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Abstract 

Software caches for garbage collected systems are unaware which cache entries are 

referenced by a client program. Lacking this key information, software caches cannot determine 

the cache’s contribution to the program’s memory footprint. Furthermore, their eviction heuristics 

must rely on access history as a proxy for usage. Divergence between usage and access history can 

undermine the intention of eviction thereby resulting in problematic cache behavior.  

This dissertation proposes designs for a novel family of “usage-based” software cache 

informed of entry reachability by the automatic memory management system. Unlike extant 

software caches, usage-based caches can accurately determine their memory footprint because 

they are informed of memory usage. Usage-based software caches require information and controls 

that are not exposed by many garbage collected languages’ runtime systems including Java and 

Python. C#’s finalization interface is sufficient to construct a prototype implementation of a usage-

based software cache called “FinalCache”.  

Unfortunately, C#’s finalization interface creates high coupling between FinalCache and 

its entries. We are unaware of any language runtime systems that do not have this characteristic. 

These deficiencies and strategies for potentially remediating them are also described.  
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Chapter 1: Introduction 

Software caches traditionally use entry access history as the basis for their eviction 

strategies. Unfortunately, this heuristic can lead to unnecessary evictions and even duplication of 

cached objects. FinalCache uses implicit entry reachability, rather than access history, as its basis 

for eviction. By only evicting entries that are not reachable by a client program, FinalCache avoids 

the problem of in-use eviction associated with access-based eviction.  

FinalCache also exposes the flawed assumption that an access-based software cache’s 

configured size equates to its total memory footprint. In contrast, because its configured size 

adjusts only unreachable cache entries, FinalCache knows precisely what its contribution is to total 

memory footprint is at any given moment. Preliminary results based off trace logs from Firefox 

show that FinalCache achieved the same number of hits as access-based software caches while 

requiring a smaller configured size.  

 

1.1 OVERVIEW  

Caches trade memory for potential future computation or latency savings. The most notable 

example caches are those built into the CPU, namely the L1 and L2 caches, because they save on 

trips to memory. Memory itself could be considered a cache because it saves on trips to disk. Yet 

not all caches reside in hardware.  

Programs often create objects which may be needed again at a future point, for example a 

program that may need the inverse of some matrix M multiple times. Rather than re-computing 

M’s inverse (M-1)on demand, , a program could keep M-1in a temporary variable to facilitate future 

reuse. If the program needed to create multiple temporary inverted matrices, the program could 

use a data structure called a software cache.. A software cache is a memory-limited data structure 
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that maintains data a program is likely to need again. Example software caches include Firefox's 

DiskCache[18] and Memcached[19]. When the cache exceeds its capacity, it will evict one or more 

entries based on its eviction policy. Unfortunately, this eviction can cause problems because 

software caches are unaware of whether an entry is reachable from outside the cache unless it 

explicitly tracks reachability.  

Consider an object A that has just been evicted from a software cache, for example, a 

google.com browser tab. The cache did not store the object itself but instead held a reference to A. 

The resulting impact of the eviction on the total memory footprint varies depending on whether 

there were any other references to A. If the cache was the last reference to A, then the memory 

associated with A is eligible to be recycled by the automatic memory manager. Otherwise, A will 

remain resident in memory, meaning the eviction resulted in negligible recoverable memory, 

considering the size of A versus the size of its cache entry mapping.  

This behavior could result in inconsistencies, where two or more different versions of the 

same entry exist simultaneously. As depicted in Figure 1.1 below, if a request is made for an 

evicted, but still in-use, object A, then the cache will miss and signify the requested entry was not 

found. As a result, the program might re-compute an independent duplicate object A'. Should either 

object be modified while the other remains active, it could lead to undesired program behavior. In 

effect, the eviction of A resulted in an increased total memory footprint and possible bugs. 
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Figure 1.1: Sequence Diagram: Object Duplication1 

 
To maintain consistency, the software cache could invalidate A on eviction, where it 

broadcasts that all references to A must be discarded. Or the cache could alter A itself to signify it 

is no longer valid. However, broadcasting would generate overhead and increase the complexity 

of the cache and client program. Additionally, a general-purpose software cache is not likely to 

directly modify its entries.  

FinalCache avoids the consistency problem by implicitly tracking entry reachability, or 

usage, via the memory manager. Until an entry's Finalize method is invoked, FinalCache knows 

the object is still in-use by the client program and not eligible for eviction. Therefore, the addition 

of new FinalCache entries does not affect existing entries as shown in Figure 1.2 below. This is 

the same problematic scenario as before except since A is still in-use when B was inserted, A was 

not evicted. 

 

Figure 1.2: Sequence Diagram: FinalCache Avoids Object Duplication1 
 

FinalCache is not the first software cache to be assisted by the memory manager[11,13,20], 

but as far as we are aware, it is the first that 1) uses purely usage-based eviction and 2) does not 

 
1 Object A does not have any messages sent to/from it. A’s lifeline shows reachability and is consistent with other 
Sequence Diagrams in this Chapter. 
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require the creation of a custom runtime.2 FinalCache does not encounter the consistency problem 

described above because it cannot evict any entry that is still reachable by the program (excluding 

FinalCache itself). Preliminary results suggest that FinalCache's usage-based (reachability) 

heuristic is superior to access-based (order entries were last accessed in the cache) eviction. 

 

1.2 CACHES 

Application level software caches have a limited capacity and an eviction heuristic much 

like hardware caches. What differentiates the two is their level of abstraction and response times. 

Table 1.1 below compares/contrasts the two types of caches. Since software caches operate at the 

memory level, if each response takes a few extra clock cycles, it would not be noticeable; however, 

the same is not true of hardware. As such, software caches can employ more sophisticated eviction 

heuristics than is feasible in hardware.[6,7] 

 
Table 1.1: Hardware v Software Cache Comparison 

 Hardware Caches Software Caches 

Example 

Contents 
Blocks of memory and frames Data structures and files 

Size Fixed, < 10 GB Dynamic, > 10 GB 

Speed Order of CPU cycles Order of memory accesses 

Example 

Mapping 

Memory address -> Copy of memory value  

0xfff ffff ffff 0000-> 0x0123 4567 89ab cdef 

URL -> File Descriptor 

www.google.com -> 8 

Eviction 

Heuristics 
Simple and fast: Not Recently Used 

Complex and slow: Least 

Recently Used, 

Frequency, Greedy 

  

 
2 More on this in Chapter 2 and Appendix C 
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While evictions make memory available for both cache types, software caches may not see 

any noticeable memory reduction. This is because evicted entries may still be reachable by the 

program, such as an open file, meaning the eviction may have only resulted in a handful of bytes 

saved. If the goal of eviction was to impactfully reduce total memory footprint, then in-use 

evictions by software caches fail at achieving this goal. Worse yet, should the program request an 

evicted in-use entry, then a duplicate object might be created which could result in inconsistent 

objects as seen in Sequence Diagram 1. Strong cache coherency schemes do exist to remedy this 

situation but applying them increases cache complexity and adds overhead (See Appendix A). The 

following section provides a detailed description of this problem, with respect to traditional Least 

Recently Used, and a simple, if imperfect, solution to it utilizing implicit reachability information. 

 
1.3 LRA AND LRAWE 

Least Recently Used (LRU) is an eviction heuristic, for both hardware and software caches, 

which applies the principle of temporal locality to identify cache entries unlikely to be accessed 

soon.[5] Unfortunately, this “used” label can be misleading because client programs contain 

references to seldom accessed cached objects. From the memory manager's perspective, an in-use 

or used object is one that is reachable from the root set (the set of all named objects). Those that 

are not reachable are called garbage, unused, or unreachable.[17] By this definition, traditional 

LRU tracks access history, not usage, and should be labeled Least Recently Accessed (LRA). 

This distinction is important because, as described below, eviction heuristics that utilize exact 

usage information are more deserving of the LRU mantle. 

The reader may ask, “If access history approximates temporal locality, isn't it a good 

indicator of entry usage?" The answer is that programs may be actively referencing a cached object 

and may not access the cache to update this heuristic. Recall the scenario described at the start of 

this chapter. The client program was actively using an object which was evicted from the cache. 
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However, since the software cache did not know the entry was still being used, the cache needlessly 

evicted it thereby risking duplication and inconsistency.  

There are several ways to address this problem. A naïve solution is to increase the size of 

the cache until in-use evictions do not occur, though selecting an appropriate size is difficult. 

Another solution is to utilize usage information. Unfortunately, explicit usage tracking has several 

drawbacks, principally its subversion of the automatic memory manager by requiring programmers 

be responsible for managing memory.[4] To ensure evictions, client programs would need to 

inform the cache when they are done using entries. Premature notification leads to the scenario 

described in Figure 1.1 above, and failure to notify means entries will remain in memory 

permanently.  

Another solution would be to use memoization. Memoization is the process of 

automatically storing the results of a function call either using a lookup-table or software 

cache.[9,12] This process however is limited to function calls that do not result in visible side-

effects. It also recursively solves the problem of caching by using a software cache which is not 

an adequate solution. Instead, caches could use Weak References to implicitly determine entry 

usage. 

Weak references do not prevent their referent from being recycled by the memory manager 

when the referent is only reachable via Weak references. Should an object be reachable by at least 

one Strong (traditional) reference, then the object is considered live and cannot be recycled by the 

automatic memory manager. More information on the various reference types is available in 

Appendix C. [21] 

If the software cache kept Weak References to evicted entries, then so long as the entry is 

still in-use by the program it will remain in the cache. This technique does not noticeably impact 

memory usage because the program would have still referenced the weakly referenced object 

anyway. We call this solution "Weak Eviction" and denote an LRA cache that employs it as 

LRAwe.[11] 
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Figure 1.3: Sequence Diagram: WeakEvict Avoids Object Duplication  

Figure 1.3 above illustrates the same problematic scenario for LRA described earlier except 

this time using LRAwe instead of LRA. A is weakly evicted from the cache when it is subsequently 

looked-up. This lookup is a hit because A was still reachable and the LRAwe cache will revert to 

Strongly referencing A. Although LRAwe solves this problem, it still relies on access history as a 

proxy for usage. The following drawbacks highlight why LRAwe is a less-than-ideal solution: 

 
Uncertain total memory usage 

There is no way to know the precise impact of LRA(we) on the Total Memory Footprint 

of a program. The footprint of an LRA cache is the number of entries it references that are not 

referenced by the program. Considering in-use entries as contributing to total memory usage is to 

count them twice. So, if an LRA(we) cache is configured to hold n entries then its impact on 

memory is in the interval from zero to n.  

 
Entries have different lifetimes 

LRA and LRAwe provide a safety net for entries that become unused before eviction. The 

cache will be the only reference keeping these entries resident in memory until they are either 

looked-up again or evicted. However, long-lived entries do not receive this benefit of being cached 

as they will persist long past their eviction. Even an LRAwe cache cannot ensure that these entries 

will briefly persist should the program request them shortly after becoming unused as can be seen 

in Figure 1.4 below.  
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Eviction of in-use entries 

Caches have a maximum capacity to limit their total memory footprint. However, since 

evicting in-use entries does not reduce memory, why evict them? If software caches knew about 

entry usage, they could consider only unused entries as eligible for eviction, meaning evictions 

would guarantee reduced memory usage. 
1.4 FINALCACHE 

The main shortcoming of LRA and LRAwe is they are uninformed of entry usage at the 

time of eviction. We designed and prototyped a software cache called FinalCache, which only 

considers unused entries eligible for eviction. FinalCache accomplishes this without using explicit 

entry tracking, instead using an entry's Finalize method. Finalize is a mechanism provided by 

memory managed runtimes as an analog for object Destructors. Though Finalize is intended for 

pre-mortem cleanup, such as closing open file descriptors, it can also resurrect unused objects by 

making them reachable again by the root set.3 [8] 

FinalCache only considers resurrected entries eligible for eviction precisely because they 

became unreachable outside of FinalCache. Resurrected entries persist in FinalCache until n other 

entries become unused, causing an eviction (where n is the configured size, see Section 2.3). The 

addition of new used entries does not affect the set of evictable entries. Unused entries are evicted 

in the order they became unused i.e. true Least Recently Used (LRU). FinalCache addresses the 

three major flaws associated with LRA and LRAwe. 

1. FinalCache knows precisely how much it is contributing to the client program's 

memory footprint; it is the total number of unused entries.  

