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Abstract 

 Unmanned aerial vehicles, or UAVs, are small pilotless aircrafts that are remotely 

controlled through a ground control station. They have increased in popularity because of their 

applications and the advantages that each UAV can provide based on their need. There are many 

types of UAVs, but this study focuses on a type of Vertical Take-Off and Landing (VTOL) UAV 

that is known as the Albatross UAV. This UAV was manufactured by a company known as 

Applied Aeronautics, and configurations were made to change the fixed-wing (FW) UAV to a 

VTOL UAV. This study was done to find methodologies to simulate different dynamic transitions 

of the Albatross UAV from hover to FW flight and from FW flight back to hover using MATLAB. 

Those simulations were then used to compare the transitions done from the Dronecode flight 

control software. Speed, efficiency, and altitude gain/loss will be compared from these transitions.  
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Chapter 1: Introduction 

Unmanned aerial vehicles (UAVs) are small pilotless aircrafts that are remotely controlled 

through a ground control station. In recent years, the use of UAVs has increased and gained 

popularity because of their applications, such as law enforcement surveillance, being able to carry 

payloads for the military, traffic monitoring, and even agricultural maintenance. There are various 

types of UAVs to perform these actions, such as a quadrotor (Figure 1.1), fixed-wing (Figure 1.2), 

tilt-rotor (Figure 1.3), tilt-wing (Figure 1.4), tail-sitter (Figure 1.5), and vertical take-off and 

landing fixed-wing (VTOL-FW) (Figure 1.6), also known as a Quadplane.  

Each of these UAV designs has its advantages and disadvantages based on need and 

application. The quadrotor is the most common of the UAVs, with four hover rotors used to 

maneuver the UAV. Even though it may not cover a large distance in a short amount of time, the 

design allows for easier control such as indoor environments (Guo & Horn, 2012). The quadrotor 

is also able to hover and land in more confined areas and switch direction of flight with ease.  

 

 

Figure 1.1: Quadrotor UAV (Jamal, 2018) 
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A fixed-wing (FW) UAV is like a small aircraft that still requires a runway to take off and 

land. One of the main advantages of this UAV is that it is able to cover large distances at higher 

velocities. However, there is more difficulty controlling this specific type of UAV when wanting 

to land it in more confined areas, especially if a runway is not available. Another issue that occurs 

with FW UAVs is the path-following problem that is determined by the initial location of the 

vehicle and its heading angle (Sujit, Saripalli, & Sousa, 2014). 

 

 

Figure 1.2: Fixed-Wing UAV (Albatross Airframe, n.d.) 

 

Both tilt-rotor and tilt-wing require complicated software and hardware such as actuators, 

gearboxes, and extra servos (Apkarian, 2017) to  increase drag and the total weight of the UAV. 

However, they  have the capability to remove the need for a runway  to take off. This also allows 

for both the tilt-rotor and tilt-wing to hover in hard to reach areas when needed.  
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Figure 1.3: Tilt-Rotor UAV (Jin-seo, 2007) 

 

  

Figure 1.4: Tilt-Wing UAV (Masuda & Uchiyama, 2018) 

 

The tail-sitter UAV has a complicated control system and is more vulnerable to the wind  

(Dundar, Bilici, & Unler, 2020) compared to other previously mentioned UAVs. Although not as 

easy to maneuver as a quadrotor, it is still given the advantage of hover around a specific location 

when needed and take-off and land in a wider variety of location.  
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Figure 1.5: Tail-Sitter UAV (Zhang, Chen, & Lv, 2012) 

 

 

Figure 1.6: Vertical Take-Off and Landing Fixed Wing UAV (Cakici & Leblebicioglu, Analysis 

of a UAV that can Hover and Fly Level, 2016) 

 

The topic of research for this project is to find different methodologies for the dynamic 

transition of a vertical take-off and landing fixed-wing (VTOL-FW) UAV known as the Albatross 

PX4. This specific UAV is a fixed-wing (FW) aircraft like other airliners capable of flight using 

their wings to generate lift. For the Albatross UAV, configurations were made to change and 
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simulate the drone from FW to VTOL-FW using MATLAB. The need for the UAV to use a runway 

to obtain lift will be removed, through these changes As the name suggests, the VTOL-FW UAV 

will obtain flight by hovering, transitioning to fixed-wing flight, and transitioning back to hover. 

This capability will allow the UAV to attain flight in environments such as caves for low altitudes, 

forests where runway space is unavailable, and rural areas. With this VTOL-FW design, the UAV 

will be given the advantage of having the maneuverability of a helicopter (Whalley, 1991), 

enabling stable hover whenever necessary, and the ability to act as a quadcopter for control in 

confined spaces. The Albatross UAV will also still have the endurance of a plane to achieve longer 

distances than a standard quadcopter because of its FW capability.  

The focus of this study was to do various types of dynamic transitions from hover to fixed-

wing flight and back to hover of the VTOL-FW UAV, along with doing the standard transition 

that is commonly used with the Dronecode flight control software. These different methods were 

tested using different initial conditions and recorded to compare and conclude which transition is 

most useful depending on the environment and situation. From the data that was recorded, the 

comparison of the most efficient transition to preserve battery life was investigated because with 

each transition that is made, there is going to be power drained from the battery (Dundar, Bilici, 

& Unler, 2020). Speed was also investigated to determine which is the fastest transition in the case 

of emergencies and speedy departures. 

From research on design perspectives, two designs of the Quadplane were investigated. 

The first being the X-Way Fixed Bar (Yu & Kwon, 2017) (Figure 1.8). This design is generally 

used for most VTOL drones. However, based on this project's current goals, the X-Way Fixed Bar 

method would not be ideal. This is due to the increase in the total weight of the Albatross drone 

because of the need for additional equipment used to stabilize the bars, in turn affecting the 



6 

maneuverability. The other design method studied was known as the 11-Way Fixed Bar (Yu & 

Kwon, 2017) (Figure 1.9). This method does not need as much additional support or equipment, 

and the drag is relatively small because of the arms being parallel to each other and not creating as 

much surface area for the FW flight. This parallel design will assist with the efficiency of the 

transitions that are studied. Therefore, the 11-way method is the most advantageous and was 

pursued for this research.  

 

 

Figure 1.7: VTOL-FW UAV X-Way Fixed Bar (Cakici & Leblebicioglu, 2016) 

 

 

Figure 1.8: VTOL-FW UAV 11-Way Fixed Bar (Yu & Kwon, 2017) 
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Chapter 2: Rationale 

2.1 Importance 

The importance of this study is to determine different methodologies of the VTOL UAV 

to be able to transition from hover to FW flight and from FW flight back to hover.  Compare them 

to the baseline transitions that are standard in the UAS industry and is the standard transition used 

in Ardupilot and Dronecode flight control software. It was investigated to see if there would be a 

more efficient transition, a speedier transition, and even transitions that would be most 

advantageous based on different scenarios. Initially, the transitions from hover to FW flight were 

studied and compared, then the transitions from FW flight to hover were studied.  

 

2.1.1 Applications 

Initially, design and simulations were made for the White Sands Missile Range (WSMR). 

