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Abstract 

To fulfill the increasing demand on functionality and quality, modern engineering 

systems are usually built with overwhelming complexities. The more complex functions the 

system has been built, the higher reliability required of the system. This is mainly due to the fact 

that a single failure can result in catastrophic consequences. Therefore, methods that can predict 

and prevent such catastrophes have long been explored. Prognostics refer to the process of 

evaluating the current health of a system or a component and then predicting the remaining 

useful life (RUL) based on the information collected through condition monitoring. The fast 

development of information and sensing technologies offer great opportunities for real-time 

health condition monitoring, ensuring the safety, availability, and efficiency of various 

engineering systems. The condition monitoring signals, collected from sensors, also called 

degradation signals, are commonly used for system reliability assessment due to their direct 

relation with underlying physical degradation processes. The commonly applied statistical 

approach for RUL prediction is to fit degradation signals using parametric regression models to 

describe and predict how the currently available degradation signal evolves. However, these 

parametric models are often too rigid and not adequate or flexible enough to model the real 

degradation signals during the whole life cycle. In fact, degradation signals often show multiple 

phases in many applications, where the conventional parametric degradation models are often 

inadequate. 

Motivated by the issues, a novel Bayesian multiple change-point modeling approach to 

characterize degradation signals for prognostics is proposed. Under the Bayesian framework, two 

stages are often required for prognostics: the offline modeling of historical degradation signals, 

and the online Bayesian individual model updating and RUL prediction of a new unit. To 
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characterize the inherent unit-to-unit heterogeneity and make the model more flexible, In this 

dissertation, all the model parameters are assumed to be random in the model, including the 

number of change-points, their locations, and all model parameters of each segment. This 

assumption brings several challenges on how to effectively apply the multiple change-point 

model and RUL prediction. To address these challenges, we propose a series of approaches in 

both offline modeling and online model updating and RUL prediction. The main contributions of 

this research include: (1) An innovative stratified particle filtering algorithm with partial Gibbs 

resample-move strategy is developed to improve modeling and prognostics. To improve the 

prediction accuracy, the priors are specified with a novel stochastic process and the multiple 

change-point model is formulated to a novel state-space model to facilitate online monitoring 

and prediction; (2) To reduce the model complexity, an exact Bayesian inference is developed. 

where the closed form of all posterior distributions can be sequentially obtained at online stage. 

To further control the computational cost, a fixed-support-size strategy in the online model 

updating and a partial Monte Carlo strategy in the RUL prediction are proposed; (3) To better 

capture the temporal uncertainties that are inherent in the degradation process, a multiple change-

point Wiener process modeling is proposed. The advantages and effectiveness of the proposed 

methods have been demonstrated through extensive numerical studies and real-world case 

studies.
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Chapter 1: Introduction 

1.1 BACKGROUND  

Reliability has always been an important aspect in the assessment of industrial products 

or engineering systems. Due to the increasing complexity of modern engineering systems, the 

reliability demand for expensive and critical products becomes more and more essential and 

crucial [1-3]. To ensure safe and reliable operation, systems must be periodically or even 

continuously monitored since even a single failure may result in catastrophic consequences. 

Therefore, effective maintenance strategies that has the capability of predicting the future states 

of systems and making decisions wisely are required to enhance the reliability of systems. 

Conventional researchers focus on using failure time data to estimate lifetime distribution. Many 

failure models, such as Poisson, Exponential, Weibull, and Lognormal distributions have been 

used to model machine reliability [4-6]. This conventional class of algorithms only estimate the 

distribution for the entire population of identical units, but usually they cannot provide failure 

prediction for an individual unit. These reliability approaches are more suitable for system design 

optimization in terms of reliability performance. In practical applications, however, as 

components become more reliable, few failure times may be available. On the other hand, due to 

the variability in the inner structures or the diversity in working environment, different 

components exhibit various degrading paths [7], prognosis on individual units becomes more and 

more important.  

Recent advances in information and sensing technologies have provided a unique 

opportunity to monitor systems or components constantly without interrupting normal machine 

operation, which makes the maintenance strategy has evolved from traditional breakdown 

maintenance, preventive maintenance to condition-based maintenance (CBM) [8]. Condition-
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based maintenance involves real-time analysis of sensor data to infer maintenance condition, or 

health. In comparison with traditional maintenance strategies, CBM can significantly reduce 

maintenance costs, improve replacement strategies and health management, as well as 

maximizing manufactured products availability [9, 10]. Diagnostics and prognostics are two 

important aspects for CBM. Diagnostics deals with fault detection, isolation and identification 

when it occurs, while prognostics deals with fault prediction before it occurs. Since prognostics 

is associated with predicting the future, which involves a large degree of uncertainty. Therefore, 

prognostics is much more challenging than the diagnostics. The most widely used prognostics is 

to predict how much time is left before a failure occurs given the current machine condition and 

past operation profile [8]. The “machine condition” collected from sensors are known as 

condition monitoring (CM) signals or degradation signals, they record machinery degradation 

process that deteriorates over time and eventually leads to a system/component failure. With this 

context, a failure is defined to be the time point when the magnitude first reaches a pre-specified 

threshold, which is also called soft failure determined by either engineering domain knowledge 

or accepted industrial standards [1, 11]. Some examples of degradation signals include vibration 

signals for monitoring excessive wear in rotating machinery, acoustic emissions for monitoring 

crack propagation, temperature changes and oil debris for monitoring engine lubrication, crack 

size changes in metallic structures, and many others. Figure 1-1 shows an example of three 

bearing degradation signals. Bearings are critical part of mechanical systems with rotational 

components. As it deteriorates over time, they tend to exhibit larger vibration. When the 

amplitude of a bearing’s vibration exceeds the certain threshold (black dotted line), the bearing 

can be considered as no longer suitable for further operations [12].  
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Figure 1-1: Illustration of degradation evolution 

 

If we could build a model that is capable of describing the degradation phenomenon based on the 

current acquired condition monitoring data [13], we will be able to predict how much time is left 

before a failure occurs. The time left before observing a failure is usually called remaining useful 

life (RUL), that is, 𝑇 − 𝑡|𝑇 > 𝑡, 𝑋(𝑡), where 𝑇 is the failure time and 𝑡 is the current time, 

𝑋(𝑡) is the historical condition monitoring data. Due to randomness in the evolution paths of the 

degradation, the calculated RUL will be in the form of some probability distribution. 

Considerable attention has been focused on developing degradation models to improve the 

capability and accuracy of RUL prediction techniques in the past few years. The objective of this 

dissertation is to predict the RUL of an individual unit based on degradation modeling 

technologies. In the following sections, a literature review of the development of RUL prediction 

based on degradation modeling technologies is presented. Some issues involved in the current 

researches are addressed. 
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1.2  LITERATURE REVIEW 

The prediction of RUL often requires a prognostic model, most of existing prognostics 

models can be categorized broadly into physics-based models, data-driven models [8, 10, 14, 

15]. The physics-based degradation models are those which the degradation phenomenon can be 

described by accurate mathematical models such as the Paris’ law, Forman law, Arrhenius law 

and corrosion initiation equation, or others. To establish these models, a thorough knowledge 

about the system mechanism, operating conditions, and life cycle loads applied to the system are 

required [2]. The main advantage of physics-based method is the ability to incorporate physical 

understanding of the system for prognostics. Another advantage is that, in many situations, the 

changes in degradation features are closely related to model parameters, an accurate functional 

mapping can be established between parameters and prognostic features [16]. A number of 

applications of physics-based models can be found in automotive, aerospace and defense 

industries. Li and Lee [17] used Paris-Erdogan law to model spur gear crack propagation and 

then to predict the RUL of a cracked gear. The Paris-Erdogan law also has been used by 

Kacprzynski et al. [18] for a helicopter crack propagation prognosis. Luo et al.[19] employed an 

Interacting Multiple Model (IMM) to track the degrading parameters and to estimate the 

remaining life of an automotive suspension system. Oppenheimer and Loparo [20] applied a 

physical model to predict the remaining useful life using linear elastic fracture mechanics for 

shaft cracking in a rotor. However, the development of physics-based models requires a 

sufficient understanding of the underlying physical processes that lead to system failure. 

Reaching to a perfect physical model that representing the multiple physical processes occurring 

for complex systems is very difficult [21]. The worst thing is, they are very expensive to 

implement, even small modification in the material or subcomponent of the system will require 
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remodeling [22]. Considering all of these reasons, data-driven approaches are preferable in most 

of applications where CM data can be easily obtained by sensors.  

 

Figure 1-2: Categories of Data-driven methods 

 

Data-driven methods directly utilize the collected CM data for health condition 

prediction, and do not require physics-of-failure models. According to [23-25], the existing 

scientific literature on data-driven modeling and prediction can be further classified into two 

categories as shown in Figure 1-2: 

(a) Artificial intelligence (AI) approaches. The AI approaches typically include (1) neural 

networks. The feature of neural networks that they do not rely on priori principles or statistics 

models and can significantly simplify the model synthesized process. Therefore, neural networks 

are easy to implement accurate and fast on-line pattern recognition [26]. Lee [27] developed a 

neural network model based on cerebellar model articulation controllers (CMACs) in order to 

discriminate and quantify machine degradation. Gebraeel et al. [28, 29] developed ball bearing 

remaining life prediction methods based on feedforward neural networks. Dong et al. [30] 
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model
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Gamma Process

Inverse Gaussian 
Process
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Parametric Regression 

model 

AI model

Neural networks
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utilized a grey model and a back-propagation (BP) neural network to predict machine condition. 

Wang and Vachtsevanos [31] applied dynamic wavelet neural networks to predict the fault 

propagation process and estimate the RUL. Recently a recurrent neural network based on health 

indicator for RUL prediction of bearings was proposed by Guo et al. [32]; (2) fuzzy logic. Fussy 

logic provides a very human-like and intuitive way of representing and reasoning with 

incomplete and inaccurate information by using linguistic variables. A fuzzy-based data-driven 

similarity analysis is performed by Zio and Maio for predicting the remaining life of a newly 

developing failure trajectory [23]; (3) expert system. The process of building expert systems 

involve knowledge acquisition, knowledge representation, and the verification and validation of 

models. Butler proposed an expert system-based framework for incipient failure detection and 

predictive maintenance (FDPM) [33]. Except researches as mentioned above, some efforts have 

also been done to build combination models through combine two or more techniques together. 

Wang et al. [34] compared the results of applying recurrent neural networks and neural–fuzzy 

combination inference systems to predict the fault damage propagation trend. Xue et al. [35] 

developed a fuzzy mathematical model with radial basis function neural network to predict the 

potential faults of a coal-fired boiler. Baraldi et al. [36] recently predicted the RUL of ferritic 

steels by fuzzy similarity and belief function theory.  

(b) Statistical approaches. The statistical approaches include general path models, 

stochastic processes (e.g., Wiener process, Gamma process, Inverse Gaussian process) and 

Markovian based models, etc.  

General path model. The basic idea of general path model is to build a parametric 

evolution path to trend degradation signals. It assumes an underlying functional form for the 

degradation path of a specific unit as following 
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𝑋𝑖𝑗(𝑡) = 𝑔(𝑡𝑖𝑗; 𝝓, 𝜽) + 𝜀𝑖𝑗 (1.1) 

Where the fixed coefficients 𝝓 are common for all units and random coefficients 𝜽 are used to 

representing individual unit characteristics, 𝜀𝑖𝑗 are normally distributed measurement errors 

with 𝜀𝑖𝑗~𝑁(0, 𝜎2). Parameters in the model should be estimated before we apply the model for 

decision-making and prognostics. In this model, the functional forms of 𝑔(𝑡𝑖𝑗; 𝝓, 𝜽) could be 

linear, polynomial, exponential, or combination of them. Tseng et al. [37] developed a simple 

linear random coefficients model to fit the luminosity degradation path of fluorescent lamps. Lu 

and Meeker [38] presented a general nonlinear regression model to characterize the degradation 

path of fatigue-crack-growth, A two-stage method was presented for estimating the model 

parameters. Chinnam [39] proposed a polynomial regression model and putted the model in 

thrust-force signal of drill-bits and fatigue crack growth signal. The result showed that a third-

order model provided a better fit for modeling. Chakraborty et al. [40] developed a simulation-

based algorithm and linear degradation model with gamma distribution as a prior. They 

concluded that using a gamma distribution which is the fact that its two parameters provides a 

better flexibility. 

Stochastic process based models. In the stochastic process based model, for any time 𝑡, 

and ∆𝑡 > 0, the increments ∆𝑋(𝑡) = 𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡) of degradation signal 𝑋(𝑡) in disjoint 

time intervals are independent [3]. If the increment is normally distributed, then {𝑋(𝑡)} is the 

Wiener process. A basic Wiener process can be expressed as  

𝑋(𝑡) = 𝜆𝑡 + 𝜎𝐵(𝑡) (1.2) 

Where 𝜆 is a drift parameter reflecting the rate of degradation, 𝜎 is a diffusion coefficient, 

𝐵(𝑡) represents the standard Brownian motion. One of the main advantages of degradation 

modeling with Wiener processes is that the distribution of the failure time can be formulated 
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analytically by the first passage time (FPT), in which its PDF is an inverse Gaussian distribution. 

Due to its mathematical properties and physical interpretations, extended versions have also been 

made based on basic Wiener process to satisfy specific demand. One alternative is to add an 

error term onto the basic process to capture measurement errors in degradation signals [41-43]; 

the second way is to incorporate random-effects model in dealing with unobserved 

heterogeneities, specifically, assume that 𝜆  or 𝜎  or both follow some certain parametric 

distributions, see examples [44-46] among others. The third way is to incorporate nonlinear 

structure into this model to make the model more general. In particular, the more generalized 

model is defined as 

𝑋(𝑡) = 𝜆Λ(𝑡; 𝜽) + 𝜎𝐵(𝜏(𝑡; 𝜸)) (1.3) 

Where Λ(𝑡; 𝜽) and 𝜏(𝑡; 𝜸) are non-decreasing functions with parameter vectors of 𝜽 and 𝜸 

[43, 47]. Wiener processes have been used extensively to model a variety of degradation 

processes encountered in real systems, such as bridge beams [46], fatigue crack dynamics [48], 

light-emitting diodes [44] and micro electro mechanical systems (MEMS) [49]. If the increment 

∆𝑋(𝑡) follows Gamma distribution or inverse Gaussian distribution, the process {𝑋(𝑡)} will be 

called Gamma process and inverse Gaussian process, respectively. Details of modeling 

degradation with these two processes are given by [50-52], The recent literature on stochastic 

modeling for high reliable products can be found in Ye and Xie [11].  

Markovian Process based models. Note that although Markovian process still belongs to 

stochastic process, we list these models separately considering the big difference from the 

previously mentioned stochastic models. The rationale of Markovian process is that the future 

states of the process depends only on the present state, not the past states. Markovian process 

based models in degradation analysis can be categorized as Markov Chain model [53], Semi-
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Markov model [54], Hidden Markov Model (HMM) [55], Hidden semi-Markov model (HSMM) 

[56, 57]. Semi-Markov processes are a generalization of Markov. An HMM consists of two 

stochastic processes: a Markov chain with finite number of states describing an underlying 

mechanism and an observation process depending on the hidden state. An HSMM is constructed 

by adding a temporal component into the well-defined hidden Markov-model (HMM) structures 

to cope with the inaccurate state duration modeling of HMM. 

1.3  RESEARCH OBJECTIVES AND CHALLENGES 

Selecting an accurate and effective prognostic model is the key for the prognostics. Due 

to the simplicity and flexibility, general path models are commonly used in industry and 

academic fields. Although many efforts have been done on general path modeling in the past few 

years, there still remain some issues to be improved for the accuracy and efficiency. Here, to be 

specific, some CM signals show two or more distinct phases in practice. For example, Bae and 

Kvam [58] demonstrated that the degradation path of vacuum fluorescent displays is not 

monotonic, showing obviously two phases or even three phases. Son et al. [59] also showed that 

the internal resistance degradation signal of vehicle batteries evolves more rapidly after the 

system has degraded down to a certain change point before failure occurs. This phenomenon has 

also been observed in many other CM signals, such as high-performance capacitors [60], the 

semiconductor laser diodes [61], the liquid coupling devices [62] and vibrational signals of 

rotational bearings [63, 64]. In this regard, general path models are often too rigid and not 

adequate or flexible enough to model the real CM signals in the whole time period. Some 

researchers [37] [65] chose to delete early degradation measurements at the first stage, under the 

assumption that the failure will not occur at the early stage, and then apply the parametric models 

to the second phase data for better model fitting and prediction. However, the truncated 
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measurements may contain valuable information about the degradation process or the prediction 

may need to be made at the early stage.  

To avoid measurement truncation, change point models are usually used to deal with the 

system models that has changes suddenly during the whole life time period. Given a set of 

observations, Change point models separate observations into two or more segments assumed 

that the observations follow the same statistical model within each segment, but different models 

in different segments [66, 67]. Change point models have been widely spread to various areas, 

such as in finance, biology science, software reliability analysis. For example, Change-point 

detection techniques are used to detect changes in temperature and in precipitation [68], to detect 

abrupt shifts in carbon dioxide (CO2) concentrations [69], to detect DNA segmentation [67]. 

Until recently, limited efforts devoted to degradation modeling with change-points. Li and 

Nilkitsaranont [70] employed a combination of a linear model in the first phase and a quadratic 

model in the second phase to estimate the remaining useful life of gas turbine engines, and used 

“compatibility check” to determine the transition point from one model to another. Son et al. 

[59] incorporated a change-point to the resistance signal in a joint prognostic model (joint 

modeling of reliability data and CM data) to predict the RUL of batteries. Bae and Kvam [71, 

72] found that the prediction accuracy can be improved substantially by constructing a two-phase 

degradation process under general path models to account for burn-in effects of light displays. 

Gebraeel et al. [12] developed an exponential (i.e., log-linear) degradation model with a pre-set 

location of a change-point to illustrate the updating process of rolling element bearings, they 

assumed that the bearing has already entered the second phase and omitted the influence of the 

first phase. Later, Chen and Tsui [63] revisited Gebraeel’s work, and applied a two-phase 

piecewise regression model with one change-point at unknown location to characterize both 
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phases of the bearing degradation signals. Then Wang and Tsui [73] optimized the piecewise 

model [63] to a unique model using an indicator function and extended Gebraeel’s work to be 

more general. Wang et al. [62] proposed a two-stage stochastic process model, called as change-

point gamma and Wiener process, to capture a degradation process of liquid coupling devices 

(LCD). All these aforementioned methods assume a two-phase pattern on CM signals. It means 

that add a change-point to divide CM signals into two phases and fit each phase with different 

models. In many situations, however, the degradation path may have three or even more phases 

during the whole life cycle. It would be difficult to select proper functional forms to characterize 

the degradation behavior with no change-point or only one change-point.  

To fill such gap, this dissertation endeavors to develop a novel multiple change-point 

modeling approach for condition monitoring and RUL prediction. To the best of our knowledge, 

very few efforts have been made to address the degradation analysis with multiple change points. 

Note that, some authors also refer multiple change points as “multi-phase” or “multi-stage”. In 

the existing literature, the definition of “phase” (or “stage”) can be classified into two categories: 

(1) it is commonly referred to as different operational conditions or states, such as the working 

state and storage state for missiles, multiple consecutive phases of operations required to finish 

the service for phased-mission systems (PMS). For example, Si et al. [74] estimated the real-time 

reliability of an individual phased-mission system (PMS) by using a stochastic filtering model to 

model the phase duration, and Brownian motion was employed to account for the dependency of 

mission phase-dependency. Si et al. [75] predicted the residual storage life of critical systems by 

applying a two-state continuous-time homogeneous Markov process to approximate the switches 

between the working state and storage state. (2) It is also frequently used to denote health 

conditions with different characteristics (e.g., normal working stage and irreversible degradation 
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stage with defects occurred for bearings), or different patterns shown on CM signals, which may 

not have specific physical meanings. For example, Feng et al. [60] proposed a multi-phase 

Wiener process model to predict the storage life of high-voltage-pulse capacitors. In our 

approach, “multiple-phase” is more related to the second category, though it can be easily 

applied to the first case as long as the degradation signals exist multiple patterns. The main 

difference between our work and the existing multiple change-point approaches in category (1) 

lies in the motivation and methodologies. In [74, 75], as mentioned earlier, in these methods, the 

multiple phases are used to model different operational states or stages, e.g., take-off, ascent, 

cruise, approach and landing phases of the on-board systems for the aided-guide of aircraft. 

Therefore, the number of phases are fixed, the phase index and the starting point of each phase 

before the current time can be exactly observed. In Feng’s work [60] in category (2), the number 

of change-points and their locations are also deterministic and the same for all units, which is not 

realistic for real degradation signals with unit heterogeneity. The possible state changes in future 

time period are not considered in the life prediction. Comparing with those existing work, we 

innovatively apply the multiple change-point model to degradation signals to improve modeling 

and prognostics, which is fundamentally different from the existing multiple-phase modeling 

approaches in terms of motivation, methodology and applications. In this research, a piece-wise 

linear functional form is proposed to model CM signals. The rationale is the piecewise linear 

model with a proper number of change-points at proper locations is flexible enough to capture 

the non-linear and multiple-phase characteristics of various kinds of degradation signals in 

application. It could avoid the nontrivial selection of appropriate functional forms to model the 

CM signals. Besides, it makes more sense physically to define it as a phase when CM signal is 

degrading with a constant rate. To characterize the inherent unit-to-unit heterogeneity and make 
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the model more flexible, in our model all the model parameters are assumed to be random, 

including the number of change-points, their locations, and all model parameters of each 

segment. The Bayesian approach is naturally selected to incorporate the historical data and 

current information for model updating, prediction and uncertainty quantification. Under 

Bayesian framework, two stages are often required for real-time prognostics: i.e., offline and 

online stages. At the offline stage, all parameters need to be estimated based on historical CM 

data. At the online stage, the newly observed data from a specific unit will be merged with the 

offline information by using Bayesian inference for model updating and RUL prediction. There 

are several challenges on how to effectively apply the multiple change-point model for condition 

monitoring and RUL prediction under the Bayesian framework: 

(1) Due to significantly increased dimensionality and complexity, how to specify 

reasonable priors (e.g., phase durations or number of change-points, model parameters of each 

phase) based on historical CM signals at the offline modeling stage. 

(2) How to update the posterior distributions of model parameters sequentially for an in-

service unit at the online model updating stage. 

(3) How to determine the future possible change points, so as to incorporate the future 

possible change points into the RUL prediction, Since the degradation rate depends on the phase 

the degradation process at, the accuracy of the change-points’ estimate has a direct influence on 

the accuracy of the RUL estimation. 

Motivated by the aforementioned challenges of multiple change-point modeling. The goal 

of this dissertation is to develop a robust and efficient method for real-time RUL prediction. To 

achieve this goal, a series of approaches are developed to address these issues. (1) a simple yet 

effective two-stage empirical approach is proposed for offline model estimation. (2) The multiple 
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change-point model is reformulated as a non-standard state-space model, then a novel particle 

filtering (PF) algorithm is developed for online model updating and RUL prediction. We call the 

proposed method as stratified particle filtering (SPF) algorithm. (3) we develop an innovative 

recursive updating algorithm by using exact Bayesian inference. The closed form of all posterior 

distributions can be sequentially obtained by using conjugate priors. We also derive a closed 

form of the RUL prediction. To control the computational cost in the online stage, then a fixed-

support-size strategy and a partial Monte Carlo (partial-MC) approach are proposed to control 

the computational cost of RUL estimation. (4) we propose a multiple change-point Wiener 

process degradation model to capture the temporal uncertainties that are inherent in the 

degradation process.  

1.4  OUTLINE OF THE DISSERTATION 

The remainder of the dissertation is organized as follows.  

In chapter 2, a stratified Particle Filtering algorithm is described for RUL prediction. The 

detail of a multiple change-point general path model for the CM signals is presented. The 

technical details on how to sequentially update the posterior distributions of the phase index, 

latest change-point, and model parameters of the current phase, and how to predict the RUL 

under the Bayesian framework using the particle filtering algorithm are presented.  

In chapter 3, a multiple change-point degradation modeling combined with exact 

Bayesian inference framework is developed, an innovative recursive updating and prognostic 

algorithm where the closed form of all posterior distributions and RUL distribution of derivation 

is presented. Then a fixed-support-size strategy and partial Monte Carlo (partial-MC) approach 

are proposed to control the computational cost of RUL estimation.  
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In chapter 4, to better capture the temporal uncertainties that are inherent in the 

degradation process, a multiple change-point Wiener process degradation model is proposed. In 

this model, at the offline stage, an empirical two-stage process is proposed for model estimation, 

and a cross-validation approach is adopted for model selection. At the online stage, an exact 

recursive model updating algorithm is developed for online individual model estimation, and an 

effective Monte Carlo simulation approach is proposed for RUL prediction. 

The conclusions and future work are given in chapter 5.
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Chapter 2: Stratified Particle Filtering Algorithm for RUL Prediction 

2.1 INTRODUCTION 

As discussed in chapter 1, to characterize the population-level trend as well as the 

individual heterogeneity, mixed-effects or random-effects models are most commonly selected in 

off-line modeling of historic CM signals. We develop multiple change-point based general path 

model. To predict the RUL for a new unit, the Bayesian approach is naturally selected for online 

model updating, prediction and uncertainty quantification, where the fitted parameters in the 

offline stage are used as priors. However, there are several challenges on how to effectively 

apply the multiple change-point model for condition monitoring and RUL prediction under the 

Bayesian framework. Due to significantly increased dimensionality and complexity, it is difficult 

to specify reasonable priors (e.g., phase durations or number of change-points, model parameters 

of each phase) in the offline modeling of historical CM signals. In addition, in the online model 

updating stage, the posterior distributions of model parameters need to be updated sequentially. 

However, the multiple change-point model is highly nonlinear and the conventional Kalman 

filtering techniques, which are commonly used for linear models, are not applicable. Besides, the 

RUL prediction given the posterior of the current model parameters is still very challenging due 

to the uncertainty of future change-points and model parameters. To address these challenges, in 

this chapter, we propose a series of approaches in both off-line modeling and online model 

updating and RUL prediction. In the off-line modeling, a novel stochastic process is proposed to 

specify and estimate priors in the off-line modeling. In the online stage, the multiple change-

point model is formulated as a non-standard state-space model and a novel stratified particle 

filtering algorithm is developed for online model updating and RUL prediction. 
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The contribution of this chapter lies in the following three-fold: (1) we innovatively apply 

the multiple change-point model to degradation signals to improve modeling and prognostics, 

which is fundamentally different from the existing multiple-phase modeling approaches in terms 

of motivation, methodology and applications; (2) a full Bayesian framework is proposed for the 

multiple change-point model through a novel stochastic process; and (3) an efficient stratified 

particle filtering algorithm with partial Gibbs sampling strategy is developed for model updating 

and RUL prediction.  

The rest of this chapter is organized as follows. In Section 2.2, a multiple change-point 

based general path model for the CM signals is presented. The prior parameters specification and 

state-space representation for the multiple change-point model are given in Section 2.3. Section 

2.4 presents the technical details on how to sequentially update the posterior distributions of the 

phase index, latest change-point, and model parameters of the current phase, and how to predict 

the RUL using the particle filtering algorithm. Section 2.5 demonstrates the effectiveness and 

accuracy of the proposed method through numerical and case studies. The conclusion is given in 

Section 2.6. 

2.2 MULTIPLE CHANGE-POINT GENERAL PATH MODELING 

A degradation model that can adequately describe the degradation path is essential for 

prognostics. In this chapter, a multiple change-point based general path model is proposed to 

model CM signals. Specifically, we split the degradation signal into multiple phases using 

multiple change-points. Then each segment can be described by linear regression model. The 

piecewise linear model with a proper number of change-points at proper locations is flexible 

enough to capture the non-linear and multiple-phase characteristics of various kinds of 

degradation signals in application. It could avoid the nontrivial selection of appropriate 
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functional forms to model the CM signals. Here we use the bearing vibration signals [12] to 

demonstrate the superiority of the proposed method. Figure 2-1 shows an example of thrust 

bearing vibration signals with multiple-phase characteristic. Obviously, the bearing operates 

under a stable condition at first and then degrades rapidly with two distinct phases. The 

degradation signal could be appropriately modelled with three line segments. If only one change-

point is incorporated, the degradation signal after the stable stage is poorly fitted (Figure 2-1a), 

which could consequently influence the prognostic accuracy (Figure 2-1c). 

 

 

Figure 2-1: Modeling and prediction of degradation signal with two line segments (a and c) and 

three line segments (b and d). The dark regions are prediction confidence intervals. 

