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Abstract 

 Prior behavioral studies in our laboratory revealed that overexpression of the stress 

peptide, corticotrophin-releasing factor (CRF), in the mesocorticolimbic reward pathway 

enhanced the reinforcing effects of nicotine. The latter effect was greater in female versus male 

rats, suggesting that females are uniquely susceptible to the effects of stress on nicotine 

reinforcement. The goal of this dissertation was to examine the neurochemical mechanisms by 

which overexpression of CRF in the nucleus accumbens (NAc), a terminal region of the 

mesocorticolimbic pathway, modulates the behavioral effects of nicotine.  Specifically, we 

examined whether nicotine-induced dopamine levels are altered by CRF overexpression via 

excitatory (glutamate) and/or inhibitory (γ-aminobutyric acid; GABA) amino acid control of 

dopamine release in the NAc of female versus male rats. The animals first received intra-NAc 

infusion of a viral vector (AAV2/5-CRF) to overexpress CRF mRNA in one hemisphere. In the 

contralateral NAc, a control viral vector (AAV2/5-GFP) was infused. Three weeks later, the rats 

were implanted with dialysis probes in the NAc of each hemisphere. The following day, 

dialysate samples were collected during baseline and then following administration of two doses 

of nicotine (0.3 and 0.6 mg/kg/expressed as base). Dopamine, GABA, and glutamate levels were 

assessed using liquid chromatography-mass spectrometry procedures. The results revealed that 

during baseline, there were no sex differences in any of our neurochemical measures following 

intra-NAc infusion of the control virus. Our statistical analysis revealed that only glutamate 

levels were significantly altered by CRF overexpression in the NAc. Specifically, in males, 

overexpression of CRF produced an increase in NAc glutamate levels during baseline and 

following nicotine administration. However, in females, overexpression of CRF produced a 

decrease in NAc glutamate levels during baseline and following nicotine administration.  These 

data suggest that stress systems promote excitatory glutamatergic regulation of the NAc in a sex-
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dependent manner. Future studies are needed to examine the role of different glutamate receptors 

in the NAc in modulating the behavioral effects of nicotine in female versus male rats. 

Keywords: tobacco use, sex differences, microdialysis, dopamine, amino acids, CRF 
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Chapter 1: Introduction 

1.1 Tobacco use is a public health burden 

High rates of tobacco use are a major economic and health concern. According to the Center 

for Disease Control (CDC) and the World Health Organization (WHO), tobacco use is the leading 

cause of preventable death and disease in the United States. With approximately 1.1 billion 

smokers worldwide, the WHO has predicted that by 2030, tobacco use will cause an estimated 9 

million deaths per year (WHO, 2011). Approximately 16 million people in the United States live 

with a disease that is caused by smoking, such as chronic obstructive pulmonary disease, 

emphysema, bronchitis, and various types of cancer (CDC, 2016). Xu et al (2015) found the annual 

healthcare costs associated with tobacco smoking are more than $170 billion dollars, with public 

healthcare such as Medicare and Medicaid accounting for more than 60% of those expenditures. 

Women appear to be more susceptible to use tobacco products despite the known health 

consequences. Although smoking rates are similar in men and women, females are less likely to 

stop smoking and are more susceptible to the negative health consequences associated with long-

term smoking as compared to men (Lombardi et al., 2011; Surgeon General, 2014). Women report 

more often than men that they smoke in response to negative affective states (Perkins et al., 1999, 

2012, and 2013; Stanton, 1995). Women also display stronger anxiety, depression, and intense 

craving during smoking abstinence as compared to men (Leventhal et al., 2007; Panagiotakopoulos 

& Neigh, 2014; Pang et al., 2018; Schnoll et al., 2007). Women with a prior history of an anxiety 

disorder are also more likely to smoke and show higher relapse rates when compared to men 

(Brook et al., 2012). Comparatively, there is a stronger co-morbid association between stress 

disorders and smoking in women relative to men (Mykletun et al., 2008). Women with post-

traumatic stress disorder report higher ratings of negative affect during abstinence (Dedert et al., 

2012) and display greater expectancies that smoking will relieve the negative affective states 
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(Langdon and Leventhal, 2014). In general, women exhibit lower smoking cessation rates because 

of a more severe withdrawal syndrome and, in part, the lack of efficacy and benefit of nicotine 

replacement therapy as compared to men (Cepeda-Benito et al., 2004; Perkins 2001; Perkins and 

Scott, 2008; Piper et al., 2010). 

Although there are over 4,800 chemicals in tobacco products, nicotine is the major habit-

forming compound in tobacco products (Balfour, 2004). Nicotine is a mild stimulant and when 

consumed, induces a feeling of euphoria, alertness, relaxation, and motor activation (Heishman et 

al., 2010; Hukkanen et al., 2005; Le Foll and Goldberg, 2009). Indeed, nicotine is readily self-

administered by humans, dogs, rodents, and primates (Caille, 2012; Corrigall, 1999; Harvey et al., 

2004; Katner et al., 2004; Risner et al., 1983). The recent rise in electronic nicotine delivery 

systems (i.e., ENDS) speaks to the strong motivational effects of nicotine (Drope et al., 2017; 

Yoong et al., 2019). Following cessation from chronic nicotine use, a withdrawal syndrome 

emerges that involves physical, affective, and cognitive aversive symptomatology. Importantly, it 

is the avoidance of these negative symptoms that promotes the continued use of nicotine products 

(O’Dell et al., 2014). Thus, the motivational effects of nicotine are modulated by its acute 

pleasurable effects and avoiding the negative aversive states that emerge during withdrawal from 

chronic nicotine use (Balfour, 2004; Mansvelder et al., 2002; Sohn et al., 2003).  

1.2 Mesocorticolimbic pathway 

The mesocorticolimbic pathway originates in the ventral tegmental area (VTA) and terminates 

in several forebrain structures including the nucleus accumbens (NAc) and the prefrontal cortex 

(PFC) (Aston-Jones and Harris, 2004; Carelli and Wightman, 2004; Koob, 1996).  This pathway 

has been has been studied extensively with regard to modulating the rewarding effects of abused 

drugs such as nicotine, ethanol, cocaine, and morphine (Corrigall, 1999; DiChiara et al., 1988; 

Schuette et al., 2013). Lesions of the dopaminergic fibers in the NAc or administration of dopamine 



3 

antagonists into the NAc abolish the psychostimulant and rewarding effects of drugs (Bari and 

Pierce 2005; Kelly and Iversen, 1976; Roberts and Koob 1982). In addition, several behavioral 

animal models of drug addiction such as sensitization, conditioned place preference, and 

intravenous self-administration (IVSA) are associated with increased dopaminergic activity of the 

NAc (Beckmann et al., 2011; Cadoni and Di Chiara, 2000; Torres et al., 2015). Together, these 

studies suggest that the NAc is a critical structure that modulates the addictive properties of drugs 

of abuse.  

