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Abstract 

Mycobacterium tuberculosis (Mtb) is a bacterium that has been able to establish itself 

throughout evolution and is currently still an ever present threat resulting in approximately 2 

million deaths per year worldwide. The ability for Mtb to utilize cholesterol as a carbon source is 

maintained through transcriptional regulation mechanisms not fully understood. The Rv3574 gene 

codes for the self-regulated TetR-like transcriptional repressor KstR that controls the expression 

of large clusters of cholesterol catabolic genes in Mtb. This study aims to provide insights on the 

regulatory mechanisms of cholesterol catabolism, which could be used as therapeutic target to treat 

and control Mtb infection. To study the interaction between KstR, and its physiological ligand(s) 

in vitro, the KstR protein has been expressed and electrophoresis mobility shift assays (EMSA) 

conducted in the presence or absence of other potential ligands. X-ray crystallographic studies of 

KstR with its corresponding kstR DNA operator sequence as well as with its effector, 3-oxo-

cholest-4-en-26-oyl-CoA ester (3OCh(25S)26-CoA), have been performed to better understand 

the conformational changes KstR undergoes in physiological conditions. Surface plasmon 

resonance (SPR) and EMSA studies revealed that the KstR regulator protein binds to the substrate 

3OCh(25S)26-CoA with apparent higher affinity than that of its 3-oxo-4-cholestenoic acid 

precursor and SPR data has shown the ability for KstR to interact with both -S and -R stereoisomers 

of 3OCh26-CoA. Crystallization of KstR in its ligand bound condition with the 3OCh(25S)26-

CoA, as well as bound to the DNA operator, were accomplished showing different orientations of 

the repressor. The possibility for KstR isoforms exists in Mtb strains that could provide additional 

signaling functionality. Therefore, an extended KstR protein and mutant derivatives were 

examined and tested through SPR studies and showed hypothetical phosphorylation at the N-

terminus still allows for binding to KstR but at reduced affinity. The characterization of kstR gene 
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deletion studies in CDC1551 strains of Mtb illustrate alterations in growth that demonstrate 

regulatory aspects under the control of KstR are strain dependent and do not behave in similar 

manners. Growth curves were performed and showed Mtb clinical isolate CDC1551 ∆kstR growth 

is much more deficient than that of the WT. Thin layer chromatography experiments displayed 

how both CDC1551 WT and ∆kstR strains differ in how they metabolize the virulence factor PDIM 

after kstR deletion CDC1551 ∆kstR produces less PDIM after kstR deletion and complementation 

was unable to recover the PDIM loss to that of the WT. Proteomic studies for CDC1551 wild-type 

and the ∆kstR deletion strain showed KstR plays a role in Mtb, apart from cholesterol degradation, 

with downstream changes in enzyme quantities in various pathways, such as the glyoxylate cycle 

and PDIM production.  In CDC1551, both deletion and over-expression conditions of kstR have 

shown to cause attenuation at the onset and in persistence with RAW264.7 macrophage infection 

experiments. ACDC1551 KDKstR strain have been created and has shown similar results to that 

of kstR deletion in macrophage infection studies.. Western blots, thin layer chromatography, and 

RAW264.7 macrophage infection studies have shown that the CDC1551 KDKstR strain behaves 

in the same manner as the ∆kstR strain and a viable model for future mouse infection 

experimentation. Overall, the data presented provide significant and fundamental knowledge 

regarding the regulatory effects of KstR deletion and over-expression in Mtb, and distinguishes 

KstR as viable a drug therapeutic target.  
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Chapter 1: Background and Significance 

1.1 Mycobacterium tuberculosis evolution and history 

Mycobacterium tuberculosis (Mtb) is an ancient, and the more known etiological cause for the 

disease tuberculosis (TB). Mtb is an obligate aerobic, tubercle shaped bacteria, comprised of a 

hardy cell wall that is gram positive by nature. However, Mtb also presents a heavy waxy coating 

that prevents gram staining. Acid-fast staining is the technique used in most cases to verify 

presence of the bacteria. Although considered an obligate aerobe, Mtb is able to survive under the 

hypoxic environment that occurs within the granuloma during the course of infection within the 

lungs.  

The bacterium resides among a genus characterized by the Mycobacterium tuberculosis 

bacterial complex (MTBC). This complex includes a group of species of Mycobacterium that are 

genetically similar in nature that consists of both animal and human infecting species M. 

tuberculosis, M. africanum, M. bovis, M. microti, M. canetti, M. caprae, and M. pinnipedii, [1] 

The MTBC is recognized to be zoonotic in nature and yet a recurring common misconception of 

the complexes spread and evolution is the pathogen originated from animals although increasing 

evidence has shown otherwise. The most common ancestor of the MTBC is estimated to have 

emerged approximately 70,000 years ago from its progenitor during the Neolithic period in East 

Africa, the region from where modern human populations disseminated around the same time 

frame.[2] 10-20,000 years after further migration out of the horn of Africa, later (20-30,000 years 

ago), the separation of two major lineages occurred, one of which spread from human to animals 

after the start of domestication of animals.[3] An example of this occurrence, is the transmission 
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of the complex to seals where upon their subsequent migration to the Peruvian coast allowed the 

spread of the MTBC to the indigenous human population residing in South America.[3] 

Archeological findings have shown the presence of TB in 4000 year-old deformed human bone 

samples from areas such as Italy and Denmark while also finding the presence in Middle Eastern 

dig sites from the same periods. [4] This indicates the world population at that time had already 

seen the spread of TB alongside the migration of humans. Cases of TB have been being recorded 

and documented as early as the fifth century B.C by Hippocrates, dubbing the infection as phthisis 

which translates to consumption. [5] The numerous records at this time in history of those with 

symptoms of wasting away, chest pain, coughing, and sputum-containing blood demonstrates that 

TB was well established in society. The increase of TB infections during the 16th and 17th was 

witnessed due to the aide of the European population boom in which the formation of larger urban 

centers became a hotbed of a number of outbreaks. Shortly afterwards, during 19th century, TB 

infections peaked with the estimated mortality of one-third of the European population. [4] It was 

after this and during the latter half of the 19th century; TB infections began to decrease 

significantly. This can be attributed to more public health concerns and better sanitation of housing 

districts, although it has also been hypothesized natural selection of humans’ resistant to TB may 

have been partially responsible for this decrease. The premise of natural selection was later 

debunked due to TB infections declining so rapidly. [6] 

The discovery of Mtb being the causative bacterial agent for the vexing disease tuberculosis 

was discovered by Robert Koch in 1882. Before his discovery, TB was believed to be an inherited 

disease. [7] Unfortunately, during his studies, either the original bacteria isolated was not cultured 

or was lost. In 1905, Dr. Edward R. Baldwin isolated the TB strain that was serially passaged over 

time and has since become known as the commonly used lab strains H37Ra and H37Rv. [8] 
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Research has since then yielded a vaccination from the Bacillus Calmette–Guérin (BCG) strain 

derived from M. bovis that was first medically administered in 1921. [9] Nowadays, the vaccine is 

giving to infant children and some adults where there is a high risk and potential of acquiring the 

disease and is able to grant only partial protection.  

1.2  Virulence and Epidemiology 

The high virulence of the Mtb has been proven with its persistence to evolve along the 

evolutionary paths of humans. The pathogens presence has been a constant throughout the 

evolution of mankind. Unlike other infectious diseases, Mtb does not have distinguished virulence 

factors, for example toxin production. This has given the pathogen the ability to develop a number 

of virulence factors on many different gene levels. The genes responsible for the pathogenesis to 

prevail are amongst the entire genome rather than a specific set of genes that function to produce 

virulence. Examples of the wide range of functions are that of lipid and fatty acid metabolism 

(including cholesterol degradation), cell envelope proteins, secretion systems, responses to 

oxidative and nitrosative stresses that involve phagosomal properties and the inhibition of 

apoptosis, gene expression regulators, and many more. [10] The many ways the Mtb complex is 

able to produce a slew of virulence factors can perhaps be attributed as the reason that it has been 

able to establish an ongoing infection along the evolution and migration of the human species. 

In 2015, a known 10.4 million people became infected with TB. Of those, 1.8 million resulted 

in mortality. [11] Infection rates have been decreasing approximately 1.5% yearly since 2000 but 

the cases of infection in developing countries of low income and sub-standard health practices still 

contain 60% of the total infected count and account for 95% of death rates. Another especially 

important factor at play with death rates, are the populace that are infected with HIV that become 

more susceptible TB. The number of HIV-positive people to die from TB infection accounted for 
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35% of all HIV deaths in 2015. [11] The World Health Organization has set out to eliminate TB 

infection rates throughout the world by the year 2030. For this goal to be accomplished, the 

decrease of TB infections would have to be raised from the current 1.5% a year to between 4.5-

5%. Continued research to discover new methods to combat this deadly disease is key to these 

efforts. [11]  

1.3  Current treatment methods and antibiotic resistance 

Existing treatments for TB consist of a combination of approved front line drugs isoniazid 

(INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA) that that are to be taken for 

approximately 6-9 months. Treatment consists of an intensive 2-month phase that is followed by 

a continuation phase lasting between 4-7 months. The length of continuation phase relies on the 

extent of TB infection (lung cavitation) witnessed in the patient and bacterial load in sputum 

cultures at the completion of the intensive phase. Side-effects such as hepatitis, dyspepsia, severe 

skin rash, and joint pain are associated with the administration of these drugs. Due to the high 

occurrences and severity of side-effects associated with TB treatment, patient adherence to the 

treatment regimen often becomes a large issue. [12] It is this lack of adherence to drug regimens, 

due to poor health care provision, poor drug quality, and patient ending their own treatment 

prematurely that has been the major underlying cause for the uprising in cases of drug resistant TB 

strains (More refs).  

As noted previously, TB cases have been on the decline in the past 15 years. However, within 

this decline there has been an increase in the cases of multi-drug resistant strains. [11] According 

to WHO, Multi-drug resistant TB (MDR-TB) is a form of TB infection caused by Mtb that no 

longer responds to RIF and INH. RIF resistance occurs with mutations with rpoB where translation 

of the subunit of the RNA polymerase for RIF binding site is altered and affinity for the 
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antibiotic is rendered inactive. [13] The most common INH resistance occurs with mutations 

occurring with the katG gene that encodes for a catalase peroxidase enzyme used by the bacteria 

to activate INH. [14] Additionally, high INH resistance has been shown with mutations to the 

promoter region of the inhA gene which is also responsible for co-resistance with ethionamide 

(ETH), a structural analog of INH and a TB combating second line drug. [15] After the first line 

drugs have become ineffective other drugs such as fluoroquinolones and injectable antibiotics such 

as kanamycin and capreomycin are introduced for treatment. Once Mtb has become resistant to 

both INH and RIF, resistant to one of the fluoroquinolones and resistant to at least one of the 

injectables the Mtb strain is then considered to be as Extremely Drug Resistant (XDR-TB). 

Survival prognosis of those having XDR-TB is 50%. On a yearly basis, 9.5% of the MDR-TB 

cases have shown to have acquired some type of additional drug-resistance and 117 countries 

worldwide have reported to have at least one case of XDR-TB. [11] The implications of MDR-TB 

and XDR-TB being able to spread rapidly around the world with few methods available to contest 

the highly virulent and poorly curable TB strains, the mission of eradicating TB by 2030 could 

possibly be in jeopardy.  

1.4 Cholesterol side-chain degradation and pathogenesis 

The process of shuttling cholesterol into the Mtb bacterial cells is accomplished by the mce4 

gene cluster that codes for a number of membrane steroid transport proteins. [16] The initial steps 

to side-chain cholesterol degradation occur with the oxidation of the C3 carbon on ring A by 

extracellular ChoD or by the intracellular 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD). 

[17] The cytochrome P450s Cyp125 and/or Cyp142 then provide the oxidation reaction of the 

side-chain C26 forming 3-oxo-4-cholest-en-26-oic acid (3OCH26oic acid). [18-21] The 

attachment of coenzyme-A is conducted by the acyl-CoA ligase FadD19 creating 3-oxo-cholest- 
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Figure 1: Simplified Mtb cholesterol side-chain degradation pathway. Cholesterol side-

degradation in Mtb is carried out in three successive rounds of β-oxidation-like reactions. 

Degradation proceeds until the entire aliphatic side-chain is catabolized into either acetyl-CoA or 

propionyl-CoA, which are then routed to the TCA cycle for energy, and fatty acid and methyl-

branched fatty acid biosynthesis pathways. 
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4-en-26-oyl CoA (3OCH26CoA). [22] A series of acyl-CoA dehydrogenases carry out the 

formation of a dioxo group on the side chain in preparation of cleavage and results in propionyl-

CoA and 3-oxo-chol-4-en-24-oic acid. A second acyl-CoA ligase FadD17 catalyzes the attachment 

of CoA to the 3-oxo-chol-4-en-24-oic acid and the process is repeated until the entire side-chain 

of the cholesterol molecule has been degraded, which yields one acetyl-CoA and two propionyl-

CoA molecules. The propionyl-CoA created are shuttled to the TCA cycle for acetyl-CoA and 

either the methylcitrate cycle or methylmalonyl pathway for propionyl-CoA. (Fig. 1) After the 

first cycle of β-oxidation of the cholesterol side-chain has been completed the onset of A/B ring 

degradation takes place. While the remaining sterol degradation steps remain relevant, cholesterol 

side-chain is the focal point of this research. 

The sequential β-oxidation of the cholesterol side-chain results in shortened acetyl-CoA and 

propionyl-CoA carbon chains. [23] The acetyl-CoA formed can then be shuttled to the Citric Acid 

Cycle for direct energy utilization. The propionyl-CoA can be diverted to either the methyl citrate 

cycle, resulting in acetyl-CoA and energy or directed to the methylmalonyl pathway where methyl-

branched fatty acid formation occurs. [24] The methyl-branched fatty acids created by this 

pathway are the precursors for the biosynthesis of complex virulence lipids, such as phthiocerol 

dimycocerosates (PDIMs) that are known to reside as free lipids on the Mtb cell wall. [25] PDIM 

is a known virulence factor that when deficient has shown as a protective method for Mtb survival 

in vitro by decreasing the host response to the bacteria. [26] Increased amounts of cholesterol 

during Mtb growth also increases amounts of PDIM found on the surface. [27] It is presumed that 

the cooperative link between the increased amounts of PDIM and cholesterol as a carbon source 

is due to the shift of side-chain degradation and the influx of propionyl-CoA to the methylmalonyl 

pathway.  
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After the introduction of Mtb bacilli to the lungs, alveolar macrophages ingest the bacteria 

through phagocytosis. This process is facilitated by the presence of plasma cholesterol-rich 

microdomains associated with the Tryptophan-Aspartate containing coat protein (TACO) and the 

reduction of cholesterol coincides with the reduction of Mtb intake by the cell. [28, 29] 

Additionally, the cell surface of Mtb presents a Receptor-Ck -like molecule that has shown to have 

a high affinity to cholesterol that provides stable binding to the macrophage cell membrane. [30] 

A normal occurrence for the host’s response would be the formation of lysosomes where the 

bacteria would be degraded and used for further immunological responses. This however does not 

occur in the presence of Mtb. Phagosomes that contain Mtb bacilli fail or delay to perform the 

microbicidal functions of pH reduction through the recruitment of vacuole proton-ATPase (V-

ATPase) that usually takes place in the phagosome maturation process. [31] This in turn prevents 

phagosome-lysosome fusion through preventing the acidification of the microenvironment where 

the bacilli are able to remain masked within the cell and begin to multiply. [32] During this event, 

cholesterol rich foamy macrophages begin to surround the macrophages containing bacteria and 

the formation of the granuloma is initiated. [33] The bacteria within the granuloma are insulated 

from any further immunological responses that might normally occur. It is within this sequestered 

environment where Mtb is able to persist and lay dormant for possibly decades.  

The granuloma is a focal point for studies regarding Mtb survival during infection. It is rich 

with lipid nutrients where the pathogen is able to begin metabolically adapting responses to the 

environment to maintain persistence. [34, 35] Earlier transcriptional studies showed the induction 

of genes encoding fatty acid degradation enzymes leading to the recognition that lipid carbons are 

a preferred nutrient source during in vivo infection. [36] It was later discovered that Mtb possessed 

a number of genes dedicated to the uptake and degradation of host membrane cholesterol from 
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macrophages and that this pathway was essential for the breakdown of host membranes as a 

required carbon source during chronic infection. [37-39] 

1.5 Lipid Metabolism  

The cholesterol catabolic pathway functions in a multi-step process whereby once the 

cholesterol has been shuttled into the cell; it undergoes the initial steps of degradation, which 

begins, with the β-oxidation of the aliphatic side chain by key enzymes such as Cyp125. [18] 

Cyp125 initiates β-oxidation with the catalysis of the cholesterol and 3-oxo-4-cholesten-3-one C26 

through hydroxylation. The process of side-chain degradation continues through several other 

enzymes until the original cholesterol molecule has been altered to androstenedione. The by-

products of the β-oxidation result in the production of propionyl-CoA and acetyl-CoA, metabolic 

and energy utilizing molecules in Mtb  respectively. [40]  

 Mtb is known to be substantially sensitive with increases in propionyl-CoA accumulation, 

as it is the precursor for toxic metabolites, and therefore has adapted at least three different 

pathways by which it can process the fatty-acid derivative. [23, 41, 42] The methylcitrate cycle 

consists of two isocitrate lyases (ICL) that convert propionyl-CoA to either pyruvate or succinate 

through the glyoxylate cycle that is shuttled to the TCA cycle. [42, 43] Propionyl-CoA carboxylase 

converts propionyl-CoA to methylmalonyl-CoA, which is then converted to succinate through the 

highly dependent vitamin B12 methylmalonyl pathway (MMP). [41]  Another path for 

methylmalonyl-CoA, rather than be converted to succinyl-CoA, is to be diverted into the 

metabolism of methyl-branched fatty acids, which are the foundations of the Mtb cell wall lipids. 