 

Suppose there are 𝐼 historical CM signals. Let 𝒀𝑖 denote the CM signal of the ith unit, 

and 𝒀𝑖 = {𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝑗, … , 𝑦𝑖,𝑛𝑖
}, 𝑖 = 1, … , 𝐼 where 𝑦𝑖,𝑗 is the jth observation of unit 𝑖 at 

time 𝑡𝑖,𝑗, and 𝑛𝑖 is the total number of observations of unit 𝑖 in the lifetime. Let 𝑘𝑖 denote the 

total number of change-points of unit 𝑖 before failure, which is modelled as a random variable 

to account for the unit-to-unit heterogeneity. Following a conventional notation of multiple 

change-point models [76], suppose the 𝑘𝑖  change-points are the integer-valued indices 

𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑘𝑖
. For notational convenience, we define 𝑐𝑖0 = 0 and 𝑐𝑖𝑘𝑖+1 = 𝑛𝑖. Then 𝑐𝑖0 = 0 <

(a)

(c)

(b)

(d)

y
y
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𝑐𝑖1 < 𝑐𝑖2 < ⋯ < 𝑐𝑖𝑘𝑖
< 𝑐𝑖𝑘𝑖+1 = 𝑛𝑖 . Consequently, the sequence of observations 

{𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝑗, … , 𝑦𝑖,𝑛𝑖
}  are partitioned into 𝑘𝑖 + 1 contiguous 

segments 𝑦𝑖,𝑐𝑖0+1:𝑐𝑖1
, 𝑦𝑖,𝑐𝑖1+1:𝑐𝑖2

, … 𝑦𝑖,𝑐𝑖𝑘𝑖
+1:𝑛𝑖 

. Mathematically, the multiple change-point model 

can be expressed as 

 

𝑦𝑖,𝑗 =

{
 
 

 
 

 𝑎𝑖1 + 𝑏𝑖1𝑡𝑖𝑗 + 𝜎𝑖1𝜀𝑖𝑗 ,            0 < 𝑡𝑖𝑗 ≤ 𝑐𝑖1

    𝑎𝑖2 + 𝑏𝑖2𝑡𝑖𝑗 + 𝜎𝑖2𝜀𝑖𝑗,          𝑐𝑖1 < 𝑡𝑖𝑗 ≤ 𝑐𝑖2    
⋯ 

    𝑎𝑖𝑘𝑖
+ 𝑏𝑖𝑘𝑖

𝑡𝑖𝑗 + 𝜎𝑖𝑘𝑖
𝜀𝑖𝑗,        𝑐𝑖𝑘𝑖−1 < 𝑡𝑖𝑗 ≤ 𝑐𝑖𝑘𝑖

𝑎𝑖𝑘𝑖+1 + 𝑏𝑖𝑘𝑖+1𝑡𝑖𝑗 + 𝜎𝑖𝑘𝑖+1𝜀𝑖𝑗,    𝑐𝑖𝑘𝑖
< 𝑡𝑖𝑗 ≤ 𝑇𝑖

 (2.1) 

where 𝜀𝑖𝑗 follows i.i.d. standard normal distribution,  𝑎𝑖𝑘, 𝑏𝑖𝑘 and 𝜎𝑖𝑘  are the intercept, slope 

and standard deviation of the k-th line segment, respectively. Give the position of a change-point, 

we assume that the observations before that change-point is independent of those after the 

change-point. For simplicity and without loss of generality, we assume that 𝑡𝑖,𝑗 = 𝑗 in the rest 

of the dissertation, i.e., the sampling intervals equal to 1 for all units.  

Denote a multiple change-point model as 𝓜 = (𝑘, {𝛿(𝑠)}
𝑠=1

𝑘+1
, {𝜽(𝑠)}

𝑠=1

𝑘+1
) where 𝑘 is 

the number of change-points, 𝛿(𝑠) = 𝑐𝑠 − 𝑐𝑠−1 is the duration of the 𝑠th segment, and 𝜽(𝑠) =

(𝑎(𝑠), 𝑏(𝑠), 𝜎2(𝑠)) is the model parameters of the 𝑠th segment. Bayesian approach is commonly 

employed to integrate historical data with newly observed CM signal of a working unit for 

sequential model updating and RUL prediction. The prognostics often involves two stages under 

Bayesian framework. At the offline stage, the historical data provide prior information on the 

number of change-points, locations of change-points, and possible values of model parameters of 

each line segment, all these parameters are modelled with appropriate distributions, and the 

hyperparameters are estimated. At the online stage, the posterior distributions of the individual 
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model parameters are sequentially updated based on the prior information and observed CM 

signal of a working unit up to the current time. Denote 𝑦1:𝑡 as the observations of a working 

unit by the current time index 𝑡, and denote 𝒙𝑡 = (𝑎𝑡, 𝑏𝑡, 𝜎𝑡
2, 𝜏𝑡, 𝑠𝑡, 𝑘) where 𝑎𝑡, 𝑏𝑡, 𝜎𝑡

2 are the 

parameters of the current line segment, 𝜏𝑡 is the latest change-point, i.e., the starting time of the 

current line segment, 𝑠𝑡 is the phase or stage index. In the model updating, the posterior of the 

current line segment can be expressed as 

 

𝑝(𝒙𝑡|𝑦1:𝑡) ∝ 𝜋(𝒙𝑡)𝑝(𝑦1:𝑡|𝒙𝑡) (2.2) 

where 𝜋(∙) is the prior distribution obtained in the offline modeling of historical data. With the 

model with updated parameters, we can predict the future degradations. To predict the RUL, the 

posterior distribution of the future degradations 𝑦𝑡∗ , ∀𝑡∗ > 𝑡 needs to be calculated based on the 

updated model 

𝑃(𝑦𝑡∗|𝑦1:𝑡) = ∑ ∫ 𝑃(𝑦𝑡∗|𝒙𝑡)𝑃(𝒙𝑡|𝑦1:𝑡)𝑑(𝑎𝑡, 𝑏𝑡, 𝜎𝑡
2)

𝑘,𝑠𝑡,𝜏𝑡

 (2.3) 

where  

𝑃(𝑦𝑡∗|𝒙𝑡) = ∑ ∫ 𝑃(𝑦𝑡∗|𝒙𝑡∗)𝜋(𝒙𝑡∗|𝒙𝑡)𝑑(𝑎𝑡∗ , 𝑏𝑡∗ , 𝜎𝑡∗
2 )

𝑠𝑡∗ ,𝜏𝑡∗

 
(2.4) 

Although the above three equations have simple formulation, they are generally 

intractable due to high dimensionality and high nonlinearity caused by the unknown change-

points. To address this challenge, we reformulate the multiple change-point model to a 

nonstandard state-space model and use particle filtering techniques to approximate these 

posteriors. Section 2.3 will introduce the specification and calculation of priors based on the 

historical data, and the state-space representation of the multiple change-point model. Section 2.4 

will give the technical details of the developed particle filtering algorithm. 
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2.3 PRIOR SPECIFICATION AND STATE-SPACE REPRESENTATION 

Prior distribution plays an important role in Bayesian data analysis. Informative priors are 

often preferred if historical data is available, since they reflect the strong belief of a new unit and 

can lead to more accurate posterior inference of the degradation path. In this section, the priors 

for the multiple change-point model 𝓜 = (𝑘, {𝛿(𝑠)}
𝑠=1

𝑘+1
, {𝜽(𝑠)}

𝑠=1

𝑘+1
) are specified and estimated. 

In the Bayesian formulation of multiple change-point models with a fixed number of 

observations, the priors for the number of change-point 𝑘, the segment durations {𝛿(𝑠), 𝑠 =

1, … , 𝑘 + 1} and the segment parameters {𝜽(𝑠), 𝑠 = 1, … , 𝑘 + 1} can be specified easily. For 

the change-points, a joint prior could be placed, i.e., 𝜋 (𝑘, {𝛿(𝑠)}
𝑠=1

𝑘+1
) = 𝜋(𝑘)𝜋 ({𝛿(𝑠)}

𝑠=1

𝑘+1
|𝑘). 

More commonly, a Markov process could be assumed to simultaneously model the priors for the 

number of change-points and their occurrence intervals or equivalently their locations [77-81]. 

For example, a Poisson process could be used to model the occurrence of change-points, where 

the intervals 𝛿(𝑠) between successive change-points follow an i.i.d. exponential distribution, and 

the last interval satisfies 𝛿(𝑘+1) ≥ 𝑇 − 𝑐𝑘. In such case, the prior density can be derived as 

 

𝜋 (𝑘, {𝛿(𝑠)}
𝑠=1

𝑘+1
) = [∏ 𝑓(𝛿(𝑠)|𝜆)

𝑘

𝑠=1

] 𝑃(𝛿(𝑘+1) ≥ 𝑇 − 𝑐𝑘) = 𝜆𝑘 exp(−𝜆𝑇) 
(2.5) 

where 𝑓(∙ |𝜆)  is the probability density function of an exponential distribution, 𝜆  is the 

Poisson rate and 𝑇 is the total number of observations. In a Bernoulli process, each time step has 

the probability 𝑝 to be a change-point and the intervals follow an i.i.d. geometric distribution 

[78, 82, 83]. The joint density is simply  
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𝜋 (𝑘, {𝛿(𝑠)}
𝑠=1

𝑘+1
) = 𝑝𝑘(1 − 𝑝)𝑇−1−𝑘 (2.6) 

where 𝑝 is the parameter for the Bernoulli distribution. For the changing parameters (𝜽(𝑠), 𝑠 =

1, … , 𝑘), i.i.d. Gaussian distribution is often assigned. 

The aforementioned renewal process is often applied in the segmentation of time series 

data of a known and fixed length and the priors specified are often non-informative, i.e., the 

phase duration follows the same distribution. However, considering the phase heterogeneity of 

the CM signals, the prior distributions for the phase durations should be different to make the 

prior more informative for RUL prediction. Also, for a working unit, the number of observations 

to be collected before it fails is unknown. If a renewal process is applied to model the priors, an 

unlimited number of change-points beyond the current time has to be considered, which is 

unrealistic for informative prior specifications and RUL prediction. To solve this problem, we 

first place a prior distribution on the number of change-point 𝑘 . Conditioning on  𝑘 , the 

distribution of the phase interval lengths are modelled by a stochastic process where the first 𝑘 

interval lengths {𝛿(𝑠)}
𝑠=1

𝑘
 follow independent and non-identical distributions and the 𝑘 + 1 

model parameters {𝜽(𝑠)}
𝑠=1

𝑘+1
 follow independent and non-identical distributions. Then the prior 

could be factorized as 

 

𝜋(ℳ) = 𝜋(𝑘) ∏ 𝜋(𝛿(𝑠)|𝑘)
𝑘

𝑠=1
∏ 𝜋(𝜽(𝑠)|𝑘)

𝑘+1

𝑠=1
 (2.7) 

More specifically, we put a categorical distribution or generalized Bernoulli distribution on 𝑘, 

with 𝜋(𝑘 = 𝑔) = 𝑝𝑔 and ∑ 𝑝𝑔𝑔 = 1. For simplicity, we assume the phase durations follow 

normal distributions, 𝛿(𝑠)|𝑘~𝑁(𝛿0
(𝑘,𝑠)

, 𝜎0
2(𝑘,𝑠)

). For the changing parameters, the commonly 
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used normal and inverse Gamma are specified, i.e., 𝜷(𝒔)|𝑘 = (𝑎(𝑠), 𝑏(𝑠)|𝑘)
′
~𝑁(𝝁0

(𝑘,𝑠)
, 𝚺0

(𝑘,𝑠)
) 

and 𝜎2(𝑠)|𝑘~𝐼𝐺(𝛼1
(𝑘,𝑠)

, 𝛼2
(𝑘,𝑠)

) . Since the CM signal often increases rapidly when it is 

approaching the failure threshold in the last phase, we assume a truncated normal prior for the 

last segment to make the prior more informative: 𝜷(𝑘+1)|𝑘~𝑇𝑁(𝝁0
(𝑘,𝑘+1)

, 𝚺0
(𝑘,𝑘+1)

|𝑏(𝑘+1) > 𝑙𝑘) 

where 𝑙𝑘 is a positive lower bound of the slope for k-change-point case. Note that here we 

assume the model parameters are independent across different phases to reduce both the 

computational complexity and the required number of historical CM signals. 

To specify informative priors, the hyper-parameters of all these priors, denoted as 𝝍, 

need to be estimated based on the historical data. One common way is to estimate 𝝍 by 

maximizing the marginal likelihood [63] of 𝐼 historical CM signals 

 

𝝍̂ = arg max
𝝍

∏ ∫ 𝑃(𝒀𝑖|ℳ𝑖)𝜋(ℳ𝑖|𝝍)

𝐼

𝑖=1

𝑑ℳ𝑖  
(2.8) 

Unfortunately, the marginal likelihood is very complex and not tractable. An alternative 

approach is a two-stage process where the model parameters ℳ̂𝑖  of each unit 𝑖 are first 

obtained through the maximum likelihood estimates (MLE) and then the hyper-parameters are 

estimated through the MLE by treating these estimated models {ℳ̂𝑖 , 𝑖 = 1, … , 𝐼}  as 

observations. In our case, however, MLE cannot be directly applied to each CM signal since 

increasing 𝑘 will also increase the fitting accuracy, and thus result in over-fitting. To address 

this issue, we propose to use Bayesian information criterion (BIC) [84] for model selection and 

parameter estimation of each CM signal 

 



24 

ℳ̂ = arg min
ℳ

(−2𝑙(ℳ|𝒀) + 𝑛 log 𝑇) (2.9) 

where 𝑛 = 4𝑘 + 3 is the number of model parameters to estimate (𝑘 change-points, 𝑘 + 1 

slopes, intercepts and noise variance), 𝑙(ℳ|𝒀) is the log-likelihood given as  

 

𝑙(ℳ|𝒀) = ∑ [−
1

2
𝛿(𝑠) log(2𝜋𝜎2(𝑠)) −

‖𝑦𝑐𝑠−1+1:𝑐𝑠

𝑇 − 𝑿𝑐𝑠−1+1:𝑐𝑠
𝜷(𝑠)‖

2

2𝜎2(𝑠)
]

𝑘+1

𝑠=1
 

(2.10) 

where  

 

𝑿𝑐𝑠−1+1:𝑐𝑠
= [

1 1 ⋯ 1
𝜏𝑐𝑠−1 + 1 𝜏𝑐𝑠−1 + 2 ⋯ 𝑐𝑠

]
𝑇

 
(2.11) 

Given the number of change-points and their locations {𝑘, 𝑐1, … , 𝑐𝑘} , the parameters 

{𝜷(𝑠), 𝜎2(𝑠), 𝑠 = 1, … , 𝑘 + 1} that minimize the BIC are just the MLE of the Gaussian linear 

models of each phase 

 

𝜷̂(𝑠) = (𝑿𝑐𝑠−1+1:𝑐𝑠

𝑇 𝑿𝑐𝑠−1+1:𝑐𝑠
)

−1
𝑿𝑐𝑠−1+1:𝑐𝑠

𝑇 𝑦𝑐𝑠−1+1:𝑐𝑠

𝑇 , 

      𝜎̂2(𝑠) = ‖𝑦𝑐𝑠−1+1:𝑐𝑠

𝑇 − 𝑿𝑐𝑠−1+1:𝑐𝑠
𝜷̂(𝑠)‖

2
/𝛿(𝑠)  

(2.12) 

If 𝑘 and 𝑇 are small, it is possible to try all combinations {𝑘, 𝑐1, … , 𝑐𝑘} to determine the 

optimal model. However, this method is not realistic for large 𝑘 and 𝑇 due to the exponentially 

increased computational cost. Instead we could use the PELT method [85], which is 

computationally efficient with a computational cost that is linear with 𝑇.  

Based on the above prior specification, the multiple change-point model could be 

formulated to a non-standard state-space model with state vector 𝒙𝑡 = (𝜽(𝑠𝑡), 𝜏𝑡, 𝑠𝑡, 𝑘) and prior 

state transition process 
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𝒙𝑡+1 = {

𝒙𝑡,  𝑝 = 1 − 𝑝𝑡+1(𝒙𝑡) if 𝑠𝑡 < 𝑘 + 1
𝒙𝑡,  𝑝 = 1           if 𝑠𝑡 = 𝑘 + 1 

(𝜽(𝑠𝑡+1), 𝑡, 𝑠𝑡 + 1, 𝑘)  𝑝 = 𝑝𝑡+1(𝒙𝑡)     if 𝑠𝑡 < 𝑘 + 1

 (2.13) 

Here 𝑝𝑡+1(𝒙𝑡) is the transition probability of the stochastic process expressed by 

 

𝑝𝑡+1(𝒙𝑡) = 𝑝(𝛿(𝑠𝑡) ≤ 𝐿 + 1|𝛿(𝑠𝑡) ≥ 𝐿)

=
Φ (𝐿 + 1|𝛿0

(𝑘,𝑠𝑡), 𝜎0
2(𝑘,𝑠𝑡)) − Φ (𝐿|𝛿0

(𝑘,𝑠𝑡), 𝜎0
2(𝑘,𝑠𝑡))

1 − Φ(𝐿|𝛿0

(𝑘,𝑠𝑡), 𝜎0
2(𝑘,𝑠𝑡))

 

(2.14) 

where 𝐿 = 𝑡 − 𝜏𝑡 and Φ(∙) is the Gaussian cumulative distribution function. Note that when a 

hidden state is continuous-valued, the term state-space model is often used instead of hidden 

Markov model. Here we refer to our model as a non-standard state-space model in that its state 

vector contains both discrete and continuous-valued components, and the state 𝑥𝑡+1 is not 

linearly correlated with 𝑥𝑡, which is different from standard state-space model.  

 

 

Figure 2-2: Illustration of the formulated state-space model. 

 

The formulated state-space model is illustrated in Figure 2-2, where the transition probability 

from 𝒙𝑡 to 𝒙𝑡+1 can be expressed as 

1ty −

1tx −

ty

tx

1ty +

1tx +

𝑝𝑡−1|𝑡−2

1 − 𝑝𝑡−1|𝑡−2

𝑝𝑡|𝑡−1 𝑝𝑡+1|𝑡

1 − 𝑝𝑡|𝑡−1 1 − 𝑝𝑡+1|𝑡

𝑠𝑡−1 = 𝑠𝑡−2 + 1
𝜏𝑡−1 = 𝑡 − 2

𝜽𝑡−1~𝜋(𝜽 𝑠𝑡−2+1 |𝑘)

𝑠𝑡 = 𝑠𝑡−1 + 1
𝜏𝑡 = 𝑡 − 1

𝜽𝑡~𝜋(𝜽 𝑠𝑡−1+1 |𝑘)

𝑠𝑡+1 = 𝑠𝑡 + 1
𝜏𝑡+1 = 𝑡

𝜽𝑡+1~𝜋(𝜽 𝑠𝑡+1 |𝑘)
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𝑝𝑡+1|𝑡 = [1 − 𝑝𝑡+1(𝑥𝑡)]
𝟏(𝑠𝑡<𝑘+1) (2.15) 

If there are no change-points, the formulated state-space model is a special linear state-space 

model with a constant state, which can be easily inferred using Kalman filters. However, due to 

the existence of unknown change-points, the formulated state-space is highly nonlinear, which 

makes the inference very challenging. The particle filtering techniques are particularly effective 

for nonlinear state-space models and have been widely applied in the prognosis area. Generally, 

the applications in the prognosis area can be classified into three categories based on the 

underlying state-space model: (1) nonlinear state transition model, linear observation model [86]; 

(2) linear state transition model, nonlinear observation model [87, 88] and (3) nonlinear state 

transition model and nonlinear observation model [89, 90]. The formulated state-space model in 

this paper falls into the third category. However, it is fundamentally different from the existing 

ones due to its special characteristics, i.e., high dimensionality, containing both discrete and 

continuous states, some states being constant (linear transition) across all life cycle while some 

states being constant between two successive change-points but changing once a new change-

point occurs (nonlinear transition). To our best knowledge, none of the existing algorithms work 

well on our model. In the following section, a novel stratified particle filtering algorithm with 

partial Gibbs sampling strategy will be developed for sequential model updating and RUL 

prediction. 

2.4 PARTICLE FILTERING ALGORITHM FOR ONLINE MODEL UPDATING AND RUL PREDICTION 

Particle filters (PF) are effective sequential Monte Carlo (SMC) methods to solve the 

filtering problems. It is particularly useful for sequential Bayesian inference of linear/nonlinear 

Gaussian/non-Gaussian state-space models [91]. In this section, a customized particle filtering 
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algorithm is developed for sequential model estimation and RUL prediction of a working unit. 

For the sake of completeness, the basic theory of PF algorithm is first presented.  

2.4.1 Review of Particle Filtering Algorithm 

The basic idea of the PF technique is the sequential importance sampling (SIS). Consider 

a state-space model described as 

𝒙1~𝑓(𝒙), 𝒙𝑡|𝒙𝑡−1~𝑓(𝒙𝑡|𝒙𝑡−1), 𝑦𝑡|𝒙𝑡~𝑔(𝑦𝑡|𝒙𝑡) (2.16) 

where 𝑓(∙) is the prior for the first state and 𝑓(∙ | ∙) is the prior state transition probability 

density associated with state changing from 𝒙𝑡−1 to 𝒙𝑡, and 𝑔(∙ | ∙) is the density function of 

𝑦𝑡 conditioning on 𝒙𝑡. The observations 𝑦1:𝑇 are assumed to be conditionally independent 

given 𝑥1:𝑇. According to Bayes’ theorem, the posterior density satisfies the following recursion 

 

𝑝(𝒙1:𝑡|𝑦1:𝑡) = 𝑝(𝒙1:𝑡−1|𝑦1:𝑡−1)
𝑓(𝒙𝑡|𝒙𝑡−1)𝑔(𝑦𝑡|𝒙𝑡)

𝑝(𝑦𝑡|𝑦1:𝑡−1)
 (2.17) 

Where 

𝑝(𝑦𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝒙𝑡−1|𝑦1:𝑡−1) 𝑓(𝒙𝑡|𝑥𝑡−1)𝑔(𝑦𝑡|𝒙𝑡)𝑑𝒙𝑡−1:𝑡 
(2.18) 

In the filtering problem, 𝑝(𝒙𝑡|𝑦1:t) is of interest and can be obtained by integrating out 𝒙1:𝑡−1 

or directly based on Bayes’ theorem  

𝑝(𝒙𝑡|𝑦1:𝑡) =
𝑝(𝒙𝑡|𝑦1:𝑡−1)𝑔(𝑦𝑡|𝒙𝑡)

𝑝(𝑦𝑡|𝑦1:𝑡−1)
 (2.19) 

where  

𝑝(𝒙𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝒙𝑡−1|𝑦1:𝑡−1) 𝑓(𝒙𝑡|𝒙𝑡−1)𝑑𝒙𝑡−1 (2.20) 

Equation (2.20) is known as the prediction step and (2.19) is called as the updating step. 

However, Equation (2.18) and (2.20) are often intractable analytically, and SIS is often used for 
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posterior approximation. If we select an important distribution that can be sequentially sampled 

with the following structure 

𝑞𝑡(𝒙1:𝑡) = 𝑞1(𝒙1) ∏ 𝑞𝑖(𝒙𝑖|𝒙1:𝑖−1)
𝑡

𝑖=2
 (2.21) 

Then the unnormalized weight function can be expressed by 

 

𝜔𝑡(𝒙1:𝑡) =
𝑝(𝒙1:𝑡, 𝑦1:𝑡)

𝑞𝑡(𝒙1:𝑡)
=

𝑓(𝑥1) ∏ 𝑓(𝒙𝑖|𝒙𝑖−1)𝑡
𝑖=2 ∏ 𝑔(𝑦𝑖|𝒙𝑖)

𝑡
𝑖=1

𝑞1(𝒙1) ∏ 𝑞𝑖(𝒙𝑖|𝒙1:𝑖−1)𝑡
𝑖=2

= 𝜔1(𝒙1) ∏ 𝑤𝑖

𝑡

𝑖=2
 (2.22) 

where  

𝜔1(𝒙1) = 𝑓(𝒙1)𝑔(𝑦1|𝒙1)/𝑞1(𝒙1) 

𝑤𝑖 = 𝑔(𝑦𝑖|𝒙𝑖)𝑓(𝒙𝑖|𝒙𝑖−1)/𝑞𝑖(𝒙𝑖|𝒙1:𝑖−1) 

(2.23) 

Equation (2.22) shows that the weight function can be calculated recursively, so that the 

posterior could be sequentially updated once a new observation is measured. The expectation of 

any function 𝜑(𝒙1:𝑡) with respect to the posterior 𝑝(𝒙1:𝑡|𝑦1:t) can be estimated by  

 

𝐸(𝜑(𝒙1:𝑡)|𝑦1:𝑡) ≈ ∑ 𝑊𝑡
(𝑖)𝜑(𝒙1:𝑡

(𝑖))
𝑁

𝑖=1
 (2.24) 

where 𝑊𝑡
(𝑖)

 is the normalized weight. In the PF algorithm, a resampling step based their 

updated weights is often added to obtain equally weighted particles which are approximately 

distributed as 𝑝(𝒙1:𝑡|𝑦1:𝑡). It is a “Darwinian” procedure that can remove particles with low 

weights and carry on particles with high weights. The generic particle filtering algorithm with a 

resampling step is given in Table 2-1 as follows.  
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Table 2-1: Generic Particle Filtering Algorithm 

At time 𝑡 = 1, 

1. Sample 𝒙1
(𝑖)

~𝑞1(𝒙1) for 𝑖 = 1, … , 𝑁 

2. Compute weights 𝜔1(𝒙1
(𝑖)

) and normalized weights 𝑊1
(𝑖)

= 𝜔1(𝒙1
(𝑖))/ ∑ 𝜔1(𝒙1

(𝑖))𝑁
𝑖=1 . 

3. Resample {𝑊1
(𝑖), 𝒙1

(𝑖)}  according to their weights to obtain 𝑁  equally weighted 

particles {
1

𝑁
, 𝒙̅1

(𝑖)
} and set {𝑊1

(𝑖), 𝒙1
(𝑖)} ← {

1

𝑁
, 𝒙̅1

(𝑖)}.  

At time 𝑡 ≥ 2: 

1. Sample 𝒙𝑡
(𝑖)~𝑞𝑡(𝒙𝑡|𝒙1:𝑡−1

(𝑖) ), set 𝒙1:𝑡
(𝑖) ← (𝒙1:𝑡−1

(𝑖) , 𝒙𝑡
(𝑖)) for 𝑖 = 1, … , 𝑁 

2. Compute 𝑤𝑡(𝒙1:𝑡
(𝑖)) and normalized weights 𝑊𝑡

(𝑖)
 

3. Resample {𝑊𝑡
(𝑖)

, 𝒙1:𝑡
(𝑖)}  to obtain 𝑁  equally weighted particles  {

1

𝑁
, 𝒙̅1:𝑡

(𝑖)
}  and set 

{𝑊𝑡
(𝑖), 𝒙1:𝑡

(𝑖)} ← {
1

𝑁
, 𝒙̅1:𝑡

(𝑖)} 

 

2.4.2 Stratified Particle Filtering Algorithm for Model Updating 

In the development of PF algorithm, the importance function needs to be specified. The 

optimal importance function should be the one that minimizes the variances of the importance 

weight of sampled particles [91]. It can reduce the particle degeneracy issue, i.e., the weights 

concentrate on only a few particles and most particles have negligible weights. However, the 

optimal importance function is often not obtainable in practice. Instead, we propose to use the 

prior transition density as the importance density function 

𝑞𝑡(𝒙𝑡|𝒙1:𝑡−1) = 𝑓(𝒙𝑡|𝒙𝑡−1) (2.25) 

Selecting the prior transition density is the most common and convenient way in practical 

applications. According to Equation (2.23), with the resampling step implemented, the weight is 

simply 



30 

𝜔𝑡(𝒙1:𝑡) = 𝑔(𝑦𝑡|𝒙𝑡) (2.26) 

at each step, which greatly simplifies the computation.  

Another important issue commonly faced in PF techniques is the particle impoverishment 

problem [82], where the number of unique particles or unique components of particles becomes 

less and less along iterations due to the resampling step. In our state-space model, each line 

segment between successive change-points is a special linear state-space model with a constant 

state, which makes the particle impoverishment problem even worse. Besides, the dimension of 

the state vector is relatively high, which may require a significantly large number of particles to 

guarantee the approximation accuracy, and thus result in high computational cost. However, for 

online model updating and RUL prediction, a low computational cost is often critically 

important. In this paper, we propose a Gibbs resample-move step to address both these issues. 

