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Abstract

Climate change poses a risk to individuals whose livelihoods depend on the health of glacier

ecosystems. Monitoring glaciers in the Himalayan Hindu Kush (HKH) region is of high

importance especially when we consider the impact of recent climate change on them. Our

work aims to provide an automated method to outline glaciers using machine learning

techniques and publicly available remote sensing imagery.

In this work, we present ways to delineate glaciers from Landsat-7 imagery using various

machine learning and computer vision techniques. The multi-step methodology that we

present in this work is generalizable across different types of satellite and overhead imagery,

lending itself to map other geomorphological features on the Earth’s surface. Furthermore,

we compare quantitatively and qualitatively the performance of pixel-wise classification

using conventional machine learning to a more recent deep learning based architecture,

U-Net. Our proposed works consist of integrating conventional computer vision methods

with deep learning based approaches to improve the segmentation performance and later

generalize across other landcover mapping applications beyond glacier mapping.

Despite being faster to train, pixel-wise classification approaches generate segmentation

masks that are fragmented. On the other hand, the problem of fragmented prediction masks

is visually less apparent when using a U-Net architecture. This could be attributed to the

properties of Convolutional Neural Networks which are able to take spatial information

into consideration. Specifically, pixels in the predicted segmentation mask using U-Net

architecture are computed by taking a neighborhood of pixels in the input image, as opposed

to one pixel at a time, resulting in less fragmentation.

We also analyze the features of satellite images that are most helpful in classification of

glaciers in the HKH region. Based on the domain knowledge, we calculate and add slope,

elevation, and spectral indices (i.e. Normalized Difference Snow Index (NDSI), Normalized

Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI)) as
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additional bands on top of the bands from Landsat-7 satellite to help with the segmentation

task. We observed that slope, elevation, and NDSI contribute the most towards the final

segmentation mask. However, these three channels are not present in Landsat-7 satellite

scenes and need to be calculated separately. These findings can change the way people view

glaciers and the features associated with it, leading to a better understanding in monitoring

them.

Overall, we present multiple methods for mapping geomorphological landscape features

from overhead imagery. These methods can have major implications in understanding

global challenges such as climate change and anthropogenic impacts to ecosystems (i.e.

deforestation, urbanization, land use change), particularly due to the large volumes of

public freely-available large-scale satellite images made available in recent years.

We expect to present a novel method that is optimized for the task of glacier mapping

using a combination of deep learning and conventional computer vision methods. We also

expect to present an optimal architecture for glacier delineation and deploy it in the form

of a tool that will automate the process and also be able to facilitate the delineation of

glaciers on satellite images acquired from other sensors.
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Chapter 1

Introduction

1.1 Motivation

The glaciers in the Himalayan Hindu Kush (HKH) region possess one of the largest re-

sources of snow and ice on Earth, constituting a huge freshwater reservoir. Changes in the

glacial extent and their influence on river run-off are important to map and plan ahead for

future strategies of power generation as numerous power projects are under operation and

construction in these river basins [32]. Moreover, monitoring changes such as melting of

glaciers over time which increases the risk of glacial lake outburst floods (GLOFs) becomes

critical. GLOFs are among the most serious natural hazards in high mountainous regions

and can cause catastrophic damages and fatalities in downstream communities and ecosys-

tems [51, 54]. Understanding the changes in these glaciers is critical in order to develop

infrastructure that improves the well-being and livelihoods of high-altitude communities,

to promote and accelerate learning on the challenges facing mountain ecosystems and their

people, and to empower critical and urgent decision making during regional humanitarian

crises.

However, understanding and tracking these landscape level changes can be difficult.

For example, glaciers and particularly those located in the HKH region, are situated in

remote areas that can be difficult and unsafe to navigate through and map using tradi-

tional approaches, such as field visits and vertical air photography. In addition to having

safety considerations, the use of these methods is also costly and time-consuming. Satellite

remote sensing data can be helpful in this scenario as it is a tool for periodical observa-

tions of Earth’s surface over large areas. Petabyte-scale archives of remote sensing data
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are freely available from multiple U.S. Government agencies as well as from the European

Space Agency. Additionally, Google Earth Engine (GEE) provides an application program-

ming interface (API) and an associated web-based Interactive Development Environment

(IDE) for processing very large geospatial datasets collected from multiple satellites such

as Landsat, Sentinel, and MODIS [20].

Periodic manual labeling of remote sensing images over a large area is practically im-

possible as it requires a considerable time investment. The experts who are in charge of

labeling have to look at petabytes of high-resolution satellite images and manually label

features of interest within each scene to corresponding labels or classes. Fortunately, there

have been advancements in areas of computer vision that allow researchers to automate this

task. The specific task that deals with assigning pixels to corresponding labels of interest

is called semantic segmentation and one example application is landcover mapping (i.e.

detecting and labeling geological features in satellite imagery). There are multiple meth-

ods that have been developed over the years for semantic segmentation such as threshold

segmentation, Sobel Filters, and Neural Networks [53]. Semantic segmentation techniques

have improved rapidly in recent years due to the progress in Convolutional Neural Networks

(CNNs) [30, 45].

Despite the advances on semantic segmentation, having access to label data remains

a limiting factor. Deep neural networks usually require thousands of images as training

samples where the desired features (in this case glaciers) have already been determined.

However, a recently developed model, U-Net, [45] has been shown to provide a highly ac-

curate semantic segmentation with small numbers of training data. Since manual labelling

of glaciers from satellite images requires considerable time and effort, the U-Net model is

a good alternative for our situation.

The HKH is often referred to as the third pole [15] and holds approximately 14.5%

of the world’s total glaciers. These glaciers are a source of many of Asia’s major river

systems and are of high economic and social importance to a population of around 2 billion

people [4]. The water from melting snow and glaciers is used as a source of drinking water,

2



for agriculture, and for power generation in densely populated regions in South and Central

Asia [6, 8]. Climate change poses a risk to the glaciers and its impact in the Himalayas

can already be seen [7, 13]. The changes in glaciers due to climate change may have a

significant impact on the quantity and timing of water availability downstream [43] and

could also increase the risk of natural hazards such as GLOFs ultimately affecting human

livelihood. Efficient and timely monitoring of the state of glaciers is key for water resource

and hazard management in the region.

1.2 Thesis Statement

The information contained in multi-band remote sensing scenes can be used to accurately

delineate glacier boundaries through the use of a combination of deep learning and conven-

tional machine learning and computer vision techniques.

1.3 Research Questions

Our work aims to answer the following questions:

1. Is it possible to delineate glacier boundaries automatically with an accuracy that

is similar to that of human experts using publicly available remote sensing satellite

scenes?

2. Can methods for glacier mapping be extended to other land cover mapping applica-

tions3?

1.4 Expected Contributions

As a result of the proposed research, we expect to achieve the following:

1. Multisource feature analyses and fusion. We will develop a methodology for

selecting, combining, and generating features from different satellites such that these

3



features correspond to the same geographical location on the Earth’s surface. These

modified satellite images will then be used as inputs to the models to identify which

features are important for mapping glaciers. In addition to improving results for

automated models, these analyses may be helpful to the experts in the domain for

efficient mapping of glaciers.

2. A novel framework for mapping glaciers that combines deep learning and

a conventional computer vision method. We will develop a novel framework

that unifies deep learning with active contour models that is optimized for glacier

segmentation mask generation. The framework will also be generalizable across other

computer vision applications.

3. An architecture optimized for the task of glacier mapping. We will exper-

iment with different modifications of the U-Net architecture and tune the hyperpa-

rameters to find an optimal architecture for glacier mapping task.

