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Abstract

When analyzing a stationary time series, one of the questions we are often interested in

is how to estimate its spectrum. Many approaches have been proposed to this end. Most

are focused on smoothing the periodogram using a single smoothing parameter across all

Fourier frequencies. In this paper, we smooth the log periodogram by placing a spatially

adaptive prior called the dynamic shrinkage prior, so that varying degrees of smoothing

may be applied to different intervals of Fourier frequencies, resulting in less biased estimates

of the spectrum. Further research will extend this approach to spectral estimation for

nonstationary time series.
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Chapter 1

Introduction

The following definitions are taken from Shumway and Stoffer (2017).

Definition 1 A discrete time series is a sequence of data points being recorded at specific

times. Usually these time points are equally spaced, in which case the time series is denoted

by {xt; t = 0,±1,±2, . . .}.

Definition 2 The mean function of time series {xt; t = 0,±1,±2, . . .} is defined as

µxt = E(xt),

where E denotes the usual expectation operator. When no confusion exists about which

time series we are referring to, we will drop a subscript and write µxt as µt.

Definition 3 The auto-covariance function of a time series {xt; t = 0,±1,±2, . . .} is

defined as

γx(s, t) = cov(xs, xt) = E((xs − µs)(xt − µt))

for all s and t. When no possible confusion exists about which time series we are referring

to, we will drop the subscript and write γx(s, t) as γ(s, t).

Definition 4 A weakly stationary time series is a finite variance process where

1. the mean value function, µt, is constant and does not depend on time t, and

2. the auto-covariance function, γ(s, t), depends on s and t only through their difference

|s− t|.
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Since the mean function, E(xt) = µt, of a stationary time series is independent of time

t, we will write µt = µ. Also, because the auto-covariance function, γ(s, t), of a stationary

time series, xt, depends on s and t only through their difference |s − t|, we may simplify

the notation. Let s = t+ h, where h represents the time shift or lag. Then

γx(t+ h, t) = cov(xt+h, xt) = cov(xt, x0) = γ(h, 0)

because the time difference between times t + h and t is the same as the time difference

between times h and 0. Thus, the auto-covariance function of a stationary time series does

not depend on the time argument t. Henceforth, for convenience, we will drop the second

argument of γ(h, 0).

Definition 5 The auto-covariance function of a stationary time series will be writ-

ten as

γ(h) = cov(xt+h, xt) = E((xt+h − µ)(xt − µ)).

Definition 6 A strictly stationary time series is one for which the probabilistic behavior

of every collection of values and shifted values

{xt1 , xt2 , . . . , xtk} and {xt1+h, xt2+h, . . . , xtk+h}

are identical, for all k = 1, 2, . . . , all time points t1, t2, . . . , tk, and all time shifts h =

0,±1,±2, . . ..

Definition 7 A time series {xt; t = 0,±1,±2, . . .} is ARMA(p, q) if it is stationary and

xt = φ1xt−1 + · · ·+ φpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q

with φp 6= 0, θq 6= 0, and σ2
w > 0. The parameters p and q are called the autoregressive

and the moving average orders, respectively. We assume that wt is a Gaussian white noise

series with mean zero and variance σ2
w.
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Definition 8 An autoregressive model of order p, abbreviated AR(p), is of the form

xt = φ1xt−1 + · · ·+ φpxt−p + wt,

where xt is stationary, and φ1, φ2, . . . , φp are constants φp 6= 0. We assume that wt is a

Gaussian white noise series with mean zero and variance σ2
w.

Example. xt = xt−1 − 0.9xt−2 + wt is an AR(2) model, where wt is white Gaussian noise

with σ2
w.

Definition 9 The moving average model of order q, or MA(q), is defined to be

xt = wt + θ1wt−1 + · · ·+ θqwt−q,

where xt is stationary, and φ1, φ2, . . . , φp are constants such that φp 6= 0. We assume that

wt is a Gaussian white noise series with mean zero and variance σ2
w.

Example. xt = wt + θwt−1 is an MA(1) model, where wt is white Gaussian noise with σ2
w,

θ 6= 0.

Definition 10 If the auto-covariance function, γ(h), of a stationary process satisfies

∞∑
h=−∞

|γ(h)| <∞,

then it has the representation

γ(h) =

∫ 1
2

− 1
2

e2πiωhf(ω)dω h = 0,±1,±2, . . . ,

where f(ω) is the spectral density. The latter has the representation

f(ω) =
∞∑

h=−∞

γ(h)e−2πiωh − 1

2
≤ ω ≤ 1

2
.

Properties of the spectral density function:

1. f(ω) ≥ 0 for all ω.
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2. f(−ω) = f(ω), it is an even function.

3. It is a periodic function, f(ω + 1) = f(ω).

In addition, putting h = 0 in

γ(h) =

∫ 1
2

− 1
2

e2πiωhf(ω)dω h = 0,±1,±2, . . .

yields

γ(0) = V ar(xt) =

∫ 1
2

− 1
2

f(ω)dω,

which expresses the total variance as the integrated spectral density over all of the frequen-

cies.

Definition 11 Given data x1, . . . , xn, we define the discrete Fourier transform (DFT)

to be

d(ωj) = n−
1
2

n∑
t=1

xte
−2πiωjt

for j = 0, 1, . . . ,M , where the frequencies wj = j
n

are called the Fourier or fundamental

frequencies, M = [n−1
2

] (the largest positive integer no greater than n−1
2

).

Definition 12 Given data x1, . . . , xn, we define the periodogram to be

I(ωj) = |d(ωj)|2

for j = 0, 1, . . . ,M , M = [n−1
2

].

When the sample size n is large, I(ωj)
ind∼Exponential(f(ωj)), approximately.

Definition 13 Let z = z1 + iz2, where i =
√
−1 and z1, z1

iid∼ N(0, σ
2

2
). Then

f(z1, z2) ∝
1

σ
exp
(
− z

2
1

σ2

)
× 1

σ
exp
(
− z

2
2

σ2

)
=

1

σ2
exp
(
−z

2
1 + z22
σ2

)
.

We say z has a complex normal distribution with mean 0 and variance σ2 and denote

it as z ∼ CN(0, σ2). The pdf of z is given by

f(z) ∝ 1

σ2
exp(−z

∗z

σ2
),

where z∗ is the complex conjugate.

4



Definition 14 A random variable X has a Z distribution with parameters a, b, µ, σ,

denoted X ∼ Z(a, b, µ, σ), if its pdf

f(x) =
1

σ ∗Beta(a, b)
exp{(x− µ)

σ
}a[1 + exp{(x− µ)

σ
}]−(a+b)

where the Beta(a, b) mean beta distribution with parameters a and b.

Definition 15 A random variable X has a Pólya-Gamma distribution with parameters

b > 0 and c ∈ R, denoted X ∼ PG(b, c), if

X =
1

2π2

∞∑
k=1

gk

(k − 1
2
)2 + c2

4π2

where the gk ∼ Ga(b, 1) are independent gamma random variables.
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Chapter 2

Estimation of spectral densities

Several approaches have been taken to estimating the spectral density nonparametri-

cally.

When the sample size n is large, d(ωj)
ind∼ CN(0, f(ωj)), approximately. This implies

g(d(ωj)) ∝
1

f(ωj)
exp
{
−|d(ωj)

2|
f(ωj)

}
=

1

f(ωj)
exp
{
− I(ωj)

f(ωj)

}
, (2.1)

where g(d(ωj)) is the pdf of d(ωj) and I(ωj) is the peridogram. From (2.1) we see

that I(ωj) ∼ Expon
(
f(ωj)

)
approximately, where Expon

(
f(ωj)

)
denotes the exponential

distribution with mean f(ωj). Let εj =
I(ωj)

f(ωj)
, then εj ∼ Expon(1). It follows that I(ωj) =

εjf(ωj). Taking logs of both sides leads to the log-linear model

log(I(ωj)) = log(f(ωj)) + ηj, for j = 1, . . . ,M, (2.2)

where ηj = log εj ∼ log(Expon(1)) = log(1
2
χ2
2). Model (2.2) was used by Wahba (1980) to

estimate the spectral density by smoothing splines.