2. Unlike LRAwe, FinalCache' design ensures all unused entries persist for some time 

after becoming so. This is demonstrated in Sequence Diagram 4 below which is a 

problematic scenario for LRAwe but not FinalCache. After A's Finalize executes, 

 
3 Implementations of Finalize vary by language and runtime. See Appendix C 
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FinalCache will create a Strong reference to A, allowing to it persist for a time after 

becoming unused.  

3. FinalCache does not evict in-use entries because only unused entries are eligible for 

eviction. 

 

 
Figure 1.4: Sequence Diagram: All Unused FinalCache Entries Temporarily Persist  

We wrote an implementation of FinalCache in C#. This language was chosen because it is 

the only language and runtime that the author is aware of that included all the features necessary 

for implementation, specifically the mechanisms available to interact with the memory manager. 

More information on this implementation is provided in Section 2.9.  

The main shortcoming of this prototype FinalCache is that it cannot currently be used as a 

drop-in replacement for existing software caches because of its reliance on Finalize to provide 

usage information. Each FinalCache entry requires a custom Finalize method which strongly 

couples FinalCache to its entries. FinalCache will also behave differently depending on whether it 

runs with a Reference Counting or Tracing Garbage Collector and whether Finalize is Synchronous 

or Asynchronous. More information on this impact is in Chapters 2 and 3. 
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1.5 DOCUMENT PREVIEW 

Chapter 2 is a complete description of FinalCache. This includes its design goals and a 

discussion on how cache size affects memory footprint. The simple FinalCache design assumes a 

Reference Counting memory manager with Synchronous Finalize because Asynchronous Finalize 

can lead to a race condition. Therefore, we also include designs which work with Asynchronous 

Finalize as well as a discussion on how Tracing collection affects FinalCache's behavior. The 

chapter concludes with an analysis of FinalCache's deficiencies and how they might be rectified. 

Chapter 3 covers a simple empirical study of FinalCache compared against LRA and 

LRAwe. Because of the nature of its implementation, it was impossible for me to use FinalCache 

as a drop-in replacement for an existing software cache, requiring simulation instead. We 

generated cache access logs from Firefox's DiskCache[18], which includes entry usage 

information, to use as input. We then computed hits, misses, in-use evictions, in-use misses, and 

total memory footprint in terms of entries with many sizes per eviction policy. LRAwe and 

FinalCache do not have in-use evictions or in-use misses. The results show that not knowing usage 

was a problem for both LRA and LRAwe and that FinalCache, even configured with a relatively 

small csize, had a better hit rate than LRAwe.  

Chapter 4 discusses possible applications of the techniques used to build FinalCache 

including object pools, passivation, and file closures. It also suggests modifications to existing 

memory management mechanisms which will enable widespread use of FinalCache in a 

production environment without the need for Finalize. The chapter concludes with possible 

directions for future work. Additional background information on software caching, garbage 

collection, and mechanisms which allow programs to interact with the runtime are included in the 

Appendices. 
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Chapter 2: FinalCache 

This chapter describes the design and implementation of FinalCache as one solution to the 

unnecessary and potentially problematic eviction of in-use cache entries inherent to access-based 

eviction introduced in Chapter 1. First, we provide an overview of the properties of FinalCache, 

followed by an examination of how the definition of a cache's size changes depending on eviction 

policy. Then we examine the simplest possible design for FinalCache, assuming a Reference 

Counting memory manager and Synchronous Finalize. This is followed by a scenario using 

Asynchronous Finalize that causes said model to behave incorrectly. Last, we present an altered 

model that correctly deals with the problematic scenario and discuss the technologies needed to 

implement FinalCache. 

 
2.1 FINALCACHE GOALS, REQUIREMENTS, AND BENEFITS  

FinalCache was designed to use object reachability, rather than access history, as its 

eviction heuristic. As such, the addition of a new FinalCache Entry (FCE) does not affect eviction 

decisions. Rather, FinalCache's heuristic is only updated when FinalCache is notified that an FCE 

has become unreachable by the client program.  

This design ensures that:  

1. Only unused entries will be considered for eviction from FinalCache  

2. Entries will be evicted in the order in which FinalCache is informed they became unused4  

3. Entries will persist for some time after becoming unused (see Section 2.2) 

Recall LRA and LRAwe caches consider all entries as eligible for eviction as soon as they 

are inserted into the cache (see Section 1.3). This policy could result in LRA and LRAwe caches 

evicting an entry that is currently used by the program. On the contrary, FinalCache entries must 

first become unreachable by the client program before they can become eligible for eviction. 

FinalCache is notified that an entry has become unreachable when the FCE's Finalize method is 

 
4 A cache hit or update on an entry that has been identified as unused will become used again by the program, 
meaning the entry is no longer eligible for eviction  
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executed. At this point, finalized FCEs are eligible for eviction in FIFO order. Ultimately, 

FinalCache's design guarantees that, so long an FCE is reachable by FinalCache (in-use or unused), 

all requests for a given FCE will return the exact same reference. 

FinalCache uses a combination of finalization and non-strong references to determine entry 

usage. An entry is considered in-use by the program until its Finalize method is executed. At this 

point the entry will be known to be unused because references from the client program to an FCE's 

referent (excluding FinalCache) prevent Finalize from being scheduled. As such, FinalCache will 

consider the entry to be in-use by the client program.  

There are three possibilities for mapping an FCE's id to value: a strong mapping, non-

strong5 mapping, or no mapping. Strong references are unsuitable as an initial mapping because 

they would prevent the FCE's referent value from being finalized. Alternatively, FinalCache could 

simply not map in-use entries to allow Finalize to occur when the referent became unreachable. 

However, not mapping would mean that some cache accesses would miss until the FCE's referent 

Finalize method executed. Non-strong entry mappings would permit referents to become garbage 

collected while also allowing for successful entry lookups when they are still in-use by the 

program. More information on language features necessary for FinalCache are provided in Section 

2.9.  

When an FCE's Finalize method executes, it replaces the FCE's non-strong reference 

mapping with a strong mapping. This prevents the memory manager from recycling the referent 

as it is now only reachable via FinalCache. Should an unused entry be looked-up, its entry mapping 

will be reverted to a non-strong mapping to begin the process anew.  

Unlike LRAwe, whose long-lived entries are removed on becoming unreachable, 

FinalCache's long-lived entries persist until sufficient other FCEs' Finalize methods are run. This 

feature of FinalCache can provide a window of opportunity to quickly recover a long-lived but 

 
5 Weak references are preferable to Soft references as they allow for Finalize to be scheduled much sooner after 
becoming unreachable outside FinalCache. Phantom references are not suitable for this application. For more 
information on non-strong references see Appendix C. 
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seldom accessed browser tab, such as Gmail, should a user accidentally close it. Another feature 

of FinalCache is its ability to safely transfer unused entries from memory to secondary storage 

because unused entries are exclusively reachable by FinalCache (though the cost of this transfer 

may be undesirable).  

 
2.2 SIZE, MAXIMUM CAPACITY, AND POLICY  

This section examines how the definition of a cache's size changes depending on the type 

of cache. For hardware caches, size refers to the number of entries that can be mapped. In contrast, 

a software cache's size is not fixed and can change overtime, requiring a more nuanced definition 

of size. Additionally, software cache entries that are reachable by the client program outside of the 

cache do not truly contribute to the program's total memory footprint; meaning that an increase in 

size does not necessarily result in increased memory usage.  

We define configured size (csize) to be the number of entries, or total bytes, a software 

cache can map before the addition of new entries requires eviction. Specifically, csize is the upper 

limit of the contribution of an LRA cache to a program's total memory footprint. If all entries in 

an LRA cache are reachable by the client program, then the effective footprint of the cache is only 

the overhead of csize mappings. Conversely, if all entries are unreachable then the footprint 

contribution of an LRA cache is equal to csize. Essentially, only unreachable cache entries 

(usize) contribute to the program's memory footprint and reachable entries (rsize) do not. Both 

rsize and usize are, to some extent, implicit parameters controlled by the client program and not 

the software cache.  

Clearly, the total size of a cache is the sum of usize and rsize; however exact value usize 

and rsize are unknown to caches that do not track entry reachability. For example, LRA's total size 

is equal to csize. LRAwe’s size changes with the number of weakly evicted reachable entries 

(wsize). As such, LRAwe's total size is the sum of csize and wsize. In FinalCache, rsize is the 

number of FCEs that are ineligible for eviction because they are still reachable by the client 
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program; and usize is equal to csize or the entries that are eligible for eviction because they are 

unreachable by the client program. Therefore, the total size of FinalCache is always the sum of 

csize and rsize. Table 2.1 provides example combinations of csize and rsize and their effect on 

total size.  
Table 2.1 Contributions of csize and rsize on total size of LRA, LRAwe, and FinalCache  

csize rsize LRA LRAwe FinalCache 

0 50 0 50 50 

50 0 50 50 50 

50 50 50 50 … 100 100 

50 100 50 100 … 150 150 

 

A csize of zero is a degenerative configuration for LRA because an LRA cache will evict 

every entry as soon as it is added; however, LRAwe and FinalCache will continue mapping entries 

so long as they are reachable by the client program. For csize zero, LRAwe and FinalCache will 

contain the exact same set of rsize entries. A side effect of csize zero is that should all cache entries 

become unreachable, both LRAwe and FinalCache will shrink to a total size of zero, due to 

LRAwe's and FinalCache's ability to dynamically resize.  

The second row of Table 2.1 is an example where all entries become unreachable as soon 

as they are added to a cache with a nonzero csize. In this scenario, all three caches will contain the 

exact same entries because access history will be equivalent to usage history. As such, all will have 

identical hits and misses for any csize greater than zero.  

The final two rows illustrate the effects of ambiguity caused by not knowing usize. For 

LRAwe, the true total size exists in the interval between rsize and the sum of rsize and csize. 

FinalCache's total size, in all scenarios, is the sum of csize and rsize.  

Lastly, while LRA has the lowest total size, it is only because it did not grow with wsize 

as did LRAwe. However, because some of LRA's evicted entries may still have been resident in 

memory, the client program's memory footprint size would be same when using an LRA cache as 
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it would be with an LRAwe cache. In fact, the LRA client program's memory footprint may surpass 

LRAwe's due potential object duplication.  

To ensure correct behavior, both LRAwe and FinalCache must be allowed to grow to 

accommodate still reachable entries. Limiting this growth could result in the eviction of reachable 

entries, violating the promise of both caches. Alternatively, the caches might refuse new entries 

but this policy is less than ideal. Or the caches could adjust the limit, increasing the caches' 

complexity and having the same net effect as not having a limit.  

 
2.3 SYNCHRONOUS MODEL  

This section describes the state machine for a basic FinalCacheEntry. There may well exist 

alternative models for FinalCache that accomplish the same goals; however, this design is 

straightforward and demonstrably correct for the simple case of a Reference Counting garbage 

collector and Synchronous Finalize. A FinalCacheEntry can exist in one of three states: Empty, 

Used, and Unused. The possible transition events include: put, get, finalize, updateLRU, and 

delete. Put can take two forms based on whether there already exists a mapping of the put entry in 

FinalCache. Duplicate puts are idempotent, meaning only the first put will meaningfully change 

the state of an FCE. Later sections in this chapter explore the ramifications of delayed reachability 

identification and execution of Finalize. Figure 2.1 below shows the Synchronous Finalize FCE 

state machine followed by a table that elaborates on what different states mean and the key 

transitions between them.  
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Figure 2.1: State Transition Diagram: Synchronous Model  

 
Table 2.2 Synchronous state transition descriptions  

State Description Key Event/Transitions 
Empty The FCE does not currently map 

an id to a value. 
 
Awaiting put. 

The only path out of Empty is to the State. 
 
Used on a put of a new entry mapping.  
 
Aside from start, an FCE transitions to Empty 
when it is either deleted or evicted.  
 
An Empty FCE cannot be gotten, deleted, 
finalized, or evicted. 

Used The FCE value is reachable 
outside of FinalCache.  
 
Weakly mapped, finalize enabled.  
 
Awaiting finalize. 

put and get of this entry cause no change in  
state as the FCE is still reachable by client.  
 
put(id, newval) is an update to the mapping. 
Remaining Used is a convenient optimization.  
 
Update or delete requires disabling old 
finalize. Otherwise, old finalize will occur for 
an invalid entry mapping.  
 
FCE transitions to Unused on finalize.  
Used FCEs cannot be evicted. 

Unused FCE value unreachable outside of 
FinalCache.  
 