4. Tool for glacier mapping from satellite imagery. We will develop an automated

system for end-to-end mapping of glaciers in the HKH region. The automated tool

will be able to read the satellite images and corresponding glacier labels, preprocess

them, and train a classifier optimized for the task of glacier mapping. The trained

classifier can then be used to segment glaciers from the satellite images. The tool will

be easy to tune and reconfigure in response to user needs.

5. Extension of the tool across different images for other landcover mapping

tasks. We will extend the tool for other applications of landcover mapping in addition

to glacier mapping.

1.5 Outline

The organization of the reminder of this document is as follows. Chapter 2 provides back-

ground information related to this project along with related work in mapping geographical

4



features from satellite imagery using machine learning approaches. Chapter 3 describes the

dataset and presents research approaches to achieve some of the expectations of this work.

Preliminary results are discussed in chapter 4. Finally, in chapter 5, we will propose our

work plan and timeline to complete it.
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Chapter 2

Mapping Glaciers in Satellite

Imagery

The Himalayas continue to be interesting to glaciologists, which is not surprising when one

considers the formidable water-resource problems in the glacier’s regional context and the

rate at which the ice is disappearing [28, 29]. However, studying these glaciers in remote

locations through field investigations are very time consuming and can pose high safety

hazards. The main focus of our research is to be able to automate the accurate and timely

mapping of these glaciers in order to make their study easier.

2.1 Glaciers

Glaciers are large bodies of dense ice that are constantly moving under its own weight from

a higher to lower elevation. Glaciers are formed when When fallen snow remains in one

location long enough to be compressed into thickened ice masses and most tend to flow

like rivers but much slower due to the force of gravity on its sheer ice mass. Those present

in the Hindu Kush Himalayan (HKH) region exhibit ice movements from the upper part

of the glaciers to the lower part, or snout. According to the Randolph Glacier Inventory

(RGI) [3], there are 198,000 glaciers in the world covering 726000 km2. The HKH region

has the highest concentration of snow and glaciers outside the polar region, and thus has

been called the Third Pole [15]. Figure 2.1 shows Khumbu Glacier located in the Khumbu

region of northeastern Nepal between Mount Everest and the Lhotse-Nuptse ridge.

Since our work aims to distinguish glaciers from non-glacier background through surface

6



Figure 2.1: Khumbu Glacier

reflectance on Landsat 7 satellite images, the major challenges occur in distinguishing

clean ice glaciers from temporary snow/ice covers and debris glaciers from rocks and other

geomorphological features. In this case, we want to have three different output labels -

Clean Ice glaciers, Debris Glaciers, and Non Glaciers/Background.

2.1.1 Clean Ice Glaciers

In the Himalayan region, glaciers begin forming in places where more snow gathers each

year and little to no melt occurs. The snow begins to compress under its own weight to

become more dense and tightly packed. As snow keeps piling on top, it becomes a dense,

grainy ice called firn. As years go by, layers of firn build on top of each other. When the

ice grows thick enough—about 50 meters (160 feet)—the firn grains fuse into a huge mass

of solid ice [14] and glaciers are formed. These glaciers have snow or ice surface cover and

are known as clean ice glaciers.

2.1.2 Debris Glaciers

The glacier is so heavy and exerts so much pressure that it starts to move under its own

weight. Pulled by gravity, they move slowly down a valley. Avalanches and icefalls transfer
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glacial ice from glaciers in higher altitude to a larger glacier beneath them, or directly to

the valley below. During the process, an accumulation of boulders, stones, or other debris

in the region is carried out and deposited by a glacier. Such glaciers have a mixture of

ice/snow and dirt/rocks/boulders on their surface and are known as debris glaciers.

Glaciers (Continued)

Visibly, this difference in clean ice and debris glaciers is quite obvious in satellite images

as we can see in Figure 2.2.

(a) Sample Landsat 7 scene (b) Glacier labels for the same region

Figure 2.2: Clean Ice & Debris Glaciers in Satellite Images

Here the red labels denote debris glaciers and purple labels denote clean ice glaciers.

The labels correspond to the digital polygon data of status of glaciers in Hindu Kush

Himalayan (HKH) region [5].

2.1.3 Glacier Mapping

Before remote sensing imagery became available, mapping glaciers, glacial lakes, or other ge-

omorphological features had been done through manual labeling or field investigations [27].

The mapping of glaciers through the use of field investigations can have safety consider-

ations due to the rugged and inaccessible terrains of the Himalayan region. Due to the

resource and time required for mapping using these methods, they are not feasible for
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timely mapping of the glaciers. In such a situation, using automated methods to extract

glaciers from the satellite images can produce timely and accurate glacial mapping with no

potential safety hazards. A more recent approach to map glaciers in HKH region include

using various thresholds for features such as remote sensing indices, slope, elevation, etc.

on satellite imageries [5]. The obtained polygons are then manually smoothed to delineate

glacier boundaries.

2.2 Remote Sensing

Remote sensing is the science of acquisition of information about an object, primarily the

earth surface, from a distance using sensors on airplanes or satellites. These sensors collect

data in the form of optical images and provide specialized capabilities for manipulating,

analyzing, and visualizing those images. In current usage, the term “remote sensing”

generally refers to the use of satellite or aircraft-based sensor technologies to detect and

monitor the physical characteristics of an area by measuring its reflected and emitted

radiation at a distance.

Currently, petabyte-scale archives of remote sensing data are freely available from mul-

tiple U.S. Government agencies including the NASA, the U.S. Geological Survey, and Na-

tional Oceanic and Atmospheric Administration (NOAA) [52, 31, 37], as well as the Eu-

ropean Space Agency [1]. The catalog of geospatial datasets is continuously updated at

a rate of nearly 6000 scenes per day, with a typical latency of about 24 hours from scene

acquisition time.

2.2.1 Landsat 7 Satellite

Landsat 7 is an Earth-observing satellite that has been operational since 1999. Landsat 7

collects data in accordance with the World Wide Reference System 2, which has catalogued

the world’s land mass into 57,784 scenes, each 183 km wide by 170 km long. The satellite

carries the Enhanced Thematic Mapper Plus(ETM+) sensor that measures different ranges
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of frequencies (each called a band) along the electromagnetic spectrum – a color, although

not necessarily a color visible to the human eye. The landsat 7 platform has eight bands

as highlighted in Table 2.1. With an exception of the panchromatic band which is of the

Table 2.1: Landsat 7 Band Descriptions

Name Wavelength Description

Band 1 Visible 0.45 - 0.52 µm (blue) surface reflectance

Band 2 Visible 0.52 - 0.60 µm (green) surface reflectance

Band 3 Visible 0.63 - 0.69 µm (red) surface reflectance

Band 4 Near-Infrared 0.77 - 0.90 µm (near infrared) surface reflectance

Band 5 Near-Infrared 1.55 - 1.75 µm (shortwave infrared 1) surface reflectance

Band 6 Thermal 10.40 - 12.50 µm brightness temperature

Band 7 Mid-Infrared 2.08 - 2.35 µm (shortwave infrared 2) surface reflectance

Band 8 Panchromatic (PAN) 0.52 - 0.90 µm (black and white band) surface reflectance

nominal resolution of 15 meters, the multispectral scanner (MSS) of Landsat 7 is of nominal

resolution of 30 meters. This means that each pixel in an image represents 30 meters by

30 meters square on the ground. Because of this, we can only pick out individual features

larger than 30 meters, but it is ideal for analyzing glacier size, glacier characteristics, and

for mapping glacier change as the area covered by a glacier range from as small as a football

field to hundreds of kilometers. The temporal granularity of landsat 7 satellite is 16 days

which means there is a difference of 16 days between two subsequent images of the same

area. One of the issues with remote sensing data is its temporal availability. Presence of

clouds, snow/ice and cirrus can affect the quality of images ultimately limiting the available

data. Fang Chen et al. were able to demonstrate the availability of Landsat 7 data for

guaranteeing a high quality yearly map of glacial lake in Tibet Plateau[10]. On average,

landsat 7 had an average of 23.6 observations in the study area in 2015.
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2.2.2 Google Earth Engine

The easiest way to access these remote sensing data is through the use of the google earth

engine. The google earth engine brings together the world’s satellite imagery that have

been collected through the use of various satellites such as landsat, modis, and sentinel

over the years. Google earth engine is a cloud-based platform that makes it easy to ac-

cess high-performance computing resources for processing very large geospatial datasets,

without having to suffer the IT pains currently surrounding either [20]. It is accessed and

controlled through an Internet-accessible application programming interface (API) and en-

ables rapid prototyping and visualization of results with the help of associated web-based

interactive development environment (IDE). Users can access the API either through a thin

client library or through a web-based interactive development environment built on top of

that client library. Figure 2.3 shows the web-based interactive development environment

provided by google earth engine.

