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Abstract 

Accurate prediction of a rocket sled test profile and water braking phenomena has 

potential to result in radical changes in designs of specific sleds and provide greater confidence 

of braking mechanism and recovery of critical infrastructures. Understanding the water’s 

behavior with the sled is critical to predicting how the water could damage the sled and affect 

recoverability of the sled and determine success of the missions. Traditionally, sled design for 

the test missions had been guided by empirical/hand calculations to estimate the forces on 

various components. The calculations involved various approximations to arrive at the force 

balance law and predict the acceleration/deceleration profile. In partnership with the Holloman 

High Speed Test Track (HHSTT), we performed preliminary simulations to develop a predictive 

model for the HHSTT sled tests for various velocity regimes. The CFD results from various 

geometry configurations for the sled and modeling parameters will be presented. The main goals 

of the CFD investigations are to improve the accuracy of the predicted profile that often depends 

on the complexity of the design and operating conditions. 

 
 Having an atmospheric turbulence deconvolution model would be of great utility for the 

Air Force in its mission to maintain space situational awareness. The purpose or goal of this 

study is to increase US Air Force capability in space situational awareness, through the 

construction of a deconvolution model that, once trained, can remove turbulent effects and 

provide clearer images in a small amount of time (expedient), with relatively good accuracy 

(effective), and with a relatively low computational resource requirement (efficient). To develop 

a deconvolution model a Conditional Generative Adversarial Network (cGAN) will be used. The 

cGAN will make use of two Neural Nets (NN) that will be pitted against each other, one will be 

an image generator and the other an image discriminator. The Generator will be given turbulent 
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images and will generate turbulent images while converging towards a 'pristine (non-turbulent)' 

image as it attempts to 'trick' the Discriminator. The discriminator will be given pristine, blurred, 

and generated (fake) images, its goal will be to distinguish whether images are generated or from 

the pristine dataset. 

By combining CFD with machine learning, cGANs specifically, we can train a net to 

produce CFD results, eliminating time and resources required to run CFD models. 
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Chapter 1: Introduction 

Advances, accessibility, and increasing computational capability in the past few years has 

made it possible to model and solve, within small error, complex system of equations that 

approximate fluid flows with enough accuracy to make the results useful for engineering analysis. 

These complex systems of equations are known as Navier – Stokes Equations and are used to 

imitate a wind tunnel and fluid phenomena in a virtual space. The development and solving of 

these virtual models are what Computational Fluid Dynamics (CFD) is about. By using CFD 

engineers and scientist can analyze and study fluids in a quick, cost effective, non-intrusive, and 

feasible manner compared to running real test and experiments. To this end, CFD modeling can 

be a great tool for the US Air Force (USAF) at HHSTT to engineer, built, and predict pusher sleds 

braking profiles. By designing and building better sleds, testing capabilities at HHSTT can be 

improved. Improvement can be in better braking performance and reusability which will decrease 

the cost of testing to the track and increase the speeds at which items can be tested as braking 

capability is improved.  

Just as computational capability and advances have enabled CFD, they have also made 

Machine Learning (ML) through Neural Networks (NN) possible. Machine Learning enables 

statistics to learn how to perform a specific task independently. It has characteristics in several 

different fields, including artificial intelligence, statistics, and computer science [29].  

By combining CFD and ML, studied in this paper, it is hoped that USAF capability to 

engineer, test, and analyze testing models at HHSTT will be drastically improved. In this study, 

we will review CFD of water braking of sleds in Holloman High Speed Test Track (HHSTT) and 

Conditional Generative Adversarial Net (cGAN) used to deconvolute images and discuss the 
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results of both. We will then conclude with a discussion of possible integration of both tools to 

improve HHSTT ability to model and predict test profiles for water braking.    
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Chapter 2: Technical Background 

To successfully complete and analyze CFD models in this study we must understand the 

technical components that make it up. Since we will be braking with water, we will review fluid 

flows and the equations governed by them. In this section we will go over the technical components 

required and used to successfully obtain CFD results in the scope of our study. 

 

2.1 COMPUTATIONAL FLUID DYNAMICS (CFD) 

By following a group of partial differential equations, it is possible to model fluids 

virtually. Before CFD was possible, engineers and scientist had to do testing and studies in 

specially designed testing set ups such as wind tunnels. Although relatively expensive testing set 

ups are still done, CFD offers many benefits over real world testing. A list of benefits include cost, 

turnaround time, exact similarity, non-intrusive measuring, analysis, feasibility, and extendibility. 

A list of disadvantages includes turbulence, accuracy, and error control. 

Building, operating, and maintaining a test lab can be expensive, there are so many 

variables to consider. Size of object being tested, simulating testing conditions, construction of 

actual test object, number of tests being performed, and staff, just to name a few. CFD provides an 

opportunity, if done right, to mitigate costs as unique tests with variable conditions can be easily 

altered with comparatively little cost, time, and effort. Also, to gather data on real world tests, 

sensors must be used. These sensors can perturb or intrude flows and alter results not to mention 

that data may only be collected at sensor location, in this too CFD has an advantage. With CFD 

you do not need intrusive sensors and data can be collected on any point of the testing item not 

just on selected points which can lead to better analysis and understanding of fluid behavior or 

impact. Another advantage is that conditions that may not be measured experimentally may be 

measured virtually, for example gas effects on a missile during reentry.  
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All the benefits however are not without disadvantages and experimental testing is 

sometimes still necessary. Turbulence models in 3-D for example involve very small flow features 

at high Reynolds numbers that even with today’s super computers are still impossible to simulate 

all the details [28]. This in turn, depending on tolerance for error, can make CFD too inaccurate. 