[44-46] Mtb cell wall lipids are highly complex that provide hydrophobic protection for the 

bacteria and act as virulence factors. [47] Methyl-branched fatty acids such as phthiocerol 

dimycocerosate (PDIM) a cell wall surface associated lipid produced through the MMP have 
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shown to protect Mtb from host innate immune responses and mutants deficient in PDIM are 

attenuated and killed by the host during the first two weeks of infection. [26, 47, 48]  

1.6  The negative transcriptional regulator KstR 

The catabolism of cholesterol process is controlled by two negative TetR-like 

transcriptional regulators, KstR and KstR2. [49-52], with KstR being responsible for the 

breakdown of the side-chain and A/B rings while KstR2 controlling the degradation of the C/D 

rings. The production of the enzymes required for cholesterol catabolism resides within the auto-

regulated kstR regulon. This regulon consists of approximately 70 genes that are involved with the 

uptake and degradation of the cholesterol molecule as well as play a significant role towards lipid 

metabolism. [27, 53] KstR regulated genes are known to be up-regulated in hypoxic, cholesterol-

rich environments that are provided by the granuloma environment during TB infection and 

persistence. [54] TetR-like transcription regulators are proteins that often act as repressors and 

serve to function as prokaryotic regulatory elements for a wide range of physiological responses 

to environmental changes. [55] Transcriptional regulators in the TetR family operate by controlling 

genes that are involved in multidrug resistance, enzymatic reactions for catabolic pathways, 

pathogenicity, environmental stressors, and biosynthesis of antibiotics. The archetype for TetR-

like negative regulators is homo- 
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Promoter 
kstR 

Operator 
KstR Regulated Gene(s) 

KstR 

Promoter 
kstR 

Operator 
KstR Regulated Gene(s) 

KstR-effector complex 

Figure 2: Depiction of KstR and effector-induced de-repression. KstR is a negative 

transcriptional regulator that was shown to bind to approximately 74 DNA operator sequences 

within the Mtb genome, halting production of transcripts involving cholesterol catabolism. Upon 

binding of an effector, the KstR-effector complex dissociates from the DNA and the expression 

of KstR-regulated genes is de-repressed.  
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dimerization where control is initiated with introduction of an effector molecule to initiate de-

repression or as a two-component system. [55] (Fig. 2) Regulators that serve as two domain 

proteins have a DNA binding domain and a signal-receiving domain that is able to confer a signal.  

Recently, another TetR-like regulator, EthR, has shown to halt the proteins ability to bind 

to the DNA through post-translational modification (PTM) phosphorylation of specific 

serine/threonine amino acids located in the N-terminal of the protein.[56] Like its EthR 

counterpart, KstR also has a number of serine’s and threonine’s located in the N-terminal that 

could serve as a mechanism for the regulation of KstR controlled genes and hence the cholesterol 

catabolism in Mtb (Fig. 3). When entered into the bacterial phosphorylation prediction server 

NetPhosBac [57], the N-terminal serines and threonines are chosen as possible sites of 

phosphorylation yet only the serine located in the 10 position is deemed a likely candidate for a 

PTM. To discover additional mechanisms as to how KstR is able to adapt to cellular signals would 

be beneficial to study further. 

KstR is not shown to be an essential gene requirement for the growth of the bacteria but 

has been shown to be up-regulated in macrophage infection, present at the onset of immunological 

responses in the mouse model of infection and required for mouse infection. [36, 58, 59] The 

requirement of KstR during infection in vivo suggests that deregulation of cholesterol catabolism 

has a marked attenuation effect on the virulence of Mtb. It is suspected the absence of KstR 

promotes attenuation likely due to the over-expression of enzymes within the cholesterol catabolic 

pathway that alter the levels of the catalytic products. Whether this is specifically due to the over-

production of a particular transcript or specific set of transcripts, it is unknown and further 

investigation is warranted. 
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Figure 3: Multiple sequence alignment and phosphorylation prediction of KstR with 

N-terminal 21 amino acid extension. (Top) Modeling with UCSF Chimera software of 

KstR with 21 amino acid extension. (Middle) Translation of the N-terminus denoting the 

serines and threonines predicted to be possible phosphorylation sites and the conservation 

through various Mycobacterium species. (Bottom) Probably prokaryotic phosphorylation 

sites of KstR when entered into the NetPhosBac 1.0 server. 
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1.6  Significance 

THE CHOLESTEROL DEGRADATION PATHWAY HAS BEEN A FOCUS AS A 

PUTATIVE THERAPEUTIC OPPORTUNITY TO PURSUE FOR SOME TIME. [27] THE 

RATIONALE BEHIND THIS HYPOTHESIS STEMS FROM OTHER KNOWN MTB 

TETR-LIKE TRANSCRIPTIONAL REGULATORS SUCH AS ETHR TO HAVE ALSO 

BEEN SHOWN AS ADVANTAGEOUS TARGETS FOR DRUG DEVELOPMENT 

MODELING. [60, 61] ETHR IS ALSO A TETR-LIKE NEGATIVE transcriptional regulator 

that controls the transcription of the ethA gene encoding for the monooxygenase that is required 

for ETH activation by Mtb. [62] Inhibitors for EthR that render the protein incapable of forming 

the EthR-DNA interactions allowing for the up-regulation of ethA have been shown to decrease 

the concentration of ETH needed to decrease bacterial load in mice. [63]  

In order to demonstrate that KstR could be a potential therapeutic candidate against Mtb 

infection, its interaction with physiological effector and the impact of disrupting this interaction 

on Mtb’s ability to adapt to intracellular growth conditions must be evaluated in detail. Indeed, the 

inhibition of KstR-induced adaptive mechanisms is expected to synergize with current 

antitubercular therapy. The introduction of an analog to disrupt KstR function alongside the 

therapies that are well known could provide an additional treatment method or even possibly allow 

for lesser quantities of medication to be used in order cure TB infection. The lowering of 

medication dosages would lessen the severity and occurrences of harmful side effects that afflict 

undertaking the grueling treatment required for TB today. Diminishing such side effects would 

then allow patients adhere to drug therapies to increase and hinder the nascent formation of MDR-

TB and XDR-TB strains. 
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1.7  Hypothesis and Specific Aims  

Hypothesis 

The central hypothesis of this study aims to prove the negative transcriptional regulator 

KstR is required in Mtb for overall fitness, survival, and persistence during infection by 

maintaining a regulated state of cholesterol degradation, as the de-regulation is expected to alter 

the abundance of key metabolic virulence factors and energy sources, resulting in cellular stress 

and likely attenuation. 

 

Specific Aims 

 

Mycobacterium tuberculosis (Mtb) the bacterial agent known to cause the long-standing 

disease tuberculosis that is still a leading cause of deaths in the world.  Due to several underlying 

factors, for example, treatment regimens not being followed properly by patients, strains of single 

and multi-drug resistant Mtb have begun to emerge throughout the world over the course of the 

past few decades. The treatment for the disease tuberculosis is well known to be a long and arduous 

process. In many cases, medical treatment is often lacking in developing countries and the 

maintenance required for curing tuberculosis infection is not followed through as needed. The 

emergence of drug-resistant strains and the lack of the proper treatment in many countries around 

the world have warranted the need for novel therapeutic approaches to staving off the disease. 

Mtb has the ability to adapt to the host environment converting its nutrient intake to that of a 

cholesterol-rich diet. With this conversion, Mtb is able to survive within the lung and remains in a 

latent either stage or initiate a rampant infection. The pathway responsible for the degradation of 

the cholesterol needed for survival is maintained through a tightly knit regulatory system. 
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This work currently focuses on the characterization of the Mtb negative transcriptional regulator 

KstR. Although KstR has been previously described, full comprehension of how KstR is able to 

regulates efficiently by binding to the large number of DNA operators within the Mtb genome and 

respond to appropriate effector or inducer molecules for the act of de-repression has yet to be 

resolved. This proposal is aimed at identifying the physiological inducer ligand(s) of KstR and the 

binding characteristics of KstR to its corresponding DNA operator sequences in the presence of 

the proposed effector molecules. With the use of in vitro assays and the development of in vivo 

infection models we seek to distinguish in the importance of the different inducer ligands on the 

regulation and production of cholesterol catabolic enzymes required for infection persistence and 

maintenance. 

1.7.1 Specific Aim 1: Identification of the physiological inducer ligand(s) of Mtb KstR. 

In order to understand the transcriptional regulatory responses required for cholesterol 

catabolism the negative regulator KstR must interact with a ligand to initiate the release of the 

protein from the DNA. Establishing the ligand(s) that is responsible for this event to transpire is 

necessary to elucidate the characteristics of the protein and its regulatory role in the cholesterol 

catabolic process. We hypothesize tightly regulated utilization of host cholesterol in Mtb, regulated 

by KstR, occurs with the production of CoA esters of cholesterol side-chain intermediates. 

1.7.1.1 Specific Aim 1 Sub-Aim: Distinguishing if phosphorylation is capable of providing an 

additional regulatory mechanism signal for de-repression of KstR through in vitro and in vivo 

methods. 

The requirement for KstR to be able to adapt rapidly to environmental signals, further 

mechanisms of action would need to be exploited by the Mtb cell. For Mtb to be to begin breaking 
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down cholesterol and the resulting toxic catabolites, de-repression of the enzymes required must 

be initiated promptly after sensing the presence of cholesterol. Examination of how this is 

accomplished by verifying possible N-terminal phosphorylation of KstR post-translationally to 

inhibit binding to DNA. This discovery would enhance our comprehension as to how Mtb is able 

to respond rapidly to presence of cholesterol. 

1.7.2 Specific Aim 2: Determining the impact of KstR deletion (knockout) and depletion 

(knockdown) on Mtb’s ability to utilize cholesterol and to grow intracellularly. 

We will develop an ATc-inducible expression system that can deplete KstR and that mimics 

its chemical inactivation. We will apply this system to investigate the role of KstR in the regulation 

of cholesterol utilization activities during the course of infection. These results will provide 

insights into the impact of the de-regulation of cholesterol catabolic activities in both acute and 

chronic phases of infection. 
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Chapter 2: Identification of the physiological inducer ligand(s) of Mtb KstR 

2.1 Methods  

Cloning and expression of recombinant Mtb KstR in E. coli 

The Mtb H37Rv gene Rv3574 coding for the KstR protein along with a C-terminal hexa-

histidine tag sequence was amplified with the use of polymerase chain reaction (PCR) using the 

primers specified in Table X and Phusion HF DNA Polymerase (NEB). The amplified coding 

sequences of Rv3574 (27 ng) was inserted into the Nco I site of the pET-derived vector, pLIC-HK 

(50 ng), through the use of In-Fusion ligation independent cloning (LIC) using the Takara LIC 

cloning kit. The reaction was incubated at 55oC for 15 min and 25 ng of the reaction was introduced 

into 100 l NEB5-  (NEB) chemically-competent cells by incubation on ice for 30 minutes with 

subsequent heat-shock at 42oC for 30 seconds. The heat-shocked cells were incubated on ice for 5 

minutes and 900 l of SOC medium was added. The cells were incubated for 60 minutes while 

shaking at 250 rpm at 37oC for recovery. A 100- l aliquot of the recovered cells was plated on 

Luria-Bertani (LB) agar plates containing 50 µg/ml kanamycin (K50) then incubated overnight at 

37oC. A few resulting colonies were grown and screened for the insertion of kstR amplicon by 

restriction analysis and sequencing.  

1 ng of the screened recombinant plasmid DNA containing the kstR gene was then 

introduced into 50 µl E. coli BL21(DE3) and co-expressed with L-arabinose-inducible chaperones 

GroEL/ES, incubated on ice for 20 minutes, heat shocked at 42ºC for 90 seconds, incubated on ice 

for an additional 5 minutes, and recovered with 450 µl of S.O.C. medium for 60 minutes at 37ºC 

while shaking. 100 µl of the recovered cells were plated on LB agar plates containing K50 and 34 

µg/ml choramphenicol (Cm34). Approximately 3-4 colonies were chosen and used to  
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 Table 1. Primers and oligonucleotide sequences used for this study 

   

Name Sequence 

Expression  

KstRLIC-F 5’-AGGAGATATACCATGGCGGTACTTGCCGAGTC 

KstR-X-LIC-R 5’-TGAGAAGAACCCATGTCAGTGATGGTGATGGTGATGGGCGCTGTCTTGATCGC 

KstR-Asp-X-LIC-R 5’-AGGAGATATACCATGGATGATGCGAACGATAACGACGATGACGCTCCCGACGCA 

KstR-Ala-X-LIC-R 5’-AGGAGATATACCATGGCGGCAGCGAACGCGAACGCCGCTGCTGCTCCCGACGCA 

KstRLIC-R 5’-TGAGAAGAACCCATGTCAGTGATGGTGATGGTGATGGGCGCTGTCTTGATCGC 

EMSA  

EMSAkstR-F IRDye700-5’-TGCCCACTAGAACGTGTTCTAATAGTGC-3’ 

EMSAkstR-R IRDye700-5’-GCACTATTAGAACACGTTCTAGTGGGCA-3’ 

EMSAigr-F IRDye700-5’-ATAGTAATGAAACGTGTTCTAGCCTGGCC-3’ 

EMSAigr-R IRDye700-5’-GGCCAGGCTAGAACACGTTTCATTACTAT-3’ 

SPR  

SPRkstR-F Biotin-5’-TGCCCACTAGAACGTGTTCTAATAGTGC-3’ 

SPRkstR-R 5’-GCACTATTAGAACACGTTCTAGTGGGCA-3’ 

SPRkstR2-F Biotin-5’-CTGGCCGAGCAAGCGCTTGGTTGATAGT-3’ 

SPRkstR2-R 5’-ACTATCAACCAAGCGCTTGCTCGGCCAG-3’ 

SPRigr-F Biotin-5’-ATAGTAATGAAACGTGTTCTAGCCTGGCC-3’ 

SPRigr-R 5’-GGCCAGGCTAGAACACGTTTCATTACTAT-3’ 

Gene deletion  

5FLkstRVan-F 5’-TTTTTTTTCCATAAATTGGGACACCTCCAGAACGGTGA-3’ 

5FLkstRVan-R 5’-TTTTTTTTCCATTTCTTGGGTACCGCCACTTTCATGACC-3’ 

3FLkstRVan-F 5’-TTTTTTTTCCATAGATTGGGAACCAACCGAGGACCAGTA-3’ 

3FLkstRVan-R 5’-TTTTTTTTCCATCTTTTGGGACGGCTTCGTGGTGTATTC-3’ 

Complementation  

Promoter region-F-LIC 5’-ACGCGTGCGGCCGCGGCGTCGACAATTTCACATAGCAAT 

Promoter region-R-LIC 5’ -GCCGCCATGTAGCGGGCAGCTCCT 

kstR-ala-mutant-F-LIC 5’ -CCGCTACATGGCGGCAGCGAAC 

kstR-ala-mutant-R-LIC 5’ -AGATTTAAAGATCTGCTAGGCGCTGTCTTGATCGC 

ComplMtbKstR-F 5’-CATTGGTACCGCGTCGACAATTTCACATA-3’ 

ComplMtbKstR-R 5’-CATTGGTACCGGGCGAGCTATTGCTGAAG-3’ 
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inoculate a 50 ml LB broth containing K50 and Cm34 for overnight incubation at 37oC while shaking 

250 rpm. Four Fernbach flasks with 1 liter of LB media each was inoculated with the overnight 

culture and allowed to grow until reaching and OD600 between 0.4-0.6. Isopropyl β-D-1-

thiogalactoprpmyranoside (IPTG) was added to the cultures at a 1 mM concentration for protein 

induction and the cultures were allowed to grow for 3 hours at 37oC while shaking at 180 rpm. 

After incubation, the cells were centrifuged to collect the pellets at 4000 rpm and stored at -80 ºC 

until purification was performed.  

Lysis and Purification of KstR  

 The frozen stored expressed E. coli pellets were thawed on ice and suspended in 50 ml of 

ice-cold lysis Buffer A (50 mM Tris-Cl, 150 mM NaCl, 10% glycerol, 2.5 mM imidazole) and 0.5 

mg/ml lysozyme then incubated on ice for 30 minutes. Sonication was performed while protein 

homogenate was kept on ice with 0.5 second pulses for 3 minutes, 3 times, with 3 minute intervals 

between each round of sonication. Phenylmehtylsulfonyl fluoride (PMSF) was added in 100 µl 

increments at a concentration of 100 mM to the protein lysate before and between sonication 

breaks to prevent proteolysis. The protein lysate was then centrifuged at 10,000 rpm for 45 minutes 

for insoluble fraction separation and the resulting supernatant was transferred and further 

centrifuged at 100,000  g for 1 hour to separate the membrane-bound fraction. The supernatant 

was carefully removed and filtered through a 0.45 µm syringe filter (Millex) to remove larger 

particulates before performing purification steps.  

 For the purification process, two 5 ml His-trap FF columns (GE Healthcare) were attached 

to one another and equilibrated using 5 column volumes (50 ml) of Buffer A. The protein 

supernatant was loaded manually into the columns using a peristaltic pump (GE Healthcare) and 

the loaded columns were washed with 5 column volumes for removal of non-bound proteins and 
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debris. Throughout each step, loading and washes, the flow through was collected and used for 

analysis to ensure the proteins were being bound to the columns and not washing off. Using a 2110 

Fraction Collector (Bio-Rad), 10 column volumes of Buffer A and 10 column volumes of Buffer 

B (50 mM Tris-Cl, 150 mM NaCl, 10% glycerol, 150 mM imidazole) were added to each chamber 

and allowed to flow through the column via peristalsis at a flow rate of 2.5 ml/min. The protein 

elution fractions were collected in 5 ml collection tubes and analyzed on 12.5% SDS gels for the 

presence of KstR in a clean manner. The fractions containing KstR were collected and dialyzed 

with three rounds of buffer osmosis to remove any remaining imidazole. The protein was then 

concentrated (Millipore 30,000 MWCO membrane) and the concentration was measured with a 

Bradford Protein Assay.  