Figure 2.3: The Earth Engine Interactive Development Environment

Users can sign up for access at https://earthengine.google.com, the Earth Engine home-

page, and access the user interface, as well as a user’s guide, tutorials, and examples. Ac-
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counts come with a quota for uploading personal data and saving intermediate products,

and any inputs or results can be downloaded for offline data.

2.3 Semantic Segmentation

Semantic segmentation is the process of classifying the object class for each pixel within an

image, meaning there is a label for each pixel. It is one of the oldest and most widely studied

problems in computer vision [9, 41, 44, 38, 46]. It is a widely studied area in statistics as

cluster analysis and involves understanding not only what happens to be in the scene,

but also what regions of the image those things are located in and at a very fine-grained

levels. Figure 2.4 shows image classification, object detection, semantic segmentation, and

instance segmentation for a visual representation. Semantic segmentation has a wide range

of application areas like biomedical image diagnosis, autonomous vehicles, and geo-sensing

where pixel-level processing of images is required.

2.3.1 Metrics to Evaluate Semantic Segmentation Model

How do we know our segmentation model is performing well? We visualize the predicted

segmentation masks for qualitative evaluation. For quantitative evaluation, we evaluate

the performance of our segmentation model based on Intersection over Union.

Intersection over Union

The Intersection over Union (IoU) is the ratio of area of overlap between predicted label and

ground truth and the area of union between predicted segmentation and ground truth. IoU

ranges from 0-1 (0-100%) with 0 signifying no overlap (bad prediction) and 1 signifying

perfectly overlapping segmentation (good prediction). For multi-class segmentation, the

mean IoU is calculated by taking IoU of each class and averaging them. For example, in

figure 2.5, mean IoU can be calculated by calculating individual IoU in each class and then

averaging them as in Table 2.2. Visually, we can see IoU in Figure 2.6.
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Figure 2.4: Applications of Computer Vision [19]

(a) Sample slice (b) Ground Truth (c) Model Prediction

Figure 2.5: Sample Prediction
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Table 2.2: Calculation of Mean IoU

Class Intersecting Area Union Area IoU

Clean Ice Glacier 30.10% 35.70% 84.31%

Debris Glacier 7.43% 7.99% 93.02%

Mean IoU = 84.31+93.02
2

= 88.67%

Figure 2.6: Intersection-Over-Union

Mean IoU can be represented as: (1/ncl)
∑

i nii/(ti +
∑

j nji − nii), where nij is the

number of pixels of class i predicted to belong to class j, ncl is the number of different

classes, and ti =
∑

j nij is the total number of pixels of class i.
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2.4 Convolutional Neural Network (CNN)

With the increase in the size of the dataset, the number of parameters in a neural network

architecture needs to be increased for effective learning. While this problem may not be

as prevalent when the size of the data is smaller, a dense neural network has a lot of

parameters and is harder to train when the size of data gets large. Convolutional Neural

Network (CNN), also known as ConvNet, is a special type of neural network architecture

that makes the explicit assumption that the inputs are images, which allows us to encode

certain properties (namely, stationary of statistics and locality of pixel dependencies) into

the architecture. Thus, compared to standard feed-forward neural networks with similarly-

sized layers, CNNs have much fewer connections and parameters. These then make the

forward function more efficient to implement while the theoretically-best performance is

likely to be only slightly worse. A comparison of a convolutional neural network with a

similar feed forward neural network is shown in Figure 2.7.

Figure 2.7: Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons

in three dimensions (width, height, depth), as visualized in one of the layers. Every layer of

a ConvNet transforms the 3D input volume to a 3D output volume of neuron activations.

In this example, the red input layer holds the image, so its width and height would be the

dimensions of the image, and the depth would be number of channels [2].

There are three main types of layers that are used to build ConvNet architectures: con-

volutional layer, pooling layer, and fully-connected layer. Convolutional layer will compute

the output of neurons that are connected to local regions in the input, each computing
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a dot product between their weights and a small region they are connected to in the in-

put volume. The primary purpose of convolutional layer is to extract features from the

input image. Pooling layer performs a downsampling operation along the spatial dimen-

sions (width, height). The main function of the pooling layer is to progressively reduce the

spatial size of the representation to reduce the amount of parameters and computation in

the network. Neurons in the fully-connected layer are the same as that in a simple feed

forward neural network. It is usually attached at the end of the network architecture to

output fixed sized labels for classification.

2.4.1 Fully Convolutional Network (FCN)

One of the first papers to introduce the concept of CNNs for semantic segmentation was

Fully Convolutional Networks (FCNs) for Semantic Segmentation [30]. In classification,

conventionally, an input image is downsized and goes through the convolution layers and

fully connected (FC) layers, and output one predicted label for the input image. Imagine

replacing FC layer with convolution layers. The output will not be a single label. Instead,

the output has a size smaller than the input image (due to the max pooling). The authors

introduced this concept of transforming fully connected layers into convolutional layers

as “convolutionalizing”. If we upsample the output, then we can calculate the pixel-wise

output (label map). Fully Convolutional Networks (FCNs) owe their name to their archi-

tecture, which is built only from locally connected layers, such as convolution, pooling, and

upsampling.

Since no dense layer is used in this kind of architecture, this reduces the number of

parameters and computation time. The network can work regardless of the original image

size, without requiring any fixed number of units at any stage, given that all connections are

local. The authors of that paper were able to demonstrate that the convolutional networks

by themselves, trained end-to-end, pixels-to-pixels exceed the state-of-the-art in semantic

segmentation. This was the first work to train FCNs end to end (1) for pixel-wise prediction

and (2) from supervised training. The authors introduced two methods for upsampling:
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Shift-and-stitch, and deconvolution layers and found the latter to be more effective and

efficient.

2.4.2 U-Net

Inspired by the improvement achieved by FCNs on the task of semantic segmentation, Olaf

Ronnenberger et al. introduced an architecture for biomedical image segmentation in 2015

called U-Net [45]. The architecture of U-Net is shown in Figure 2.8. The U-Net, being

Figure 2.8: U-Net Architecture [45]

a variant of FCN, inherits the property of FCN like reduced computation time. However,

due to the specific property of the architecture, U-Net can only work on image sizes that

satisfy certain conditions. U-Net architecture has two different but unique parts. The

contraction phase, also sometimes known as the encoder, is used to capture the context

of an image. Basically, it increases “what” and reduces the “where” in the image. The
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expanding phase, also sometimes known as the decoder, is used to enable precise localization

using transposed convolution. So basically, the expanding phase adds “where” to the

imagery. The main difference from a FCN is that convolution layers are followed by another

successive convolution layer during the contraction phase and pooling operators are replaced

by upsampling operations in the expansion layer. In order to localize, high-resolution

features from the contracting path are combined with the upsampled output. A successive

convolution layer can then learn to assemble a more precise output based on the combined

information.