Errors incurred from the insufficient detail of turbulence models can make the model’s accuracy 

unquantifiable.  

Despite the drawbacks CFD is still a key technology that when used right can offer 

substantial value from its advantages. For some flows CFD will only be able to provide qualitative 

results but they may provide some insight that may be used for a better experimental setup. The 

components needed for a CFD solution are a physical model, a mathematical model, a numerical 

method, the mesh, and pre- and post-processing tools [28]. 

 

2.1.1 Physical Model 

The physical model is the most basic component to CFD, it is the geometry of the test 

object and where the space or environment in which it will be modeled is defined. The physical 

model does require assumptions to make the model simpler and solvable, this includes boundary 

conditions, continuum assumption, the type of flow description, and conservation principles. 

When building a fluid dynamics model, we are usually not concerned with tracking 

individual particles of molecular or atomic size. The particles are too small, the number of particles 

to track would be unnecessarily large, and the impact individual particles would have on a body in 

terms of lift and drag in our study would be negligibly minor. For this reason, an assumption made 

in this study is the continuum assumption. The effect of this assumption is that we consider the 

statistical average of the particles bulk flow [28]. 
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When analyzing dynamics there are two ways to do describe them, Eulerian and 

Lagrangian. In this study we will do it from the Eulerian viewpoint as it allows for the use of a 

control volume in which conservation of momentum principles apply. 

Building on continuum and control volume principles we consider the balance of 

transported quantities in that control volume. It is then possible to define and analyze at each 

location in space how much mass, momentum, and energy is entering and exiting each space. 

 

2.1.2 Mathematical Model 

Once assumptions and conservation of momentum and mass are established from the 

Physical Model, mathematical equations based on them can be derived. To examine the 

conservation of momentum equations let us begin with an example in 1 dimension by assuming 

constant flow in y and z. By assuming constant flow in y and z we are left with variations in the x 

direction only. We will derive the equations for mass conservation in 1-D x-coordinate and then 

apply it to y and z cartesian coordinates, see figure 2.1. First, we will use Taylor’s expansion   
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Figure 2.1 Conversation of mass on 1-dimensional fluid element 

 

to approximate the mass flux (𝑝𝑢)|𝑥+𝛿𝑥 at the right edge of the element 𝑥 + 𝛿𝑥 in terms of mass 

flux (𝑝𝑢)|𝑥 at x: 

                                    (𝑝𝑢)|𝑥+𝛿𝑥 =  (𝑝𝑢)|𝑥 + 
ⅆ(𝜌𝑢)

ⅆ𝑥
𝛿𝑥 +

1

2

ⅆ2(𝜌𝑢)

ⅆ𝑥2 𝛿𝑥2 + 𝑂(𝛿𝑥3)                        (2.1) 

From figure 2.2.2.1 we can then see that the fluid entering on the left-hand side at 𝑥 is in time 𝛿𝑡  

is  

                                                                           �̇�|𝑥𝛿𝑡 =  (𝑝𝑢)|𝑥𝛿𝑦𝛿𝑧𝛿𝑡                         (2.2) 

 

And the amount of fluid exiting on the right-hand side 𝑥 + 𝛿𝑥 in the same time interval 𝛿𝑡 is  

 

                                                                     �̇�|𝑥+𝛿𝑥𝛿𝑡 = (𝑝𝑢)|𝑥+𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑡                   (2.3) 
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From these equations we can then get change in mass in the control volume in time 𝛿𝑡 by subtracting 

fluid entering �̇�|𝑥𝛿𝑡 from �̇�|𝑥+𝛿𝑥𝛿𝑡 and multiplying it by the time interval 𝛿𝑡. 

 

                                                       𝛿𝑚 = �̇�|𝑥𝛿𝑡 −   �̇�|𝑥+𝛿𝑥𝛿𝑡                  

                                                             𝛿𝑚 = (𝑝𝑢)|𝑥𝛿𝑦𝛿𝑧𝛿𝑡 −   (𝑝𝑢)|𝑥+𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑡                   (2.4) 

 

Then using Taylor expansion for 𝑝𝑢 we obtain 

 

𝛿𝑚 = ((𝜌𝑢)|𝑥)𝛿𝑦𝛿𝑧𝛿𝑡 −  ((𝜌𝑢)|𝑥 +
ⅆ(𝜌𝑢)

ⅆ𝑥
𝛿𝑥 +

1

2

ⅆ2(𝜌𝑢)

ⅆ𝑥2
𝛿𝑥2 + 𝑂(𝛿𝑥3)) 𝛿𝑦𝛿𝑧𝛿𝑡 

 

Which simplifies to  

 

𝛿𝑚 =  −(
ⅆ(𝜌𝑢)