Electrophoretic Mobility Shift Assays with Mtb KstR and cholesterol catabolic pathway 

intermediates and other potential ligands 

The end-labeled IR-Dye probes with the KstRMtb operator sequences (Table 1) were 

annealed by heating to 100 oC for 3 minutes then allowed to slowly cool to room temperature. 100 

nM of recombinant purified KstR was incubated with 20 nM of labeled probes in binding buffer 

(2mM HEPES pH 8.0, 7.5 mM NaCl, 1mM MgCl2, 0.25% Tween-20, 2.5mM Dithiothreitol 

(DTT), 1 µg poly(dI-dC)) for 20-30 minutes with serial concentrations with known and other 

possible inducer ligands. Incubated reactions were loaded onto 5% native 75:1 polyacrylamide 

gels containing 0.5x TBE. Gels were electrophoresed for 1.5-2 h at 4 oC then imaged and analyzed 

using an Odyssey® Imaging System (LI-COR). 
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Crystallization, data collection and crystal structure determination of KstR in complex with 

DNA operator and 3-oxo-cholesten-26-oyl-CoA 

Prior to crystallization, KstR was diluted to 10-15 mg/ml by mixing with 10 mM Tris-HCl, 

pH 7.5, supplemented with the CoA ester derivative (25R)-3-oxocholest-4-en-26-oyl-CoA, or an 

annealed oligonucleotide duplex 5’-CTAGAACGTGTTCTAA-3’/5’-TTAGAACACGTTCTAG-

3’, representing an operon, both at 1:1 enzyme:ligand molar ratio. Crystallization conditions were 

determined using commercial high-throughput screening kits (Hampton Research) and a nanoliter 

drop-setting Mosquito robot (TTP LabTech) operating with 96-well plates, and a hanging drop 

crystallization protocol. Crystals were further optimized in 96-well plates for diffraction data 

collection. Plate-shaped KstR▪3-oxocholest-4-en-26-oyl-CoA crystals diffracting in the C2 space 

group grew from 11% PEG 3350, 90 mM NaSO4 and 13.3% MPD. The KstR▪DNA crystals grew 

from 21.7% PEG 6000, 0.2 M Na sulfate and 8% Tacsimate, pH 5.1. Prior to data collection, 

crystals were cryo-protected by plunging them into a drop of reservoir solution supplemented with 

20-25% glycerol, then flash frozen in liquid nitrogen. 

Diffraction data were collected at 100-110 K at beamline 8.3.1, Advanced Light Source, 

Lawrence Berkeley National Laboratory, USA. Data indexing, integration, and scaling were 

conducted using MOSFLM [64] and the programs implemented in the ELVES software suite [65]. 

The crystal structure was determined by molecular replacement using as a search model ligand-

free KstR (PDB ID 3MNL), and using the automated molecular replacement program package 

implemented in CCP4 software suit. [66] The coordinates were built using the BUCCANEER [66, 

67] and COOT [68] programs. Refinement was performed by using REFMAC5 software.[66, 69] 

Data collection and refinement statistics are shown in Table 2. 
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Surface plasmon resonance studies with KstR and corresponding DNA operators and 

potential ligand substrates 

Surface plasmon resonance experiments (SPR) were carried out using the Biacore T100 

(GE Healthcare) optical biosensor. The intergenic DNA fragments used for SPR experiments were 

purchased through Sigma (Table 1) and annealed using the technique previously mentioned for the 

EMSA studies. The coupling of streptavidin to a CM5 Series S Sensor Chip was performed with 

successive 3-min injections of 2 mg/ml streptavidin in 10mM sodium acetate (pH 4.5). Prepared 

biotinylated DNA fragments were injected through flow cells at 200 ng/ml until approximately 40 

Resonance Unit (RU) was reached. KstR binding to DNA fragments were carried out at 25 oC in 

HBS-EP+ (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.05% v/v Surfactant P20). The 

KstR protein-DNA interaction was determined by injection of protein in a concentration series 

(0.5µM-0.0039µM) at a flow rate of 50 µl/min for 7 minutes. For protein-ligand interaction runs 

protein was injected at a fixed 0.032µM concentration with titrating amounts (0.5µM-0.0039µM) 

of 3OCh(25R)26A and 3OCh(25S)26A present. Regeneration conditions were performed with 1M 

NaCl in 50mM NaOH at 50 µl/min for 10 s between each titration.  

Data analysis for the binding studies was conducted using Biacore T100 software. The 

buffer injection responses from the reference cell were subtracted in order to account for any non-

specific binding present. Equilibrium dissociation constants (KD), experimental data were fitted 

using a minimum of three data sets for each condition for 5s before the association phase ended. 

Graphpad Prism 6.0 was used to curve-fit the data. 
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2.2 Results 

Specific Aim 1: Identification of the physiological inducer ligand(s) of Mtb KstR. 

 KstR was successfully purified and able to be obtained in solution without precipitation. 

The ability for KstR to be purified was a trial and error as the protein was only able to be obtained 

with a shorter incubation time of 3 hours. Initially expression was tried overnight, but the result 

was a series of degraded proteins that was unusable. Further purification seemed unnecessary as 

the protein showed to be in a single band without the appearance of any extraneous bands of 

degradation products (Fig. 4). 

 It has been reported that 3-oxo-4-cholestenoic acid and 3-oxocholest-4-en-26-oyl-CoA are 

capable of binding to KstR to inhibit protein-DNA complex formation. [52, 70] The kstR operator 

is a palindromic consensus sequence that offers auto-regulation of kstR and would confer a higher 

binding affinity to the regulator rather than an operator that is only partially palindromic in nature 

such as the operator  for Rv3545c which lies upstream of the igr operon. To determine the ability 

for 3OCH(25R)26A to inhibit KstR-DNA complex formation on different operators in 

concordance with protein-DNA binding affinities, EMSA studies were performed with both 

Rv3545c (igr operon) and Rv3574 (kstR) operator sequences to show the interaction of the KstR-

DNA in the presence of either 3OCH(25R)26A or 2OCH(25R)26-CoA. (Fig. 5, A and C) Testing 

the inhibition of binding between the two operators confirm 3OCH(25R)26A is capable of 

releasing KstR from the igr operator (Fig. 5, A, B) much more than that of the kstR operator (Fig. 

5, C, D) but full release is not achieved at 100 µM for either of the operator sequences. The EMSAs 

displayed the formation of the multiple nucleo-protein signals present as the concentrations of 

3OCH(25R)26A are increased for both the Rv3545c and Rv3574 operators. (Fig.   
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Figure 4: Purfied KstR after dialyzing and concentration. SDS PAGE gel showing 

increasing concentrations of purified KstR. This figure denotes the cleanliness of the 

purification of KstR and validated the use for the recombinant protein for the experiments in 

this study.  

. 
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Figure 5: Electrophoretic mobility shift assay (EMSA) analysis of the inhibition of 

3OCH(25R)26A and 3OCH(25R)26-CoA on known KstR DNA operators. EMSA analysis 

indicates the ability for 3O25R26CoA to release binding at lower concentrations than its 3O     

(()(25R 26oic acid counterpart. Binding reactions contained 10 nM Rv3545c (A, B) or Rv3574 

(C, D) DNA operator, 100 nM of purified KstR and increasing concentrations of 

3OCH(25R)26A (top panels) or 3O25R26CoA (bottom panels). 
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5, A, C) It also appears as a result of the increased number of KstR-DNA complexes the resulting 

signal for the normally occurring KstR-DNA is diminished as a consequence.  

To verify the binding affinities of KstR to the different DNA operators, titrating amounts of 

KstR flowed over biotinylated DNA operator fragments for both Rv3545c and Rv3574 for SPR 

experiments proved KstR to have a much higher affinity to its own operator (6.486 nM KD) than 

that of the lesser palindromic sequence operator for the igr operon (43.76 nM KD). (Fig. 6) As the 

kstR operator showed to have the higher binding capability, this operator was used for all future 

experimentation. 

Once the concentrations of DNA and protein were acquired the binding capacity of the 

protein-DNA complex was tested with synthesized cholesterol catabolic pathway intermediates. 

These intermediates represent substrate products from the initial side chain degradation enzymes 

after the attachment of CoASH.  As depicted in Fig. 7, the only intermediates to fully ablate the 

formation of KstR-DNA operator complex were the 3OCh(25S)26-CoA and 3OCh(25R)26-CoA. 

The 3β-hydroxy-5-cholen-24-oyl (5C-CoA) was able to induce release but the signal for KstR-

DNA complex remained slightly. It was noted the hydroxyl group at the 3 position of the 

cholesterol rings for 23,24-bisnor-3β-hydroxy-5-cholen-24-oyl-CoA (5-BNC-CoA) and 5C-CoA 

not been altered to a ketone as the other substrates. It was decided to test whether changing the 3-

hydroxy to a 3-keto was able to prevent KstR-DNA formation. To modify the hydroxyl group to 

that of a keto group, the addition of cholesterol oxidase and catalase was added to the binding 

reaction and allowed to incubate for the normal amount of time. Changing the hydroxyl to a keto 

group at the 3- position allowed the release of KstR from the DNA but not as well as that of the 

3OCh(25)26-CoAs. After the addition of cholesterol oxidase 5-BNC-CoA proved to bind but only 

allowed for a slight release, yet the 5C-CoA was able to significantly change and prevent binding   
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Figure 6:  Surface plasmon resonance to examine the binding affinities between Rv3545c 

(igr operator) and Rv3574 (kstR) DNA operators. Biotin labeled DNA operators were 

coupled to the surface of a CM5 chip and KstR was introduced in increasing concentrations. 

KstR, shows a stronger interaction with the kstR operator than the 3545c operator.  
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Figure 7:  Electrophoretic mobility shift assay (EMSA) analysis of the inhibition of KstR 

- Rv3574 operator interaction upon addition of 3-OH steroyl-CoAs after conversion to 

their 3-oxo derivatives. Analysis indicates the failure of free CoASH to increase the poor 

effector activity of 3O(25R)26-oic acid. Binding reactions contained 10 nM Rv3574 operator, 

100 nM of purified KstR 5 µM 3-OH-steroyl-CoA and cholesterol oxidase (ChO).  
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to occur. Both outcomes proved that the 3OCh(25)26-CoA ligands remained the best suited 

substrates for the remainder of our studies. 

Crystal structures of the (25S)-3-oxocholest-4-en-26-oyl-CoA -bound and DNA-bound 

forms of KstR were determined to resolutions of 1.66 Å and 2.26 Å (Fig. 8) This structure defines 

a range of the conformational changes between inactive, (25S)-3-oxocholest-4-en-26-oyl-CoA-

bound KstR repressor and its active operon-bound form. Overall, KstR is a two-domain α-helical 

protein functioning as a homodimer. The three N-terminal helices, α1-α3, comprise the DNA 

binding domain (DBD) with α2 and α3 constituting classical helix-turn-helix (HTH) motif. The  

helices from α4 through α9 constitute the steroid binding site. The helices α8 and α9 from each 

monomer combine in four-helix bundle to build a dimer interface (Fig. 8). 

 Binding to the DNA sequence occurs through the KstR conformation more compact than 

that of the 3-oxocholest-4-en-26-oyl-CoA-bound KstR (Fig. 8 A, B). This conformation is 

achieved via increase of the buried dimerization surface from 1197 Å2 in KstR-ligand complex to 

1365 Å2 in the KstR-DNA complex accompanied by large scale relocation of the DBD of each 

monomer toward the dimer interface. The distance between the arbitrary selected reference points, 

C  carbon of R61, drops from 40 Å in the KstR▪3-oxocholest-4-en-26-oyl-CoA complex to 26 Å 

in the KstR▪DNA complex. As judged from the superimposed A-chains of both structures (Fig. 8, 

C), the largest conformational changes occur at the dimerization interface, including helices 8 

and 9, while DBDs relocate as rigid bodies so that the HTH motifs of two monomers are spaced 

precisely to fit the large DNA grove, one helical turn apart from each other. The minor groove is 

not recognized by KstR. (Fig. 9). 

Through analyzing our own crystallography data, it was noted that although the (25R) 

stereoisomer conformation of 3OCH26-CoA was introduced for the experiment, the ligand is 
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presented in the (25S) conformation in the structure itself. Despite the notably higher resolution 

achieved in this work, the CoA portion of the 3-oxocholest-4-en-26-oyl-CoA molecule is not 

visible in the electron density map (Fig. 10). This also coincides with results from the previous 

crystallography study performed. [70] Nevertheless, an isolated peak of the residual Fo-Fc electron 

density (purple mesh in Fig. 10) in vicinity of a cluster of the positively charged residues, K120, 

R123 and R127, in the protein surface within the reach of the CoA diphosphate group, evidence a 

possibility of electrostatic contributions of the CoA diphosphate moiety into binding affinity of 3-

oxo-cholest-4-en-26-oyl-CoA (Fig. 10).  

A previous study has shown the 3-oxo-4-cholesten-26-oyl-CoA cholesterol catabolic 

intermediate as being the best suitable ligand for KstR-DNA complex dissociation.[70] However, 

during the crystallography studies the absence of the CoA attachment to the sterol portion of the 

molecule was noted. To better understand the necessity of the attachment of the CoA to the 3-oxo-

4-cholestenoate, competition electrophoretic mobility shift assays were performed with a 

homogenous solution of a fixed concentration (50 µM) of free CoASH and a titration (2.5-100 

µM) of 3OCH(25R)26A as a possible solution to this circumstance. (Fig. 11, A) The EMSA 

showed the slight release of KstR after the addition of higher concentrations of 3OCH(25R)26A 

but this was to be expected as the prior EMSA studies have shown the slight release of KstR after 

the introduction of high concentrations of 3OCH(25R)26A. (Fig. 11, A, C) It did not show the 

release of DNA as has been seen with the CoA attachment of 3OCH(25R)26-CoA.  
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Figure 8: Overall structures of the (A) KstR▪(25S)-3-oxocholest-4-en-26-oyl-CoA (PDB 

ID 5AQC) and (B) KstR▪DNA (PDB ID 5FMP) complexes.  

In (A) and (B) protein homodimer is shown as a ribbon colored by the polypeptide chains A 

(cyan) and B (green). The -helices are numbered in the green chain. Double-stranded DNA 

in (B) is shown as a worm-like cartoon with the attached bases and sugar rings. The (25S)-3-

oxocholest-4-en-26-oyl-CoA moiety in (A) is in stick mode with carbon atoms highlighted in 

yellow. Distances in Angstroms are between the C carbons of R61, chosen as a reference 

point. (C) The DNA-bound KstR (green) and 3-oxocholest-4-en-26-oyl-CoA-bound KstR 

(cyan) are shown with the A chains overlapped. The 3-oxocholest-4-en-26-oyl moiety (yellow 

sticks) is shown bound to the A chain. The arrow points at the direction of DBD relocation 

upon formation of the KstR▪DNA complex. 

. 
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Figure 9: KstR DNA Binding Domain: The minor groove is not recognized by KstR. The 

only residue making H-bonding contact to a sides of the bases exposed in the major groove is 

R61 which interacts with G10.  
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Figure 10: Modelling of the CoA moiety of 3-oxocholest-4-en-26-oyl-CoA. (stick mode: 

carbon = yellow, oxygen = red, nitrogen = blue, sulfur = dark yellow, phosphorus = orange) 

based on the crystal structure of the KstR▪(25S)-3-oxocholest-4-en-26-oyl-CoA complex (PDB 

ID 5AQC). A single protein monomer is shown as a semi-transparent cyan ribbon. A cluster of 

the positively charged residues, K120, R123 and R127 (stick mode with the carbon atoms in 

pale cyan), located on the same face of the helix 5, each separated by one helical turn, is 

predicted to interact with the CoA diphosphate moiety. A fragment of the residual Fo-Fc electron 

density map countered at 2.7  (purple mesh) features an isolated peak in vicinity of the 

clustered residues where CoA diphosphate group is fitted. 
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As the CoA attachment is required, to check if the thio-ester bond between the sterol and CoA 

is needed for the release of the protein from the DNA, an endogenous ethyl-ester intermediate 

3OCH(25S)26-oate was extracted from a grown culture of CDC1551 and used as a ligand for 

EMSA experiments. (Fig. 11, B, C) The 3OCH(25S)26-oate was unable to release KstR from the 

operator at increasing concentrations of up to 25 µM. (Fig. 11, B) A competition assay was also 

done with 3OCH(25R)26-CoA at a constant concentration of 2.5 µM and increasing amounts of 

3OCH(25S)26-oate ranging from 0.195-25 µM to establish if the release of the KstR-DNA 

complex could be prevented. (Fig. 11, C) The ethyl-ester derivative was unable to compete with 

the thio-ester and 3OCH26-CoA remained the preferential ligand.  

As with the previously mentioned work, and our own, crystallography studies have shown the 

preference for the (S) stereoisomer conformation of the endogenous 3-oxo-4-cholestenoyl-CoA 

(3OCh26CoA). In order to synthesize both the (S) and (R) stereoisomers, (Scheme 1) 3-oxo-4-

cholestenoic acid (3OCHacid) was used for the attachment of CoA using the techniques mentioned 

in this study. Purified recombinant KstR was used in surface plasmon experiments to determine 

the kinetics for inhibition of binding to the DNA operator.  