Whittle likelihood

Since I(ωj) ∼ Expon
{
f(ωj)

}
approximately, we can write the likelihood as follows:

L(I|f) ∝
∏M

m=1
1

f(ωm)
exp
{
− I(ωm)
f(ωm)

}
= exp

{
−
∑M

m=1[log f(ωm) + exp{log I(ωm)− log f(ωm)}]
}
,

(2.3)

which is called the Whittle likelihood (Whittle, 1962).
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Pawitan and O’Sullivan (1994), used the penalized Whittle likelihood to estimate the

spectral density of a stationary time series.

Carter and Kohn (1997), used a Bayesian approach where the error term ηj was ap-

proximated by a mixture of normal distributions with fixed values.

Some traditional methods for estimating the spectral density (such as averaged peri-

odogram) are mentioned in Shumway and Stoffer (2017).

2.1 Nonparametric regression

If in a regression analysis we assume there is a predetermined relation between indepen-

dent variables and a dependent variable then this regression analysis is called parametric,

otherwise it is called a nonparametric. In nonparametric regression we need to estimate

the form of the relationship between the independent variables and the dependent variable

based on observed data. To this end, we need a set of basis functions, whose linear com-

bination will capture the interesting features of the data. B-splines are an example of a

possible type of basis functions.

B-splines

To define a family of B-spline functions of order p+ 1 uniquely, two things are needed:

1. A polynomial of degree p (the order of a B-spline function equals the polynomial

degree p plus 1).

2. A non-decreasing sequence of knots, t1, . . . , , tq.

Then the ith member of of a family of B-splines of order 1 is defined as

Bi,1(x) :=

 1 if ti ≤ x < ti+1

0 otherwise.

B-splines of higher order k are defined recursively as follows,

7



Bi,k(x) := δi,kBi,k−1(x) + (1− δi+1,k)Bi+1,k−1(x),

where

δi,k :=

 x−ti
ti+k−1−ti

if ti 6= ti+k−1

0 otherwise.

Here are some general properties of a B-spline of order p+ 1, see Eilers and Marx (1996).

1. It consists of p+ 1 polynomial pieces, each of degree p.

2. The polynomial pieces join at p inner knots.

3. At the joining points, derivatives up to order p− 1 are continuous.

4. The B-spline is positive on a domain spanned by p + 2 knots; everywhere else it is

zero.

5. Except at the boundaries, it overlaps with 2p polynomial pieces of its neighbours.

6. At a given x, p+ 1 B-splines are non-zero.

With these good properties, B-splines are ideal basis functions for nonparametric mod-

eling.

P-splines

Marx and Eilers (1999) proposed a generalized linear regression model for curve fitting,

in which the idea of P-splines is proposed. P-splines consist of a combination of B-splines

and a second-order difference penalty placed on the coefficients of these B-splines (to control

the smoothness of the fitted curve).

Lang and Brezger (2004) developed a Bayesian version of P-splines and put a random-

walk prior (up to a second-order) on the B-spline coefficients. In this paper, the first order

random-walk prior is defined as

8



βρ = βρ−1 + uρ, (2.4)

and the second order random-walk prior is defined as

βρ = 2βρ−1 − βρ−2 + uρ,

where the βρs are B-spline coefficients, uρ ∼ N(0, τ 2), and diffuse priors are placed on β1

(for a first-order random-walk) or β1 and β2 (for a second order random-walk prior). The

diffuse (improper) prior is p(βi) ∝ 1, i = 1, 2. (p(βi) means the prior on βi). The amount

of smoothness is controlled by the smoothing parameter τ 2, which is a global smoothing

parameter. In other words, the same amount of smoothing is applied to different covariate

values (frequency in our case).

Bayesian variable selection

P-splines are one way to prevent over-fitting. Another approach is to start with a

relatively large number of basis functions and to allow some of the coefficients to be close

to zero. This approach is common in Bayesian variable selection for regression models

(George and McCulloch, 1997).

Spike and slab prior

One of the first priors on the regression coefficients used in Bayesian variable selection

was the spike and slab prior (George and McCulloch, 1997). It is often written as a two-

component mixture of Gaussians

βi|ρi, c ∼ ρiN(0, c2) + (1− ρi)N(0, ε2), ρi ∼ Ber(π), (2.5)

where ρi ∼ Ber(π) means ρi has a Bernoulli distribution with probability π that ρi = 1.

The parameter c is called the slab width.

9



In (2.5), the first term on the right-hand side is called slab. The variance c2 is relatively

large so N(0, c2) has its support over a wide range of plausible values of βi. The second

component is the spike with ε2 << c2. If we set ε = 0, then the spike is called a Dirac’s

delta at δ0.

The horseshoe prior

The setting of the horseshoe prior is as follows.

βi|λi, τ ∼ N(0, λ2i τ
2), λi|σ ∼ C+(0, σ), τ |η ∼ C+(0, η). (2.6)

In (2.6), C+(0, a) means the half-Cauchy distribution with scale parameter a. We can

see that the level of shrinkage of βi is controlled by two parameters, λi (the local smoothing

parameter) and τ (the global smoothing parameter). Thus, the horseshoe prior has the

freedom to shrink globally (via τ) and yet act locally (via λi). The global parameter τ

pulls all the weights globally towards zero, while the thick half-Cauchy tails for the local

scales λj allow some of the weights to escape the shrinkage, see Carvalho et al. (2010).

The density function of the horseshoe prior (Figure 2.1) has an infinitely tall spike at

the origin and flat, Cauchy-like tails. These two features allow βis with large values to

remain large and force small βis to shrink to values close to zero. So it can accommodate

unknown levels of sparsity by changing the value of τ .

In (2.6), set τ = σ = 1 and let κi = 1
1+λ2i

, then we obtain

E(βi|yi, λ2i ) =
( λ2i

1 + λ2i

)
yi +

( 1

1 + λ2i

)
0 = (1− κi)yi, (2.7)

where yi is the observed data.

Under the setting τ = σ = 1, λi ∼ C+(0, 1), κi = 1
1+λ2i

∼ Beta(1
2
, 1
2
). Figure 2.2 shows

the density curve of κi, which looks like a horseshoe. Most of the mass is concentrated at

κi = 0 and κi = 1.

10



Figure 2.1: Different prior on βi

In (2.7), if κi = 0, then E(βi|yi, λ2i ) = yi, which means there is no shrinkage. If κi = 1,

then E(βi|yi, λ2i ) = 0, which means total shrinkage, see Piironen and Vehtari (2017).

In Bayesian linear regression, we usually assume that regression coefficients βis are

independently normally distributed. In this case, the spike and slab prior can be rewritten

as

βi ∼ ρN(0, c2) + (1− ρ)δ0(βi),

11



Figure 2.2: Density of the κi

where

δ0(βi) :=

 1 if βi = 0

0 otherwise,

which concentrates all its mass at zero and makes those βi corresponding to unimportant

covariates shrink to zero.

If the value of βi is not close to zero, then by the slab component, βi ∼ N(0, c2), and

E(βi|yi) =
c2

1 + c2
yi =

(
1− 1

1 + c2

)
yi,

so the shrinkage factor is κi = 1
1+c2

, which has the same form as κi = 1
1+λ2i

. If we set λi = c,

then both priors will be the same, which means under this setting, both the horseshoe prior

and the spike and slab prior will assign the same amount of shrinkage to the nonzero βis.