Through this, the many uses for the VTOL-FW UAV, including having the capability of being 

used for surveillance. The UAV would attach a flat mapping gimbal that keeps a camera parallel 

to the ground for a wide range of surveillance and mission usages. An important use of the gimbal 

would include law enforcement surveillance. An example would be infrared surveillance that could 

be useful when searching for missing persons (Figure 2.1). When the drone is in FW mode, it 

would cover a great distance during the search. The Remote Pilot in Command (RPIC) would then 

be able to transition to hover mode to have better control of the UAV and pin-point the location 

with live feed.  
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Figure 2.1: Infrared Surveillance (Can Thermal Imaging See Through Walls? And Other 

Common Questions, 2020) 

 

As far as traffic emergencies (Figure 2.2), the VTOL-FW UAV will be able to reach the 

area of an accident sooner and faster than a ground vehicle and convey information and visualize 

the magnitude of the accident. This information is also useful to redirect traffic to assist incoming 

emergency units responding to the issue, making the response as efficient as possible.  

 

 

Figure 2.2: Traffic Response (Who's at Fault in a Multi-Car Accident?, 2018) 
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Another use of the VTOL-FW drone is for agricultural maintenance (Figure 2.3). Farmers 

can use the drone to conduct soil and field analysis providing data for irrigation and nitrogen-level 

management. Planting by achieving a higher uptake rate, decreasing planting costs, crop 

spraying,and crop monitoring with increased efficiency. The drone can also be used for rrigation 

and health assessment with thermal sensors to identify parts of a field that are dry and need 

improvements. 

 

 

Figure 2.3: Agricultural Maintenance (Kloosterman, et al., 2019) 

 

2.1.2 Hover to Fixed-Wing Transitions 

The baseline transition that is normally done through the Dronecode flight control software 

(Flying a Quadplane, n.d.) that was tested was done by preventing any altitude loss during the 

transition. Another transition was a flat level transition of steady hover to FW flight by simply 



10 

initiating the FW rotor to begin the transition without any change to the initial or desired conditions 

other than the desired velocity. With two other transitions that were done, the first of the two, 

before turning on the FW rotorwas to pitch the drone back (Figure 2.4a) for a higher initial angle 

of attack to increase the amount of lift from the wing when thrust is being applied in the forward 

direction by the FW rotor. A minor force is provided in the negative x-direction because of pitching 

the UAV back by a certain amount, but not enough to provide a retarding force. This method is 

done to create a transition from hover to FW flight with the max allowable AOA just below the 

critical AOA. The second of the two was essentially the opposite. With this method, the drone was 

pitched forward (Figure 2.4b) since the wings are initially pitched back by 7° when the edrone's 

fuselage is pitched at 0°, to see if this would decrease the total amount of time for the transition to 

take place. There will still be lift being provided from the wings since this transition is done by 

using the Optimum AOA. Both were simulated to not lose any altitude while the transition is taking 

place. 

 

 

Figure 2.4: VTOL-FW Transition Method (Collins, 2020) 

 

Two other types of transitions were tested at altitudes high enough to where it would be 

possible to shut off the hover rotors to allow for a free fall. The first transition is based on the 

theory that once the altitude is reached, a nose-dive will be obtained, similar to what is known as 
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Kvochur’s Bell (Bushgens & Sukhanov, 2018), and turn on the FW rotor to initiate the transition. 

The difference between this transition and Kvochur’s Bell is the the UAV will be hovering steady 

at an altitude high enough, and then begin a nose-dive to begin the transition. This was done to see 

if falling from a high altitude would assist the UAV to transition at a faster speed.The second 

would begin in a similar fashion where once the drone is at an altitude high enough, the hover 

rotors would once again be shut off to begin somewhat of a flat free-fall  (Kim, Oh, Seo, & Kim, 

2017) of the drone. This will be done without the spin, but once ready, turn on the FW rotor to 

initiate the transition from hover to FW flight. This specific transition was done in any case the 

Remote Pilot in Command (RPIC) is no longer able to hover, a transition would able to take place 

to switch from hover mode to fixed-wing (FW) mode. Each of these transitions is possible for a 

tilt-rotor and tilt-wing UAV but limited on a tail-sitter UAV because of its unique design.  

2.1.3 Fixed-Wing to Hover Transitions 

Just like the hover to fixed-wing transitions, different fixed-wing to hover transitions from 

FW flight to hover were tested and compared. The first backwards transition was to have the UAV 

flying at a specific velocity, and the FW rotor will then begin to produce a reverse thrust while 

simultaneously turning on the hover rotors to prepare for the hover mode to completely take over. 

The second begins with shutting off the FW rotors and slowly turning on the hover rotors  to see 

how long it would take to fully have control with the four hover rotors from letting the UAV glide 

through the air. The last will start in a similar fashion of shutting off the FW rotor to allow the 

UAV to glide and turning on the hover rotors to create a  backward pitch of 4° to get an Angle of 

Attack (AOA) of 11°, right under the value of the Critical Angle of Attack (AOA) to prevent a 

stall.  
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Chapter 3: Literature Review 

There are various uses and advantages to having a VTOL-FW UAV at your disposal such 

as not needing a runway, being able to hover for precise location, or be in FW mode to cover long 

distances. However, some disadvantages could occur and the objective is to be able to have a 

solution the overcomes those disadvantages.  

3.1 HOVER STUDY 

Quadcopter UAVs were investigated to best study how the design and hover of the 

Albatross UAV will take place. These are simply designed UAVs with four rotors spaced out 

evenly from the Center of Gravity (COG) of a body. The first items investigated were the 

placement and rotation of the four hover rotors. Because of the way the Albatross UAV was 

manufactured, the four hover rotors were each placed 40 inches apart from each other using 2x2 

twill weave carbon fiber structural components located in between where the wings come apart. 

With an equal number of the propellers spinning in opposite directions, the torques created from 

the spin would be able to cancel out and not cause the UAV to yaw in one direction or another 

while in hover mode (Figure 3.1) (Dydek, Annaswamy, & Lavretsky, 2013). The placement of the 

motors and propellers were placed at an equal distance from the COG to prevent any cause of COG 

variations (Lee, Giri, & Son, 2017). 
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Figure 3.1: Hover Rotor Location/Rotation (Quadplane Configuration, n.d.) 

 

For these unmanned aircrafts, brushless motors are typically what is used for various 

applications because they provide an additional control loop that significantly improves the 

performance of the attitude stability (Sanchez, Carrillo, Rondon, Lozano, & Garcia, 2010). 

Considering the size of the Albatross UAV for this simulation, and the applications it will be used 

for, the motors and propellers were carefully selected for use. 
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Table 3.1: Hover Motor and Propeller Selection 

Motor 

Version 

Propeller 

Size 

Throttle 

Range 

Amperage 

(A) 

Power 

Input 

(W) 

Thrust 

Output 

(lb.) 

RPM 

(rev/min) 

KDE4215XF-

465 

18.5’ x 

6.3 KDE-

CF185-

DP 

DUAL-

BLADE 

25.0% 3.0 69 1.85 2760 

37.5% 7.0 161 3.62 3840 

50.0% 13.0 300 5.45 4740 

62.5% 22.0 508 7.69 5640 

75.0% 34.0 785 9.85 6363 

87.5% 49.2 1136 12.24 7200 

100.0% 68.6 1584 15.65 7860 

 

From these selections, the total amount of thrust output from the four combined at 100% 

throttle will be 62.6 lbs. Therefore, since the weight of the drone is to be maxed out at 55 lbs., the 

addition of a payload or gimbal would not be an issue.  