The resample-move strategy was first proposed by Gilks [92], where a “move” step is added 

after the resampling step to generate new particles through MCMC kernels with the posterior 

distribution as the invariant distributions. It can not only diversify the particles to reduce the 

particle impoverishment issue, but can also generate more particles with significant weights, thus 

reducing the particle degeneracy issue and reducing the required number of particles. In our 

algorithm, we propose a one-step partial Gibbs sampler to “move” the three continuous 

components (𝜷𝑡, 𝜎𝑡
2) through their conditional posterior distributions. The conditional posterior 

distributions are obtained based Lemma 1 as follows (the proof is included in the Appendix A). 

 

Lemma 2.1.  Suppose 𝜷(𝒔)|𝑘 = (𝑎(𝑠), 𝑏(𝑠)|𝑘)
′
~𝑁(𝝁0

(𝑘,𝑠)
, 𝚺0

(𝑘,𝑠)
)  for 𝑠 = 1, … , 𝑘 , 

𝜷(𝑘+1)|𝑘~𝑇𝑁(𝝁0
(𝑘,𝑘+1)

, 𝚺0
(𝑘,𝑘+1)

|𝑏(𝑘+1) > 𝑙𝑘)  and  𝜎2(𝑠)|𝑘~𝐼𝐺(𝛼1
(𝑘,𝑠)

, 𝛼2
(𝑘,𝑠)

)  for 𝑠 =

1, … , 𝑘 + 1, then  
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(𝜷𝑡|𝑦1:𝑡, 𝜎𝑡
2, 𝜏𝑡, 𝑠𝑡 = 𝑠, 𝑘)~ {

𝑁(𝝁𝑡
(𝑘,𝑠)

, 𝚺𝑡
(𝑘,𝑠)

), if 𝑠 ≤ 𝑘

𝑇𝑁(𝝁𝑡
(𝑘,𝑘+1)

, 𝚺𝑡
(𝑘,𝑘+1)

|𝑏𝑡
(𝑘+1)

> 𝑙𝑘), if 𝑠 = 𝑘 + 1
 (2.27) 

(𝜎𝑡
2|𝑦1:𝑡, 𝜷𝑡, 𝜏𝑡, 𝑠𝑡 = 𝑠, 𝑘)~𝐼𝐺 (𝛼1

(𝑘,𝑠)
+

𝑡 − 𝜏𝑡

2
, 𝛼2

(𝑘,𝑠)
+

‖𝑦
𝜏𝑡+1:𝑡
𝑇 − 𝑿𝜏𝑡+1:𝑡𝜷𝑡

‖
2

2
) 

(2.28) 

Where  

𝝁𝑡
(𝑘,𝑠)

= [
𝑿𝜏𝑡+1:𝑡

𝑇 𝑿𝜏𝑡+1:𝑡

𝜎𝑡
2 + 𝚺0

−1(𝑘,𝑠)
]

−1

[
𝑿𝜏𝑡+1:𝑡

𝑇 𝑦𝜏𝑡+1:𝑡
𝑇

𝜎𝑡
2 + 𝚺0

−1(𝑘,𝑠)
𝝁0

(𝑘,𝑠)
] , 𝑠 = 1, … , 𝑘 + 1 

(2.29) 

and  

𝚺𝑡
(𝑘,𝑠)

= [
𝑿𝜏𝑡+1:𝑡

𝑇 𝑿𝜏𝑡+1:𝑡

𝜎𝑡
2 + 𝚺0

−1(𝑘,𝑠)
]

−1

, 𝑠 = 1, … , 𝑘 + 1 
(2.30) 

The Gibbs “move” step could effectively diversify particles and generate more particles with 

significant weights. However, the introduction could result in extra computational cost as well as 

break the balance of the computational load at each time step. Based on Lemma 2.1, all the 

observations from the latest change-point to the current time are used for Gibbs move. It is 

intuitive that the longer the phase duration, the higher the computational cost the Gibbs move 

will take. To control the computational cost, we adopt the “partial move” strategy [93], where 

randomly drawn particles among the resampled particles are moved until the sum of their 

durations 𝑡 − 𝜏𝑡
(𝑖)

 is larger than a controlling constant 𝐶.  

Although the Gibbs move step has solved the particle impoverishment issue for the 

continuous components  (𝜷𝑡, 𝜎𝑡
2) , it could not handle the same problem with the discrete 

component 𝑘. Indeed, the discrete component 𝑘 of each particle is generated at the first time 

step and kept constant across all the following time steps. That means the impoverishment issue 

is much worse than the other components of the state vector. As we observed, after only several 

iterations, there may be only one unique value for 𝑘 among all particles, which will result in a 
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totally failed PF algorithm. To solve this problem, we propose to use a stratified approach. 

Specifically, for each category 𝑘 = 𝑔 in the categorical distribution, the developed particle 

filtering algorithm with the same number of particles 𝑁 is applied individually. In the posterior 

approximation, the extra group weight coefficient 𝑊𝑡
(𝑔)

is applied to each category 𝑔 or all 

particles of each group. The group weight coefficient 𝑊𝑡
(𝑔)

 can be calculated as 

 

𝑊𝑡
(𝑔)

=
∑ 𝜔𝑡 (𝒙1:𝑡

(𝑔,𝑖)
)𝑁

𝑖=1

∑ ∑ 𝜔𝑡 (𝒙1:𝑡
(𝑔,𝑖)

)𝑁
𝑖=1

dim(𝑘)
𝑔=1

 (2.31) 

This strategy can effectively avoid the disappearing of certain 𝑘 in the resampling process. We 

call this approach the stratified particle filtering (SPF). In summary, the developed SPF 

algorithm for sequential model updating is given in Table 2-2. 
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Table 2-2: Stratified Particle Filtering Algorithm for Sequential Model Updating 

At time 𝑡 = 1:  

For 𝑔 = 1: dim{𝑘} 

1. Set 𝑘(𝑔,𝑖) = 𝑘𝑔, Sample 𝜷1
(𝑔,𝑖)

~𝑁 (𝝁0

(𝑘(𝑔,𝑖),1)
, 𝚺0

(𝑘(𝑔,𝑖),1)
), 

𝜎1
2(𝑔,𝑖)

~𝐼𝐺 (𝛼1

(𝑘(𝑔,𝑖),1)
, 𝛼2

(𝑘(𝑔,𝑖),1)
). Set 𝜏1

(𝑔,𝑖)
= 0, 𝑠1

(𝑔,𝑖)
= 1, and set 𝒙1

(𝑔,𝑖)
=

(𝜷1
(𝑔,𝑖)

, 𝜎1
2(𝑔,𝑖)

, 𝜏1
(𝑔,𝑖)

, 𝑠1
(𝑔,𝑖)

, 𝑘(𝑔,𝑖)) for 𝑖 = 1: 𝑁 

2. Compute weights 𝜔1(𝒙1
(𝑔,𝑖)

) and normalized weights 𝑊1
(𝑔,𝑖)

= 𝜔1(𝒙1
(𝑔,𝑖)

)/

∑ 𝜔1 (𝒙1
(𝑔,𝑖)

)𝑁
𝑖=1  based on Eq. (2.26) for 𝑖 = 1: 𝑁 

3. Resample {𝑊1
(𝑔,𝑖)

, 𝒙1
(𝑔,𝑖)

|𝑖 = 1, … , 𝑁} according to their weights 𝑊1
(𝑔,𝑖)

 to obtain 𝑁 

equally weighted particles {
1

𝑁
, 𝒙̅1

(𝑔,𝑖)} and set {𝑊1
(𝑔,𝑖)

, 𝒙1
(𝑔,𝑖)} ← {

1

𝑁
, 𝒙̅1

(𝑔,𝑖)} 

End  

4. Calculate the group weight 𝑊1
(𝑔)

 based on Eq. (2.31) 

5. Set 𝑊1
(𝑔,𝑖)

=
𝑊1

(𝑔)

𝑁
 for 𝑔 = 1: dim{𝑘} and 𝑖 = 1: 𝑁 

At time 𝑡 ≥ 2:  

For 𝑔 = 1: dim{𝑘} 

1. Calculate the probability 𝑝𝑡|𝑡−1
(𝑔,𝑖)

 based on Eq. (2.15) 

2. Sample 𝑢(𝑔,𝑖)~𝑈(0,1)  

• If 𝑢(𝑔,𝑖) ≤ 𝑝𝑡|𝑡−1
(𝑔,𝑖)

,  

i. Set 𝜏𝑡
(𝑔,𝑖)

= 𝑡 − 1, 𝑠𝑡
(𝑔,𝑖)

= 𝑠𝑡−1
(𝑔,𝑖)

+ 1,  

ii. Sample 𝜷𝑡
(𝑔,𝑖)

~𝑁 (𝝁0

(𝑘(𝑔,𝑖),𝑠𝑡
(𝑔,𝑖)

)
, 𝚺0

(𝑘(𝑔,𝑖),𝑠𝑡
(𝑔,𝑖)

)
) if 𝑠𝑡

(𝑔,𝑖)
≤ 𝑘(𝑔,𝑖), otherwise, sample  

𝜷𝑡
(𝑔,𝑖)

~𝑇𝑁 (𝝁0

(𝑘(𝑔,𝑖),𝑠𝑡
(𝑔,𝑖)

)
, 𝚺0

(𝑘(𝑔,𝑖),𝑠𝑡
(𝑔,𝑖)

)
|𝑏𝑡

(𝑔,𝑖)
> 𝑙𝑔) 

iii. Sample 𝜎𝑡
2(𝑔,𝑖)

~𝐼𝐺 (𝛼1

(𝑘(𝑔,𝑖),𝑠𝑡
(𝑔,𝑖)

)
, 𝛼2

(𝑘(𝑔,𝑖),𝑠𝑡
(𝑔,𝑖)

)
) 

iv. Set 𝒙𝑡
(𝑔,𝑖)

← (𝜷𝑡
(𝑔,𝑖)

, 𝜎𝑡
2(𝑔,𝑖)

, 𝜏𝑡
(𝑔,𝑖)

, 𝑠𝑡
(𝑔,𝑖)

, 𝑘(𝑔,𝑖)) 
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• Otherwise, set 𝒙𝑡
(𝑔,𝑖)

← 𝒙𝑡−1
(𝑔,𝑖)

 

3. Compute 𝜔𝑡 (𝒙𝑡
(𝑔,𝑖)

) and normalized weights 𝑊𝑡
(𝑔,𝑖)

 based on Eq.(2.26) 

4. Resample {𝑊𝑡
(𝑔,𝑖)

, 𝒙1:𝑡
(𝑔,𝑖)

}  to obtain 𝑁  equally weighted particles  {
1

𝑁
, 𝒙̅𝑡

(𝑔,𝑖)}  and set 

{𝑊𝑡
(𝑔,𝑖)

, 𝒙𝑡
(𝑔,𝑖)} ← {

1

𝑁
, 𝒙𝑡

(𝑔,𝑖)} 

5. Gibbs move: select a subset 𝑆 of {𝒙(𝑔,𝑖)|𝑖 = 1: 𝑁} such that ∑ (𝑡 − 𝜏(𝑔,𝑗))𝑗∈𝑆 ≤ 𝐶 

• Sample 𝜷𝑡
(𝑔,𝑗)

based on Eq. (2.27) 

• Sample 𝜎𝑡
2(𝑔,𝑗)

 based on Eq. (2.28) 

End 

6. Calculate the group weight 𝑊𝑡
(𝑔)

 based on Eq. (2.31).  

7. Set 𝑊𝑡
(𝑔,𝑖)

=
𝑊𝑡

(𝑔)

𝑁
 for 𝑔 = 1: dim{𝑘} and 𝑖 = 1: 𝑁 

 

2.4.3 RUL Prediction 

After the degradation model of the working unit is updated using the observations up to 

the current time, the next step is to predict the future degradation magnitude and RUL for 

preventive maintenance. Due to the multiple change-point that may occur in future, the exact 

Bayesian inference is intractable, even if the current model is known. However, through the PF 

algorithm, the RUL prediction is proven to be very convenient. Denote 𝑅𝑡 as the RUL at the 

current time 𝑡. Then the distribution of 𝑅𝑡 can be expresses by 

 

𝑃(𝑅 > 𝐿|𝑦1:𝑡) = 𝑃(𝑦𝑡+1 < 𝛤, 𝑦𝑡+2 < 𝛤, ⋯ , 𝑦𝑡+𝐿 < 𝛤|𝑦1:𝑡) 

= ∫ 𝑃(𝑦𝑡+1 < 𝛤, ⋯ , 𝑦𝑡+𝐿 < 𝛤|𝒙𝑡+1:𝑡+𝐿)𝑓(𝒙𝑡:𝑡+𝐿|𝑦1:𝑡)𝑑𝒙𝑡:𝑡+𝐿 

= ∫ [∏ 𝑃(𝑦𝑡+𝑗 < 𝛤|𝒙𝑡+𝑗)𝑓(𝒙𝑡+𝑗|𝒙𝑡+𝑗−1)

𝐿

𝑗=1

] 𝑓(𝒙𝑡|𝑦1:𝑡)𝑑𝒙𝑡:𝑡+𝐿 

(2.32) 
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where 𝛤 is the failure threshold. The above equation is not tractable analytically. However, we 

can conveniently generate samples from the distribution 𝑓(𝒙𝑡:𝑡+𝐿|𝑦1:𝑡) based on the particles at 

the current time and the prior state transition process. Given the particles and their weights at the 

current time {𝑊𝑡
(𝑔,𝑖)

, 𝒙𝑡
(𝑔,𝑖)

, 𝑔 = 1: dim(𝑘) , 𝑖 = 1: 𝑁} which approximately follow 𝑓(𝒙𝑡|𝑦1:𝑡), 

the samples of the future states {𝒙𝑡+1:𝑡+𝐿
(𝑖) , 𝑖 = 1, … , 𝑁} can be generated through the prior state 

transition function 𝑓(𝒙𝑡+𝑗|𝒙𝑡+𝑗−1) given in Equation (2.13). Based on the generated samples, 

the RUL distribution can be approximated by 

 

𝑃(𝑅 > 𝐿|𝑦1:𝑡) = 𝑃(𝑦𝑡+1 < 𝛤, ⋯ , 𝑦𝑡+𝐿 < 𝛤|𝑦1:𝑡) 

≈ ∑
𝑊𝑡

(𝑔)

𝑁
∑ ∏ 𝑃 (𝑦𝑡+𝑗 < 𝛤|𝒙𝑡+𝑗

(𝑔,𝑖)
)

𝐿

𝑗=1

𝑁

𝑖=1

dim(𝑘)

𝑔=1

 

(2.33) 

Conditioning that there are 𝑘 + 1 line segments or phases for a working unit, the failure will not 

occur before the (𝑘 + 1) -th phase. Therefore, the probability 𝑃 (𝑦𝑡+𝑗 < 𝛤|𝒙𝑡+𝑗
(𝑔,𝑖)

)  can be 

calculated by 

𝑃 (𝑦𝑡+𝑗 < 𝛤|𝒙𝑡+𝑗
(𝑔,𝑖)

) = {
Φ(𝛤|𝑎𝑡+𝑗

(𝑔,𝑖)
+ 𝑏𝑡+𝑗

(𝑔,𝑖)(𝑡 + 𝑗), 𝜎𝑡
2(𝑔,𝑖)

), 𝑠𝑡
(𝑔,𝑖)

= 𝑘(𝑔,𝑖) + 1

1, 𝑠𝑡
(𝑔,𝑖)

≤ 𝑘(𝑔,𝑖)
 (2.34) 

where Φ(∙) is the CDF of Gaussian distribution. 

2.5 CASE STUDIES 

2.5.1 Simulation Study 
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Table 2-3: Hyper-parameter Specification for Numerical Simulation 

Variables Two-phase Model Three-phase Model 

𝛿(𝑠) 
𝛿0

(1,1)
= 400, 𝜎0

2(1,1)
= 225 

𝛿0
(1,2)

= 500, 𝜎0
2(1,2)

= 100 

𝛿0
(2,1)

= 200, 𝜎0
2(2,1)

= 100 

𝛿0
(2,2)

= 400, 𝜎0
2(2,2)

= 100 

𝛿0
(2,3)

= 500, 𝜎0
2(2,3)

= 100 

𝜷(𝒔) 

𝝁0
(1,1)

= [−15; 0.008] 

𝜮0
(1,1)

= [
0.015 0.0014
0.0014 0.00046

] 

𝝁0
(1,2)

= [−30; 0.3] 

𝜮0
(1,2)

= [
0.024 −0.0007

−0.0007 0.0057
] 

𝝁0
(2,1)

= [−10; 0.0005] 

𝜮0
(2,1)

= [
0.15 0.00014

0.00014 0.0009
] 

𝝁0
(2,2)

= [−18; 0.02] 

𝜮0
(2,2)

= [
0.024 −0.0007

−0.0007 0.000048
] 

𝝁0
(2,3)

= [−50; 0.08] 

𝜮0
(2,3)

= [
0.075 −0.00008

−0.00008 0.00025
] 

σ2(s) 
𝛼1

(1,1)
= 1.4, 𝛼2

(1,1)
= 2.5 

𝛼1
(1,2)

= 2, 𝛼2
(1,2)

= 4 

 𝛼1
(2,1)

= 3.64, 𝛼2
(2,1)

= 2 

   𝛼1
(2,2)

= 0.6,  𝛼2
(2,2)

= 0.5 

𝛼1
(2,3)

= 3.6, 𝛼2
(2,3)

= 5 

 

In this subsection, we evaluate the performance of the proposed method through 

simulated piecewise linear signals. For simplicity we assume that there are only two categories 

of degradation signals: two-phase and three-phase cases. The categorical distribution is given by 

𝑘 = {
1, with  𝑝1 = 0.3
2, with  𝑝2 = 0.7

 (2.35) 

We assume the unit will fail once the observation reaches the threshold 𝛤 = 20 . The slope 

lower bound of last phase is set to be 𝑙1 = 𝑙2 = 0.003, The hyper-parameters of 𝛿(𝑘,𝑠), 𝜷(𝑘,𝒔) 

and 𝜎2(𝑘,𝑠) are specified in Table 2-3. 

In total 200 CM signals are simulated, among which 69 are two-phase signals and 131 are 

three-phase signals. The BIC based model selection method can accurately obtain the right 

number of change-points and their locations for each simulated signal. Due to page limitation, 
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the estimated hyper-parameters are not listed here. In the stratified particle filtering algorithm, 

the number of particles for each category is set to be 𝑁 = 5000. Figure 2-3 shows the online 

monitoring of degradation signals with one and two change-points. From the top two panels we 

can see that the estimated signals (mean value) are very close to the true values. The second row 

of these panels shows the mean value of the current phase length. As we can see, the algorithm 

can rapidly detect the phase change. The bottom four panels show the probability mass function 

of the discrete components (𝑠𝑡, 𝑘) of the state vector. As we can see, the algorithm can 

accurately detect the number of phases the degradation signal will have and the current phase the 

degradation signal is at. 

Figure 2-4 shows the comparison of the SPF algorithm to three other PF algorithms 

without either partial Gibbs move or stratified strategy. The number of particles here is set to be 

500. Clearly, without the stratified strategy (a and c), all the particles with discrete component 

𝑘 = 2 gradually diminish along iterations, which results in an inaccurate model with only two 

phases (𝑘 = 1). Without the partial Gibbs move (b and c), the degeneracy of the continuous 

components occurs, which significantly influence the model accuracy. The proposed SPF 

algorithm has effectively overcome the particle degeneracy and impoverishment issues and 

works quite well with only 500 samples. 
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Figure 2-3: Illustration of the SPF based online monitoring of degradation signals with two 

phases (left panel) and three phases (right panel). (a) and (e): degradation signals and estimated 

signals; (b) and (f): the estimated duration of the current linear phase; (c) and (g): the probability 

mass function of the current phase; (d) and (h): the probability mass function of category. The 

vertical dashed lines are the true change-points. 
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Figure 2-4: Comparison of the proposed SPF algorithm to other PF algorithms without either 

partial Gibbs move or stratified strategy: (a) no stratification, Gibbs move; (b) stratification, no 

Gibbs move; (c) no stratification, no Gibbs move and (d) proposed SPF with both particle Gibbs 

move and stratified approach. 

 

 

Figure 2-5: Prediction intervals of 7 simulated CM signals. The ∘ represents the 5%,50%,95% 

quantitles of the RUL distributions, ∗ is the actual RUL.(a)-(c) Prediction intervals for two-

phase signals; (d)-(f) Prediction intervals for three-phase signals 
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Figure 2-6: Comparison of the pdf of the RUL. (a)-(c) two-phase signal (d)-(f) three-phase signal

(a) (b) (c)

(d) (e) (f)
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To evaluate the prediction performance, 200 new degradation signals are randomly 

generated as a testing dataset using the specified priors. We compare the SPF algorithm with 

Chen’s two-phase model [63], where only one change-point is considered. For Chen’s method, 

all the 200 training dataset with both two-phase and three-phase signals are used to estimate the 

priors of the two-phase model. Figure 2-5 shows the comparison of the prediction intervals of 7 

simulated two-phase signals and 7 three-phase signals predicted at 50%, 70% and 90% of actual 

failure time. Figure 2-6 shows the detailed RUL prediction of the 5th and the 2nd unit of the seven 

signals of each category in Figure 2-5. From Figure 2-5 we can see that our prediction accuracy 

is much better than Chen’s method in almost all the 14 cases. For two-phase signals, both 

methods work well. However, our method is slightly better at 70% and 90% of the failure time 

while much better at 50% of the failure time than Chen’s method, which can also be seen from 

Figure 2-6(a-c). The main reason is that in Chen’s method, the priors are estimated using all two-

phase and three-phase signals, which will result in less accurate priors. At the 50% failure time, 

the prediction accuracy is mainly determined by the prior knowledge, while at the 70% and 90% 

of the failure time, the observations dominate the posterior distributions. Therefore at the early 

stage, our method with more accurate priors is much better than Chen’s method while at the late 

stage, the performances of both methods are comparable. For three-phase signals, our method is 

much better than Chen’s method at all the three prediction times, as shown in Figure 2-5(d-f) and 

Figure 2-6(d-f). It is expected since the two-phase model is inadequate to model signals with 

three phases.  

To evaluate the overall performance, we use the root-mean-square-deviation (RMSD), 

which is defined as RMSD = √𝐸(𝑅 − 𝑅true)2, where 𝑅 and 𝑅true are the predicted and true 

RUL respectively. Since the proposed method is a Monte Carlo based method, there exists 
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inevitable randomness (though very small). So for each signal the SPF algorithm is repeated 10 

times. Table 2-4 shows the RMSD of the proposed method and Chen’s method using the 200 

testing signals. As we can see, the proposed method is much more accurate than Chen’s method, 

with the RMSD reduced by more than 70% at almost all six prediction times. As the prediction 

time approaches to the true failure time, the RMSD of the proposed method monotonically 

decreases. This is highly desirable since it becomes more and more important to get an accurate 

prediction when the RUL approaches zero. However, for Chen’s method, RMSD first increases 

and then decreases. That means the prediction error at the second phase is even worse than 

making prediction at the first phase. The reason is that for three-phase signals, the second phase 

with a relatively small degradation rate is detected as the final phase in Chen’s method. The 

more observations in the second-phase, the flatter the final phase of the updated model and thus 

the worse the prediction.  

 

Table 2-4: Comparison of the RMSD at Six Prediction Times 

Method 
RMSD 

40% 50% 60% 70% 80% 90% 

Chen 593.4 649.4 696.7 548.7 188.6 58.6 

SPF 222.1 194.6 133.8 74.4 23.4 21.9 

 

The computational costs of the SPF and Chen’s method using MATLAB running on an 

i7-6560U 2.21 GHz Intel processor are shown in Table 2-5. For the SPF method, the total 

number of particles is set 5000. In the model updating stage, we compare the computational costs 

of these two methods running 300 time steps. For the prediction stage, the costs of running 

different time steps are evaluated, since the cost of prediction in Chen’s method nonlinearly 

increases with time steps. As we can see, the SPF method is much more expensive in the model 
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updating stage than Chen’s method. However, in the prediction stage, the cost of Chen’s method 

exponentially increases with the time steps, due to the CDF computation of a multivariate t 

distribution with an increasing dimension. For the SPF method, the computational cost of the 

prediction linearly increases with the time steps. Note that the selection of 5000 particles is quite 

conservative. From Figure 2-4 we can see that the model updating is quite accurate with only 

500 particles.  

 

Table 2-5: Comparison of the computational cost (UNIT: seconds)  

Method 
Updating  Prediction 

300  25 50 75 100 125 

Chen 0.024  2.1 7.4 16.1 28.8 45.7 

SPF 179.4  6.2 11.7 16.9 22.0 27.0 

 

2.5.2 Degradation Monitoring of the Rotational Bearings 

In this section, the proposed method is applied to the real degradation signals of 

rotational bearings [12, 63, 94]. They are vibrational signals (log-transformed) of a set of 

identical thrust ball bearings captured by an accelerometer in the accelerated aging testing. There 

are in total 25 complete bearing signals available. The data sampling interval is 2 minutes for 

each signal. When the vibration magnitude exceeds the threshold  𝛤 = log (0.03), which was 

computed from published industrial standards, the bearing is considered failed [12]. 

In the offline modeling and prior estimation process, we set the maximum number of 

phases for all 25 signals to be 3 to control the model complexity. It is found that all bearing 

signals with three phases have the minimum BIC. The estimated hyper-parameters of the prior 

distributions are shown in Table 2-6. It is observable that the slope is quite small at the first 

phase, indicating a stable operation process. The slopes of the following phases are larger than 
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the former ones. It indicates that when a new change-point occurs, the degradation rate of 

bearings increases.  

 

Table 2-6: Estimated Hyper-parameters of the Prior Distributions 

 𝑠 = 1 𝑠 = 2 𝑠 = 3 

𝛿(𝑠) 𝛿0
(1)

= 246,  𝜎0
2(1)

= 1632 𝛿0
(2)

= 199, 𝜎0
2(2)

= 1232 𝛿0
(3)

= 232, 𝜎0
2(3)

= 1232 

𝜷(𝒔) 

𝝁0
(1)

= [−7.14,0.00027] 

𝚺0
(1)

= [
0.15 −0.0003

−0.0003 1.30 × 10−5] 

𝝁0
(2)

= [−6.42,0.0028] 

𝚺0
(2)

= [
2.05 −0.009

−0.009 7.36 × 10−5] 

𝝁0
(3)

= [−6.8,0.005] 

𝚺0
(3)

= [
3.89 −0.008

−0.008 2.52 × 10−5] 

𝑙 = 0.005 

σ2(s) 𝛼1
(1)

= 2.65, 𝛼2
(1)

= 0.01 𝛼1
(2)

= 0.54, 𝛼2
(2)

= 0.004 𝛼1
(3)

= 1.28, 𝛼2
(3)

= 0.03 

 

 

Figure 2-7: Prediction intervals of the 25 bearing signals 
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Figure 2-8: RMSD of the 25 bearing signals 

 

Figure 2-7 shows the prediction intervals at 50%, 70% and 90% of failure time against the actual 

failure time. We can see that the prediction intervals at 90% failure time are much narrower than 

that of 70% failure time and 50% failure time. As the prediction time is closer to actual failure 

time, the intervals become smaller. It is obvious that the more observed data, the more accurate 

the prediction. Figure 2-8 shows the RMSD of the 25 bearing signals. Compared with Chen’s 

method, the predictive accuracy of the proposed method is significantly improved. Table 2-7 

shows the comparison of the SPF method with Chen’s method, the GLLR method [12] and an 

extension of SPF method with three change-points (SPF-CP3) or four phases in terms of RMSD 

at the three time steps. In the GLLR method, the first phase with normal working condition is 

manually truncated first, and the remaining data are fitted using Bayesian simple linear 

regression. Clearly, our method outperforms Chen’s method and the GLLR method at all three 

prediction times. The GLLR method has the largest prediction error on this dataset. Comparing 
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SPF and SPF-CP3, we find that adding one more phase will reduce the prediction performance at 

the early prediction stage (50% and 70% prediction time) while slightly improve the accuracy at 

90% prediction time. The reason is that the addition of another phase could introduce extra 

uncertainty in change-point prediction at early stages, while at the late stage, the model of the 

last segment of the four-phase model is more accurate in modeling the degradation signal. 

