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Abstract 

With the ever-increasing demands in the space domain and accessibility to low-cost small 

satellite platforms for educational and scientific projects, efforts are being made in various 

technology capacities including robotics and artificial intelligence in microgravity. The MIRO 

Center for Space Exploration and Technology Research (cSETR) prepares the development of 

their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic 

arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware 

implementation, and testing demonstrate a potential positive outcome from including the payload 

in the nanosatellite and a deep learning model that could leverage already existing satellite 

resources to function as a verification method to the robotic arm’s activities.  
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Chapter 1: Introduction 

A nanosatellite is any satellite with mass from 1 kilogram to 10 kilograms and it is within this 

category that we find CubeSats which are cubic-shaped satellites developed to a specific number 

of cubic units that describe the total volume of the satellite e.g. 1 unit, 3 units, 6 units, etc. 

Naturally, CubeSats allow for low mass low-cost missions that have been helpful to test specific 

technologies developed from within the scientific community. One area of interest is the efforts 

that have been made to demonstrate advanced robotic manipulation capabilities on-orbit with a 

special interest in Low-Earth Orbit (LEO). More recently, CubeSat projects such as the Robotic 

Experimental Construction Satellite (RECS) [1] and the Intelligent Space Assembly Robot 

(ISAR) [2] propose multiple degrees of freedom robotic arm systems for on-orbit assembly, 

servicing, and space systems construction. These projects propose the use of 3U satellites to 

confine two extendable robotic arms, the required sensing instrumentation, and the on-board 

computers. It is important to highlight that systems of such complex dexterity occupy a 

minimum volume of 3U CubeSat units, that is approximately 10cm x 10cm x 30cm. A key 

capability of a manipulator for on-orbit servicing relies on its ability to estimate the position and 

orientation of the target relative to a known frame. This capability is critical to achieve 

successful manipulation which may be critical for a space systems mission. Some state-of-the-art 

approaches propose the use of neural networks for real-time pose, that is position and orientation, 

estimation of an object relative to the camera [3].  
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Chapter 2: Rationale and Merit 

The National Aeronautics and Space Administration (NASA) envisions that robots will be 

leveraged for multiple tasks within the domains of human exploration, science exploration, and 

planetary capabilities, as stated in its 2020 Technology Taxonomy [4]. The research work 

presented in this paper describes the dynamics analysis, control design, and hardware 

implementation of a three degrees-of-freedom robotic manipulator and the use of a deep learning 

convolutional neural network as a verification method of the task at hand by the manipulator. 

Furthermore, the research envisions the implementation of the robotic arm system as a whole 

subsystem within a notional 6U CubeSat of an approximate volume of 10cm x 20cm x 30cm. 

The notional 6U CubeSat is not a hard requirement for the subsystem, but it allows to assume 

that the power requirements of the robotic arm are satisfied by an on-board electrical power 

system. This research work aligns with a 6U CubeSat project that is currently being developed 

by the MIRO Center for Space Exploration and Technology Research (cSETR), thus some 

aspects of interest throughout the methodology will visit the idea of how the robotic arm could 

affect the CubeSat. Likewise, the research work will describe how the robotic arm subsystem can 

leverage hardware already on board of the CubeSat.  
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Chapter 3: Methodology 

3.1 Dynamics Analysis 

The dynamics is concerned with the relationship between the motion of a mechanism and the 

forces that it generates. Within dynamics two different mechanisms can be considered: 

• Forward dynamics: computes accelerations from given forces. 

• Inverse dynamics: computes forces from given accelerations. 

The rigid body assumption is a fundamental assumption with modeling dynamics of a system 

such as the robotic system presented as it assumes the rigid body remains undeformed despite its 

interactions with the environment or by any contact forces. Another important aspect this section 

will analyze is the kinematics of the system which is the analysis of motion without considering 

forces. Thus, only the geometric properties, and the position and degrees of freedom of the links 

of the system is necessary for the analysis. Similar to dynamics, kinematics has two different 

mechanisms: a forward kinematics mechanism that computes a location in the cartesian 

coordinate system from given joint positions of the links in the system, and an inverse kinematics 

mechanism that computes the opposite, that is, the combination of joint positions from a given 

position in the cartesian coordinate system. See Fig. 1. 