If the value of βi is close to zero, then by the spike component, it will be shrunk to zero,

12



which means total shrinkage (κi = 1). Thus, the horseshoe prior can closely mimic the

spike and slab prior.

The performance of the spike and slab prior mainly depends on the choice of g(·) and

ρ. A spike and slab prior is often considered as the ‘gold standard’ for variable selection.

The horseshoe prior often performs better than the spike and slab prior in terms of the

mixing of the MCMC (Markov chain Monte Carlo) algorithm. For more details about the

Spike and Slab prior and the Horseshoe prior, see Piironen and Vehtari (2017), who also

proposed the regularized horseshoe prior as an improvement of the horseshoe prior.

The regularized horseshoe prior

The setting of the regularized horseshoe prior is as follows.

βi|λi, τ, c ∼ N(0, λ̃i
2
τ 2), λi ∼ C+(0, 1), λ̃i

2
=

c2λ2i
c2+τ2λ2i

,

τ ∼ C+(0, τ0), τ0 = p0
L−p0

ι√
M
.

(2.8)

In (2.8), p0 is the number of relevant covariates expected, and L is the total number of

coefficients of basis functions. In linear regression, ι is the standard deviation of the error

term. In the context of spectral estimation, it is the standard deviation of ηj in (2.1), which

is equal to π√
6
.

Compared with the horseshoe prior with σ = 1, we can see that if βi is close to 0, then

its corresponding local shrinkage parameter λi will be small, thus τ 2λ2i << c2. In this case

λ̃i
2

=
c2λ2i

c2+τ2λ2i
≈ λ2i , which leads to βi|λi, τ, c ∼ N(0, λ2i τ

2), the same as the horseshoe prior.

When βi has a large value, then its corresponding local shrinkage parameter λi will

be large, thus τ 2λ2i >> c2. In this case, λ̃i
2

=
c2λ2i

c2+τ2λ2i
≈ c2

τ2
, which leads to βi|λi, τ, c ∼

N(0, c
2

τ2
τ 2) = N(0, c2). This is identical to the slab term in the spike and slab prior.

Now we can see that, both the horseshoe prior and the regularized horseshoe prior will

shrink βis that are close to 0 in a similar fashion. However, large βis will be regularized by

the regularized horseshoe prior, but the horseshoe prior will not do any regularization.

13



Chapter 3

Baysian framework

The Posterior Distribution

Combining the likelihood with the prior distributions yields the posterior distribution

needed for Bayesian inference, i.e.

posterior ∝ prior× likelihood. (3.1)

In our case, the likelihood is the Whittle likelihood (2.3), and we let ym = log I(ωm).

Let qqqm = (1, qm1, . . . , qmL)′, where qm1, qm2, . . . , qmL are basis functions evaluated at ωm and

let βββ = (α0, β1, . . . , βL)′ be a vector of unknown coefficients such that log f(ωm) = q′mβββ.

We then rewrite the Whittle likelihood as

exp
{
−

M∑
m=1

[qqq′mβββ + exp{ym − qqq′mβββ}]
}
. (3.2)

The prior we place on βββ depends on what model we use.

The priors for P-splines

In this case, the posterior distribution is given by

P (β, τ |y) ∝ exp
{
−

M∑
m=1

[qqq′mβββ + exp{ym − qqq′mβββ}]
}
× P (βββ)× P (τ),

where

1. The prior on βββ satisfies P (βββ) = P (α0)× P (β1)× P (β2)× · · · × P (βL), where

α0 ∼ N(0, 102), β1 ∼ N(0, τ 2), βρ = βρ−1 + uρ, uρ ∼ N(0, τ 2),
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for ρ = 2, 3, . . . , L.

2. The prior on τ is Half-t3(0, 103), where Half-t3(0, 103) means the half t distribution

with degrees of freedom 3, location parameter 0, and scale parameter 103. If τ ∼

Half-tν(µ, σ), then its density function is

g(τ) =
2Γ(ν+1

2
)

Γ(ν
2
)
√
νπσ2

(
1 +

1

ν

τ 2

σ2

)− ν+1
2

for τ ≥ 0.

The Horseshoe prior

In this case, the posterior distribution is given by

P (β, τ, λ|y) ∝ exp
{
−

M∑
m=1

[qqq′mβββ + exp{ym − qqq′mβββ}]
}
× P (βββ)× P (τ)× P (λ).

1. The prior on βββ satisfies P (βββ) = P (α0)× P (β1)× P (β2)× · · · × P (βL), where

α0 ∼ N(0, 102), βρ ∼ N(0, λ2ρτ
2),

for ρ = 1, 2, . . . , L.

2. The prior on λρ is λρ|σ ∼ C+(0, σ). In our case, we let σ = 1, so P (λρ|σ) = 2
π(1+λ2ρ)

.

3. The prior on τ is τ |η ∼ C+(0, η). In our case, we let η = 1, so P (τ |η) = 2
π(1+τ2)

.

The regularized Horseshoe prior

In this case, the posterior distribution is given by

P (β, τ, λ, c2, ι|y) ∝ exp
{
−

M∑
m=1

[qqq′mβββ + exp{ym − qqq′mβββ}]
}
× P (βββ)× P (τ)× P (λ)× P (c2).
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1. The prior on βββ satisfies P (βββ) = P (α0)× P (β1)× P (β2)× · · · × P (βL), where

α0 ∼ N(0, 102), βρ ∼ N(0, λ̃ρ
2
τ 2),

for ρ = 1, 2, . . . , L.

2. The λ̃i
2

=
c2λ2i

c2+τ2λ2i
is a transformed parameter. The prior on λρ is λρ ∼ C+(0, 1).

The prior on c2 is Inv-Gamma(15,375), where Inv-Gamma(15,375) means the inverse

Gamma distribution with shape parameter 15 and scale parameter 375. It allows c2

to take larger values, so the amount of shrinkage of large βis will be small

3. The prior on τ is τ ∼ C+(0, τ0) = C+(0, p0
L−p0

ι√
M

), where ι = π√
6
.

Hamiltonian Monte Carlo

The random walk nature of the Metropolis algorithm makes it slow to explore the

parameter space and to converge to the target distribution (Gelman et al., 2013).

The Hamiltonian Monte Carlo (HMC) was proposed by Duane et al. (1987), and was

first used in statistics by Neal (2011). HMC is based on Hamiltonian dynamics borrowed

from physics to reduce the local random walk behaviour of the Metropolis algorithm.

Hamiltonian dynamics use an object’s location βββ and momentum ζζζ at time t to describe

its motion in the system. Each location of the object is associated with potential energy

U(βββ), and for each momentum there is an associated kinetic energy K(ζζζ). The sum of

these two types of energy is given by H(βββ, ζζζ).

H(βββ, ζζζ) = U(βββ) +K(ζζζ), (3.3)

where the H( βββ, ζζζ) is the total energy.

Equation (3.3) leads to the Hamiltonian equations

dβββ

d t
=
dH

dζζζ
=
dK(ζζζ)

d ζζζ
,
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d ζζζ

d t
= −dH

dβββ
= −dU(βββ)

dβββ
.

Given
dK(ζζζ)

d ζζζ
and

dU(βββ)

dβββ
and a set of initial values of ζζζ and βββ, we can use the Hamil-

tonian equations to predict the location βββ and momentum ζζζ.

In HMC, we use the vector of unknown coefficients βββ as the location, and for each βi

in βββ we assign a corresponding momentum variable ζi. The potential energy U(βββ) is the

log-posterior density of βββ, i.e., U(βββ) = logP (βββ|y). As for ζζζ, we assume it has a multivariate

normal distribution with independent components, so its variance covariance matrix M is

diagonal, i.e., ζi ∼ N(0,Mi,i) where Mi,i is the ith diagonal element of M . The kinetic

energy is given by K(ζζζ) = 1
2
βββTM−1βββ.