Strongly mapped, finalize 
disabled.  
Awaiting eviction. 

FinalCache's eviction heuristic is updated 
whenever any FCE enters or leaves this state.  
 
Update and get transition back to Used 
because the value is now reachable by the 
client.  
 
It is not possible to put an unreachable value. 
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The state Empty represents a FinalCacheEntry that contains no mapping between id and 

value. All FCEs transition to the Empty state from the Start state. FCEs can have their data cleared 

by a delete event or when an Unused FCE is evicted from FinalCache. The only valid transition 

from Empty is to Used on a put where the FCE is given a mapping of id to value. Naturally, at the 

time of the put, any value being added to FinalCache must be reachable by the program.  

On entering the state Used, the FCE will map the id to a weak value. The weak mapping 

permits Finalize to execute when the referent becomes unreachable outside of FinalCache. The 

referent's Finalize may already have been disabled (either by the user program or having already 

been executed) requiring FinalCache to explicitly enable Finalize on entering the state Used. From 

Used, a put event of the same id to value mapping or a successful get will have no side effects and 

the FCE will remain in the state Used. FCEs may also have their mapping updated via a put of the 

same id but a new value. On an updating put event, the old value's Finalize method must be 

disabled. This ensures only one unique Finalize event is associated an FCE.  

The execution of Finalize transitions the FCE to the state Unused; adding the FCE to 

FinalCache's LRU set and replacing the weak mapping with a strong mapping. If an insertion to 

FinalCache's LRU set causes FinalCache to exceed csize, then FinalCache will select an FCE for 

eviction. Otherwise the FCE will remain Unused unless it is either accessed via a put or there is a 

successful get. Both cases result in transitioning the FCE back to the Used state and replacing the 

FCE's strong mapping with a weak mapping. The eviction and delete events transition the FCE to 

the state Empty and the complete removal of the FCE's mapping. Additionally, the delete event 

requires disabling the FCE's scheduled Finalize.  

 
2.4 BASIC SYNCHRONOUS SEQUENCE  

Figure 2.2 is a Sequence diagram depicting a complete lifecycle of an FCE where a new 

entry is added to FinalCache, is looked up, becomes unreachable, and is then evicted. For 
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simplicity, this example uses a csize of zero which allows for the entry to become evicted as soon 

as it becomes unreachable.  

 

1. The client program makes a call to a constructor to create a new object obj. This implicitly 

invokes the memory manager to allocate and return the memory address to the client 

program The FCE is currently Empty.  

2. The main thread adds obj to FinalCache. The FCE transitions to the state Used.  

3. The main thread successfully gets obj from FinalCache. No change in state.  

4. The main thread finishes using obj. This causes the FCE to transition to Unused via finalize. 

However, obj is evicted because csize is zero. Once evicted, obj will be freed by the 

memory manager. The sequence finishes with the FCE in the state Empty.  

 

 
Figure 2.2: Sequence Diagram: Synchronous Model  
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2.5 LIMINAL MODEL  

FinalCache depends on the execution of Finalize to be notified when an object has become 

unreachable by the program and is therefore Unused. Unfortunately, depending on the language 

or runtime, Finalize can either be Synchronous or Asynchronous. The type of Finalize a runtime 

uses can affect FinalCache's behavior.  

Synchronous Finalize executes as soon as an object's reference count reaches zero. This 

behavior is desirable for FinalCache because it gives precise usage information; however 

Synchronous Finalize can have undesirable side effects as well. For example, the memory manager 

might pre-empt the main GUI thread to execute Finalize, causing a noticeable delay in program 

responsiveness. Consequently, Asynchronous Finalize is when memory managers choose to 

schedule Finalize to execute with low priority, queueing it to run when the program becomes idle. 

The execution of Asynchronous Finalize may be significantly delayed long past the time an object 

became unreachable, perhaps indefinitely, increasing FinalCache's total size.  

We call this interval between the scheduling and execution of Finalize, Liminal. Liminal 

refers to the state between state transitions, where it is difficult to cleanly classify an entity as 

exclusively belonging to one state. A real-world example of Liminal is a hospital patient whose 

heart has just stopped beating. If not revived quickly (if appropriate) the patient will soon suffer 

organ failure and die. However, the patient is not officially dead until a doctor makes the 

pronouncement.  

Accurately modeling Asynchronous Finalize requires the addition of a new Liminal state 

between Used and Unused. Additionally, the finalize event must also be split into scheduleFinalize 

and executeFinalize. Altogether, Liminal FinalCache's STD is quite similar to that of Synchronous 

FinalCache. These modifications are included in Figure 2.3 and Table 2.3 shown below.  
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Figure 2.3: State Transition Diagram: Liminal Model  

 
Table 2.3 Liminal addendum to Synchronous  

State Description Key Event/Transitions 

Liminal 
The memory manager has identified 
the object as unreachable by the 
program. 
 
Awaiting executeFinalize. 

scheduleFinalize transitions from Used 
to Liminal. 
 
get or put goes back to Used, disable old 
Finalize for correctness. 
 
executeFinalize transitions to Unused, 
update the mapping to a strong 
reference. 
 
delete transitions to Empty 

 

The event scheduleFinalize transitions the FCE from Used to Liminal. From Liminal, the 

FCE can be made Used again via get or put(id, newval) events. A put(id,val) is not possible in this 

state because finalize could not have been scheduled if the program had at least one reference to 

val. Eventually, finalize will execute, transitioning the FCE to Unused. There does not exist a path 

from Unused to Liminal. These changes in state transitions due to Asynchronous Finalize mirror 

the flatlined hospital patient. The event scheduleFinalize is the flatline itself, get is a successful 

resuscitation, and executeFinalize is the official time of death.  
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2.6 ASYNCHRONOUS FINALIZE RACE CONDITION  

Asynchronous Finalize requires an updated sequence diagram that splits Finalize into two 

events as shown in the previous section. Unfortunately, the memory manager does not expose the 

event scheduleFinalize to the user program. Consequently, FinalCache is unaware of when a 

FinalCacheEntry should transition to the state Liminal. Therefore, implementing the Liminal State 

Transition Diagram is not possible with current language APIs.  

Since implementing Liminal is impossible, would FinalCache work correctly with 

Asynchronous Finalize using the Synchronous State Transition Diagram? Sadly, it would not. 

There exists at least one sequence of events, shown in Figure 2.4 below, that violates a core 

FinalCache design goal by incorrectly labeling an FCE's state. In a sequence that closely resembles 

the basic lifecycle of an FCE, a get event occurs between scheduleFinalize and executeFinalize. In 

so doing, the program will have a reference to an FCE that FinalCache labeled as Unused.  

 

 
Figure 2.4: Sequence Diagram: Race Condition  
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Worse yet, if:  

1. The FCE value remains reachable outside of FinalCache,  

2. the FCE is not looked up again and,  

3. csize other entries become Unused then FinalCache will evict this misidentified entry, 

resulting in the very situation that it was intended to avoid.  

 
2.7 GOTTEN MODEL  

As shown in the previous section, applying the Synchronous model with Asynchronous 

Finalize can result in a violation of FinalCache's design goals. The root of the problem is the 

ambiguity created due to FinalCache being unaware of when an FCE's Finalize is scheduled to be 

executed. If FinalCache knew when this event occurred, it could disable the scheduled Finalize. 

Doing so would prevent the FCE from erroneously transitioning away from the state Used.  

To resolve the race condition, FinalCache should conservatively assume all get events 

during the state Used occur after a scheduleFinalize event. On a get, the FCE will transition to a 

different state that will absorb the next Finalize event. This modification is the basis for the Gotten 

State Machine shown below in Figure 2.5, where an FCE can only transition to the state Unused 

if the FCE is not gotten while in the state Used. Coincidentally this altered state machine strongly 

resembles the Second-chance approach to page replacement, where the head of the replacement 

queue can only be swapped out if its referenced bit is clear. 
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Figure 2.5: State Transition Diagram: Gotten Model  

 
Table 2.4 Gotten addendum to Synchronous  

State Description Key Event/Transitions 
Gotten A Used FCE was accessed. 

 
Since FinalCache does not know if 
Finalize was scheduled or not, this 
state will consume the next 
executeFinalize. 
 
Awaiting executeFinalize 

get from Used transitions to Gotten 
 
get and non-updating put remain in 
Used 
 
Updating put and executeFinalize 
transition to Used. 
 
Delete transitions to Empty 

 

Should a get event occur while the FCE is in the state Used, it will transition to the Gotten 

state rather than remaining in Used. Thereafter, any additional get or non-updating put event will 

not transition the FCE away from the Gotten state. There does not exist a transition between Gotten 

and Unused. Only an executeFinalize or updating put event can transition a Gotten FCE to the 

Used state (much like moving a referenced page to the tail of the queue and clearing its reference 

bit). In so doing, the Gotten model avoids the race condition that exists in the Liminal model.  

 One drawback of the Gotten state is that if a get event occurs before an object's finalize is 

scheduled, one additional execution of Finalize is required to transition to Unused. In fact, another 

valid design would be to transition directly from Empty or Unused to Gotten, requiring all FCEs 

to have at least two executeFinalize events before becoming Unused. However, said design is 
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inferior to the one pictured above because of the interaction between get and finalize. If a Used 

FCE is never gotten, then the race condition could not have occurred. Therefore, it is more efficient 

to transition to Unused if never gotten while Used.  

 
2.8 REFERENCE COUNTING VERSUS TRACING  

In addition to whether a language runtime uses Synchronous or Asynchronous Finalize, 

how and when garbage collection occurs can also have an impact on FinalCache. There are two 

major approaches to managing memory: Reference Counting (RC) and Tracing collection. RC 

collectors allocate additional memory per object to record the number incoming references to an 

object. This count is updated every time a reference is changed and objects are recycled (or finalize 

is scheduled) when their count reaches zero. Tracing collectors visit all reachable objects from the 

set of named variables. Those objects that could not be reached are recycled. More information on 

memory management is available in Appendix B. [17] 

Thankfully, FinalCache under the Gotten model, will work correctly regardless whether 

the runtime uses a RC or Tracing garbage collector. Therefore, no redesign is needed. However, 

the runtime may influence FinalCache's hit rate depending on the ordering of get, scheduleFinalize, 

and executeFinalize events.  

Consider the sequence of events shown in Figure 2.6 below, where three FCEs become 

unreachable, one after the other. With an RC system, each finalize would be scheduled to run in 

the order with which they became unused. If Tracing collection were run very frequently, it would 

also identify the three entries in the order they became unused. However, this fine of a granularity 

is unlikely to occur in practice due to the expense of running three garbage collection cycles to 

only identify three unused objects. Moreover, such frequent garbage collection would negatively 

impact program responsiveness.  
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Figure 2.6: Sequence Diagram: Three unreachable entries with RC and Asynchronous Finalize  

 

The more probable scenario, shown in Figure 2.7 below, is all three entries would be 

identified as unreachable during the same garbage collection cycle. However, the order with which 

the runtime schedules their Finalize methods is essentially random. The implication being that 

Tracing FinalCache's eviction ordering will not be the same as an RC FinalCache.  
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Figure 2.7: Sequence Diagram: Three unreachable entries with an infrequent Tracing collector 

and async finalize  

 

The interval between garbage collection cycles means that FCEs will remain in the Used 

state far longer with a Tracing Collector than they would have with RC. Consequently, a Tracing 

FinalCache's total size may exceed that of a RC FinalCache for the same csize possibly leading to 

a better hit-rate, at least until the next garbage collection cycle. If too many FCEs are finalized, 

they could overflow csize, resulting in a mass eviction and a temporary reduction in hit rate.  

In effect, the interval between garbage collections downgraded FinalCache's eviction 

heuristic from LRU to NRU. If csize was equal to 2 then, RC FinalCache would evict entry a 

whereas Tracing FinalCache will evict entry b even though entry a became reachable prior to b. 

Getting a more accurate reachability ordering with a Tracing collector requires a short interval 

between garbage collection cycles. Unfortunately, frequent garbage collections will negatively 

impact program response times and result in low yields of reclaimable memory per cycle. This 

topic is explored in greater depth in Chapter 4.  
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2.9 NOTES ON IMPLEMENTATION  

My prototype FinalCache required many specific language features to perform as intended. 