Titrating concentrations of the -S (Fig 12, A) and -R (Fig 12, B) stereoisomers of 3OCH26CoA 

(0.976-250nM) in combination with a constant KstR concentration (6.25nM) flowed over the kstR 

DNA sequence showed that both conformations of the ligands prevented the binding of KstR to 

the DNA. (Fig. 12, A and B) The 3OCh(26S)CoA ligand showed the better inhibitor requiring a 

slightly lesser concentration preventing complex formation than the 3O25R26CoA counterpart 

(Fig. 12, C) 
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Figure 11:  Inability of 3OCH(25R)26A in the presence of excess CoASH and 

3OCH(25S)26-oate to prevent KstR-Rv3574 DNA operator interaction. Electrophoretic 

mobility shift assays were performed with 10 nM IRDye700-labeled Rv3574 DNA operator, 

100 nM purified recombinant KstR. (A) Increasing concentrations of 3OCH(25R)26A, and 100 

µM CoASH, added when indicated. (B) Titrating amounts of 3OCH(25S)26-oate was added to 

detect inhibition of binding. (C) A constant amount of 3OCH(25R)26-CoA (2.5 µM) and 

increasing amounts of 3OCH(25S)26-oate was introduced to determine competition of binding.  
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Figure 12:  Analysis of the interaction of KstRMtb with Rv3574 DNA operator and 

effector ligands measured by SPR. Sensograms showing the serial dilutions of 25S (A) and 

3OCH(25R)26-CoA (B) being flowed over a chip coated with biotinylated kstR operator with 

a constant KstR protein concentration of 6.25 nM. (C) Percent inhibition data showing the 

3OCH(25S)26-CoA ligand is capable of preventing formation of KstR-DNA complex slightly 

better than the 3OCH(25R)26- CoA.  
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Figure 13:  Inability of free fatty acids (C10-C18) and their CoA ester derivatives to 

prevent KstR -Rv3574 DNA operator interaction. EMSA analysis indicates that even at 100 

µM the fatty acids and their CoA derivatives are very poor effector ligands. Binding reactions 

contained 10 nM Rv3574 operator, 100 nM of purified KstR, 100 µM of fatty acids, 100 µM 

fatty acyl CoAs or 5 µM steroyl CoAs. Electrophoretic mobility shift assays were performed 

10 nM IRDye700-labeled Rv3574 DNA operator), 100 nM purified recombinant KstR, 

increasing concentrations of 3O(25R)26A, and 100 µM CoASH, when indicated. 
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Additional EMSA experiments with both fatty acids and fatty-CoAs were carried out to 

ascertain whether the cholesterol rings were required for prevention of KstR to bind to the DNA. 

None of the fatty acids or their respective CoA counterparts were able to fully inhibit KstR-DNA 

complex formation at what would be considered high physiological concentration of 100 µM. (Fig. 

13) There was a slight noticeable shift in complexes where the fatty-CoAs are present (Fig. 13, D), 

and a slight amount of DNA can be seen being released where myristoyl-CoA palmitoyl-CoA are 

present in the binding reaction. This was not completely unexpected, but if they were to serve as 

viable inducer ligands, complex release would have occurred at these higher concentrations.  

Specific Aim 1 Sub-Aim: Distinguishing if phosphorylation is capable of providing an 

additional regulatory mechanism signal for de-repression of KstR through in vitro methods. 

The designing of primers, cloning, and expression were carried out for the newly 

designated KstR protein encoding for the additional 20 amino acids at the N-terminus. This was 

also completed with the replacement of alanine or aspartate amino acids mutations at each of the 

serine and threonine sequences within the first 10 amino acids. The expression of these proteins 

were carried out in the same manner the previous truncated KstR was expressed with comparable 

yields. These newly expressed variants of KstR as well as the previously expressed truncated KstR 

were used for SPR experiments testing if there would be differences with alterations in binding 

mechanisms with the presence of the extension as well with the mutated N-terminus. The 

previously used KstR protein for the experiments in the first part of this aim will now be denoted 

as TR-KstR. 

 Surface plasmon resonance studies were carried out with the same protocol as the previous 

experiments as to not introduce any variations in results. The binding of the four different variants 

were used to flow over biotinylated DNA bound to the flow cell of a CM5 chip with increasing 
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concentrations and the binding affinities were measured. The TR-KstR showed to have a similar 

binding affinity as with previous experiments with a binding affinity to the kstR DNA operator of 

5.861 nM. Interestingly, the KstR and Ala-KstR recombinant proteins, the latter preventing the 

ability for any phosphorylation to occur at the N-terminus, bind to the DNA with similar affinities, 

12.26 nM and 12.62 nM respectively. The Asp-KstR phosphor-mimetic recombinant mutant 

showed an even lesser binding affinity to the DNA, 16.25 nM, although the inhibition of binding 

is not very dramatic. When analyzed for statistical differences, the recombinant KstR proteins with 

the N-terminal extension are statistically different from that of the TR-KstR showing the TR-KstR 

is able to bind to the DNA at a higher rate and denoting the most difference between that of the 

TR-KstR and the Asp-KstR mutant. There was no discernable statistical difference between any 

of the recombinantly expressed proteins that have the 20 amino acid extension.  

 All four of the KstR protein variants were then tested to determine the inhibition of binding 

to the kstR DNA operator in the presence of 3OCh(25R)26-CoA. Interestingly, the binding of the 

TR-KstR to that of the extended N-terminal KstR and the Ala-KstR all show similar inhibition 

when presented with the ligand. On the other hand, the inhibition of the Asp-KstR mutant was 

significantly increased to an affinity similar to that of the 3OCh(25S)26-CoA inhibition affinity 

with the TR-KstR performed in previous experiments. (Figs. 14 and 14, C)  
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Figure 14:  KstR binding and inhibition to DNA with N-terminal amino acids. (A) 

Surface plasmon resonance affinity studies for the truncated, full length, a phosphor-

mimetic aspartate mutant, and phosphor-ablative alanine mutants of KstR. Biotinylated 

kstR operator DNA was bound to the chip surface and increasing concentrations of  KstR 

variants were introduced to measure affinity. The truncated KstR has a higher affinity for 

the DNA (5.861 nM) and is able to bind better than the extended (12.26 nM). (B) The 

significance in DNA-binding differences between the full length and mutants variations of 

KstR. (C) A homongenous solution of KstR (6.25 nM) and increasing amounts of 

3OCH(25R)26-CoA were flown over the coupled kstR operator and measured for 

inhibition. (D) Statistical analysis of the differences for the inhibition of KstR-DNA 

complex formation. 
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2.3 Discussion 

The data obtained by our studies have confirmed that the capability of 3OCH26CoA acting as 

the best suitable ligand for the negative transcriptional regulator KstR at very low-level 

concentrations. The in vitro verification of this information coincides with the production of 

3OCH26CoA as a known physiological substrate produced in early stages of the Mtb cholesterol 

catabolic pathway via the enzyme FadD19. The production of 3OCH26CoA at an early stage of 

cholesterol degradation would allow the initiation of transcription thus generating the enzymes 

required to break down other cholesterol and fatty acid derivatives built up in the bacterial cell that 

could cause potential toxicity. However, it was observed that the KstR does not bind with the same 

affinity strengths for different operators.  

The ability for KstR to bind to a multitude of similar but not identical DNA operators suggests 

the cellular concentrations of potential ligands is more than likely at much lower concentrations 

that were observed in the our EMSA and SPR studies. The cytochrome P450 Cyp125 is the second 

step in the cholesterol degradation step and responsible for the oxidation of C26 of creating the 

3OCH26oic acid precursor required for the turnover into 3OCH26CoA by FadD19.The 

upregulation of key enzymes in the degradation pathway, such as Cyp125 under the control of the 

igr operator used in our studies, showed a much weaker binding affinity to the KstR protein. (Fig. 

5 and 6) This could also be translated as easier detachment of KstR from the igr operator with 

lesser concentrations of ligand. This dynamic was also seen in the EMSA with KstR and the igr 

operator. At higher concentrations of 3OCH26oic acid, was able to release KstR from the igr 

operator compared to the kstR operator. (Fig. 5) This coincides with previous studies performed 

with another operator sequence in M. smegmatis located upstream of the first enzyme in the 

cholesterol catabolic pathway 3- -hydroxysteroid dehydrogenase/isomerase (3- -HSD). [51] 
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This study showed 3OCH26oic acid was able to detach KstR from the 3- -HSD operator at 

relatively high levels and therefore was presumed to be the ligand for KstR. It is important to note 

that a kstR operator sequence upstream of 3- -HSD in Mtb is not present, and therefore the igr 

operator presented a more suitable model for our studies for the weaker binding operator.  

Being that the substrate for FadD19, 3OCH26oic acid, was tested as a potential ligand and 

failed to show the same release of KstR from its DNA operators with and without the presence of 

detached CoASH, the direct attachment of CoA appears to be a requirement for the rapid 

conformational change in KstR. (Fig. 11) The crystal structure data failed to represent CoA 

structure itself bound to the surface of KstR, although there are two distinct arginine residues that 

may be capable of nesting the CoA adenosine moiety (Fig. 10). Interestingly enough, the 

3OCH26CoA used for crystallization was in the R- stereoisomer conformation. The crystal 

structure denotes the 3OCH26-CoA in the S-conformation. The previous crystallographic studies 

done with KstR and 3OCh26-CoA also present the ligand in the S-conformation. [70] The method 

by which they obtained the ligand, it would have been in the R-stereoisomer form when presented 

to the protein for crystallization. The experiments in the previous work obtained 3OCh26-CoA 

through metabolic activity using recombinantly expressed FadD19 as the enzyme and 

commercially obtained 3OCh26-CoA and CoASH. FadD19 is known for the attachment of CoA 

to 3OCh26A in either stereoisomer conformation but not possess the racemization activity. This 

is surprising and could be caused from the positioning of the thioester bond between the cholesterol 

and CoA in the binding pocket once the ligand has been bound. It is suspected the thioester is 

reactive within the pocket with residues yet to be determined. This reactivity could initiate a shift 

in conformation from R- to S- which is the natural physiologically occurring cholesterol catabolic 

substrate conformation in Mtb. The introduction of an ethyl ester rather than a thioester bond 
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linking the acid and CoASH was also tested with the hopes in determining if the thioester bond 

was a requirement for KstR –DNA complex inhibition. The ethyl ester bond is non-reactive and 

less labile than that of the thio-ester and the inability for the substrate to act as an inducer ligand 

further suggests the site of the bond provides and energy to the pocket for the conformational 

change to occur. The requirement of the thioester bond in 3OCH26CoA also supports the EMSA 

results showing 3OCH26oic acid does not dissociate KstR and may be more of a necessity than 

that of the actual CoA itself. 

 The ability for all ligands binding to KstR in these studies has not been completely 

confirmed. It has already been established both 5BNC-CoA and 3OCh26-CoA are able to bind to 

KstR through crystallographic studies published by the Eltis group as well as our own unpublished 

crystollography. [70] The EMSA studies performed would suggest multiple ligands have the 

capability of binding to KstR but not have the ability for inhibiting KstR to form a protein-DNA 

complex. What was determined were the requirements for inhibition of complex formation. For 

inhibition of KstR to binding to the DNA, the ligand must possess a ketone at the 3- position of 

the cholesterol ring portion and a thio-ester attachment of CoA. Of the ligands tested, cholesterol 

acid, ethyl ester, ethyl ester-CoA, multiple fatty acids, and multiple fatty-CoAs, none of them were 

able to inhibit protein-DNA complex formation to an extent that proves they are inducer ligands. 

What was witnessed was the introduction of multiple bands of KstR-DNA complexes and shifts 

in the size of the complex formed. This suggests, if not confirm, that a majority of the ligands 

tested in this study are able to actually bind to KstR, just not inhibit the KstR-DNA complex from 

forming.  

Looking at the binding pocket where the cholesterol moiety is nestled into KstR exhibits no 

plausible reason for the 3OCh(25)26A to not be capable of binding to KstR in the same manner. 



 45 

(Fig. 8) The presence of the multiple bands after the introduction of the 3OCh(25)26A shows that 

it has the opposite effect of inhibition and increases binding in an oligomeric fashion to the DNA. 

This data coincides with the previous work done showing the thermos-dynamics of 3OCh(25)26A 

binding to KstR through isothermal calorimentric experiments. [52] Their results showed the 

binding temperature for KstR and 3OCh(25)26A to decrease rather than the expected rise in 

temperature. This would suggest that a conformational change does occur, but not in a mechanistic 

manner by which KstR is released or inhibited from binding to DNA. The DNA signal that is 

shown in the EMSAs, in what appears to be release at 100 µM of 3OCh(25)26A, may not actually 

be release of the DNA (Fig. 5) , but rather a sequestering of the amount of protein available to bind 

to remaining DNA in the reaction. This would confer a signal replicating the inhibition of binding 

due to the presence of ligand, but is just the inhibition caused by so many nucleo-protein aggregates 

forming and little protein remaining.  

A growing number of studies Ser/Thr phosphorylation may serve as a mechanism for 

transcriptional regulators to rapidly respond and adapt to environmental changes. [56, 71, 72] PDB 

and uniport has listed the kstR gene sequence to include 63 additional nucleotides, 21 additional 

amino acids, upstream of the originally designated sequence due to erroneous initiation, the kstR 

gene sequence described in the genome database Tuberculist (Swiss Institute of Bioinformatics) 

states it is 200 amino acids in length which brings the newly denoted protein to 220 amino acids 

long. The additional peptide sequence at the N-terminus shows to have a serine/threonine rich 

region within the first 10 amino acids and this bears a similar resemblance to the Tet-R like 

regulator EthR. Like KstR, EthR harbors a rich serine/threonine N-terminal rich region that has 

been shown to be phosphorylated by at least one of the 11 kinases that are produced by Mtb. [56] 
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Moreover, there is increasing research documenting the ability of phosphorylation to provide an 

added regulatory mechanism abrogating binding for other transcriptional repressors in Mtb. [73]  

To verify if this extra serine/threonine rich sequence is present with orthologs of KstR in 

other mycobacterium species, a multiple sequence alignment was performed. (Fig. 3) and it shows 

a highly conserved sequence within the first 10 amino acids rich with serines and threonines 

consistent with the previously mentioned EthR. When the KstR protein sequence is input into the 

bacterial serine threonine bacterial phosphorylation predictor site NetPhosBac 1.0, a number of 

serines are denoted as a possible phosphorylation site. Although the predictor only shows the 10th 

serine as above the calculated threshold of 0.5, the 3rd and 9th serines also conferred a higher signal 

and are not to be ruled out as possible phosphorylation sites. Additionally, docking studies of the 

additional amino acids and sequence for DNA studies were performed to assess how the interaction 

of the DNA and KstR may be altered, enhanced or hindered in an elongated form. Unfortunately, 

the results were inconclusive as to the specific binding parameters of the extension to the DNA 

and possible phosphorylation effects. Also noted were the other serines throughout the protein 

sequence that may be considered phosphorylation sites. It was realized there would be a difficulty 

in establishing phosphorylation of the N-terminus alone as the other potential PTM targets would 

give a signal for various experimentation. As growing Mtb in the BSL-3 environment requires the 

decontamination of samples, heat or other harsh methods are used to ensure the bacteria is not 

viable outside of containment. With this as well as the fact that PTM’s are extremely labile, it 

proved to be a difficult task to provide experimentation with in-vivo purification of Mtb samples 

of KstR in a phosphorylated form. The daunting task of cloning point mutations of each serine and 

threonine at the N-terminus of KstR as well as the cloning of 10 of the 11 Ser/Thr kinases was 

completed, yet the fact that KstR has other possible phosphorylation sites that could impose 
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misleading data remained and therefore it was decided to pause the study with regards to those 

methods. Instead, it was decided to pursue SPR studies with different N-terminal variations of 

KstR.  

The affinity studies completed for analyzing KstR in the truncated and elongated forms 

prove the extension hinders binding to the DNA operator but not by a large significant measure. 

The alanine mutant binding does not appear to be significantly less to KstR but nominally to the 

TR-KstR. By exchanging all the serines and threonines within the first 10 amino acids at the N-

terminal to aspartates, the Asp-KstR mutant shows that binding is slightly less than that of the 

naturally occurring KstR as well as the alanine mutant, however is significantly less than TR-KstR. 

Reviewing the SPR, lesser binding affinity of Asp-KstR to the DNA, in a phosphor-mimetic in the 

presence of the 3OCh(25R)26-CoA ligand results can be deciphered as the reason for the 

inhibition. If KstR is able to undergo phosphorylation at the N-terminus, the ability for de-

repression to occur is enhanced. Furthermore, with the evidence presenting KstR binding to DNA 

is relative to the palindromic sequence of the operator and weaker when the sequence is less 

palindromic as with the igr operator, the presence of the smallest amount of inducer ligand may 

be all that is required for de-repression of KstR to occur allowing for an additional mechanism of 

rapid response in transcription when cholesterol catabolism is required.  
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Chapter 3: Determining the impact of KstR deletion ( nockout) and 

depletion (knockdown) on Mtb’s ability to utilize cholesterol and to grow 

intracellularly 

3.1 Methods 

Mtb Strains, Media, and Culture Conditions 

All experiments with Mtb cells were performed in a Biosafety Level-3 (BSL-3) laboratory. 