In a recent study published in 2019 by Yara Nohajerani et.al., the authors were able

to modify the U-Net architecture for effectively detecting glacier calving front margins

in satellite images [35]. They trained their neural network architecture with glaciers from

Jakobshavn, Sverdrup, and Kangerlussuaq in Greenland and test the results on images from

Helheim glacier to evaluate the performance of the approach. They were trained on images

obtained from Landsat 5 (“green” band) and Landsat 7 and 8 (“panchromatic” band).

They performed the training on a set of 123 preprocessed images utilizing the capacity of

U-Net to perform well with a small set of data. Ten percent of the image during training

was left aside for cross-validation of the model and to prevent overfitting. The optimizer

they used is Adam and performed the training on a batch of 10 images at a time. They

use the concept of variable learning rate in which the learning rate is reduced by half after

every 5 epochs without improvement in the accuracy. This is done to ensure the network is

converging as with higher learning rates the network seems to diverge. The neural network

is able to get an accuracy of 92.4% on the training set and 93.6% on the test set after 54

epochs. Upon testing, they observed a mean deviation error of 96.3m, equivalent to 1.97

pixels on average which are comparable to the mean error of 92.5m obtained from hand-

drawn results on the same resolution. As a comparison, the Sobel filter, a commonly used

analytical edge-detection method, results in a mean error of 836.3m on the same dataset.

Figure 2.9 shows the comparison among Sobel filter, U-Net, and manual labeling. Here NN

depicts the corresponding extracted calving fronts using U-Net.
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Figure 2.9: Comparison of U-Net Architecture with Other Methods [35]

2.5 Active Contour Models (ACMs)

Active Contour Models (ACMs) is a broader term that includes algorithms such as snakes [24],

intelligent scissors [36], and level set methods [39]. Among these, snakes has been effectively

used to map glacial lakes in Tibetian Plateau [55, 10]. Snakes is an energy-minimizing, two-

dimensional spline curve that moves towards features such as edges in images. The internal

spline energy function of the snakes algorithm is shown in equation 2.1.

εst =

∫
α(s)

∥∥fs(s)∥∥2 + β(s)
∥∥fss(s)∥∥2 ds, (2.1)

where s is the arc-length along the curve f(s), and α(s) and β(s) are the first-order and

second-order continuity weighting functions that penalize length and curvature of the spline

respectively.

In addition to this internal spline energy, snakes can be implemented to simultaneously

minimize external image-based potentials [49]. The image-based potentials are sum of

several terms given by the equation 2.2.

εimage = ωlineεline + ωedgeεedge + ωtermεterm (2.2)
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where line term attracts the snakes to dark ridges, edge term attracts the snakes to strong

gradients (edges), and term term attracts it to line terminations. However, in practice,

most systems only use the edge term.

Using a variation of an active contour model, Fang Chen et al. were able to automate

the process to generate a glacial lake map in Tibetian Plateau (TP) region using Landsat

8 imagery [10] effectively. The process was carried out for satellite images collected for

the year of 2015. The initial data collected through Landsat 8 was divided into 4 test

sites. A validation set was created by sampling images of glacial lakes from those four

typical regions as samples. This is to ensure that the validation samples were characterized

by diverse climatic conditions, physical properties, and surrounding environments. The

methodology used by the authors can be divided into three parts.

1. Image preprocessing: During the preprocessing part, the authors first selected the

least cloudy image and clipped by glacier buffer. Then, the authors excluded glacial

lakes farther than 10km from a glacier terminus due to the assumed weak interac-

tion with glaciers. After that, they masked the topographic shadows and generated

initial lake boundaries by calculating Modified Normalized Difference Water Indices

(MNDWI). A buffer zone was added around the initial lake boundaries and the image

blocks were exported.

2. Regional Implementation of NLAC: The authors implemented NLAC algorithm to

generate glacial lake boundaries for the exported image blocks.

3. Data Post-Processing and Validation: The segmentation results were assessed along

the metrics kappa coefficients, commission and omission error, and overall accuracy

for the four test sites. The vector shapes generated after implementing the NLAC

algorithms were then added back to the thematic map.

Figure 2.10 shows an example of an image block for glacial lake extraction using the pro-

posed method. The red contour, the black contour, and the yellow contour indicate the
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initial outline obtained by global thresholding, the buffer zone of initial outline, and the

final segmentation result after regional implementation of NLAC respectively.

Figure 2.10: Example of an Image Block for Glacial Lake Extraction [10]

The overall accuracy presented in the paper is higher than 91% for all the test sites

with Central Himalayas having the lowest overall accuracy of 91.57% and Southeast Tibet

having the highest overall accuracy of 97.65%.

2.6 Machine Learning Models

Traditional machine learning models in general require less computational power and train-

ing time when compared to Deep Learning based approaches. Machine learning based ap-

proaches have been shown to work well for land cover mapping problems such as mapping

debris glaciers [25], and coastal features [40]. We performed initial tests with algorithms

like naive bayes and support vector machines (SVM). However, due to the characteristics

of these algorithms like quadratic nature of SVM and assumption that features have multi-

nomial distribution in case of naive bayes, we decided to not use these algorithms. What

follows is a discussion of three ML approaches for our glacier mapping task.

1. Random Forest: To understand random forest, we must first look at decision trees.

A decision tree, put simply, is a graphical depiction of a decision and every potential
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outcome or result of making that decision. By displaying a sequence of steps, a

decision tree makes it easy to follow steps to reach one of possible outcomes. Having

more of these sequences is adding depth to the decision tree which makes it more

accurate. However, each depth adds 2n decisions to make where n is the current

depth of the tree.

Random forest are a collection of decision trees with a simple but powerful fundamen-

tal concept–the wisdom of crowds. The reason that the random forest model works

so well is based on a principle that a large number of relatively uncorrelated models

(trees) operating as a committee will outperform any of the individual constituent

models. It operates as an ensemble of decision trees where each individual tree in

the random forest produces a class and the class with the most votes becomes the

prediction of the model. Unlike increasing depth which increases the number of deci-

sions by a factor of 2n, adding a new tree only increases the number of decisions by a

factor of n. Random forest is one of the most popular predictive models in machine

learning due to its outstanding performance even with little parameter tuning [16].

2. Extreme Boosting(XGBoost): Extreme Boosting, also known as eXtreme Gradient

Boosting or XGBoost [12], like random forest, is an ensemble based technique for

performing supervised machine learning task. XGBoost is an efficient and scalable

implementation of gradient boosting framework [17]. Decision trees are the most

common type of individual model used in XGBoost and XGBoost seems to be similar

to random forest in many ways. The most distinct difference between random forest

and XGBoost is that the individual models (or trees) in case of XGBoost are not

built on completely random subsets of data and features like random forest. XGBoost

instead builds individual models sequentially by putting more weights on instances

with wrong prediction and high errors. XGBoost is one of the most powerful machine

learning algorithm at the time of writing. In case of XGBoost, the gradient is used

to minimize a loss function, similar to how Neural Nets utilize gradient descent to
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optimize weights. Lets say that XGBoost is an ensemble of multiple decision trees.

In each round of training, a decision tree is built and its predictions are compared

to the output we expect. We compute the gradient by calculating the difference

in predictions from the model and ground truth and use it to find the direction in

which to change the model parameters to reduce the error. Unlike neural nets, where

gradients are used to minimize the loss function and learn weights, in XGBoost, the

gradients are used to add the next tree to the ensemble. This in turn makes XGBoost

a powerful machine learning algorithm winning many competitions.