 

Table 2-7: Comparison of the SPF method with other methods 

Method 

RMSD 

50% 70% 90% 

GLLR 356.5 234.2 227.8 

Chen 318.4 156.9 169.4 

SPF 176.4 110.8 56.9 

SPF-CP3 186 112.5 52.4 

 

2.6 CONCLUSION 

In this chapter, we propose a multiple-phase modeling of degradation signals for health 

condition monitoring and remaining useful life prediction. To integrate the historical data with 

in-situ observations of each new unit in the RUL prediction, the multiple change-point model is 

formulated under the Bayesian framework and a novel stochastic process is proposed as priors of 

the formulated model. To facilitate the online monitoring and RUL prediction, the multiple 

change-point model is first represented by a novel nonstandard state-space model and then a new 

particle filtering algorithm is developed for online model updating and RUL prediction. A 

stratified sampling approach and a partial Gibbs resample-move strategy are developed to 

overcome the particle impoverishment problem and reduce the computational burden. The 
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advantages of the proposed method have been demonstrated through extensive numerical studies 

and real case studies*. 

 

 

 

 

 

* Research findings of this chapter are published in: Y. Wen, J. Wu and Y. Yuan, “Multiple-Phase Modeling of 

Degradation Signal for Condition Monitoring and Remaining Useful Life Prediction,” IEEE Transactions on 

Reliability, vol. 66, no. 3, pp. 924-938, Sept. 2017. 
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Chapter 3: Exact Bayesian Inference for Prognostic Improvement 

3.1 INTRODUCTION 

In chapter 2, a novel particle filtering algorithm is developed under multiple change-point 

framework for condition monitoring and RUL prediction. A stratified sampling approach and a 

partial Gibbs resample-move strategy are developed to overcome the particle degeneracy and 

impoverishment problem. However, due to the increased dimensionality of multiple change-

point model, the computational efficiency is unsatisfactory which may limit their applications in 

online monitoring and prognostics. In this chapter, we develop a new recursive updating and 

prediction algorithm with less computational cost by using exact Bayesian inference method. In 

this algorithm, the explicit analytical form of the posterior and RUL distribution are obtainable 

by using conjugate priors, which is more efficient than using particle filtering techniques to 

approximate the posterior and RUL distribution. In this method, the multiple change-point model 

is used to model the degradation path and the exact Bayesian inference is used to calculate the 

posterior distribution of the latest change-point and model parameters sequentially. A closed 

form of the RUL prediction is derived and a partial Monte Carlo approach is proposed to control 

the computational cost for further improvement. 

The remainder of this chapter is organized as follows. In Section 3.2, a multiple change-

point model for the CM signals is presented. The prior specification and parameter estimation for 

the multiple change-point model is given in Section 3.3. Section 3.4 presents the technical details 

on how to sequentially update the posterior distributions of all necessary model parameters and 

how to perform RUL prediction. Section 3.5 demonstrates the effectiveness and accuracy of the 

proposed method through numerical and case studies. The conclusion and discussion are given in 

Section 3.6. 
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3.2 MULTIPLE CHANGE-POINT GENERAL PATH MODELING 

In this chapter, we still use genera path model, For simplicity, we reformulate the 

multiple change-point model Eq.(2.1) as follows 

 

𝑦𝑖,𝑗 =

{
 
 

 
 

𝑿𝑖,𝑗,1𝜷𝑖1 + 𝜎𝑖1𝜀𝑖𝑗,     if  0 < 𝑡𝑖,𝑗 ≤ 𝑡𝑖,𝑐𝑖1

      𝑿𝑖,𝑗,1𝜷𝑖2 + 𝜎𝑖2𝜀𝑖𝑗,     if  𝑡𝑖,𝑐𝑖1
< 𝑡𝑖,𝑗 ≤ 𝑡𝑖,𝑐𝑖2

    
⋯ 

  𝑿𝑖,𝑗𝜷𝑖𝑘𝑖
+ 𝜎𝑖𝑘𝑖

𝜀𝑖𝑗,      if 𝑡𝑖,𝑐𝑖𝑘𝑖−1
< 𝑡𝑖,𝑗 ≤ 𝑡𝑖,𝑐𝑖𝑘𝑖

𝑿𝑖,𝑗𝜷𝑖𝑘𝑖+1 + 𝜎𝑖𝑘𝑖+1𝜀𝑖𝑗, if  𝑡𝑖,𝑐𝑖𝑘𝑖
< 𝑡𝑖,𝑗 ≤ 𝑡𝑖,𝑛𝑖

 

 

(3.1) 

where 𝑿𝑖,𝑗,𝑠  is the vector of polynomial basis functions, i.e., 𝑿𝑖,𝑗,𝑠 = [1, (𝑡𝑖,𝑗 −

𝑡𝑖,𝑐𝑖𝑠−1
), ⋯ , (𝑡𝑖,𝑗 − 𝑡𝑖,𝑐𝑖𝑠−1

)
𝑞𝑖𝑠

] where 𝑞𝑖𝑠 is the polynomial order of the s-th segment, 𝜷𝑖
(𝑠)

 is a 

vector of regression parameter and 𝜎𝑖
2(𝑠)

 is noise variance of the s-th segment, and 𝜀𝑖𝑗 is a 

noise term following i.i.d. standard normal distribution. Note that the order of polynomial 

regression could vary across different segments. Give the position of a change-point, we assume 

that the observations before that change-point is independent of those after the change-point. For 

simplicity and without loss of generality, we assume that 𝑡𝑖,𝑗 = 𝑗 in the rest of the chapter, i.e., 

the sampling intervals equal to 1 for all units. Besides, given the total number of change-points 

𝑘𝑖, we assume that the polynomial orders of the 𝑘𝑖 + 1 segments are deterministic. 

As mentioned in chapter 2, the prognostics often involves two stages, namely, the offline 

stage for modeling and estimation, and the online stage for sequential model updating and RUL 

prediction. To characterize both the population trend and the individual heterogeneity, all the 

model parameters are assumed random in the offline modeling of the historical data. Denote a 

multiple change-point model as 𝓜 = (𝑘, {𝛿(𝑠)}
𝑠=1

𝑘+1
, {𝜽(𝑠)}

𝑠=1

𝑘+1
)  where 𝑘  is the number of 

change-points, 𝛿(𝑠) = 𝑐𝑠 − 𝑐𝑠−1 is the duration of the 𝑠th segment, and 𝜽(𝑠) = (𝜷(𝑠), 𝜎2(𝑠)) is 
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the model parameters of the 𝑠th segment. In the offline modeling, all these parameters are 

modelled with appropriate distributions, and the hyperparameters are estimated. The estimated 

distributions are then used as priors in the online Bayesian model updating and RUL prediction. 

At the online stage, the posterior distributions of the individual model parameters are 

sequentially updated. The total number of change-points, the index of the current segment (or 

how many change-points have occurred), and the latest change-point (or the duration since the 

latest change-point) are three key parameters in Bayesian model updating and RUL prediction.  

Let 𝑦1:𝑡 denote the observations of a working unit up to the current time 𝑡, and 𝒙𝑡 =

(𝜽𝑡, 𝜏𝑡, 𝑠𝑡, 𝑘) be the state vector where 𝜽𝑡 = (𝜷𝑡, 𝜎𝑡
2) are the model parameters of the current 

segment, 𝜏𝑡 be the latest change-point that has occurred (𝜏𝑡 ≤ 𝑡 − 1), and 𝑠𝑡 be index of the 

current segment, e.g., 𝑠𝑡 = 1, 2, … , 𝑘 + 1 . At the online stage, the posterior distribution 

𝑝(𝒙𝑡|𝑦1:𝑡) and the predictive density 𝑝(𝑦𝑡+𝐿|𝑦1:𝑡) for integer 𝐿 > 0 have to be calculated. 

However, these distributions are generally intractable. As mentioned earlier, although the particle 

filtering techniques or sequential Monte Carlo techniques are capable of handling these nonlinear 

intractable problems, their efficiency is significantly affected by their notorious particle 

degeneracy and impoverishment issues, and the enormous computational cost. In this chapter, we 

find that by using conjugate priors, the closed form of the posterior distributions and the 

predictive density can be recursively and efficiently calculated. The overall prognostic 

framework with offline and online stages is summarized in Figure 3-1. The following two 

sections give the technical details about the prior specification and parameter estimation at the 

offline stage, and the posterior distribution estimation and RUL prediction at the online stage. 
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Figure 3-1: Illustration of the proposed prognostic framework. 

 

3.3 PRIOR SPECIFICATION AND PARAMETER ESTIMATION 

3.3.1 Specification of Priors 

In this section, the priors for the multiple change-point model 𝓜 =

(𝑘, {𝛿(𝑠)}
𝑠=1

𝑘+1
, {𝜽(𝑠)}

𝑠=1

𝑘+1
) are specified and estimated. Follow the strategy in chapter 2, we use a 

nonhomogeneous Markov process where discrete distributions that are independent of the 

number of observations are selected for the number of change-points 𝑘, and then the positions of 

the change-points are modelled as a nonhomogeneous Markov process with durations between 

successive change-points depending on both 𝑘 and the segment index 𝑠. The joint prior for 

both change-points and model parameters could be formulated as shown Eq.(2.7). We select a 

categorical distribution for 𝑘 which is independent of 𝑛, i.e., 𝜋(𝑘 = 𝑚) = 𝑝𝑚 and ∑ 𝑝𝑚𝑚 =

Offline Stage

Historical dataset

{𝒀𝑖 , 𝑖 = 1,2, … , 𝐼}
Model estimation 

of each unit 

through BIC:

{𝓜 𝑖 , 𝑖 = 1,2, … , 𝐼}

Hyperparameter 

estimation: 𝝍̂

{𝑝 𝑚, 𝛼̂1
𝑘,𝑠

, 𝛼̂2
(𝑘,𝑠)

}

{𝛿 0
𝑘,𝑠

, 𝜎0
2 𝑘,𝑠

},

{𝝁 0
𝑘,𝑠

, 𝚺̂0
2(𝑘,𝑠)

} 

Exact Bayesian 

model updating

𝑝 𝒙𝑡 𝑦1:𝑡

RUL prediction

𝑝 𝑟𝑡|𝑦1:𝑡
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t
R

U
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1. The phase durations are approximately modelled with normal distributions, since they are 

more flexible in controlling mean and variance than most of the existing discrete probability 

distributions. Specifically, 𝛿(𝑠)|𝑘~𝑁(𝛿0
(𝑘,𝑠)

, 𝜎0
2(𝑘,𝑠)

). For the model parameters of each phase, in 

this chapter, the commonly used normal and inverse Gamma (IG) conjugate priors are assumed: 

 

 𝜋(𝜷(𝒔), 𝜎2(𝑠)|𝑘) = 𝜋(𝜎2(𝑠)|𝑘)𝜋(𝜷(𝒔)|𝜎2(𝑠), 𝑘)

= 𝐼𝐺(𝜎2(𝑠)|𝛼1
(𝑘,𝑠)

, 𝛼2
(𝑘,𝑠)

)𝑁(𝜷(𝒔)|𝝁0
(𝑘,𝑠)

, 𝜎2(𝑠)𝚺0
(𝑘,𝑠)

) 

(3.2) 

For notational convenience, in the rest of the chapter we use the double superscript (𝑘, 𝑠) to 

denote the parameter or variable of 𝑠-th segment conditioning that there are in total 𝑘 change-

points, e.g., 𝜷(𝑘,𝑠) = 𝜷(𝒔)|𝑘.  

3.3.2 Parameter Estimation from Historical Data 

Informative priors can be obtained by estimating all the hyperparameters through 

historical data. Let 𝝍  denote the vector of all hyperparameters, i.e., 

{𝑝𝑚}, {𝛼1
(𝑘,𝑠)

, 𝛼2
(𝑘,𝑠)

} and Error!  Bookmark not defined..  

We use an empirical two-stage estimation method. Specifically, at the first stage, the 

model parameters 𝓜 𝑖 of each historical unit 𝑖 = 1, … , 𝐼 are obtained, we use the Bayesian 

information criterion (BIC) [84] for change-point model selection and the corresponding 

segment parameter estimation. For notational convenience, we ignore the subscript 𝑖  for 

individual unit in the following four equations. The parameter estimation for each unit can be 

formulated as 

𝓜 = arg min
𝓜

(−2𝑙(𝓜|𝒀) + 𝐾 log 𝑛) (3.3) 
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where 𝐾 is the total number of parameters, including change-points, regression parameters, and 

noise variances, and 𝑙(𝓜|𝒀) is the log-likelihood function expressed by 

 

𝑙(𝓜|𝒀) = ∑ [−
1

2
(𝑐𝑠 − 𝑐𝑠−1) log(2𝜋𝜎2(𝑘,𝑠)) −

‖𝑦𝑐𝑠−1+1:𝑐𝑠

𝑇 − 𝑿1,𝑐𝑠−𝑐𝑠−1
𝜷(𝑘,𝑠)‖

2

2𝜎2(𝑘,𝑠)
]

𝑘+1

𝑠=1
 (3.4) 

where 𝑿1,𝑐𝑠−𝑐𝑠−1
 is the design matrix, with 𝑿𝑡1,𝑡2

 of order 𝑞 defined as  

 

𝑿𝑡1,𝑡2
= [

1 1 ⋯ 1
𝑡1 𝑡1 + 1 ⋯ 𝑡2

⋯ ⋯ ⋯ ⋯
𝑡1

𝑞 (𝑡1 + 1)𝑞 ⋯ 𝑡2
𝑞

]

𝑇

 (3.5) 

Conditioning on the fixed change-points, i.e., (𝑘, {𝛿(𝑘,𝑠)}
𝑠=1

𝑘+1
), the parameters of each segment 

that minimize Eq. (3.3) can be easily obtained through MLE of classical linear models 

 

𝜷̂(𝑘,𝑠)   = (𝑿1,𝑐𝑠−𝑐𝑠−1

𝑇 𝑿1,𝑐𝑠−𝑐𝑠−1
)

−1
𝑿1,𝑐𝑠−𝑐𝑠−1

𝑇 𝑦𝑐𝑠−1+1:𝑐𝑠

𝑇 , 

𝜎2 (𝑘,𝑠)
= ‖𝑦𝑐𝑠−1+1:𝑐𝑠

𝑇 − 𝑿1,𝑐𝑠−𝑐𝑠−1
𝜷̂(𝑘,𝑠)‖

2
/𝛿(𝑘,𝑠) 

(3.6) 

Therefore, for each possible model defined by change-points, the BIC value can be easily 

evaluated. Suppose the estimated parameters are 𝓜 𝑖 = (𝑘̂𝑖 , {𝛿 𝑖
(𝑘̂𝑖,𝑠)

}
𝑠=1

𝑘̂𝑖

, {𝜷̂𝑖
(𝑘̂𝑖,𝑠)

, 𝜎2 
𝑖

(𝑘̂𝑖,𝑠)
}
𝑠=1

𝑘̂𝑖+1

) 

for 𝑖 = 1, … , 𝐼. The second stage is to estimate the hyperparameters based on 𝓜 𝑖, 𝑖 = 1, … , 𝐼 

through MLE approach. The MLE of hyperparameters 𝑝𝑚 can be easily obtained as  

𝑝 𝑚 =
1

𝐼
∑ 𝟏𝑘̂𝑖=𝑚

𝐼

𝑖=1

 (3.7) 
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For the hyperparameters (𝛼1
(𝑘,𝑠)

, 𝛼2
(𝑘,𝑠)

)  in the inverse Gamma distribution, the MLE using 

observations {𝜎2 
𝑖

(𝑘̂𝑖,𝑠)
|𝑘̂𝑖 = 𝑘, 𝑖 = 1, … , 𝐼}  can be estimated numerically through various 

optimization algorithms. The MLE of the hyperparameters (𝛿0
(𝑘,𝑠)

, 𝜎0
2(𝑘,𝑠)

) for the segment 

duration can be obtained straightforwardly as  

 

𝛿 0
(𝑘,𝑠)

=
∑ 𝛿 𝑖

(𝑘̂𝑖,𝑠)
𝟏𝑘̂𝑖=𝑘

𝐼
𝑖=1

∑ 𝟏𝑘̂𝑖=𝑘
𝐼
𝑖=1

 

𝜎0
2 (𝑘,𝑠)

=
∑ (𝛿 𝑖

(𝑘̂𝑖,𝑠)
− 𝛿 0

(𝑘,𝑠)
)

2

𝟏𝑘̂𝑖=𝑘
𝐼
𝑖=1

∑ 𝟏𝑘̂𝑖=𝑘
𝐼
𝑖=1

 

(3.8) 

For the hyperparameters 𝝁0
(𝑘,𝑠)

and 𝚺0
(𝑘,𝑠)

, closed forms can be derived as 

𝝁 0
(𝑘,𝑠)

=

∑
𝜷̂𝑖

(𝑘̂𝑖,𝑠)
𝟏𝑘̂𝑖=𝑘

𝜎2 
𝑖

(𝑘̂𝑖,𝑠)
𝐼
𝑖=1

∑
𝟏𝑘̂𝑖=𝑘

𝜎2 
𝑖

(𝑘̂𝑖,𝑠)
𝐼
𝑖=1

 

𝚺̂0
(𝑘,𝑠)

=
∑ (𝜷̂𝑖

(𝑘̂𝑖,𝑠)
− 𝝁 0

(𝑘,𝑠)
) (𝜷̂𝑖

(𝑘̂𝑖,𝑠)
− 𝝁 0

(𝑘,𝑠)
)

𝑇

𝟏𝑘̂𝑖=𝑘
𝐼
𝑖=1

∑ 𝟏𝑘̂𝑖=𝑘
𝐼
𝑖=1

 

(3.9) 

The details of the derivation can be found in Appendix B.  

3.4 EXACT BAYESIAN ONLINE MODEL UPDATING AND RUL PREDICTION 

In this section we will discuss how to update the model sequentially through exact 

Bayesian inference and predict the RUL for a new in-service unit during the online stage.  

3.4.1 Exact Bayesian Online Model Updating 

The model updating of a working unit is an essential step for health condition monitoring 

and RUL prediction. It refers to the posterior distribution evaluation of all model parameters that 
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could capture the current health condition and future degradation evolution. In this chapter, the 

model updating is to calculate the posterior distribution 𝑝(𝒙𝑡|𝑦1:𝑡) where the state vector 𝒙𝑡 =

(𝜽𝑡, 𝜏𝑡, 𝑠𝑡, 𝑘). Generally, this posterior distribution is intractable and sequential Monte Carlo 

techniques are needed. Fortunately, due to the assignment of conjugate priors for 𝜽, the 

posterior could be recursively calculated, which is shown as follows.  

To calculate the joint posterior 𝑝(𝒙𝑡|𝑦1:𝑡), we first calculate the posterior distribution of 

the discrete components 𝑃(𝜏𝑡, 𝑠𝑡, 𝑘|𝑦1:𝑡), and then calculate the posterior distribution of the 

continuous components conditioning on the discrete components, i.e., 𝑝(𝜽𝑡|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡). That 

is  

𝑝(𝒙𝑡|𝑦1:𝑡) = 𝑃(𝜏𝑡, 𝑠𝑡, 𝑘|𝑦1:𝑡)𝑝(𝜽𝑡|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) (3.10) 

The conditional posterior distribution of the continuous components 𝑝(𝜽𝑡|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) can be 

calculated based on Theorem 3.1 as follows.  

Theorem 3.1 Suppose the conjugate prior in Eq.(3.2) is assigned to 𝜷𝑡 and 𝜎𝑡
2. 

𝜋(𝜷𝑡, 𝜎𝑡
2|𝑠𝑡 = 𝑠, 𝑘) = 𝐼𝐺(𝜎𝑡

2|𝛼1
(𝑘,𝑠)

, 𝛼2
(𝑘,𝑠)

)𝑁(𝜷𝑡|𝝁0
(𝑘,𝑠)

, 𝜎𝑡
2𝚺0

(𝑘,𝑠)
) 

Then  

(𝜎𝑡
2|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦1:𝑡)~𝐼𝐺 (𝛼1

(𝑘,𝑠)
+

𝑡 − 𝑗

2
, 𝛼2

(𝑘,𝑠)
+

𝐻𝑗+1,𝑡
(𝑘,𝑠)

2
) 

(𝜷𝑡|𝜎𝑡
2, 𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦1:𝑡)~𝑁(𝝁𝑗+1,𝑡, 𝜎𝑡

2𝚺𝑗+1,𝑡) 

(3.11) 

where  

𝚺𝑗+1,𝑡 = (𝑿1,𝑡−𝑗
𝑇 𝑿1,𝑡−𝑗 + (𝚺0

(𝑘,𝑠)
)

−1
)

−1

 

𝑵𝑗+1,𝑡 = ((𝚺0
(𝑘,𝑠)

)
−1

𝝁0
(𝑘,𝑠)

+ 𝑿1,𝑡−𝑗
𝑇 𝑦𝑗+1:𝑡) 

𝝁𝑗+1,𝑡 = 𝚺𝑗+1,𝑡𝑵𝑗+1,𝑡 

(3.12) 
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𝐻𝑗+1,𝑡
(𝑘,𝑠)

= 𝑦𝑗+1:𝑡
𝑇 𝑦𝑗+1:𝑡 + (𝝁0

(𝑘,𝑠)
)

𝑇

(𝚺0
(𝑘,𝑠)

)
−1

𝝁0
(𝑘,𝑠)

− 𝑵𝑗+1,𝑡
𝑇 𝚺𝑗+1,𝑡𝑵𝑗+1,𝑡 

The proof of Theorem 3.1 can be found in Appendix C. The calculation of 𝑃(𝜏𝑡, 𝑠𝑡, 𝑘|𝑦1:𝑡) is 

the main challenge. It can be recursively updated as  

 

𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡) 

∝ 𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡−1)𝑝(𝑦𝑡|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦1:𝑡−1) 

(3.13) 

Eq. (3.13) consists of two parts. The first part is the predictive probability mass function (PMF) 

𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡−1) which can be recursively calculated by 

𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡−1) 

= ∑ 𝑃(𝜏𝑡−1 = 𝑗′, 𝑠𝑡−1 = 𝑠′, 𝑘|𝑦1:𝑡−1)𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠|𝜏𝑡−1 = 𝑗′, 𝑠𝑡−1

𝑗′,𝑠′

= 𝑠′, 𝑘, 𝑦1:𝑡−1) 

 

 

(3.14) 

where 𝑃(𝜏𝑡−1 = 𝑗′, 𝑠𝑡−1 = 𝑠′, 𝑘|𝑦1:𝑡−1) is the posterior distribution obtained at the previous 

time step, and 𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠|𝜏𝑡−1 = 𝑗′, 𝑠𝑡−1 = 𝑠′, 𝑘, 𝑦1:𝑡−1)  is the predictive Markov 

transition probability. Based on the specified nonhomogeneous Markov process for change-

points, this predictive Markov transition probability can be derived as  

 

𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠|𝜏𝑡−1 = 𝑗′, 𝑠𝑡−1 = 𝑠′, 𝑘, 𝑦1:𝑡−1)

=

{
 
 
 

 
 
 1 − 𝐺(𝑘,𝑠′)(𝑡 − 𝑗′)

1 − 𝐺(𝑘,𝑠′)(𝑡 − 𝑗′ − 1)
 ,       if 𝑗 = 𝑗′and 𝑠 = 𝑠′ < 𝑘 + 1

1,                           if 𝑗 = 𝑗′ and 𝑠 = 𝑠′ = 𝑘 + 1

𝐺(𝑘,𝑠′)(𝑡 − 𝑗′) − 𝐺(𝑘,𝑠′)(𝑡 − 𝑗′ − 1)

1 − 𝐺(𝑘,𝑠′)(𝑡 − 𝑗′ − 1)
, if 𝑗 = 𝑡 − 1  and 𝑠 = 𝑠′ + 1 ≤ 𝑘 + 1

 
0,                                           otherwise

 

(3.15) 
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Where 𝐺(𝑘,𝑠′)(∙) is the cumulative distribution function of 𝑠′-th segment duration for a CM 

signal with 𝑘 change-points.  

The second part of Eq. (3.13) is 𝑝(𝑦𝑡|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘 = 𝑚, 𝑦1:𝑡−1) , namely, the 

predictive density function of 𝑦𝑡. It is the only term that involves the newest observation 𝑦𝑡 in 

the posterior updating of the discrete components. Once this density function is known, the 

posterior distribution of the discrete components can be recursively updated based on Eq. (3.13), 

(3.14) and (3.15). Therefore this part is critically important. It can be calculated based on 

Theorem 3.2 as follows.  

Theorem 3.2 Denote 𝑿𝑡 = [1, 𝑡, ⋯ , 𝑡𝑞] where 𝑞 is the polynomial order, then if 𝑗 < 𝑡 − 1, 

(𝑦𝑡|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦𝑗+1:𝑡−1)~ 

𝑡1 (2𝛼1
(𝑘,𝑠)

+ 𝑡 − 𝑗 − 1, 𝑿𝑡−𝑗𝝁𝑗+1,𝑡−1,
2𝛼2

(𝑘,𝑠)
+ 𝐻𝑗+1:𝑡−1

(𝑘,𝑠)

2𝛼1
(𝑘,𝑠)

+ 𝑡 − 𝑗 − 1
(1 + 𝑿𝑡−𝑗𝚺𝑗+1,𝑡−1𝑿𝑡−𝑗

𝑇 )) 

(3.16) 

And if 𝑗 = 𝑡 − 1,  

(𝑦𝑡|𝜏𝑡 = 𝑡 − 1, 𝑠𝑡 = 𝑠, 𝑘)~𝑡1 (2𝛼1
(𝑘,𝑠)

, 𝑿1𝝁0
(𝑘,𝑠)

,
𝛼2

(𝑘,𝑠)

𝛼1
(𝑘,𝑠)

(1 + 𝑿1𝚺0
(𝑘,𝑠)

𝑿1
𝑇)) (3.17) 

The proof of Theorem 3.2 is given in Appendix D.  

3.4.2 RUL Prediction 

RUL prediction is to determine the time when the signal first hit the failure threshold 𝛤. 

For an operating unit, denote the remaining useful life as 𝑅𝑡 at current time 𝑡. Then 𝑅𝑡  can be 

defined as 𝑅𝑡 = inf  {𝐿: 𝑦𝑡+𝐿 ≥ 𝛤|𝑦1:𝑡} . The cumulative distribution function (CDF) of 𝑅𝑡 

conditional on available observations 𝑦1:𝑡 (also called conditional reliability function) can be 

expressed as 
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𝑃(𝑅𝑡 > 𝐿|𝑦1:𝑡) = ∑ ∑ ∑ 𝑃(𝑅𝑡 > 𝐿|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦1:𝑡)𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡)

𝑗𝑠𝑘

 (3.18) 

where 𝑃(𝜏𝑡, 𝑠𝑡, 𝑘|𝑦1:𝑡) is recursively calculated through Eq. (3.13) in the model updating stage, 

and 𝑃(𝑅𝑡 > 𝐿|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) can be reformulated as  

 

𝑃(𝑅𝑡 > 𝐿|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦1:𝑡) 

= 𝑃(𝑦𝑡+1 < 𝛤, … , 𝑦𝑡+𝐿 < 𝛤|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦1:𝑡) 

(3.19) 

The calculation of Eq. (3.19) depends on the segment index 𝑠𝑡 . If 𝑠𝑡 = 𝑘 + 1 , or the 

degradation process is at the final segment, it can be shown that the vector 𝑦𝑡+1:𝑡+𝐿 follows a 

multivariate 𝑡 distribution of dimension 𝐿, as shown in Eq. (3.20) of Theorem 3.3.  