 

Figure 1: Mathworks.com 
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The focal point of the methodology is to control the robotic arm in the cartesian coordinate 

system thus the natural first step is to compute the inverse kinematics to obtain a combination of 

joint positions to satisfy the desired end effector motion. To do so, a simulation model uses a 

Transform Trajectory block which accepts two 4x4 homogeneous transformation matrices to 

compute a trajectory between the initial and the final state of the end effector over a time 

specified. The trajectory is computed using linear interpolation for the positions, and spherical 

linear interpolation (SLERP) for the rotations. A separate Inverse Kinematics block uses a rigid 

body tree configuration of the robotic arm, the previously computed 4x4 transformation matrix 

as the desired end effector pose, and its previous computation as an initial guess to calculate a 

vector of joint positions (q1, q2, q3) for the robot. The joint positions are computed using the 

Levenberg-Marquardt algorithm [5] which is an error-damped least-squares method optimize to 

converge faster if the initial guess is close to the solution. Thus, the decision of using the 

previous computed solution as the initial guess yielding to faster results. 

Each element in the vector of joint positions is routed to a closed-loop controller, one for each 

actuator in the simulation model. Each close-loop path accepts one joint position as its desired 

value and uses feedback from a sensor to compute an output as torque to actuate the motors. 

Multiple sensors in the simulation measure both linear and angular positions, velocities, and 

accelerations of the motors and the links for the purpose of calculating the reactions at the base 

of the robotic system. An open-source modeling toolkit for mobile-base robotic multibody 

systems (SPART)[6] calculates the kinematics and dynamics of the system given the current and 

the previous position of the three joints computed at each time step. The SPART simulation tool 

uses the velocities and accelerations of the base and joints to compute the inverse dynamics and 

output a vector of 6 elements: 3 elements to describe the reaction forces at the base and 3 
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(1) 

elements to describe the torques created by the motion of the robotic arm. The vector can be 

represented with fr and τr for the forces and torques, respectively. Newton’s second law of 

motion is used to verify the results of the SPART dynamics simulation tool. Eq. 1 represents the 

reaction forces and torques induced by the robotic arm on the base where it would be mounted. 

 

Where fr ∈ R3 and τr ∈ R3. n loops over the total number of links in the system (three), m is the 

mass of the link i, ύ is the linear acceleration at the link’s center of mass (COM), I is the inertia 

tensor of the link, ώ is the angular acceleration of the link, r is the distance in R3 from the link’s 

COM to the inertial frame, and a0 is an offset constant distance in R3 from the inertial frame to 

the base-link COM.  Fig. 2 shows a visual representation of the elements described in Eq. 1. 

Notice that for the robotic arm system proposed in this work three links pertain to the links and 

one for the so-called base-link which is fixed with the inertial frame. 

 

Figure 2: Multibody dynamic system of a servicing spacecraft with an onboard manipulator [7] 
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Fig. 3 portraits a notional trajectory of 2.5 seconds emulating the initial deployment of the 

robotic arm. This trajectory has been generated from obtaining an initial and a final 4x4 

homogeneous transformation matrix from the computer-aided design; one for the initial stowed 

configuration of the robotic arm and one for a deployed configuration.  

 

Figure 3: Simulation deploying the robotic arm 

Such trajectory is simulated and Eq. 1 gets populated from the outputs of the sensors 

implemented in the simulation model, and it calculates the resulting reaction forces and torques 

for every time step at the base where the robot would be attached to. Fig. 4 compares the results 

of the SPART simulation tool and the calculations from Newton’s second law. 

 

Figure 4: Comparison of reaction torque results 
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3.2 Control Design 

The controller to drive the motors of the system implements an empirical method developed 

experimentally with the hardware implemented. The design of the controller uses an approach of 

reaching local waypoints along the trajectory instead of calculating an output from the initial to 

the final waypoint of the trajectory. An important aspect to keep in mind with the proposed 

approach of reaching local waypoints is that moving in relatively small steps along the trajectory 

could cause sudden stops if a smooth behavior is not achieved. Sudden stops cause steep slopes 

in the velocity versus time curve which also cause the acceleration to flip signs along the 

trajectory. This is an undesirable behavior because adding unwanted vibration to the system 

could cause failures such as cables disconnecting, hardware failure, or resonance failure. 

As for the computed output, the controller has the same structure as a typical PID controller as 

shown in Fig. 5: 

 

Figure 5: Closed-loop feedback system 

The controller implements a function that keeps track of the previous errors calculated in the 

closed-loop system and determines whether a specific motor has continuous motion or not. In the 

case that a specific motor is deemed to have enough angular velocity to stay in motion, the 

algorithm makes the decision of keeping the integral part of the controller constant to the last 

known value. As a result, the output of the controller is mainly driven by the integral part. 
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The decision-making flowchart in Fig. 6 describes the logic implemented for the integral part of 

the controller that influences directly the Pulse-Width Modulation (PWM) output of the 

controller: 

 