3. Multi Layered Perceptron (MLP): The basic unit forming MLP architecture is called

a perceptron. Each perceptron in a neural network architecture has one or more input

values (x1, x2, x3, ...xn) and produces a single output value. In case of multi layered

perceptron, this output value serves as an input to the next layer. The operation on

each neuron is
∑
Wi ∗ xi + bi followed by an activation function where Wi and bi are

the weights and bias values for the neuron respectively. Training a neural network

means selecting optimal values for Wi and bi for which the training set and the final

output of the network are close to each other. After each iteration, the difference

in labels from the training set and final output of the network is calculated and the

weights of the network are updated using a process known as “back propagation” to

make the output closer to the labels.

2.7 Summary

Multiple methods have been developed over the years for semantic segmentation such as

threshold segmentation, Sobel Filters, and Neural Networks [53]. Semantic segmentation

techniques have improved rapidly in recent years due to the progress in deep learning and

semantic segmentation with Convolutional Neural Networks (CNNs) [30, 45]. Traditionally,

deep neural networks usually require thousands of images as training images where the

desired features (in this case glaciers) have already been determined. However, a recent
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model, U-Net, [45] has been shown to provide a highly accurate semantic segmentation

with as little as 30 samples in the training data.

Various independent researches have shown high accuracy for such automatic methods

to map geomorphological features such as glaciers, glacier lakes, and glacier calvings. Tradi-

tional machine learning algorithms have shown to be able to delineate glaciers from satellite

imagery to some extent [25]. Furthermore, algorithms such as Non Local Active Contour

and U-Net, that were primarily developed for biomedical image segmentation, have been

shown to scale well for segmentation of remote sensing satellite imagery [10, 45]. We aim

to implement these methods to map glaciers in the HKH region and compare among their

performances. Additionally, we propose to combine multiple approaches to develop a novel

framework optimized for glacier segmentation.
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Chapter 3

Proposed Research

In this chapter, we first describe the dataset and its properties. We then present different

models that we used to train on the given dataset. Our proposed research divides the

segmentation task into two categories: Image based Segmentation, and Pixel based Segmen-

tation. We then describe the preprocessing steps on the input data that we implemented

in order to make our data compatible with the model.

3.1 Data Description

The HKH region covers an area of about 4.2 million km2 from 15.95◦ to 39.31◦ N lati-

tude and 60.85◦ to 105.04◦ E longitude extending across eight countries of Afghanistan,

Bangladesh, Bhutan, China, India, Myanmar, Nepal and Pakistan [5]. The training data

(features) are Landsat 7 satellite imagery queried using Google Earth Engine. The cor-

responding glacier mappings (labels) are provided by International Centre for Integrated

Mountain Development (ICIMOD) [5]. Figure 3.1 shows region bounded by each feature

image and the labels in geographical map.

3.1.1 Understanding the label data

The label data is a shapefile with unique geometric regions for each glaciers as a separate

polygon. The glacier outlines were derived semi-automatically using object-based image

classification (OBIC) method separately for clean ice and debris cover. The outlines were

then further edited and validated by carefully draping over the high resolution images from

google earth. The glaciers for the HKH region are labelled during the time period of 2005±3
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(a) Landsat 7 image regions (b) Corresponding Glacier Labels

Figure 3.1: Data in Geographical Context

years. The geographic extent of these glaciers range from 27.492◦ to 38.346◦ N latitude and

67.631◦ to 98.492◦ E longitude.

3.1.2 Understanding the feature data

The feature data is a collection of 36 scenes from Landsat 7 satellite imagery used for gen-

erating glacier labels [5]. These scenes cover the area defined by the label polygons. Each

scene is of approximately 170 km north-south by 183 km east-west (106 mi by 114 mi) in

size. In addition to the 10 channels of Landsat 7 image in GEE, we included Normalized

Difference Snow Index(NDSI) [22], Normalized Difference Water Index(NDWI) [18], Nor-

malized Difference Vegetation Index(NDVI) [21], slope, and elevation as additional channels

or bands. We took the additional information about slope and elevation from the Shuttle

Radar Topography Mission (SRTM) digital elevation dataset and computed the remote

sensing indices using different bands from Landsat 7 images as shown in equation 3.1.

NDSI =
(B5 −B2)

(B5 +B2)
,

NDWI =
(B4 −B5)

(B4 +B5)
,

NDV I =
(B4 −B3)

(B4 +B3)
,

(3.1)
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Scan Line Corrector failure

The Scan Line Corrector (SLC) in the ETM+ instrument failed on May 31, 2003. Without

the effects of the SLC, the instrument images the Earth in a “zig-zag” fashion. This results

in some areas being imaged twice and others that are not imaged at all. The net effect is

that approximately 22% of the data in a Landsat 7 scene is missing when acquired without

a functional SLC. We use the multi-scene (same path/row) gap-filled products developed

by the U.S. Geological Survey (USGS) Earth Resources Observation Systems (EROS) Data

Center (EDC) to improve the usability of Enhanced Thematic Mapper Plus (ETM+) [11].

Figure 3.2 shows the image before and after SLC line corrector fix for one of the Landsat

7 satellite images.

(a) Image due to SLC failure (b) Image after fill

Figure 3.2: Fixing Scan Line Corrector Failure

3.2 Image Based Segmentation

In this approach, we sliced the ≈7700*7100 pixels Landsat 7 scene into 224 images each

of size 512*512 pixels in order to fit the data into memory for training. A corresponding

mask of the given 512*512 slice was generated using the given label data. A sliced image

and its corresponding mask are shown in Figure 3.3. Due to the property of the U-Net
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architecture to accept input data and output labels as images, such prepared data can be

directly fed to the model. This allows the model to retain spatial information from the

satellite image.

(a) Example image slice (b) Corresponding mask

Figure 3.3: Sample Sliced Landsat 7 Image and Corresponding Label Mask

Here, pixels with green color denotes debris glaciers, blue color denotes clean ice glaciers,

and purple color denotes background.

3.2.1 Data Preparation

After slicing the satellite image to the size of 512*512, we performed the following operations

on each slice to make it ready to be fed into the model.

1. Filtering: Many of the patches did not contain any glacier labels. In this step, we kept

the patches if they contained at least 10% of the pixels as glaciers and discard them

otherwise. This is necessary to ensure that the trained model is not skewed towards

non-glacier class due to the presence of higher number of samples in the class.

2. Reshuffle: The remaining images and masks were reshuffled.
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3. Random Split:The remaining images and their corresponding masks were randomly

split into training, testing, and validation groups of 70%-10%-20% respectively.

4. Generate Stats: Next, the mean and standard deviation of the images across each

channel/band were calculated and stored. This valuable information is later used to

normalize the input image for training purposes.

5. Normalization: The mean and standard deviation that we calculated in the previous

step were then used to normalize the final dataset.

6. Imputation: For all the input images, we checked for missing values (NaNs) and

replaced them with 0.

A total of 388 unique slices were achieved in the train directory, 110 unique slices in the test

directory, and 55 unique slices in the validation directory at the end of this preprocessing

step.

3.2.2 Model Architecture

For training such prepared data, we used a modified variant of U-Net architecture dis-

cussed in Section 2.4.2. We performed experiments with different variations of the U-Net

architecture by changing the number of channels in each layer, by changing the depth of

the network (total number of downsampling and its corresponding upsampling layers), and

by introducing dropouts in between the convolution layers. We then selected the best

performing model architecture.

3.3 Pixel Based Segmentation

In this approach, we isolated the pixels for each of the channels in from a sample of satellite

images that we prepared for image based approach. We then classified this feature data to

one of the labels “Clean Ice Glaciers”, “Debris Glaciers”, or “Background” using the mask
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we created. Afterwards, we train this prepared data on machine learning models mentioned

in Section 2.6 using samples from the training set and evaluate on test set. The validation

set was used to select the best hyperparameters. We then use the trained model to predict

corresponding class labels for each pixels in our test image to create segmentation mask

based on the predicted label and compute IoU with the ground truth.