ⅆ𝑥
𝛿𝑥 +

1

2

ⅆ2(𝜌𝑢)

ⅆ𝑥2
𝛿𝑥2 + 𝑂(𝛿𝑥3))𝛿𝑦𝛿𝑧𝛿𝑡 

 

Divide by size of control volume 𝛿𝑥𝛿𝑦𝛿𝑧 and time interval 𝛿𝑡 to end up with  

 

δm

δx∂yδzδt
=  

δρ

δt
= − 

ⅆ(ρu)

ⅆx
 −  

1

2

ⅆ2(ρu)

ⅆx2
δx + O(δx2)              (2.5) 

 

The mass flow gradient 
ⅆ(ρu)

ⅆx
 can be relatively large but if we make the size of the element δx 

sufficiently small, lim δx → 0 then δx ≪ 1 and the second and third term on the right side of 

(2.5) become negligible. We are then left with  
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δρ

δt
= − 

ⅆ(ρu)

ⅆx
= −ρ

ⅆu

ⅆx
 −  u

ⅆρ

ⅆx
              (2.6) 

 

Because we will be braking with water we take the case of incompressible flow in which density 

is constant,  ρ = constant, and therefore cannot vary so 
ⅆρ

ⅆx
= 0 . This means that we end up with   

 

                                                                      
δρ

δt
= −ρ

ⅆu

ⅆx
     (2.7) 

 

And if there is no variation in y and z then velocity can not vary so  
ⅆu

ⅆx
 = 0 so   

 

                                                                                         
δρ

δt
=  0     (2.8) 

   

This becomes important when looking at velocity variations when we couple velocity 

components in x, y, and z in a continuity equation. 

 In 3-dimensional mass conservation we will start with (2.4) but in all cartesian 

coordinates. 

 

𝛿𝑚 = �̇�|𝑥𝛿𝑡 −   �̇�|𝑥+𝛿𝑥𝛿𝑡  +    𝛿𝑚 = �̇�|𝑦𝛿𝑡 −   �̇�|y+𝛿𝑦𝛿𝑡 + 𝛿𝑚 = �̇�|𝑧𝛿𝑡 −   �̇�|𝑧+𝛿𝑧𝛿𝑡   (2.9) 

 

As a result, we end up with  
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                            𝛿𝑚 = −
ⅆ(𝜌𝑢)

ⅆ𝑥
𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑡  −

ⅆ(𝜌𝑣)

ⅆ𝑦
𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑡 −

ⅆ(𝜌𝑤)

ⅆ𝑧
𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑡    (2.10) 

 

Dividing by the control volume and small enough time steps, lim δt → 0, produces 

 

                                                                  lim
𝛿𝑡→0

 
𝛿𝑚

𝛿𝑥 ∂𝑦𝛿𝑧𝛿𝑡
 =  lim

𝛿𝑡→0
 
𝛿𝜌

𝛿𝑡
 =   

∂𝜌

∂𝑡
                             (2.11) 

 

By assuming continuity and therefore infinite control volume in 3-D we obtain 

 

                                                         
∂𝜌

∂𝑡
 +   

∂(𝜌𝑢)

∂𝑥
 +   

∂(𝜌𝑣)

∂𝑦
 +   

∂(𝜌𝜔)

∂𝑧
= 0                                  (2.12) 

 

Understanding that 
∂𝜌

∂𝑡
 = 0 from our one-dimensional analysis, we end up with  

 

                                                                       
∂(𝑢)

∂𝑥
 +   

∂(𝑣)

∂𝑦
 +   

∂(𝜔)

∂𝑧
= 0                                       (2.13) 

 

For the incompressible continuity equation.  

As we cannot have more mass into a control volume once full, the inflow must balance 

with the outflow. If flow then slows in the x direction the flow entering at x must flow out the y 

and z directions. This occurance is the divergence constraint and (2.13) is the divergence of the 

velocity field that will be coupled in a system of equations that will track fluid flow 

computationally. In (2.10) we can see the conservation of mass, the difference between what is 

going in and what is going out must be inside the control volume. 



10 

For the derivation of the momentum equations of a fuild, force of moving fluid must be 

balanced. Because force is a vector and we have three coordinates, we will have three 

momentum equations. The momentum equations will be derived from Newton’s second law 

F=ma. Using a Eulerian viewpoint established at the beginning of the section we can consider  

 

                                                                                                
ⅆ(𝑚�⃗� )

ⅆ𝑡
= 𝐹                                                          (2.14) 

For all of the three coordinate directions. 

 Because we are working with high speed turbulent flow we assume high Reynold’s 

Number and neglect viscous shear forces. This means that fluid elements will be able to slide 

past each other and we can focus on pressure forces and gravity when deriving the equations. 

Recalling that pressure is a scalar and only acquires direction when acting on a surface, positive 

pressure will be compressive and pressure on face 𝑥 will result in a positive force on the x-

direction. This means that pressure on the 𝑥 + 𝛿𝑥 face will be negative, see figure 2.2 to view 

pressure forces on the faces of a fluid element. The difference in the forces acting on each other 

will provide us with the net force on the element.  