3.2 HOVER TO FIXED-WING FLIGHT STUDY 

One of the more focused portions of this study is the transition. A tail-sitter UAV was able 

to achieve a transition from hover to fixed wing flight in a short amount of time by using slats and 

flaps (Kubo, 2006). Other previous studies mention the use of tumble-stall maneuvers, dynamic 

inversion methods, and backstepping control techniques (Cakici & Leblebicioglu, 2016). For this 

project, the transition of a Quadplane was studied to create unique but effective, hybrid transitions 

that are applicable in different scenarios.  
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One aspect was the control of the drone while in transition. For this Quadplane, there are 

essentially two different controllers. One for the hover, and one for the FW flight. Instead of a 

direct shut off from one control to the other, the controls intersect and are all active during the 

transition. During hover mode, the hover controls are active. This would tell the UAV to roll, pitch, 

or yaw accordingly with the four hover rotors. During transition mode, the FW controls activate 

turning on the FW rotor, but the hover control elements do not shut off immediately. For the FW 

control to completely take over, the UAV must reach the desired speed so that the wings produce 

a lift of 22 lbs. The hover rotors will be able to completely shut off, and FW mode is in full control. 

This is a default value for the UAV within the Ground Control Station (GCS). That value could be 

left as is or changed to a different desired value if need be. A perfect example is shown in Figure 

3.2 from (Cakici & Leblebicioglu, 2016) ,which shows at what point each controller is active 

individually and simultaneously,which allows for a smoother transition during the process.  

 

 

Figure 3.2: Transition Controls (Cakici & Leblebicioglu, 2016) 
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During the transition, lift from the wings is produced and then used for an aircraft to take 

off and either gain altitude or remain at the desired altitude. The greater the Angle of Attack 

(AOA), the greater the amount of lift that will be produced up to a certain point, which is known 

as the Critical AOA. When past the point of Critical AOA, the stall will begin to occur. For the 

Albatross UAV and the type of airfoil used, the Critical AOA is at 11.25° (Figure 3.3).  

 

 

Figure 3.3: Critical Angle of Attack (AOA) (Airfoil Tools, n.d.) 

 

When grounded, the wings of the Albatross UAV are already at an AOA of 7°. However, 

since the drone will already be hovering and will have no need for a runway, the transition is 

possible at a lower AOA. It is easier to control what is needed from the UAV while  in hover mode 

because the  drone’s pitch is one of the main controlling factors during the transition. The reason 

a lower AOA would take place and not a value of 0° is that during the transition, the drone still 

tends to drop in altitude (Cakici & Leblebicioglu, 2016) (Figure 3.4). The UAV will descend 
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because originally, the four hover rotors are what is keeping it at a specific altitude. During the 

transition, the hover rotors will at one point shut off, and the UAV will descend a bit until enough 

lift is created from the wing to have the UAV ascend again. For some of the applications in this 

study, such as being able to transition in lower altitudes when needed, a descend during transition 

is not ideal. In contrast, in other applications, perhaps a great amount of lift is needed to ascend to 

greater heights at higher speeds.  

 

 

Figure 3.4: Quadplane Transition (Cakici & Leblebicioglu, 2016) 

 

From previous works of literature, there are very few studies on Quadplanes that have 

focused on the transition from hover to  FW flight. Those that have studied the transition mainly 

compare the results of a Quadplane UAV to a tilt-rotor or tilt-wing (Govdel, Muzaffae, Raj, 

Elhadidi, & Kayacan, 2019). The image below (Figure 3.5) shows the comparison of pitch between 

a Quadplane and a tilt-rotor. From here, it is seen that only a 2° change in pitch was needed for the 

tilt-rotor UAV to complete the transition from hover to FW flight. Other studies show the transition 
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is only needing about 3° degrees to complete the transition as well (Yuksek, Vuruskan, Ozdemir, 

Yukselen, & Inalhan, 2016), showing that not too much of a pitch is needed. 

 

 

Figure 3.5: Quadplane vs. Tilt-Rotor Pitch Angle Comparison (Govdel, Muzaffae, Raj, Elhadidi, 

& Kayacan, 2019). 

 

3.3 FIXED-WING FLIGHT STUDY 

 In this study, the Albatross UAV was originally a FW UAV before configurations were 

made to convert the UAV to a Quadplane. Studying the UAV in its FW state was done to better 

simulate the transitions. Table 3.2 states the parameters used to assist with the calculations done 

for FW flight.  
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Table 3.2: Albatross UAV Parameters 

Airfoil Type NACA-2412 

Wingspan 9.8425 ft. 

 Wing Area 8 ft.2 

Weight of Drone 22 lbs. 

Reynold’s Number ~250,000 

Mean Aerodynamic Chord 0.8125 ft. 

Density 0.063177 lb./ft.3 

Moments of Inertia 

Ixx 2.43E11 lb./ft.2 

Iyy 1.71E11 lb./ft.2 

Izz 3.84E11 lb./ft.2 

Propeller 

Diameter 14 in. 

Tip Chord 0.41 in. 

Max Root Chord 1.15 in. 

Min Root Chord 0.62 in. 

 

There is mention of an Optimum AOA, which increases the lift to drag ratio of the UAV. 

This allows for the maximum lift of an airplane wing during take-off. (Kramer, 1932) states that 

one of the causes of the increase of lift is the increase of wind speed. This is beneficial for the 

UAV to quickly gain altitude when the environment is limited in range. However, because the 

increase in wind speed increases  an aircraft's lift, this is also true for drag (Figure 3.6).  

 



20 

 

Figure 3.6: AOA vs Drag Coefficient  (Sogukpinar & Bozkurt, 2015) 

 

This is why the Optimum AOA is the best lift to drag ratio, producing the maximum 

amount of lift with the minimum amount of drag. It is shown that the lift to drag ratio increases in 

proportion to the wind speed  (Sogukpinar & Bozkurt, 2015). Studies have also proven that for all 

speeds, the maximum lift to drag ratio was reached at the same AOA (Figure 3.7). Figure 3.7 

shows the Optimum AOA to be at about 4° for that specific UAV  (Sogukpinar & Bozkurt, 2015). 

This value will vary between Airfoil type, the surface area of the wing,  the drone’s weight etc.  

From the calculations that have done for the Albatross UAV, it was discovered that the Optimum 

AOA for this simulated UAV is at 4.5° (Figure 3.8). This was done by setting a velocity value , 

calculating the lift , and the drag at every available AOA from the wing profile, then solving for 

the highest lift to drag ratio. Only one velocity value was used because again, the previous study 

showed that for all speeds, the Optimum AOA was reached at the same value.  
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Figure 3.7: AOA vs Lift to Drag Ratio  (Sogukpinar & Bozkurt, 2015) 

 

 

Figure 3.8: Albatross UAV Lift to Drag Ratio 
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3.4 FIXED-WING TO HOVER STUDY 

The transition from FW flight to hover was further investigated as well. These transitions 

are mostly studied in tail-sitter, tilt-rotor, and tilt-wing UAVs because, unlike the Quadplane, the 

rotors of these UAVs  can be used in a larger rotation of motion ranging from at least 0° to 90°. 

Hover and deep stall maneuvers have been used for a tail-sitter UAV to be able to perch the UAV 

up against the wall of a building (Marchini, 2013)(Figure 3.9).  