Unfortunately, the implementations of these features varied by language and even runtime. We 

found only one language, C#, that contained all the following:  

 
Weak References  

To allow entries to become identified as unreachable, FinalCache could not maintain 

Strong References to them. While phantom references would have worked in this regard, their 

referent is not reachable by FinalCache making them unsuitable for this application. Many 

languages provide Weak References including Java, Python, and C#. [21–23] 

 
Unsafe/Long Weak References  

An entry can be looked up during the interim between when it becomes unreachable and 

when FinalCache is notified via finalize. Normally, Weak References are cleared by the memory 

manager when their referent becomes unreachable. This behavior could result in a cache miss if 

the entry is requested during this interval. Unsafe Weak References persist until the referent is 

recycled by the memory manager. Using these allows FinalCache to hit in this situation. It is crucial 

that no other Unsafe Weak References exist to FinalCache entries outside FinalCache. Violating 

this requirement could result in an object being in the state Unused but still reachable by the 

program outside FinalCache. C# was the only language we are aware of that provided this 

feature.[21]  

 
Object Resurrection via Finalize  

FinalCache uses finalize to become informed of when entries become unreachable. 

Traditionally, the next step after becoming so is being reclaimed by the memory manager. 

However, FinalCache resurrects the object by making it Strongly reachable again by FinalCache 
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itself. Reference Queues are usually the de-facto means of being notified an object has become 

unreachable however they cannot be used to resurrect the object. Many languages allow for object 

resurrection including Java, Python, and C#, while some languages, such as Objective-C, expressly 

forbit it. [22,24–26] 

 
Infinite Resurrection  

A FinalCache entry may be looked up again after becoming Unused, transitioning the entry 

back to the state Used. The FCE may then remain in FinalCache until it becomes unreachable 

again. Unless Finalize runs again, the entry would not be resurrected. Java and Python only execute 

Finalize once per object. C# can execute Finalize every time an object becomes unreachable. [25–

27] 

 
Enable/Disable Finalize  

When an entry mapping is updated or deleted, the old object's Finalize is no longer 

necessary. We could have set a flag that indicated the Finalize should do noting when it eventually 

ran. However, it is much more efficient to disable the object's finalize execution entirely, a feature 

of C#. Doing so requires enabling Finalize for the current mapped entry when they transition to 

the state Used. It is also imperative that the client program does not enable/disable an FCE's 

finalize method. [25] 

 
Explicit GC Invocation  

In the case a program's runtime uses a Tracing collector, testing FinalCache can be 

unproductive as the programmer cannot know when the garbage collector ran (or even if it ran at 

all). Some runtimes include the ability to explicitly invoke a garbage collection cycle. However, 

this call may just be implemented as an advisory notice to the system that now might be an 

appropriate time to run the collector, though the runtime is free to ignore it as is the case with Java. 
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C# however, provides an explicit GC invocation which will initiate a background garbage 

collection. [28] 

 
Wait for Finalizers to Run  

Along the same vein, it does no good testing FinalCache if FCEs never have their finalize 

methods scheduled or executed. Programmers could put all program threads to sleep to facilitate 

the running of the thread responsible for managing the Finalize queue, however this approach 

seems excessive. Thankfully, C# includes a feature that blocks a thread until all Finalize methods 

have been run. By combining explicit GC and waiting for Finalize, it was possible to accurately 

test FinalCache. [28] 

While FinalCache is possible to implement with current memory management 

mechanisms, there are several drawbacks that prevent it from being used in a production 

environment. We could not have built FinalCache without the exact combination of features 

mentioned above. For an in-depth discussion on these issues and viable solutions to them see 

Section 4.2. The code for the implementation in C# is available on GitHub and an in-depth 

discussion of its architecture is in Appendix D.[16] 
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Chapter 3: Empirical Study 

. This dissertation’s primary contribution is a novel model of usage-based caching and 

algorithms that implement it. The motivations for developing FinalCache was an intuition that the 

behavior of a usage-based cache would be superior, or at least as good as, access-based caches.  

In particular, it was anticipated that  

A. Unless cache capacity is very large, LRA would evict many in-use objects. 

B. A significant portion of evicted in-use objects would be subsequently looked up, risking 

potential duplication. 

C. The hit rates of LRAwe and FinalCache would be similar for similar maximum sizes. 

D. FinalCache’s csize parameter would be a more expressive capacity parameter than those 

exposed by access-based caches. 

This chapter describes an initial empirical study of FinalCache’s behavior to examine the 

validity of these expectations. 

Unfortunately, FinalCache’s unusual requirements preclude direct replacement and 

measurement strategies. As described in Section 3.2, FinalCache cannot be used as a drop-in 

replacement for exiting software caches. While a plethora of cache traces have been published, 

theses traces do not contain usage information. A purely analytic approach would require realistic 

models of cached object usage, and these are also unavailable.  

Data supporting this empirical examination of FinalCache were derived from Firefox’s 

logging framework, which was configured to generate traces with usage information suitable for 

simulating LRA, LRAwe, and FinalCache. Simulation results suggest FinalCache has better hit 

rate with a smaller csize than both LRA and LRAwe. This first section discusses some observations 

concerning entry usage and the research questions they inspire. The following two sections 

examine how these questions were evaluated and how trace data was generated. They are followed 

by three sections that present and describe results of simulations of LRA, LRAwe, and FinalCache 

driven by this trace. 
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3.1 RESEARCH MOTIVATION AND QUESTIONS 

Below are the research questions and their motivating observations that will be examined 

in this chapter. 

Observation 1: Eviction of In-Use entries does occur.  

As described in Chapters 1 and 2, duplication can occur if a lookup operation for an evicted 

but still referenced object fails and current strategies for preventing these evictions, such as 

inflating cache capacity and weak eviction, are problematic. 

Research Question 1: Misses of in-use entries do occur in LRA caches with sufficient 

capacities to have high hit rates. This hypothesis is relevant because it indicates that both 

FinalCache and LRAwe benefit from usage information. This hypothesis is supported by the 

empirical study. 

Observation 2: Unlike the capacity parameters for existing caches, FinalCache’s capacity 

parameter corresponds to the amount of additional storage consumed by the cache. FinalCache 

was motivated by hypothesis that usage info and meaningful capacity parameters are useful.  

Research Question 2a: Total memory usage will be similar between FinalCache and 

LRAwe because the largest contributor to csize are in-use entries when csize is small. This is 

important because otherwise FinalCache would not be efficiently using memory.  

Research Question 2b: To achieve a particular hit rate, FinalCache will require a smaller 

csize than LRAwe. Unlike LRA and LRAwe, FinalCache’s capacity metric only represents 

memory usage by the cache. 

 
3.2 SIMULATION 

As described in Chapter 2, FinalCache’s eviction heuristic is informed by Finalize after an 

object has become unused. This section describes simulation results for FinalCache, LRA, LRAwe 

driven from trace data collected from the Firefox browser. Firefox is a widely used open source 

web browser with a feature-rich logging framework. Firefox’s cache is aware of reachability 
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events. Logged operations include add, update, get, delete, as well as eviction and doom events. 

The next section includes details concerning log generation and descriptions of these events.  

The experiment entails running simulations following the sequence of cache operations 

logged by Firefox for each type of cache (LRA, LRAwe, and FinalCache) using various fixed 

csizes (see Chapter 2). Csize can be configured either in terms of number of entries or number of 

bytes. Cache capacity was limited and measured in units of cache entries. 

For LRA the simulation tabulated hits, misses, in-use evictions, and in-use misses. In-use 

misses were not recorded for LRAwe and FinalCache because they cannot occur (see Chapter 1), 

Max entries refers to the combination of used and unused entries which differs between LRAwe 

and FinalCache. 

 
3.3 LOG GENERATION 

This section describes how Firefox's diskcache trace data was generated including which 

events were logged, how Firefox was configured, and what activity was recorded from each 

interactive session. Firefox was configured to collect the events summarized in. Table 3.1. The 

only FinalCache event without a direct corresponding Firefox event is Finalize. FinalCache’s 

Finalize event was simulated using Successful Eviction and Doom events. 

 
Table 3.1 List of logged Firefox DiskCache events 

Event Type Description 

Addition Insertion of a new cache entry. May result in the eviction of existing entry or 

entries. 

Deletion Complete removal of a cache entry. 

Access Updates the eviction heuristic 

Successful 

Eviction 

Capacity limit exceeded requiring removing at least on cache entry determined 

by its eviction heuristic. Firefox will not evict an entry currently in-use. This is 

one of two event types used by the simulation to determine usage. 
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Doom An unsuccessfully evicted entry has become unused. The entry is removed from 

Firefox and is the second of two event types used by the simulation to determine 

usage. 

 

Accurate simulation of LRAwe and FinalCache requires prompt reporting of usage events. 

Like LRAwe, Firefox’s cache will not delete an unused entry. To ensure that Firefox’s cache will 

promptly evict unused entries, it was configured with a small capacity. A capacity of zero would 

have been ideal because it would cause Firefox to log the removal of entries immediately after 

they became unused. Sadly, Firefox malfunctions when its cache’s capacity is reduced to zero. A 

capacity of 16 KB is sufficient to prevent this malfunction. This is important because a large 

capacity will delay the eviction of unused entries so it was important to keep this parameter low 

for usage accuracy.  

The median website transfer size per median requested resource for desktop browsers was 

approximately 27KB during March 2020 according to the HTTP Archive.[43] If an entry is unused 

at the time of eviction, Firefox will successfully evict it. However, if the entry was still in-use at 

the time of eviction, a separate event "Doom" will be recorded once the entry becomes unused. 

User activities in the session included: reading news articles, watching videos, and browsing 

comics. Firefox's cache was cleared before the start of each session and Firefox’s smartsize feature 

(which dynamically adjusts cache capacity) was disabled. 

 
3.4 LRA 

As described in Section 3.3 in-use evictions and in-use misses can occur in access-based 

caches. In the Firefox trace, 6665 unique cache entries were looked-up 54703 times. The results 

in Table 3.2 below indicate that in-use evictions and in-use misses can indeed occur with access-

based eviction and that the majority of evictions were of in-use entries. 
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Table 3.2 LRA Results 

csize Hits Misses Hit Rate Evictions In-use evictions In-use misses 

50 10252 44451 18.74% 9186 7341 4498 

100 11081 43622 20.26% 8391 6587 3669 

250 11678 43025 21.35% 7702 5969 3072 

500 12416 42287 22.70% 7129 5436 2334 

750 13669 41034 24.99% 6638 5005 1081 

1000 14185 40518 25.93% 6216 4655 565 

1250 14341 40363 26.22% 5921 4406 409 

1500 14491 40212 26.49% 5645 4192 259 

2000 14582 40121 26.66% 4973 3633 168 

3000 15028 39675 27.47% 3765 2696 0 

4000 15066 39637 27.54% 2433 1957 0 

5000 15169 39534 27.73% 1680 1284 0 

6000 15181 39522 27.75% 673 534 0 

7000 15183 39520 27.76% 0 0 0 

 

Observe that this trace’s maximum hit rate was quite poor at 27.76% or 15183 hits. 

Additionally, csizes larger than 3000, nearly half the universe of cache entries, yielded less than 

one percent total increase in hit rate. Csize 3000 is also the point at which there were no more in-

use misses. This suggests that not evicting in-use entries may have a greater impact on hit rate than 

not evicting unused entries. Figure 3.1 below plots the number of in-use events for various csizes. 

Notice the risk of in-use misses is still present for csizes less than 7000 due to in-use evictions. 
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Figure 3.1 LRA in-use evictions and in-use misses 

 
For accurate comparison with LRAwe and FinalCache, these experiments were performed 

with finer csize granularity between 6000 and 7000. LRA reached max hits at csize 6149 but 

continued to evict in-use entries for all csizes less than 6665, the total number of unique cached 

entries Recall that eviction is meant to reduce memory footprints and that cache capacity (csize) 

is an important tuning parameter. In this experiment, all csizes smaller than the universe of 

cacheable entries resulted in in-use evictions that do not reduce memory footprint. Further research 

is required to determine to the commonality this behavior. 

 

3.5 COMPARISON OF LRAWE AND FINALCACHE 

The previous section described the results of the simulation for LRA and showed that in-

use misses and in-use evictions do occur. This section examines the results of the simulation using 

the same cache logs for both LRAwe and FinalCache. Recall that these two caches do not have in-

use misses nor in-use evictions like in LRA. Error! Reference source not found. below tabulates 
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the number of hits and maximum total size for LRAwe and FinalCache. Four pairs of sizes 

resulting in similar hit rates are highlighted by color.  