Theorem 3.3  If 𝑠𝑡 = 𝑘 + 1,  

(𝑦𝑡+1:𝑡+𝐿|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑘 + 1, 𝑘, 𝑦𝑗+1:𝑡) 

~𝑡𝐿 (2𝛼1
(𝑘,𝑘+1)

− 𝑗, 𝑿𝑡+1−𝑗,𝑡+𝐿−𝑗𝝁𝑗+1,𝑡 ,
2𝛼2

(𝑘,𝑘+1)
+ 𝐻𝑗+1:𝑡

(𝑘,𝑘+1)

2𝛼1
(𝑘,𝑘+1)

+ 𝑡 − 𝑗
(𝑰 + 𝑿𝑡+1−𝑗,𝑡+𝐿−𝑗𝚺𝑗+1,𝑡𝑿𝑡+1−𝑗,𝑡+𝐿−𝑗

𝑇 )) 

(3.20) 

and 

(𝑦𝑡+1:𝑡+𝐿|𝜏𝑡+1 = 𝑗, 𝑠𝑡+1 = 𝑘 + 1, 𝑘) 

~𝑡𝐿 (2𝛼1
(𝑘,𝑘+1)

, 𝑿𝑡+1−𝑗,𝑡+𝐿−𝑗𝝁0
(𝑘,𝑘+1)

,
𝛼2

(𝑘,𝑘+1)

𝛼1
(𝑘,𝑘+1)

(𝑰 + 𝑿𝑡+1−𝑗,𝑡+𝐿−𝑗𝚺0
(𝑘,𝑘+1)

𝑿𝑡+1−𝑗,𝑡+𝐿−𝑗
𝑇 )) 

(3.21) 

The proof of Theorem 3.3 is similar to Theorem 3.2 and thus is not provided here. Based on 

Theorem 3.3, if 𝑠𝑡 = 𝑘 + 1, i.e., the degradation is at the final stage, 𝑃(𝑅𝑡 > 𝐿|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑘 +

1, 𝑘, 𝑦1:𝑡) = MT𝑡+1,𝑡+𝐿(𝛤)  where MT𝑡+1:𝑡+𝐿(𝛤) is the CDF of L-dimensional t distribution 

given in Eq. (3.20). If 𝑠𝑡 < 𝑘 + 1, however, the future change-points, especially the final 

change-point, need to be predicted for RUL prediction. The calculation for the general case is 

derived as follows. Denote the last or final change-point as 𝑐𝑘, then  
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𝑃(𝑅𝑡 > 𝐿|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) = ∑ 𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡)
𝑐𝑘

𝑃(𝑐𝑘|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) (3.22) 

where 𝑃(𝑐𝑘|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) is the predictive PMF of the final change-point, which does not 

depend 𝑦1:𝑡 and thus can be recursively calculated in the off-line stage based on the defined 

Markov transition process in Eq.(3.15), and 𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡 , 𝑠𝑡, 𝑘, 𝑦1:𝑡) can be calculated based 

the model assumption that the degradation signal will not exceed the failure threshold before it 

reaches the final segment: 

𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) = {

MT𝑡+1,𝑡+𝐿(𝛤), if 𝑐𝑘 = 𝜏𝑡 ≤ 𝑡 − 1 

MT𝑐𝑘+1,𝑡+𝐿(𝛤), if 𝑡 − 1 < 𝑐𝑘 < 𝑡 + 𝐿

1, if 𝑐𝑘 ≥ 𝑡 + 𝐿

 (3.23) 

In Eq. (3.23), MT𝑡+1,𝑡+𝐿(𝛤)  is the CDF of t distribution given in Eq. (3.20) while 

MT𝑐𝑘+1,𝑡+𝐿(𝛤) is the CDF of (𝑦𝑐𝑘+1:𝑡+𝐿|𝜏𝑐𝑘+1 = 𝑐𝑘 , 𝑠𝑐𝑘+1 = 𝑘 + 1, 𝑘) given in Eq. (3.21). As 

we can see, the closed form of the conditional reliability function or the RUL distribution can 

also be exactly obtained based on Eq. (3.18)-(3.23).  

3.4.3 Computational Issue and Approximation 

Although the model updating and RUL prediction can be exactly calculated through 

recursion, both the computational and memory cost of each time step increase with time 𝑡. From 

Eq. (3.13)-(3.15) we can see that the computational and memory cost of the filtering recursion at 

time 𝑡 is approximately linear with time 𝑡, since we need to calculate and store 𝑡 ∑ (𝑘 + 1)𝑘  

probabilities for the posterior PMF 𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡). In the RUL prediction, for each 𝐿 

in Eq. (3.18), the computational cost also increases with 𝑡 . For large datasets, these 

computational and storage issues may become very prohibitive in real time applications and thus 

need to be solved. In practice, the posterior PMF 𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡) is almost zero at most 

of the support points. Indeed, with more observations obtained in the current segment, the 



60 

posterior PMF would concentrate around the starting point 𝑐s−1 of the current segment, and for 

𝜏𝑡 ≪ 𝑐𝑠−1, the posterior PMF is close to zero and thus can be negligible. Similar phenomenon 

can also be observed for 𝑠𝑡 and 𝑘. A natural way to control the computational cost and memory 

issue is to approximate the posterior densities at each time step with a small set of support points 

of fixed size that have high probabilities, and set the posterior PMF to be zero at the remaining 

support points. However, this strategy may result in inaccurate approximation if directly applied 

to the 3-dimensional support points. The PMF can be temporally near zero for certain 𝑠𝑡 and 𝑘, 

and then becomes dominant later as more observations are obtained. If the PMF is set zero at 

these support points, the PMF of these support points evaluated at the future time steps will also 

be zero, thus leading to an inaccurate approximation. To address this issue, we propose to select 

𝑁 most probable support points under each stratum (𝑠𝑡, 𝑘) to approximate the posterior and set 

others to zero. Consequently, there are in total 𝑁 ∑ (𝑘 + 1)𝑘  non-zero support points. The 

details of the approximation algorithm are summarized in Table 3-1.  

Table 3-1: Summary of the approximation updating algorithm 

1. At time step 𝑡 = 𝑁 + 1,  

• Calculate 𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡)  at all the (𝑁 + 1) ∑ (𝑘 + 1)𝑘  support 

points. 

• Within each stratum (𝑠, 𝑘), select 𝑁 time steps from {1, … , 𝑡} with highest 

PMF 𝑃(𝜏𝑡 = 𝑗, 𝑠, 𝑘|𝑦1:𝑡). Denote the selected time steps as 𝑻𝑁(𝑡, 𝑠, 𝑘). 

• Normalize the probabilities of the selected 𝑁 ∑ (𝑘 + 1)𝑘  support points. 

2. At time step 𝑡 > 𝑁 + 1 

• Calculate 𝑃(𝜏𝑡 = 𝑗, 𝑠, 𝑘|𝑦1:𝑡) at (𝑁 + 1)support points {𝑻𝑁(𝑡 − 1, 𝑠, 𝑘), 𝑡} for 

each stratum (𝑠, 𝑘). 

• Within each stratum (𝑠, 𝑘), select 𝑁 time steps from {𝑻𝑁(𝑡 − 1, 𝑠, 𝑘), 𝑡}with 

highest PMF 𝑃(𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘|𝑦1:𝑡). Update 𝑻𝑁(𝑡, 𝑠, 𝑘). 

• Normalize the probabilities of the selected 𝑁 ∑ (𝑘 + 1)𝑘  support points. 
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Another computational issue is the calculation of the conditional reliability function 

through Eq. (3.18) and (3.22) at the online RUL prediction stage. It involves a large number of 

evaluations of the CDF of multivariate t distribution, e.g., 𝑀𝑇𝑡+1,𝑡+𝐿(𝛤), whose computational 

cost increases enormously with the dimension 𝐿. To control the computational cost, we could 

alternatively use the Monte Carlo (MC) simulation approach. One MC approach is to directly 

generate the samples for the current state vector 𝒙𝑡 through the posterior distribution 𝑝(𝒙𝑡|𝑦1:𝑡) 

and simulate future state vectors 𝒙𝑡+𝐿 , 𝐿 = 1,2, ⋯, through the prior Markov state transition 

process. Specifically, to simulate 𝒙𝑡+1 conditioning on the previous state 𝒙𝑡, we could first 

simulate the discrete components of 𝒙𝑡+1 through Eq.(3.15), and then simulate the continuous 

component 𝜽𝑡+1 from the prior distribution if 𝑡 is a change-point or let 𝜽𝑡+1 = 𝜽𝑡 if 𝑡 is not 

a change-point. Based on these simulated samples of current state and future states, the 

conditional reliability function can be easily calculated. However, due to the high dimensionality 

of the state vector, this MC approach requires a large number of samples to guarantee the 

approximation accuracy. To solve this issue, we propose to use partial MC simulation for only 

the calculation of 𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡 , 𝑠𝑡, 𝑘, 𝑦1:𝑡) . Note that in Eq. (3.18) and (3.22), 

𝑃(𝑐𝑘|𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) is independent of 𝑦1:𝑡 and can be calculated at the offline stage. 𝑃(𝑅𝑡 >

𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) is also independent of 𝑦1:𝑡 when 𝑐𝑘 ≥ 𝑡, and thus can also be calculated at 

the offline stage. Therefore we only need to estimate 𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) for 𝑐𝑘 = 𝜏𝑡 ≤

𝑡 − 1 at the online RUL prediction stage. To estimate it, we generate 𝑆 samples {𝜽𝑡1, … , 𝜽𝑡𝑆} 

from the posterior distribution 𝑃(𝜽𝑡|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) given in Eq. (3.11), and then 𝑃(𝑅𝑡 >

𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) can be estimated by 

𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) =
1

𝑆
∑ ∏ 𝛷(𝛤|𝑿𝑡+𝑙−𝑐𝑘

𝜷𝑡𝑙, 𝜎𝑡𝑙
2)

𝐿

𝑙=1

𝑆

𝑖=1
 (3.24) 
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where 𝛷(∙ |𝑿𝑡+𝑙−𝑐𝑘
𝜷𝑡𝑙, 𝜎𝑡𝑙

2) is the CDF of Gaussian distribution with mean 𝑿𝑡+𝑙−𝑐𝑘
𝜷𝑡𝑙 and 

variance 𝜎𝑡𝑙
2 . This strategy can significantly improve the computational efficiency yet without 

influencing the calculation accuracy. Another advantage of this strategy is that we can easily 

adopt truncated distributions for the last segment (e.g., only select samples with positive 

degradation rate) to avoid the occurrence of a temporary decreasing trend (unit would never fail 

and RUL prediction is infeasible) in the updated signal evolution path for RUL prediction, which 

is common in real degradation signals due to measurement noises [95]. Note that in partial MC 

method, only 𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) with 𝑐𝑘 = 𝜏𝑡 ≤ 𝑡 − 1 (i.e., degradation is at the final 

phase) is calculated by MC method. The approximation accuracy decreases with 𝐿for a fixed 

sample size. However, in many practical applications, the final phase is often very steep and 

short in duration, so that 𝑃(𝑅𝑡 > 𝐿|𝑐𝑘, 𝜏𝑡, 𝑠𝑡, 𝑘, 𝑦1:𝑡) converges rapidly to 0 as L increases. 

Therefore, using a small sample size can often achieve a very accurate approximation. 

3.5 CASE STUDIES 

In this section, we first use simulated signals to illustrate the effectiveness of the 

proposed method, and then apply the method to vibrational signals of rotational bearings for 

performance evaluation.  

3.5.1 Simulation Study 

To demonstrate the effectiveness of the proposed algorithm, a simulation study is 

conducted. In the simulation model, we assume that there are two types of degradation signals in 

terms of the number of change-points, namely, one-change-point (one-CP) and two-change-

points (two-CP) signals. The corresponding probabilities are given by 

𝑘 = {
1, with  𝑝1 = 0.2
2, with  𝑝2 = 0.8

 (3.25) 

 



63 

Table 3-2: Hyperparameters for the Bayesian multiple change-point model 

Variables 𝑘 = 1 𝑘 = 2 

𝛿(𝑘,𝑠) 

𝛿0
(1,1)

= 500, 𝜎0
2(1,1)

= 302 

𝛿0
(1,2)

= 500, 𝜎0
2(1,2)

= 302 

𝛿0
(2,1)

= 500, 𝜎0
2(2,1)

= 502 

𝛿0
(2,2)

= 400, 𝜎0
2(2,2)

= 302 

𝛿0
(2,3)

= 500, 𝜎0
2(2,3)

= 302 

𝜷(𝑘,𝑠) 

𝝁0
(1,1)

= [−10; 0.005] 

𝚺0
(1,1)

= [
0.2 0.0015

0.0015 0.0008
] 

𝝁0
(1,2)

= [−40; 0.05] 

𝚺0
(1,2)

= [
0.5 −0.0008

−0.0008 0.006
] 

𝝁0
(2,1)

= [−10; 0.003] 

𝚺0
(2,1)

= [
0.15 0.0014

0.0014 0.0009
] 

𝝁0
(2,2)

= [−20; 0.02] 

𝚺0
(2,2)

= [
0.024 −0.0009

−0.0009 0.000055
] 

𝝁0
(2,3)

= [−30; 0.09] 

𝚺0
(2,3)

= [
0.75 −0.00008

−0.00008 0.00045
] 

𝜎2(𝑘,𝑠) 

𝛼1
(1,1)

= 2, 𝛼2
(1,1)

= 4 

𝛼1
(1,2)

= 1, 𝛼2
(1,2)

= 4 

 𝛼1
(2,1)

= 3.6, 𝛼2
(2,1)

= 3 

   𝛼1
(2,2)

= 3,  𝛼2
(2,2)

= 5 

𝛼1
(2,3)

= 3.6, 𝛼2
(2,3)

= 5 

 

All the segments are modelled as simple linear regression or line segment for both one-

CP and two-CP signals. The other hyperparameters of the Bayesian multiple change-point model 

are given in Table 3-2. In total 𝐼 = 300 signals are simulated as the historical dataset. The 

failure threshold is set as 𝛤 = 30. Based on simulation settings above, 64 signals are generated 

for 𝑘 = 1 and 236 signals are generated for 𝑘 = 2. The hyperparameters are then estimated by 

the empirical two-stage estimation approach introduced in section 3.3.2. The proposed method 

can detect the change points (the number and positions) accurately for each signal. Due to page 
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limitation, the estimated hyperparameters are not listed here. For illustration, we also consider 

another model where all the settings are the same with the model described above except that all 

the last segments are quadratic. The hyperparameters of this model are not provided here due to 

space limitation. 

Figure 3-2 illustrates the online condition monitoring and model updating of individual 

unit for these two degradation models. Unless otherwise specified, the support size 𝑁 = 5 for 

each stratum (𝑠𝑡, 𝑘)  for posterior approximation in this paper. Clearly, the sequentially 

calculated posterior distribution of the discrete components of the state vector could effectively 

detect the occurrence of change-points, track the index of the current segment, and infer how 

many segments the CM signal would have. The accurate estimation of the CM signals also 

indicates an effective updating of the posterior distribution of the continuous components or 

model parameters of each segment. Figure 3-3 shows an example of predicting the position of 

the final change-point at two different times using the degradation signal shown in Figure 3-2(b). 

At 𝑡 = 300, the degradation signal is within its first segment. Hence, it is high likely that there 

are two future change-points to be predict, which increases the prediction uncertainty. At 𝑡 =

800, the degradation signal has already transited to the second segment, and the final change-

point can be accurately predicted. Clearly, as more data are observed, the prediction of the final 

change-point becomes more accurate. 
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Figure 3-2: Illustration of the online monitoring and model updating for two models. (a) and (b): 

all segments are simple linear models; (c) and (d): all the last segments are quadratic; first row: 

raw and estimated or filtered CM signals; second row: the expected duration of the current 

segment; third row: the posterior PMF of the index of current segment; and bottom row: the 

posterior PMF of the total number of segments (or signal type). The vertical dashed lines are true 

change-points. 

 

 

Figure 3-3: Predictive PMF of the final change-point with prediction time 𝑡 = 300 and 𝑡 =
800. 
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Figure 3-4: Computational time per time step for three different support sizes 𝑁 in the model 

updating process. 

 

Figure 3-4 shows the computational cost of each time step in the posterior model 

updating process using three different support sizes 𝑁 = 50, 100 and 150. As we can clearly 

see, when 𝑡 < 𝑁, the computational cost linearly increases with 𝑡, which is consistent with what 

we discussed in Section 3.4.3. Once the approximation strategy with a fixed support size 𝑁 is 

applied, the computational cost of each step is fully controlled for 𝑡 ≥ 𝑁 with an almost 

constant computational time. 

To evaluate the performance of RUL prediction, another 100 CM signals are simulated as 

testing dataset. The proposed method (denote it as EB) is compared with Chen’s method [63], 

which models CM signals with two line segments and thus is an ideal method for comparison. 

For Chen’s method, all 300 training CM signals (236 signals with three line segments and 64 

with two line segments) are used to estimate the hyperparameters of the two line segments. For 

the EB method, the support size 𝑁 = 5. 

N=150

N=100

N=50
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Figure 3-5: Prediction intervals for 7 one-CP signals (a, b and c) and 7 two-CP signals (d, e and 

f) at three different prediction times. (a) and (d): 50% of failure time; (b) and (e): 70% of failure 

time; (c) and (f): 90% of failure time. The ∘ represents the 5%, 50%, 95% quantiles of the 

predicted RUL distributions, and – denotes the actual RUL. 

 

 

Figure 3-6: Comparison of the detailed pdf of the RUL. (a), (b) and (c) correspond to the 6th 

signal (one-CP) of Figure 3-5 (a), (b) and (c), respectively; (d), (e) and (f) correspond to the 4th 

signal (two-CP) of Figure 3-5 (d), (e) and (f) respectively 

 

Figure 3-5 shows the prediction intervals of EB and Chen’s method at three prediction 

times for 7 one-CP signals and 7 two-CP signals randomly selected from the testing dataset. 

Figure 3-6 shows the detailed pdf of the predicted RUL for the 6th signal of Figure 3-5(a-c) and 

the 4th signal of Figure 3-5(d-f). Unsurprisingly, the prediction for both methods becomes more 

and more accurate as more observations are available. Comparing these two methods, the 

(a)

(d) (e)

(b) (c)

(f)

(a)

(d) (e)

(b) (c)

(f)
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proposed EB method outperforms Chen’s method for almost all the 14 signals. For one-CP 

signals, the EB method is slightly better at 70% and 90% of failure time, while at the prediction 

time 50%, the advantage of EB method is much more significant. The reason is that at the early 

degradation stage, the priors play a decisive role on the prediction accuracy. In Chen’s method, 

the priors of two-line-segment model are estimated using all one-CP and two-CP signals, which 

results in inaccurate priors. At 70% and 90% of failure time, all degradation signals evolve into 

the second segment, and the posterior distribution of each model is dominated by the 

observations. Therefore, Chen’s method can also accurately predict the RUL with inaccurate 

priors. For two-CP signals, the EB method is much better than Chen’s method, which fulfills the 

purpose of the proposed method for degradation signals with two or even more segments.  

To better quantify the prediction performance, the 𝛼 − 𝜆  performance metric is 

calculated [96], where 𝛼  specifies the error bound on the estimated RUL, i.e.,  [(1 −

𝛼)]𝑅𝑖,𝑡𝑟𝑢𝑒 ≤ 𝑅̂𝑖 ≤ [1 + 𝛼]𝑅𝑖,𝑡𝑟𝑢𝑒 ,and 𝜆  specifies the relative distance, in time, of a given 

prediction point from the actual failure time, i.e., λ = 0 and λ = 1 correspond to the starting 

prediction time and the actual failure time, respectively. Figure 3-7 shows the 𝛼 − 𝜆 

performance metric for the 6th one-CP signal and 4th two-CP signal using the proposed EB 

method and Chen’s method. The error bound α is set as 20%. It can be observed that, almost all 

the estimated RULs lie within the error bound for one-change-point case using both methods. 

However, for two-change-points case, Chen’s method is much worse than the proposed EB 

method.  
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Figure 3-7: 𝛼 − 𝜆 performance metric for (a) the 6th signal for one-CP case, and (b) the 4th 

signal for two-CP case. 

 

To evaluate the overall performance of RUL prediction, we use the root-mean-square-

deviation (RMSD) for these 100 testing signals defined as  

RMSD = √
1

100
∑ 𝐸(𝑅̂𝑖 − 𝑅𝑖,true)

2
100

𝑖=1

 (3.26) 

where 𝑅̂𝑖 and 𝑅𝑖,true are the predicted true RUL of unit 𝑖, respectively. 

Table 3-3: Comparison of the RMSD at six prediction times 

Method 
RMSD 

40% 50% 60% 70% 80% 90% 

Chen 319.5 271.6 218.3 240.6 211.0 102.0 

EB 313.8 188.8 153.8 114.4 35.1 23.0 

EB-partial MC 318.0 203.7 149.6 103.8 37.7 31.3 

 

Table 3-3 shows the RMSD of the proposed EB method and Chen’s method at six prediction 

times. We also add the EB method with partial Monte Carlo approximation (denoted as EB-

partial MC) to see how partial MC influence the prediction accuracy. For EB-partial MC, a 

sampling size of 1000 is used. As we can see, the proposed EB method is much more accurate 

than Chen’s method. At the early stage, e.g., 40% of the failure time, the advantage of the EB 

method is not significant, due to large uncertainty of model parameters and future change-points. 

As the prediction time approaches to the true failure time, the RMSD of the proposed method 

(a) (b)
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decreases significantly, and the performance is much better than Chen’s method. This is highly 

desirable since it becomes more and more important to get an accurate prediction when the RUL 

approaches zero. Comparing EB with EB-partial MC we can see that the prediction accuracy is 

not influenced much by partial MC sampling strategy. 

Table 3-4 shows the computational costs of the EB method and EB-partial MC using 

MATLAB running on an i5-4690 CPU 3.50 GHz Intel processor at the prediction stage. In the 

RUL prediction, the computational times are calculated under different prediction steps. For 

example, if the prediction step is 𝐿 , the conditional survival function 𝑃(𝑅𝑡 > 𝑙|𝑦1:𝑡)  is 

evaluated for 𝑙 = 1,2, ⋯ , 𝐿, with in total 𝐿 calculations. As we can see, the cost of EB method 

exponentially increases with the prediction step, due to the CDF computation of multivariate t 

distributions with increasing dimensions. For the EB-partial MC method, the computational cost 

of the prediction linearly increases with the prediction step. Therefore, using the partial MC 

strategy for the EB method could significantly reduce the computational cost, yet without 

influencing the prediction accuracy much. 

 

Table 3-4: The computational cost of RUL prediction with and without partial Monte Carlo 

simulation (unit: seconds) 

Method 

Prediction Steps 

10 20 30 40 50 60 

EB 0.8 4.0 8.8 14.6 21.8 30.4 

EB-partial MC 4.7 5.2 5.7 6.3 6.8 7.4 

 

3.5.2 Application to Rotational Bearings 

In this section, we apply the proposed EB method to the real degradation signals of 

rolling thrust bearings [12, 63, 94]. To generate these signals, a set of identical thrust bearings 
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was run at a constant rotational speed (2000 r/min) and a load of 200 lbs in an oil bath to provide 

continuous lubrication. Then the vibrations frequencies were acquired from an accelerometer, 

which was attached to the setup and connected to a vibration meter that measured the rms 

vibration level [28]. The amplitude of these frequencies increases as the bearing degrades. The 

degradation signal used in this paper consists of the average amplitude of the defective frequency 

and its first six harmonics frequencies. The degradation amplitudes are log-transformed. As the 

bearing degrades, the vibration becomes more and more severe and thus the degradation signal 

tends to increase. When the vibration magnitude reaches a threshold, the bearing is considered to 

have failed. Based on the published industrial standards, the failure threshold is set 𝛤 =

log(0.03) [12]. In total there are 25 historical signals. The sampling interval for all signals is 2 

minutes.  

Table 3-5: Estimated hyperparameters of the prior distributions 

 𝑠 = 1 𝑠 = 2 𝑠 = 3 

𝛿(𝑠) 𝛿0
(1)

= 246,  𝜎0
2(1)

= 1632 𝛿0
(2)

= 199, 𝜎0
2(2)

= 1232 𝛿0
(3)

= 232, 𝜎0
2(3)

= 1232 

𝜷(𝒔) 

𝝁0
(1)

= [−7.28,5.6 × 10−6] 

𝚺0
(1)

= [
20.77 −0.072

−0.072 0.0020
] 

𝝁0
(2)

= [−6.97,0.0015] 

𝚺0
(2)

= [
54.79 −0.075

−0.075 0.076
] 

𝝁0
(3)

= [−4.76,0.004] 

𝚺0
(3)

= [
3.74 −0.0004

−0.0004 0.0002
] 

σ2(s) 𝛼1
(1)

= 5.17, 𝛼2
(1)

= 0.03 𝛼1
(2)

= 1.06, 𝛼2
(2)

= 0.008 𝛼1
(3)

= 8.7, 𝛼2
(3)

= 0.38 
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Figure 3-8: 𝛼 − 𝜆 performance metric for the 24th bearing signal 

 

In the offline modeling, we set the maximum number of change-points to be 2 to control 

the model complexity. We assume that all segments are line segments. Based on the BIC model 

selection, two-CP model is the best for all signals. The estimated hyperparameters are 

summarized in Table 3-5. The estimated means of three slopes show that degradation rate is 

almost zero at the first stage, indicating a stable operation, and then increases successively at the 

following two stages.  

Figure 3-8 shows the α-λ performance metric for the 24th bearing signal. It can be 

observed that, although some estimated values are outside of the accuracy bound at early stage, 

the proposed method makes quite accurate prediction at later prediction stage. Apparently, the 

proposed method has a better performance. Figure 3-9 shows the prediction intervals at 50%, 

70% and 90% of failure time for the 25 degradation signals. The prediction results of Chen’s 

method is also provided for comparison. Some intervals by Chen’s method are not shown since 

they are out of the y-axis range, e.g., the 9th and 14th signal on Figure 3-9 (a), the 20th signal on 

Figure 3-9 (b) and the 24th signal on Figure 3-9 (c). Figure 3-10 shows the RMSD of the 25 

bearing signals for both EB and Chen’s method. Clearly, as the prediction time is closer to the 

failure time, the intervals become narrower. The more observed data, the more accurate the 
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prediction. The prediction of the EB method is very stable and accurate across all units, while 

Chen’s method is not stable and performs badly for some units. Table 3-6 shows the comparison 

of the proposed EB method with Chen’s method, and the GLLR method [7], the GBPNN method 

[29] and EB method using three change-points (EB-CP3) in terms of the overall RMSD at the 

three time steps. In the GLLR method, the remaining data was fitted using Bayesian simple 

linear regression. In the GBPNN method, a back-propagation neural network-based model was 

developed for RUL prediction. It is noted that, in the GLLR and GBPNN methods, the first 

segment with normal working condition is manually truncated. Therefore, we just show the 

prediction at 70% and 90% prediction time for GLLR and GBPNN methods. Clearly, the 

proposed method outperforms all of other methods at all three prediction times. It should be 

mentioned that EB-CP3 is even worse. The reason is that most of bearings just have 1 or 2 

obvious change-points, adding excessive change points will also introduce unnecessary 

uncertainty in RUL prediction, i.e., uncertainty of future change-point locations. Therefore, the 

number of change-points is critical for the prognostic model to generate an accurate prediction. 

 

Table 3-6: RMSE of the proposed method in comparison with other methods 

Method 
RMSD 

50% 70% 90% 

GLLR - 234.2 227.8 

GBPNN - 193.2 174.1 

Chen 318.4 156.9 169.4 

EB 236.8 106.0 41.8 

EB-CP3 493.9 297.1 179.2 
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Figure 3-9: Prediction intervals for 25 bearing signals at three different prediction times. (a): 

50%; (b): 70%; and (c): 90% of the failure time. The ∘ represents the 5%, 50%, 95% quantiles 

of the predicted RUL distributions, and – denotes the actual failure time. 

 

 

Figure 3-10: RMSD of 25 bearing signals 
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3.6 CONCLUSION 

In this chapter we proposed a Bayesian multiple change-point modeling framework for 

degradation signals based condition monitoring and remaining useful life prediction. To capture 

the unit-to-unit heterogeneity and also to facilitate integration of historical data with in-situ 

observations of in-service unit for online prognostics, all model parameters are assumed to be 

random, including the number of change-points and their positions, and the model parameters of 

each linear segments. A novel stochastic process was proposed to model the joint prior of 

change-points and positions. A two-stage process was proposed to estimate all hyperparameters 

of priors. To facilitate online Bayesian model updating, a recursive updating algorithm was 

developed by which the posterior distribution of all state parameters can be exactly calculated. A 

closed-form of the RUL prediction is also derived. To control the computational cost in both 

model updating and RUL prediction process, a fixed-support-size strategy and a partial Monte 

Carlo strategy were proposed respectively, which significantly reduced the computational cost 

without influencing the prediction accuracy. The advantages of the proposed method have been 

demonstrated through thorough simulation studies and real case studies. 

There are still open questions worthy of investigation. First of all, the current multiple 

change-point model assumes that all segments are independent. However, the degradation 

signals are often continuous in practice, indicating that all segments are connected and 

dependent. Incorporating such dependence could make the prior more informative and thus 

improve the prognostic accuracy. Secondly, adding more change-points may improve the model 

fitting and improve the prediction accuracy at the late degradation stage. However, it may reduce 

the prediction accuracy at the early degradation stage due to extra uncertainty by the added 

change-points. The strategy of using different models at different prediction stage may be 
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beneficial. Lastly, the segments of the multiple change-point model are modeled by parametric 

regression. It would be of interest to integrate the multiple change-point model to stochastic 

processes, e.g., Wiener process, for degradation modeling*. 