Mtb strains were routinely cultured at 37°C in 1-L roller bottles containing 100 mL 7H9 medium 

supplemented with 10% (v/v) of oleic acid-albumin-dextrose complex (OADC), 0.2% glycerol 

(v/v) and 0.05% (v/v) Tween-80 (7H9-OADC) or on 7H10 solid agar medium supplemented with 

10% (v/v) OADC and 0.5 % (v/v) glycerol (7H10-OADC). Hygromycin (50 µg/mL), kanamycin 

(20 µg/mL), and zeocin (50 µg/mL) were used when necessary. For growth on defined carbon 

source(s), cells were first grown in liquid 7H9-OADC medium until they reached an OD600 of 0.8 

– 1.0, washed once in minimal medium (MM: 1 g/L KH2PO4, 2.5 g/L Na2HPO4, 0.5 g/L 

asparagine, 50 mg/L ferric ammonium citrate, 10 mg/L MgSO4·7H2O, 0.5 mg/L CaCl2,  0.1 mg/L 

ZnSO4, 0.1% (v/v) ethanol, 0.1% (v/v) tyloxapol), and then used to inoculate MM containing 0.2% 

(v/v) glycerol as a source of carbon at an OD600 of 0.1. Cells were grown until they reached an 

OD600 of 0.8 - 1.0, and then used to inoculate 100-mL cultures of MM containing either 0.2 mM 

cholesterol or 0.1 mM cholest-4-en-3-one at 0.02 OD600. For growth in the presence of cholest-4-

en-3-one, glycerol was also included at a concentration of 0.2% (v/v). Cholesterol and cholest-4-

en-3-one were dissolved at a concentration of 100 mM in tyloxapol/ethanol (1:1), and added to 
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MM pre-warmed at 65°C. Growth curves were determined with 100-ml culture in 1-L roller bottles 

containing the MM medium and growth was monitored by measuring the OD600.  

Construction of the kstR deletion mutant strain 

 A ΔkstR mutant strain was generated in the Mtb clinical isolate CDC1551 by homologous 

recombination using specialized-transducing mycobacteriophages, as described in (Jain et al, 

2014). Briefly, a substrate for allelic exchange substrate (AES) at kstR locus was constructed by 

PCR-amplifying the 5’ and 3’ flanking regions of kstR from Mtb genomic DNA using the primers 

listed in Table 1. The two DNA fragments were simultaneously inserted in pYUB1471 on each 

side of a hyg-sacB cassette flanked by resolvase loxP sites. The resulting AES plasmid was ligated 

at the PacI site of the shuttle phasmid phAE159 and the ligation products were packaged into  

capsid heads (Gigapack III XL, Agilent Technologies, La Jolla, CA). To generate specialized-

transducing mycobacteriophages, the recombinant phasmid DNA was introduced in M. smegmatis 

by electroporation and plaques were obtained at the permissive temperature of 30 ºC.  After 

amplification, a high-titer suspension ( 1010 pfu/mL) of mycobacteriophages was used to 

transduce Mtb CDC1551 at the restrictive temperature of 37 ºC. Colonies were obtained after 3-4 

weeks of incubation on 7H10 plates containing hygromycin (50 µg/mL).  Colonies were picked 

and deletion of the kstR gene was confirmed by Southern blotting using the 5′ flanking region of 

kstR as a probe. 

Complementation of the kstR mutants 

To confirm any observable phenotype(s), the kstR gene with its native promoter was 

reintroduced in the deletion mutation strains. A 965-bp fragment encompassing the kstR coding 

region, 260 bp and 105 bp of 5′- and 3′-flanking sequences, respectively, was amplified by PCR 
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from Mtb genomic DNA using forward and reverse primers listed in Table 1. The purified 

amplicon was digested with KpnI and sub-cloned into the integrative vector pMV306:zeo. The 

resulting pMV306:zeo:kstR plasmid was electroporated into Mtb CDC1551 ΔkstR cells, and 

transformants were isolated after 2-3 week of incubation at 37 °C on 7H10 plates containing 50 

μg/ml zeocin. Transformants were picked and grown in 15-ml cultures of 7H9-OADC medium 

until OD600 reached 1.0 -1.5 for protein extraction and western blot analysis (see below). 

KstR protein knockdown and in vitro phenotypic characterization 

To modulate the levels of cellular KstR, a protein knockdown (PKD) approach by 

controlled proteolysis developed by the laboratory of Dr. Dirk Schnappinger [36] was used as an 

alternative to kstR gene knockout. Briefly, the pJSC407 vector was modified to integrate a DAS+4 

tag sequence upstream of the hygromycin cassette to generate pJSC407:DAS+4 plasmid. The AES 

was constructed by inserting the last 500 bp of coding sequences of kstR gene in-frame with 

DAS+4 tag. About 500 bp downstream of the stop codon of kstR was also inserted on the 3’ side 

of hyg cassette. The creation of the phagemid and specialized-transducing mycobacteriophages 

and the generation of transductants in Mtb CDC1551 are as described above. HygR colonies were 

picked and screened by PCR and confirmed by Southern blot. To generate unmarked mutants, the 

loxP-hyg-loxP cassette was removed by electroporating the unstable pYO11:zeo plasmid, which 

expresses a resolvase. ZeoR colonies were picked and screened for hygromycin sensitivity.  A HygS 

clone was electroporated with the pGMCKq1-10M1-sspBmyc plasmid, which allows the 

expression of a tagging adaptor protein, SspB, under the control of a tetO operator and the 

transcriptional repressor TetR. Clones were picked and grown in 7H9-OADC medium in the 

presence or absence of 150 ng/ml ATc. Cells were harvested by centrifugation for protein 

extraction and western blot analysis.  
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Protein extraction and western blot analysis 

Cells were harvested by centrifugation at 3,500 rpm for 10 min. Cell pellets were washed twice 

with 5 ml of cold PBS and centrifuged. The supernatants were removed completely and the pellets 

were re-suspended in 0.5 ml PBS containing 1% SDS and 1 mM PMSF. The cell suspensions were 

transferred into 2-ml Eppendorf tubes containing 0.5 ml of 0.1-mm zirconia beads and lysed by 3 

x 1-min cycles on a SoniBeast bead-beater apparatus (Biospec). The beads were settled by 

centrifugation at 1,000 rpm for 1 min. The cell lysates were transferred into 1.5-ml Eppendorf 

tubes with screw cap and boiled for 15 min to kill any residual Mtb cells before removal from the 

BSL-3 laboratory. The concentrations of the proteins in cell lysates were obtained using the BCA 

Protein Assay Kit (Thermo Fisher Scientific). Cell lysates (10 µg) were separated using 12% SDS-

PAGE (BioRad) and then transferred to 0.2-µm nitrocellulose membranes (Pierce). The blots were 

washed with TBS solution containing 0.1% Tween-20 (TBST), blocked O/N with 5% skimmed 

milk prepared in TBST at 4 ºC and incubated for 1 hour at room temperature with a primary custom 

polyclonal antibody raised against the purified recombinant KstR protein (Genscript) at a dilution 

of 1:2,000. Next, the membranes were washed with TBST and incubated for 1 hour at room 

temperature with horseradish peroxidase-conjugated goat anti-rabbit IgG antibody (Pierce) at a 

dilution of 1:10,000 dilution. The bands were visualized using Pierce ECL Western Blotting 

Substrate (Thermo Fisher Scientific) according to the manufacturer's protocol. 

Extraction and purification and analysis of cholesterol-derived metabolites 

 For extraction of cholesterol-derived metabolites, cells were cultivated as described above. 

Aliquots of 15 mL were harvested by centrifugation at 3,500 rpm for 10 min. The supernatants 

were discarded and the cell pellets were washed with 5 mL of cold PBS. Cell pellets were re-

suspended in 1 mL of LC-MS grade water and transferred into 15-mL glass tubes with PTFE-
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lining caps containing 5 mL chloroform:methanol (2:1) containing the internal standard 7-

ketocholesterol (10 µM) and then vortexed for 1 min. The extraction tubes were left in the 

refrigerator for at least 24 h to kill any residual Mtb cells. The samples were then taken out of the 

BSL-3 laboratory, vortexed for 1 min, and centrifuged for 15 min in a tabletop clinical centrifuge. 

The organic phase (bottom layer) was transferred into new 15-mL glass tubes, evaporated 

completely under a stream of N2, and resuspended in 1.5 mL of LC-MS grade methanol. 

Detergent (Tween-80 or tyloxapol) was removed from the lipid solutions by precipitation 

using a cobalt:thiocyanate solution and back-extraction with hexane, according to a published 

procedure.[74] The organic phase (upper phase) was dried under a stream of N2, reconstituted in 

0.5 mL of chloroform, and stored at -20 ºC until use.  

To measure the levels of cholesterol and the oxidized form, cholest-4-en-3-one, metabolites 

extracted from cholesterol-grown WT and kstR cells were quantified by HPLC. Aliquots of 0.1 

mL of extracted metabolites stored in chloroform were evaporated, reconstituted in 0.1 mL of 

DMSO: acetonitrile:5 mM ammonium acetate (2:5:3). 20.0-µL injections were analyzed on a 

Dionex Ultimate 3000 RS Pump HPLC system connected to a Kinetex C18, 100A column (50 × 

2.1 mm i.d. stainless steel, 2.6 μm particles, Phenomenex). The metabolites were eluted at a flow 

rate of 0.5 mL/min (solvent A, 95% 5 mM ammonium acetate, 5% of acetonitrile + 0.1% formic 

acid); (solvent B, 5% 5 mM ammonium acetate, 95% acetonitrile + 0.1% formic acid) with a 

gradient starting at 30% B up to 1 min and then ramped up to 100% B over 6 min. The elution was 

maintained at 100% B up to 15 min and then ramped back to 30% B within 1 min, followed by 

equilibration at the same composition for 6 min before the next run. The eluted metabolites were 

analyzed with a charged-aerosol detector (CAD) with data collection rate at 2.0 Hz with a 5.0 sec 
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filter for peak shape. The retention times of cholesterol, 7-ketocholesterol, and cholest-4-en-3-one 

were determined by injecting pure commercial standards. 

14C-labeling of cellular lipids and thin-layer chromatography  

 Mtb cultures were grown in 7H9-OADC until OD600 reached 1.0-1.5. Cultures (10 mL) 

were harvested by centrifugation at 3,500 rpm for 10 min, and washed twice with 7H9 base to 

remove traces of carbon sources. Cells were resuspended in 1 mL of 7H9 base and used to inoculate 

30-mL ink bottles containing 10-ml 7H9 medium containing 0.05% Tween-80 at an OD600 of 1.0. 

Cultures were incubated for 24 h to mimic starvation and then spiked with 4 µCi of [1-14C] sodium 

propionate. After an additional 24 h of incubation, cells were harvested by centrifugation at 3,500 

rpm for 10 min. To determine the extent of 14C-propionate incorporation into cellular lipids, a 0.5-

mL aliquot of the supernatant was kept and mixed with the same volume of 10% formalin for 

removal from the BSL-3 laboratory. The supernatants were discarded and cells were washed with 

2 mL of cold PBS. After discarding the supernatants, cell pellets were reuspendend in 2 x 1 mL of 

methanol and transferred into 15-mL glass tubes containing 4 mL of chloroform. Tubes were 

vortexed for 1 min and left in the refrigerator for at least 24 h to kill any residual Mtb cells. Tubes 

were removed from the BSL-3 laboratory and centrifuged at maximaum speed for 5 min in a 

clinical centrifuge. The organic phases were collected and transferred into clean 15-mL glass tubes. 

The lipid extracts were evaporated under a stream of N2 and cleaned to remove Tween-80 as 

described above. At the end, the radiolabeled lipid extracts were reconstituted in 0.5 mL of 

chloroform:methanol (2:1) and stored at -20 ºC until use. 

The incorporation of 14C in count per minute (cpm) in lipids was determined by mixing 10 

µL of samples with 5 mL of liquid scintillation. Labeled lipids were separated by thin-layer 

chromatography (TLC) and quantified by phosphorimager. For each sample, an aliquot containing 
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20,000 cpm was dried and reconstituted in 20 µL of chloroform and spotted onto a TLC plate 

and resolved by running in a petroleum ether/ethyl acetate solvent system (98:2). The plate was 

left to dry for 5 min, covered with Saran Wrap, and exposed to a phosphorImager screen for at 

least 3 days. The screen was scanned and analyzed using a Biomolecular Imager (UTEP Genomic 

Analysis Core Facility).  

Proteomic profiling 

 A proteomic profiling was carried out the CDC1551 WT, kstR, and two complemented 

kstR:kstR strains. Cells were cultivated in 60-mL ink bottles containing 25 mL of 7H9-OADC 

medium supplemented with 0.2 mM cholesterol, with agitation at 125 rpm for 3 days. The cultures 

were harvested by centrifugation at 3,500 rpm for 10 min and cells were washed twice with cold 

PBS (without Ca2+ and Mg2+). After removing the supernatants completely, cell pellets were 

resuspended in 1 mL of PBS containing 1% SDS and transferred into 2-mL Eppendorf tubes 

containing 0.5 mL of 0.1-mm zirconia beads. The cells were lysed by 3 x 1-min cycles on a 

SoniBeast bead-beater apparatus (Biospec). The beads were settled by centrifugation at 1,000 rpm 

for 1 min. The cell lysates were transferred into 1.5-ml Eppendorf tubes with screw cap and boiled 

for 15 min to kill any residual Mtb cells before removal from the BSL-3 laboratory. The 

concentrations of the proteins in cell lysates were obtained using the BCA Protein Assay Kit 

(Thermo Fisher Scientific).  

For in-solution trypsin digestions, 50 µg of each protein lysate was lyophilized and 

reconstituted in 40 µl of 100 mM Tris-HCl (pH 8.5) containing 8 M urea. After adding 1.2 µl of 

100 mM Tris(2-carboxyethyl)phosphine (TCEP), the samples were shaken for 20 min at room 

temperature. Next, 0.88 µl of 500 mM iodoacetamide (IAA) was added and the samples were 
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shaken in the dark for 15 min. The urea concentration in the samples was reduced to 2 M by adding 

120 µl of 100 mM Tris-HCl (pH 8.5) and trypsin was added at a (1:30) ratio (1.7 µg). The in-

solution digestions reactions were incubated overnight at 37 oC. SDS was removed from the 

samples using Pierce C18 spin columns (Thermo Fisher Scientific). 

Peptides were analyzed with the QE Orbitrap (Thermo Fisher Scientific) along with the 

Dionex UltiMate 3000 RSLCnano UHPLC system (Thermo Fisher 221 Scientific). Samples were 

loaded in line onto a C18 PicoChip Column (75µm ID x 15 µm tip packed with 10.5 cm of Reprosil 

-PUR C18 3µm 120Å; 25µm x 50cm fused-silica tail, New Objective). Column was equilibrated 

with 95% Solvent A (95% water, 5% acetonitrile, 0.1% formic acid) and 5% Solvent B ((5% water, 

95% acetonitrile, 0.1% formic acid). The column was equilibrated for 10 min with a flow rate of 

0.5 µL/min with 95% solvent A, 5% solvent B. The samples were injected and loaded onto column 

and equilibrated for 10 min with solvent A. The elution of the peptides was completed by running 

a linear gradient up to 40% solvent B for 95 min, followed by a sudden increase to 95% B and let 

it run for 10 min. Sample was re-equilibrated for 10 minutes with 5% solvent B. Full scan spectra 

was collected via Xcalibur (Thermo Fisher Scientific). QE Orbitrap settings are as follows: Full 

MS resolution of 70,000, AGC target of 1e6, scan range from 400 to 1600 m/z; MS/MS were run 

with a resolution of 17,500, AGC target of 2e6,  scan range from 200 to 2000, with 3-m/z isolation 

window. The spectra were searched using Proteome Discoverer (PD) 2.1.1.21 (Thermo Fisher 

Scientific) and filtered via Sequest HT with an estimated false-discovery rate (FDR) of 0.01 against 

sequences from Mycobacterium tuberculosis, Escherichia coli, human, bovine, human keratin, and 

porcine trypsin. A precursor mass tolerance and a fragment mass tolerance of 20 and 0.02 ppm, 

respectively, was used. Cysteine carbamidomethylation, methionine, oxidation and acetylation 

were set fixed and variable modifications, respectively. 



 56 

RAW264.7 macrophage infection 

The murine macrophage cell line RAW264.7 was cultivated in Dulbecco’s Modified Eagle 

Medium (DMEM) enriched with 10% Fetal Bovine Serum (FBS). The day before the infection, 

three 12-well plates (days 0, 3, 5) were seeded at a density of 1x105 cells/well. Mtb CDC1551 

strains (WT, kstR, kstR:kstR, and KDkstR) were grown in 7H9-OADC until an OD600 of 0.6-

0.8 was reached. For Mtb KDkstR, cells cultivated in the presence or absence of 150 ng/mL ATc. 

The day of the infection 13-mL aliquots of Mtb cultures were pelleted by centrifugation at 3,500 

rpm for 10 min. Cells were washed twice with 10 mL of D-PBS (without Ca2+ and Mg2+), followed 

by centrifugation at 3,500 rpm for 5 minutes. To obtain single-cell suspensions, cell pellets were 

re-suspended in 6 mL of PBS and subjected to 3 cycles of 10-s pulse at 90% power in a Branson 

cup-horn sonicated filled with disinfectant, with inversion of the tubes between cycles. To remove 

any residual cell aggregates, the sonicated suspensions were centrifuged at 500 rpm, 5 min, and 

supernatants (5 mL) were transferred into new 15-mL Falcon tubes without disturbing the cells 

pellets.  The OD600 was measured and adjusted to 0.0167 with DMEM supplemented with 10% 

FBS in order to achieve a multiplicity of infection (MOI) of 1.  For Mtb KDkstR with ATc, 150 

ng/mL of the inducer was also included. 

The day of the infection, the culture medium in wells was removed by aspiration and the 

cell monolayers were washed twice by gently pipetting 1 mL of warm PBS (with Ca2+ and Mg2+). 