Table 3.3 Results of LRAwe and FinalCache 

 
LRAwe FinalCache 

csize Hits H/C 

Max 

Size Unused Hits H/C 

Max 

Size Unused 

0 14750 N/A 4988 0 14750 N/A 4988 0 

50 14831 1.62 4992 4 14878 2.56 5038 50 

100 14842 0.92 4995 7 14923 1.73 5088 100 

250 14860 0.44 5022 34 15118 1.47 5238 250 

500 14922 0.34 5034 46 15130 0.76 5488 500 

750 14952 0.27 5085 97 15182 0.58 5738 750 

1000 15087 0.34 5143 155 15182 0.43 5988 1000 

1250 15122 0.30 5186 198 15183 0.35 6238 1250 

1500 15122 0.25 5244 256 15183 0.29 6488 1500 

2000 15130 0.19 5341 353 15183 0.22 6665 1677 

3000 15182 0.14 5601 613 15183 0.14 6665 1677 

4000 15182 0.11 5886 898 15183 0.11 6665 1677 

5000 15183 0.09 6270 1282 15183 0.09 6665 1677 

6000 15183 0.07 6527 1539 15183 0.07 6665 1677 

7000 15183 0.06 6665 1677 15183 0.06 6665 1677 

 

Throughout this section the notation of <value> : <csize> will be used to denote either a 

caching algorithm or a metric at a given csize. For example, LRA:0 refers to the configuration of 
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LRA with csize zero. Additionally, Hits:500 denotes the value of hits at csize 500 for any caching 

algorithm unless otherwise specified. If csize is left as a variable, such as in Hits:csize, then this 

denotes the hits for any particular csize and is only used here as part of an equation. For each 

algorithm, the rightmost “unused” columns indicate the number of unreferenced entries retained 

by the cache when it reached its maximum size (𝑀𝑎𝑥𝑆𝑖𝑧𝑒: 𝑐𝑠𝑖𝑧𝑒 − 𝑀𝑎𝑥𝑆𝑖𝑧𝑒: 0). We also define 

a utility metric “hits per csize” (H/C) that represents how well the addition of csize entries above 

zero increased the number of hits (
ு௜௧௦:௖௦௜௭௘ ି ு௜௧௦:଴

௖௦௜௭௘
). H/C is the relative benefit of increasing for 

LRAwe and FinalCache (H/C is not a valid metric for LRA as it has no hits0). For example, an 

H/C of 1 would indicate that on average each csize entry was accessed once. We expect this 

number to trend towards zero as csize increases because csize will eventually grow faster than hits. 

LRAwe:0 & FinalCache:0  

For these two data points, both caches have the same max size. This is evidence that 

LRAwe and FinalCache are working as intended. LRAwe will weakly evict all entries as they 

added, maintaining references to entries that are still in-use by the client program. FinalCache will 

evict all entries as they become unused, meaning FinalCache will only reference in-use entries. As 

such, LRAwe and FinalCache have identical contents at every point during the simulation, 

resulting in both having the same number of hits and maximum size. Csize of zero also serves as 

a baseline comparison against other csizes. 

LRAwe:500 & FinalCache:100 

FinalCache needed a much smaller csize to achieve the same hit rate as LRAwe. 

FinalCache’s H/C value of 1.73 and LRAwe’s of 0.344 means that each csize entry of FinalCache 

was worth five times as much as the equivalent LRAwe csize cache entry. 
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LRAwe:3000 & FinalCache:750 

FinalCache’s utility has, compared to Gray, dropped to four times as high as LRAwe. It is 

also interesting to note that the number of unused entries in LRAwe is now much closer to that of 

FinalCache than it was in proportion to Gray. Both caches are near max hits though LRAwe 

required nearly a csize of nearly half the universe of entries.  

LRAwe:5000 & FinalCache:1250 

Both caches now have the maximum number of possible hits though much that was 

described about Blue holds true for Orange. One interesting data point is that maximum size and 

unused entries in LRAwe actually surpassed those of FinalCache.  

The data suggests that FinalCache will have the same or better hit rate than LRAwe given 

the same csize. It is interesting that, at least in this session, FinalCache needed one quarter the 

csize of LRAwe to achieve the same hit rate. Additional testing would be required to determine if 

this is a general trend and is discussed in greater detail at the end of this chapter.  

Figure 3.2 below considers LRAwe and FinalCache hits as a parametric function of 

maximum observed size. It illustrates that LRAwe and FinalCache have a similar hit rate when 

considered as a function of maximum size, though FinalCache's maximum size tends to be slightly 

greater than LRAwe's. This result suggests that FinalCache has a similar hit rate as LRAwe when 

they have a similar, maximum size. 
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Figure 3.2 LRAwe and FinalCache hits as a function of maximum size 
 

3.6 IN-DEPTH DISCUSSION ON FINALCACHE 

The results from the previous two sections show that FinalCache generally had the largest 

maximum size. However, this data point is misleading because it does not identify when 

FinalCache reached this size during the course of the simulation. This section examines in-depth 

how FinalCache’s size changes over time and why. 

While the growth of the simulation could very well be caused by a memory leak, intuitively 

both LRAwe and FinalCache will accumulate very long-lived entries over the course of the run 

because some websites are ubiquitous. A cursory examination of the set of longer-lasting entries 

indicates that they were dominated by entries corresponding to URIs at Google, Facebook, Yahoo, 

and MSN. These websites are ubiquitous on the internet and is it is not surprising they remained 

in the cache.  

Figure 3.3 below shows the cache size for FinalCache:0, LRA:0, FinalCache:750, 

LRAwe:3000, and LRA:3000 in intervals of fifty accesses. The horizontal axis indicates the 
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number of total cache accesses (as a proxy for time). FinalCache:0, which is equal to LRAwe:0, is 

plotted because it shows the number of in-use entries. As described in Table 3.3 above, 

FinalCache:750 and LRAwe:3000 have similar numbers of hits but different csizes. Of course, no 

discussion of LRAwe:3000 is complete without including LRA:3000 because they have the same 

csize.  

 

 Figure 3.3 Maximum size over time. Each point is the maximum number of entries during and 
interval of fifty cache operations. 

 

Maximum size increased over the course of the simulation (excluding LRA:0). This would 

be consistent with the presence of many long-lived entries. Analysis presented below also supports 

this assumption. LRA:0 evicts all entries as they are added and thus remains at maximum size zero 

for the duration of the experiment. After a warm up period where the caches accumulate csize 

cache entries, the plots begin to diverge. 
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FinalCache:0 and LRAwe:0 grew to approximately 5000 (4988). FinalCache:750, as 

expected (see Section 2.2), finished exactly 750 entries larger than FinalCache:0. LRA:3000 

diverges from LRAwe:3000 and FinalCache:750 at a maximum size of 3000. This occurs because 

FinalCache and LRAwe adjust maximum size based on usage while LRA is fixed. While 

LRA:3000 may appear to be the smallest cache configuration (excluding LRA:0), it actually uses 

as much memory as LRAwe:3000 (and potentially more due to object duplication).  

The last noteworthy point of interest occurs around maximum size 5000, where 

LRAwe:3000 begins to use less memory than FinalCache:750. As mentioned in the previous 

section, this is also the moment at which LRA:3000 had no in-use evictions. It appears to be much 

more than a coincidence, but this experiment was not designed to determine if LRAwe will have 

the same hit rate as FinalCache once there are no longer in-use evictions. As such, further research 

is needed to determine if this is a general trend. Unfortunately, while Figure 3.3 indicates an 

accumulation of cache entries, it does not show their distribution as is depicted in Figure 3.4 below.  

 

Figure 3.4 Entry lifetime for FinalCache:0 with buckets of 10000 cache operations 
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The largest bucket with nearly 2500 entries was for those entries that lived less than 10000 

cache accesses by the end of the simulation. This is consistent with the common observation that 

most objects die young {cite}. There also are a significant number of long-lived entries (a third 

survived more than 50000 operations). These longer-lived entries are likely a source of in-use 

evictions.  

The simulation results presented above were driven by traces that included exact usage 

information which enables exact LRU ordering. However, Tracing collectors create uncertainty 

with regards to when objects became unused. Frequent execution of tracing collection would 

provide more precise usage ordering but is very inefficient. As such systems with tracing collectors 

need to balance the anticipated yield of unused memory with the cost of running the garbage 

collector. Furthermore, runtime systems may indefinitely delay client notification by finalize or 

other interfaces. Figure 3.5 below shows the distributions of unused entries that would have been 

identified if tracing collection (delayed notification) were executed every 50, 250, and 500 cache 

operations.  

 

Figure 3.5 Distribution of number of entries identified as unused with various intervals between 
GC cycles 
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If garbage collection is executed frequently, then FinalCache's set of unused entries will 

closely approximate the exact usage information of reference counting. However, as the interval 

between collection cycles becomes larger, the number of identified unused entries grows as well. 

As such, FinalCache's eviction ordering becomes less accurate and more akin to NRU than LRU.  

Ironically, when tracing garbage collection is run infrequently, FinalCache will have an 

inflated hit rate because entries will seldom be evicted. Unfortunately, should csize be smaller than 

the number of identified unused entries, then FinalCache's set of unused entries could be 

completely flushed, resulting in temporary loss of usage accuracy and possible poor hit rate. The 

extent that Tracing collectors affect FinalCache's behavior is a topic that warrants further 

investigation. 
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Chapter 4 Merit and Impact 

FinalCache, as implemented, cannot be used as a drop-in replacement for existing software 

caches due to API differences necessitated by Finalization as described in Section 2.9. However, 

this prototype FinalCache can be integrated within C# programs in which a suitable Finalize can 

be added to cachable objects. Section 4.2 proposes a variant of Weak reference type called Liminal 

References based on the Liminal Model of FinalCache (see Section 2.5). Liminal references could 

decouple FinalCache from its entries by functioning like Weak references except in how their 

referents are cleared. Traditional Weak references are cleared after being identified as exclusively 

weakly reachable. In contrast, Liminal references would not be cleared until after all notifications 

have been removed from their respective Reference Queues (see Appendix C). Thus, Liminal 

references would allow a cached object to have multiple mappings in either one or multiple caches, 

in addition to allowing referent objects to be made reachable again after becoming exclusively 

liminally reachable.   

FinalCache implicitly determines usage via a combination of Weak references and 

Finalize. The Weak reference allows the entry to become exclusively weakly reachable and 

Finalize temporarily resurrects the object, until the object is either requested or evicted. This 

technique, whereby a user program makes some memory management decisions, has applications 

beyond software caches. Sample applications are discussed in 4.3 Applications and Future Work 

including improved pre-mortem cleanup, object pools, user-level garbage collection, and custom 

reference types. The implicit tracking of object usage via the garbage collector creates some 

interesting opportunities for future research.   

This work primarily focused on the viability of FinalCache and did not quantify how well 

it performs under various workloads. Nor did we investigate alternative eviction heuristics such as 
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frequency-based or greedy eviction in conjunction with reachability. Additionally, as shown in 

Section 3.6, it is important for FinalCache to identify unused objects soon after they become 

exclusively weakly reachable to provide accurate usage ordering. Traditionally, garbage collection 

has not been considered a high priority process. As such, a high priority FinalCache could find 

itself waiting on the low priority memory manager, a textbook example of priority inversion.   

 

4.1 MERIT AND IMPACT  

"Intellectual Merit encompasses the potential to advance knowledge and Broader Impact 

encompasses the potential to benefit society and contribute to the achievement of specific, desired 

societal outcomes." [29] FinalCache is not the first software cache to avoid the problem of in-use 

eviction, nor does it appear to substantially reduce total memory usage compared to weak eviction. 

However, FinalCache tracks cache entry usage to implement true least recently used eviction 

without the need for program-managed usage notification.  

 

4.1.1 Intellectual Merit  

The research described in this dissertation includes the following original observations and 

innovations. 

Traditional LRU is actually LRA 

From the perspective of the memory manager, an object is considered in-use if it is 

reachable from the root set. This view is unavailable to software caches unless they are explicitly 

informed of when an entry becomes unused. As such, extant caches approximate usage based on 

access history. 
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True LRU is possible with assistance from the Memory Manager 

The memory manager identifies object usage as part of its efforts to make unused memory 

available to program. However, this information has traditionally not been exposed to program 

unless it was for the purposes of pre/post mortem cleanup. FinalCache is an example use-case 

where this information can drive program behavior.  
 