At the beginning of the HMC iterations, draw random values of βββ and denote them as

βββ0, where βββi is the value of βββ after the ith HMC iteration.

Then in the ith HMC iteration (i = 1, 2, . . .)

1. Get current values for this iteration. Let βββ = βββi−1, draw a random sample of ζζζ from

its posterior distribution, ζζζ ∼ N(0,M) and denote it as ζζζ0, let ζζζ = ζζζ0.

2. Propose a new candidate for the next position. Update βββ and ζζζ by R ‘leapfrog steps’,

each scaled by a factor ε. In each leapfrog step, we do

(a) ζζζ = ζζζ − 1

2
ε
d logP (βββ|y)

dβββ
. Use

d logP (βββ|y)

dβββ
to update ζζζ for half a step.

(b) βββ = βββ + εM−1ζζζ. Use ζ and M−1 to update βββ for a whole step.

(c) ζζζ = ζζζ − 1

2
ε
d logP (βββ|y)

dβββ
. Use

d logP (βββ|y)

dβββ
to update ζζζ for another half step.

After (a), (b) and (c), we have updated both β and ζ by a whole step. Steps

(a), (b) and (c) together are called a leapfrog step. At the end of R leapfrog

steps, the values of βββ and ζζζ are denoted by βββ∗ and ζζζ∗.

3. Compute the acceptance ratio r.

r =
P (βββ∗|y)P (ζζζ∗)

P (βββi−1|y)P (ζζζ0)
.
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4. Update

βββi :=

 βββ∗ with probability min(r,1)

βββi−1 otherwise.

The main difference between the Metropolis-Hastings method and Hamiltonian Monte

Carlo is how they propose the candidate for the next iteration. In the Metropolis-Hastings

algorithm, the proposal distribution only depends on βββ, but in the Hamiltonian Monte

Carlo, the proposal distribution is the joint distribution P (βββ|y)P (ζζζ), which depends also

on ζζζ. Beside that, the Hamiltonian Monte Carlo also uses the gradient of logP (βββ|y),

so compared with the Metropolis-Hastings algorithm, each single iteration of Hamiltonian

Monte Carlo will be more costly but with a higher acceptance rate which allows Hamiltonian

Monte Carlo to move faster and reach convergence earlier.
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Chapter 4

Spatially Adaptive Estimation of

Time Series in the Time Domain

Using the Dynamic Shrinkage Prior

To motivate the dynamic shrinkage prior (DSP), proposed by Kowal et al. (2019), con-

sider figures 4.1 and 4.2 which display on their left panels true spatially inhomogeneous

signals. These were used by Donoho and Johnstone (1994) as examples of spatially in-

homogeneous signals. The right panels display data generated by adding noise to these

signals, along with two types of fitted curves. For each signal, there are 128 equally spaced

sample points, in the time interval [0, 1]. The red lines are based on smoothing splines

while the green ones were fit using the single-component nonparametric regression with the

DSP, implemented in the dsp R package (Kowal (2020)). The DSP is explained later in this

chapter. As evident from these plots, the smoothing splines which are not spatially adap-

tive, miss some important features of the signals. The single-component nonparametric

regression with the DSP does a good job due to its spatial adaptivity. This method allows

for different amounts of smoothing in different intervals. This property is advantageous

when fitting data from spatially inhomogeneous signals like the ones shown in these plots.

In Chapter 5 we propose using the DSP in the frequency domain for estimating spectra of

stationary time series.

The goal of trend filtering is to smooth out a time series by filtering out the noise.

Consider the single-component nonparametric regression model
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Figure 4.1: Left: Doppler and Bumps signals. Right: Data along with fitted curves. The

red lines are based on smoothing splines while the green ones were fit using the single-

component nonparametric regression with the DSP.

yi = βi + εi, ε | σε
ind∼ N(0, σ2

ε ), for 1 ≤ i ≤M.

Given an observed time series {yi}, the goal is to filter out the noise and estimate the

smooth filtered time series.

L1 trend filtering model

Kim et al. (2009) find the βs that minimize the following objective function

1
2

∑M
i=1(yi − βi)2 + λ

∑M−1
i=2 |βi−1 − 2βi + βi+1|. (4.1)
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Figure 4.2: Left: Blocks and Heavisine signals. Right: Data along with fitted curves. The

red lines are based on smoothing splines while the green ones were fit using the single-

component nonparametric regression with the DSP.

In (4.1),
∑M

i=1(yi − βi)2 is the residual sum of squares, which measures goodness of fit.

The expression
∑n−1

i=2 |βi−1 − 2βi + βi+1| is the sum of the absolute values of the second-

order differences, often used to impose smoothness on the values of βi. First-order or

higher orders may be used instead. The parameter λ is a global smoothing parameter,

which controls the trade-off between the two objectives of minimizing the residuals and

maximizing smoothness. Since λ is a constant that does not depend on i, the same amount

of smoothing is applied everywhere.
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The Baysian trend filter model

Faulkner and Minin (2018), proposed the following model

yi = βi + εi, εi | σε
ind∼ N(0, σ2

ε ), for 1 ≤ i ≤M,

∆2βi+1 = wi, wi | τ, λi
ind∼ N(0, τ 2λ2i ), for 1 ≤ i ≤M.

(4.2)

Model (4.2) is a Bayesian adaptation of the L1 trend filtering model (4.1). The prior placed

on the second-order difference of {βi}, ∆2βi+1, is the horseshoe prior, proposed by Carvalho

et al. (2010), which is a global-local shrinkage prior. The shrinkage imposed by this prior

induces a locally adaptive smoothing of the trend, where the local scale parameters {λi}

are assumed to be iid. Kowal et al. (2019) propose the dynamic shrinkage prior (DSP)

which does not assume independence of the {λi}.

The dynamic shrinkage prior (DSP)

.

Let hi = log(τ 2λ2i ) and define

hi+1 = µ+ φ(hi − µ) + ηi,

ηi
iid∼ Z(1

2
, 1
2
, 0, 1),

(4.3)

where µ = log(τ 2) and φ(hi−1 − µ) + ηi−1 = log(λ2i ). This formulation induces dependence

between the λi and λi+1. If φ = 0, then hi = µ + ηi, and since ηi
iid∼ Z(α, β, 0, 1), the hi

are i.i.d, which is the standard global-local prior, i.e., there is no extra spatial adaptivity.

When φ > 0, the first equation of (4.3) shows that the {hi} follow an AR(1) model, and

the dependence between λi and λi+1 is controlled by the AR(1) coefficient φ. Because φ

is positive, the correlation between λi and λi+1 is positive. The larger φ, the stronger the

relation between λi and λi+1. This means that the value of λi+1 will be more likely to be

close to λi so the degree of smoothing in adjacent intervals will not change a lot.

As for the parameter τ , we set τ ∼ C+(0, γ), where γ = σε√
M

and C+ is the half-Cauchy

distribution with pdf P (τ) = 2
π·γ ·

1
1+( τ

γ
)2

. In the Horseshoe prior βi ∼ N(0, τ 2λ2i ), so the
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conditional posterior distribution of βi is conditional on the value of τ or τ 2 directly. But

in the DSP, the evolution equation (4.3) is used to get hi+1 for i = 1, 2, 3, . . . ,M − 1. Thus

when implementing the DSP, we work with µ = log(τ 2) rather than with τ 2. For this

reason, we now derive the distribution of µ. Since τ ∼ C+(0, 1), it follows that the density

function of A = τ 2 is

P (A) =
2

π · γ
· 1

1 + A
γ2

· 1

2

1√
A

=
1

πγ
· γ2

γ2 + A
· 1√

A

=
γ

π
√
A(A2 + γ2)

.