Much work has established that the behavioral effects of nicotine are due to activation of 

nicotinic acetylcholine receptors (nAChRs) in the brain, particularly in the mesocorticolimbic 

pathway. nAChRs consist of pentameric transmembrane proteins of homomeric or heteromeric α 

or β receptor subunit complexes. Nicotine binds to nAChR subunits, resulting in channel activation 

and/or desensitization. There are different nAChRs expressed on the γ-aminobutyric acid (GABA) 

and glutamate inputs that regulate dopamine release in the NAc (Johnson et al., 1992; Kalivas et 

al., 1989; Kalivas et al., 1993; Mansvelder et al., 2003; Mansvelder & McGehee, 2002; Xu et al., 

2006). Dopamine cell bodies in the VTA express α2-10 and β2-4 nAChRs subunits that project to 

the NAc (Mansvelder et al., 2003). In addition, within the VTA, GABAergic interneurons express 

α4β2 nAChRs and PFC glutamate terminals express α7 nAChRs. Following administration of 

nicotine, α4β2 sites on intra-VTA GABAergic interneurons are activated but then quickly 

desensitize (Mansvelder et al., 2002). As a result, VTA dopamine neurons receive less GABAergic 

inhibition. This effect of nicotine produces a reduction in inhibition that results in enhanced 

activation of dopamine neurons. Nicotine also binds and sensitizes α7 nAChRs on PFC glutamate 

terminals, causing a larger release of glutamate and a shift towards enhancement of VTA 

dopaminergic neurons. (Wooltorton et al., 2003). As a result, nicotine produces a shift from tonic 

inhibition towards excitation of VTA dopamine neurons that results in enhanced dopamine 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931870/#B42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931870/#B95
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transmission in the NAc. Overall, desensitization of the α4β2 sites on VTA GABA neurons leads 

to disinhibition of dopamine neurons thereby facilitating a more sustained increase in the release 

of dopamine in the NAc following nicotine administration. 

1.3 NAc cytoarchitecture 

The NAc is a heterogeneous structure that integrates information from limbic and cortical 

structures such as the frontal cortex, basolateral amygdala, hippocampus, and bed nucleus of stria 

terminalis (Xu et al., 2020). The NAc is composed of two distinct subdivisions that differ in 

projection targets, neurochemical profile, and cytoarchitecture (Wright and Groenewegen 1996). 

The NAc core is an important in fine tuning and guiding motor behavior (Everitt et al., 2008), 

whereas the NAc shell is important in the processing of emotional information related to 

environmental stimuli and motivation (Kelley, 2004; Park et al., 2019). The shell of the NAc is 

composed of GABAergic medium spiny neurons (>90%) that project back to the VTA, PFC, and 

the caudate putamen (Meredith et al, 2008). It also has local populations of cholinergic and 

GABAergic interneurons (<10%) (Castro and Bruchas 2019; Meredith 1999). There has been 

evidence that these local population interneurons can be categorized into three populations; 1) 

parvalbumin-positive neurons, 2) somatostatin-positive neurons, and 3) acetylcholine-releasing 

neurons (Kawaguchi, 1993; Tepper et al., 2010). There is also evidence that suggests the 

somatostatin-positive neurons are expressed most densely in the NAc shell (Ribeiro et al., 2018). 

Interestingly, while there is a decrease in the number of parvalbumin-positive neurons, there is a 

concomitant increase of somatostatin-positive neurons and acetylcholine-releasing neurons in the 

NAc shell (Castro and Bruchas 2019). This suggests that GABAergic and cholinergic interneurons 

are in greater number and exert greater action in the NAc shell than in the NAc core. 

1.4 Stress 
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The hypothalamic-pituitary-adrenal (HPA) axis modulates the stress response to maintain or 

return to a homeostatic equilibrium in the body. The stress response begins with the activation of 

the paraventricular nucleus of the anterior hypothalamus, where parvocellular cells synthesize and 

release the stress peptide, corticotrophin-releasing factor (CRF), into the median eminence. CRF 

then travels through the portal system and binds to CRF receptors located on the anterior pituitary 

gland, causing the release of adrenocorticotropin hormone (ACTH) into the hypophysial portal 

circulation. Finally, ACTH binds to glucocorticoids receptors on the fasciculate cells of the adrenal 

cortex, stimulating the release of the stress hormone, cortisol in humans or corticosterone in 

rodents, and initiating the stress response (Vale et al., 1982; Thiel et al., 1999).  

CRF has been implicated as a neuromodulator in extrahypothalamic brain regions that govern 

limbic and cognitive functions (Smith et al., 2006; Swanson et al., 1983). CRF binds to and exerts 

its actions through two distinct G-protein coupled receptors, CRF1 and CRF2. One of the roles of 

the CRF1 receptor is activating the HPA axis, resulting in changes of behavioral, affective, and 

cognitive function. Genetic knockout of CRF1 receptors in rodents results in the attenuation of 

anxiety-like behaviors such as freezing, avoidance, and startle responses (Heinrichs et al., 1997; 

Hikichi et al., 2000; Schulz et al., 1996; Smith et al., 1998). The distribution of CRF1 receptors in 

the brain reflects its many roles as studies have found its expression in the cortices, hypothalamus, 

and throughout the mesolimbic pathway (Albrechet-Souza et al., 2015; Van Pett et al., 2000). 

Although there is conflicting literature with the specific role of CRF2 receptors in stress (Ho et al., 

2001; Takahashi et al., 2001), it is generally thought that CRF2 receptors reduce anxiety-like 

behavior (Bale et al., 2004). In contrast to CRF1, CRF2 receptors expression is restricted to 

discrete brain regions including the periaqueductal gray and lateral septum (Hauger et al., 2006; 

Sanders et al., 2016). Although there is expression of CRF2 receptors in the NAc, their distribution 

is sparse in comparison to CRF1 receptors, suggesting the actions of CRF1 largely control 
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neurotransmission in the mesocorticolimbic pathway (Hauger et al., 2006; Lemos et al., 2012; 

2019). 