For infection, cell monolayers in wells were gently covered with 0.6 mL of the corresponding Mtb 

suspension. The plates were centrifuged at 1,000 rpm, 10 min, and then incubated at 37 ºC for 1 h 

in the CO2 incubator. Infection medium was removed by aspiration and the wells twice were 

washed by gently pipetting 2 mL of warm PBS (with Ca2+ and Mg2+) to remove any extracellular 
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bacteria. Infected cell monolayers were finally covered with 2 mL of DMEM supplemented with 

10% FBS, with 150 ng/mL ATc when needed. Plates were incubated at 37 ºC in CO2 incubator. 

At days 0, 3, and 5, Mtb-infected macrophage cells were lysed to evaluate intracellular 

growth. The culture medium in wells was aspirated and the cell monolayers were washed twice by 

gently pipetting 1 mL of warm PBS (with Ca2+ and Mg2+). The adherent cells were lysed with 0.5 

mL D-PBS containing 0.1% (v/v) Triton X-100.  A volume of 0.25 mL of the cell lysate was 

transferred into sterile 5-mL plastic tube with 1.75 mL of D-PBS containing 0.05% (v/v) Tween-

80 (100 dilution). A volume of 0.1 mL of this solution was directly (Day 0) spread onto 7H10–

OADC solid agar medium or after further dilution (Day 3 and Day 5: 10-1 – 10-3). Plates were put 

in metal canisters and incubated at 37 ºC and colony-forming-unit (CFU) was determined after 2-

3 weeks. 

 3.2 Results 

Having conducted studies showing the best ligand for KstR de-repression to be 

3OCh(25)26CoA, validation of KstR as a possible therapeutic target required in vivo studies in 

Mtb. The CDC1551 strain was chosen to conduct these in vivo experimentations as a model being 

it is a clinical strain that was obtained from a patient sample rather than using the H37Rv strain 

that has been in circulation through many laboratories for many years. Characterization of the 

effect for constant KstR de-repression was carried out through the gene deletion of kstR and 

subsequent reintroduction of the gene through various methods. Once kstR deletion was verified, 

a series of experimentation was conducted to better understand how the bacteria responds to 

cholesterol catabolic pathway de-regulation in its growth and infectivity. 

The kstR construct was designed and successfully transduced through general phage 

transduction into the CDC1551 strain of Mtb. A number of colonies were screened initially through 
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PCR and two were chosen to confirm the absence of the kstR gene through a Southern Blot (Fig. 

15A). The clones that were chosen were grown in the presence of cholesterol and the cultures were 

used for protein extraction. A western blot was performed for the extracted proteins to assess if 

the quantity of proteins in the complements was comparable to the wild type samples (Fig. 15B). 

The complements did not show the same signal that was shown for the wild type, however a lesser 

amount of protein was present so it was decided to go forward with future experimentation. The 

confirmed kstR strains were then used for the remaining experiments for these studies.  

The established kstR clones were used to a perform a growth curve to determine growth 

characteristics of Mtb after kstR gene deletion compared to that of the wild type strain of CDC1551. 

After the initial inoculation at 0.01 OD600 the cultures were monitored daily for growth through 

culture turbidity. Both strains showed to have minimal growth until approximately day 5. At that 

time, a marked branch between the WT and kstR strains were seen in the CDC1551 strains 

regardless of what carbon source was present in the media (Fig. 15C). The cultures that had both  

glycerol and cholest-4-en-3-one as a carbon source showed a slight increase in growth, showing 

that cholest-4-en-3-one is able to be degraded without having a toxifying effect regardless of 

whether the kstR gene was present or not. Differences in deficient growth observed in the 

CDC1551 kstR strain compared to that of their WT counterparts suggest that both strains differ 

in their ability to utilize not just cholest-4-en-3-one as a carbon source but also glycerol. Metabolite 

samples were extracted from the WT and ΔkstR, clones when grown on 0.2mM of cholesterol. 

These samples were examined for the depletion of cholesterol and the presence of cholest-4-en-3-

one to see how the different strains would incorporate cholesterol when in the environment of 

constant de-repression after kstR deletion. (Fig. 15D) Cholesterol depletion in CDC1551 ΔkstR 

was demonstrated by 48 hours where it took the WT strain 72 hours to reach the same levels. The  
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Figure 15: Comparison of Growth Curves of WT and kstR in CDC1551: (A) Southern blot 

of BamH I-digested genomic DNA showing the hybridizing fragment of WT (2.8 kb) and of two 

kstR deletion mutants, KO1 and KO2 (5.9 kb). (B) Western blotting analysis of KstR expression 

in wild-type and kstR strains of CDC1551. Cells were incubated in the presence of 0.2 mM 

cholesterol for 24 h before harvesting. (C) Gene deletion of kstR and WT in CDC551 (top) 

Growth curves are shown of WT (circle), ΔkstR (triangle) strains on minimal media containing 

0.2% (v/v) glycerol (open symbols) or 0.2% glycerol (v/v) + 0.1 mM cholest-4-en-3-one (filled 

symbols). The growth was monitored by measuring the absorbance at 600 nm as a function of 

time. Both strains show a deficiency in growth when lacking kstR. (D) Measurement of 

cholesterol and cholest-4-en-3-one catabolism in CDC1551 WT and ∆kstR. As expected, 

cholesterol is degraded at a faster rate in CDC1551 ∆kstR than the WT and there appears to be 

no significant cholest-4-en-3-one build-up during this process. 
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CDC1551 ΔkstR strain also showed no signs of cholest-4-en-3-one buildup at any of the time 

points compared to that of the WT, although the buildup of cholest-4-en-3-one was abrogated fully 

by the 72 hour mark.  

 The confirmed CDC1551 kstR clone used for the previous growth curve was grown and 

prepared for transformation of the plasmid that was constructed with the kstR gene under the 

control of its natural promoter through electroporation. The empty construct was used to ensure 

that any differences in growth imparted by the presence of the construct being introduced into the 

bacteria. Growth curves of the WT, kstR, and kstR:kstR in CDC1551 Mtb have been produced 

using the same media and growth conditions that were done previously for the kstR alone (Fig. 

16). Complementation of the CDC1551 kstR yielded only partial recovery of the growth with the 

there is a lag in growth of approximately 5 days between the WT and ΔkstR complement regardless 

of the carbon source it was grown on. The endpoint of day 20 was decided on during the  

experiment due to the wild type CDC1551 being past the exponential phase and 4 days into 

stationary. Rather than allow the WT cultures to proceed to the death phase the experiment was 

ended with the last day for the collecting the optical density data for the WT being on day 19. It is 

unknown if the ΔkstR would be able to recover to the WT growth levels if left to grow for an 

additional amount of time, and assessment of the growth curves would be an approximate 8 days. 

The western blot performed to assess the concentrations of KstR production shows the protein 

concentrations are not at wild type levels and corresponds to the growth curve strains. This partial 

recovery could be attributed to the integration of the kstR gene into the Mtb genome at a different 

site than its origin and therefore lacking the genomic regulatory mechanisms, such as activation 

sites, that are more than likely present at the genes original placement.  
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Figure 16: Growth curves of kstR after complementation of the kstR gene at a 

different locus in CDC1551: The growth of the WT, kstR, and kstR/kstR strains in 

glycerol alone. (top) WT, kstR, and kstR/kstR in both glycerol and cholest-4-en-3-one 

(bottom). Regardless of carbon source(s) present, only partial recovery of growth 

compared to the WT was achieved.  
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To understand how downstream effects to the deregulation of cholesterol catabolism 

effects PDIM production after deletion of kstR, lipids for CDC1551 WT, ∆kstR, and kstR/kstR 

were extracted after using C14 labeled propionate as the carbon source and showed the PDIM 

quantities. (Fig. 17) Propionate can be directly sourced to the methylmalonyl pathway and onward 

to methyl-branched fatty acids production by the incorporation into both the phthiocerol and 

mycocerosate chains. The CDC1551 WT shows a much higher PDIM signal when fed with 

propionate and the presence of PDIM is decreased with the deletion of kstR. Recovery with 

complementation and reintroduction of kstR does not occur to the same levels and is only slight.   

Proteins extracted from CDC1551 WT, ΔkstR, and ΔkstR/kstR cultures grown on 

cholesterol were used to run mass spectrometry experiments to obtain a proteomic profile of the 

different mutant strains. Being KstR directly regulates the cholesterol catabolic pathway, the 

proteins involved in both the side-chain and A/B ring steps were analyzed. The data showed the  

detection of KstR regulated enzymes responsible for the side-chain degradation but none of those 

that are involved in A/B ring degradation. After introduction of cholesterol through the Mce4 

transport system, cholesterol is catalyzed to cholestenone by the cholesterol oxidase ChoD by 

altering the hydroxy group at the 3 position of the cholesterol molecule to an oxo- form. The kstR 

strain shows there is an decrease in ChoD as the source converting the cholesterol to cholestenone.  

The side-chain continues to be further altered by the addition of an ester group at the end 

of the side-chain by either Cyp125 or Cyp142, depending on the stereo-conformation of the 

cholesterol molecule resulting in (25S) or (25R)-3-oxocholest-4-en-26-oate. Interestingly, the 

proteomic data for the kstR shows a large fold increase for Cyp142 compared to Cyp125, 

indicating although the cholesterol degradation pathway is preferential to the (S)- conformation, 

the (R)- conformation is produced more after kstR gene deletion. As Mtb has the preference for  
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Figure 17: PDIM levels of CDC1551 WT, ∆kstR, and ∆kstR/kstR after introduction of 

C14-labeled carbon sources. (top) Depiction of phthiocerol dimycocerosate (PDIM). (left) 

The levels of PDIM are diminished in the CDC1551 ∆kstR and not recovered after 

complementation. (right) Signal quantification of the TLC plate showing the presence of PDIM.  
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Figure 18: Representation of cholesterol catabolic pathway and detected enzymes 

with mass spectrometry. Depiction of the cholesterol catabolic pathway with detected 

enzymes within the pathway labeled in green. The initial cholesterol side-chain 

degradation steps are listed on the left. The A/B ring degradation steps that are known 

to occur after side-chain degradation are listed on the right. The fold change of detected 

enzymes of the pathway are shown as a heat map on the lower right. 
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the (S)- conformation of  cholesterol, the (25R)-3-oxocholest-4-en-26-oate is converted to the (S)- 

state by a racemase or by the coenzyme A ligase FadD19 which also initiates the attachment of 

coenzyme A to the 26-carbon position of the intermediate. Once the attachment of coenzyme A 

has occurred, the co-expressed FadD26 and FadD27 enzymes alter the side chain of cholesterol 

creating a double bond between the 24 and 25 carbons. The enzymes involved in the next three 

enzymatic steps were not detected for any of the strains tested. Within these steps, FadA5 is the 

enzyme that detaches propionyl-CoA from the molecule in multiple steps throughout the side chain 

degradation process and surprisingly it was not present in the data.  Also surprising was the lack 

of increase with the dehydrogenase FadE34 as it is part of the catabolic pathway that introduces a 

double bond in the shortened side-chain after the detachment of propionyl-CoA by FadA5. 

Subsequent steps in the cholesterol catabolic process that were detected to have an increase without  

KstR regulation were the dehydrogenase FadE28 and the lyase Ltp2. FadE28 and FadE29 are co-

expressed with one another and one would expect the expression of FadE29 to also show an 

increase but the levels were comparable to that of the WT strain. The lyase Ltp2 reduces 

cholesterol to the androst-4-ene-3,17-dione form leaving only the sterol portion of the cholesterol 

molecule and the release of another propionyl-CoA. The sterol rings of the cholesterol then goes 

through ring degradation initiated by the dehydrogenase KstD. As stated previously, the remaining 

enzymes that perform the A/B ring degradation were not detected in any of the strains.  

Focusing on the PDIM synthesis pathway, the quantities and differences in the proteins 

responsible for the methyl-branched fatty acids were analyzed and assessed for differences. Being 

that side-chain degradation final by-product is propionyl-CoA, we began looking at the production 

of methylmalonyl-CoA by assessing the protein presence of the subunits of propionyl-CoA 

carboxylase. Only two of the known subunits were detected in the proteomic data. The AccA5 and  
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Figure 19: Presence of proteins involved in the pathways involved in propionyl-CoA 

utilization. (A) Pathway depiction showing how propionyl-CoA is incorporated into the 

metabolism of Mtb. Enzymes in green denote those detected in proteomic data. (B)Proteomic 

data analysis shows the increased presence of the MutA and B subunits involved in both the 

production of methylmalonyl-CoA and succinyl-CoA within the methylmalonyl pathway in 

Mtb. Additionally, an increase of Icl1 that catalyzes the formation of succinate was detected in 

the kstR strain where Icl2 was not detected.  (C) An increase of the mycolic acid synthase 

UmaA was detected in the kstR strain  
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AccD5 subunits of propionyl-CoA carboxylase activity showed no significant differences 

although the AccD5 subunit did show a slight decline in the CDC1551 ΔkstR mutant. (Fig. 21) 

The product of the propionyl-CoA carboxylase is (S)-methylmalonyl-CoA. The following step in 

the pathway is the racemization of the methylmalonyl-CoA to the R stereoisomer. Unfortunately, 

the known epimerase to catalyze this reaction was not found in the studies. However, an increased 

presence of both the methylmalonyl-CoA mutase subunits responsible for the reversible B12 

dependent conversion to succinyl-CoA was found with marked differences in quantity between 

the WT and ΔkstR for the CDC1551 strain. (Fig. 18) This would suggest succinyl-CoA is readily 

utilized for energy and metabolic processes in the ΔkstR mutant and the complement. 

Propionate also can be shuttled into the methylcitrate cycle that provides a conversion 

source to pyruvate either through the methylcitrate cycle itself or by providing acetyl-CoA to the 

glyoxylate cycle. The isocitrate lyase Icl2 in Mtb is responsible for the production of either 

pyruvate or succinate while Icl1 catalyzes succinate. The production of succinate can be sourced 

to either the methylcitrate and glyoxylate cycles or succinate can be converted to succinyl-CoA. 

SucC and SucD are the subunits of succinyl-CoA synthetase that are involved with the reversible 

reaction of ligating and detachment of CoASH to succinate where it can then be shuttled to the 

mehtylmalonyl pathway feeding the production of methyl-branched fatty acids or towards the TCA 

cycle. [75] Looking at protein amounts of these show that a pattern occurs with quantities of Icl1 

and Icl2 in relation to PDIM production. (Fig. 18). In the CDC1551 kstR strain levels of Icl2 

become undetectable while an increase of Icl1 occurs (Fig18). This result suggests the glyoxylate 

cycle is utilized more in an environment where KstR is not regulating cholesterol catabolism. It is 

logical to expect the amounts of propionyl-coA being shuttled into the methylcitrate cycle to be 

increased and therefore the amounts of Icl2 to increase to compensate for the higher amounts of  
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propionyl-Coa, however, this was not the result. It appears with the deletion of kstR, the preferred 

pathway for propionyl-CoA is more towards the production of methylmalonyl. This can be 

confirmed when looking at the quantities of both MutA, MutB, SucC and SucD. When looking at 

the succinyl-CoA synthetase subunits SucD, there appears to be an increase in the kstR strain 

suggesting compared to the WT. The lack of change in the quantity of succinyl-CoA synthetase 

may indicate any excess propionyl-CoA is directed to the methylcitrate cycle initially than after 

passing through the methylmalonyl pathway.  

Being the results showed a tendency of propionyl-CoA being incorporated into the 

methylmalonyl pathway and thereby shuttled to not only the synthesis of PDIM but to mycolic 

acid synthesis, methyltransferases (MTFs) were mined within the proteomic data (Fig. 18). Seven 

of the eight known MTF’s were detected. While there were slight increases in MmaA1 and 

CmaA1, a large increase in UmaA was observed. Conversely a decrease in MmaA4 was seen. Both 

UmaA and MmaA4 have been shown to interact with both the fatty acid synthase complexes (FAS-

I and FAS-II). [76] Besides being a functional MTF involved in the elongation of mycolic acids, 

UmaA has not been fully characterized with regards to regulatory response and information 

regarding the enzyme is not in abundance. Regardless of the lack of information regarding UmaA, 

it is still notable that the deletion of KstR creates an alteration in the amounts of mycolic acid 

synthases present and this data could be used to expand its further experimentation. 

Formation of PDIM in Mtb consists of the synthesis of mycocerosic acid and phthiocerol 

independently that then merge in a final ligase reaction. For this study, reactions within the 

pathways of both the mycocerosic acid and phthiocerol were the focus due to the abundance of 

proteins present during the proteomic analysis of the CDC1551 strain and the respective mutants. 

Additionally, these pathways were a focus of interest due to the assimilation of methylmalonyl  
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Figure 20: Mycocerosate and phthiocerol pathways result in PDIM production. (A) 

Representation of the mycocersosate and phthiocerol pathways that result in the formation of 

PDIM synthesis. All proteomic detected enzymes are labeled in green (B) Deletion of kstR 

resulted in an increase of TesA and decrease of enzymes in the enzymes of the pthiocerol 

pathway after the TesA synthesis of C33-carboxypthiodiolenone. A large increase of Mas-1 

was detected for the mycocerosate pathway. Interestingly, both the steps that show an 

increase are where methylmalonyl-CoA is introduced.  
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into PDIM production. The incorporation of methylmalonyl is shuttled into both the biosynthesis 

of the mycocerosic acid and phthiocerol fatty chains. The elongation of mycocerosic acid and the 

introduction of methylmalonyl into the chain is accomplished with Mas-1. There are 

distinguishable differences in the presence of Mas-1 between the CDC1551 WT and kstR strains. 