3.3.1 Data Preparation

We randomly sample at most 60000 pixels (20000 pixels max for each class) from each slice

in the corresponding directory disregarding any spatial information between the pixels.

Each row of data consists of 15 features, one for each channel in the satellite image and one

of the three labels, “Background”, “Clean Ice Glaciers”, or “Debris Glaciers”. Since we

have less pixels for the “Debris Glacier” class, we undersample from background and clean

ice class on training and validation set so that we do not have class imbalance problem.

We leave the test set unchanged so that it may represent the actual distribution of pixels.

The distribution of the pixels is as shown in Table 3.1.

Table 3.1: Data Distribution for Pixel Based Segmentation

Label Training Validation Testing Total

Clean Ice Glaciers 3422713 905140 2200000 6527853

Debris Glaciers 3422713 905140 622072 4949925

Background 3422713 905140 2200000 6527853

Total 10268139 2715420 5022072 18005631
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3.3.2 Machine Learning Models

We train the model using Random Forest(RF), Gradient Boosted Decision Trees (XG-

Boost), and Multi Layered Perceptrons(MLP). We use the validation set to find the optimal

combination for selected set of hyperparameters for each model.

3.3.3 Evaluation Metrics

We perform evaluation on the test set along the metrics [47] described in Table 3.2 when

searching for best hyperparameters. We calculate the metrics averaged across different

Table 3.2: Machine Learning Models Evaluation Metrics

Evaluation Metrics Formula

Accuracy (Acc) (TP+TN)/N

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F score 2∗Precision∗Recall
(Precision+Recall)

*TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative,

N = Total Number of Samples in Test Set

classes weighted by the number of true instances for those classes using formula 3.2.

weightedm =

∑n
i=1wi ∗mi∑n

i=1wi

(3.2)

Here, weightedm represents weighted metrics score (accuracy, precision, recall, f score), wi

represents the true instances for class i, and mi represents the corresponding metrics score

for class i.
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3.4 Conclusion

The main objective of this chapter is to design experiments that will be adequate for answer-

ing our research question; “weather it is possible to accurately delineate glacier boundary in

an automated way using conventional machine learning and deep learning methods”. We

aim to answer the question by

1. presenting an automated, end-to-end, reproducible pipeline that is designed to delin-

eate glacier boundaries, and

2. analyzing results to compare conventional machine learning models and deep learning

architectures on the same test set.
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Chapter 4

Preliminary Results

In this chapter we present some experiments for training models to generate segmentation

masks for glaciers using the approaches mentioned in section 3.2 and section 3.3. We then

generate and present some segmentation masks for image slices in the test set using these

trained models. Lastly, we present quantitative evaluations of these masks generated using

different models and compare them.

4.1 Results: Pixel Based Segmentation

In this approach, we considered each band of the satellite imagery as an individual feature

each belonging to one of the labels “Debris Glaciers”, “Clean Ice Glaciers”, or “Background”

on machine learning models mentioned in section 2.6. We then found the optimal values of

hyperparameters for each model through evaluation on validation set. Finally, we computed

our metrics on the test set and report the performance of the model.

4.1.1 Random Forest

Using a tree with high number of features generally seemed to perform better for our

task of classification. However due to the nature of random forest, the improvement in

model performance is relatively small after a certain size of the tree. In order to maximize

efficiency of the model with respect to its size, we visualized the accuracy of the model with

incremental increase in number of trees and depth of the model as shown in Figure 4.1. Here,

for Figure 4.1a, we gradually increased the number of trees for the model keeping maximum

depth constant at 15. We observed little improvement on accuracy when increasing the

33



(a) Tuning Number of Trees for Random Forest (b) Tuning Depth for Random Forest

Figure 4.1: Tuning Parameters for Random Forest

number of trees beyond 15. The number of parameters increased linearly with increase in

number of trees for random forest as seen from Table 4.1. Similarly for Figure 4.1b, we

gradually increased the maximum depth of the model keeping the number of trees constant

at 15. Once again, we observed a point of diminishing return after maximum depth of

15. Furthermore, the number of parameter increases by a factor of 2n with increase in

maximum depth for the random forest model as seen from Table 4.2. We then trained a

Table 4.1: Random Forest Number of Trees vs Nodes (Maximum Depth 15)

Number of trees 1 2 5 10 15 20 25 50

Number of nodes 19123 38366 97769 198170 293379 387372 486447 981752

Table 4.2: Random Forest Maximum Depth vs Nodes (Number of Trees 15)

Max depth 1 5 10 12 13 14 15 16 17 18

Nodes 45 945 26971 82095 129715 199547 293379 403069 542655 691577

random forest model with 15 estimators and depth of 15 using data in the training sample.
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The performance of random forest model on test data is shown in Table 4.3.

Table 4.3: Experimental Result for Random Forest

Accuracy Precision Recall F-Score Train Acc. Train Time

80.19% 81.61% 80.19% 80.47% 83.46% 5.90 minutes

We observed an accuracy of 80.19% on the training set and 81.61% on the test set.

Furthermore, we observed an accuracy of 82.22% on the test set using model with number

of trees 50 and maximum depth of 50. However, there is a cost associated with this

increase in accuracy. This larger model takes 2.65 times longer to train (5.90 minutes vs

15.6 minutes) and is about 77.8 times larger to store (25 MB vs 1.9 GB). The confusion

matrix for the Random Forest model trained on maximum depth of 15 and 15 trees is

shown in Table 4.4. The feature importance scores on the random forest model with top

Table 4.4: Confusion Matrix for Random Forest

n=5022072
Predicted

Clean Ice Debris Background Total

True

Clean Ice 1740053 188090 271857 2200000

Debris 29750 554689 37633 622072

Background 292945 174776 1732279 2200000

Total 2062748 917555 2041769

10 most important features are shown in Figure 4.2. The top 3 features with highest scores

are “slope”, “elevation”, and “NDSI”.

Prediction on example image slice using the trained random forest model is shown in

Figure 4.3.
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Figure 4.2: Feature Importance, Random Forest

(a) Example Image Slice (b) Ground Truth (c) Predicted Mask

Figure 4.3: Sample Prediction using Random Forest

4.1.2 Extreme Boosting (XGBoost)

Similar to random forest algorithm, the improvement in model performance for XGBoost is

also small beyond a certain size. In order to maximize efficiency of the model with respect

to its size, we visualized the accuracy of the model with incremental increase in number of

trees and depth of the model as shown in Figure 4.1.

Here, for Figure 4.4a, we gradually increased the number of trees for the model keeping
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(a) Tuning Number of Trees for XGBoost (b) Tuning Depth for XGBoost

Figure 4.4: Tuning Parameters for Extreme Boosting

maximum depth constant at 15. Similarly for Figure 4.4b, we gradually increased the

maximum depth of the model keeping the number of trees constant at 25. The learning

rate is kept constant at 0.01 for all of the experiments.

Based on the graphs, we selected a threshold of 14 for maximum depth and 25 for

maximum number of trees for XGBoost. Like random forest, the number of parameters

increased linearly with increase in number of trees and increased by a factor of 2n with

increase in maximum depth for XGBoost. Our observation for various models with different

number of parameters to see the performance with respect to the size and training time is

summarized in Table 4.5.

We observed that the size of the model increases significantly with the increase in

maximum depth and the training time increases when adding number of trees. The detailed

performance of XGBoost model on test data using 25 trees with depth 14 is shown in

Table 4.6.

We also observed an accuracy of 84.76% on the training set and 80.60% on the test set

using XGBoost. The confusion matrix for the XGBoost model is shown in Table 4.7.