Figure 6: Controller logic for incrementing its output 

The first step in the decision tree is to calculate the difference between the desired setpoint for 

the motor and the reading from the encoder to determine the direction in which the motor needs 

to rotate. Then, the question of whether the motor is at a desired setpoint splits the diagram in 

two sections. The section on the left determines that if the motor is at the first setpoint the output 

of the controller must be incremented, but if the opposite happens then it means the motor is at a 

setpoint along the trajectory and it potentially has enough angular velocity to stay in motion thus 

the output stays at a constant value. The section on the right explores two possibilities: if the 

measured error is different from the previous error an angular velocity exists and the controller’s 

output stays at a constant value whereas if the measured and the previous error are identical the 

controller continues its calculation of the pulse width modulation signal to move the motor to the 

desired setpoint. It is important to notice that the decision tree applies separately for every motor 



9 

implemented in the system. Lastly, the proposed dynamic controller design does not define a 

setpoint as a single angular position but rather as a range given by the desired setpoint of the 

motor plus and minus a tolerance value. 

Three test runs of the controller implemented in the hardware are plotted in Fig. 7 comparing the 

angular position of the three motors with the desired position acquired from the simulated model. 

 

Figure 7: Simulation vs. Hardware testing results 

The plots compare the outputs computed from the dynamics analysis and later implemented to a 

simulation model that calculates the reaction torques previously shown in Fig. 4. The solid blue 

line draws the expected angular position from initial time zero to the final trajectory time at 2.5 

seconds. However, with the control implemented in the hardware the results show that the 

controller drives the motor to the expected final position with an average error of less than 0.4° 

and it achieves the final position at a slightly lower velocity which in practice is a more desirable 

outcome.  
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3.3 Hardware Implementation 

A physical additive manufactured prototype of the robotic arm has been designed to implement 

the proposed control design. The prototype consists of three links each one with one degree of 

freedom in the form of a revolute joint, and a base-link with zero degrees of freedom that 

remains always attached to the base as shown in Fig. 8 and Fig. 9.  

 

 

Different designs for the end effector have been explored to implement the ability to 

autonomously change its end effector tool depending on the task at hand. A key feature to the 

design is the location of the motor to actuate link 3. The motor is inserted into a bushing that has 

a wire wrapped around it and is connected to another bushing that rotates link 3. Such 

implementation could for future iterations to be of a modular configuration allowing multiple 

links to be connected increasing the workspace of the robot. 

 

base-link 

link 1 

link 2 

link 3 

motor 1 

motor 2 

motor 3 

q1 
q3 

q2 

Figure 8: Robotic arm CAD model Figure 9: Robotic arm CAD model with a different end effector 
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The hardware implemented in the robotic arm structure runs in a loop with a microprocessor unit 

and motor drivers to distribute signals. As discussed during section 2.1 Overview, the 6U 

CubeSat project has manifested a Jetson Nano microprocessor and an Electrical Power System as 

included payloads. It is under that assumption that the robotic arm subsystem leverages the two 

capabilities to operate as illustrated in Fig. 10. 

 

Figure 10: Signal diagram Level 1 

A board equipped with a Linux kernel [a] runs the programming code that controls the robot over 

general-purpose input/output (GPIO) pins and powers the drivers [b] of the motors. At the same 

time, the drivers receive a higher power from a separate power supply that matches the 

specification of the motors [c]. The motors have a gearbox with a ratio of 100.37:1. Each motor 

actuates one joint of the robot, and it has a quadrature encoder [d] attached to provide a feedback 

signal back to the microprocessor. The quadrature encoders count 12 steps per revolution. Thus, 

combined with a gear ratio of 100.37:1 the encoders count 1204.44 steps per every revolution of 

the motor’s shaft which conversely it translates to a resolution of ±0.2988°, the equivalent to one 

step of the encoder. 
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3.4 Deep Learning Feedback 

This section will describe the set up for the training and testing results of a convolutional neural 

network (CNN) using the Keras library in Python to solve a binary classification problem. A 

CNN is a type of deep learning network, commonly used to analyze imagery data, that 

systematically applies filters to an image to extract features from the image such as lines, 

contours, corners, etc. Thus, a series of hidden layers in the network are required to perform 

convolutions, pooling, and apply activation functions to the data. 

 
Figure 11: Illustration of a Deep Learning model [8]  

The deep learning feedback system proposed in this research could solve the problem of 

correctly classifying when the robotic arm successfully captures an object to manipulate. 