In addition to initiating the stress response, CRF plays a neuromodulatory role in the NAc. 

There is a population of CRF mRNA positive neurons in the NAc, suggesting that the possible 

presence of local stress systems that modulate dopamine release and dopamine-dependent 

behaviors (Chen et al, 2012; Lemos et al., 2019; Merchenthaler et al., 1984; Peng et al., 2017). 

Stress systems in the NAc shell have been implicated in mediating the transition of causal drug 

use into dependence via potentiation of the rewarding effects of drugs and the emergence of a 

negative affective and emotional withdrawal syndrome (Koob 2010; Koob et al., 1996; Roberto et 

al., 2017). Both acute and chronic administration of drugs of abuse activates the HPA axis 

(Goeders 1997; Piazza et al., 1993; Piazza et al., 1997). Pre-clinical research has shown chronic 

nicotine use recruits stress systems in extrahypothalamic areas that promote nicotine use in rodent 

models (Koob and Kreek, 2007; Semba et al., 2004). Brain slices from male mice have shown that 

CRF increases dopamine release in the NAc (Lemos et al., 2012) and administration of yohimbine, 

a pharmacological stressor that increases CRF, reinstates extinguished nicotine IVSA in both 

female and male rats (Feltenstein et al., 2012). Overall, these data show that CRF systems in the 

NAc potentiate the behavioral effects of nicotine, as described below. 

 

 

1.5 Dissertation Studies 

Prior to my Dissertation studies, I co-authored a meta-analysis showing that intact females 

display higher levels of nicotine IVSA than males (Flores et al., 2019). To better understand the 

mechanisms of sex differences in the behavioral effects of nicotine, my subsequent work compared 

nicotine self-administration following viral overexpression of CRF in the NAc shell. The results 
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revealed that CRF overexpression in the NAc shell increased the reinforcing effects of nicotine in 

a sex- and ovarian hormone dependent manner (Uribe et al., 2020). Specifically, overexpression 

of CRF in the NAc selectively increased the reinforcing effects of nicotine in intact female versus 

male rats. The latter effect was absent in ovariectomized (OVX) females, suggesting that the 

potentiating effects of CRF overexpression in the NAc are ovarian-hormone dependent. Real time 

quantitative polymerase chain reaction (rt-qPCR) methods also revealed that CRF overexpression 

enhanced mRNA expression of CRF1 and CRF2 receptors to a greater extent in intact female 

versus male rats. Overexpression of CRF also produced a larger increase in β-arrestin2 (Arrb2) in 

male versus intact and OVX female rats. This is important, as Arrb2 is a protein that internalizes 

CRF receptors. These data suggest that CRF systems in the NAc play a role in modulating sex 

differences in the behavioral effects of nicotine. To verify that the effects of the viral vector were 

localized in the NAc (and not due to the vector being retrograde transported to the VTA), we 

collected coronal slices of the NAc shell and VTA. Subsequent immunohistochemistry analysis 

revealed co-localization of viral replication of green fluorescence protein (GFP) and the neuronal 

markers, neuronal nuclei (NeuN) and 4′,6-diamidino-2-phenylindole (DAPI), in the shell of the 

NAc. Viral infusions produced a stable and localized overexpression of GFP in the NAc shell and 

analysis of AAV2/5-mediated transduction efficiency in neurons revealed that a majority of GFP-

positive cells were DAPI- and NeuN-positive (90%), suggesting that the cells that were transduced 

by the virus were neurons. Importantly, we did not observe any fluorescence in the VTA, 

suggesting that overexpression of CRF was isolated to the NAc and not back transported to the 

cell body region of the VTA. This prior work was important for validating our viral overexpression 

procedures. However, there were still remaining questions regarding the manner in which stress 

systems modulate the neurochemical environment of the NAc, particularly following nicotine 

administration in female and male rats. 
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To address this question, my dissertation work assessed whether overexpression of CRF in the 

NAc alters inhibitory (GABA) and excitatory (glutamate) amino acid regulation of dopamine 

release in female and male rats during baseline (Aim 1) and following nicotine administration 

(Aim 2). We examined dopamine, glutamate, and GABA in the NAc of female and male rats that 

received intra-NAc infusions of the viral vector, AAV-CRF. In the contralateral hemisphere, rats 

received intra-NAc infusions of the control vector, AAV-GFP. Three weeks later, dialysate levels 

of dopamine, glutamate, and GABA were assessed in the NAc of both hemispheres during baseline 

and then following nicotine administration. It was hypothesized that CRF overexpression would 

enhance dopamine release in the NAc to a greater extent in females that experience stronger 

nicotine reward than males based on our prior work published in Uribe et al., (2020). The rationale 

for our hypotheses is based on previous work showing acute activation of CRF increases dopamine 

levels in the NAc (Chen et al., 2012) and intra-NAc infusions of CRF produce place preference in 

naïve rats (Lemos et al., 2012). Another report found overexpression of CRF in the NAc selectively 

enhanced the reinforcing effects of nicotine in female versus male rats (Uribe et al., 2020). We 

also anticipated that the increase in dopamine levels would be modulated via greater excitatory 

glutamate and reduced GABA inhibition in the NAc. 
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Chapter 2: Materials & Methods 

2.1 Adeno-associated virus 

Advancements in the fields of neuroscience and virology have resulted in the application of 

viral vectors that can serve as tools to alter the expression of biological material in neurons. Viral 

vectors incorporate into the nucleus of the cell to alter expression levels of the gene of interest, 

such as CRF. In this way, viral vectors allow researchers to evaluate the functional role of an array 

of different genes in discrete brain regions in specific neurons that are infected (Aschauer et al., 

2013). Different serotypes of the AAV vector determine the rate and efficiency at which the AAV 

infects the cell. We chose the AAV2/5 hybrid serotype because it transduces neurons effectively 

(Wu et al., 2006) and reliably maintains gene expression for up to 8 weeks (Qi et al., 2014).  

Two viral vectors were obtained from a commercial vendor (Vector BioLabs, Philadelphia, 

PA, USA) and were made to a specific titer concentration in a previously published paper (Qi et 

al., 2014). The first viral vector is the AAV2/5-CRF. The viral vector has the rat CRF cDNA 

(GenBank accession number NM_031019) packaged into it. The second viral vector is the 

AAV2/5-GFP and will be the control vector. The viral vector has the humanized green fluorescent 

protein (GFP) cDNA packaged into it. GFP is an inert protein that has no biological effect and 

exhibits green fluorescence when exposed to 488 nm to 510 nm spectrum range. An advantage of 

a commercial vendor is the viral vectors can be obtained in a timely manner, have been shown to 

have a high transduction efficiency in neurons (>90%), and maintains reliable expression of CRF 

and GFP for 3-8 weeks. 