 

 

Figure 3.9: Perching Tail-Sitter UAV (Marchini, 2013) 

 

Another back-transition method from a Quadplane study does not angle the UAV to 

transition from FW flight to hover. Instead, a negative amount of thrust is applied on the pusher 

rotor (Figure 3.10) to assist in slowing the UAV from FW flight (Govdel, Muzaffae, Raj, Elhadidi, 

& Kayacan, 2019). While the quadrotor decelerates from the forward moving direction; this allows 

for the hover rotors to start producing thrust.  
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Figure 3.10: Quadplane vs. Tilt-Rotor Pitch Angle Comparison (Govdel, Muzaffae, Raj, 

Elhadidi, & Kayacan, 2019). 

 

3.5 STALL 

A stall can occur in the middle of flight, not just during a UAV take-off or transitions. 

There are many different types of stalls, but the main ones focused on to be sure to avoid with the 

types of transitions focused in this study were the following (Basson, 2010): 

Power-on stalls: Power-on stalls will occur at take-off when straight climbs are occurring. 

With the nose of the aircraft rising and the climb in attitude, this may result in an accidental stall. 

This can occur during the transition for hover to FW flight when pitching the Quadplane back to 

produce the maximum amount of lift possible.  

Secondary stalls: Secondary stalls occur when recovering from a preceding stall. Since the 

hover rotors were shut off at a high altitude to produce a nose-dive or straight downward 

projection, it is essentially causing an initial stall, and then recovering from it to produce the 

transition.  
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Spin: Spin tends to result in autorotation. Again, with shutting off the hover rotors at a high 

altitude to begin a downward projection of the Quadplane; spin could occur when the outside wing 

is less stalled than the inside wing, causing a downward rolling, pitching, and yawing spiral.  
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Chapter 4: Methodology 

4.1 Calculations 

This study was first approached was by seeing what calculations were needing to take place 

to simulate the dynamic transition for the Quadplane within MATLAB. The first portion was for 

the hover motors to provide the lift in the z-axis before the transition. This also included their 

direction of rotation, distance location from the COG, and detailed data about the motor and 

propeller selection for this specific UAV to determine the maximum amount of thrust each rotor 

could produce.  

Once the calculations for the hover portion was completed, defining the wing of the 

Albatross was next. With the wing profile of the UAV and taking the AOA into 

consideration;Coefficients of Lift (CoL), Coefficients of Drag (CoP), Coefficients of Mass (CoM), 

and Center of Pressure (CoP) values determined, . That helped obtain  the most accurate results 

for lift, drag, etc., when testing.  

Some specific calculations that affected the transitions during this study were solving for 

the desired altitude and desired velocity. In order to not lose any altitude during each of the 

transitions from hover to FW flight, it was necessary to solve for the desired altitude in order to 

get enough error from the controller to solve for the required forces. From Equation 4.1, the total 

forces in the controller were solved by taking the error in the positions and multiplying them by 

the proportional gain values. They were then added by the error in velocities multiplied by the 

derivative gain values. Equation 4.2 shows solving for the desired altitude from the force in the z-

direction. It was known what force in the z-direction for the hover motors was needed, which is 

22 lbs. since that is the weight of the UAV. The initial altitude and control gain values were known 



26 

as well. The final step was to then solve for the desired altitude and use that value to achieve no 

loss in altitude during the transitions.  

 

𝑭𝑿𝒀𝒁 = (𝑫𝒆𝒔𝒊𝒓𝒆𝒅𝑷𝒐𝒔 − 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝑷𝒐𝒔) ∗ 𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝑷

+ (𝑫𝒆𝒔𝒊𝒓𝒆𝒅𝑽𝒆𝒍 − 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝑽𝒆𝒍) ∗ 𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝑫 

 

Eq. 4.1 

𝑭𝒁 = (𝑫𝒆𝒔𝒊𝒓𝒆𝒅𝑨𝒍𝒕 − 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝑨𝒍𝒕) ∗ 𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝑷 

 

Eq. 4.2 

 

The next portion for the desired velocity required using the calculations for lift and drag 

force from the wing shown in Equations 4.2 and 4.3. From these equations: 

ρ is the density of air 

SA is the surface area of the wing 

CL is the coefficient of lift 

CD is the coefficient of drag 

V is velocity 

Knowing the current velocity of the UAV during each time step, it was possible to solve for the 

values of lift and drag force during the transitions. This was able to give the force from the wing 

in the x-, y-, and z- direction shown in Equations 4.4 through 4.6. The force in the y-direction from 

Equation 4.5 shows a value of zero because these simulations were only done in the forward 

moving direction. Due to the change in AOA from the different transitions done, the desired 

velocities for each transition were needing to change as well. To solve for each of the desired 

velocities used during the simulations, it was very similar to solving for the desired altitude, but 
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this time, the force in the z-direction from the wings was used (Equation 4.6). Again, it was known 

that 22 lbs. of force in the z-direction was needed to not lose any altitude during the transitions or 

flight, and because lift and drag force are both dependant on velocity, solving for velocity is what 

was used for the desired velocity in the controller. 

 

𝑳𝒊𝒇𝒕 =
𝝆 ∗ 𝑺𝑨 ∗ 𝑪𝑳 ∗ 𝑽𝟐

𝟐 ∗ 𝟑𝟐. 𝟐
 

 

Eq. 4.2 

𝑫𝒓𝒂𝒈 =
𝝆 ∗ 𝑺𝑨 ∗ 𝑪𝑫 ∗ 𝑽𝟐

𝟐 ∗ 𝟑𝟐. 𝟐
 

 

Eq. 4.3 

𝑭𝑿 = −𝒍𝒊𝒇𝒕 ∗ 𝒔𝒊𝒏(𝑨𝑶𝑨) − 𝒅𝒓𝒂𝒈 ∗ 𝒄𝒐𝒔(𝑨𝑶𝑨) 

 

Eq. 4.4 

𝑭𝒀 = 𝟎 

 

Eq. 4.5 

𝑭𝒁 = −𝒍𝒊𝒇𝒕 ∗ 𝒄𝒐𝒔(𝑨𝑶𝑨) + 𝒅𝒓𝒂𝒈 ∗ 𝒔𝒊𝒏(𝑨𝑶𝑨) 

 

Eq. 4.6 

 

4.1.1 Coordinate Systems 

Coordinate systems were studied for this project to determine the frames in which the 

results were needed to be. They would either be  inertial, also known as the world-coordinate 

system, or body-fixed frame (Diebel, 2006). The inertial frame is an Earth-fixed set of axes where 

the x-axis is pointing North, the y-axis is pointing East, and the z-axis points downward towards 

the center of the Earth (Figure 4.1). Because the z-axis point downward, any height above ground 
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is considered to be a negative value. The body frame is a coordinate system on the aircraft where 

the x-axis points out the  UAV's nose. The y-axis points out the right-wing, and the z-axis points 

out the bottom of the fuselage (Figure 4.2). 

 

 

Figure 4.1: Inertial Reference Frame (Basson, 2010) 

 

 

Figure 4.2: Body Reference Frame (Basson, 2010) 
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For the Albatross UAV, some  multiple forces and torques that are not all in the same frame 

(Figure 4.3). Gravity is not fixed to the UAV; therefore, the  drone’s weight is initially in the 

inertial reference frame. All of the thrusts have been applied on the UAV, both for hover and FW 

flight, are in the body reference frame. With the forward-moving thrust, drag force and lift force 

occur, and these forces are also in the body frame. The forces being applied to the UAV also cause 

torque to occur in the body frame.  

