one test case and morph the images in other

test set incorporating the curvature of the Sun. We will train the network with the

warped images to make predictions excluding information from the Sun rotation. To

evaluate our results, we will warp back the predictions and compare with real images.

We will warp the images linearly and also warp them incorporating the curvature of

the Sun and compare the

• Improving upon the predictions of changes in active regions: Galvez et al. [14] in

their work on developing a dataset fit for machine learning algorithms, they were

able to show that there exist not only a correlation in the physical properties of data

from Atmospheric Imaging Assembly (AIA) and HMI but a deep convolutional neural

network can be trained to translate HMI observables to AIA observables. With this,

we will modified our deep learning model used in predicting changes in active regions

to incorporate data from other data sources like AIA and Geostationary Operational

Environmental Satellites (GOES) to improve upon our results. In combining the data,

we will apply the method used by Bobra et al. [6] in selecting their features to find

out which data is useful to improve our results. Modifying the deep learning model

will involve changing the input of the network to accept the mixed data and training

it end-to-end either by combining the data channel-wise or using two different inputs
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and concatenating their hidden layers. we will compare these two approaches.

• Predicting changes in images in other wavelengths: From Galvez et al. [14], we will

apply our findings in predicting changes to active regions and improving upon our

results to data from AIA which has already been shown that they are highly corre-

lated. After this, we will incorporate this into our model used in generating synthetic

data to produce missing data in other data sources and vice versa.

6.2 Timeline
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Table 6.1: Timeline

Activity Dates Description

Literature review August 2021-

January 2022

Complete Literature review both in computer science

and astrophysics under spatiotemporal changes on

the Sun

Publication August 2021-

December 2022

Write papers based on our research findings

Generate Synthetic

data

August-

December

2021

Modify and apply deep learning models used in

image-to-image to generate high-quality synthetic so-

lar data

Incorporate view-

ing geometry and

Sun’s rotation

January-April

2022

Write a paper on our results achieved by incorporat-

ing the viewing geometry and the Sun rotation into

predicting changes of active regions

Adapt different

deep learning mod-

els used in next

frame prediction

May-December

2022

Test, modify and evaluate deep learning models used

in next frame prediction and incorporate solar data

from other sources

Apply deep learn-

ing models used in

video prediction to

data products from

AIA instrument

May-December

2022

We will test the models using the data products from

AIA and evaluate their performance

Dissertation writ-

ing

July-December

2022

Finish up adding all the findings made to the disser-

tation write-up

Dissertation de-

fense

October-

December

2022

Speak with committee members and set a date for

the defense
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