The AAV follows a preprogrammed infection cycle (Synder and Moullier, 2011; Wu et al., 

2006). The AAV enters into the nucleus of the cell, whereby it goes into the leading strand of the 

DNA and replicates using the cellular polymerase to replicate (Goncalves 2005).  Replication of 

the virus leads to increases of mRNA of the gene of interest, leading to translation and increases 
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of the protein (Georgiadis et al., 2016). An important caveat is that while the AAV increases 

mRNA expression, it does not always lead to increases of protein expression (Anderson et al.,,  

1997; Washburn et al., 2003). This may be due to several reasons such as degradation or 

differences in translation per mRNA (Li et al., 2017) . However, a prior study from our laboratory 

has shown inta-NAc infusion of the AAV2/5-GFP does result in increases of protein expression 

of GFP as shown by an increase in florescence (Uribe et al., 2020).  

2.2 Neurochemical methods 

In vivo microdialysis procedures estimate changes in levels of neurotransmitters in the 

extracellular space of a discrete brain region. Dialysis studies provide valuable insights into how 

the neurochemical environment changes in response to drug administration (Chefer et al., 2009). 

In this procedure, a dialysis probe with a semipermeable membrane is inserted into the brain region 

of interest. The membrane excludes proteins and molecules above a molecular weight that is 

dependent on the pore size of the membrane, allowing for the collection of the neurotransmitters 

(Hamberger et al., 1983; Kendrick 1989). A buffer made of artificial cerebrospinal fluid (aCSF) is 

infused through the inlet of the probe at a constant rate via a syringe pump. The infusion of aCSF 

perfusate creates a concentration gradient across the microdialysis membrane allowing for 

neurotransmitters to diffuse into the membrane. The dialysate is then collected in a vial from the 

outlet of the probe and is stored until it is analyzed using a variety of analytical methods. 

Different methods have been used to measure neurotransmitter content in dialysate samples, 

including high performance liquid chromatography (HPLC) electrochemical detection, HPLC-

fluorescence detection, capillary electrophoresis-laser induced fluorescence, and immunoassays 

(Zapata et al., 2009). A limitation of these methods is that they only measure one neurotransmitter 

at a time, lack sensitivity for detecting small changes in multiple neurotransmitter levels, and 

require specific conditions to be run that may interfere with the detection of certain electroactive 
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compounds. This can be limiting when trying to study dynamic changes and relationships among 

different neurotransmitter systems in brain regions where the content of these analytes is low. 

Thus, the present work employed liquid chromatography-mass spectrometry (LC/MS) coupled 

analysis. The rationale for using LC/MS is its capability for measuring many compounds in a 

complex sample due to its high level of sensitivity and resolution. Although not utilized in our 

protocol, additional rationale for using LC/MS includes the additional separation step where salts 

are removed, reducing the complexity of the sample and allowing to optimize conditions for the 

desired neurotransmitters (Annesley 2003; Zheng et al., 2012). Different compounds will be 

retained and released in the column and LC/MS coupled analysis also gives us the capability to 

detect neurotransmitters at a greater sensitivity when compared to traditional methods (Uutela et 

al., 2009). 

2.3 Subjects  

Adult female and male Wistar rats were obtained from an out-bred stock of rats (Envigo 

Inc; RRID:RGD_13508588) and were maintained on a reverse 12-hr light/dark cycle (lights on at 

6:00 PM and off at 6:00 AM) in a humidity- and temperature- controlled vivarium (22◦C). The rats 

were pair-housed in standard ventilated hanging cages (41.5 cm long × 17 cm wide × 21 cm high). 

The rats had ad libitum access to food and water throughout the study. Following intracranial 

infusions, rats were moved to a separate humidity- and temperature- controlled room. They were 

singly-housed and maintained on a regular 12-hr light/dark cycle (lights on at 6:00 AM and off at 

6:00 PM). All procedures were approved by The University of Texas at El Paso Institutional 

Animal Care and Use Committee, and the 2011 Guide for Care and Use of Laboratory Animals 

(Institute of Laboratory, Animals Resources on Life Sciences, the National Research Council, and 

the National Academy of Sciences; reference number: A-201307-01). Although our hypotheses 

were not pre-registered or our sample size predetermined by a priori power analysis, the 
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experimental procedures, sample size, and statistical approach used in this report were based on 

prior published works (Carcoba et al., 2018; O’Dell et al., 2013). 

2.4 Procedural summary 

The procedures are summarized in Figure 1. Rats were anesthetized with an isoflurane/oxygen 

vapor mixture (1-3%) and were placed into a stereotaxic apparatus. The head of the rat was sliced 

and the skin was held open with hemostats. Once the head was placed into a flat skull position, 

two holes were drilled using the following coordinates from bregma for the NAc (AP = +1.7, ML 

= ±1.4 mm) using the rat brain atlas of Paxinos and Watson rat atlas (2004). The coordinates from 

bregma to infuse the viral vectors were: AP = +1.7, ML = ±1.4, DV = -9.1 mm (from skull). All 

rats received an infusion of the viral vector, AAV2/5-CRF, in the NAc of one hemisphere. The 

injections were made using a syringe pump (Harvard 22, Harvard Apparatus, Holliston, MA, USA) 

using an injection volume of 0.5 µls over a 3-min period. The injectors were left in place an 

additional 5-min to allow proper diffusion from the injector tip. In the contralateral NAc, rats 

received an infusion of the control virus, AAV2/5-GFP, to overexpress GFP. The hemisphere with 

the GFP viral vector will be the “control” hemisphere. Rats remained undisturbed for three weeks 

after intracranial infusions to allow for viral incubation and replication. Previous research has 

shown that AAV replication of our virus reaches maximal overexpression 2 weeks later, and 

remains constant for 8 weeks in brain tissue (Qi et al., 2014). Simple randomization for viral 

infusion occurred prior to the start of the experiment via a number labeling system for each rat. 

The viral infusions were also counter-balanced across brain hemispheres. The experimenters were 

unaware to the subjects’ viral condition during dialysis testing and the sample preparation for the 

analysis of neurotransmitter content. 