(Fig 23). Looking at the ΔkstR mutants for both strains also shows not only the opposite quantities 

of Mas-1 but also the opposite results of the TLC. The CDC1551 WT strain produces more PDIM 

and less Mas-1. The inverse amounts of Mas-1 are present for the ΔkstR mutants in each strain. 

An interesting result was seen with the kstR complements for each strain. There appears to be full 

recovery when kstR is reintroduced.  To produce phthiocerol, a set of protein subunits PpsA-E are 

responsible for the integration of methylmalonyl into this pathway. Of these subunits, only the  

PpsD subunit was detected to have any discernable differences in quantity during this study. (Fig. 

19) CDC1551 complements had a reduction in the amount of the PpsD subunit  

The unification of both the mycocerosic acid and the phthiocerol fatty chains are completed 

by the polyketide synthase PapA5 to produce PDIM. [77] The proteomic analysis of the quantities 

of PapA5 correlate more with the TLC results in comparison with the presence of PDIM than with 

the previously mentioned proteins. The CDC1551 WT PapA5 levels were present whereas the 

kstR levels were not detected (Fig. 19). The complementation of kstR in the CDC1551 strain 

showed slightly higher amounts of PapA5 to that of the WT and yet the results of the TLC showed 

less recovery of the end product PDIM.   

 Macrophage infections were carried out with the Mtb CDC1551 WT, ∆kstR, and 

∆kstR/kstR with the as well as the pMV306 ∆kstR/kstR integrated complementation strain. (Fig. 

25). For the initial infection it appears the WT strain was able to adhere and be engulfed better 

than the ∆kstR or either of the complements. This may be due to the absence of virulence factors  
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Figure 21: Infection of RAW264.7 cell line with CDC1551 WT, ∆kstR, and 

∆kstR/pMV306-kstR: The mouse macrophage like cell line RAW 264.7 was infected with 

a 1:1 ratio of cells:bacteria to obtain the CFU counts. The CFU counts for the ∆kstR 

complements shows to have similar deficiency until day 5 of the infection. At day 5 the 

over-expression of KstR shows weaker growth in the macrophage while pMV306-kstR 

complement shown to express lesser levels of KstR has recovered to above WT CFU levels. 

This suggests that KstR is required for initial adherence but once infection has been 

established, lesser amounts of KstR are sufficient to promote persistence, while too much 

KstR with overexpression has a detrimental effect. Statistical analysis revealed no 

significant differences, but the trend in bacterial deficiency and recovery is visually 

represented. 
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such as PDIM which were measured and shown in Fig. 17. The PDIM levels show to be in 

correlation with the initial onset of infection for the macrophages with the WT being able to 

metabolize PDIM slightly better than the other strains tested. The ∆kstR and both of the ∆kstR/kstR 

complements had similar adherence and engulfment rates which also could be in relation to the 

lesser quantity of PDIM production that have been in witnessed in the TLC experiments. What 

was surprising was the recovery of infection rate of the ∆kstR by day 5. It was suspected the ∆kstR 

infections would be more attenuated and not recover as much as presented. This result could be an 

actual account of the ∆kstR and the WT strain actually being attenuated due to possible mutations. 

It appears the over-expression of KstR during infection halts infectivity compared to the other 

strains. With the network of genes the KstR repressor controls, having continuous repression also 

weakens not only the ability for Mtb to infect but also for it to replicate at similar rates.  

As deletion of genes and selection thereafter can result in altered phenotypes and frame 

shift mutations, an alternative approach to deplete the KstR using a tet-operator was attempted. 

The kstR gene in CDC1551 was successfully replaced with the kstR with an additional DAS+4 tag 

at the C-terminus of the protein. After the successful recombination was confirmed, transformation 

of the plasmid pGMCKq1-10M1-sspBmyc in both the WT and knockdown KstR (KDKstR) strain 

was completed and verification of the presence of KstR translation and depletion through western 

blot was performed. (Fig. 26) The presence of KstR was not changed with or without the addition 

of ATc to the growth culture in the CDC1551 WT. The KDKstR clone shows depletion of the 

protein despite not having any ATc added to the culture and although the band is very light, a faint 

band remains after introduction of ATc. The western blot shows the tet-operator in control of the 

translation of sspB to be “leaky” thereby allowing the SspB protein to be expressed and reducing 

the amount of KstR before induction of the knockdown system. It was decided to pursue further  
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experimentation to better understand the effects of the reduction of KstR and determine if the 

knockdown model would be a functional alternative to the ΔkstR. 

 Both the CDC1551 WT and KDKstR were also fed with C14 labeled propionate to perform 

TLC studies. The WT PDIM levels are much higher than that of the KDKstR after the introduction 

of ATc. Additional studies showing the PDIM amounts of each the WT without the addition of 

ATc displayed the quantity of PDIM was also decreased with the KDKstR strain. (Not shown) It 

did not increase or decrease after the addition of ATc. Therefore, regardless of the presence of 

ATc, the PDIM quantities for the KDKstR were reduced. 

 Infection studies with RAW264.7 murine macrophages were conducted to assess the 

virulence after deletion and/or depletion of KstR in CDC1551. (Fig. 28) Colony forming units 

(CFUs) were measured at days 0, 3, and 5. The ΔkstR and KDKstR with ATc constructs CFU 

counts were much less than the WT and were not able to recover by day 5. The KDKstR infectivity 

without ATc present in the media was stunted at both days 0 and 3 but the CFU count began to 

recover by day 5. As it was previously confirmed KDKstR had a diminished but not complete 

abolishment in the presence of KstR when ATc was not presented to the bacteria. This suggests 

that although KstR is not required for infectivity, it does play a significant role during the onset of 

infection. It appears by day 5 the mechanisms of adaptation aided by the tight regulation imparted 

by KstR is not able to be overcome with the complete absence or depletion of KstR, yet the 

KDKstR that was confirmed to have a lesser amount of KstR was able to modify the responses 

and persist. Being that both the ΔkstR and KDKstR with ATc constructs behaved in similar 

manners during the infection studies, both of them seem to be viable models for future 

experimentation and research.  
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3.3 Discussion 

The studies conducted thus far have shown the deletion of kstR attenuates the growth of 

Mtb but the extent of attenuation is strain dependent. The clinical isolate CDC1551, collected in 

the mid 1990’s, is well documented to be less virulent compared to that of H37Rv. [78] However, 

CDC1551 demonstrates a marked and significant decrease in cell density after the removal of kstR 

from the genome in both glycerol and glycerol/cholest-4-en-3-one containing medias. (Fig. 16). 

[58] Further investigation as to how both strains are able to metabolize glycerol and cholesterol is 

required.  

After complementation of kstR was carried out, the same protocol for growth culture was 

completed with the CDC1551 WT and kstR, kstR/kstR mutant strains. Upon completion of the 

20 day cultures, it was observed full complementation of kstR was not achieved. (Fig. 18) This 

deficiency could be due to the implementation of the restored kstR within the Mtb genome. As 

previously stated, the regulatory aspects of KstR are well defined. Implementation of the gene with 

the integrative plasmid pMV306 is at a site where the likelihood of additional regulatory 

mechanisms (i.e. activation sites) required for kstR regulation to occur properly was unable to be 

attained. Being that kstR is auto-regulated and responsible for the transcription of many other Mtb 

genes implies there are a multitude of components that would be required for the entire regulatory 

system to function properly. The misplacing of the gene from its position of origin would indeed 

result in a diminished transcriptional effect.  

 How the different strains utilize the different carbon sources a key factor on how they adapt 

to the environment changes and stressors to survive. All previous studies have been completed 

only with the H37Rv Mtb strain. [54] The final by-product of cholesterol catabolism is propionyl-

CoA which can lead to the buildup of toxic intermediates detrimental to Mtb survival. [40] 
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Propionyl-CoA can be used as either an energy source with further catabolism to acetyl-CoA in 

the methyl citrate cycle or for the incorporation into the methylmalonyl pathway which can then 

be shuttled to either the TCA cycle through manipulation to succinyl-CoA or the methylmalonyl 

can be shuttled into the production of methyl-branched fatty acids such as PDIM. [40] The initial 

AccA3 Previous studies have stated both methylmalonyl mutase subunits MutA and MutB 

responsible for the conversion of either (S)-methylmalonyl or succinyl-CoA display control by 

KstR and the proteomic data appear to coincide with the studies. [54] Without kstR, there is an 

increase in the amounts of both MutA and MutB subunits. (Fig. 21) As virulence factors such as 

PDIM have been shown to be important for infectious stages such as phagocytosis. [79]  Both 

CDC1551 and H37Rv strains of Mtb show to react to excess pools of propionate in different 

manners. The increased amounts of MutA and MutB ∆kstR strains would indicate the high 

likelihood of an increased presence of PDIM in the. The CDC1551 kstR is unable to assimilate 

propionate into PDIM as efficiently as the H37Rv kstR and this contrasts with their respective 

wild types. Neither strain was capable of regaining the WT production of PDIM, whether it was 

increasing or decreasing the amounts, after deletion and reintegration of the kstR gene. Again, this 

more than likely is related to the placement of kstR after complementation and the lack of 

interaction with additional regulatory factors. 

The proteomic data correlates with the thin layer chromatography results. It is important to 

note that the KstR regulator itself was not detected in the proteomic analysis. There were a number 

of other transcriptional regulators present, yet the key regulators known to control cholesterol 

catabolism such as the central hub genes Rv0081 and Rv0324 were absent. These genes also play 

a major role in hypoxic responses in Mtb. KstR is also known to be a part of the enduring hypoxic 

response (EHR) in Mtb H37Rv that is independent of the DosR response for hypoxia. [80] The 



 77 

EHR consists of 230 genes that are found to be induced at days 4 and 7, and among this group 

cholesterol catabolic pathway genes fadD19, cyp125, and kstR are present, among others. In our 

studies, these enzymes were found to be over-expressed without kstR regulation. These results 

would be expected, but there doesn’t appear to be any additional regulatory mechanisms that 

rescue an over-expression response for these enzymes. With the absence of kstR, the induction of 

a constant hypoxic response state may be how Mtb copes with a lacking key regulatory factor. In 

order to establish a more complete transcriptional profile after the removal of kstR, RNA-seq 

should be performed to determine how Mtb is able to respond without a key regulator in both 

cholesterol catabolism and hypoxic response.  

The production of the two fatty acid chains phthiocerol and mycocerosate conjoined by 

PapA5 to produce PDIM, is decreased to non-detectable levels in the CDC1551 kstR. PapA5 is 

known to be controlled by the hypoxic response regulator Rv0081. [54] The levels of PapA5 

showed to be recovered with the kstR complements in the CDC1551 strain. Although KstR has 

not been proven to be directly involved with PDIM synthesis, the downstream effects of producing 

high amounts of propionyl-CoA from the constant side-chain degradation of cholesterol certainly 

plays a role in other regulatory mechanisms in Mtb. [54, 81] Although KstR has been previously 

over-expressed for Chip-seq experimentation, the phenotypical changes that would occur have not 

yet been assessed. [54]  

Previous studies have been completed using an over-expression system to map the Mtb 

transcriptional network. [54, 82, 83] The data was obtained without the presence of cholesterol or 

any cholesterol alternative as an additional carbon nutrient that may give a better insight as to how 

KstR responds to different environments but provides a valid baseline to determine the 

transcriptional capabilities of KstR. With over-expression of KstR, it has been previously shown 
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that KstR binds to 138 sites within the Mtb H37Rv genome with 35 of the binding sites having a 

repression effect. There are 10 transcription factors that are able to bind in the kstR region and only 

2 of them have shown to cause an induced differential expression outcome on media lacking 

cholesterol. [83] The previous studies with over-expressing KstR were never longer than a 24 hour 

time frame and served the purpose of getting the initial responses of RNA signals for Mtb. [54] As 

KstR has shown to take part in the regulation of MutA, MutB, and other PDIM production enzymes 

such as PapA5, it can be assumed that there would be a decreased amount of PDIM. 

Methylmalonyl production would be inhibited and therefore the downstream effect of PDIM 

would be decreased. qRT-PCR experimentation determining the transcription data for which 

enzymes are being produced during over-expression conditions would need to be performed to 

how the data translates with regards to PDIM production.  

Macrophage infections with Mtb CDC1551 WT, kstR, and both complementation 

construct strains and kstR/pMV306-kstR were carried out and displayed the differences in over-

expression and slight expression of KstR was able to effect both initial infection rates as well as 

the later stages of infection. Both showed a lessened CFU count at the initial stage of adherence 

and engulfment. This could be the result of the diminished amounts of PDIM production that has 

been seen throughout these studies. PDIM is a well-known methyl-branched fatty acid that plays 

a part in preventing the immune response during infection and contributes to the phagosomal 

escape of Mtb. [84-86] Although phagosomal escape in Mtb has been proven to be depended on 

the presence of the ESAT6-1 pore forming substrate EsxA, there was no significant changes in the 

quantification of this protein in the Mtb CDC1551 strains for the proteomic studies we performed. 

[86-88] The inability for kstR to replicate at WT levels shows there is a failure to evade the host 

response. This could be due to an inability for these strains to produce PDIM at WT levels and 
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therefore phagosomal escape within the macrophages. A constant increased amount of KstR would 

suppress the enzymes that are needed for cholesterol catabolism and the enduring hypoxic response 

necessary for long term survival. Surprisingly, the kstR/pMV306-kstR complement strain was 

able to regain WT CFU levels even with reduced amounts of KstR shown in other experiments. It 

appears KstR is required for a robust response at the onset of infection, but after the infection has 

become established, even reduced amounts of KstR are sufficient to persist within the macrophage.  

We know from these experiments a lack of KstR diminishes the amounts of PDIM, and it 

more than likely creates a de-regulated environment within the bacterial cell that leads to 

attenuation at the onset of infection. Additionally to PDIM, it is highly likely other virulence 

factors required for the onset of a normal infection of macrophage are diminished. However, higher 

KstR levels would produce a continuous hyper-regulated response for not only cholesterol 

catabolism but for the hypoxic response. This situation may prohibit Mtb’s ability to maintain a 

persistent infection.   As phenotypic studies have not yet been completed for the deletion or the 

over-expression of KstR, this data provides novel information that can be used for further 

determining if KstR is a valid therapeutic drug target. 

The complete removal of kstR in fact does alter the growth and pathogenicity of Mtb during 

infection as seen with this study. This phenomenon has already been established with kstR being 

required for in vivo mouse model infection in prior studies.[58] In order to bypass the deleterious 

effect that occurs with the absence of kstR in Mtb, a knockdown approach is a much more 

appreciable method to study the de-regulation of the kstR regulon. With the addition of ATc in cell 

culture and doxycycline in the animal model, the KstR protein will be degraded at various time 

frames during infection. The degradation of KstR post-translationally will in essence mimic the 

kstR deletion and commence with the de-regulation of all the genes involved with kstR regulatory 
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mechanisms. This approach was used for initial experimentation to see if it could be used to bypass 

the required and essential regulatory role kstR plays during infection. [58] 

Initial results from our experimentation showed the addition of the DAS+4 tag to the C-

terminus of the gene resulted in a significantly reduced amount of KstR in western blots without 

the presence of ATc added to the media used for growth. However, KstR was indeed absent after 

the addition of ATc. Thin layer chromatography also verified similar PDIM deficiency 

characteristics between the CDC1551 kstR strain and the KDKstR strain after ATc induction the 

ClpP proteolytic system. TLC experiments without the addition of ATc also presented a 

diminished quantity of PDIM for the KDKstR strain. This shows that there is a regulatory 

dysfunction with the KDKstR strain after manipulating kstR to also transcribe with the addition of 

a degradation tag. The ClpP protease system was confirmed to be either “leaky” or there are other 

proteases produced by CDC1551 that is able to recognize the DAS+4 tag and therefore diminish 

the amount of KstR present in normal growth conditions. The effect of KstR degradation in the 

strain without induction of ClpP protease was evident as well with the PDIM profile experiments. 

The PDIM profiles of KDKstR before and after adding ATc showed PDIM to be disrupted and 

unformed compared to the WT profile.  

Macrophage infections carried out with the WT, kstR, and KDKstR were carried out with 

the addition of ATc to clarify if KDKstR would be able to recover infection rates with the 

disruption of KstR post-translationally. The macrophage infections results offered great insight as 

to how KstR ablation through post-translational degradation is able to behave similarly to the 

kstR deletion strain. It also offered confirmation as to how even a diminished amount of KstR is 

able to recover infection after initial onset infection deficiency. This infection data provides us 

confirmation the ClpP protease degradation system is a valid model to use for the KDKstR strain 
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in the mouse model for future experimentation. The ability to shut KstR off once the infection has 

been established would offer a novel approach in determining its regulatory functions during 

persistence and its role with the enduring hypoxic response in the mouse model. This methodology 

will provide essential data regarding at which phases during infection the presence of KstR is able 

to inhibit transcription, and importantly, for establishing and maintaining infection. 
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Chapter 4: Overview and Final Discussion 

Mycobacterium tuberculosis has been an ongoing major health threat at a global capacity 

for hundreds of years. This threat does not appear to be subsiding with the emergence of Multidrug-

resistant (MDR-TB) and Extensively Drug Resistant (XDR-TB) in recent years. According to the 

Texas State Health Services, there was an increase 1,161 new cases of TB diagnosed in 2019 

compared to the previous year with 1,129 reported in 2018. Of the new cases in 2019, 11 of them 

were assessed to be MDR-TB. There is a significantly higher concentration of diagnoses for the 

Hispanic community (53%), and in the border cities such the city of El Paso, TX. For these reasons, 

coupled with the global threat already described, it is important for the continuation and further 

research for novel anti-tubercular drugs and therapeutic targets. Our research focuses on 

determining which key factors within cholesterol catabolism are elements that would provide 

additional knowledge and data to further potential therapeutic approaches.  