  

                                                                     𝐹𝑝,𝑥 = (𝑝|𝑥 − 𝑝|𝑥+𝛿𝑥)𝛿𝑦𝛿𝑧                                           (2.15) 

 

Using Taylor expansion like in conservation of mass, but this time just in the first order or linear 

term we get  

                                = (𝑝|𝑥 − (𝑝|𝑥 + 
∂p

∂𝑥
|
𝑥
𝛿𝑥)) 𝛿𝑦𝛿𝑧                                         

                                    =  −
∂𝑝

∂𝑥
𝛿𝑥𝛿𝑦𝛿𝑧 = −

∂𝑝

∂𝑥
𝛿𝑉                                                 (2.16)    

 



11 

 
Figure 2.2 Pressure forces on 3-dimensional fluid element  

 

 Where 𝛿𝑉 is the size of the control volume  𝛿𝑥𝛿𝑦𝛿𝑧. In the same manner as we just 

derived the Force component in the x direction, we derive the force on the y and z directions. 

 

𝐹𝑝,𝑦 = −
∂𝑝

∂y
𝛿𝑉    (2.17) 

 

𝐹𝑝,𝑧 = −
∂𝑝

∂z
𝛿𝑉    (2.18) 

 

In vector notation the pressure force vector is  
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      𝐹𝑝 = [

𝐹𝑝,𝑥

𝐹𝑝,𝑦

𝐹𝑝,𝑧

]     

 

Taking into consideration gravity in the -z direction and the sum of all body forces we end up with  

 

x-direction 

 

                                         𝑝 (
∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂y
+ 𝑤

∂𝑢

∂z
) =  −

∂𝑝

∂𝑥
+ 𝜇 (

∂2𝑢

∂𝑥2 +
∂2𝑢

∂𝑦2 +
∂2𝑢

∂𝑧2)    (2.19) 

 

y-direction 

 

                                      𝑝 (
∂𝑣

∂𝑡
+ 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂y
+ 𝑤

∂𝑣

∂z
) =  −

∂𝑝

∂𝑦
+ 𝜇 (

∂2𝑣

∂𝑥2 +
∂2𝑣

∂𝑦2 +
∂2𝑣

∂𝑧2)  (2.20) 

 

z-direction 

 

                                 𝑝 (
∂𝑤

∂𝑡
+ 𝑢

∂𝑤

∂𝑥
+ 𝑣

∂𝑤

∂y
+ 𝑤

∂𝑤

∂z
) =  −

∂𝑝

∂𝑧
+ 𝜇 (

∂2𝑤

∂𝑥2 +
∂2𝑤

∂𝑦2 +
∂2𝑤

∂𝑧2) − 𝜌𝑔  (2.21) 

 

 One more equation to consider is energy balance but it is not always required. For 

compressible flows yes but inviscid incompressible flows, which is what was used in the study, it 

is not needed. For those type of flows if it satisfies the momentum equation it will also respect 

Bernoulli’s equation [28]. 

 

2.1.3 Numerical Method and Discretization 

Having establish the mathematical model for fluid dynamics we now need to identify a 

numerical model or process by which to solve the system of partial differential equations (PDE) 

of conservation of mass, momentum, and energy. 
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Having determined the control volume in which the simulation will take place, we need to 

establish exactly how the discretization of the volume space will take place. The discretization 

translates the mass equations, or continuous equations, to the computer using a discrete set of 

points in the control volume. This discretization, linked to the mesh, is what defines the 

connectivity of all these points. The mesh and points form the elements in the control volume in 

which mass, momentum, and energy of fluids are described may then be calculated when provided 

with initial conditions. An important thing to keep in mind is poor discretization, or mesh, can lead 

to numerical instability and may cause the model to blow up. For this reason, there are two types 

of meshes that we must consider, structured and unstructured. While each has its advantages, in 

general, structured is good for ’non-complex’ geometry and unstructured is good with geometry 

with arcs. The type of mesh selected will impact the solving of the PDEs and can lead to faster or 

slower CFD run time. 

Because the scope consists of arcs we will be using unstructured mesh and the Finite 

Volume Method (FVM) which is used for unstructured mesh. To mitigate the possibility of 

numerical instability, and because we are dealing with high speed flows, a small-time step of         

1e-6 seconds or less must be used. Time-step, 𝛿𝑡, is an initial condition required for solving Navier 

Stokes. 

 

2.1.4 Post-Processing Analysis 

 Once the software finishes running the model, we must analyze our results and determine 

if they are appropriate, do they fall within expectations. For post-processing we can produce 

contours that provide information of the entire control volume. This information includes velocity 

vectors, volume fraction, pressure magnitudes, and more. 
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2.2 MACHINE LEARNING 

As computational power has increased, their utility has increased. With the increase in 

computational capability, tools and methods have emerged to take advantage of this rise. Among 

these is Machine Learning (ML). Machine learning is the science of a computer so that it may 

learn from data [29]. By harnessing computational power and coupling with the capability to learn 

from data, tasks can become automated and productivity increased. 

Uses of ML can range from email spam filters, language translation, voice recognition, to 

image recognition, to more advanced uses that can take advantage of unsupervised learning. 

Amongst ML practitioners a recent framework has emerged, Generative Adversarial Networks 

(GANs). To use GANs we need to learn about the algorithms that comprise it, neural networks. 