Dual microdialysis probes with an active membrane length of 2 mm were aimed into both 

NAc (model CMA11, Holliston, MA) using the coordinates as referenced above. The probes were 
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perfused for at least 1 hr prior to probe placements at a rate of 1.0 μL/min with artificial 

cerebrospinal fluid (aCSF) composed of 145 mM NaCl, 2.8 mM KCl, 1.2 mM CaCl2, 1.2 mM 

MgCl2, 5.4 mM d-glucose, and 0.25 mM ascorbic acid and adjusted to a pH of 7.2–7.4. This 

allowed us to examine changes in neurotransmitter release following overexpression of CRF in 

one hemisphere and overexpression of GFP in the contralateral “control” hemisphere.  

2.5 Dialysis testing 

Following surgery, the rats were transferred to a PlexiglasⓇ cage (24 cm long × 24 cm wide 

× 31 cm high) with food and water available throughout dialysis testing. Rats were left overnight 

to recover and the probes were flushed with aCSF at a rate of 0.1 µl/min. The following day, one 

hr before collection, the flow rate was adjusted to 0.6 μL/min for both probes prior to dialysate 

collection. 

Our dialysis regimen is shown in Figure 2. It consisted of 20-min sampling periods during 

a baseline period and systemic administration of two doses of nicotine (0.3 and 0.6 mg/kg/base, 

subcutaneous). Nicotine hydrogen ditartrate (NIDA, Research Triangle, Bethesda, MA, USA) was 

dissolved in 0.9% sterile saline and adjusted to a pH level of approximately 7.4. All nicotine 

solutions were prepared according to the rats’ body weight on the day of dialysis testing. These 

nicotine doses were chosen based on our previous work sex differences in nicotine intake in this 

dose range (Uribe et al., 2020). Dialysate was collected for three 20-min sampling periods (60 

mins) for a baseline reading. Baseline levels were analyzed to give a basal and control level of 

neurotransmitters before the treatment regimen. Following baseline, the first dose of nicotine was 

injected and dialysate was collected for five 20-min sampling periods (100 mins) prior to the next 

injection of nicotine. The dialysate samples were immediately frozen on dry ice and then stored at 

−80 °C until assayed. At the end of dialysis testing, the rats were sacrificed using CO2 inhalation 

and then decapitated to ensure euthanasia. The probes were then extracted and the brains were 
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removed, frozen, and sliced in 20 μm coronal sections for verification of probe placement. Probe 

placement was verified using gross observation of the probe track within the NAc shell using the 

Paxinos and Watson rat atlas (2004).   

2.6 Mass spectroscopy analysis 

Following dialysate collection, quantification of neurotransmitters was performed using an 

approach involving LC-MS analysis. The samples were analyzed using mass spectrometry analysis 

of dopamine, glutamate, and GABA in each NAc. The neurochemical analyses were performed 

using a Thermo Scientific UltiMate™ 3000 Standard Quaternary System with a Waters BEH C18 

column (1 mm × 100 mm, 1.7 μm, 130 Å pore size) for separation. The autosampler was coupled 

to a TSQ Endura triple quadrupole MS. Our mass spectrometry methods incorporated calibration 

curves using standards ranging from 5, 50, 100, 500 and 1000 nM for GABA and glutamate, and 

0.5, 5, 10, 50 and 100 nM for dopamine. The internal standard and sample derivatization 

procedures followed the methods described in Buczynski et al (2016) and Song et al (2012). 

Briefly, the composition of mobile phase A was 10 mM ammonium formate (0.15% (v/v) formic 

acid in water). Mobile phase B was 100% acetonitrile. The mobile phase gradient for the 

neurotransmitters lasted 10 minutes long and was: initial, 0% B; 0.1 min, 15% B; 2 min, 20% B; 

2.3 min, 25% B; 2.31 min, 50% B; 5.31 min, 50% B; 5.57 min, 65 % B; 6.57 min, 65%B; 6.58 

min, 0% B; 8.0 min, 0% B. Two blanks were run in-between to wash out any residue from the 

previous sample to ensure there is no carryover or contamination. The peaks were visually 

inspected to detect artifacts. Peak areas were obtained and analyzed for each neurotransmitter with 

their respective internal standard. Standard curves were used to calculate the concentration of all 

relevant neurotransmitters in each sample.  
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2.7 Statistics 

Our initial approach to the data analysis involved an overall ANCOVA analysis that 

included all of our neurotransmitter measures. Since significant overall effects were not observed 

in this larger analysis, we proceeded with traditional ANOVA approaches with separate analyses 

of each neurotransmitter. Thus, separate mixed ANOVA analyses were used to compare group 

differences in baseline and following nicotine administration changes across time. To determine if 

the presence of the control virus caused changes in the release of neurotransmitters in the NAc of 

female and male rats, baseline levels of dopamine, GABA, and glutamate in the control 

hemispheres were assessed. The analysis compared baseline dialysate levels using two-way mixed 

ANOVAs with sex (female or male) as a between subject factor and time (20-min sampling 

periods) as a within subject factor. In order to provide a comparison of sex differences that 

accounted for potential differences in baseline and following nicotine administration levels 

produced by infusion of the viral vector, the data were converted to percent change from respective 

control levels [(CRF dialysate value/average control value) × 100]. The first level of analysis 

compared baseline levels using three-way mixed ANOVAs with virus (CRF or GFP) and sex 

(female or male) as between subject factors and time (20-min sampling periods) as a within subject 

factor. The second level of analysis compared dialysate levels following nicotine administration 

using three-way mixed ANOVAs with virus (CRF or GFP) and sex (female or male) as between 

subject factors and time (20-min sampling periods) as a within subject factor. For the repeated 

measures analyses with more than three levels, a test for the assumption of normality was 

employed using the Mauchly-Sphericity test. In cases where violations of normality occurred, a 

Huynh–Feldt correction factor modified the degrees of freedom, which resulted in an adjusted F-

ratio. Where main or interaction effects were observed, planned comparisons were conducted 

using the Bonferroni correction factor, because it would yield a more conservative p-value for 
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multiple comparisons (p<0.05). All statistical analyses were performed on SPSS version 26, and 

all of the graphs were generated using GraphPad Prism version 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



17 

Chapter 3: Results 

3.1 Analysis of sex differences in GFP control rats 

In order to best illustrate sex differences, we present the data as % change from respective GFP 

controls during baseline (Figure 3) and following nicotine administration (Figure 4). We first 

needed to examine whether females and males begin at an equivalent starting point. Table 1 

depicts the baseline levels in the control NAc hemisphere in female and male rats. In the control 

hemisphere, the analysis of dopamine revealed that there was no interaction between time and sex 

[F (2, 20) = 0.70, p = 0.51]. Also, there was no main effect of sex [F (1,10) = 0.11, p = 0.74]. The 

analysis of GABA revealed that there was no interaction between time and sex [F (1.57, 15.69) = 

0.02, p = 0.96]. Also, there was no main effect of sex [F (1, 10) = 0.25, p = 0.88]. The analysis of 

glutamate revealed that there was no interaction between sex and time [F (2, 20) = 1.69, p = 0.21]. 