Moreover, the feedback system makes use of already existing hardware in the 6U CubeSat to 

implement the algorithm and it prevents the downside of altering the system by adding more 

elements that would increase the mass, power consumption, and overall complexity of the 
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CubeSat design. The feedback system uses a Sony IMX-219 imager embedded to a Raspberry Pi 

Camera Module v2 connected through a ribbon connector to the Jetson Nano microprocessor as 

illustrated in Fig. 12.  

 

Figure 12: Camera setup for testing 

The image dataset for the CNN contains two subfolders: true and false. Each subfolder contains 

image files for each classification category: ‘true’ contains jpg images of the robot successfully 

grabbing the tool and is represented with the number 1. ‘false’ contains jpg images of the robot 

unsuccessfully or attempting to grab the tool while the tool is in the frame and is represented 

with the number 0. 

 

Figure 13: Protype attempting to grab an object 



14 

It is a good practice to run a code that deletes corrupted images when working with large datasets 

but this dataset has no corrupted images. The dataset images were obtained from running an 

automated Python script that creates a camera object and captures a burst of images while the 

robotic arm is manipulated by hand to capture different pose configurations as seen in Fig. 14. 

 

Figure 14: Images labeled for dataset 

The dataset obtained consists of 726 images where an 80% / 20% split is used for training and 

validation, respectively. The images obtained from the camera are 1640x1232 pixels in size 

which are scaled to 180x180 pixels in RGB channels, thus the matrix form and vectorized 

representation of each jpg image is 180x180x3 and 97,200 pixels values, respectively. The 

resizing of the images allow room for data loss or for an inaccurate representation of the pixel 

data and there are different interpolation algorithms that can be used for scaling such as nearest 

neighbor, bilinear, cubic, lanczos3, lanczos5, etc. Bilinear will be used as it is desired set 

boundaries of the objects in the frame mainly by its color. The bilinear interpolation algorithm 
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allows to get information from the neighboring 2x2 pixels, and its output is not affected by other 

pixels farther away e.g., Cubic interpolation takes the input from 16 neighboring pixels. 

Another step desired during preprocessing is the addition of random realistic transformations to 

the dataset. A random horizontal flip is a layer added to mirror the image horizontally, and a 

random rotation layer rotates the images within a predefined range 0° to 36° either clockwise or 

counterclockwise randomly as illustrated in Fig. 15. 

 

Figure 15: Image transformations applied to the dataset 

Keras has a feature that shuffles the data in alphanumeric order and it is a desired feature for the 

training of the network due to the method that was used to obtain the images. Another step 

implemented during data preprocessing is a typical approach used in CNN that is of normalizing 

the pixel data that ranges from 0 to 255 to floating point values ranging from 0 to 1. This 

normalizing layer is the first layer implemented in the model. 

The following layers in the model mimic the entry flow of the Xception network [9], which has a 

top-1 accuracy of 0.79 and top-5 accuracy of 0.945 on the ImageNet dataset. Fig. 16 shows the 

stack of layers in the network used for training, validation, and testing. 
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Figure 16: Convolutional Neural Network architecture 

However, the optimizer the network will use is Adam which is a stochastic gradient descent 

method derived from adaptive moment estimation. The learning rate hyperparameter will be the 

one Keras defaults to as 0.001 and the number of epochs to train according to the results from 

previous training iterations will be 50 epochs. Because we are looking at making a classification 

between two subsets, a probabilistic loss is more accurate to the problem. Thus, the binary cross-

entropy loss function is used to output a floating-point prediction of the output belonging to the 

class. The metric to judge the performance of the model is binary accuracy which computes the 

frequency with which the predicted output matches the true value. Metrics are similar to loss 

functions, except that the results from the metric are not used when training the model. 

After capturing a burst of images to create the dataset, 10 images were excluded from the process 

meaning that the network never sees them during training. These 10 images are labeled as a 

‘twin’ dataset and are used for testing. However, the ‘twin test’ images are very similar to the 

images used for training as they were obtained from the same burst of images. For this reason, 
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another test set labeled ‘blind’ dataset is made of 30 images which are obtained from another 

burst of images with different configurations of the robotic arm. Fig. 17 displays the overall 

breakdown of the images used for training, validation, and testing. 

 

 

 

 

 

 

 

 

 

 

The network reaches a training and validation loss in the x10-4 after 50 epochs with accuracies of 

1.0000 for both training and validation.  

The following results in Fig. 18 are obtained after running the 10 images from the ‘twin’ dataset 

through the network: 

 

Figure 18: Predictions from ‘twin’ test 

 

 

 

Project

Burst 1:
~1400 images

Twin test:
10 images

Labeled data:
726 images

Training data:
581 images

Validation data:
145 images

Burst 2:
~700 images

Blind test:
30 images

Figure 17: Allocation of images from two separate burst of images 
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(2) 

The F1-score described in Eq. 2 is a statistical analysis to measure the accuracy of a test’s accuracy. 