Now, letting µ = log(A) = log(τ 2) =⇒ A = exp(µ), we obtain

P (µ) =
1

π

e
1
2
µ−log(γ)

1 + eµ−2 log(γ)
=

1

π
· e

1
2
(µ−2 log(γ))

1 + eµ−2 log(γ)
.

By Theorem 1 of Polson et al. (2013), let p(ξµ) denote the pdf of the Pólya-Gamma

random variable ξµ ∼ PG(b; 0), b > 0. Then the following integral identity holds for all

a ∈ R.

(eψ)a

(1 + eψ)b
= 2−beζψ

∫ ∞
0

e−ξµ
ψ2

2 p(ξµ)dξµ,

where ζ = a− b
2
. Letting ψ = µ− 2 log(γ), we see that

P (ψ) =
1

π
· e

1
2
(µ−2 log(γ))

1 + eµ−2 log(γ)
=

1

π
· (eψ)

1
2

(1 + eψ)1

=
1

2π
e(

1
2
− 1

2
)ψ

∫ ∞
0

e−ξµ
ψ2

2 p(ξµ)dξµ =
1

2π

∫ ∞
0

e−ξµ
ψ2

2 p(ξµ)dξµ.

Thus, given ξµ ∼ PG(b, 0), ψ | ξµ ∼ N(0, ξ−1µ ). Also, the conditional distribution

ξµ|ψ ∼ PG(b, ψ).
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In our case, ψ = µ − 2 ln(γ), a = 1
2

and b = 1, then ζ = 1
2
− 1

2
= 0. So P (µ) =

1
2π

∫∞
0
e−

(µ−2 log(γ))2ξµ
2 p(ξµ)dξµ. Thus (µ | ξµ, σε) ∼ N(2 log(γ), ξ−1µ ) = N(log(σ

2
ε

M
), ξ−1µ ) and

ξµ ∼ PG(1, 0).

Since wi = ∆2βi+1 and wi ∼ N(0, τ 2λ2i ) = N(0, exp(hi)), we see that wi

exp(
hi
2
)
∼ N(0, 1)

and
w2
i

exp(hi)
∼ χ2

1. Taking the log, we obtain log(w2
i ) − hi ∼ log(χ2

1) ⇐⇒ log(w2
i ) =

hi+log(χ2
1). Kastner and Frühwirth-Schnatter (2014) use this expression to write the joint

distribution of the hi. The distribution of log(ε2i ) can be approximated by the 10-component

mixture of normal distributions proposed in Omori et al. (2007). Conditional on the mixture

component indicators si, log(ε2i )|si ∼ N(msi , νsi), where mj, pj and νj, j = 1, . . . , 10, are the

pre-specified means, weights and variances of the 10-component Gaussian mixture provided

in Omori et al. (2007). Thus log(w2
i ) = hi + log(ε2i )|si implies log(w2

i ) ∼ N(hi + msi , νsi).

In practice, to avoid numerical issues when w2
i is too small, we add a small offset c = 10−4

to w2
i , resulting in log(w2

i + c) ∼ N(hi +msi , νsi).

A random variable from ηi ∼ Z(1
2
, 1
2
, 0, 1), can be generated by drawing from ηi | ξi ∼

N(0, ξ−1i ) and ξi ∼ PG(1, 0).

As for φ, we let φ+1
2
∼ Beta(10, 2), which places most of the mass of the density of φ

on (0, 1), so φ has a prior mean of 2/3 and a prior mode of 4/5.

For σε, we use Jeffreys’ prior, i.e p(σε) ∝ 1
σε

.

The setting of the DSP is summarized as follows.

∆2βi+1 = wi, wi|τ, λi
ind∼ N(0, τ 2λ2i ), for 1 ≤ i ≤M

τ ∼ C+(0, σε√
M

), µ = log(τ 2) =⇒ (µ|σε, ξ−1µ ) ∼ N(log(σ
2
ε

M
), ξ−1µ ), ξµ ∼ PG(1, 0),

ηi|ξi ∼ N(0, ξ−1i ), ξi
iid∼ PG(1, 0), i = 1, 2, . . . ,M

φ+1
2
∼ Beta(10, 2), p(σε) ∝ 1

σ2
ε
.

(4.4)

As mentioned earlier, in the DSP, the local parameters λi depend on the AR(1) coeffe-

cient φ, so the shrinkage paramter κt introduced in Chapet 2 also depends on φ. Figure 4.3

below displays simulation-based estimates of the stationary distribution of κt for various

AR(1) coefficients φ. The blue line represents the density of the shrinkage paramenter κt
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Figure 4.3: Blue line: density of κt of the horseshoe prior. Histograms: densities of κt for

the DSP. (a) φ = 0.25, (b) φ = 0.5, (c) φ = 0.75, (d) φ = 0.99. The plot is from Kowal

et al. (2019).

of the horseshoe prior, i.e., κt ∼ Beta(1
2
, 1
2
). The histograms show the densities of κt in

the DSP for different values of φ: (a) φ = 0.25, (b) φ = 0.5, (c) φ = 0.75, (d) φ = 0.99.

We see that when φ is close to 0, which means weak dependence between λi and λi+1, the

DSP works very similar to the horseshoe prior, where there is no dependence between λi

and λi+1. But when φ is close to 1, compared with horseshoe prior, the density of κt in the

DSP gives more mass to values near 0 (no shrinkage) and 1 (maximum shrinkage).
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Chapter 5

Spatially Adaptive Estimation in the

Frequency Domain Using the

Dynamic Shrinkage Prior

Kowal et al. (2019) proposed the dynamic shrinkage prior (DSP) but applied it only in

the time domain. In this paper our goal is to apply the DSP to the frequency domain. By

using the DSP, we aim at finding a spatially adaptive estimate of the spectrum of stationary

time series.

5.1 The Posterior Distribution

Multiplying the likelihood by the prior distributions yields the posterior distribution

needed for Bayesian inference. In our case, the likelihood is the Whittle likelihood (2.3).

Given an observed time series {xi}, we apply to it the discrete Fourier transform (DFT)

introduced in Chapter 1 and denoted it by d(ωi). Based on the d(ωj) we then calculate the

periodogram I(ωi) as described in Chapter 1. In Chapter 2 we mentioned that when the

sample size is large, we have approximately I(ωi) ∼ Expon
(
f(ωi)

)
from which the Whittle

likelihood (2.3) follows. Letting yi = log(I(ωi)), the Whittle likelihood is given by

exp
{
−

M∑
i=1

[log f(ωi) + exp{yi − log f(ωi)}]
}
.
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5.2 Single-component nonparametric estimation

We start with the single-component nonparametric estimation, where log f(ωi) is mod-

eled by βi. Under this setting the Whittle likelihood becomes

exp
{
−

M∑
i=1

[βi + exp{yi − βi}]
}
. (5.1)

5.2.1 The conditional posterior distribution of βββ

The prior on βββ is

P (DDD2βββ|Σw) = (2π)−
M
2 det(Σw)−

1
2 exp{−1

2
(DDD2βββ)TΣ−1w (DDD2βββ)},

where βββ =
[
β1, β2, · · · , βM

]T
is an M × 1 vector and

D2 =



1 0 0 0 · · · 0 0

0 1 0 0 · · · 0 0

1 −2 1 0 · · · 0 0

0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −2 1


,

which is an M ×M matrix. Σω = diag({σ2
ωi
}Mi=1) for σ2

ωi
= τ 2λ2i .

Since it is the second-order difference, the priors on β1 and β2 are βi ∼ N(0, a2i ), i = 1, 2.