 

2.2.1 Neural Networks 

Neural nets (NN) are inspired from our brain’s architecture. In a similar fashion to birds 

inspiring flight through planes and planes achieving flight differently to birds, NN have become a 

bit different that its biological inspiration. It is in this difference however that they become 

versatile, powerful, and scalable with the capability for large and complex tasks such as classifying 

billions of images, speech recognition, video recommendation on YouTube, and even beating the 

best Chess players in the world. 

Neural nets are composed of nodes and layers of nodes that are connected to each other. 

From layer to layer they then create weights from inputs being provided. Using inputs and an 

activation function, NN are able to produce outputs. These activation functions are usually either 

a sigmoid function or a Rectified Linear Unit (ReLu), see Figure 2.3. When the activation function 
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Figure 2.3 – Sigmoid function (left) and ReLu Function (right) 

 

is calculated output is determined, as denoted by h in Figure 2.4. In the equation below, (2.22) we 

can also see the weight denoted by w for each node. Figure 2.4 represents the NN node for the 

equation 

 

h1 = 𝑓(𝑥1𝑤,+𝜒2𝜔2 + 𝑥𝐵3
𝜔 + 𝑏)   (2.22) 

 

 
Figure 2.4 – Neural Net Node 

 

Now that a NN node, neuron, has been established let us look at a simple NN and break 

down the components. A simple NN consists of an input layer, hidden layer, and output layer, see 

Figure 2.5.  

 



16 

 
Figure 2.5 – Input layer (blue), Hidden layer (yellow), Output layer (red) 

 

The process by which NN learn is called feedforward. Hidden layer is determined by 

providing input and output data, determining the hidden layer weights is how the NN learns.   

 

2.2.2 Convolutional Neural Network 

Convolutional Neural Networks (CNN) emerged by studying the brain’s visual cortex and 

have been used in a limited capacity since the 1980s [29]. A big limiter of CNNs in the 80s was 

the absence of today’s computational power and data. By studying the brain scientist have come 

to understand to a certain degree how the human brain processes visual, auditory, and other inputs 

from our eyes, ears, and other sensors into images, sounds, other information. A CNN is a specific 

type of NN. 

Through experimental studies during the late 1950s on cats and monkeys, crucial insights 

of the structure of the visual cortex were derived. The authors of the experiments discovered how 

neurons  in the visual cortex of the brain reacted to visual stimuli located on a small area of the 

visual field. They noticed that patterns in neurons; some react to horizontal lines, others to different 

line orientation, some have larger receptive fields, some react to complex patterns that are a 
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combination of other patterns [29]. Those studies inspired neocognition which eventually evolved 

into convolutional neural networks.  

CNNs consist of two types of layers, Convolutional and Pool. Typical CNN architectures 

are conceptually simple. They have a few convolutional layers, then a pooling layer, then another 

few convolutional layers, followed by another pooling layer, and so forth. See Figure 2.6 for a 

visual representation. 

 

Figure 2.6 - Typical CNN Architecture 

 

The convolutional layers are the most important building block of any CNN. CNNs consist 

of multiple layers that work in collaboration to improve image recognition. See Figure 2.7. 

 

Figure 2.7 – Convolutional Layers 
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Neurons in the first convolutional layer are only connected to their receptive fields and not every 

pixel in the input image [29]. The second layer on the otherhand is connected only to neurons in a 

small rectangle of the first. This design allows the neural network to focus on specific low level 

features in the first layer and then assemble them into higher level features in the next layer, and 

so forth. This structure is what allows CNNs to work really well for image recognition. 

The weight of a neuron can be represented by a small image the size of a receptive field. 

Figure 2.8 consists of two possible sets of weights, vertical and horizontal. They are also called 

filters or convolutional kernels.  

 

 

Figure 2.8 – Filters 

 

What the neurons in the filters do is ignore everything in their receptive field (in this case 

the entire input image) except for the ones they were assigned to (vertical or horizontal). If all 

neurons are assigned to the vertical filter for example, the outcome would be the top left figure on 

Figure 2.8. Vice-versa if all are applied to the horizontal filter the outcome would be the top right 

figure on Figure 2.8. 
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Having a layer full of neurons using the same filter provides a feature map. A feature map 

highlights the areas in the image that are very similar to the filter. When a CNN is being trained 

what the CNN does is to find the most useful filters for its job and combines them into complex 

patterns. An example would be a cross would be where the vertical and horizontal filter are active. 

To understand the concept of convolutional layers only 2D layers have been presented thus 

far. However, convolutional layers are composed of multiple feature maps of equal sizes [29]. 

Looking at Figure 2.9 it can be observed that they are more accurately represented in 3D.  

 

 

Figure 2.9 – Multiple Feature Maps 
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Within a single feature map, all neurons share the same parameters, weights, or bias term. When 

stacked with different feature maps the convolutional layer end up having different parameters 

Neuron’s receptive field in the layer extends to all previous feature maps [29]. Due to the stacking 

of multiple feature maps a convolutional layer can simultaneously apply multiple filters to its 

inputs and therefore making it able to detect multiple features anywhere in the input provided. 

Furthermore, input images are composed of multiple sublayers. Examples include color channels 

(red, green, blue or RGB) and satellite images capturing different light frequencies. 