 

* Research findings of this chapter are published in: Y. Wen, J. Wu, Q. Zhou and B. Tseng, “Multiple-Change-

Point Modeling and Exact Bayesian Inference of Degradation Signal for Prognostic Improvement,” IEEE 

Transactions on Automation Science and Engineering, vol. 16, no. 2, pp. 613-628, April 2019. 
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Chapter 4: Degradation Modeling and RUL Prediction using Wiener 

Processes subject to Multiple Change Points and Unit Heterogeneity 

4.1 INTRODUCTION 

In chapter 2 and chapter 3, both models are based on general path model. However, the 

inherent degradation path is deterministic once the regression parameters are known in the 

general path model [97]. It is often oversimplified and is not capable of capturing the temporal 

uncertainties that are inherent in the degradation process [98]. Therefore, the general path models 

are applicable only when the temporal uncertainties caused by unobserved internal or external 

factors are sufficiently small. The stochastic process models, on the other hand, are particularly 

effective in dealing with such unexplained randomness. The most popular stochastic process 

models include Gamma process [98], inverse Gaussian process [50], and Wiener process [99]. 

Due to nice mathematical properties and physical interpretations, Wiener processes have 

attracted widespread attention. Comprehensive reviews of Wiener process as degradation models 

can be found in Ye et al. [11]. this chapter aims to develop a multiple change-point Wiener 

process for degradation modeling and RUL prediction. 

4.2 MULTIPLE CHANGE-POINT WIENER PROCESS MODELING  

The general Wiener process can be represented as [43] 

 

𝑋(𝑡) = 𝛽Λ(𝑡) + 𝜎𝐵(Λ(𝑡)) (4.1) 

where 𝛽 is the drift parameter reflecting the rate of degradation, 𝜎 > 0 is called the diffusion 

parameter or diffusion coefficient, 𝐵(∙) is the standard Brownian motion that captures the 

stochastic dynamics of the degradation process, and 𝛬(∙) is a monotone increasing function 

representing a general time scale. When Λ(𝑡) = 𝑡, this formula is simplified to the conventional 
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linear Wiener process. Let 𝛥𝑋(𝑡) = 𝑋(𝑡 + Δ𝑡) − 𝑋(𝑡)  denote the degradation increments from 

time 𝑡 to 𝑡 + 𝛥𝑡. According to the property of Wiener process, the increments are independent 

and normally distributed as 𝛥𝑋(𝑡)~𝑁(𝛽[Λ(𝑡 + Δ𝑡) − Λ(𝑡)], σ2[Λ(𝑡 + Δ𝑡) − Λ(𝑡)]).  

In this chapter, a multiple change-point Wiener process degradation model is proposed to 

characterize the degradation path of CM signals with multiple phases. Specifically, the change 

points segment the signal into several consecutive phases, where each phase is modelled as a 

Wiener process. For simplicity, we use simple linear model in each phase for the mean 

degradation path, i.e., Λ(𝑡) = 𝑡. Suppose the system is inspected at times 𝑡0, 𝑡1, … , 𝑡𝑛  with 

degradation observations  𝑋0 = 𝑋(𝑡0), 𝑋1 = 𝑋(𝑡1), … , 𝑋𝑛 = 𝑋(𝑡𝑛) , and assume there are 𝐾 

change points, with index locations 𝑐1, 𝑐2, ⋯ , 𝑐𝐾. For notational convenience, we define 𝑐0 = 0 

and𝑐𝐾+1 = 𝑛. Then 𝑐0 = 0 < 𝑐1 < 𝑐2 < ⋯ < 𝑐𝐾 < 𝑐𝐾+1 = 𝑛. Therefore, the observations are 

partitioned into 𝐾 + 1 consecutive phases. Mathematically, the multiple change-point Wiener 

process can be expressed piecewisely as 

 

𝑋(𝑡𝑗) =

{
 
 

 
 𝛽(1)(𝑡𝑗 − 𝑡0) + 𝑋(𝑡0) + 𝜎(1)ℬ(𝑡𝑗 − 𝑡0), if  𝑡0 ≤ 𝑡𝑗 ≤ 𝑡𝑐1

𝛽(2)(𝑡𝑗 − 𝑡𝑐1
) + 𝑋(𝑡𝑐1

) + 𝜎(2)ℬ(𝑡𝑗 − 𝑡𝑐1
), if  𝑡𝑐1

< 𝑡𝑗 ≤ 𝑡𝑐2

⋯
𝛽(𝐾+1)(𝑡𝑗 − 𝑡𝑐𝐾

) + 𝑋(𝑡𝑐𝐾
) + 𝜎(𝐾+1)ℬ(𝑡𝑗 − 𝑡𝑐𝐾

), if  𝑡𝑐𝐾
< 𝑡𝑗 ≤ 𝑡𝑛

 (4.2) 

where 𝛽(𝑘)  and 𝜎(𝑘), 𝑘 = 1, … , 𝐾 + 1  are the drift parameter and diffusion parameter 

respectively for the kth phase. It is worth noting that in the above model, the mean degradation 

path is continuous at all change points, which is conventional in the existing literature. It can be 

easily extended to a general case by adding an extra intercept term for each phase if necessary. 

Besides, for the sake of simplicity, the starting time of each Wiener process or each phase is 

assumed to be exactly on the discrete inspection epochs.  
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To account for the inherent unit-to-unit heterogeneity, the model parameters, including 

change-point locations, drift rate and diffusion parameter of each phase, are assumed to be 

random. For the sake of simplicity, the number of change points 𝐾  is assumed to be 

deterministic for all units, which is often sufficient for almost all multi-phase degradation signals 

in the existing literature. If necessary, however, it can be easily extended to a more general case 

with a random 𝐾, as is the case in Wen et al. [100]. 

Bayesian approach is a natural choice to integrate the current available data with 

historical data for RUL prediction. Under Bayesian framework, the prognostics involves two 

stages, namely, the offline stage for prior specification and estimation using historical data, and 

the online stage for sequential model updating and RUL prediction when new observations are 

available. There are several remaining challenging issues to address under the multiple change-

point framework. First of all, the number of change points 𝐾 needs to be selected appropriately, 

which plays a decisive role on the modeling and prediction accuracy. Secondly, the prior 

distributions for the random model parameters need to be specified, and the corresponding 

hyperparameters need to be estimated through the historical data. Thirdly, at the online 

monitoring stage, the posterior distributions of the phase index, the location of the latest change 

point occurred, and the Wiener process parameters (drift rate and diffusion parameter) have to be 

sequentially updated once a new observation is available, which is often very challenging. 

Denote the parameters that need to be updated at the current time index 𝑚 as a state vector 

𝜽𝑚 = (𝛽𝑚, 𝜎𝑚
2 , 𝜏𝑚, 𝑠𝑚), where 𝛽𝑚 and 𝜎𝑚

2  are the drift and diffusion parameters of the current 

phase, 𝜏𝑚 is the latest change point that has occurred (𝜏𝑚 ≤ 𝑚 − 1), and 𝑠𝑚 is the index of the 

current phase, e.g.,  𝑠𝑚 = 1, 2, … , 𝐾 + 1 . Mathematically, the online model updating is to 

compute the posterior 𝑝(𝜽𝑚|𝑋0:𝑚), which is highly nonlinear and thus generally intractable. 
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Lastly, based on the updated posterior distributions, we need to predict the residual life. Due to 

the potential occurrence of future change points, the RUL prediction is very complex. The 

overall prognostic framework is illustrated in Figure 4-1. In the following sections, the technical 

details regarding the aforementioned challenges will be provided. 

 

  

Figure 4-1: Illustration of the proposed prognostic framework. 

 

4.3 OFFLINE PRIOR SPECIFICATION AND MODEL ESTIMATION 

Denote the multiple change-point model as 𝓜 = ({𝑑(𝑠)}
𝑠=1

𝐾
, {𝛽(𝑠)}

𝑠=1

𝐾+1
, {𝜎2(𝑠)}

𝑠=1

𝐾+1
) 

where 𝐾 is the number of change points, 𝑑(𝑠) is the duration of the sth phase, i.e., 𝑑(𝑠) = 𝑡𝑐𝑠
−

𝑡𝑐𝑠−1
. In the Bayesian scheme, appropriate priors for 𝓜 need to be specified. Prior information, 

which describes the population-based degradation characteristics, plays a critical role in the 

posterior inference of a new unit, especially when there are not sufficient observations at the 

early stage. Instead of directly specifying priors for the change-point locations, we focus on the 
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duration of each phase 𝑑(𝑠), 𝑠 = 1, … , 𝐾. Note that although there are 𝐾 + 1 phases, only the 

first 𝐾 phase durations are needed to identify the change-point locations. For simplicity, we 

assume that the Wiener process parameters are independent of phase durations, and all phases 

are independent, except that all phases are piecewise connected. Therefore, the joint prior for 

phase durations and Wiener process parameters can be formulated as  

 

𝜋(𝓜) = ∏ 𝜋(𝑑(𝑠))
𝐾

𝑠=1
∏ 𝜋(𝛽(𝑠), 𝜎2(𝑠))

𝐾+1

𝑠=1
 (4.3) 

Specifically, we assume that 𝑑(𝑠) follows a normal distribution, i.e., 𝑑(𝑠)~𝑁(𝜇𝑑
(𝑠)

, 𝜎𝑑
2(𝑠)

). For 

𝛽(𝑠), 𝜎2(𝑠), a commonly used normal and inverse Gamma (IG) conjugate priors are specified,  

 

𝜋(𝛽(𝑠), 𝜎2(𝑠)) = 𝜋(𝜎2(𝑠))𝜋(𝛽(𝑠)|𝜎2(𝑠)) = 𝐼𝐺(𝜈0
(𝑠)

, 𝛾0
(𝑠)

)𝑁(𝜇0
(𝑠)

, 𝜎2(𝑠)𝜅0
2(𝑠)

) (4.4) 

Luckily, with the above conjugate priors, the joint posterior distribution of 𝜽𝑚 can be exactly 

calculated sequentially through a recursive modeling updating method, which will be shown 

later. Let 𝝍  be the vector of all unknown hyperparameters, i.e.,  𝝍 =

Error!  Bookmark not defined.. In the offline model fitting, all the hyperparameters have to be 

estimated. Suppose there are 𝐼 units in the historical dataset. Naturally, the hyperparameters can 

be obtained from historical dataset by maximizing the following marginal likelihood [63]  

 

𝝍̂ = arg max
𝝍

∏ ∫ 𝑝(𝑿𝑖|𝓜𝑖)𝜋(𝓜𝑖|𝝍)𝑑𝓜𝑖

𝐼

𝑖=1

 (4.5) 

where 𝑿𝑖 = {𝑋𝑖,1, … , 𝑋𝑖,𝑛𝑖
} is the degradation signal for unit 𝑖, and 𝑛𝑖 is the total number of 

observations. Unfortunately, the formula is too complex and very difficult to maximize directly. 
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In this paper, we adopt a commonly used empirical two-stage estimation method [59, 63], where 

the model parameter 𝓜 𝑖  for each unit 𝑖  is estimated at the first stage, and then the 

hyperparameters are estimated through the maximum likelihood estimation (MLE) by treating 

{𝓜 𝑖, 𝑖 = 1, … , 𝐼} as observations at the second stage.  

To take advantage of the independent increment property of 𝑋(𝑡), define the increments 

of observations for unit 𝑖 as 𝛿𝑖,1 = 𝑋𝑖,1 − 𝑋𝑖,0 , 𝛿𝑖,2 = 𝑋𝑖,2 − 𝑋𝑖,1 ,...,𝛿𝑖,𝑛𝑖
= 𝑋𝑖,𝑛𝑖

− 𝑋𝑖,𝑛𝑖−1 , and 

time increments as 𝜆𝑖,1 = 𝑡𝑖,1 − 𝑡𝑖,0, 𝜆𝑖,2 = 𝑡𝑖,2 − 𝑡𝑖,1, … , 𝜆𝑖,𝑛𝑖
= 𝑡𝑖,𝑛𝑖

− 𝑡𝑖,𝑛𝑖−1. Then conditioning 

on 𝓜𝑖, the increments 𝜹𝑖 = (𝛿𝑖,1,  𝛿𝑖,2, … , 𝛿𝑖,𝑛𝑖
)

′
 follow independent normal distributions given 

by 

 

𝑓(𝜹𝒊|𝓜𝑖) = ∏ ∏ (2𝜋𝜎𝑖
2(𝑠)

𝜆𝑖,𝑐𝑠−1+𝑗)
−

1
2

𝑛𝑖
(𝑠)

𝑗=1

𝐾+1

𝑠=1
exp (−

(𝛿𝑖,𝑐𝑠−1+𝑗 − 𝛽𝑖
(𝑠)

𝜆𝑖,𝑐𝑠−1+𝑗)
2

2𝜎𝑖
2(𝑠)

𝜆𝑖,𝑐𝑠−1+𝑗

) (4.6) 

where 𝑛𝑖
(𝑠)

= 𝑐𝑖,𝑠 − 𝑐𝑖,𝑠−1 is the number of observations in the sth phase for unit 𝑖. The log-

likelihood function can thus be expressed by 

 

𝑙(𝓜𝑖|𝜹𝑖) = ∑ [−
𝑛𝑖

(𝑠)

2
log(2𝜋𝜎𝑖

2(𝑠)
) −

1

2
∑ log 𝜆𝑖,𝑐𝑠−1+𝑗

𝑛𝑖
(𝑠)

𝑗=1
−

1

2𝜎𝑖
2(𝑠)

∑
(𝛿𝑖,𝑐𝑠−1+𝑗 − 𝛽𝑖

(𝑠)
𝜆𝑖,𝑐𝑠−1+𝑗)

2

𝜆𝑖,𝑐𝑠−1+𝑗

𝑛𝑖
(𝑠)

𝑗=1
]

𝐾+1

𝑠=1
 (4.7) 

Given the change-point locations, the optimal drift and diffusion parameters that maximize Eq. 

(4.7) can be obtained as  

 

𝛽 ̂𝑖
(𝑠)

 =
∑ 𝛿𝑖,𝑐𝑠−1+𝑗

𝑛𝑖
(𝑠)

𝑗=1

∑ 𝜆𝑖,𝑐𝑠−1+𝑗
𝑛𝑖

(𝑠)

𝑗=1

, 𝜎2 
𝑖

(𝑠)
=

1

𝑛𝑖
(𝑠)

∑
(𝛿𝑖,𝑐𝑠−1+𝑗 − 𝛽 ̂𝑖

(𝑠)
𝜆𝑖,𝑐𝑠−1+𝑗)

2

𝜆𝑖,𝑐𝑠−1+𝑗

𝑛𝑖
(𝑠)

𝑗=1
 (4.8) 



83 

Plug in Eq. (4.8) into (4.7) we can get a likelihood function with {𝑐𝑖,𝑠, 𝑠 = 1, … , 𝐾} being the 

only input variables. Denote 𝒄𝑖 = {𝑐𝑖,1, 𝑐𝑖,2 … , 𝑐𝑖,𝐾}, 𝜷𝑖 = {𝛽𝑖
(1)

, … , 𝛽𝑖
(𝐾+1)

}  and 𝝈𝑖
2 =

{𝜎𝑖
2(1)

, … , 𝜎𝑖
2(𝐾+1)

}. The optimal change-point locations can be easily obtained by enumerating 

all possible values 

 

𝒄̂𝑖 = arg max
𝒄𝒊

𝑙(𝒄𝒊, 𝜷̂𝑖(𝒄𝒊), 𝝈2 
𝑖(𝒄𝒊)|𝜹𝑖) (4.9) 

At the second stage, the hyperparameters are estimated through MLE by treating the estimated 

{𝓜 𝑖, 𝑖 = 1, … , 𝐼}  at the first stage as observations. The duration hyperparameters 

(𝜇𝑑
(𝑠)

, 𝜎𝑑
2(𝑠)

, 𝑠 = 1, … , 𝐾) and drift rate hyperparameters (𝜇0
(𝑠)

, 𝜅0
2(𝑠)

, 𝑠 = 1, … , 𝐾 + 1) can be 

obtained analytically as 

 

𝜇 𝑑
(𝑠)

=
∑ 𝑑 𝑖

(𝑠)𝐼
𝑖=1

𝐼
, 𝜎𝑑

2 (𝑠)
=

∑ (𝑑 𝑖
(𝑠)

− 𝜇 𝑑
(𝑠)

)
2

𝐼
𝑖=1

𝐼
 

(4.10) 

And 

𝜇 0
(𝑠)

=

∑
𝛽 𝑖

(𝑠)

σ2 
i

(s)
𝐼
𝑖=1

∑
1

σ2 
i

(s)
𝐼
𝑖=1

, 𝜅0
2 (𝑠)

=
1

𝐼
∑

(𝛽 𝑖
(𝑠)

− 𝜇 0
(𝑠)

)
2

σ2 
i

(s)

𝐼

𝑖=1
 (4.11) 

For the hyperparameters  𝑣0, 𝛾0  in the inverse Gamma distribution, the closed form is not 

tractable and instead can be estimated through nonlinear optimization techniques.  

In the above model specification and estimation, the critical parameter 𝐾 needs to be 

selected first. AIC [101] or BIC [84] is typically used for model selection in regression. 

However, the conventional AIC or BIC is not very effective for multiple change-point models 
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[77]. Besides, although increasing the number of change points may improve the model fitting 

accuracy, it may not necessarily result in better prognostic accuracy. In fact, increasing the 

number of change points will introduce extra uncertainties in RUL prediction (uncertainty of 

future change-point locations). Even if there is no over-fitting issue, it may still significantly 

reduce the prediction accuracy. Therefore there is tradeoff between model fitting accuracy and 

RUL predictability. To address this issue, we propose to use the cross validation technique for 

change-point model selection. Specifically, we apply leave-one-out-cross-validation approach. 

For each value 𝐾, the offline model estimation and online RUL prediction are performed, and 

the average prediction error is calculated. Then the optimal 𝐾 is the one with minimal average 

prediction error. Note that for linear regression models without any change points, the cross 

validation approach is asymptotically equivalent to BIC based model selection [50]. However, 

for change-point models or other general models, cross-validation would be better since it is 

directly based on the model predictability.  

4.4 ONLINE MODEL UPDATING AND RUL PREDICTION 

Once the prior information is calculated based on historical data at the offline stage, as 

described in the previous section, it can be utilized for the RUL prediction of a new in-service 

unit at the online stage. To do this accurately requires a sequential updating the posterior 

distributions of certain key parameters, such as the location of the latest change point, the 

number of change-point occurred, and the drift and diffusion parameter of the current phase, 

which is the main challenge. In this section, we will first show the details of how to update the 

model recursively, and then present the RUL prediction method based on the updated model. 
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4.4.1 Exact Bayesian Model Updating 

Assume that we have observed the degradation signal up to the current time step 𝑚 for 

an in-service unit, denoted as 𝑋0:𝑚 = (𝑋0, 𝑋1, … , 𝑋𝑚) . The objective of Bayesian model 

updating is to incorporate the new observations to the estimated model by computing the 

posterior distribution of model parameters. The target distribution that needs to be updated 

is 𝑝(𝜽𝑚|𝑋0:𝑚) where state vector 𝜽𝑚 = (𝛽𝑚, 𝜎𝑚
2 , 𝜏𝑚, 𝑠𝑚). In general, the analytic expression 

for this joint posterior distribution is intractable. A natural way is to use sequential Monte Carlo 

method to get an approximation. Wen et al. [100] developed a stratified particle filtering 

algorithm for online model updating of a general path model. This method can effectively handle 

intractable posteriors. However, to guarantee the approximation accuracy, this method requires a 

sufficient number of samples and has a relatively high computational cost. Fortunately, due to 

the assignment of conjugate priors for 𝛽 and 𝜎2 , the posterior could be exactly calculated 

through a novel recursive updating approach. Given the observed data, the joint posterior 

distribution of all parameters can be derived as 

 

𝑝(𝜽𝑚|𝑋0:𝑚) = 𝑝(𝛽𝑚, 𝜎𝑚
2 , 𝜏𝑚, 𝑠𝑚|𝑋0:𝑚) = 𝑃(𝜏𝑚, 𝑠𝑚|𝑋0:𝑚)𝑝(𝛽𝑚, 𝜎𝑚

2 |𝜏𝑚, 𝑠𝑚, 𝑋0:𝑚) (4.12) 

As we can see, the joint distribution can be factorized as the product of a posterior of the discrete 

components (𝜏𝑚and 𝑠𝑚), and the continuous components (𝛽𝑚 and 𝜎𝑚
2 ). The discrete components 

are essential for phase tracking and future change-point prediction, while the continuous 

components are required to predict the degradation level at the end of the current phase. The 

details of how to calculate these two parts are given in the following paragraphs. 

The conditional posterior distribution of the continuous components 𝑝(𝛽𝑚, 𝜎𝑚
2 |𝜏𝑚, 𝑠𝑚, 𝑋0:𝑚) 

can be calculated based on Theorem 4.1 as follows.  
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Theorem 4.1. Given the conjugate priors shown in Eq. (4.4) for 𝛽 and 𝜎2, the conditional 

posterior pdf 𝑝(𝛽𝑚, 𝜎𝑚
2 |𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚), can be calculated as 

𝑝(𝛽𝑚, 𝜎𝑚
2 |𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚) = 𝑝(𝛽𝑚|𝜎𝑚

2 , 𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚)𝑝(𝜎𝑚
2 |𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚) (4.13) 

Where 

(𝜎𝑚
2 |𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚)~𝐼𝐺 (𝜈0

(𝑠)
+

𝑚 − 𝑗

2
, 𝛾0

(𝑠)
+

𝐻𝑗+1,𝑚
(𝑠)

2
) 

(𝛽𝑚|𝜎𝑚
2 , 𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚)~𝑁(𝜇𝑗+1,𝑚

(𝑠)
, 𝜎𝑚

2 𝜅𝑗+1,𝑚
2(𝑠)

) 

(4.14) 

and 

𝐻𝑗+1,𝑚
(𝑠)

= [
𝜇0

2(𝑠)

𝜅0
2(𝑠)

+ ∑
𝛿𝑖

2

𝜆𝑖

𝑚

𝑖=𝑗+1
− (

𝜇0
(𝑠)

𝜅0
2(𝑠)

+ ∑ 𝛿𝑖

𝑚

𝑖=𝑗+1
)

2

(∑ 𝜆𝑖

𝑚

𝑖=𝑗+1
+

1

𝜅0
2(𝑠)

)

−1

] 

𝜅𝑗+1,𝑚
2(𝑠)

= (∑ 𝜆𝑖

𝑚

𝑖=𝑗+1
+

1

𝜅0
2(𝑠)

)

−1

 

𝜇𝑗+1,𝑚
(𝑠)

= (
𝜇0

(𝑠)

𝜅0
2(𝑠)

+ ∑ 𝛿𝑖

𝑚

𝑖=𝑗+1
) 𝜅𝑗+1,𝑚

2(𝑠)
 

(4.15) 

The proof is given in Appendix E. For the discrete components, based on the Bayes’ rule, the 

posterior can be derived as 

𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚) ∝ 𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚−1)𝑝(𝑋𝑚|𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚−1) (4.16) 

In the above equation, 𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚−1) is the predictive probability mass function 

(PMF), which can be recursively calculated by conditioning on the states of the previous time 

step:  

𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚−1) 

= ∑ 𝑃(𝜏𝑚−1 = 𝑗′, 𝑠𝑚−1 = 𝑠′|𝑋0:𝑚−1)𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝜏𝑚−1 = 𝑗′, 𝑠𝑚−1 = 𝑠′, 𝑋0:𝑚−1)

𝑗′,𝑠′

 
(4.17) 
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In Eq. (4.17), 𝑃(𝜏𝑚−1 = 𝑗′, 𝑠𝑚−1 = 𝑠′|𝑋0:𝑚−1) is the posterior distribution of the discrete 

component obtained at the previous time step. 𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝜏𝑚−1 = 𝑗′, 𝑠𝑚−1 = 𝑠′, 𝑋0:𝑚−1) 

is the prior state transition probability, which can be derived based on the Markov properties of 

the occurrence of the change points, i.e., the probability of the occurrence of a new change point 

or a new phase at the current time only depends on the duration and phase index at the previous 

time step. Based on the prior knowledge of the phase duration and total number of phases, the 

state transition probability can be obtained as 

 

𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝜏𝑚−1 = 𝑗′, 𝑠𝑚−1 = 𝑠′, 𝑋0:𝑚−1)

=

{
 
 
 

 
 
 1 − 𝐺(𝑠′)(𝑡𝑚 − 𝑡𝑗′)

1 − 𝐺(𝑠′)(𝑡𝑚−1 − 𝑡𝑗′  )
,       if 𝑗 = 𝑗′and 𝑠 = 𝑠′ < 𝐾 + 1

1,                                              if 𝑗 = 𝑗′ and 𝑠 = 𝑠′ = 𝐾 + 1

𝐺(𝑠′)(𝑡𝑚 − 𝑡𝑗′) − 𝐺(𝑠′)(𝑡𝑚−1 − 𝑡𝑗′)

1 − 𝐺(𝑠′)(𝑡𝑚−1 − 𝑡𝑗′)
, if 𝑗 = 𝑚 − 1  and 𝑠 = 𝑠′ + 1 ≤ 𝐾 + 1

 
0,                                               otherwise

 
(4.18) 

where 𝐺(𝑠′)(∙) is the cumulative distribution function of the 𝑠′th phase duration. In Eq. (4.18), 

there are three nonzero probabilities corresponding to three scenarios. The first one refers to the 

probability of no occurrence of a new change-point or new phase (i.e., 𝜏𝑚 = 𝜏𝑚−1, 𝑠𝑚 = 𝑠𝑚−1) 

given that the degradation at the time step 𝑚 − 1 is not at the final phase (i.e., 𝑠′ < 𝐾 + 1), 

and the duration of the 𝑠′-th phase is larger than 𝑡𝑚−1 − 𝑡𝑗′  (i.e., 𝜏𝑚−1 = 𝑗′). Therefore, it is 

equivalent to 

 

𝑃(𝑑(𝑠′) ≥ 𝑡𝑚 − 𝑡𝑗′|𝑑(𝑠′) ≥ 𝑡𝑚−1 − 𝑡𝑗′) =
1 − 𝐺(𝑠′)(𝑡𝑚 − 𝑡𝑗′)

1 − 𝐺(𝑠′)(𝑡𝑚−1 − 𝑡𝑗′  )
 

Similarly, we can easily get the other two probabilities. 
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The predictive density 𝑝(𝑋𝑚|𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚−1) in Eq. (4.16) can be calculated based on 

Theorem 4.2 as follows. 

Theorem 4.2. Suppose the conjugate priors shown in Eq. (4.4) are assumed for 𝛽 and 𝜎2. 

if 𝑗 < 𝑚 − 1, (𝑋𝑚|𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚−1) follows a univariate 𝑡 distribution given as 

(𝑋𝑚|𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚−1)~𝑡1 (2𝑣0
(𝑠)

+ 𝑚 − 𝑗 − 1, 𝜇𝑚|𝑗+1:𝑚−1
(𝑠)

,
2𝛾𝑗+1,𝑚−1

(𝑠)
𝜂𝑚|𝑗+1:𝑚−1

(𝑠)

2𝑣0
(𝑠)

+ 𝑚 − 𝑗 − 1
) (4.19) 

where  

𝜇𝑚|𝑗+1:𝑚−1
(𝑠) = 𝜇

𝑗+1,𝑚−1
(𝑠) 𝜆𝑚 + 𝑋𝑚−1,  

𝛾𝑗+1,𝑚−1
(𝑠)

= 𝛾0
(𝑠)

+
𝐻𝑗+1,𝑚−1

(𝑠)

2
 

𝜂𝑚|𝑗+1:𝑚−1
(𝑠) = 𝜆𝑚 + 𝜅𝑗+1,𝑚−1

2(𝑠) 𝜆𝑚
2

 

(4.20) 

if 𝑗 = 𝑚 − 1, (𝑋𝑚|𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚−1) follows a univariate 𝑡 distribution given as 

(𝑋𝑚|𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚−1)~𝑡1 (2𝑣0
(𝑠)

, 𝜇𝑚
(𝑠)

,
𝛾0

(𝑠)
𝜂𝑚

(𝑠)

𝑣0
(𝑠)

) (4.21) 

where  

𝜇𝑚
(𝑠)

= 𝜇0
(𝑠)

𝜆𝑚 + 𝑋𝑚−1  

𝜂𝑚
(𝑠)

= 𝜆𝑚 + 𝜅0
2(𝑠)

𝜆𝑚
2  

(4.22) 

The proof is included in Appendix F. As we can see, based on Eq. (4.12)-(4.22), the posterior 

distributions of all parameters of interest can be exactly calculated through a recursive updating 

approach.  