This guarantees that the prior is proper pdf. The conditional posterior of βββ is given by

exp{−
M∑
i=1

[βi + exp{yi − βi}]} × exp{−1

2
(DDD2βββ)TΣ−1w (DDD2βββ)} × exp{− β2

1

2a21
} × exp{− β2

2

2a22
}.

Taking the log yields

logP = −
M∑
i=1

[βi + exp{yi − βi}]−
1

2
(DDD2βββ)TΣ−1w (DDD2βββ)− β2

1

2a21
− β2

2

2a22
.
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We want to use the Metropolis-Hastings algorithm or the Hamiltonian Monte Carlo algo-

rithm mentioned in Chapter 3 to draw samples of βββ from the conditional posterior distri-

bution, for which the gradient and Hessian with respect to βββ are needed. Next we will

derive these two.

∂

∂βββ
logP = − ∂

∂βββ
{
M∑
i=1

[βi + exp{yi − βi}]} −
1

2

∂

∂βββ
[(DDD2βββ)TΣ−1w (DDD2βββ)] +

∂

∂βββ
{− β2

1

2a21
− β2

2

2a22
}

=


exp(y1 − β1)− 1

exp(y2 − β2)− 1
...

exp(yM − βM)− 1

−
1

2

∂

∂βββ
[βββTDT

2 Σ−1w D2βββ] +



−β1
a21

−β1
a21

0
...

0



=


exp(y1 − β1)− 1− β1

a21

exp(y2 − β2)− 1− β2
a22

...

exp(yM − βM)− 1

−
1

2

∂

∂βββ
[βββTDT

2 Σ−1w D2βββ].

Denote DT
2 Σ−1w D2 by C, then since Σ−1w is diagonal, it is symmetric and CT = C. It follows

that 1
2
∂

∂βββ
[βββTCβββ] = Cβββ and

∂

∂βββ
logP =


exp(y1 − β1)− 1− β1

a21

exp(y2 − β2)− 1− β2
a22

...

exp(yM − βM)− 1

− Cβββ.

The Hessian is given by
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∂2

∂βββ∂βββT
logP =

∂

∂βββ
[


exp(y1 − β1)− 1− β1

a21

exp(y2 − β2)− 1− β2
a22

...

exp(yM − βM)− 1

− Cβββ]

=



− exp(y1 − β1)− 1
a21

0 · · · 0 0

0 − exp(y2 − β2)− 1
a21
· · · 0 0

...
...

. . .
...

...

0 0 · · · − exp(yM−1 − βM−1) 0

0 0 · · · 0 − exp(yM − βM)


−C,

which is an M ×M matrix.

The derivation of the conditional posterior distributions for other parameters are similar

to the one in Kowal et al. (2019). Details are provided in Section A.2
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Chapter 6

Future Work

6.1 Future Work

6.1.1 Spectral estimation using the DSP in the single-component

model

I will continue working on programming the sampling scheme for estimating the spec-

trum of a stationary time series using the DSP in the single-component model. As described

in Chapter 5, in this case, the estimation is based on Whittle likelihood, given in Equation

(5.1), where the log spectrum is modeled using the vector βββ and the DSP. I will use the

Metropolis-Hastings algorithm or the Hamiltonian Monte Carlo algorithm mentioned in

Chapter 3 to draw samples of βββ from the conditional posterior distribution. After finishing

the coding, I will evaluate the model performance through simulations, as well as fitting

the model to real date.

The Metropolis-Hastings algorithm we want to use is described below:

� Find the conditional posterior distribution of βββ, as done in Chapter 5, and denote

it by P (β | . . .β | . . .β | . . .), where . . . represents parameters like Σw, a21 and a22 on which the

conditional posterior distribution of βββ is conditioned.

� Calculate the gradient and the Hessian of logP (β | . . .β | . . .β | . . .), ∂

∂βββ
logP (β | . . .β | . . .β | . . .) and ∂2

∂βββ∂βββT
logP (β | . . .β | . . .β | . . .).

� Find β̂̂β̂β which maximizes logP (β | . . .β | . . .β | . . .).

� Propose from the multivariate normal distribution N(β̂̂β̂β,Σ
β̂̂β̂β

), where

30



Σ
β̂̂β̂β

= (− ∂2

∂βββ∂βββT
|
βββ=β̂̂β̂β

logP (β | . . .β | . . .β | . . .))−1. We denote the pdf of this multivariate normal

distribution by q(·) and a proposed value by β̂̂β̂β
p
. Let the current value be β̂̂β̂β

c
.

� Calculate the acceptance probability as a = min{1, P (β̂̂β̂β
p

)

P (β̂̂β̂β
c

)

q(β̂̂β̂β
c

)

q(β̂̂β̂β
p

)
}, where P (β̂̂β̂β

p
) and

P (β̂̂β̂β
c
) are the values of the conditional posterior distribution P (β | . . .β | . . .β | . . .) at β̂̂β̂β

p
and β̂̂β̂β

c
,

respectively. Similarly, q(β̂̂β̂β
p
) and q(β̂̂β̂β

c
) are the values of the proposal pdf at β̂̂β̂β

p
and

β̂̂β̂β
c
, respectively.

6.1.2 Spectral estimation using the DSP in the multi-component

model

We will extend the single-component model to the multi-component model (Kowal et al.

(2019)), using B-spline basis functions to model log f(ωi) by
∑L

j=1 βi,jxi,j, where xi,j is the j-

th B-spline basis function evaluated at the Fourier frequency ωi, and let xxxi = (xi,1, . . . , xi,L)T

and βββi = (βi,1, . . . , βi,L)T such that log f(ωi) = xxxTi βββi. We then rewrite the Whittle likelihood

as

exp
{
−

M∑
i=1

[xxxTi βββi + exp{yi − xxxTi βββi}]
}
. (6.1)

Model (6.1) is a varying-coefficient model (Hastie and Tibshirani (1993)), which means

that the coefficients are allowed to vary as smooth functions. The DSP is then applied to

βββi. The setting of the DSP for the multi-component model is described below.

∆2βββi+1 = βββi+1 − 2βββi + βββi−1 = wwwi, (wi,j | τ0, τi, λi,j)
ind∼ N(0, τ 20 τ

2
i λ

2
i,j),

hi,j = log(τ 20 τ
2
i λ

2
i,j), hhhi+1 = µµµ+ Φ(hhhi − µµµ) + ηηηi,

(6.2)

where wwwi = (wi,1, . . . , wi,L)T , hhhi = (hi,1, . . . , hi,L)T , µµµ = (µ1, . . . , µL)T , ηηηi = (ηi,1, . . . , ηi,L)T

and Φ = diag(φ1, . . . , φM). As before, (ηi,j | ξi,j) ∼ N(0, ξ−1i,j ) and ξi,j
ind∼ PG(1, 0). The

τi ∼ C+(0, 1) and τ0 ∼ C+(0, σε√
ML

).

I will derive the conditional posterior distributions required for implementing MCMC

methods for this model and write code for implementing it.
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6.1.3 Other tasks

In the proposed future research we will extend spectral estimation to a single nonsta-

tionary time series (Rosen et al. (2012)), as well as to multiple time series with covariates.

6.2 Time Schedule of Future Research

Table 6.1: Time schedule

Tasks to complete Approximate time

Finish coding the single-component model for spectrum esti-

mation.

Jan - Feb 2021

Deriving the conditional posterior distributions for the multi-

component model.

Feb - Mar 2021

Coding the multi-component model. Mar 2021

Working on spectrum estimation of nonstationary time series. Apr - May 2020

Deriving the algorithm for estimation for nonstationary time

series.