Suitability of second chance strategy to resolve race condition 

The interval between when an object has been identified as unreachable by the memory 

manager and when the program is informed of this event can results in a race condition. If an entry 

is accessed while Liminal, FinalCache could violate its design principles by evicting an in-use 

entry. This race condition can be avoided by utilizing second chance. 

Languages have unsuitable APIs for implementing client-side memory management 

The requirements necessary to implement FinalCache in a modern language require many 

features that are not often available in many languages. Even though C# included all the requisite 

features, the strong coupling between FinalCache and its entries to determine usage information 

leave much to be desired. A change to the semantics of Weak References and Reference Queues 

to ensure that referent objects would continue to exist until the notification is dealt with could 

decouple FinalCache from its entries. We call this variation of Weak References Liminal and they 

are discussed in Section 4.2. 
 

4.1.2 Broader Impact  

FinalCache’s csize parameter directly adjusts FinalCache’s impact on a program’s memory 

footprint which we expect will simplify the tuning of cache size compared to LRA(we). 

FinalCache demonstrates the viability of client program memory management as well as the 

limitations of current interfaces between programming languages and their respective memory 
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manager. The benefits of program level memory management decisions have implications beyond 

caching. Section 4.3 describes examples in the domains of programming language design, memory 

management, operating systems, and software engineering.  

4.2 LIMINAL NOTIFICATION   

While FinalCache works as a proof of concept, its use of Finalize to determine entry usage 

impedes widespread deployment in a production environment. Each FinalCacheEntry must 

implement a Finalize method that informs FinalCache when the entry becomes Unused, creating 

high coupling between FinalCache and its entries. This also means that my prototype does not 

operate well with third-party objects not intended for use with FinalCache and therefore cannot be 

used as a drop-in replacement for existing caches (though there may exist use cases where this 

strong coupling is irrelevant). Ironically, FinalCache may require a name change when such an 

alternative exists as it would no longer be based on Finalize.  

Currently, the closest alternative available to Finalize are Reference Queues as defined in 

Java (RQ) used in conjunction with Weak (or Phantom) references. RQs notify a program that an 

object became exclusively weakly (or phantomly) reachable. Unfortunately, RQs cannot be used 

to resurrect unreachable objects, making them unsuitable for FinalCache (see Appendix C).   

We propose a modification to Weak references and RQs called Liminal References. As 

described in Section 2.5, Liminal refers to the state between states. In this context, liminal means 

the interval between when the garbage collector identifies an object as unreachable and when the 

program is notified. Liminal references would behave almost identically to Weak references except 

for how the memory manager would clear their referents. Liminal referents would not be cleared 

until after the Liminal reference notification has been removed from its RQ, rather than on being 

identified as weakly reachable. Finalize in turn, will not be scheduled until after all notifications 
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to a liminal object have been cleared from their RQ; making them safer to use than C#'s unsafe 

Weak reference. This alternative interface would obviate FinalCache’s need for the Finalize 

interface.    

Another limitation of FinalCache is related to some assumptions made to simplify its 

design. FinalCache requires that a unique FinalCacheEntry can exist in one only FinalCache at a 

time, and a referent object is mapped only once as well (see Section 2.6). Liminal references should 

be able to address this problem.   

Unfortunately, having an entry exist in multiple caches leads to another problem. Consider 

two FinalCaches using Liminal references configured with csizes zero and one. Regardless of the 

order with which liminal notification occurs, the smaller cache will evict all entries on liminal 

notification, where the larger cache will not. This creates the risk of an in-use miss resulting in 

entry duplication. To avoid this situation both caches would either need to be in communication 

with each other or connected to an underlying cache which is a topic that warrants additional 

research.  

4.3 APPLICATIONS AND FUTURE WORK  

FinalCache is one application of utilizing the memory manager to implicitly track object 

reachability. The major insight behind FinalCache is that not all unreachable memory needs to be 

immediately reclaimed by the automatic memory manager. Rather, there are situations where some 

decisions should be the responsibility of the client program. Liminal references, as described in 

4.2 Fixing FinalCache with Liminal References, could be used to implement the following 

applications of client program memory management.  
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Pre-mortem cleanup  

Finalize was intended to be the analog to the C++ destructor for languages with automatic 

memory management. Invoking the destructor before the object was recycled allows for important 

housekeeping tasks that can only be completed while the object is still reachable, such as closing 

open file descriptors. Unfortunately, its unreliability and variation among languages (and even 

between runtimes) motivated developers to utilize other strategies such as Phantom references and 

try-with-resource blocks. Unlike Finalize, Phantom references can only be used for post-mortem 

cleanup. Try-with-resource blocks can perform pre-mortem cleanup by automatically calling 

close, but only if the resource object only exists in the scope of its try-block and the object 

implements the autoclose contract.  

Object Pools  

A program might choose to limit the number of instances of a class as in the Object Pool 

design patterns. Object pools can be controlled by a counting semaphore so that when a thread 

needs one of its objects, the thread will block if no objects from the pool are available. Checking 

an object back-in releases the lock and reset the object's state for the next time it is checked-out.  

Unfortunately, this explicit check-in of objects can lead to a memory leak. Should the 

program fail to return a checked-out object, the object pool will continue to consider the object as 

checked-out. A solution to this problem could be to use Phantom references to release the lock and 

create a new pooled object when the original became garbage collected. However, if the object 

pool wanted to only ever create an object once, this approach is not a valid solution. Alternatively, 

the object pool could use Weak references and resurrection via custom Finalize, much like 

FinalCache. However, this approach carries all the problems mentioned in pre-mortem cleanup.    
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User level garbage collection  

Liminal notification could be used to implement user level memory management. This use 

case does add some overhead; however, it would have the advantages of not requiring explicit 

tracking nor unsafe memory references compared to traditional custom allocators. Because of 

liminal references low coupling, user level memory management could be useful as an assignment 

for students in system classes as well as a debugging tool.   

Custom reference types  

Java is the only language we found that includes multiple levels of non-strong reachability 

including Weak, Soft, and Phantom references. Liminal references could be used to create custom 

non-strong reference types without requiring a bespoke memory manager. For example, a 

reference type between Weak and Soft. If client programs had access to memory statistics, such as 

the amount of free space versus allocated, then Liminal references could be used to implement 

Soft or Priority references.   

Unfortunately, Liminal references do not yet exist in the form described in 4.2 Fixing 

FinalCache with Liminal References. Further research is required to formally define, design, and 

implement this feature into a modern programming language like Java. Additionally, my 

preliminary results from Chapter 3 suggest more avenues of research listed below.  

Csize and LRA  

The results from Section 3.4 show that LRA risked in-use evictions for all csizes less than 

the total number of unique entries. However, there were no in-use misses for csizes above 3000, 

and LRAwe:0 reached a maximum size of 4988. Above what csize is an LRA cache likely to 

experience an in-use miss? Does ensuring that no in-use entry is ever evicted mean csize must 

equal the total number of unique entries?   
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A Priority Inversion  

An object belonging to a very high priority thread needs to be identified as unused as soon 

as possible. A tracing collector may not run sufficiently often or with high enough priority to 

satisfy this constraint. Or the object in question became tenured and not likely to be identified as 

unreachable until after a complete garbage collection cycle in a generational collector. Essentially, 

a high priority thread is at the mercy of the memory manager. Formally expressing and solving 

this priority inversion is worth exploring.  

Delayed Notification  

Recall that FinalCache’s eviction heuristic prioritizes retention of recently used objects.  

This prioritization will be incorrect if delayed notification obfuscates (or permutes) the sequence 

of unreachability reported to FinalCache. Even if no high priority threads ever needed an entry 

from FinalCache, delayed notification due to infrequent garbage collection or low priority Finalize, 

there still exists an impact on FinalCache itself. As described in Section 3.6, FinalCache still relies 

on accurate usage information to determine eviction ordering. Therefore, it is important to assess 

the possible impact on hit rate as FinalCache accumulates unused entries only to suddenly have its 

contents flushed.   

Profiling FinalCache  

This dissertation focused on exploring the design, implementation, and feasibility of 

FinalCache. How well exactly FinalCache performs with diverse types of workload in an actual 

runtime was not within the capabilities of my experiment. Additionally, this simulation only 

considered strict usage for eviction ordering. How would altering the eviction heuristic to be 

frequency-based or greedy-based affect FinalCache's performance?   
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4.4 SYNOPSIS  

Software caches that utilize heuristics that do not include entry usage risk evicting in-use 

entries and entry duplication. Using weak eviction ensures that in-use entries will remain reachable 

by the cache but do not ensure entries will temporarily persist after becoming unused. FinalCache 

not only avoids the problem of in-use eviction, it also ensures that all entries persist until csize 

other entries become unused.   

FinalCache also exposes the flaw in equating csize with memory footprint. Traditional 

LRA's csize includes both in-use and unused objects, but a cache’s contribution to program 

memory footprint is in the unused objects it maps. When LRAwe’s csize is greater than zero, 

LRAwe cannot determine which entries are currently unused and contributing to total memory 

footprint. However, FinalCache knows its impact on memory is csize because those entries are 

unused.   

LRA's csize is also its maximum size but this too can be misleading as LRA risks entry 

duplication. LRAwe's maximum size is the sum of csize and all in-use weakly evicted entries. In 

contrast, FinalCache's maximum size is the sum of csize and all in-use entries. Table 4.1 below 

summaries csize and maximum size for LRA, LRAwe, and FinalCache. 

Table 4.1 Summary of csize and maximum size 
 LRA LRAwe FinalCache 

csize in-use and unused in-use and unused unused 

maximum size csize(officially) csize + evicted in-use csize + in-use 

 

In a runtime with Synchronous Finalize, an FCE requires the three states Empty, Used, and 

Unused. However, Asynchronous Finalize splits the Finalize event into scheduleFinalize and 

executeFinalize. Accurately representing this split requires updating the model with new events 
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for Finalize and a new Liminal state. Unfortunately, client programs are unaware of when the event 

scheduleFinalize occurs and therefore cannot implement this model. Instead, FinalCache must use 

a Second Chance algorithm to ensure that a get event does not occur before Finalize could have 

been scheduled, avoiding a race condition.   

There are also several language features necessary to implement FinalCache aside from 

Finalize and Weak References. These include unsafe Weak References, resurrection via Finalize, 

and the ability to enable/disable Finalize among others (see Section 2.9). As far as we are aware, 

C# is currently the only language suitable to build my prototype FinalCache.  

Preliminary results show that in-use eviction and in-use misses are a problem for LRA, 

even with large values of csize. LRAwe and FinalCache follow a similar trajectory of hit rate as a 

function of maximum size, but FinalCache required a smaller csize than LRAwe to achieve the 

same hit rate. Though not a feature of the trace data, by using different intervals of accesses, we 

were able to extrapolate how FinalCache would behave if used with a Tracing collector. The more 

frequently garbage collection is run, the better the approximation of Reference Counting eviction 

ordering.  

FinalCache exemplifies the case for some client-side memory management. Implicitly 

determining usage information can be done safely even with current program/memory manager 

interfaces, though Liminal References would help in this regard. Further research is required to 

profile FinalCache’s performance with a larger data set and assess the impact of delayed 

notification. Additionally, work is needed to design and implement Liminal references to make 

FinalCache viable as a drop-in replacement for existing caches. 
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 Appendix 

These Appendices cover background information and related work relevant to FinalCache. 

FinalCache is not the first cache to utilize Weak References as part of its eviction heuristic and it 

is important to acknowledge the foundational work that has influenced its development. Appendix 

A discusses cache’s in general, including the differences between hardware and software caches, 

as well as different eviction heuristics. Appendix B provides a high-level overview of Memory 

Management algorithms. Lastly, Appendix C defines reachability and describes the various 

mechanisms available to programmers by the Memory Manager to determine reachability. 

 

APPENDIX A: CACHES 

 

Caches are a collection of stored items that may be used at later date. The word comes from 

French cacher meaning "to hide".[30] A real world example of caches are the stockpiles of acorns 

made by squirrels as food for the winter.[15]  A similar concept exists in the world of computing 

where the items are mappings of unique ids to values.  

In hardware, a cache is dedicated fast memory in the CPU which stores a mapping of 

memory address to its copied value from RAM. Before a request is made to RAM, the CPU first 

checks if the requested item exists in cache. Successfully finding the entry in cache, called a hit, 

means the CPU does not need to stall waiting for the value to be copied from RAM. Otherwise, 

the value will be stored in the cache once it arrives from off-chip in the hope that future accesses 

will hit.[6] 

Software caches behave in a similar manner as mentioned above, though their entries exist 

at higher level of abstraction. Examples include files from secondary storage or records from a 
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network database rather than simply memory addresses and values. While hardware caches have 

a physical memory limit inside the CPU, software caches can be configured to use as much RAM 

as required based on the needs of the application.  