4.4.2 Controlling the Computational Cost 

Compared with sequential Monte Carlo methods, the exact inference for sequential model 

updating runs much faster when 𝑚 is not large. However, as 𝑚 becomes very large, the 
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algorithm may be very time-consuming. The reason is that it needs to calculate all the 

probabilities of 𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚) for 𝑗 = 0,1, … , 𝑚 − 1 and 𝑠 = 1,2, … , 𝐾 + 1 at each 

time step 𝑚, which increases almost linearly with 𝑚. Therefore, the algorithm needs to be 

improved in a computationally efficient manner for real-time estimation. It is observed that as 

the number of observations increases, the PMF of the latest change point becomes more and 

more concentrated around the true change point, whereas the probabilities at other locations are 

close to zero. To reduce the computational load and balance the computational cost for all time 

steps, an approximation strategy with a set of support point of fixed size can be applied. The 

basic idea is to approximate the posterior distribution of the discrete components by a small set 

of support points of a fixed size with significant probabilities. In other words, we set the 

posterior PMF to be zero at those with negligible values and keep others with high probabilities. 

However, this strategy may result in zero PMFs for certain phases, i.e., 𝑃(𝑠𝑚 = 𝑠|𝑋0:𝑚) = 0 or 

𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚) = 0  for all 𝑗 = 0,1, … , 𝑚 − 1 , whose true values may be just 

temporally small and will become significant as more observations are obtained. To avoid this 

situation, we propose to use a stratified sampling method, where for each s, 𝑁 locations with 

highest PMF are selected for the latest change points. The algorithm is summarized in Table 4-1. 

With this strategy, the maximum computational cost for each time step 𝑚 can be controlled 

effectively. 
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Table 4-1: The fixed support size strategy for model updating 

For each time step 𝑚: 

If 𝑚 ≤ 𝑁 − 1: 

• Calculate 𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚) for 𝑗 = 0,1, 𝑚 − 1, 𝑠 = 1, … , 𝐾 + 1. 

If 𝑚 > 𝑁: 

• For each 𝑠 , select 𝑁 − 1  support points with highest probabilities 

𝑃(𝜏𝑚−1 = 𝑗, 𝑠𝑚−1 = 𝑠|𝑋0:𝑚−1) 

• Calculate 𝑃(𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠|𝑋0:𝑚) at all these selected (𝑁 − 1) support points and at 

the current time step 𝑚 for 𝑠 = 1, … , 𝐾 + 1, set others to be zero. 

• Normalize the probabilities. 

 

4.4.3 RUL prediction 

Once the parameters in the model have been updated, the RUL of the in-service unit can be 

predicted. A failure is typically defined as the event that the degradation signal first hits the 

failure threshold 𝛤. Denote the RUL at the current time 𝑡𝑚 as 𝑅𝑚. Based on the concept of 

first passage time (FPT), the RUL can be formulated as 𝑅𝑚 =

infError!  Bookmark not defined.. For the conventional Wiener process degradation model, 

RUL has been proven to follow an inverse Gaussian distribution. For an in-service unit with 

observations 𝑋0:m, if 𝛽 and 𝜎2 are fixed, the pdf of the residual life can be derived as [48]  

 

𝑓𝑅𝑚
(𝑙|𝑋𝑚, 𝛽, 𝜎2) =

𝛤 − 𝑋𝑚

√2𝜋𝜎2𝑙3
exp (−

(𝛤 − 𝑋𝑚 − 𝛽𝑙)2

2𝜎2𝑙
) (4.23) 

However, in our model, due to the unknown change points and randomness of 𝛽, 𝜎2 at each 

phase, the RUL is very complicated and intractable analytically. For model consistency, we 

assume that the degradation amplitude will not exceed the failure threshold before the last 

change point. In RUL prediction, we need to first predict the location of the final change point 
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𝑡fc and the degradation amplitude 𝑋(𝑡fc), and then conditioning on them to predict when the last 

phase will hit the failure threshold. Mathematically, the pdf of RUL can be represented as  

 

𝑓𝑅𝑚
(𝑙|𝑋0:𝑚) = ∬ 𝑝(𝑡fc, 𝑋(𝑡fc)|𝑋0:𝑚)𝑓𝑅𝑚

(𝑙|𝑡fc, 𝑋(𝑡fc), 𝑋0:𝑚)𝑑 𝑋(𝑡fc)𝑑𝑡fc (4.24) 

where  

𝑝(𝑡fc, 𝑋(𝑡fc)|𝑋0:𝑚) = ∑ 𝑃(𝑠𝑚, 𝜏𝑚|𝑋0:𝑚)𝑝(𝑡fc, 𝑋(𝑡fc)|𝑠𝑚, 𝜏𝑚, 𝑋0:𝑚)

𝑠𝑚,𝜏𝑚

 

= ∑ 𝑃(𝑠𝑚, 𝜏𝑚|𝑋0:𝑚) ∫ 𝑝(𝑡fc, 𝑋(𝑡fc)|𝜽𝑚)𝑝(𝛽𝑚, 𝜎𝑚
2 |𝑠𝑚, 𝜏𝑚, 𝑋0:𝑚)𝑑𝛽𝑚𝑑𝜎𝑚

2

𝑠𝑚,𝜏𝑚

 

(4.25) 

and  

𝑓𝑅𝑚
(𝑙|𝑡fc, 𝑋(𝑡fc), 𝑋0:𝑚)

= ∬ 𝑓𝑅𝑚
(𝑙|𝑡fc, 𝑋(𝑡fc), 𝑋0:𝑚, 𝛽(𝐾+1), 𝜎2(𝐾+1))𝑝(𝛽(𝐾+1), 𝜎2(𝐾+1)|𝑡fc, 𝑋(𝑡fc), 𝑋0:𝑚) 𝑑𝛽(𝐾+1)𝑑𝜎2(𝐾+1) 

(4.26) 

It is worth noting that here 𝑡fc may be less than 𝑡𝑚, therefore 𝑓𝑅𝑚
(𝑙|𝑡fc, 𝑋(𝑡fc), 𝑋0:𝑚) may 

depend on 𝑋0:𝑚 or may be independent of 𝑋0:𝑚. Clearly, the RUL is intractable due to multiple 

complex integrations. A natural way to address this issue is to use Monte Carlo simulation 

approach. Specifically, we can first generate 𝑀 samples for the current state vector 𝜽𝑚 through 

the updated posterior distribution 𝑝(𝜽𝑚|𝑋0:𝑚), and then conditioning on each sample, simulate 

the remaining change points, 𝛽 and 𝜎2 of each phase, and degradation levels at remaining 

change points. The duration of the last phase can be directly sampled from inverse Gaussian 

distribution based on Eq. (4.23). The details of the Monte Carlo approach for RUL sampling 

(𝑇𝑖, 𝑖 = 1, … , 𝑀) is illustrated in Table 4-2. It should be mentioned that for multiple change-point 

based model, the probability of being at the last phase at early prediction stage is inevitably 

nonzero, i.e., 𝑃(𝑠𝑚 = 𝐾 + 1|𝑋0:𝑚, 𝜏𝑚 = 𝑗) > 0  while the actual phase  𝑠𝑚 < 𝐾 + 1 . This 
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probability may even be significant for certain signals due to inherent randomness of Wiener 

process. If the actual degradation rate is very small at the current time, the sampled failure time 

may be significantly larger than the actual value. Besides, for phases before the last phase, 

negative drift parameters may be sampled, which may also significantly increase the residual 

life. To make it more accurate, we apply lower bounds 𝑙(𝑠) for all the drift parameters as 

constraints in the sampling process, which can be obtained by selecting the minimal drift 

parameter of each phase of all historical signals.  
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Table 4-2: Monte Carlo Simulation for RUL Prediction 

Generate samples from 𝑝(𝜽𝑚|𝑋0:𝑚): 

For 𝑖 = 1: 𝑀 

Sample (𝜏𝑚,𝑖 , 𝑠𝑚,𝑖)~𝑃(𝜏𝑚, 𝑠𝑚|𝑋0:𝑚) based on Eq. (4.16) 

Sample (𝛽𝑚,𝑖, 𝜎𝑚,𝑖
2 )~𝑝(𝛽𝑚, 𝜎𝑚

2 |𝜏𝑚,𝑖, 𝑠𝑚,𝑖, 𝑋0:𝑚) based on Eq. (4.14) 

End 

Simulate RUL 

For 𝑖 = 1: 𝑀 

If 𝑠𝑚,𝑖 = 𝐾 + 1, then 

Sample 𝑇𝑖~𝑓𝑅𝑚
(𝑙|𝑋𝑚, 𝛽𝑚,𝑖, 𝜎𝑚,𝑖

2 ) based on Eq. (4.23) 

else 

For 𝑠 = 𝑠𝑚,𝑖: 𝐾 

If 𝑠 = 𝑠𝑚,𝑖 

Sample 𝑡𝑐𝑠,𝑖~𝑡𝑐𝑠−1,𝑖 + 𝑁 (𝑑|𝜇𝑑
(𝑠)

, 𝜎𝑑
2(𝑠)

, 𝑑 ≥ 𝑡𝑚 − 𝑡𝜏𝑚,𝑖
) 

Sample 𝑋(𝑡𝑐𝑠,𝑖)~𝑋(𝑡𝑚) + 𝑁(𝑋|𝛽𝑚,𝑖(𝑡𝑐𝑠,𝑖 − 𝑡𝑚), (𝑡𝑐𝑠,𝑖 − 𝑡𝑚)𝜎𝑚,𝑖
2 ) 

else 

Sample 𝑡𝑐𝑠,𝑖~𝑡𝑐𝑠−1,𝑖 + 𝑁 (𝑑|𝜇𝑑
(𝑠)

, 𝜎𝑑
2(𝑠)

) 

Sample (𝛽𝑖
(𝑠)

, 𝜎𝑖
2(𝑠)

)~𝐼𝐺 (𝜈0
(𝑠)

, 𝛾0
(𝑠)

) 𝑁 (𝜇0
(𝑠)

, 𝜎0
2(𝑠)

𝜅0
2(𝑠)

) 

Sample 𝑋(𝑡𝑐𝑠,𝑖)~𝑋(𝑡𝑐𝑠−1,𝑖) + 𝑁 (𝑋|𝛽𝑖
(𝑠)

(𝑡𝑐𝑠,𝑖 − 𝑡𝑐𝑠−1,𝑖), (𝑡𝑐𝑠,𝑖 − 𝑡𝑐𝑠−1,𝑖)𝜎𝑖
2(𝑠)

) 

End 

End 

Sample (𝛽𝑖
(𝐾+1)

, 𝜎𝑖
2(𝐾+1)

) ~𝐼𝐺 (𝜈0
(𝐾+1)

, 𝛾0
(𝐾+1)

) 𝑁 (𝜇0
(𝐾+1)

, 𝜎2(𝐾+1)𝜅0
2(𝐾+1)

) 

Sample 𝐿𝑖~𝑓𝑅𝑐𝐾
(𝑙|𝑋(𝑡𝑐𝐾,𝑖), 𝛽𝑖

(𝐾+1)
, 𝜎𝑖

2(𝐾+1)
) based on Eq. (4.23) 

  𝑇𝑖 = (𝑡𝑐𝐾,𝑖 − 𝑡𝑚) + 𝐿𝑖 

End 

End 
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4.5 CASE STUDIES 

In this section, we first use simulation study to demonstrate the robustness and 

effectiveness of our model. Then, the proposed model is applied to real case study of rotational 

bearings. 

4.5.1 Simulation Study 

In this subsection, the prediction is illustrated and the performance is evaluated through 

numerical simulations. For simplicity, we only consider one-change-point and two-change-point 

scenarios in the simulation model. The hyperparameters for each scenario are specified in Table 

4-3. The failure threshold is set to be 𝛤 = 20. For each scenario, 200 degradation signals are 

generated as training dataset. Another 200 signals in each category are generated as testing 

dataset. The support size for the PMF approximation at the updating stage is specified as 𝑁 =

20. The number of samples for RUL prediction is set as 𝑀 = 3000. Due to the randomness of 

Monte Carlo method, the prediction procedure is repeated 10 times for each signal. 

Due to space limitation, the estimated hyperparameters are not provided here. Using the 

leave-one-out-cross-validation approach, we find that the identified optimal change-point 

number for each dataset is equivalent to the true value, which demonstrates the effectiveness of 

the proposed approach for model selection (see Figure 4-5). Figure 4-2 shows the online model 

updating process for two degradation signals, each of which is randomly selected from each 

dataset. The first and the second column shows the results by assuming 𝐾 = 1 and 𝐾 = 2, 

respectively, while the true value 𝐾true = 1. Similarly, the third and fourth column assume 𝐾 =

1 and 𝐾 = 2, respectively, while 𝐾true = 2. Here we select two 𝐾’𝑠 for each signal to study 

the consequence if 𝐾 is specified inappropriately. Clearly, if an appropriate 𝐾 is specified 

(Figure 4-2 (a) and (d)), the recursive updating algorithm can accurately detect the occurrence of 
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change points and track the phase index. However, if 𝐾 is larger (or less) than the actual value, 

more phases will occur (or some change points may not be detected), which will thus affect the 

model fitting and RUL prediction. 

 

Table 4-3: Monte Carlo Simulation for RUL Prediction 

Variables 𝐾true = 1 𝐾true = 2 

𝑑(𝑠) 
𝜇𝑑

(1)
= 300, 𝜎𝑑

2(1)
= 102 

𝜇𝑑
(2)

= 400, 𝜎𝑑
2(2)

= 102 

𝜇𝑑
(1)

= 200, 𝜎𝑑
2(1)

= 102 

𝜇𝑑
(2)

= 300, 𝜎𝑑
2(2)

= 102 

𝜇𝑑
(3)

= 500, 𝜎𝑑
2(3)

= 102 

𝛽(𝑠) 
𝜇0

(1)
= 0.01, 𝜅0

2(1)
= 0.008 

𝜇0
(2)

= 0.06, 𝜅0
2(2)

= 0.006 

𝜇0
(1)

= 1 × 10−5, 𝜅0
2(1)

= 9 × 10−4 

𝜇0
(2)

= 0.02, 𝜅0
2(2)

= 0.002 

𝜇0
(3)

= 0.09, 𝜅0
2(3)

= 0.002 

𝜎2(𝑠) 
𝑣0

(1)
= 2, 𝛾0

(1)
= 0.05 

𝑣0
(2)

= 2, 𝛾0
(2)

= 0.1 

𝑣0
(1)

= 2, 𝛾0
(1)

= 0.06 

𝑣0
(2)

= 2, 𝛾0
(2)

= 0.08 

𝑣0
(3)

= 2, 𝛾0
(3)

= 0.1 

 

 

Figure 4-2: Illustration of the online model updating process. (a) 𝐾true = 1, 𝐾 = 1; (b) 𝐾true =
1, 𝐾 = 2  (c) 𝐾true = 2, 𝐾 = 1 and (d) 𝐾true = 2, 𝐾 = 2 ; top panel: observed and filtered 

signals; middle panel: the expected duration of the current phase; bottom panel: the posterior 

PMF of the index of current phase. The vertical dashed lines are true change-point locations.  
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Figure 4-3: Prediction intervals of RUL for 14 simulated signals predicting at 50%, 70%, 90% of 

failure time. (a-c): 𝐾𝑡𝑟𝑢𝑒 = 1; (d-f): 𝐾𝑡𝑟𝑢𝑒 = 2. The "°" denotes the 5%, 50% and 95% quantile 

of RUL prediction; " − " represent the actual failure time. 

 

Figure 4-3 shows the prediction intervals of 7 randomly selected signals from each 

dataset at three different prediction times, i.e., 50%, 70%, 90% of actual failure time. Figure 4-4 

illustrates the pdf of RUL of the third and the second unit of the seven signals in each category. 

To compare the prediction performance of different models, we select 𝐾 = 1 and 𝐾 = 2 for 

both two types of signals. As expected, for both model specifications, the prediction becomes 

more and more accurate for all signals as more and more observations are collected. This 

characteristic is highly desirable since it becomes more important to get an accurate RUL 

prediction as the unit approaches failure. Comparing the two model selections, we can see that if 

the true  𝐾  is selected, the prediction performance is much better than if 𝐾  is selected 

inappropriately. Note that in the simulation, the right model was effectively selected through the 

cross-validation approach.  

(a) (b) (c)

(d) (e) (f)
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Figure 4-4: Comparison of the RUL prediction between 𝐾 = 1 and 𝐾 = 2. Top panel (a-c): 

𝐾𝑡𝑟𝑢𝑒 = 1; bottom panel (d-f): 𝐾𝑡𝑟𝑢𝑒 = 2. 

 

To further evaluate and analyze the overall prediction accuracy, 200 signals in each 

category are used for testing. We use the root-mean-square deviation (RMSD) as a performance 

metric for 200 testing signals in each category, which is defined as 

 

RMSD = √
1

𝐼
∑ 𝐸(𝑅̂𝑖 − 𝑅𝑖,true)

2
𝐼

𝑖=1

 (4.27) 

where 𝐼 is the total number of units, 𝑅̂𝑖 and 𝑅𝑖,true are the predicted and true RUL of unit 𝑖, 

respectively. Figure 4-5 shows the RMSD at six prediction times for both two types of signals. 

For comparison purpose, three models 𝐾 = 0, 1, 2 are provided here. Clearly, the model with 

appropriate 𝐾 outperforms all other models at all prediction times. From Figure 4-5(a) we can 

see that, the RMSD goes down gradually for both 𝐾 = 1 and 𝐾 = 2 models, indicating that 

with more observations collected, the prediction becomes more accurate. However, the model 

with 𝐾 = 1 is more accurate in prediction than 𝐾 = 2. The reason is that adding excessive 

(a) (b)

(d) (e) (f)

(c)
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change points will introduce unnecessary uncertainty in RUL prediction, e.g., uncertainty 

regarding future change points, and Wiener process parameters of the last phase. 

For 𝐾 = 0, the RMSD first increases and then decreases. Similarly phenomenon can also 

be observed in Figure 4-5(b). If the number of change points is selected insufficiently, the 

RMSD first increases and then decreases as we increase the prediction times. The reason is that 

the early phases often have smaller degradation rates than the later phases, as shown in Figure 

4-2. If insufficient change points are assumed, the early phases may be mistakenly detected as 

the last phase. The more observations are collected, the less influence the prior will have on the 

posterior updating and thus the lower the updated degradation rate will be. Consequently it will 

make the predicted RUL much higher than the actual value. When the unit approaches to its 

failure, the prediction accuracy for all of these models increases. Therefore, the parameter 𝐾 is 

critical for the prognostic model to produce an accurate prediction. 

 

 

Figure 4-5: Comparison of the RMSD at six prediction times: (a) 𝐾𝑡𝑟𝑢𝑒 = 1; (b) 𝐾𝑡𝑟𝑢𝑒 = 2.  

4.5.2 Application to Bearing Signals 

In this subsection, the proposed approach is applied to the degradation signal of rotational 

bearings. These degradation signals are log-transformed vibrational signals obtained through an 

accelerated testing on a set of identical thrust ball bearings [12, 63]. In total, there are 25 

(a) (b)

0

200

400

40% 50% 60% 70% 80% 90%

R
M

S
D

K=0 K=1 K=2

0

200

400

40% 50% 60% 70% 80% 90%

R
M

S
D

K=0 K=1 K=2



99 

degradation signals. The time interval for inspection is 2 minutes, i.e., 𝛥𝑡 = 2 for all units. 

Figure 4-6 shows three degradation paths of log-transformed vibrational signals for illustration. 

The failure threshold is specified as 𝛤 = log(0.03), which is based on the published industrial 

standards [12]. There are obviously two phases for all signals. Moreover, the locations of change 

points vary from unit to unit.  

 

Figure 4-6: Degradation paths of three representative bearings. 

 

Table 4-4: Estimated hyperparameters for three models 

Variables 𝐾 = 0 𝐾 = 1 𝐾 = 2 

𝑑(𝑠) 
𝜇𝑑

(1)
= 676 

𝜎𝑑
2(1)

= 2552 

𝜇𝑑
(1)

= 360, 𝜎𝑑
2(1)

= 2412 

𝜇𝑑
(2)

= 317, 𝜎𝑑
2(2)

= 1342 

𝜇𝑑
(1)

= 310, 𝜎𝑑
2(1)

= 1902 

𝜇𝑑
(2)

= 62, 𝜎𝑑
2(2)

= 1192 

𝜇𝑑
(3)

= 306, 𝜎𝑑
2(3)

= 1422 

𝛽(𝑠) 

𝜇0
(1)

= 0.0056 

𝜅0
2(1)

= 8.23 × 10−4 

𝜇0
(1)

= 8.317 × 10−4 

𝜅0
2(1)

= 0.0038 

𝜇0
(2)

= 0.0083 

𝜅0
2(2)

= 0.0012 

𝜇0
(1)

= −3.12 × 10−4, 𝜅0
2(1)

= 0.006 

𝜇0
(2)

= 0.0215, 𝜅0
2(2)

= 0.4425 

𝜇0
(3)

= 0.0049, 𝜅0
2(3)

= 0.0024 

𝜎2(𝑠) 
𝑣0

(1)
= 10.07 

𝛾0
(1)

= 0.067 

𝑣0
(1)

= 1.39, 𝛾0
(1)

= 0.003 

𝑣0
(2)

= 2.29, 𝛾0
(2)

= 0.017 

𝑣0
(1)

= 2.1, 𝛾0
(1)

= 0.004 

𝑣0
(2)

= 0.42, 𝛾0
(2)

= 0.004 

𝑣0
(3)

= 5.1, 𝛾0
(3)

= 0.03 



100 

For model selection and comparison, we mainly consider three cases, 𝐾 = 0,1, and 2. Table 4-4 

summarizes the estimated hyperparameters for each case. From Table 4-4 we can see that, if 

𝐾=1 is specified, the second phase has a larger drift rate than the first one, which indicates a 

faster degradation. If 𝐾 = 2 is specified, the degradation rate of the second phase is much larger 

than the third phase. Not surprisingly, almost all bearings have a sudden jump after the first 

phase. Although extremely short in duration, the sudden jump is so significant that it was 

identified as a single phase at the offline model fitting for all signals. Even for online model 

updating, as shown in Figure 4-7(b), the sudden jump is detected as a single phase.  

 

 

Figure 4-7: Illustration of online model updating process. (a): 𝐾 = 1; (b):𝐾 = 2; top panel: 

observed and filtered signals; middle panel: the expected duration of the current phase; bottom 

panel: the posterior PMF of the index of current segment. The vertical dashed lines are change-

point locations identified at the offline stage. 

 

Figure 4-8 shows the RMSD of the 25 bearing signals at three prediction times for three 

models. Figure 4-9 shows the overall prediction accuracy at six prediction times. For comparison 

purpose, we add the case of 𝐾 = 3 as well. Clearly, at all the six prediction times, the model 
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with only one change point performs best in terms of the overall RMSD. As observed in our 

study, specifying two change points only improves the prediction within the sudden-jump phase. 

It often reduce the prediction accuracy at the early stage and even at the late stage. Besides, 

assuming no change points is surprisingly better than using two and three change points. The 

reason is that for some signals, there is a sharp increase right before failure, as can be seen from 

the red curve in Figure 4-6. For those signals, adding more change points may improve 

individual model fitting at the offline stage. However, the addition of extra change points will 

also bring uncertainties on the prediction of the location and the degradation amplitude of the 

final change point, which may significantly reduce the prognostic accuracy. 

 

 

Figure 4-8: Comparison of RMSD for three models.  

0

200

400

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

R
M

S
D

Prediction at 50% failure time

K=0 K=1 K=2

0

200

400

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

R
M

S
D

Prediction at 70% failure time

K=0 K=1 K=2

0

200

400

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

R
M

S
D

Prediction at 90% failure time

K=0 K=1 K=2



102 

 

Figure 4-9: Prediction accuracy at different times for 𝐾 = 0,1, 2 and 3. 

4.6 CONCLUSION 

In this chapter, a Bayesian multiple change-point Wiener process is proposed for 

degradation modeling and online RUL prediction. To take into account the unit heterogeneity, all 

the model parameters except the number of change points are modeled with random 

distributions. At the offline stage, an empirical two-stage process is proposed for model 

estimation. Besides, a cross-validation approach is proposed for optimal change-point number 

selection. At the online monitoring stage, an exact recursive updating method is developed to 

sequentially calculate the joint posterior distribution of key parameters, including the latest 

change point, phase index, and model parameters of the current phase, which is essential for 

RUL prediction. To control the computational cost, a fixed-support-size strategy is proposed, 

which can effectively control and balance the computational load of each time step yet without 

influencing the estimation accuracy. In RUL prediction, an effective Monte Carlo simulation 

algorithm is proposed. Simulation and real case studies demonstrate that the proposed prognostic 

framework can effectively improve the prediction accuracy.  
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There are still some issues that are worthy of further investigation. First, measurement 

errors may occur in the data collection processes. Taking the measurement noise into account 

may improve the modeling and prognostic accuracy. In addition, in the current method, a linear 

drift function is assumed for all phases. In practice, however, nonlinear drift functions or a 

mixture of linear and nonlinear drift functions may be more preferable. It may significantly 

reduce the model complexity and consequently the model uncertainty. Furthermore, other 

stochastic processes, such as inverse Gaussian process, and Gamma process, may model the 

degradation signal better. How to incorporate change points into these stochastic processes needs 

to be investigated*. 

 

* Research findings of this chapter are published in: Y. Wen, J. Wu, D. Das, and B. Tseng, “Degradation modeling 

and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity,” Reliability 

Engineering & System Safety, vol. 176, Aug. 2018. 
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Chapter 5: Conclusions and Recommendations for Future Work 

Prognostics has played an increasingly important role in modern engineering systems due 

to its capability of reducing maintenance costs, improving operational efficiency, and facilitating 

decision making. However, Due to the inherent uncertainty of predicting the future, accurate 

prognostics is challenging. The fast development of information and sensing technology has 

enabled the collection of in situ degradation signals during operations and provide the capability 

of real time individualized prognostics. To obtain accurate RUL prediction, selecting an accurate 

and effective prognostic model for the degradation signals is the key. In many practical 

applications, the degradation signals consist of multiple distinct phases, traditional models are 

inadequate to characterize the degradation processes. To overcome this critical issue, this 

research focuses on establishing a series of new data analytics methods for effective and accurate 

data-driven degradation modeling and real time individualized prognostics. The contributions of 

this dissertation can by summarized into the following categories: 

First, the proposed multiple change-point modeling method, can address the multiple 

phase characteristic of the degradation data and provide an accurate model for RUL prediction. 

Second, we use the Bayesian framework to efficiently integrate the degradation information from 

historical data with in situ observations of each new unit in operation. Third, a novel non-

standard state-space model is reformulated from multiple change-point modeling and a stratified 

particle filtering algorithm is developed to track the current status and predict the future trend of 

degradation signals in a real time manner. Moreover, to reduce the computational cost, an exact 

Bayesian inference approach is proposed so that the distribution of RUL can be calculated in a 

closed form. We also develop a multiple change-point Wiener process degradation model to 

capture the temporal uncertainties that are inherent in the degradation process. The advantages of 
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our methods have been demonstrated using extensive numerical studies from both simulation and 

real dataset experiments. This research establishes a new direction by proposing a multiple 

change-point modeling technique. The methodologies developed in this dissertation can lead to a 

great impact on data-driven degradation modeling and prognostic application.  

Nevertheless, there are still some improvement that can be further investigated for the 

optimal decision making. First, in all developed models, failure threshold is set to be constant 

and deterministic for all units. However, given the stochastic nature of the underlying degradation 

mechanism or multiple potential failure modes, such a simplified assumption may cause under or 

over-estimate the actual RUL. Incorporating time-to-event data concerning the failure or censoring 

information and degradation signals could be an interesting topic to investigate. Second, the 

rapid advancements of internet of things technology have resulted in data explosion, which 

provides unprecedented opportunities for performance improvement in various complex systems, 

Meanwhile, it also raises new research challenges on data analysis and decision making, such as 

heterogeneous data formats, high-dimensional data structures, fast-flowing data streams. It 

would be of interest to investigate advanced data analytic methods for Big data stream. These 

will be studied and reported in future articles.
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Appendix 

Appendix A: Proof of Lemma 2.1 in chapter 2 

For the sake of simplicity, we ignore all the superscripts (𝑘 and 𝑠) in the proof.  