Also, there was no main effect of sex [F (1, 10) = 0.68, p = 0.43]. 

 

3.2 Aim 1: Baseline sex differences 

Figure 3 depicts percent (%) change baseline values in dopamine, glutamate, and GABA in 

CRF overexpressing female and male rats. The analysis of dopamine revealed that there was no 

interaction between time, sex, and virus [F (2, 44) = 0.78, p = 0.47]. Also, there was no main effect 

of sex [F (1, 22) = 0.03, p = 0.87] or virus [F (1, 22) = 3.87, p = 0.062]. The analysis of glutamate 

revealed that there was no interaction between time, sex, and virus [F (2, 44) = 1.27, p = 0.29]. 

However, there was a interaction between sex and virus [F (1, 22) = 7.01, p = 0.02], with females 

showing a decrease in glutamate levels at all sampling points and males showing greater glutamate 
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levels at the first sample point when compared to their respective controls (*p<0.05). With regard 

to sex differences, CRF overexpressing males displayed greater glutamate release than CRF 

overexpressing females at all sampling periods. The analysis of GABA revealed that there was no 

interaction between time, sex, and virus [F (2, 44) = 0.19, p = 0.82]. Also, there was no main effect 

of sex [F (1, 22) = 0.27, p = 0.61] or virus [F (1, 22) = 2.29, p = 0.15].  

3.3 Aim 2: Sex differences following nicotine administration 

Figure 4 depicts percent (%) change in dopamine, glutamate, and GABA levels following 

administration of two nicotine doses (0.3 and 0.6 mg/kg/base) in CRF overexpressing female and 

male rats. The analysis of dopamine revealed that there was no interaction between time, sex, and 

virus [F (12, 264) = 1.05, p = 0.41]. Also, there was no main effect of sex [F (1, 22) = 1.25, p = 

0.28] or virus [F (1, 22) = 2.01, p = 0.17]. The analysis of glutamate revealed that there was no 

interaction between time, sex, and virus [F (12, 264) = 0.99, p = 0.46]. However, there was a two-

way interaction between sex and virus [F (1, 22) = 0.4.01, p = 0.05], with females showing a 

decrease in glutamate release at the 4th and 6th sampling period and male showing greater glutamate 

release at the 9th sampling period when compared to their respective controls. With regards to sex 

differences, CRF overexpressing males show greater glutamate during the 9th, 10th, and 12th 

sampling period when compared to CRF overexpressing females. The analysis of GABA revealed 

that there was no interaction between time, sex, and virus [F (12, 264) = 0.91, p = 0.54]. Also, 

there was no main effect of sex [F (1, 22) = 0.102, p = 0.75] or virus [F (1, 22) = 0.10, p = 0.76].  

3.4 Probe verification 

Our estimates of the probe placements were superimposed on digital images derived from the 

Paxinos and Watson atlas (2004). Figure 5 illustrates our probe placements in the NAc of CRF 

overexpressing (red probe) and GFP controls (green probe). Each line reflects our estimate of the 

placement of the membrane sampling portion of the probe collected during sectioning. The left 
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panel reflects placements in female rats and the right panel reflects placements in the male rats. 

The diameter of the probe membrane was 0.24 mm wide, such that the estimated drawings of the 

probe span a range of sections wider than what is noted on a single plate in the diagram. The 

schematic illustrates that our probe placements were contained in the NAc shell. Two animals (2 

females) were omitted from the study because of improperly placed microdialysis probes missing 

the NAc shell. At the end, females (n = 8) and males (n = 4) were included in the final analyses.  

We recognize that the number of male subjects is low, and this might have contributed to a lack of 

statistical power and significant results in the analyses of the selected neurotransmitters.  
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Chapter 4: Discussion 

4.1 Summary 

The main finding of this dissertation is that CRF differentially modulates the neurochemical 

effects of nicotine in the NAc of female and male rats. Overexpression of GFP did not alter 

dopamine, GABA, or glutamate in female versus male rats. During baseline, CRF overexpression 

altered glutamate release in sex-dependent manner, with male rats displaying an increase in 

glutamate and female rats displaying a decrease in glutamate levels. Similarly, following nicotine 

administration, CRF overexpression increased glutamate levels in males and decreased glutamate 

levels in females.  

4.2  Aim 1: Sex differences during baseline 

We first focused on baseline differences to assess the effects of CRF overexpression on tonic 

release of key neurotransmitters in the NAc. Our major finding was that during baseline, over-

expression of CRF in the NAc significantly increased glutamate release in male rats. We suggest 

that CRF overexpression created a shift in the NAc towards a greater excitatory neurochemical 

environment. Consistent with this, prior work in male mice revealed that optogenetic activation of 

glutamatergic inputs into the NAc produced conditioned place preference (Britt et al., 2012). This 

suggests that enhanced glutamatergic input to the NAc elicits rewarding effects in male rats.  

Interestingly, the present study revealed that CRF overexpression in the NAc decreased baseline 

glutamate release in females relative to their GFP control group. Although the effects were not 

significant, both CRF overexpressing female and male rats displayed a trend for an increase in 

dopamine release when compared to control rats. This pattern of results came as a surprise as 

previous studies have shown CRF micro-infusion into the NAc increases dopamine levels (Chen 

et al., 2012) and produces place preference in naïve rats (Lemos et al., 2012). Furthermore, 

following stress induction, dopamine levels in the NAc shell are elevated (Kalivas et al., 1995; Wu 
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et al., 1999). The lack of significance may be related to the low sample size in the study. Although 

not statistically significant, both CRF female and male rats displayed a trend for a decrease in 

GABA levels (Figure 3C). There is evidence that CRF+ neurons colocalize with the GABAergic 

marker, GAD 65 and GAD 67, suggesting that CRF modulates GABA release (Chen et al., 2004; 

Yan et al., 1998). Together, these data suggest that CRF overexpression altered the tonic release 

of amino acids in the NAc. This effect was observed in a sex-dependent manner, with male rats 

displaying greater excitatory glutamate release and females displaying reduced excitatory input 

to the NAc. Thus, CRF overexpression in the NAc altered  the neurochemical environment towards 

greater excitatory potential in males prior to nicotine administration, as described below. 