 

 

Figure 4.3: Forces on an Aircraft (Forces in a Climb, n.d.) 

 

Even though most of the forces occur in the body reference frame, every single force needs 

to be in the same frame. It is impossible to apply the force values together in the simulation, with 

them being in different reference frames. To switch the forces from inertial to body frame or vice 

versa; they need to apply rotation matrices about single rotation coordinate axes , such as the roll 

around the x-axis, pitch around the y-axis, and yaw around the z-axis were used (Equations 4.1 

through 4.3). This allowed us to simulate and show the results in the inertial reference frame since 

this is a UAV and made it easier to reference the forces, velocities, and positions. 
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𝑹𝑿 = [

𝟏 𝟎 𝟎
𝟎 𝐜𝐨𝐬 𝜽 − 𝐬𝐢𝐧𝜽
𝟎 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽

] 

 

Eq. 4.7 

 
𝑹𝒀 = [

𝐜𝐨𝐬 𝜽 𝟎 𝐬𝐢𝐧𝜽
𝟎 𝟏 𝟎

− 𝐬𝐢𝐧𝜽 𝟎 𝐜𝐨𝐬𝜽
] 

 

Eq. 4.8 

 
𝑹𝒁 = [

𝐜𝐨𝐬 𝜽 − 𝐬𝐢𝐧𝜽 𝟎
𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 𝟎
𝟎 𝟎 𝟏

] 

 

Eq. 4.9 

 

4.2 Algorithm 

The next step was the MATLAB algorithm. At the beginning of the code is when the input 

all of the parameters and information for the motors, propellers, and the wings along with the 

weight of the UAV, its moments of inertias, and air density. Then begins stating the initial and 

desired conditions that get called into the PD controller to solve for the forces and torques from 

the rotors. That then determines the UAV’s velocity that gets used to solve the lift and drag being 

produced by the wing and solving for the forces and torques from there. The total amount of forces 

determined, and torque was solved for at that time step and then loops all over again with those 

new values until the errors of what we want become 0. 

4.3 Testing 

During the testing, data were plotted to see the results in the desired  periods. From the 

plots, one will show how much force is being produced from each of the five rotors based on the 

initial and desired conditions. Once the desired speed in the forward-moving direction was reached 

to create enough lift for the UAV, the FW flight rotor would fully take over, and thrust in all the 
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hover rotors are no longer needed. There would only be thrust in motors two and three, which are 

on the left-hand side of the UAV; to counteract the torque produced from the FW flight rotor along 

the negative x-axis during the transition. Another plot defines the velocities in the inertial frame 

produced in the x-, y-, and z-axes. Defined from the Dronecode flight control software, the 

transition was fully completed once the UAV achieved its desired velocity. Like the velocities; the 

inertial position is also plotted in the x-, y-, and z-axes to show how far and in what direction the 

UAV has traveled. This plot will also show the amount of distance traveled in the x-direction when 

the transition is completed, as well as the altitude gain/loss during the transition.  

The testing and simulations were all done through MATLAB due to time constraints. To 

ensure this methodology closely matched transitions of other flight controllers, following the 

Quadplane VTOL Configuration & Tuning through the Dronecode flight control software was 

done. 
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Chapter 5: Results and Discussion 

5.1 HOVER TO FIXED-WING TRANSITIONS 

5.1.1 Baseline Transition (No Altitude Loss) 

The baseline transition from hover to fixed-wing flight is done from starting up the FW 

rotor while the Albatross UAV is in hover mode. For this flat- level transition, the UAV’s initial 

conditions will start at 65.6 feet in altitude, 0 ft/sec forward moving velocity, and pitched at 0°. 

The desired conditions were to increase the altitude to 67.8 feet, so there is no loss in altitude 

during the transition, reaching 54.8 ft/sec for the forward moving velocity and remaining at a pitch 

angle of 0°, which provide an AOA of 7°.The wings are already angled back by 7° when level-

UAV is there. 

Because these simulations were more focused on reaching desired x-velocities, the 

proportional control error values for the x-position remained at 0, while the derivative value for 

the x-velocity used was 10. Because all the transitions were only done in a forwardmoving 

velocity, the proportional and derivative control error values for y-position and y-velocity 

remained at 0. The proportional and derivative values for z-position and z-velocity were both at 

values of -10, because any altitude above ground is a negative value in the z-direction. This value 

was not 0 because there were still desired altitude values that were wanting to be reached.  

Figure 5.1 shows the forces for the baseline transition. Columns 1 through 4 represent the 

hover rotors' forces, and column 5 represents the force for the FW rotor. The FW rotor begins with 

its maximum amount of force since the x-velocity error is so great at the start of the simulation. 

The four hover rotors remain active at 5.5 lbs. each for a short time shows that it is hovering. As 

the FW rotor is starting up when there  changes in the forces from the hover rotors. The controls 

in hover mode start to decrease, and FW mode is increasing to where it begins to produce enough 
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lift in the negative z-direction to where the hover rotors are no longer needed. You can also see a 

dip in the force for the FW rotor. The reason for this is because the UAV is reaching its desired 

velocity and begins to stabilize at that time.  

As you can see, hover rotors 2 and 3 show more thrust than rotors 1 and 4 during the 

transition. As stated in Figure 3.1, rotors 2 and 3 are located on the left side of the UAV. The 

reason these two rotors are producing a greater amount of force is to counteract the torque that is 

being produced from the FW rotor during the transition; similar to what happens to a helicopter. 

The torque causes a slight counterclockwise rotation of the UAV about the x-axis, and rotors 2 and 

3 are what is keeping the UAV stabilized. Once the UAV has achieved FW flight, the autopilot 

from the Dronecode flight control software keeps the UAV stabilized. 

Figure 5.2 shows the velocities for the UAV in the x-, y-, and z-direction. There is a slight 

overshoot for the x-velocity shown in blue. The reason the UAV overshot is that the error was so 

great at the beginning of the simulation that the controller wants the UAV to get up to speed, then 

it overshot, and so that’s when the force in the FW rotor holds back from its maximum value to 

slow down and begins to slowly pick back up again to maintain a velocity closest to the desired x-

velocity. According to the Dronecode flight control software, the transition is completed, and the 

UAV has fully obtained flight once the desired velocity has been reached. For this transition, the 

UAV has fully obtained flight at about 7.4 sec. The red shows a velocity in the y-direction which 

remains at 0 ft/sec. The yellow is the velocity in the z-direction, which you can see increases and 

decreases slowly as the transition occurs before stabilizing at 0 ft/sec. 