A problem with CNNs hinted earlier as the amount of computing power required lies a 

memory problem. Convolutional layers require a large amount of Readily Available Memory 

(RAM). This is especially true during the training of the CNN “because the reverse pass of 

backpropagation requires all the intermediate values computed during a forward pass [29]. When 

making a prediction for a new instance the RAM occupied by a layer can be released as soon as 

the next layer is computed. You only need as much RAM as needed by two consecutive layers. 

The problem is when the CNN needs to be trained, when everything computed during the forward 

pass needs to be preserved for the reverse pass. The minimum amount of RAM needed is the total 

amount of RAM needed by all layers. A way to mitigate the memory problem is to reduce the 

mini-batch size or try removing a few layers. Also, the stride, distance between two consecutive 

receptive fields, can be reduced or the bit size of the floats, numbers, can be reduced from 32 to 

16. Alternately all can be done. 

The pooling layer is the second and final common building block of CNN, the first one 

being convolutional layer. The goal of the pooling layer is to subsample the input image in order 

to reduce the computational load, memory used, and number of parameters. Pooling layers can be 
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quite destructive as even taking a 2x2 kernel with a stride of 2 can result in a loss of 75% of input 

values. 

Like in convolutional layers, neurons in pooling layers are connected to outputs of a limited 

number of neurons from the previous layer. Unlike a convolutional layer however, it has no 

weights. All it does is aggregate inputs using an aggregate function, like max or mean. For max 

only max input values in each kernel make it to the next layer. 

Many variants of this architecture have been developed over the years, with increasingly 

reducing error rates. The advantage of CNN is that all neurons in a feature map sharing the same 

parameters drastically reduces the number of parameters in the model. This means that for the 

CNN once it has been trained and it has learned how to recognize a pattern in one location, it can 

recognize it in any other location. By contrast the DNN can only recognize a pattern in the location 

where it recognized it. 

CNNs are great tool to take advantage of machines computing power and will only become 

more useful as computing power increase. They will play a big part of future technologies in 

automation of many systems such as self-driving cars, language recognition, even customer service 

as it recognizes search patterns and preferences of customers.  Although they currently there are a 

few nuances such as requiring many hyperparameters (number of filters, their height and weight, 

etc.) and requiring substantial amounts of RAM, their architecture and building blocks are simple 

to understand. Like any recent technology however it will develop and improve as tools are 

designed to make it easier to design and use. New CNN architectures are being developed every 

year and the field is moving very rapidly. 
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2.2.3 Conditional Generative Adversarial Network 

A GAN is a system of two NN, in our case CNN for computer vision. The two NN are the 

Discriminator and the other the Generator. The objective with having two of them is that one will 

be trained to recognize ‘real’ data and the other will generate data and try to trick the Discriminator, 

or the one trained to recognize real data. In a cGAN the Generator is also trained from images. The 

Generator will be generating fake data and through backpropagation eventually receive enough 

feedback to be able to trick the Discriminator. Figure 2.10 describes the architecture of the system. 

 

 

Figure 2.10 – cGAN Architecture 

 

 

 

 

 

 



23 

Chapter 3: Modeling Water Braking 

Operated by the 846th Test Squadron (TS), the Holloman High-Speed Test Track (HHSTT) 

at the Holloman Air Force Base (HAFB), New Mexico is the world's premier facility for testing 

full-scale high-speed flight vehicles. The TS plans and executes world-class rocket sled tests, 

HHSTT is one of the unique Air Force Test Centers (AFTC) that provides cutting-edge Test and 

Evaluation (T&E) capabilities in support of AF critical weapon system technology and 

development. The HHSTT conducts a diversity of tests for assessing the performance of various 

aerospace systems. Examples include bomb and fuse function and survivability at impact (Figure 

1), weapon lethality, ejection seat performance (Figure 2), guidance system accuracy, material 

erosion and ablation, rain effects on the survivability of aerospace materials, aerodynamic 

characteristics of aerospace system designs, and others [1–3]. It is used for conducting hypersonic 

(beyond Mach 8) [2,4–8] impact tests using rocket-propelled sleds that run on a 9.63 miles steel 

rail track. The rocket sleds are held on the rails by steel shoes/slippers [9,10].  

Operational flight speeds at the HHSTT are achieved using rail-mounted rocket-propelled 

sleds. A typical test will have the test article attached to a forebody sled that is driven by one or 

more pusher sleds that accelerates the forebody to the desired velocity (Figure 1). Often, the test 

article is launched off the end of the track as shown in Figure 1. However, many tests require 

recovery of the test article on the rail for post-test analysis. Therefore, some braking mechanism 

is needed to stop the sleds before running out of track. By recovering the sled from a test, the cost 

and time requirements for future tests may also be reduced. Retrieving a sled means that it can be 

used or modified for future trials. The methods to stop/recover the sleds include curving the track, 

water braking, spoilers as air brakes, or hooks and cables [11]. Traveling at high speeds with the 

condition to recover sleds, the test requires that items be brought to rest quickly and safely 
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sometimes from hypersonic speeds without damaging the sled for reusability purposes. Moreover, 

most trials have multiple sleds in a sled train, some or all of which must be recovered on the rail. 