 
The test results from the ‘twin’ set yield a F1-score of 1.00. Lastly, Fig. 19 shows the results after 

running the 30 images from the ‘blind’ test through the network: 

 

Figure 19: Predictions from 'blind' test 

The test results from the ‘blind’ test yield a F1-score of 0.86. 
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Chapter 4: Summary 

4.1 Discussion 

As mentioned during the problem overview, a case study for a potential implementation of the 

robotic system consists of the fully integrated system operating within a 6U CubeSat orbiting in 

Low-Earth Orbit (LEO). Thus, the assumption of a free-floating object applies as it assumes 

conservation of linear and angular momentum. The free-floating case is modeled in a graphical 

programming environment to obtain the torques caused by the robotic arm by deploying for 2.5 

seconds. See Fig. 20. The simulation assumes the CubeSat, as a free-floating object, only has 3-

DOF and no other disturbance torques are considered other than the effect of the robotic arm’s 

motion.

 

Figure 20: CubeSat torques originated from the motion of the robotic arm payload 

Although the expected torques are within the range of what an average nanosatellite attitude 

control subsystem can achieve, other solutions could be explored to minimize the expected 



20 

torques. If the electrical power system (EPS) can provide enough power, the three motors in the 

robotic arm could be substituted for motors with a higher gear ratio to provide higher torques and 

slower angular velocities. In addition, the motion of the motors could benefit from a more 

thorough design of the controller or a trajectory planning that yields a smoother motion between 

waypoints in the trajectory. It is important to highlight that the simulation in Fig. 20 includes the 

torques created by the motion of the link but it also includes the reactions forces reacting at the 

base the robotic arm is attached to. The base is assumed to be at 7.5 cm in the X-axis of the 

CubeSat’s frame. The other two reaction forces are estimated to cause no effect as torques when 

the base strategically aligns with the Y-axis and Z-axis. Thus, a strategic positioning of the 

robotic arm within the CubeSat could further reduce the torques presented in the graph. 

Furthermore, the simulation assumes a uniformly distributed mass of 12kg with a center of mass 

that aligns with the geometric center of the structure. Although 12kg is the maximum allowable 

mass for a 6U CubeSat and it is a reasonable starting point for the simulation, it is expected by 

the team that the final mass of the CubeSat would be only a fraction of the assumed mass thus 

resulting in further smaller torque values. Lastly, an additional factor of safety in how the motion 

of the robotic arm affects the CubeSat, although not calculated, results from the difference 

between the simulated results and the true response from hardware as demonstrated in Fig. 7. 
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(3) 

4.2 Conclusion 

The simulation that calculates the effect the robotic arm has on the 6U CubeSat makes 

conservative assumptions and the results should be refined through an iterative process of 

calculations as more information becomes available from the CubeSat team. However, with the 

implementation of the control design and hardware described in the methodology, potentially 

better outcomes will result from defining the assumptions stated in the discussion. The controller 

design has potential for increasing the performance if a quadrature encoder can provide higher 

resolution than the calculated ±0.2988 degrees. The factor of safety discovered from hardware 

testing could be calculated from running a hardware-in-the-loop test and compare an updated 

profile from Fig. 20 and the true reactions of deploying the arm inside a 6U CubeSat prototype. 

The payload requirements state a success criteria for the accuracy of the end effector to be of 

±1mm in the cartesian coordinate system. With the joint positions shown in Fig. 20, the final 

distance between the expected position from the simulation and the actual position obtained from 

the hardware testing is calculated using Eq. 3. 

 

Resulting in a distance of 1.083 mm, for a random test, which is estimated to be a repeatable test 

result given the final joint positions shown in Fig. 20. 

The positive results obtained from the deep learning feedback concluding a 0.86 F1-score for the 

most representative test conditions could be further improved by iterating with minimal changes 

in the model yet increasing the number of images in the dataset. In its current state, the CNN 

model could be trained to identify when the robotic arm is successfully grabbing a tool if a 

different tool or end effector is selected for flight. Although the training and testing of the model 

benefited from having a solid color background and favorable lighting, such conditions could be 
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emulated within the CubeSat envelope with low power light emitting diodes. The python model 

could be included in the flight microprocessor, use the camera to capture an image(s), and run it 

through the model to verify a successful task completion. Ultimately, the architecture of the 

network could be more robust and richer in training data to be able to classify multiple objects 

for on-orbit activities and a pre-designed variety of end effectors to perform such activities.  
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