The positions of the UAV are shown in Figure 5.3. In red shows the increase in altitude in 

the negative z-direction while the UAV was transitioning. At the beginning of the transition, the 

UAV starts at 65.6 feet in altitude. As the hover controls are decreasing and the FW controls are 
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increasing, as well as the velocity in the x-direction, the altitude gain overshot to a value of 68.14 

feet before stabilizing at 67.8 feet. There was no loss in altitude during this transition. The UAV 

traveled about 195.5 feet in the x- direction until the transition was completed and 0 feet in the y-

direction. 
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Figure 5.1: Baseline Transition Forces 
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Figure 5.2: Baseline Transition Velocities 
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Figure 5.3: Baseline Transition Positions 
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5.1.2 Flat Level Transition (Same Initial/Desired Altitude) 

This next hover to fixed-wing transition is very similar to the baseline transition, where the 

conditions are the same except for the desired altitude. The initial velocity is 0 ft/sec, the desired 

velocity is 54.8 ft/sec,and the initial and desired pitch were to remain at 0°. The initial altitude and 

desired altitude for this transition were the same at 65.6 feet. The control error values were the 

same as the previous transition. 

Figure 5.4 shows the forces for this flat level transition. They seem very similar to the 

previous forces shown for the baseline transition, but the difference is that the forces for this 

transition  showin an increase in the forces for each of the hover rotors shown in columns 1 through 

4 for a short time. This happens  because as the transition occurs, the control picks up that the 

UAV is already at the desired altitude  set, which means the error from initial to the desired 

condition is zero. When this happens, the controller communicates to the hover rotors that because 

the error is zero, there is no longer a force needed to be required by the hover rotors. They stop 

producing thrust for a short amount of time and cause the UAV to lose altitude. In the very first 

time step of Figure 5.4, the hover rotors are beginning to produce thrust again because there is now 

a nonzero error value in the altitude.  

Showing the velocities in Figure 5.5, again, they look very similar to the previous transition 

velocities. This plot even shows the UAV fully transitioning at the same length of time at 7.4 sec, 

but what has changed was the velocity in the z- direction. This time the velocity begins the slow 

increase in the negative z-velocity before stabilizing. The velocity in the y-direction remains 0 

ft/sec.  

The UAV positions shown in Figure 5.6 are the main portion of the simulation that showed 

the most change. The change in altitude for the negative z-direction is shown in red. At the 
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beginning of the transition, the UAV starts at 65.6 feet in altitude. The lowest altitude the UAV 

reaches during this transition is 63.62 feet, which was expected due to having the same initial and 

desired altitude conditions. The highest it reaches is 65.94 feet before stabilizing at 65.6 feet. The 

UAV had no change in position for the y-direction and traveled about 195.7 feet in the x-direction 

until the transition was completed. 
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Figure 5.4: Flat Level Transition Forces 
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Figure 5.5: Flat Level Transition Velocities 
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Figure 5.6: Flat Level Transition Positions 
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5.1.3 Pitched-Back Transition (No Altitude Loss) 

For the pitched-back transition, the UAV began with the same initial conditions of hovering 

at 65.6 feet in altitude, 0 ft/sec in the forward-moving velocity, and a pitch of 0°. The desired 

conditions were to have it reaching an altitude of 67.8 feet. So there would be no loss in altitude 

during the transition, reaching a forward-moving velocity of 48.2 ft/sec, and transition at a pitched 

angled of 4°,  provided an AOA of 11°, which is right below the critical AOA. For this transition, 

the desired velocity was able to be decreased because of the higher AOA. The control error values 

remained the same. 

The pitched-back transition forces in Figure 5.7 start off very similar, which is expected 

since the transitions are all starting off with the same initial conditions. As the velocity in the UAV 

is increasing, the forces in rotors 1 through 4 are decreasing, and FW mode is beginning to take 

over. The forces in motors 2 and 3 are also producing more thrust than rotors 1 and 4 to stabilize 

the Albatross during the transition.  

As the Albatross is increasing in velocity in the x-direction during the pitched-back 

transition shown in Figure 5.8, the UAV fully obtains flight when reaching its desired velocity at 

7.81 sec. The red shows a velocity in the y-direction which remains at 0 ft/sec.The yellow is the 

velocity in the z-direction, which you can see slowly increases and decreases as the transition is 

occurring.  

The positions for the pitched-back transition are shown in Figure 5.9. For this transition, 

there was no overshoot in altitude and stabilized at 67.8 feet. The position in the y-direction 

remained at 0 feet, and the UAV traveled 199.3 feet in the x-direction before the transition was 

fully completed.  
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Figure 5.7: Pitched-Back Transition Forces 
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Figure 5.8: Pitched-Back Transition Velocities 
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Figure 5.9: Pitched-Back Transition Positions 
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5.1.4 Pitch-Forward Transition (No Altitude Loss) 

The fourth transition simulated was the pitched-forward transition. For this transition, the 

Albatross UAV was pitched forward by -2.5°, causing the wing's AOA to go from the original 7° 

to 4.5°. This specific angle is the Optimum AOA of the UAV to produce the best lift to drag ratio. 

The initial conditions were left at 65.6 feet in altitude and 0 ft/s in the forward-moving velocity, 

and the desired conditions were to reach an increase of 67.8 feet in elevation with a forward-

moving velocity of 61.7 ft/sec. The control error values remained the same. 

The forces of the UAV in Figure 5.10 for the pitched-forward transition show similar 

results, where as the velocity of the UAV is increasing and creating lift, the forces in the hover 

motors are decreasing and no longer in use once the UAV fully obtains flight. Figure 5.11 shows 

the x-velocity in blue for the pitched-forward transition where the Albatross fully obtains flight at 

roughly 7.67 sec. The y-velocity in red remains at a value of 0 ft/sec, and a slight increase and then 

decrease in the z-velocity is shown again before stabilizing at 0 ft/sec. The positions for the 

pitched-forward transition are shown in Figure 5.12 where the position in the negative z-direction 

overshot by a bit more this time to 68.35 feet before stabilizing to 67.8 ft. The position in the y-

direction remained at 0 feet, and once the Albatross has fully transitioned and obtained flight, it 

has traveled about 222 feet in the x-direction. 
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Figure 5.10: Pitched-Forward Transition Forces 
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Figure 5.11: Pitched-Forward Transition Velocities 
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Figure 5.12: Pitched-Forward Transition Positions 
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5.1.5 Flat Free-Fall Transition (Decrease in Altitude) 

For the flat free-fall transition, this is where the initial conditions change prior to the 

previous transitions from hover to FW flight. To better demonstrate the height limits for this 

transition, the conditions were changed. This transition had initial conditions of 65.6 feet in 

altitude, 0 ft/sec in the forward velocity, and a pitch angle of 0°, giving us an Angle of Attack 

(AOA) of 7°. The desired conditions were now 5 feet in altitude, 54.8 ft/sec in the forward-moving 

velocity, and remain at a pitch angle of 0°. The control error values remained the same. 

For the forces in Figure 5.13 in this flat free-fall transition, rotors 1 through 4 start with 

forces of 5.5 lbs. Then quickly go to 0 lbs. to show that the hover rotors were shut off, and rotor 5 

starts at the maximum amount of force. Quickly, the control picks up  a torque in the x-axis , which 

was produced from the FW rotor, and rotors 2 and 3 start producing a force to counteract it.  

Figure 5.14 shows when this transition fully obtains flight from plotting the velocities of 

the UAV. It was determined that the UAV reached closest to the desired velocity and fully obtained 

flight at about 7.6 sec. The y-velocity in red remains at a value of 0 ft/secThere is a spike in the z-

velocity shown as if it is free-falling before there is enough lift being produced by the wing and 

stabilizes at 0 ft/sec. 