Previous work has provided information regarding KstR being the transcriptional 

regulatory factor that is responsible for Mtb’s ability to respond to the requirement for cholesterol 

catabolism during infection. [27, 49, 52, 53, 58] At the beginning of this study, the ligand for KstR 

had not been determined. We suspected the ligand for KstR would be a cholesterol catabolite that 

was produced during the early phases of the cholesterol degradation pathway and that it would 

more than likely have the attachment of Coenzyme A.  The attachment of CoA was shown to be 

essential for ligand binding and release of DNA to other TetR like transcriptional regulators with 

the same structure. [51, 56] At the onset of experiments to determine ligand binding and release, 

we saw that KstR was able to bind to a number of cholesterol derivatives, but actual release from 

the DNA was not able to be achieved unless the presence of the attachment of CoA was located at 

the side chain of the cholesterol catabolite was achieved. It was proven the (25S)-3-oxocholest-4-
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en-26-oyl-CoA (3OCh(25S)26-CoA) ligand to be the best target to bind to KstR and inhibit the 

KstR-DNA binding complex. (Fig. 5, 6, &7) When 3-oxo-4-cholestenoic acid was introduced to 

the EMSA the binding exhibited multiple nucleo-protein complexes rather than release, showing 

that it does in fact bind to KstR but it does not inhibit binding to the DNA, rather it promotes 

binding capabilities of the protein. (Fig. 5) Although binding of fatty acids and fatty acid-CoAs 

have been hypothesized to be able to assist in regulatory mechanisms and be possible ligands for 

KstR, the EMSAs conducted with them did not show release of the DNA-KstR complex, nor did 

they show the ability to produce nucleo-protein complexes which would suggest the mechanism 

of repression. (Fig. 13) 

Other intricacies of binding were also observed during the EMSA studies. It was seen the 

-oxo group at the 3 position of the cholesterol derivative A-ring was preferred over an -OH group 

regardless of the size of the cholesterol-side chain length. (Fig. 7) Additionally, between the 

presence of 3-oxo-4-cholestenoic acid (3OCHacid) and 3OCh(25S)26-CoA, KstR has preferential 

binding to the latter. Inhibition of binding to DNA was not achieved with 3OCH(25S)26-oate 

showing the requirement for a thioester bond and the attachment of CoA to prevent DNA-KstR 

complex formation. (Fig. 11) 

Crystallography studies were achieved with KstR and 3OCh(25S)26-CoA showed how the 

ligand and protein interact with one another as well as to the DNA operator. (Fig. 8-10) The 

3OCh(25S)26-CoA ligand is able to bind to each homodimer of the KstR complex in a pocket that 

consists of the α4-α9 helices. (Fig. 8) Interaction and binding of 3OCh(25S)26-CoA to KstR 

increases the distance between the two DNA binding domains to 40 Å preventing the KstR- 

3OCh(25S)26-CoA complex from binding to the DNA. (Fig. 8) The CoA attachment portion of 

3OCh(25S)26-CoA was not visualized in the crystallography studies implying that it is “wobbly” 



 84 

and does not form a stable bond with any part of KstR. (Fig. 10) Interestingly, when looking at 

key amino acids at the top of KstR where the -CoA portion could be attached to a similar pattern 

of amino acids appeared to present themselves at more towards the DNA binding domain portion 

of the protein as well. This may offer a stability to the –CoA portion for attachment, but further 

studies for this would have to be completed through mutant variants of KstR.  

Remarkably, the ligand stereoisomer conformation sent for crystallography was 

3OCh(25R)26-CoA, yet when the data was analyzed the 3OCh(25S)26-CoA was presented. As 

cholesterol catabolism reactions occur in the S-stereoisomer conformation, it would be 

understandable for the transcriptional regulator to prefer the ligand in this form. After deliberation 

and questioning with chemists, it was agreed upon KstR has racemization capability where the 

thio-ester bond is located in the binding pocket. The attachment of –CoA provides the reactive 

thio-ester bond that would allow the deprotonation and switching of conformation via formation 

of the carbanion intermediate. To determine which amino acids in the pocket are responsible for 

the aide in shifting the equilibrium to the preferable enantiomer, point mutation expression 

experiments altering amino acids that are located where the thio-ester bond sits would have to be 

conducted along with additional crystallography studies.  

During the course of the studies, it was discovered there was the possibility for KstR, 

similar to the EthR model, may have an extended N-terminus that has phosphorylation signaling 

properties. [56] The mycobacterial network research that has been conducted and presented online 

shows multiple binding sites for KstR in the 5’ UTR of the kstR gene. [83] The binding of KstR to 

multiple binding sites may allow KstR to be transcribed in multiple isoforms within the bacteria 

in response to environments or stressors. For this reasoning it was decided to create and express 

an extended isoform of KstR (X-KstR) with an addition 20 amino acids that possesses a signal 
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sequence that has a the high likelihood of phosphorylation activity and those that mimic (Asp-

KstR) or prevent (Ala-KstR) phosphorylation from occurring. Surface plasmon resonance studies 

with these new protein constructs showed the extension with the signaling sequence intact and the 

phosphor-ablative version was able to bind to the kstR operator at rates that were less than with 

the shortened version of KstR and the phosphor-mimic isoform of the protein bound at even less 

rates more than likely to the repulsion of charge. (Fig. 14) When the 3OCh(25R)26-CoA ligand 

was introduced to the experimental design, the Asp-KstR isoforms binding to DNA was slightly 

inhibited or had weaker binding compared to the other three protein constructs. (Fig. 14) 

In vivo studies were carried out to determine how Mtb CDC1551 and H37Rv strains would 

behave lacking the regulatory functions of KstR. The gene was removed by homologous 

recombination and replaced with a hygromycin cassette for selection purposes. The deletion of 

kstR was confirmed through southern blot experiments. (Fig. 15) The complementation of KstR 

was initially carried out with an integrative vector with kstR under the control of its native promoter 

at the attB site in the Mtb genome and western blots were carried out to verify the presence of 

KstR. (Fig. 15) The recovery of KstR was not achieved to WT levels but it was decided to go 

forward with experimentation. (Fig. 15) The use of other promoters, such as the hsp60 promoter, 

at this time were not thought to be a good decision based on not wanting to over produce KstR and 

create an over-expression model.  

Growth curves were performed for Mtb CDC1551 with the WT, ∆kstR, and ∆kstR/kstR to 

determine how each strain would respond to the lack of KstR regulation as well as with the 

complementation although it was previously determined the amounts of KstR were less than the 

WT. (Fig. 18) The ∆kstR strains for both the CDC1551 grown on both glycerol and 

glycerol:cholest-4-en-3-one conditions were reduced compared to that of the WT. The 
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complementation for CDC1551 did show a significant growth increase even with decreased 

amount of KstR expression yet the growth was still not up to wild type levels. It is important to 

note that for growth studies, glycerol was used as the main carbon source yet this is not normally 

the nutrient that is most abundant during infection. Mtb clearly prefers cholesterol as a carbon 

source and seems to utilize it first before switching its metabolism to glycolysis and this 

environment does not mimic that of a living host. The lack of recovery and production of KstR in 

the complement strains can more than likely be attributed to the placement of the gene. The gene 

was placed at a different locus where the interactions with other regulatory factors such as 

activators and other transcriptional regulator normally occurring for signaling events to take place 

would be hindered. This would prevent normally occurring transcriptional events to take place and 

therefore recovery of the production of KstR would be impossible with this method of 

complementation.   

Studies to determine how each of these strains would cope with the toxic effects of cholest-

4-en-3-one, cultures were grown and metabolites extracted at multiple time points to measure the 

quantities of cholesterol cholest-4-en-3-one. (Fig. 17) The CDC1551 ∆kstR strain was able to 

catabolize cholesterol in the predicted manner, faster than the WT with no additional cholest-4-

en-3-one build up. If there would be an excess store of propionyl-CoA then it would have to be 

shuttled into various pathways to be able to overcome the toxic effects of cholest-4-en-3-one.  

We decided to assess the amounts of phthiocerol dimycocerosate (PDIM) through thin 

layer chromatography studies with the CDC1551 WT, ∆kstR, and ∆kstR/kstR strains after 

introducing C14-labeled acetate, propionate, and stearate. (Fig. 20) PDIM is a known virulence 

factor that is attributed to macrophage phagosomal escape and survival of Mtb. [26, 86] It was 

found there were significant changes of PDIM production was after the introduction of C14-labeled 
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propionate. CDC1551 WT had higher levels of PDIM and the ∆kstR levels were reduced. The for 

CDC1551 ∆kstR/kstR to recover PDIM levels to the WT levels is more than likely is a result of an 

altered level of regulation capabilities of ∆kstR being in a different locus of the gene.  

Proteomic analysis was performed for the CDC1551 Mtb strain with the respective WT, 

∆kstR, and ∆kstR/kstR strains after growth on cholesterol. (Fig. 21-23) The proteomic data 

confirmed there were major differences on how each copes with the lack of KstR regulation. The 

results for key enzymes in the cholesterol catabolic pathway were noted to be upregulated with 

both ∆kstR Mtb strains. We analyzed at enzymes that dictate what happens with what would be 

the larger pool of propionyl-CoA with the constant de-repression of cholesterol degradation 

pathway enzymes.  It was previously discovered that both MutA and MutB displayed regulation 

by KstR and it appears this study has helped to validate those findings. [54] There was over-

expression of both the subunits that are responsible for the precursor metabolite that is shuttled to 

the pathways for methyl-branched fatty acids. Another enzyme not previously shown to be KstR 

regulated was PapA5, yet the deletion of kstR in CDC1551 abated expression of the enzyme. 

PapA5 is the acyltransferase known for acylating phthiocerol with mycocerosic acid connecting 

the two branches to create PDIM. [77] 

It was found there were only particular enzymes that were show to have differential 

expression and any one pathway was not directly affected by the removal of KstR. The most 

striking result was the absence in detection of Icl2 in the CDC1551 ∆kstR strain. (Fig. 22) H37Rv 

is believed to have the Icl2 gene disrupted by a frame shift mutation that does not allow the entire 

gene to be encoded as one gene therefore it is denoted at two separate genes. [89] There is a 

downstream ORF which possesses a ribosome binding site (RBS) which would allow the 

transcription of the second half of the known enzyme. In CDC1511 the two segments are 
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transcribed as one gene. It is plausible that the deletion of kstR provoked a frame shift mutation 

allowing for CDC1551 to transcribe the two genes which may account for the excess quantity seen 

in the knockout. The mechanisms into this phenomenon are worth studying in the future at a later 

date.  

 Over-expression of KstR would hinder the ability for Mtb to catabolize fatty acids and 

cholesterol as well as de-regulate the enduring hypoxic response (EHR). KstR is known to play a 

role in EHR. [54] As KstR is not considered to be a part of the central hub for Mtb hypoxic 

response, but cholesterol degradation is believed to play a larger role in hypoxia and dormancy 

states. [90] Macrophage infection studies showed the inability for the over-expression of KstR to 

infect as well as the WT, ∆kstR, or even the pMV306-kstR complement that has less KstR 

expression than the WT strain. This is more than likely due to the prevention of the transcription 

of enzymes to utilize fatty acids as a carbon source and produce virulence factors that are known 

to be protective to Mtb, such as PDIM.  

 As we have seen through our studies, choosing the correct model for KstR studies has been 

challenging. Another approach we took was that of a knockdown system where KstR would be 

able to be degraded post-translationally. It was believed in the beginning the KDKstR strain would 

be able to replace the WT strain in studies, as without addition of ATc, KstR would be able to be 

transcribed naturally under the control of its native promoter and be able to respond naturally to 

environmental stimuli. This was not the case as the KDKstR strain showed attenuation of KstR 

even in the absence of ATc. (Fig. 26-28) This issue was able to be overcome though because KstR 

was still present even in lesser amounts. KstR is required for the mouse model of infection. [36, 

58, 59] With even lesser amounts of KstR present, hypothetically, the KDKstR would allow 

infection to transpire and KstR would be able to be degraded and “shut off” with the addition of 
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ATc during the course of infection. This would allow various time frames of infection to be tested 

for possible treatment effects by de-regulating KstR through derepression.  

 During the course of these studies, novel and significant information regarding the 

characterization of how the negative transcriptional regulator KstR effects the fitness and survival 

in different strains of Mtb. These studies have established ligands that both promote the attachment 

or inhibition of KstR binding to its prospective operators is key to determining which types of 

structures to focus on to initiate a particular desired effect. As both deletion of kstR and depletion 

of KstR both produce an attenuated effect both conditions are compelling models for de-repression 

states of not only cholesterol catabolism but other regulatory mechanisms through interactions 

with other pathways and networks. This can be achieved successfully with chemicals that are able 

to mimic the ligand substrates that are similar to 3OCh(25S)26-CoA. On the other hand, repression 

of KstR control of cholesterol catabolism and regulatory functions can be induced with ligands 

that are similar or mimic the 3O(25R)26-oic acid function of the formation of nucleoprotein 

complexes as the over-expression of KstR model showed attenuation of infection as well. With 

high throughput screening of testing chemicals or molecules similar to these catabolites, 

therapeutic drugs may be designed to weaken Mtb and perhaps used as a drug treatment or therapy.  
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Appendix 

Figure 22: KstR Ser/Thr phosphorylation prediction calculations 

>Sequence 220 amino acids 

# 

# netphosbac-1.0a prediction results 

# 

# Sequence     # x   Context     Score   Kinase    Answer 

# ------------------------------------------------------------------- 

# Sequence                 2 S   ---MSSANT   0.163   main        . 

# Sequence                 3 S   --MSSANTN   0.478   main        . 

# Sequence                 6 T   SSANTNTSS   0.112   main        . 

# Sequence                 8 T   ANTNTSSAP   0.215   main        . 

# Sequence                 9 S   NTNTSSAPD   0.303   main        . 

# Sequence                10 S   TNTSSAPDA   0.552   main        Y 

# Sequence                28 S   VLAESELGS   0.185   main        . 

# Sequence                32 S   SELGSEAQR   0.391   main        . 

# Sequence                46 T   ILDATMAIA   0.128   main        . 

# Sequence                51 S   MAIASKGGY   0.173   main        . 

# Sequence                73 T   VAVGTLYRY   0.305   main        . 

# Sequence                80 S   RYFPSKVHL   0.598   main        Y 

# Sequence                87 S   HLLVSALGR   0.386   main        . 

# Sequence                94 S   GREFSRIDA   0.264   main        . 

# Sequence               100 T   IDAKTDRSA   0.275   main        . 

# Sequence               103 S   KTDRSAVAG   0.511   main        Y 

# Sequence               109 T   VAGATPFQR   0.361   main        . 

# Sequence               132 T   NPLLTEAMT   0.121   main        . 

# Sequence               136 T   TEAMTRAYV   0.113   main        . 

# Sequence               145 S   FADASAASE   0.468   main        . 

# Sequence               148 S   ASAASEVDQ   0.253   main        . 

# Sequence               159 S   KLIDSMFAR   0.530   main        Y 

# Sequence               171 T   NGEPTEDQY   0.177   main        . 

# Sequence               182 S   ARVISDVWL   0.464   main        . 

# Sequence               187 S   DVWLSNLLA   0.441   main        . 

# Sequence               194 T   LAWLTRRAS   0.346   main        . 

# Sequence               198 S   TRRASATDV   0.553   main        Y 

# Sequence               200 T   RASATDVSK   0.397   main        . 

# Sequence               203 S   ATDVSKRLD   0.332   main        . 

# Sequence               219 S   GDQDSA---   0.381   main        . 

# 

    MSSANTNTSSAPDAPPRAVMKVAVLAESELGSEAQRERRKRILDATMAIA   #     50 

    SKGGYEAVQMRAVADRADVAVGTLYRYFPSKVHLLVSALGREFSRIDAKT   #    100 

    DRSAVAGATPFQRLNFMVGKLNRAMQRNPLLTEAMTRAYVFADASAASEV   #    150 

    DQVEKLIDSMFARAMANGEPTEDQYHIARVISDVWLSNLLAWLTRRASAT   #    200 

    DVSKRLDLAVRLLIGDQDSA                                 #    250 

%1  .........S........................................   #     50 

%1  .............................S....................   #    100 

%1  ..S...............................................   #    150 

%1  ........S......................................S..   #    200 

%1  .................... 
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Table 2. Crystallography data collection and refinement statistics  

Protein KstR KstR 

Ligand (25S)-3-oxocholest-4-en-26-oyl-CoA DNA 

PDB ID 5AQC 5FMP 

Data collection   

Space group C2 C2 

Cell dimensions   

a, b, c (Å) 127.3, 67.4, 49.9 80.5, 62.8, 96.6 

   (°) 90.0, 105.7, 90.0 90.0, 89.9, 90.0 

Molecules in AU 2 2 

Wavelength 1.11587 1.11587 

Resolution (Å) 1.66 2.26 

Rsym or Rmerge (%) 6.5 (64.9)1 5.8 (25.1) 

I / I 8.6 (1.2) 8.9 (1.7) 

Completeness (%) 92.4 (62.2) 87.3 (50.1) 

Redundancy 3.6 (2.6) 2.4 (1.7) 

   

Refinement   

No. reflections 42163 19214 

Rwork / Rfree (%) 18.4/22.6 20.2/27.0 

No. atoms   

Protein 2791 2817 

Ligand 66 650 

Solvent 227 96 

Mean B value 26.7 33.1 

B-factors   

Protein 27.4 35.4 

Ligand 24.2 26.5 

Solvent 38.2 34.0 

R.m.s deviations   

Bond lengths (Å) 0.020 0.012 

Bond angles () 1.940 1.484 
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