Another difference between hardware and software caches is how they evict entries. Since 

space is limited, caches must eventually evict entries, ideally those that will not be looked-up again 

after eviction. As such they tend to rely on the principle of temporal locality to evict the least 

recently accessed entry. While software caches can easily track exact entry usage, doing so in 

hardware is impractical requiring alternative eviction strategies.  

 

Hardware 

Computer programs live in secondary storage with their instructions and data which must 

be loaded into a small amount registers in the CPU. To accomplish this memory is structured in a 

hierarchy. Each level up the hierarchy contains a subset of data from the level below (excepting 

temporary values). Traveling up the hierarchy means faster, smaller, more volatile, and expensive 

memory. The hope is to speed up computation by having data that the CPU is likely to need as 

close to the CPU as possible. Figure A.1 below visualizes this hierarchy as a pyramid. 
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Figure A.1 The Memory Hierarchy 
L1 cache is usually shared among two CPU cores and generally holds words of memory6. 

L2 cache is off-chip and shared amongst all CPUs and contains blocks of RAM*. Not having a 

value readily available in a register when the CPU needs it means recursively accessing the layer 

above until SSD. Each time the above layer does not have the value requested is called a miss and 

there are three types of misses. 

Cold 

Occurs the first time an entry is requested. This happens en masse when a program is 

initialized as no relevant values will be present in the cache. A common technique to avoid these 

misses is to pre-fetch all the values a program is likely to need before the program beings to run. 

Capacity 

The requested entry used to be in the cache but was evicted. This miss would not have 

occurred if the cache had a larger capacity. At some point however, increasing the size of the cache 

becomes cost prohibitive and some capacity misses are unavoidable. 

 
6 Oversimplified but associativity unnecessarily complicates this dialog and does not have an analog in FinalCache. 
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Conflict 

This is where two or more different entry mappings must be stored in the same location. 

For example, if the cache hold sixteen entries and stores entries based on their address modulus 

sixteen, then addresses 0x10 and 0x20 will conflict and cannot simultaneously exist in the cache. 

Software  

Software caches share many properties with their hardware counterparts with some domain 

specific differences. These are the types of entries they hold, configurable capacity, response times, 

and eviction heuristics. The latter are discussed in their own dedicated section.   

Types of Entry 

Software cache entries can map IDs (also known as keys) to objects rather than addresses 

to values. Examples include database records, files, or larger inverted matrices. The value stored 

by the cache is likely a reference to object, rather than the original object itself. 

Capacity 

Hardware capacity is set during manufacturing. Conversely, software cache capacity can 

be dynamically adjusted during runtime to grow as large/small as needed. Capacity can be defined 

as the total number of entries or in terms of bytes. If the later, then to make room available when 

a new entry is added to cache may require evicting multiple entries. The former is much simpler 

as it would be one eviction per addition if the cache were full. More on eviction in the next section. 

Response Time 

When a request is made to the L1, the CPU must get a response on the order of clock cycles 

or stall. L2 is slower than L1 but still much faster than RAM. Software caches in contrast, exist in 

RAM and may return objects from unloaded pages, files from secondary storage, or data from over 
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the network. As such, a hit in a software cache can take thousands of clock cycles to return an 

entry. 

 

Eviction Heuristics 

All caches evict entries to limit the amount of memory they use. Which entry they evict 

though depends on the cache's goals, the information available to it, and program behavior. Many 

of these heuristics as based on the principle of temporal locality, which uses access history to 

predict future accesses. The following are common cache eviction heuristics.[3,14] 

Least Recently Accessed (LRA)  

A pure application of temporal locality. The evicted entry is the one which was accessed 

furthest in the past. This heuristic is commonly known as Least Recently Used but a name change 

was required to differentiate this evict heuristic from FinalCache's actual usage-based heuristic. 

Simple to implement in software but not likely to be found in hardware caches.  

Least Recently Used (LRU) 

Another pure application of temporal locality. The evicted entry is the one which was used 

furthest in the past and is FinalCache's eviction heuristic. Entries which are currently in-use are 

not included in the set of entries which are eligible for eviction. This is feasible in software but not 

possible in hardware caches. 

Not Recently Accessed (NRA) / Second Chance 

In some cases, simply knowing whether an entry has been accessed recently can be a 

suitable eviction heuristic, especially in hardware caches. This can be implemented by periodically 

clearing each entry’s "accessed" flag and then setting it on access. If the cache needs to evict an 



64 

entry it simply chooses one whose flag has not been set. The "Clock" algorithm for RAM page 

replacement is a well-known example of NRA combined with Second Chance.  

Most Recently Accessed (MRA) 

 MRA is the exact opposite of LRA. This unusual heuristic may be useful in scenarios 

where there's loop iteration which might cause LRA to perform poorly. Once the loop terminates, 

the cache can switch to another heuristic like LRA. 

Greedy  

Some entries cost more to create than others or have higher priority. The pure greedy 

approach evicts the entry with the least priority. The drawback to pure greedy is that high priority 

entries may never get evicted. Greed Dual-Size combines Greedy and NRU by reducing the 

priority of cache entries overtime and increasing priority of individual entries when they are 

accessed. [2] 

Frequency-Based  

This heuristic segregates entries based on how often they are accessed, the principle being 

that entries which are accessed frequently are not ideal candidates for eviction. Memcached is 

frequency-based and starts entries in the cold set. Popular entries are transferred to the hot set. 

After which, they are transferred to the warm set on losing popularity. Entries are evicted using 

LRA from the cold and warm sets.[19] 

Memoization and Caches 

“The term memoization was coined by Donald Michie (1968) to refer to the process by 

which a function is made to automatically remember the results of previous computations.” 

Memoization and caches both trade space for potential future savings. Many programming 

languages include support for memoization including Haskell, Common-Lisp, and F#.[31–33]. 
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Strategies for memorization include lookup tables, maps and caches.  One limitation of 

memoization is that the memoized function should not have side-effects because these side-effects 

will not take effect if the memoized value is substituted for the function call. Additionally, 

memoization cannot be used if the function may return different values given the same input 

parameters such as random or downloading a dynamic website. [12][9] 

 

APPENDIX B: MEMORY MANAGEMENT 

Memory management is the process of reclaiming unused memory. This is important 

because unused memory can cause a program's total memory footprint to grow unnecessarily large 

and negatively impact system performance. Before this process was automated, developers needed 

to explicitly allocate and deallocate memory. Explicit management can result in difficult-to-

identify bugs such as dangling pointers and memory leaks. Modern languages include some form 

of automatic memory management which relieves this responsibility from the programmer, 

improving reliability (need a better word). Automatic memory management, also known as 

garbage collection, comes in two major families: Reference Counting and Tracing. Reference 

counting system allocates extra memory per object to hold its reference count. This count is 

adjusted each time a reference is changed to/from an object. Once this count reaches zero the object 

can be safely recycled. Tracing collectors determine object liveness based on whether they are 

reachable from the set of named objects. Generally, which collector a runtime uses is irrelevant to 

the programmer unless they have a specific need to interface with it.[17] 

Explicit 

Explicit memory management requires programmers to allocate and deallocate memory. 

In the C programming language this is accomplished with calls to the functions malloc and free. 
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Explicit memory management is very efficient compared with Reference Counting or Tracing 

because it does not require the extra memory and updates associated with Reference Counting, nor 

does it need to search memory to identify liveness with Tracing. Applications which require this 

efficiency include embedded programs and operating systems (for now). However, explicit 

memory management has several drawbacks which automatic memory management avoids.  

Mixing Algorithm Implementation and Memory Management 

Does the algorithm for "Making a peanut butter and jelly sandwich" generally include a 

description of when to allocate or deallocate memory? Memory management is simply not a 

concern for many algorithms. As such, this logic must be included in any implementation with 

explicit memory management, leading to more complicate programs compared to those with 

automatic memory management. This both makes programs longer and more difficult to maintain 

especially for those new to the program or programming. 

Failed Memory Allocations 

In Java, new will always return a constructed object or throw an outOfMemoryException. 

Since this error is quite uncommon, developers do not include new in a try-catch block. 

Conversely, the function malloc can return a null pointer if the program runs out of heap space but 

doing so is not the same cataclysmic event it is in Java. Before throwing the exception, the Java 

Runtime will have performed a full garbage collection clearing weak/soft references, attempted to 

move the break, and/or compacted memory to reduce external fragmentation meaning there was 

truly no more memory available. If malloc fails, it is the programmer's responsibility to manage, 

and some strategies available to Java are not possible in C. 
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Dangling Pointers and Memory Leaks 

A program with explicit memory management needs to free memory when it is no longer 

useful. The problem with doing so is determining when this occurs. Simply because one thread 

has finished using an object does not mean it is not still being used by another thread. Calling free 

prematurely could result in a dangling pointer. This is surprisingly similar to the problem of in-use 

eviction with LRA caches. Alternatively, if all threads using an object assume another thread will 

eventually free the shared object, it could result in no threads actually calling free. This situation 

is called a memory leak and is less likely to occur in languages with automatic memory 

management. 

Reference Counting 

Reference Counting memory management is a scheme which keeps track of the number of 

references that point to a given object. Additional memory is required per object to store this count. 

Each time a reference to an object is changed, either moved to or away from, the reference count 

for the referent is updated by the memory manager.  

So long as this count is positive, the object is considered live and cannot be recycled. 

However, when the object’s reference count reaches zero the object’s memory can be freed; 

additionally, any references it may have had to other objects must be updated as well. For example, 

if the program clears the sole reference to the root of a tree, the entire tree will be freed.  

Reference Counting avoids all the drawbacks associated with explicit memory 

management described earlier. Additionally, it is straightforward to implement. Lastly, Reference 

Counting is faster than Tracing garbage collection. Unfortunately, Reference Counting does have 

its own drawbacks/tradeoffs. 
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Slower than Explicit 

Tracking each reference changes will take slightly longer than explicit memory 

management. This problem can be compounded with reference multiplicity. Consider a tree where 

n subtree roots reference the same set of n leaves. Freeing the leaves would require n*n/2 reference 

updates.  

Increased Total Memory Footprint / Exceeding Capacity 

Individually, one additional word of memory allocated to hold the reference count is 

basically negligible. However, this means an increased memory footprint overall. To save on 

memory this count could be stored in one byte rather than a word. Unfortunately, this places a limit 

on the maximum reference count at 256. There do exist strategies for dealing with this situation, 

but they are beyond the scope of this work. 

Dealing with Cycles 

Consider an object A which references an object B. Object B references object A. Neither 

object has a reference count of zero.  In this scenario, both objects will remain in memory though 

they may be unreachable by any other object. One solution is to include a Tracing collector to find 

and free cycles when memory becomes limited. Another solution would be to convert B's reference 

from Strong to Weak which would break the cycle (more on this in Appendix C Non-Strong 

References).[1] 

Tracing 

Tracing collectors determine object liveness by identifying all the objects which are 

transitively reachable from the set of named objects otherwise known as the root set. Objects which 

are not identified in this search are therefore not reachable by the program and can be safely 

recycled. This is only possible because the memory manager has access to all of memory. 
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Tracing has several advantages compared with Reference Counting collectors. Firstly, 

Tracing collectors do not have to maintain reference updates*, though it does have to pay the costs 

of tracing, so this advantage is debatable. Secondly, it does not need to allocate additional memory 

for the reference count. And thirdly, Tracing collectors are invulnerable to cycles.  

The costs of tracing vary because, unlike Reference Counting, there are several types of 

Tracing collector which have different design goals and are discussed in greater detail below. 

Mark-and-Sweep 

This algorithm has two phases. Marking is the process of visiting each object reachable 

from the root set and following their references, marking each object as it is visited. If the memory 

manager encounters a marked object, it does not follow it again. Once all objects have been 

marked, the collector sweeps through all of memory. Sweeping clears the marked flag and recycles 

those that were not marked. 

The marked flag can be as small as one bit and included as part of the object's metadata 

and so does not require additional memory compared with reference counting. It is also fairly 

trivial to implement. One drawback of Mark-and-Sweep is it does take some time to complete 

because it must access most of the heap. Mark-and-Sweep also leads to external memory 

fragmentation as the sweeping process is likely to leave many small gaps in available memory. A 

compaction should be performed before throwing an OutOfMemoryException. 