For the positions of the UAV in Figure 5.15 during the flat free-fall transition, you can see 

that in the z-position, it starts at 65.6 feet of elevation and drops down to 3.42 feet before it begins 

to stabilize at 5 feet in elevation. The position in the y-direction continues to remain at 0 feet 

throughout the simulation, and the position of the Albatross had traveled about 199 feet in the x-

direction until the transition was completed.  
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Figure 5.13: Flat Free-Fall Transition Forces 
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Figure 5.14: Flat Free-Fall Transition Velocities 
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Figure 5.15: Flat Free-Fall Transition Positions 
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5.1.6 Nose-Dive Transition (Decrease in Altitude) 

The next transition that I have simulated is more of a nose-dive transition. For this 

transition, there were some limitations to it. One of them was that based on the wing profile that 

the Albatross UAV uses, I only had coefficient values from an AOA of -11.25° to 14.5°. Another 

limitation was the velocity that the UAV was able to get up to. The lower the AOA that was wanted 

to use for the nose-dive transition, the more required velocity. So for this transition, the lowest 

AOA that was able to be used was -0.5°, or a pitch angle of -7.5°. The last limitation to make this 

transition successful was needing to start at a lower altitude. The initial conditions were 50 feet in 

altitude and 0 ft/sec in the forward-moving direction, but with the desired conditions of 5 feet in 

altitude with 109.04 ft/sec in the forward-moving velocity. The control error values remained the 

same. 

The forces in the nose-dive transition are then shown in Figure 5.16. For the force in this 

transition, rotors 1 through 4 start with forces of 5.5 lbs each and go to 0 lbs. to show that the hover 

rotors were shut off, and rotor 5 starts at the maximum. Quickly, the control picks up that a torque 

in the x-axis was being produced from the FW rotor, and rotors 2 and 3 start producing a force to 

counteract it for some time before decreasing along with the FW rotor. The UAV fully obtains 

flight and reaches the desired speed in the x-direction at about 5.55 sec. as shown in Figure 11.9. 

The velocity in the y-direction remains at 0 ft/sec and the velocity in the z-direction slightly 

fluctuates before stabilizing at 0 ft/sec as well. Figure 5.18 shows the positions of the UAV. In red 

shows the position in the z-direction that better shows the fluctuations of the velocity in the z-

direction. When starting at an altitude of 50 feet, the UAV slightly overshoots the desired altitude 

down to about 0.37 feet and then reaches 10 feet before stabilizing at the desired altitude. The 
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position in the y-direction remains at 0 and the position in the x-direction gets to about 613.1 feet 

until the transition is completed.  
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Figure 5.16: Nose-Dive Transition Forces 
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Figure 5.17: Nose-Dive Transition Velocities 
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Figure 5.18: Nose-Dive Transition Positions 
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5.2 FIXED-WING TO HOVER TRANSITIONS 

5.2.1 Reverse Thrust Transition 

To start with the backwards transition, the first simulation uses conditions of the baseline 

backwards transition that is normally done with the Dronecode flight control software. For these 

simulations, they will each be starting in the middle of flight for 1 sec before the transitions begin.  

The initial conditions of the UAV had FW flight at 65.6 feet in altitude, 54.8 ft/sec velocity in the 

forward-moving direction, and 0° of the pitch. The desired conditions were to remain at 65.6 feet 

in altitude and reach 0 ft/sec while remaining at 0° of the pitch. This reverse thrust transition is 

simulated by stopping the FW rotor from producing forward thrust and start to produce reverse 

thrust, and turning on the hover rotors at the same time. The control error values remained the 

same. 

From the forces in the reverse thrust transition shown in Figure 5.19, the four hover rotors 

are getting up to about 5.5 lbs each, which is what is needed to stabilize the hover for the 22 lb. 

Albatross UAV. This time for the backwards transition, rotors 1 and 4 are the ones producing more 

force than rotors 2 and 3, and the reason for that is because now we are producing a backwards 

thrust from the FW rotor. This means that it is spinning in the opposite direction, which is 

counterclockwise, and producing a torque in the clockwise direction. Therefore motors 1 and 4, 

being on the right side of the UAV, produce more thrust to stabilize the UAV. As the UAV is 

getting closer to the desired velocity of 0 ft/sec, the backwards thrust of the FW rotor is starting to 

go to 0 lbs, and the hover rotors are stabilizing at 5.5 lbs.  

The velocities in Figure 5.20 shows the Albatross fully completing the transition back to 

hover with a forward-moving velocity of 0 ft/sec at roughly 6.1 sec. The velocity in the y-direction 

remains at 0 ft/sec, and the velocity in the z-direction slightly fluctuates before stabilizing at 0 
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ft/sec as well. Figure 5.21 shows as the backwards transition is occurring, the UAV traveled about 

173 feet of distance in the x-direction before coming to a complete stop. Because there is still a 

forward moving velocity and the four hover rotors are activated as well, there was a slight gain in 

altitude to 66.63 feet in the z-direction before stabilizing at the desired 65.6 feet.  
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Figure 5.19: Reverse Thrust Transition Forces 
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Figure 5.20: Reverse Thrust Transition Velocities 
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Figure 5.21: Reverse Thrust Transition Positions 
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5.2.2 Flat Gliding Transition 

Another transition was simulated by just shutting off the FW rotor and turning on the hover 

rotors, and letting the Albatross glide until full control of hover mode was obtained. This trial for 

the backward transition is different than the reverse thrust transition. The initial conditions of the 

UAV  had FW flight at 65.6 feet in altitude, 54.8 ft/sec velocity in the forward-moving direction, 

and 0° of the pitch. The desired conditions were to remain at 65.6 feet in altitude and reach a 0 

ft/sec velocity while remaining at 0° of the pitch. The control error values remained the same. 

From Figure 5.22,  when the FW rotor is shut off, the hover rotors are activated, but then 

hold back at the very next time step because, at the beginning of the transition, there is still a lift 

force being produced from the wings from the initial velocity. The hover rotors start to hold back 

for a brief moment before starting to pick back up again as the velocity is slowing down. Not as 

much lift force is being provided. The forces in the four hover rotors are slowly increasing, but it 

does take a while for them to hit 5.5 lbs. exactly because there is still a small forward moving 

velocity from the UAV since it is gliding. That forward moving velocity is still causing a bit of lift 

from the wings, and that is  why they are not at 5.5 lbs within this time frame. 

Figure 5.23 shows the velocities of the UAV. The velocity in the x-direction is shown in 

blue. From looking into the average velocities of a quadcopter to still have full control in hover 

mode, that velocity was about 3.25 ft/sec. The transition was determined once the UAV had 

reached that velocity because waiting for the UAV to reach exactly 0 ft/sec would take too long. 

This transition reaches that speed at about 190 sec, so that is when the hover rotors have full control 

of the UAV from the transition from FW flight to hover. The red shows the velocity in the y-

direction, which remains at a value of zero, and the yellow shows the velocity in the z-direction. 

Looking closely, a very minor increase of the z-velocity in the negative z-direction because the 
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force being provided by the hover rotors at the very start is being added with the amount of lift 

that is being produced by the wings and the FW rotor, but quickly returns to a to a z-velocity of 0 

ft/sec. 