4.3 Aim 2: Sex differences following nicotine administration 

Figure 6 below summarizes our results regarding the effects of CRF overexpression on key 

neurotransmitters in the NAc following phasic changes in synaptic release following nicotine 

administration. The results revealed that following nicotine administration, CRF overexpression 

increased glutamate in males, whereas glutamate levels were decreased in females. The relatively 

higher excitatory glutamate input in males appeared to have contributed to the trend towards sex 

differences in nicotine-induced dopamine release in the NAc. This suggestion is based on the males 

displaying higher dopamine levels following nicotine administration than females. We speculate 

that CRF overexpression enhances glutamatergic transmission in males in a manner that “primes” 

the NAc for stronger neurochemical effects of nicotine as compared to females. In male rats, prior 

work has shown that antagonists for both ionotropic and metabotropic glutamate receptors block 

nicotine-induced dopamine release in the NAc (Kosowski et al., 2004). In striatal cells, previous 

work has shown that amino acid systems modulate dopamine release (Chiodo et al., 1986; Kitai et 

al., 1976). Indeed, Hjelmstad (2004) demonstrated that chronic exposure of striatal cells to 

dopamine decreased GABAergic inhibition, and this resulted in a greater excitation of these 
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neurons. Together, these data suggest that CRF overexpression in males increases excitatory 

transmission in the NAc in a manner that “primes” this brain region for greater nicotine-induced 

dopamine release that is larger relative to females. Below we provide a hypothesized mechanism 

for the manner in which viral overexpression of CRF may have produced sex-dependent effects in 

our neurochemical measures. The ANCOVA analysis revealed there were no significant CRF-

induced changes in dopamine, GABA, or glutamate levels in the study. This may due to the 

relatively low sample size of female and male rats in the study. We acknowledge the low sample 

size in males may have contributed to a lack of statistical power in our results as explained further 

below.  

4.4 Hypothesized mechanisms 

Our proposed mechanistic hypothesis is that sex differences in the behavioral and 

neurochemical effects of nicotine are modulated via inhibitory (GABA) and excitatory (glutamate) 

amino acids that regulate dopamine release in the NAc (see Figure 6). Our proposed circuitry 

focuses on the shell of the NAc based on the distribution of CRF receptors in this region and the 

anatomical continuity of the shell with the extended amygdala, which is believed to modulate drug 

addiction (Balfour, 2009; Koob, 2010). We offer that CRF overexpression alters nAChR and CRF1 

receptors that modulate sex differences in amino acid control of dopamine release in the NAc. 

First, prior work has shown that females display higher plasma CRF levels in response to a stressor 

and increased activation of CRF receptors, and a weaker negative feedback inhibition of the HPA 

axis (Bangasser et al., 2010; Kokras et al., 2019). My previous work also revealed that 

overexpression of CRF produced a larger downregulation of CRF1 receptors in the NAc of male 

versus female rats (Uribe et al., 2020). We propose that males display a larger down regulation of 

CRF1 receptors on glutamatergic terminals in the NAc. It is expected that this effect might result 
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in an enhancement of excitatory glutamate release, which would then enhance dopamine release 

produced by nicotine administration in the NAc of male versus female rats. 

 Our hypotheses regarding CRF1 receptors is in line with prior work showing that male rats 

display greater internalization of CRF1 receptors than females. Specifically, male rats display 

greater expression of the CRF1 internalizing protein, β-arrestin2, as compared to females 

(Bangasser et al., 2010; Valentino et al., 2013). Indeed, our prior work revealed that CRF 

overexpression in the NAc produced a greater increase in β-arrestin2 levels in males versus 

females (Uribe et al., 2020). Thus, we posit that males would display a large downregulation of 

CRF1 receptors which would result in a reduction in the ability of CRF to reduce glutamatergic 

input to the NAc in males versus females. In females, our hypothesis that CRF receptors produce 

greater effects than in males is consistent with prior work. For example, Weathington et al (2014) 

found that female rats display a greater increase in CRF binding to CRF1 receptors than males, 

suggesting that ovarian hormones enhance CRF1 receptor-mediated effects. For example, the 

highest levels of CRF are observed during proestrus when estradiol levels are highest (Bohler et 

al., 1990). Direct activation of estrogen receptor-β (ERβ) increases CRF mRNA expression in vitro 

(Zhu and Zhou, 2008). Also, the E2 gene sequence promotes CRF gene transcription 

(Vamvakopoulos and Chrousos, 1993). Together, these data suggest that CRF1 receptors may 

modulate sex differences in the neurochemical effects of nicotine via changes in glutamate release 

in the NAc. It is noteworthy that male rats only displayed an increase in glutamate following 

administration of the high dose of nicotine. This may be related to activation of α7-type nAChRs 

that are located on glutamatergic terminals that project to the NAc from the prefrontal cortex 

(Marchi et al., 2002; Pirttimaki et al., 2013). Indeed, previous work has shown α7 nAChRs are 

preferentially activated under conditions involving higher nicotine concentrations (Lester and 
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Dani, 1995; Wooltorton et al., 2003). Thus, the possibility that greater expression of a7 receptors 

that may also enhance glutamate release in the NAc. 

4.5 Limitations and future directions 

A major limitation of this dissertation relates to the relatively lower sample size in male versus 

female rats. Specifically, the sample size for our neurochemical measures was larger in females (n 

= 8) versus males (n = 4). We recognize that our low sample size in males may have contributed 

to a lack of statistical power in our results. Importantly, we did find that overexpression of CRF 

produced significant effects in glutamate transmission in the NAc of males, and our analyses for 

dopamine and GABA revealed strong trends that will be addressed with more animals once the 

current pandemic-related restrictions are lifted. We have collected additional female (n =1) and 

male (n = 2) rats that will be analyzed prior to the publication of my dissertation work. 