Jun -July 2021

Implementing the estimation for nonstationary time series. Aug - Sep 2021

Dissertation writing: Literature review Oct 2021

Dissertation writing: Methodology Nov 2022

Dissertation writing: Experiment Dec 2022

Dissertation writing: Results Jan -Feb 2022

Dissertation writing: Writing and revising March 2022

Defense Apr 2022

Submission for publication. May 2022
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Kastner, G. and Frühwirth-Schnatter, S. (2014), “Ancillarity-sufficiency interweaving strat-

egy (ASIS) for boosting MCMC estimation of stochastic volatility models,” Comput.

Statist. Data Anal., 76, 408–423.

Kim, S.-J., Koh, K., Boyd, S., and Gorinevsky, D. (2009), “l1 trend filtering,” SIAM Rev.,

51, 339–360.

Kowal, D. R. (2020), dsp: Dynamic Shrinkage Processes, r package version 0.1.0 — For

new features, see the ’Changelog’ file (in the package source).

Kowal, D. R., Matteson, D. S., and Ruppert, D. (2019), “Dynamic shrinkage processes,”

J. R. Stat. Soc. Ser. B. Stat. Methodol., 81, 781–804.

Lang, S. and Brezger, A. (2004), “Bayesian P-Splines,” Journal of Computational and

Graphical Statistics, 13, 183–212.

Marx, B. D. and Eilers, P. H. C. (1999), “Generalized Linear Regression on Sampled Signals

and Curves: A P-Spline Approach,” Technometrics, 41, 1–13.

Neal, R. M. (2011), “MCMC using Hamiltonian dynamics,” in Handbook of Markov chain

Monte Carlo, CRC Press, Boca Raton, FL, Chapman & Hall/CRC Handb. Mod. Stat.

Methods, pp. 113–162.

Omori, Y., Chib, S., Shephard, N., and Nakajima, J. (2007), “Stochastic volatility with

leverage: fast and efficient likelihood inference,” J. Econometrics, 140, 425–449.

Pawitan, Y. and O’Sullivan, F. (1994), “Nonparametric spectral density estimation using

penalized Whittle likelihood,” J. Amer. Statist. Assoc., 89, 600–610.

Piironen, J. and Vehtari, A. (2017), “Sparsity information and regularization in the horse-

shoe and other shrinkage priors,” Electron. J. Statist., 11, 5018–5051.

Polson, N. G., Scott, J. G., and Windle, J. (2013), “Bayesian inference for logistic models
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Appendix A

Appendix

A.1 Derive the distribution of the µ

In chapter 4 we have µ = log(A) = log(τ 2) =⇒ A = exp(µ), then the density function

of µ is P (µ) = γ
π

1
γ2+eµ

· 1

e
1
2µ
· eµ, we use 1

γ2
= e−2 ln(γ) to rewrite the equation above and get

P (µ) = 1
πγ

1
1+eµ−2 ln(γ) · e

1
2
µ. Then use 1

γ
= e− log(γ) to rewrite the equation above and get

P (µ) =
1

π

e
1
2
µ−log(γ)

1 + eµ−2 log(γ)
=

1

π
· e

1
2
(µ−2 log(γ))

1 + eµ−2 log(γ)
.

A.2 Posterior distribution for parameters in single-

component nonparametric estimation

For hhh

We definehhh =


h1

h2
...

hM

The evolution equation contains hi, which is hi+1 = µ+φ(hi−µ)+

ηi, ηi
iid∼ Z(1

2
, 1
2
, 0, 1). We can rewrite it as

ηi = (hi+1 − µ)− φ(hi − µ)

since ηi ∼ Z(1
2
, 1
2
, 0, 1), we can draw samples of ηi ∼ Z(1

2
, 1
2
, 0, 1) by ηi|ξi

ind∼ N(0, ξ−1i ) for

ξi
iid∼ PG(1, 0).
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So if we let h̃hh =


h1 − µ

h2 − µ
...

hM − µ

, DφDφDφ =



1 0 0 0 · · · 0 0

−φ 1 0 0 · · · 0 0

0 −φ 1 0 · · · 0 0

0 0 −φ 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −φ 1


. ηηη =


η1

η2
...

ηM

. Then

we have ηηη = DφDφDφh̃hh ∼ N(0,Σξ), here Σξ = diag{(ξ−1i )Mi=1}.

Another part which contains hhh is log(ω2
i + c) ∼ N(hi + msi , νsi), denote log(ω2

i + c)

by ỹi, then from ỹi
ind∼ N(hi + msi , νsi) we have ỹ̃ỹy ∼ N(mmm + h̃̃h̃h + µ̃̃µ̃µ,Σν). Here ỹ̃ỹy =


ỹ1

ỹ2
...

ỹM

,

mmm =


ms1

ms2

...

msM

, µ̃̃µ̃µ =



µ

µ

µ
...

µ


, h̃̃h̃h is the same as we defined above, Σν = diag{(νsi)ni=1}.

From ηηη = DφDφDφh̃hh ∼ N(0,Σξ) we have

P (DφDφDφ|Σξ) = (2π)−
M
2 det(Σξ) exp{−1

2
(Dφh̃̃h̃hDφh̃̃h̃hDφh̃̃h̃h)TΣ−1ξ (Dφh̃̃h̃hDφh̃̃h̃hDφh̃̃h̃h)},

if we denote DφDφDφ
TΣ−1ξ DφDφDφ by Σ−13 , then we can rewrite it as

P (DφDφDφ|Σξ) = (2π)−
M
2 det(Σξ) exp{−1

2
h̃̃h̃h
T

Σ−13 h̃̃h̃h}.

From ỹ̃ỹy ∼ N(mmm+ h̃̃h̃h+ µ̃̃µ̃µ,Σν), we have

P (ỹ̃ỹy|Σν) = (2π)−
M
2 det(Σν) exp{−1

2
(ỹ̃ỹy −mmm− h̃̃h̃h− µ̃̃µ̃µ)TΣ−1ν (ỹ̃ỹy −mmm− h̃̃h̃h− µ̃̃µ̃µ)},

we denote ỹ̃ỹy −mmm− µ̃̃µ̃µ by k̃̃k̃k, then we can rewrite it as
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P (ỹ̃ỹy|Σν) = (2π)−
M
2 det(Σν) exp{−1

2
(−h̃̃h̃h+ k̃̃k̃k)TΣ−1ν (−h̃̃h̃h+ k̃̃k̃k)}.

So

(2π)−
M
2 det(Σξ) exp{−1

2
(Dφh̃̃h̃hDφh̃̃h̃hDφh̃̃h̃h)TΣ−1ξ (Dφh̃̃h̃hDφh̃̃h̃hDφh̃̃h̃h)}

×(2π)−
M
2 det(Σν) exp{−1

2
(ỹ̃ỹy −mmm− h̃̃h̃h− µ̃̃µ̃µ)TΣ−1ν (ỹ̃ỹy −mmm− h̃̃h̃h− µ̃̃µ̃µ)}

∝ exp{−1

2
h̃̃h̃h
T

Σ−13 h̃̃h̃h} × exp{−1

2
(−h̃̃h̃h+ k̃̃k̃k)TΣ−1ν (−h̃̃h̃h+ k̃̃k̃k)}

∝ exp{−1

2
[h̃̃h̃h
T

Σ−13 h̃̃h̃h+ h̃̃h̃h
T

Σ−1ν h̃̃h̃h− h̃̃h̃hTΣ−1ν k̃̃k̃k − k̃̃k̃kTΣ−1ν h̃̃h̃h]}

= exp{−1

2
[h̃̃h̃h
T

(Σ−13 + Σ−1ν )h̃̃h̃h− h̃̃h̃hTΣ−1ν k̃̃k̃k − k̃̃k̃kTΣ−1ν h̃̃h̃h]}

∝ exp{−1

2
[(h̃̃h̃h− (Σ−13 + Σ−1ν )−1Σ−1ν k̃̃k̃k)T (Σ−13 + Σ−1ν )(h̃̃h̃h− (Σ−13 + Σ−1ν )Σ−1ν k̃̃k̃k)]}

so we can see that the conditional distribution of h̃̃h̃h is h̃̃h̃h ∼ N((Σ−13 + Σ−1ν )−1Σ−1ν k̃̃k̃k, (Σ−13 +