The feature importance scores on the XGBoost model are shown in Figure 4.5. We

observed that 8 out of the top 10 most important features are same for both XGBoost and
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Table 4.5: Extreme Boosting Parameters Tuning

Max. Depth Num. Trees Accuracy F-Score Train Time Model Size

10 50 78.00% 78.21% 1.71 hours 9.7 MB

10 100 78.27% 78.47% 3.46 hours 20 MB

16 10 79.18% 79.36% 34 minutes 44 MB

18 20 79.89% 80.07% 1.29 hours 181 MB

50 50 82.27% 82.40% 7.12 hours 2.2 GB

Table 4.6: Experimental Result for Extreme Boosting

Accuracy Precision Recall F-Score Train Acc. Train Time

80.60% 82.06% 80.60% 80.87% 84.76% 2.54 hours

Table 4.7: Confusion Matrix for Extreme Boosting

n=5022072
Predicted

Clean Ice Debris Background Total

True

Clean Ice 1736951 189282 273767 2200000

Debris 27761 563121 31190 622072

Background 279626 172845 1747529 2200000

Total 2044338 925248 2052486

random forest model. Furthermore, the top 3 features “NDSI”, “slope”, and “elevation”

are same for both models albeit the scores being different.

Prediction on example image slice using the trained XGBoost model is shown in Fig-

ure 4.6.
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Figure 4.5: Feature Importance, Extreme Boosting

(a) Example Image Slice (b) Ground Truth (c) Predicted Mask

Figure 4.6: Sample Prediction using XGBoost

4.1.3 Multi Layered Perceptrons (MLP)

We first determined the optimal parameters for the classifier using grid search. The optimal

parameters were found to be: optimizer, adam; learning rate, e−5; three hidden layers with

the number of neurons on each layer 128, 256, and 128 respectively; number of iteration, 250;

and L2 regularization parameter, 1. We then trained the MLP with optimal parameters.

The performance of MLP model on test data is shown in Table 4.8.
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Table 4.8: Experimental Result for Multi Layered Perceptrons

Accuracy Precision Recall F-Score Train Acc. Train Time

76.99% 78.63% 76.99% 77.32% 77.85% 15.04 hours

Table 4.9: Confusion Matrix for Multi Layered Perceptron

n=5022072
Predicted

Clean Ice Debris Background Total

True

Clean Ice 1695816 219228 284956 2200000

Debris 44372 532768 44932 622072

Background 372218 190093 1637689 2200000

Total 2112406 942089 1967577

We observed that the accuracy of the MLP model is lower than random forest and

XGBoost. However, the final size of the trained model is the smallest for MLP among the

ones we observed. The trained model using MLP is about 2.1 MB in size while that of

XGBoost is about 2.2 GB. We also observed that the training time of MLP was 1.5 times

lower than that of XGBoost. The confusion matrix for MLP model is shown in Table 4.9.

Prediction on example image slice using the trained multi layered perceptron model is

shown in Figure 4.7.

4.2 Results: Image Based Segmentation

After preparing the data as mentioned in section 3.2.1, we trained with a modified variant

of the U-Net architecture to evaluate the performance of the model.

We trained the U-Net model with Adam as the learning algorithm and weighted dice

loss as our loss function. We used an initial learning rate of e−4 and decreased the learning

rate by 0.1 for no change in validation loss for 20 epochs until the minimum learning rate
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(a) Example Image Slice (b) Ground Truth (c) Predicted Mask

Figure 4.7: Sample Prediction using Multi Layered Perceptron

of e−6 is reached. We trained the model for 250 epochs with a batch size of 16. Spatial

dropout with dropout probability 0.3 is introduced after the second convolution layer in

each level to prevent the model from overfitting.

Dice loss originates from a statistics developed in 1940s, called Sørensen–Dice coeffi-

cient, to gauge the similarity between two sample. Milletari et al. later brought it to

computer vision community for 3D medical image segmentation [34]. As there are fewer

pixels corresponding to the debris glaciers labels, the model, during training, tends to over-

look debris glaciers. As a solution to this, we use weighted dice loss and assigned the debris

glaciers class with higher weight. The weighted dice loss is shown in the equation 4.1.

Loss(labels, preds) = 1 −
c∑

i=1

wi ∗ 2 ∗
∑N

j=1 labelsij ∗ predsij∑N
j=1 labels

2
ij +

∑N
j=1 preds

2
ij

(4.1)

Here, c is the number of classes in output labels and wi is the weight for class i. We weigh

classes clean ice, debris glaciers, and background by weights 0.9, 0.6, and 0.2 respectively.

Dropout [48] is a commonly used technique to prevent the model from overfitting.

Overfitting in deep learning is a term used to denote when the model performs exceptionally

well on training data but poorly in the validation data. This means, instead of learning

features of the training data, the model is memorizing the training data itself. Dropout

is used to prevent overfitting by dropping out neurons from layers randomly during the

41



training phase. Spatial Dropout, [50] unlike regular dropouts, randomly sets entire feature

maps (channels) to 0, rather than individual ‘pixels’. This seems to work better for images

as adjacent pixels are highly correlated. This in-turn prevents the model from memorizing

the training data.

Prediction on example image slice using the trained U-Net model is shown in Figure 4.8.

(a) Example Image Slice (b) Ground Truth (c) Predicted Mask

Figure 4.8: Sample Prediction using U-Net Model

We see that the segmentation mask generated by the U-Net model is not fragmented

as in pixel based classifiers. This can be attributed to the property of CNNs to consider

neighboring pixels.

4.3 Combined Results

In this section, we observe quantitative evaluation for the segmentation masks generated

using different model architecture. The metrics computed for this section are averaged for

clean ice and debris glaciers class disregarding the background class. The average metrics

for all of the images in test set are shown in table 4.10.

Furthermore, we also observe the performance of models on clean ice glaciers and debris

ice glaciers separately. This comparison is shown in table 4.11.
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Table 4.10: Comparison Between Different Models

Model IoU Precision Recall Training Time Inference Time

Random Forest 39.15% 43.53% 86.09% 5.90 minutes 2.43 minutes

XGBoost 38.46% 44.58% 84.14% 2.54 hours 3.45 minutes

MLP 36.16% 41.45% 82.23% 15.04 hours 7.33 minutes

U-Net 47.67% 61.50% 68.89% 3.64 hours 6.91 seconds

Table 4.11: Performance comparison for clean ice and debris glaciers

Model
Clean Ice Glaciers Debris Glaciers

IoU Precision Recall IoU Precision Recall

Random Forest 58.07% 66.36% 82.29% 20.24% 20.71% 89.90%

XGBoost 56.63% 69.50% 77.15% 19.30% 19.67% 91.13%

MLP 54.52% 64.60% 77.74% 17.81% 18.31% 86.73%

U-Net 58.29% 74.24% 73.07% 37.07% 48.77% 60.71%

4.4 Generated Segmentation Masks

In this section, we present some segmentation masks that were generated using the trained

model for the test set for qualitative evaluation of the segmentation masks. Figure 4.9 shows

some of the example slices in the test data and Figure 4.10 shows the corresponding labels

for these images. Examples of segmentation masks generated using random forest, XG-

Boost, MLP, and U-Net on these slices are shown in Figure 4.11, Figure 4.12, Figure 4.13,

and Figure 4.14 respectively.
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Figure 4.9: Example Image Slices

Figure 4.10: Corresponding Labels

Figure 4.11: Prediction Mask using Random Forest

4.5 Significance of the Result

Based on quantitative analysis of the results, we observe that image based segmentation

method using U-Net architecture outperforms conventional machine learning based pixel

wise classification for mapping glaciers in satellite imagery in terms of mean IoU by a mar-

gin of at least 8.52%. The inference time for generating new labels using U-Net model was

about 21.1 times faster than the fastest pixel based segmentation approach using random
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Figure 4.12: Prediction Mask using Extreme Boosting

Figure 4.13: Prediction Mask using Multi Layer Perceptron

Figure 4.14: Prediction Mask using U-Net

forest. This adds to the usability of the method to predict glaciers for new images. Further-

more, one of the major issue seen with all pixel based segmentation is fragmentation of the

generated segmentation masks. However, U-Net does not seem to have this problem. The

performance improvement when using the U-Net model is highlighted when especially when

we observe the performance on debris glaciers. Qualitatively, the segmentation masks gen-

erated using U-Net seems to be better than the ones generated using pixel based methods.
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We must also add that we have not performed exhaustive search of optimal hyperparame-

ters in the case of U-Net model like we did for random forest and extreme boosting. Further

improvements in results may be observed through hyperparameter tuning.
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Chapter 5

Research Plan and Timeline

In this chapter, we present the proposed objectives of this work and the approximate

timeline to complete them.