Another limitation of this dissertation work is that we did not track the estrous cycle of the 

female rats. This information would have been informative based on recent work showing that 

ovarian hormones alter the behavioral effects of nicotine. Specifically, estradiol enhances the 

rewarding effect of nicotine, whereas progesterone reduces the behavioral effects of nicotine 

withdrawal (Flores et al., 2016; 2019). Differences in dopamine levels has been partly attributed 

to the estrous cycle and relatively higher levels of estradiol as greater DA release has been observed 

in females in proestrus (Xiao et al., 1994). In addition, OVX female rats display a reduction in 

dopamine release in the striatum and, following estradiol supplementation, is restored to intact 

female levels (Becker, 1990). Interestingly, castration of males does not reduce DA concentration 

when compared to intact males (Xiao et al., 1994; Castner et al., 1993). This study is the first step 

towards evaluating CRF modulation of sex differences in the neurochemical effects of nicotine in 

the NAc. Future studies are needed to more closely examine the manner in which fluctuations in 

ovarian hormones influence the contribution of stress systems in the neurochemical effects of 
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nicotine. For example, one might consider examining how overexpression of CRF alters nicotine-

induced neurochemical effects in OVX female rats supplemented with estradiol and/or 

progesterone.  

A final limitation is that we only focused on neurochemical effects of nicotine in the NAc, and 

one might expect that this brain region does not modulate sex differences in isolation.  Indeed, 

ongoing work in our laboratory is showing that sex differences in nicotine withdrawal are mediated 

by amino acids in the interpeduncular nucleus (IPN). The present work is a first step in a long line 

of work examining the underlying neural mechanisms that modulate sex differences produced by 

nicotine and withdrawal from this drug. There may also be other neurotransmitter systems, such 

as acetylcholine (ACh) that modulate sex differences in the neurochemical effects of nicotine in 

the NAc. This suggestion is based on the work of Lemos et al (2019) who found that CRF1 receptor 

activation increases the firing of cholinergic interneurons in the NAc. The present work laid the 

groundwork for future studies aimed at uncovering the underlying mechanisms that promote sex 

differences produced by nicotine. 

4.6 Conclusions and significance 

The current study found that CRF systems in the NAc modulate the neurochemical effects of 

nicotine, with males displaying greater excitatory regulation of the NAc, a key structure that 

modulates the motivational properties of drug abuse. In contrast, CRF overexpression seemed to 

dampen the neurochemical effects of nicotine on dopamine transmission in the NAc of females. 

Our prior work revealed that overexpression of CRF in the NAc increased the reinforcing effects 

of nicotine to a larger extent in female versus male rats (Uribe et al., 2020). Thus, we expected that 

overexpression of CRF in the NAc of females would result in greater (not reduced) nicotine-

induced dopamine release in the NAc. It is possible; however, that the strong reinforcing effects 

of nicotine in females is not modulated via dopamine release in the NAc. It is also possible that 
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female rats may have to self-administer higher amounts of nicotine to compensate for reduced 

dopamine release in the NAc. Indeed, parallel work in our laboratory has shown that diabetic rats 

display greater nicotine self-administration, but reduced nicotine-induced dopamine release in the 

NAc (O’Dell and Nazarian, 2015). Thus, enhanced drug intake may be related to an 

overcompensation of reduced dopamine transmission, a hypothesis that has been posited to explain 

compulsive overeating behavior (Yoshida et al., 1992). Future studies are needed to better 

understand how amino acid systems modulate greater vulnerability to nicotine use in vulnerable 

populations, such as females that are more susceptible to nicotine use than males in a clinical 

setting. This work is important toward the development of more effective cessation strategies that 

target stress systems that may help reduce health disparities produced by nicotine in women.  
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Figure 1: The schematic illustrates intra-NAc infusion of the AAV2/5-CRF in one hemisphere 

and infusion of the control virus, AAV2/5-GFP, in the contralateral hemisphere in female and male 

rats. Three weeks later, two dialysis probes with semi-permeable membrane into the NAc of both 

hemispheres.  
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Figure 2: The schematic illustrates the dialysis regimen and timeline during collection day. 

Dialysate samples were collected in 20-minute sample periods for baseline and following 

injections of two doses of nicotine. 
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Figure 3: NAc levels of dopamine, glutamate, and GABA during baseline. The top panel (A) 

reflects dopamine, the bottom left panel (B) reflects glutamate, and the bottom right panel (C) 

reflects GABA in CRF overexpressing females (open circles) and males (open circles). Data are 

expressed as percent (%) change (CRF value/control value * 100) with values above and below 

the dotted line representing an increase or decrease in dialysate levels, respectively. The asterisk 

(*) denotes a significant difference from respective GFP control group and the daggers (†) denote 

a significant difference from CRF overexpressing female rats (p ≤ 0.05).  
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Figure 4: NAc levels of dopamine, glutamate, and GABA during baseline and following nicotine 

administration. The top panel (A) reflects dopamine, the bottom left panel (B) reflects glutamate, 

and the bottom right panel (C) reflects GABA in CRF overexpressing females (open circles) and 

males (open circles). Data are expressed as percent (%) change (CRF value/control value * 100) 

with values above and below the dotted line representing an increase or decrease in dialysate levels, 

respectively. The asterisk (*) denotes a significant difference from respective control group and 

the daggers (†) denote a significant difference from CRF overexpressing female rats (p ≤ 0.05).  
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Figure 5: The schematic illustrates microdialysis probe placements in the NAc of both 

hemispheres in female and male rats. Probe placements were localized to the NAc shell in both 

hemispheres.  
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Figure 6: The image summarizes the neurochemical effects of CRF overexpression in the 

mesocorticolimbic pathway of female and male rats. CRF overexpression increased glutamate and 

dopamine release in male rats. In contrast, CRF decreases glutamate and dopamine release in 

females. It is hypothesized that the latter effect is mediated via greater expression of CRF1 receptor 

on excitatory terminals in female rats. Importantly, reduced expression of CRF1 receptor and 

activation of α7-type receptors on PFC terminals increase glutamatergic release, enhancing 

nicotine-induced dopamine transmission in male rats. (Abbreviations: GLU, glutamate; GABA, γ-

amino butyric acid; DA, dopamine; PFC, prefrontal cortex; VTA, ventral tegmental area; NAc, 

nucleus accumbens; CRF, corticotrophin-releasing factor; CRF1, corticotrophin-releasing factor 1 

receptor; nAChR, nicotinic acetylcholine receptor). 
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