For the positions of this backwards transition in Figure 5.24, starting with the z-position to 

show the results of the forces from the hover rotors combined with the lift from the wings and FW 

rotor in the very beginning of the simulation shows a gain in altitude. Because for a very brief 

moment, they provide a total force in the negative z-direction of slightly more than 22 lbs., there 

is a slight gain in altitude to roughly 67.2 feet but quickly returns to the desired altitude of 65.6 

feet. For the y-position, that value remains at zero, and for the x-position, because it takes 190 sec 

to get full control in hover mode, the UAV cruises forward to a distance of about 1900 feet.  
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Figure 5.22: Flat Gliding Transition Forces 
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Figure 5.23: Flat Gliding Transition Velocities 
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Figure 5.24: Flat Gliding Transition Positions 
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5.2.3 Pitched-Back Gliding Transition 

With the gliding pitched-back transition, the initial conditions of the UAV were again 

having FW flight at 65.6 feet in altitude, 54.8 ft/sec velocity in the forward-moving direction, and 

0 degrees of pitch. The desired conditions were to have a forward velocity of 0 ft/sec, remain at an 

altitude of 65.6 feet, and use a pitch angle of 4°, giving us an AOA of 11°, which is right below 

the critical AOA to prevent a stall from happening during this transition. The control error values 

remained the same. 

With Figure 5.25 showing the forces in all of the rotors, once again, rotors 1 through 4 get 

a value very close to 5.5 lbs. each because there is still a very small forward moving velocity even 

though it shows 0 lbs. of force being provided from the FW rotor. Figure 5.26 shows the velocities 

of the UAV and using the same information gathered as to when it will have full control of the 

UAV for hover mode when reaching a speed of 3.25 ft/sec, this transition shows that the velocity 

in the x-direction, shown in blue, reaches that speed at roughly 91 sec. The velocity in the y-

direction shows a value of 0 ft/sec, while the velocity in the z-direction shows a few spikes again 

prior to stabilizing after a bit of time to 0 ft/sec.  

For the positions of this transition in Figure 5.29, the z-position, in red, better shows the 

spikes that were occurring in both the forces and velocities. Because we are using an AOA value 

of 11°, combined with the initial velocity at the start of this transition, this causes lift in the UAV 

to occur. This shows this gain in altitude in the negative z-direction up to 80.5 feet. As the velocity 

is decreasing, the lift is decreasing as well, and the UAV begins to descend to the desired altitude 

of 65.6 feet. As all of that is occurring, the hover rotors are producing more and more force and 

reach their values of 5.5 lbs each. There is no change in the y-direction, and by the time the UAV 

fully gains control while hovering, it has traveled about 915 feet in the x-direction.  
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Figure 5.25: Pitched-Back Gliding Transition Forces 
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Figure 5.26: Pitched-Back Gliding Transition Velocities 
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Figure 5.27: Pitched-Back Gliding Transition Positions 
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Chapter 6: Conclusion 

Table 6.1 shows the different hover to fixed-wing transitions that were simulated for this 

study. Because each transition started with hovering for 1 sec, the amount of force during that time 

was subtracted when calculating for the efficiencies. From the table, transitions 1 and 2 obtained 

flight in the least amount of time (7.4 sec), while transition 6 took the longest (11.9 sec). 

Transitions 1, 3, and 4 each had no loss in altitude (0 ft), as shown in the simulations. In 

comparison, transition 5 showed the most altitude loss (62.18 ft). The transition with the largest 

gain in altitude showed to be transition 4 when using the Optimum Angle of Attack (AOA) (2.75 

ft). Of all of the hover to fixed-wing transitions, transition 5 seemed to have the least total amount 

of impulse (127.92 lbf*s), while transition 6 showed the most impulse (234.51 lbf*s).  

Table 6.2 compares the three fixed-wing to hover transitions were done. Just like for table 

6.1, because each transition was in FW flight for 1 sec before the transition occurred, the amount 

of force during that time was subtracted when calculating for the efficiencies. Transition 7 

simulated having the least amount of time to transition from FW mode to hover mode (6.1 sec) 

while transition 8 simulated the complete transition to hover mode at about 31 times greater (190 

sec). None of the transitions showed any altitude loss. For altitude gain, transition 7 showed the 

least amount (1.03 ft), while transition 9 showed the most (14.9 ft). Transition 7 also showed the 

least amount of impulse (114.58 lbf*s) needed to complete the transition. Transition 8 showed the 

most (3889.41 lbf*s).  

Every transition simulated in this study was successful. For the hover to FW transitions, 

the baseline transition would best be used if not wanting to lose any altitude during the transition 

and also as being used as one of the quickest transitions. The flat transition can be used to maintain 

the UAV as close to the initial and desire conditions while going from hover to FW flight mode. 
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The pitched-back transition may be used when not much velocity in the UAV is wanted, and the 

pitched-forward The pitched-forward transition would best be used by the Remote Pilote in 

Command when wanting to gain the most altitude during the transition since that method uses the 

Optimum AOA. As far as the most efficient transition, the flat free-fall would be the best choice, 

and the transition that is not recommended because the flight time was the longest and the least 

efficient is the nose-dive transition. Both of these transitions could also be used in the case the 

hover rotors are shut off, it would still be possible to recover with a transition to FW flight. This 

will be able to save the UAV from crashing into the ground. As far as the FW to hover transitions, 

the reverse thrust transition is best used when wanting to do the shortest transition, least amount 

of altitude gained during the transition, and the most efficient. If wanted to maintain high velocities 

during the transition or even if the FW battery can no longer be used, the two gliding transitions 

would be preferred.  

Future work for this study would be the following to focus on: 

• Controller tuning  

• Different controllers other than the PD controller used for this study 

• Different motor/propeller selections 

• Drag of irregular objects should anything else be implemented to the UAV 

• Implement study to flight simulator 

• Implement study to physical Albatross UAV 
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Table 6.1: Hover to Fixed-Wing Transition Comparison 

 Transition Obtained 

Flight 

(sec) 

Altitude 

Loss 

During 

Transition 

(ft) 

Altitude 

Gain 

During 

Transition 

(ft) 

Required 

Hover 

Impulse 

(lbf*s) 

Required 

FW 

Impulse 

(lbf*s) 

Total 

Required 

Impulse 

(lbf*s) 

1 Baseline 

(No 

Altitude 

Loss) 

7.4 0 2.54 85.58 44.65 130.24 

2 Flat (Same 

Altitude)  

7.4 1.98 0.34 86.19 44.65 130.84 

3 Pitched-

Back 

7.8 0 2.2 82.47 47.42 129.89 

4 Pitched-

Forward 

7.7 0 2.75 92.64 46.71 139.35 

5 Flat Free-

Fall 

7.6 62.18 0 81.85 46.07 127.92 

6 Nose-Dive 11.9 49.63 0 158.16 76.35 234.51 
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Table 6.2: Fixed-Wing to Hover Transition Comparison 

 Transition Obtained 

Hover 

(sec) 

Altitude 

Loss 

During 

Transition 

(ft) 

Altitude 

Gain 

During 

Transition 

(ft) 

Required 

Hover 

Impulse 

(lbf*s) 

Required 

FW 

Impulse 

(lbf*s) 

Total 

Required 

Impulse 

(lbf*s) 

7 Reverse 

Thrust 

6.1 0 1.03 82.04 32.54 114.58 

8 Flat 

Gliding 

190 0 1.6 3889.41 0 3889.41 

9 Pitched-

Back 

Gliding 

91 0 14.9 1831.47 0 1831.47 
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