Copy-Compact 

Compaction can actually be used as a garbage collection strategy. Copying-Compacting 

searches from the root set but it copies in-use objects to another section of memory. As objects are 

copied, their references are updated to point to the new location. Copied objects are "compacted" 

to create one long contiguous block of allocated memory. This eliminates any external 
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fragmentation but requires splitting memory to have the space available for copying. Copying can 

be faster than Mark-and-Sweep because it only needs to access the reachable objects rather than 

all heap objects, though it is slowed down due to the creation of deep copies.  

Incremental 

Mark-and-Sweep and Copy-Compact may noticeably impact program responsiveness. If 

the program is interactive, pausing the program for a garbage collection cycle may be undesirable. 

Incremental garbage collection allows the program to run during a garbage collection cycle. Both 

algorithms mentioned above can be run incrementally. This scheme uses either read or write 

barriers to determine if an object has been accessed during the cycle. These objects, and their 

descendants, are then considered live until the next cycle. This conservative approach will not 

reclaim all unused memory, but it may be worth it to not pause the program.  

Generational 

Generational, which can use either Mark-and-Sweep or Copy-Compact, is a concurrent 

algorithm based on the premise that new objects often die young. New objects are allocated in a 

section of the heap called the nursery. When there is memory pressure the garbage collector first 

searches the nursery for unreachable objects. If the program still requires additional memory the 

older generations may be collected as well. After surviving several nursery collections, the object 

can be transferred to an older generation. If a nursery object becomes referenced by an older 

generation, the garbage collector may not reclaim it because the older generations are not searched 

as often; though the nursery object may in-fact be unused, it will persist until its liveness can be 

verified. In that sense, Generational is conservative like Incremental. 

 



71 

APPENDIX C: REACHABILITY 

One aspect that was omitted from the discussion of memory management is reachability. 

There are mechanisms which provide additional states between reachable and unreachable. These 

mechanisms allow the programmer more control over when and how objects should be recycled; 

the primary use of which is for object cleanup.  

Finalize is a method run by the memory manager after an object has been identified as 

unreachable but before its memory has been reclaimed. This method is the analog of C++'s 

destructor. A major failing of Finalize is its implementation varies by programming language 

which has motivated developers to transition to alternative means of object cleanup. [10] 

Non-strong references are a family of reference type which do not prevent their referents 

from being reclaimed by the garbage collector and need to be de-referenced before use. Referents 

which have already been recycled cause the non-strong reference to return null, rather than 

returning a new strong reference. These referents types can be used to break cycles, prevent 

memory leaks, and manage object cleanup.  

Non-strong references can be used as part of software caches. Nenov and Dobrikov[11] 

created a cache which would evict entries to soft references and is the basis for what we call weak-

evict caches. Their cache used soft references to allow the memory manager to maintain unused 

entries so long as there was an excess of memory available. Nunez, Guyer, and Berger developed 

a custom garbage collector and reference type specifically to be used by software caches called 

priority references which informs the garbage collector about the relative priority of cache entries.  

Try-with-auto-close is another alternative to object cleanup. This is a contract an object 

makes by implementing Closeable. If this object is created in a try block, before the try-catch-

finally block completes, the system will call the object's Closeable method. This is similar to 
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Finalize except the object is still reachable by the program when close is called. More detailed 

information is provided in Appendix C: Auto-close.[34] 

Finalize 

Finalize is a method associated with an object which has traditionally been used for pre-

mortem cleanup, such as closing an object's sockets, before it is reclaimed by the memory manager. 

In many ways it is the automatic memory management equivalent to C++'s Destructor; however, 

there are some important distinctions namely: 

• Programs cannot call Finalize, only the garbage collector can 

• Scheduling of Finalize varies between languages and runtimes 

• Objects may be resurrected, made reachable again by the root set, via Finalize 

The usage of Finalize has become discouraged in favor of alternatives discussed later. This 

is because, as alluded to earlier, the implementations of Finalize are inconsistent and developers 

cannot depend on it. The following lists many of the reasons programmers choose to avoid 

Finalize.[10] 

When to run Finalize? 

Executing Finalize as soon as objects are identified as unused may unduly delay high 

priority threads from running. As such, the memory manager may queue Finalizers to run when 

the program is idle. Unfortunately, if the program never idles then no Finalize methods will ever 

be run, making Finalize unreliable. 

There are mechanisms to explicitly inform the memory manager that Finalize should be 

run but these vary by language. C# has a method waitForFinalize which blocks the thread until all 

Finalizers have been run. Java had a feature called RunFinalizersOnExit but it has been disabled 

since Java 5. 
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Additionally, the order with which Finalizers are run is determined by the Garbage 

Collector. If one Finalize needs to be run before another it could create a race condition which 

would be easily avoided in C++.  

To Resurrect or not to Resurrect? 

Object resurrection support is language dependent. Objective-C expressly forbids object 

resurrection via Finalize. Java and Python allow resurrection but only once because Finalize is run 

at most once per object. C# can resurrect objects indefinitely. [24–27] 

Non-Strong Reference Types 

Non-Strong References are a family of Reference types which do not prevent the memory 

manager from recycling their referents. These References are sometimes called Weak References, 

but this is slightly inaccurate as Weak References are one form of Non-strong Reference. It would 

be more accurate to state that Non-Strong References are weaker than Strong. Traditional, or 

Strong, references keep their referents alive so long as the referrer is reachable.  

Implementations of Non-Strong References vary by language, but all referents must first 

be de-referenced from the referrer object before they can be used. This de-referencing generates a 

new Strong Reference to the referent object. If the referent object has become unused, this de-

referencing will return null. A simple analogy of this behavior is Schrodinger's cat. The 

programmer does not know if the referent object still exists (the cat is alive or dead) until they de-

reference it (open the box). 

In Reference Counting systems, a Strong Reference increases an objects reference count 

by one. Conversely, Weak References do not affect Reference Count. This behavior is useful when 

breaking cycles as depicted in Figure C.1 below. 
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Figure C.1 Weak References break cycles 
 

Tracing collectors determine reachability slightly differently. If a live object is reachable 

by at least one Strong Reference, the object is considered Strongly Reachable. Otherwise, its 

reachability is determined by the strength of the remaining Non-Strong References. Soft 

References are stronger than Weak but less so than Strong. Softly reachable objects persist longer 

than Weak so long as there is excess memory available. Phantom References are the weakest Non-

Strong Reference type and they are unique in that they cannot be de-referenced. The figure below 

lists the reachability levels of objects in Java.[35] 
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Figure C.2 Strength of various reference types in Java 
 

Java also includes a mechanism called a ReferenceQueue where the memory manager will 

enqueue Reference objects when their referents become Exclusively Soft, Weak, or Phantom 

Reachable. This is useful for post-mortem cleanup for example, a programmer might use a 

Phantom Reference to be notified that a very large object is no longer resident in memory before 

beginning to load in another very large object. Non-Strong referents are generally cleared when 

they are no longer strongly reachable for safety. C# includes an unsafe Weak Reference object 

which is not cleared until after Finalize has been run and FinalCache could not have been built 

without it. 

Caches and Non-Strong References 

Non-Strong references are sometimes used as an ad-hoc cache, Soft References in 

particular. The Soft Reference acts as the (key, value) mapping with eviction determined by the 
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garbage collector. However, Non-Strong References can also be used in conjunction with proper 

software caches. 

Weak Keys and Values 

LRUCache provides two mechanism for utilizing Weak References with subtle but 

important distinctions between them. Weak Values are similar to the mapping described above 

except using Weak References instead of Soft. If the value becomes unused by the program before 

it is evicted, the mapping will be cleared. Alternatively, LRUCache can use Weak Keys instead 

which will do the same when the key becomes unreachable.[20] 

Nenov and Dobrikov 

The precursor to FinalCache, Nenov and Dobrikov created what we are calling a Weak-

Evict cache. The goal of their cache was to take advantage of unused memory by maintaining Soft 

References to evicted entries. So long as the system had no pressure on memory, evicted objects 

could persist in the cache which increases the hit rate. Our simulation used Weak References 

instead, where entries would be cleared as soon as they became unused. It would have been nice 

to include Soft References in our testing but that would have introduced lots of 

variability/uncertainty into the mix. [11] 

Nunez et. al. 

Priority References build on the work done by Nenov and Dobrikov. The problem with 

Garbage Collector dependency for reclaiming Soft References is that the cache has no control over 

which entries are freed and when. Their solution was to build a custom Soft Reference type which 

specifies the relative and/or global importance of each cache entry. In so doing, the Garbage 

Collector could make informed decisions concerning which entries should be freed and when.[13] 
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Auto-close 

AutoCloseable is a contract in which the Java runtime will, when the object goes out of 

scope, automatically call close() on the resource and is a form of pre-mortem clean-up. This differs 

from Finalize in that close() is not placed on a separate queue to be dealt with when the program 

is idle. Rather, the method is called immediately. Additionally, this feature cannot resurrect 

objects. AutoCloseable is best used with the try-with-resources block which was first introduced 

in Java 7 and updated in Java 9.[34] 

Try-with-resources differs from the traditional try-catch-finally block in that it 1) will 

invoke close for all resources inside the block and 2) better manages thrown exceptions. Most of 

what would traditionally go in the finally block can be omitted in the try-with-resources block 

though the latter can still use finally if desired. In Java 7, all AutoCloseable resources need to have 

been declared inside the block. Java 9 included enhancements where resources declared outside 

the block would be automatically closed as well so long as the programmer included them inside 

the try block's parenthesis. 

 

APPENDIX D: ARCHITECTURE AND IMPLEMENTATION 

The source code implementing FinalCache and the simulators that generated results 

presented in this dissertation are published as [16] and are freely available on GitHub . This 

Appendix describes the organization, architecture, implementation, and build requirements of 

FinalCache and accompanying simulation at the time of publication. Aleksandr Diamond was the 

primary author of the simulation while an undergraduate student.  

Below is a list of required software to re-create our results and/or demo FinalCache. 

 Firefox (version 35 or later)[36] 
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 Java JDK (version 8 or later)[37] 

 Python 2.x (you may need to migrate if using Python 3.x)[38] 

 numpy[39] 

 matplotlib[40] 

 .NET Core[41] 

 bash or similar (Windows now includes the ability to run bash via the wsl) 

 git (optional)[42] 

fire_logs 

This directory contains the data used to generate the graphs from Chapter 3. Due to the 

individual file size limit from GitHub, this ~500MB file required partitioning into ~50MB chunks. 

Before running the simulation to verify the results from Chapter 3, this original file must be 

reconstructed. All other files in the directory must also be deleted otherwise the simulation will 

include them as well (a planned but not implemented feature was the ability to run more than one 

simulation at once).  

Prototype 

The file Program.cs has three classes: Program, MyCache, and MyCacheableObject. 

Program contains the main method which creates an instance of MyCache and several 

MyCacheableObjects. The program inserts these objects into the cache and then processes to lose 

the references to all but one of them. This remaining object is gotten between GC and finalize 

requiring a second finalize to become unused. MyCache and MyCacheableObject largely behave 

as described in Chapter 2 except this implementation uses a sentinel boolean Gotten variable 

internal to the object rather than a Gotten state. This variable is set on access, reset on Finalize, 

and an entry can only become unused when this flag is not set. Functionally, this scheme is 
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equivalent to the Gotten model from Section 2.7. Note that this implementation is not optimized 

for performance nor is thread safe as these features were superfluous to showing that FinalCache 

was possible to implement in existing runtimes. 

Simulation 

The parents for the majority of these classes are LRUCache and TestUtils. LRUCache 

includes the basic functionality of a cache that is extended for the three cache types and TestUtils 

contains the features necessary to interpret the data for each cache. Each cache type includes a Test 

class that executes the simulation with various csizes. FiguresTest provides an overview of the 

types of cache operations included in the raw data. HistogramTest, IntervalFinalCacheTest, and 

SizeTest generate output files with specific information for graphing a histogram of cache entry 

lifetimes, a box and whisker plot of the number of identified unused entries per tracing 

collection/delayed notification, and a line graph of several cache configurations overtime.  

Tools 

These scripts are used to both generate the raw data for simulation as well as filter the raw 

data for debugging. fire_log.sh configures Firefox with a limited cache size and disables smartsize 

to prevent Firefox from adjusting the initial configuration. It also clears the existing cache to ensure 

each run is independent. Be sure to save the raw data from a prior run before executing this script.  
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