(1) If 𝜷𝑡~𝑁(𝝁0, 𝜮0), then  

𝑝(𝜷𝑡|𝑦1:𝑡, 𝜎𝑡
2, 𝜏𝑡) ∝ 𝑝(𝜷𝑡)𝑝(𝑦𝜏𝑡+1:𝑡|𝜏𝑡, 𝜎𝑡

2, 𝜷𝑡)   

∝ exp [−
(𝜷𝑡 − 𝝁0)𝑇𝜮0

−1(𝜷𝑡 − 𝝁0)

2
] ∙ exp (−

‖𝑦𝜏𝑡+1:𝑡
𝑇 − 𝑿𝜏𝑡+1:𝑡𝜷𝑡‖

2

2𝜎𝑡
2 ) 

∝ exp {−
1

2
[𝜷𝑡

𝑇 (
𝑿𝜏𝑡+1:𝑡

𝑇 𝑿𝜏𝑡+1:𝑡

𝜎𝑡
2 + 𝜮0

−1) 𝜷𝑡 − 2 (𝝁0
𝑇𝜮0

−1 +
𝑦𝜏𝑡+1:𝑡𝑿𝜏𝑡+1:𝑡

𝜎𝑡
2 ) 𝜷𝑡]} 

∝ exp [−
1

2
(𝜷𝑡 − 𝝁𝑡)

𝑇𝜮𝑡
−1(𝜷𝑡 − 𝝁𝑡)] 

where  

𝝁𝑡 = [
𝑿𝜏𝑡+1:𝑡

𝑇 𝑿𝜏𝑡+1:𝑡

𝜎𝑡
2 + 𝚺0

−1]

−1

[
𝑿𝜏𝑡+1:𝑡

𝑇 𝑦𝜏𝑡+1:𝑡
𝑇

𝜎𝑡
2 + 𝚺0

−1𝝁0] 

𝜮𝑡 = [
𝑿𝜏𝑡+1:𝑡

𝑇 𝑿𝜏𝑡+1:𝑡

𝜎𝑡
2 + 𝜮0

−1]

−1

 

Therefore 

 (𝜷𝑡|𝑦1:𝑡, 𝜎𝑡
2, 𝜏𝑡)~𝑁(𝝁𝑡, 𝜮𝑡) 

 

If 𝜷𝑡~𝑻𝑁(𝝁0, 𝜮0|𝑏𝑡 > 𝑙), then similarly, 

𝑝(𝜷𝑡|𝑦1:𝑡, 𝜎𝑡
2, 𝜏𝑡) ∝ 𝑝(𝜷𝑡)𝑝(𝑦𝜏𝑡+1:𝑡|𝜏𝑡, 𝜎𝑡

2, 𝜷𝑡)   

∝ exp [−
(𝜷𝑡 − 𝝁0)𝑇𝜮0

−1(𝜷𝑡 − 𝝁0)

2
] ∙ 𝐼(𝑙,+∞)(𝑏𝑡) ∙ exp (−

‖𝑦𝜏𝑡+1:𝑡
𝑇 − 𝑿𝜏𝑡+1:𝑡𝜷𝑡‖

2

2𝜎𝑡
2 ) 

∝ exp [−
1

2
(𝜷𝑡 − 𝝁𝑡)

𝑇𝜮𝑡
−1(𝜷𝑡 − 𝝁𝑡)] ∙ 𝐼(𝑙,+∞)(𝑏𝑡) 
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where 𝐼(𝑙,+∞)(∙) is an indicator function, i.e., 𝐼(𝑙,+∞)(𝑥) = 0 if 𝑥 ≤ 𝑙 and 𝐼(𝑙,+∞)(𝑥) = 1 if 

𝑥 > 𝑙 

Therefore 

(𝜷𝑡|𝑦1:𝑡, 𝜎𝑡
2, 𝜏𝑡)~𝑇𝑁(𝝁𝑡, 𝜮𝑡|𝑏𝑡 > 𝑙) 

(2) 𝑝(𝜎𝑡
2|𝜷𝑡, 𝑦1:𝑡, 𝜏𝑡) ∝ 𝑝(𝜎𝑡

2)𝑝(𝑦𝜏𝑡+1:𝑡|𝜷𝑡, 𝜏𝑡, 𝜎𝑡
2) 

∝ (𝜎𝑡
2)−(𝛼1+1) exp (−

𝛼2

𝜎𝑡
2) (𝜎𝑡

2)−
𝑡−𝜏𝑡

2 exp (−
‖𝑦𝜏𝑡+1:𝑡

𝑇 − 𝑿𝜏𝑡+1:𝑡𝜷𝑡‖
2

2𝜎𝑡
2 ) 

∝ (𝜎𝑡
2)−(𝛼1+

𝑡−𝜏𝑡
2

−1)exp (−
𝛼2 + ‖𝑦𝜏𝑡+1:𝑡

𝑇 − 𝑿𝜏𝑡+1:𝑡𝜷𝑡‖
2
/2

𝜎𝑡
2 ) 

Therefore 

(𝜎𝑡
2|𝜷𝑡, 𝑦1:𝑡, 𝜏𝑡)~𝐼𝐺 (𝛼1 +

𝑡 − 𝜏𝑡

2
, 𝛼2 +

‖𝑦𝜏𝑡+1:𝑡
𝑇 − 𝑿𝜏𝑡+1:𝑡𝜷𝑡‖

2

2
) 

Appendix B: Derivation of Equation (3.9) in chapter 3 

For notational convenience, we ignore the superscript 𝑘  and 𝑠  here. Suppose 

{𝜷𝑖, 𝜎𝑖
2}𝑖=1

𝑖=𝑛 are the observed samples from distribution  

 

𝜋(𝜷, 𝜎2) = 𝐼𝐺(𝜎2|𝛼1, 𝛼2)𝑁(𝝁𝟎, 𝜎2𝚺𝟎) 

The likelihood function can be written as  

 

𝐿(𝛼1, 𝛼2, 𝝁𝟎, 𝚺𝟎|{𝜷𝑖, 𝜎𝑖
2}𝑖=1

𝑖=𝑛)

∝ ∏ [
𝛼2

𝛼1

Γ(𝛼1)
(𝜎𝑖

2)−𝛼1−1 exp (−
𝛼2

𝜎𝑖
2)]

𝑛

𝑖=1

|𝜎𝑖
2𝚺𝟎|

−
1
2 exp [−

(𝜷𝑖 − 𝝁𝟎)′𝚺𝟎
−1(𝜷𝑖 − 𝝁𝟎)

2𝜎𝑖
2 ] 

The log-likelihood function 𝑙 is  
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𝑙(𝛼1, 𝛼2, 𝝁𝟎, 𝚺𝟎|{𝜷𝑖, 𝜎𝑖
2}𝑖=1

𝑖=𝑛)

= ∑ log [
𝛼2

𝛼1

Γ(𝛼1)
(𝜎𝑖

2)−𝛼1−1 exp (−
𝛼2

𝜎𝑖
2)]

𝑛

𝑖=1
−

𝑛

2
log|𝚺𝟎|

− ∑
(𝜷𝑖 − 𝝁𝟎)′𝚺𝟎

−1(𝜷𝑖 − 𝝁𝟎)

2𝜎𝑖
2

𝑛

𝑖=1
+ 𝐶 

Therefore the MLE of 𝛼1, 𝛼2  can be obtained by maximizing the log-likelihood 

function 𝑙(𝛼1, 𝛼2|{𝜎𝑖
2}𝑖=1

𝑖=𝑛). For 𝝁𝟎, 𝚺𝟎, the log-likelihood function is  

 

𝑙(𝝁𝟎, 𝚺𝟎|{𝜷𝑖, 𝜎𝑖
2}𝑖=1

𝑖=𝑛) = −
𝑛

2
log|𝚺𝟎| − ∑

(𝜷𝑖 − 𝝁𝟎)′𝚺𝟎
−1(𝜷𝑖 − 𝝁𝟎)

2𝜎𝑖
2

𝑛

𝑖=1
+ 𝐶 

𝜕𝑙

𝜕𝝁𝟎
= − ∑

𝚺0
−1(𝝁0 − 𝜷𝑖)

𝜎𝑖
2

𝑛

𝑖=1
= 0 

Therefore  

𝝁 0 =

∑
𝜷𝑖

𝜎𝑖
2

𝑛
𝑖=1

∑
1
𝜎𝑖

2
𝑛
𝑖=1

 

Plug in 𝝁 0 we can get  

 

𝑙(𝝁 0, 𝚺𝟎|{𝜷𝑖, 𝜎𝑖
2}𝑖=1

𝑖=𝑛) 

= −
𝑛

2
log|𝚺𝟎| − ∑

(𝜷𝑖 − 𝝁 0)′𝚺𝟎
−1(𝜷𝑖 − 𝝁 0)

2𝜎𝑖
2

𝑛

𝑖=1
+ 𝐶 

= −
𝑛

2
log|𝚺𝟎| −

1

2
tr (∑

𝚺𝟎
−1(𝜷𝑖 − 𝝁 0)(𝜷𝑖 − 𝝁 0)′

𝜎𝑖
2

𝑛

𝑖=1
) 

= −
𝑛

2
log|𝚺𝟎| −

𝑛

2
tr(𝚺𝟎

−1𝑆) 

where  
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𝑆 =
1

𝑛
∑

(𝜷𝑖 − 𝝁 0)(𝜷𝑖 − 𝝁 0)′

𝜎𝑖
2

𝑛

𝑖=1
 

It can be shown that 𝚺̂0 = 𝑆.  

Let 𝑆 = 𝐸𝐸𝑇 , Ψ = 𝐸𝑇𝚺0
−1𝐸 , then |𝚺𝟎| =

|𝑆|

|Ψ|
, tr(𝚺0

−1𝑆) = tr(𝚺0
−1𝐸𝐸𝑇) = tr(𝐸𝑇𝚺0

−1𝐸) =

tr(Ψ).  

So 𝑙(𝚺0, 𝝁 0|{𝜷𝑖, 𝜎𝑖
2}𝑖=1

𝑖=𝑛) = −
𝑛

2
(log|𝑆| − log|Ψ| + tr(Ψ)) 

Let Ψ = 𝐿𝐿𝑇 where 𝐿 is a lower triangular matrix 

 

𝑙(𝚺0, 𝝁 0|{𝜷𝑖, 𝜎𝑖
2}𝑖=1

𝑖=𝑛) 

= −
𝑛

2
(log|𝑆| − ∑ log 𝑙𝑖𝑖

2
2

𝑖=1
+ ∑ 𝑙𝑖𝑖

2  
2

𝑖=1
+ ∑ 𝑙𝑖𝑗

2  
𝑖>𝑗

) 

It is easy to show that when 𝑙𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 and 𝑙𝑖𝑖
2 = 1, 𝑙(𝚺0, 𝝁 0|{𝜷𝑖, 𝜎𝑖

2}𝑖=1
𝑖=𝑛) reaches the 

maximum  

Therefore Ψ̂ = 𝐼, Σ̂0 = 𝑆 

Appendix C: Proof of Theorem 3.1 in chapter 3 

For notational convenience, we ignore the superscripts 𝑘 and 𝑠 here. We also ignore 

the subscript 𝑡 for 𝜷𝒕 and 𝜎𝑡
2. Suppose 𝜋(𝜷, 𝜎2) = 𝐼𝐺(𝜎2|𝛼1, 𝛼2)𝑁(𝝁𝟎, 𝜎2𝚺𝟎) and 𝜷 is of 

dimension 𝑞.  

 

𝑝(𝜷, 𝜎2|𝑦𝑗+1:𝑡) ∝ 𝑝(𝜷, 𝜎2)𝑝(𝑦𝑗+1:𝑡|𝜷, 𝜎2)

∝ [
1

2𝜋|𝜎2𝚺𝟎|
1
2

𝑒
−

(𝜷−𝝁𝟎)𝑇𝚺𝟎
−𝟏(𝜷−𝝁𝟎)

2𝜎2 ] [
𝛼2

𝛼1

Γ(𝛼1)
(𝜎2)−𝛼1−1𝑒

−
𝛼2
𝜎2] [(2𝜋)− 

𝑡−𝑗
2 (𝜎2)−  

𝑡−𝑗
2 𝑒

−‖𝑦𝑗+1:𝑡−𝑿1,𝑡−𝑗𝜷‖
2

2𝜎2 ] 
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∝ (σ2)−𝛼1−1−
𝑡−𝑗
2

1

2𝜋(σ2)
𝑞
2

exp [−
(𝜷 − 𝝁0)𝑇𝚺0

−𝟏(𝜷 − 𝝁0) + 2𝛼2 + ‖𝑦𝑗+1:𝑡 − 𝑿1:𝑡−𝑗𝜷‖
2

2𝜎2
] 

 

∝ (𝜎2)−𝛼1−
(𝑡−𝑗)

2
−1

 

exp [−
𝑦𝑗+1:𝑡

𝑇 𝑦𝑗+1:𝑡 + 2𝛼2 + 𝝁0
𝑻𝚺0

−𝟏𝝁0 − 𝝁𝑗+1:𝑡
𝑇 (𝑿1:𝑡−𝑗

𝑇 𝑿1:𝑡−𝑗 + 𝚺0
−𝟏)𝝁𝑗+1:𝑡

2𝜎2
]

×
1

(σ2)𝑞/2
exp [−

(𝜷 − 𝝁𝑗+1:𝑡)
𝑇
(𝑿1:𝑡−𝑗

𝑇 𝑿1:𝑡−𝑗 + 𝚺0
−𝟏)(𝜷 − 𝝁𝑗+1:𝑡)

2𝜎2
] 

∝  𝐼𝐺 (𝛼1 +
𝑡 − 𝑗

2
, 𝛼2 +

𝐻𝑗+1,𝑡

2
) ∙ 𝑁(𝝁𝑗+1,𝑡, 𝜎

2𝚺𝑗+1,𝑡) 

where 

𝚺𝑗+1,𝑡 = (𝑿1,𝑡−𝑗
𝑇 𝑿1,𝑡−𝑗 + 𝚺0

−𝟏)
−1

 

𝑵𝑗+1,𝑡 = (𝚺0
−𝟏𝝁0

(𝑘,𝑠)
+ 𝑿1,𝑡−𝑗

𝑇 𝑦𝑗+1:𝑡) 

𝝁𝑗+1,𝑡 = 𝚺𝑗+1,𝑡𝑵𝑗+1,𝑡 

𝐻𝑗+1,𝑡 = 𝑦𝑗+1:𝑡
𝑇 𝑦𝑗+1:𝑡 + 𝝁0

𝑻𝚺0
−𝟏𝝁0 − 𝑵𝑗+1,𝑡

𝑇 𝚺𝑗+1,𝑡𝑵𝑗+1,𝑡 

Appendix D: Proof of Theorem 3.2 in chapter 3 

If 𝜏𝑡 = 𝑗 < 𝑡 − 1, based on Theorem 3.1 we can get  

(𝜷𝑡−1|𝜎𝑡−1
2 , 𝜏𝑡−1 = 𝑗, 𝑠𝑡−1 = 𝑠, 𝑘, 𝑦𝑗+1:𝑡−1)~𝑁(𝝁𝑗+1,𝑡−1, 𝜎𝑡−1

2 𝚺𝑗+1,𝑡−1) 

(𝑿𝑡−𝑗𝜷𝑡−1|𝜎𝑡−1
2 , 𝜏𝑡−1 = 𝑗, 𝑠𝑡−1 = 𝑠, 𝑘, 𝑦𝑗+1:𝑡−1)~𝑁(𝑿𝑡−𝑗𝝁𝑗+1,𝑡−1, 𝜎𝑡−1

2 𝑿𝑡−𝑗𝚺𝑗+1,𝑡−1𝑿𝑡−𝑗
𝑇 ) 

 

(𝜎𝑡−1
2 |𝜏𝑡−1 = 𝑗, 𝑠𝑡−1 = 𝑠, 𝑘, 𝑦𝑗+1:𝑡−1)~𝐼𝐺 (𝛼1

(𝑘,𝑠)
+

𝑡 − 1 − 𝑗

2
, 𝛼2

(𝑘,𝑠)
+

𝐻𝑗+1,𝑡−1

2
) 
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Since  

𝑦𝑡 = 𝑿𝑡−𝑗𝜷𝑡−1 + 𝜎𝑡−1𝜀𝑡  

for 𝜏𝑡 = 𝜏𝑡−1 = 𝑗 < 𝑡 − 1,  

then  

(𝑦𝑡|𝜎𝑡−1
2 , 𝜏𝑡−1 = 𝑗, 𝑠𝑡−1 = 𝑘, 𝑦𝑗+1:𝑡−1)~𝑁(𝑿𝑡−𝑗𝝁𝑗+1,𝑡−1, 𝜎𝑡−1

2 (1 + 𝑿𝑡−𝑗𝚺𝑗+1,𝑡−1𝑿𝑡−𝑗
𝑇 )), 

Let 𝜇∗ = 𝑿𝑡−𝑗𝝁𝑗+1,𝑡−1, 𝜎∗
2 = 1 + 𝑿𝑡−𝑗𝚺𝑗+1,𝑡−1𝑿𝑡−𝑗

T  

𝑝(𝑦𝑡|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦1:𝑡−1) = ∫ 𝑝(𝑦𝑡|𝜎𝑡−1
2 , 𝜏𝑡−1 = 𝑗, 𝑠𝑡−1 = 𝑠, 𝑘, 𝑦1:𝑡−1) 

𝑝(𝜎𝑡−1
2 |𝜏𝑡−1 = 𝑗, 𝑠𝑡−1 = 𝑠, 𝑘, 𝑦1:𝑡−1)𝑑𝜎𝑡−1

2  

 

∝ ∫(𝜎𝑡−1
2 𝜎∗

2)−
1
2 exp [−

(𝑦𝑡 − 𝜇∗)
2

2𝜎𝑡−1
2 𝜎∗

2
] (𝜎𝑡−1

2 )−𝛼1
(𝑘,𝑠)

−
(𝑡−𝑗−1)

2
−1

 

exp [−
2𝛼2

(𝑘,𝑠)
+ 𝐻𝑗+1:𝑡−1

2𝜎𝑡−1
2 ] 𝑑𝜎𝑡−1

2  

∝ ∫(𝜎𝑡−1
2 )−𝛼1

(𝑘,𝑠)
−

(𝑡−𝑗)
2

−1 exp (−
(𝑦𝑡 − 𝜇∗)

2 + (2𝛼2
(𝑘,𝑠)

+ 𝐻𝑗+1:𝑡−1)𝜎∗
2

2𝜎𝑡−1
2 𝜎∗

2
) 𝑑𝜎𝑡−1

2  

∝
Γ (𝛼1

(𝑘,𝑠)
+

(𝑡 − 𝑗)
2

)

[
(𝑦𝑡 − 𝜇∗)2 + (2𝛼2

(𝑘,𝑠)
+ 𝐻𝑗+1:𝑡−1)𝜎∗

2

2𝜎∗
2 ]

𝛼1
(𝑘,𝑠)

+
(𝑡−𝑗)

2

 

∝ [1 +
1

𝑣

(𝑦𝑡 − 𝜇∗)
2𝑣

𝜎∗
2(2𝛼2

(𝑘,𝑠)
+ 𝐻𝑗+1:𝑡−1)

]

−
1+𝑣

2

 

 

where 𝑣 = 2𝛼1
(𝑘,𝑠)

+ 𝑡 − 𝑗 − 1. Therefore 
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(𝑦𝑡|𝜏𝑡 = 𝑗, 𝑠𝑡 = 𝑠, 𝑘, 𝑦𝑗+1:𝑡−1)~𝑡1 (2𝛼1
(𝑘,𝑠)

+ 𝑡 − 𝑗

− 1, 𝑿𝑡−𝑗𝝁𝑗+1,𝑡−1,
(2𝛼2

(𝑘,𝑠)
+ 𝐻𝑗+1:𝑡−1)(1 + 𝑿𝑡−𝑗𝚺𝑗+1,𝑡−1𝑿𝑡−𝑗

T )

2𝛼1
(𝑘,𝑠)

+ 𝑡 − 𝑗 − 1
) 

The proof for 𝑗 = 𝑡 − 1 is similar to the above derivation process and is neglected here. 

Appendix E: Proof of Theorem 4.1 in chapter 4 

For notational convenience, we ignore the subscript 𝑚 for 𝛽𝑚 and 𝜎𝑚
2 , and ignore the subscript 

𝑠 for phase index. Suppose 𝜋(𝛽, 𝜎2) = 𝐼𝐺(𝑣0, 𝛾0)𝑁(𝜇0, 𝜎2𝜅0
2)  

𝑝(𝛽, 𝜎2|𝜹𝑗+1:𝑚, 𝜏𝑚 = 𝑗) ∝ 𝑝(𝛽, 𝜎2)𝑝(𝜹𝑗+1:𝑚|𝛽, 𝜎2)

∝ [
1

(2𝜋𝜎2𝜅0
2)

1
2

𝑒
−

(𝛽−𝜇0)2

2𝜎2𝜅0
2

] [
𝛾0

𝑣0

Γ(𝑣0)
(𝜎2)−𝑣0−1𝑒

−
𝛾0
𝜎2] [(2𝜋)− 

𝑚−𝑗
2 (𝜎2)−  

𝑚−𝑗
2 𝑒

−∑ (𝛿𝑖−𝛽𝜆𝑖)
2/𝜆𝑖

𝑚
𝑖=𝑗+1

2𝜎2 ] 

∝ (σ2)−𝑣0−1−
𝑚−𝑗

2
1

2𝜋(σ2)1/2
exp [−

(𝛽 − 𝜇0)2/𝜅0
2 + 2𝛾0 + ∑ (𝛿𝑖 − 𝛽𝜆𝑖)

2/𝜆𝑖
𝑚
𝑖=𝑗+1

2𝜎2
] 

∝ (σ2)−𝑣0−1−
𝑚−𝑗

2
1

2𝜋(σ2)
1
2

exp

(

 
 

−

𝛽2 (∑ 𝜆𝑖
𝑚
𝑖=𝑗+1 +

1
𝜅0

2) − 2𝛽 (
𝜇0

𝜅0
2 + ∑ 𝛿𝑖

𝑚
𝑖=𝑗+1 ) +

𝜇0
2

𝜅0
2 + 2𝛾0 + ∑

𝛿𝑖
2

𝜆𝑖

𝑚
𝑖=𝑗+1  

2𝜎2
 

)

 
 

  

∝ (σ2)−𝑣0−1−
𝑚−𝑗

2
1

2𝜋(σ2)
1
2

exp

(

 
 

−
(𝛽 − 𝜇𝑚)2

2𝜎2 (∑ 𝜆𝑗+𝑖
𝑚
𝑖=1 +

1
𝜅0

2)
−1

)

 
 

 

exp

(

 
 

−

𝜇0
2

𝜅0
2 + 2𝛾0 + ∑

𝛿𝑖
2

𝜆𝑖

𝑚
𝑖=𝑗+1 − (

𝜇0

𝜅0
2 + ∑ 𝛿𝑖

𝑚
𝑖=𝑗+1 )

2

(∑ 𝜆𝑖
𝑚
𝑖=𝑗+1 +

1
𝜅0

2)
−1

2𝜎2

)

 
 

 

∝ 𝐼𝐺(𝑣𝑗+1,𝑚, 𝛾𝑗+1,𝑚 )𝑁(𝜇𝑗+1,𝑚, 𝜎2𝜅𝑗+1,𝑚
2 ) 

where 
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𝑣𝑗+1,𝑚 = 𝑣0 +
𝑚 − 𝑗

2
 

𝛾𝑗+1,𝑚 = 𝛾0 +

[
𝜇0

2

𝜅0
2 + ∑

𝛿𝑖
2

𝜆𝑖

𝑚
𝑖=𝑗+1 − (

𝜇0

𝜅0
2 + ∑ 𝛿𝑖

𝑚
𝑖=𝑗+1 )

2

(∑ 𝜆𝑖
𝑚
𝑖=𝑗+1 +

1
𝜅0

2)
−1

]

2
 

𝜇𝑗+1,𝑚 = (
𝜇0

𝜅0
2 + ∑ 𝛿𝑖

𝑚

𝑖=𝑗+1
) (∑ 𝜆𝑖

𝑚

𝑖=𝑗+1
+

1

𝜅0
2)

−1

 

𝜅𝑗+1,𝑚
2 = (∑ 𝜆𝑖

𝑚

𝑖=𝑗+1
+

1

𝜅0
2)

−1

 

Appendix F: Proof of Theorem 4.2 in chapter 4 

For notational convenience, we ignore the subscript 𝑠 for phase index. Based on Wiener process 

increment property  

 

𝑋𝑚 = 𝑋𝑚−1 + 𝛽𝑚𝜆𝑚 + 𝜎𝑚𝐵(𝜆𝑚) 

Note that here 𝛽𝑚 and 𝜎𝑚 are the drift and diffusion parameters from 𝑡𝜏𝑚
 to 𝑡𝑚.  

If 𝜏𝑚 = 𝑗 < 𝑚 − 1, then 𝜏𝑚−1 = 𝑗, 𝛽𝑚 = 𝛽𝑚−1, 𝜎𝑚 = 𝜎𝑚−1. Based on Theorem 1 we can get  

(𝛽𝑚−1|𝜎𝑚−1
2 , 𝜏𝑚−1 = 𝑗, 𝑠𝑚−1 = 𝑠, 𝑋0:𝑚−1)~𝑁(𝜇𝑗+1,𝑚−1, 𝜎𝑚−1

2 𝜅𝑗+1,𝑚−1
2 ) 

(𝜎𝑚−1
2 |𝜏𝑚−1 = 𝑗, 𝑠𝑚−1 = 𝑠, 𝑋0:𝑚−1)~𝐼𝐺(𝑣𝑗+1,𝑚−1, 𝛾𝑗+1,𝑚−1) 

Then 

 

(𝑋𝑚|𝜎𝑚−1
2 , 𝜏𝑚 = 𝜏𝑚−1 = 𝑗, 𝑠𝑚−1 = 𝑠, 𝑋0:𝑚−1)~𝑁 (𝜇𝑗+1,𝑚−1𝜆𝑚

+ 𝑋𝑚−1, 𝜎𝑚−1
2 (𝜆𝑚 + 𝜅𝑗+1,𝑚−1

2 𝜆𝑚
2 )) 

Let 𝜇′ = 𝜇𝑗+1,𝑚−1𝜆𝑚 + 𝑋𝑚−1, 𝜂′ = 𝜆𝑚 + 𝜅𝑗+1,𝑚−1
2 𝜆𝑚

2 , then 
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𝑝(𝑋𝑚|𝜏𝑚 = 𝑗, 𝑠𝑚 = 𝑠, 𝑋0:𝑚−1) 

∝ ∫(𝜎𝑚−1
2 𝜂′)−

1
2𝑒

[
−(𝑋𝑚−𝜇′)

2

2𝜎𝑚−1
2 𝜂′ ]

(𝜎𝑚−1
2 )−𝑣0−

𝑚−1−𝑗
2

−1𝑒
−

𝛾𝑗+1,𝑚−1

𝜎𝑚−1
2

𝑑𝜎𝑚−1
2

∞

0

 

∝ (𝜎𝑚−1
2 )−𝑣0−

𝑚−𝑗
2

−1𝑒
[−

(𝑋𝑚−𝜇′)
2
+2𝛾𝑗+1,𝑚−1𝜂′

2𝜎𝑚−1
2 𝜂′ ]

 𝑑𝜎𝑚−1
2  

∝
Γ(𝑣0 +

𝑚 − 𝑗
2 )

[
(𝑋𝑚 − 𝜇′)2

2𝜂′ + 𝛾𝑗+1,𝑚−1]
𝑣0+

𝑚−𝑗
2

 

∝ [1 +
1

2𝑣0 + 𝑚 − 𝑗 − 1

(𝑋𝑚 − 𝜇′)2(2𝑣0 + 𝑚 − 𝑗 − 1)

2𝛾𝑗+1,𝑚−1𝜂′
]

−
(2𝑣0+𝑚−𝑗)

2

 

(𝑋𝑚|𝑋0:𝑚−1, 𝜏𝑚 = 𝑗)~𝑡1 (2𝑣0 + 𝑚 − 𝑗 − 1, 𝜇′,
2𝛾𝑗+1,𝑚−1𝜂′

2𝑣0 + 𝑚 − 𝑗 − 1
) 

If 𝑗 = 𝑚 − 1, similarly, we can get  

(𝑋𝑚|𝑋0:𝑚−1, 𝜏𝑚 = 𝑚 − 1)~𝑡1 (2𝑣0, 𝜇′,
𝛾0𝜂′

𝑣0
) 

where 𝜇′ = 𝜇0𝜆𝑚 + 𝑋𝑚−1, 𝜂′ = 𝜆𝑚 + 𝜅0
2𝜆𝑚

2  
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