Σ−1ν )−1) = N((DφDφDφ
TΣ−1ξ DφDφDφ + Σ−1ν )−1Σ−1ν (ỹ̃ỹy − mmm − µ̃̃µ̃µ), (DφDφDφ

TΣ−1ξ DφDφDφ + Σ−1ν )−1). If we let

Qh̃ = DφDφDφ
TΣ−1ξ DφDφDφ + Σ−1ν and lh̃ = Σ−1ν (ỹ̃ỹy −mmm − µ̃̃µ̃µ), then we can rewrite the conditional

distribution of h̃̃h̃h as h̃ ∼ N(Q−1
h̃
lh̃, Q

−1
h̃

). We can sample h̃̃h̃h in this way:

For µ

From µ|σε, ξ−1µ ∼ N(log(σ
2
ε

M
), ξ−1µ ), we have

P (µ|σε, ξ−1µ ) =
1√

2πξ−1µ
exp{−1

2

(µ− log(σ
2
ε

M
))2

ξ−1µ
} ∝ exp{−1

2

(µ− log(σ
2
ε

M
))2

ξ−1µ
}.

From the evolution equation hi+1 = µ + φ(hi − µ) + ηi, we have µ + η0 = h1 ∼

N(µ, ξ−10 ), ξ0 ∼ PG(1, 0) and
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P (h1|µ, ξ0) =
1√

2πξ−10

exp{−(h1 − µ)2

2ξ−10

} ∝ exp{−(h1 − µ)2

2ξ−10

}.

For i = 1, 2, . . . ,M − 1. hi+1 = µ + φ(ht − µ) + ηt, ηi
iid∼ Z(α, β, 0, 1) implies that

hi+1 = φhi + (1− φ)µ + ηi, so hi+1 ∼ N(φhi + (1− φ)µ, ξ−1i ), ξt ∼ PG(1, 0). Then we can

see that

p(hi+1|µ, φ, ξt) =
1√

2πξ−1i
exp{−(hi+1 − φhi − (1− φ)µ)2

2ξ−1i
}

∝ exp{−(hi+1 − φhi − (1− φ)µ)2

2ξ−1i
} fori = 1, 2, . . . , n− 1

so the posterior distribution of µ is

exp{−1

2

(µ− log(σ
2
ε

M
))2

ξ−1µ
} × exp{−(h1 − µ)2

2ξ−10

} ×
M−1∏
i=1

exp{−(hi+1 − φhi − (1− φ)µ)2

2ξ−1i
}

∝ exp{−1

2
[(ξµ + ξ0 + (1−φ)2

M−1∑
i=1

ξi)µ
2− 2(log(

σ2
ε

M
)ξµ +h1ξ0 + (1−φ)2

M−1∑
i=1

(hi+1−φhi)ξi)]}

Implies that µ has a normal distritbution with mean ξµ+ξ0+(1−φ)2
∑M−1

i=1 ξi)
−1(log(σ

2
ε

M
)ξµ+

h1ξ0 + (1− φ)2
∑M−1

i=1 (hi+1 − φhi)ξi and variance ξµ + ξ0 + (1− φ)2
∑M−1

i=1 ξi)
−1

For φ

The prior of φ is 1+φ
2
∼ Beta(10, 2), it means

p(
1 + φ

2
) =

(1+φ
2

)9(1− 1+φ
2

)1

B(10, 2)
=

(1+φ
2

)9(1− 1+φ
2

)1

1
110

= 110(
1 + φ

2
)9(

1− φ
2

),

then d
dφ

(1+φ
2

) = 1
2
, so we have p(φ) = 110

2
(1+φ

2
)9(1−φ

2
) ∝ (1 + φ)9(1− φ).

The evolution equation contains φ, which is hi+1 = µ + φ(hi − µ) + ηi. We have

µ+ η0 = h1 ∼ N(µ, ξ−10 ), ξ0 ∼ PG(1, 0), which implies
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P (h1|µ, ξ0) =
1√

2πξ−10

exp{−(h1 − µ)2

2ξ−10

} ∝ exp{−(h1 − µ)2

2ξ−10

},

and for i = 1, 2, . . . ,M − 1,

p(hi+1|µ, φ, ξi) =
1√

2πξ−1i
exp{−(hi+1 − φhi − (1− φ)µ)2

2ξ−1i
},

so we have

M−1∏
i=1

1√
2πξ−1i

exp{−(hi+1 − φhi − (1− φ)µ)2

2ξ−1i
}

∝ exp{−1

2

M−1∑
i=1

[(hi+1 − µ)− φ(hi − µ)]2ξi}

∝ exp{−1

2
[φ2

M−1∑
i=1

(hi − µ)2ξi − 2φ
M−1∑
i=1

(hi+1 − µ)(hi − µ)ξi]}

then

p(φ)×
M−1∏
i=1

p(hi+1|µ, φ, ξi)

∝ (1 + φ)9(1− φ)× exp{−1

2
[φ2

M−1∑
i=1

(hi − µ)2ξi − 2φ
M−1∑
i=1

(hi+1 − µ)(hi − µ)ξi]}.

The second term in the formula above is a kernel of normal distribution, which is

N(

∑M−1
i=1 (hi+1 − µ)(hi − µ)ξi∑M−1

i=1 (hi − µ)2ξi
,

1∑M−1
i=1 (hi − µ)2ξi

).

For mixture component indicators {si}

In Omori et al. (2007) , the P(si = k), mk and νk for k = 1, 2, 3, . . . , 10 are show in the

table below.

From log(ω2
i + c) = ỹi ∼ N(hi +msi , νsi), we have
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Table A.1: Table of the 10-component Gaussian mixture

k P(si = k) mk νk

1 0.00609 1.92677 0.11265

2 0.04775 1.34744 0.17788

3 0.13057 0.73504 0.26768

4 0.20674 0.02266 0.40611

5 0.22715 -0.85173 0.62699

6 0.18842 -1.97278 0.98583

7 0.12047 -3.46788 1.57469

8 0.05591 -5.55246 2.54498

9 0.01575 -8.68384 4.16591

10 0.00115 -14.65000 7.33342

P (ỹi) =
1√

2πνsi
exp{−(ỹi − hi −msi)

2

2νsi
} ∝ 1
√
νsi

exp{−(ỹi − hi −msi)
2

2νsi
},

so the conditional distribution of si is

P (si = k|·) = P (si = k) ∗ 1
√
νk

exp{−(ỹi − hi −mk)
2

2νk
}.

For ξi

Since ηi|xii ∼ N(0, ξ−1) and ξi ∼ PG(1, 0), then based on theorem 1 of ?, we have the

conditional distribution of ξi|ηi ∼ PG(1, ηi).

For σε

The prior we place on σε is σε ∝ 1
σε

. Then from yi = βi + εi, εi ∼ N(0, σ2
ε ) for i =

1, 2, . . . ,M and τ ∼ C+(0, ε√
M

), we have the conditional distribution of σε is
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P (σε|·) =
1

σε
· 1

σMε
· exp{− 1

2σ2
ε

M∑
i=1

(yi − βi)2} ·
2

π

√
M
σε

1 + ( τ
σε√
M

)2

∝ σ−(M+1)
ε · exp{− 1

2σ2
ε

M∑
i=1

(yi − βi)2} ·
√
M

σε(1 + τ2M
σ2
ε

)

= σ−(M+2)
ε · exp{− 1

2σ2
ε

M∑
i=1

(yi − βi)2} ·
√
M

1 + τ2M
σ2
ε
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