5.1 Proposed Work

Now that we have shown that it is possible to generate accurate segmentation masks for

glaciers using satellite images, this opens up a number of research opportunities. Exploring

these opportunities, throughout the duration of this project, we will be working on the

following activities.

Experiments

1. The segmentation mask can be made better by using post processing techniques such

as erosion, dilation, connected components, and conditional random fields [26].We

will be experimenting with these postprocessing techniques to see if the quality of the

segmentation mask can be improved.

2. We will experiment with NOAA airborne imagery on the region of Eastern Beaufort

Sea Coast, Alaska for coastal feature segmentation using the same methodology to

test the generalization capability across different images and for different labels.

3. Active Contour Models have been effectively used by themselves [10, 54] or by inte-

grating them with deep learning based approaches [23, 33] for land-cover mapping

in satellite imagery. Combination of deep learning and contour models have also
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been shown to perform very well for the general segmentation tasks [42]. We will be

working on applying the active contour model for generating segmentation mask and

comparing the results with U-Net model. We will also be exploring at the ways to

combine the expressiveness of deep Neural Networks with the versatility of ACMs in

a unified framework.

Literature Review

1. Throughout the development of this project, we will be constantly reviewing the liter-

ature in order to discover possible techniques or approaches that might be integrated

to this project.

Publications

1. Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya (NeurIPS 2020

Workshop Tackling Climate Change with Machine Learning, Accepted): In this work,

we present a method based on U-Net architecture to support ecological monitoring

with a focus on glaciers. We present an automated method to outline both clean

ice and debris glaciers from readily available Landsat 7 satellite images. We also

release data and develop a web tool that allows experts to visualize and correct

model predictions, with the ultimate aim of accelerating the glacier mapping process.

2. Coastal Change detection using Landcover Mapping on airborne images (Progress

10%): In this work, we aim to extract coastal features from NOAA airborne im-

agery on the region of Eastern Beaufort Sea Coast, Alaska using machine learning

approaches. We aim to use the trained model to track coastal erosion in the region.

3. Generative adversarial network for super-resolution of satellite images (In Progress).
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5.2 Timeline

My research plan for this project summarizing all the related activities is shown in the

Figure 5.1.

Figure 5.1: Timeline

49



References

[1] Access to Data — Copernicus. https://www.copernicus.eu/en/access-data. (Accessed

on 12/10/2019).

[2] CS231n Convolutional Neural Networks for Visual Recognition.

http://cs231n.github.io/convolutional-networks/. (Accessed on 12/10/2019).

[3] Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0:

Technical Report.

[4] The World’s Third Pole Is Melting – The Diplomat.

https://thediplomat.com/2019/03/the-worlds-third-pole-is-melting/: :text=The

(Accessed on 11/07/2020).

[5] Bajracharya, S. R., and Shrestha, B. R. The status of glaciers in the Hindu

Kush-Himalayan region. Tech. rep., International Centre for Integrated Mountain

Development (ICIMOD), 2011.

[6] Barnett, T. P., Adam, J. C., and Lettenmaier, D. P. Potential impacts of

a warming climate on water availability in snow-dominated regions. Nature 438, 7066

(2005), 303–309.

[7] Beniston, M. Climatic change in mountain regions: a review of possible impacts.

In Climate variability and change in high elevation regions: Past, present & future.

Springer, 2003, pp. 5–31.

[8] Bookhagen, B., and Burbank, D. W. Toward a complete Himalayan hydrological

budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river

discharge. Journal of Geophysical Research: Earth Surface 115, F3 (2010).

50



[9] Brice, C. R., and Fennema, C. L. Scene analysis using regions. Artificial intelli-

gence 1, 3-4 (1970), 205–226.

[10] Chen, F., Zhang, M., Tian, B., and Li, Z. Extraction of Glacial Lake Outlines

in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing 10, 9 (2017),

4002–4009.

[11] Chen, J., Zhu, X., Vogelmann, J. E., Gao, F., and Jin, S. A simple and

effective method for filling gaps in landsat ETM+ SLC-off images. Remote Sensing of

Environment 115, 4 (2011), 1053–1064.

[12] Chen, T., He, T., Benesty, M., Khotilovich, V., and Tang, Y. Xgboost:

extreme gradient boosting. R package version 0.4-2 (2015), 1–4.

[13] Cruz, R., Harasawa, H., Lal, M., Wu, S., Anokhin, Y., Punsalmaa, B.,

Honda, Y., Jafari, M., Li, C., and Ninh, N. Asia. Climate change 2007: Im-

pacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change (08 2007), 469–

506.

[14] Dunn, M. Exploring your world: The adventure of geography. National Geographic

Society, 1989.

[15] Dyhrenfurth, G. O. To the Third Pole-The History of the High Himalaya. Nielsen

Press, 2011.

[16] Friedman, J., Hastie, T., and Tibshirani, R. The elements of statistical learn-

ing, vol. 1. Springer series in statistics New York, 2001.

[17] Friedman, J., Hastie, T., Tibshirani, R., et al. Additive logistic regression:

a statistical view of boosting (with discussion and a rejoinder by the authors). The

annals of statistics 28, 2 (2000), 337–407.

51



[18] Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vege-

tation liquid water from space. Remote sensing of environment 58, 3 (1996), 257–266.

[19] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V.,

and Garcia-Rodriguez, J. A review on deep learning techniques applied to se-

mantic segmentation. arXiv preprint arXiv:1704.06857 (2017).

[20] Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and

Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone.

Remote Sensing of Environment (2017).

[21] Goward, S. N., Markham, B., Dye, D. G., Dulaney, W., and Yang, J.

Normalized difference vegetation index measurements from the Advanced Very High

Resolution Radiometer. Remote sensing of environment 35, 2-3 (1991), 257–277.

[22] Hall, D. K., and Riggs, G. A. Normalized-difference snow index (NDSI).

[23] Hatamizadeh, A., Sengupta, D., and Terzopoulos, D. End-to-end deep con-

volutional active contours for image segmentation. arXiv preprint arXiv:1909.13359

(2019).

[24] Kass, M., Witkin, A., and Terzopoulos, D. Snakes: Active contour models.

International journal of computer vision 1, 4 (1988), 321–331.

[25] Khan, A. A., Jamil, A., Hussain, D., Taj, M., Jabeen, G., and Malik,

M. K. Machine-learning algorithms for mapping debris-covered glaciers: the Hunza

Basin case study. IEEE Access 8 (2020), 12725–12734.
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Chapter 6

Appendix: Segmentation masks

Figure 6.0.1: Image Slices in Test Set
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Figure 6.0.2: Corresponding Masks
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Figure 6.0.3: Corresponding Predictions using Random Forest

59



Figure 6.0.4: Corresponding Predictions using XGBoost
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Figure 6.0.5: Corresponding Predictions using MLP
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Figure 6.0.6: Corresponding Predictions using U-Net
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