Many recovered sleds are decelerated to a stop through a combination of aerodynamic drag (sled 

coast-out) followed by entry into water braking. Water braking works to stop the vehicle through 

a momentum exchange, where the water is diverted vertically or laterally by sled-mounted scoops, 

wedges, or other features.  

There are several methods for deploying water braking depending on whether the sled is 

dual rail or monorail, location on the track in which braking is initiated, and even speed at which 

braking is initiated.  

For dual rail pusher sleds [2,12,13], water is deployed in the trough between the rails at 

increasing depths. Water depth is controlled using frangible dams that are inserted into the channel 

at planned locations. The sled braking scoop encounters and diverts the water in the trough, which 

provides a drag force and consequently slows down the sled. Dual rail forebody sleds may be 

stopped by rail-top braking. For rail-top braking, plastic tubes are filled with water taped to the top 

of the rail. The water bags are encountered by sleds-mounted scoops or a sled-mounted wedge. 

Increasing braking forces are applied using larger diameter water bags. There are two primary 

water braking methods for monorail sleds: rail-top water bags as just described, and temporary 

water troughs deployed along both sides of the rail.  

Testing items and systems designed to operate in a flight environment under realistic 

conditions can be expensive and difficult to measure accurately. Force magnitudes on the sled due 

to interaction with water during braking are unknown. This results in an inability to precisely 

predict the sled stop point along the rail or to optimize sled designs and trajectory 

profiles.  Understanding water braking phenomenon through CFD modeling [14–18] will improve 
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the T&E capability at HHSTT on several fronts, including reductions in test costs and test risk as 

well as an improved ability to achieve customer-desired velocity and acceleration profiles.  

 

3.1 METHODOLOGY 

The simulations are carried out with the Finite Volume Method (FVM) approximations. 

FVM provides a powerful numerical approach to perform CFD simulations. Multiphase (two-

phase/water-air) flow dynamics will be modeled using the Volume of Fluid (VOF)[19–21]. The 

VOF model can model two or more immiscible fluids by solving a single set of momentum 

equations and tracking the volume fraction of each of the fluids throughout the domain. Typical 

applications include the prediction of a jet breakup, the motion of large bubbles in a liquid, the 

motion of liquid after a dam break, and the steady or transient tracking of any liquid-gas interface. 

The VOF formulation is generally used to compute a time-dependent solution, but for problems in 

which you are concerned only with a steady-state solution, it is possible to perform a steady-state 

calculation. For example, the flow of water in a channel with a region of air on top and a separate 

air inlet can be solved with the steady-state formulation. The VOF formulation relies on the fact 

that two or more fluids (or phases) are not interpenetrating. For each additional phase that we add 

to our model, a variable is introduced: the volume fraction of the phase in the computational cell. 

In each control volume, the volume fractions of all phases sum to unity. The phases share the fields 

for all variables and properties and represent volume-averaged values if the volume fraction of 

each of the phases is known at each location. Thus, the variables and properties in any given cell 

are either purely representative of one of the phases, or representative of a mixture of the phases, 

depending upon the volume fraction values. Based on the local value of qth fluid's volume fraction 
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in the cell (αq), the appropriate properties and variables will be assigned to each control volume 

within the domain (Figure 2). 

The tracking of the interface(s) between the phases is accomplished by the solution of a 

continuity equation (Eq 3.1) for the volume fraction of one (or more) of the phases. For the qth 

phase, this equation has the following form: 

 

                                    
1

𝜌𝑞
[
𝜕

𝜕𝑡
 (𝛼𝑞 𝜌𝑞) +  𝛁. (𝛼𝑞 𝜌𝑞𝐯𝑞) =  𝑆𝛼𝑞 + ∑ ( 𝑚𝑝𝑞̇  −  𝑚𝑞𝑝̇ ) 𝑛

𝑝=1 ]                              (3.1) 

 

where 𝑚𝑞𝑝̇  is the mass transfer from phase q to phase p and 𝑚𝑝𝑞̇  is the mass transfer from 

phase p to phase q. By default, the source term on the right-hand side of the equation (𝑆𝛼𝑞 ), is 

zero, but you can specify a constant or user-defined mass source for each phase. The volume 

fraction equation will not be solved for the primary phase; the primary-phase volume fraction will 

be computed based on the unity constraint for the sum of the volume-fraction of all the phases.   

The properties appearing in the transport equations are determined by the presence of the 

component phases in each control volume. In a two-phase system, if the phases are represented by 

the subscripts 1 and 2, and if the volume fraction of the second of these is being tracked, the density 

(𝜌) in each cell is given by 𝛼2 𝜌2 + (1 − 𝛼2)𝜌1. Similarly, all other properties such as viscosity 

(𝜇) and pressure (p) are computed. Momentum equations for each phase are solved throughout the 

domain, and the resulting velocity field is shared among the phases. The momentum equation (Eq. 

3.2) is dependent on the volume fractions of all phases through the properties ρ and µ. 

 

𝜕

𝜕𝑡
 (𝜌𝐯) +  𝛁. (𝜌𝐯𝐯)     =  − 𝛁𝑝 +  𝛁. [𝜇(𝛁𝐯 +  𝛁𝐯𝑇)] +  𝜌𝐠 + 𝐅   (3.2) 
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One limitation of the shared-fields approximation is that in cases where large velocity 

differences exist between the phases, the accuracy of the velocities computed near the interface 

can be adversely affected. The energy equation (Eq. 3.3) also shared among the phases. 

 

𝜕

𝜕𝑡
 (𝜌𝐸) +  𝛁. (𝐯(𝜌𝐸 + 𝑝)) =  𝛁. (𝑘𝑒𝑓𝑓 𝛁𝑇) + 𝑆ℎ 

 

                 (3.3) 

 

 

 

The VOF model treats energy (𝐸 =
∑ 𝛼𝑞 𝜌𝑞𝐸𝑞

𝑛
𝑞=1

∑ 𝛼𝑞 𝜌𝑞
𝑛
𝑞=1

 ), and temperature (𝑇) as mass-averaged 

variables where 𝐸𝑞 for each phase is based on the specific heat of that phase and the shared 

temperature. The properties  𝜌 and effective thermal conductivity (𝑘𝑒𝑓𝑓) are shared by the phases. 

The source term (𝑆ℎ) contains contributions from any other volumetric heat sources. 

 

 

Figure 3.1: Impact of test – an article on a non-recovered forebody sled with a recovered pusher 

sled (left) and water bag braking (right). 

 



28 

 

Table 3.1: Description of the cases to be simulated 

Cases Description 

2D Model  

(4 Cases) 

Simplistic scoop design, Low speed (50-100m/s), the Learning curve 

2D Model Domain and mesh refinement increased over previous, High speed (up to 

Mach ~0.9), Validated with hand calculation 

3D- J.Model Simplistic design, Different angle variations, Small domain for faster 

conversion 

3D-Scoop. 

Model 

Scoop CAD model, added proper trough dimensions, large domain size 

3D-Model Need to add rails, front sled, and pusher sled (future studies) 
 

 

To accurately represent the fluid dynamics, a proper boundary condition must be imposed 

on the outer boundaries of the fluid domain and the inner surfaces representing fluid-structure 

interfaces. Two types of boundary conditions are available, i.e., Dirichlet boundary conditions 

where specify the value of the function at the boundary, and Neumann boundary conditions where 

specify the gradient normal to the boundary of the function at the boundary. Sometimes, a mixed 

type of boundary conditions is used to solve the fluid dynamics problem.  In the numerical 

simulation, it is impossible to solve a problem without defining a boundary condition. The 

numerical simulation also needs to consider the physical process in the boundary region. Results 

may vary while applying different boundary conditions. Improper boundary conditions may 

provide nonphysical influences on the simulation results. That means boundary conditions play an 

important role in accurate simulation result.    

The study was split into five different stages listed in Table 3.1. In green we have the 

completed stages, yellow we have currently ongoing, and blue is future. The decision to split the 

study into different stages was made early on to progress with confidence. The objective was to 

properly identify the correct initial and boundary conditions first before proceeding to more 

complex models. After having identified those conditions, the geometry could be taken from 2-D 
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to 3-D. The difference with the 3-D models is that the 3D-J.Model is a simple scoop geometry 

with a small domain used to test initial conditions, boundary conditions, and set up before 

modeling the 3D-Scoop.Model (actual scoop used in some sleds for water braking at the HHSTT).   

 

3.2 IMPORTANT CFD STEPS  

The proposed software used for the CFD simulations is Fluent.  To perform CFD 

simulations with the software, the following steps are required:  

• Acquire the approximated physical model and create the geometry from a Computer Aided 

Design (CAD) software (NX or Solidworks).  

• Create the mesh by importing the CAD model into a mesh generator software (ANSYS 

Design modeler) and removing sharp edges/corners.  

• Choose the appropriate mathematical models governing equations of multiphase fluid flow. 

These equations are also called Navier-Stokes equations which are derived from conservation 

laws for the mass, momentum, and energy in a control volume and are a coupled system of 

five non-linear PDEs for 3D in space and time. 

• Choose a numerical method used to discretize the equations being solved.  

• Analyze the results with post-processing tools to visualize the results such as contour plots of 

velocity, temperature, and pressure; drag and lift profiles, and 3D time evolution of eddies 

structures. 
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Figure 3.2: Preliminary results (SFFP 2018): Water braking instigation with CFD 

 

 

 
Figure 3.3: Schematic of important parameter and BCs in CFD setup and simulations with 

example of simulated results (a), mesh (b), and two-phases VOF description (c). 

 

3.3 MODELING APPROXIMATIONS 

In water braking mechanism, water at increasing elevation is used to hit scoop attached 

with the sled providing a drag force and consequently slowing down the sled. Methods for 
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deploying water braking in dual rail scoop mechanism will be studied following a step-by-step 

process. 

• Step 1: Define the geometry (boundaries and scoop) of the system as a simple representation 

of water braking scoop mechanism, depicted in Figure 3.2. It will inform us about forcing 

mechanism and magnitude that water level has on the scoop and estimate its impact on the 

scoop.  

• Step 2: Define boundary conditions (anything not defined in Figure 3.3 is a wall, no slip) for 

the system, shown in Figure 3.3.  

• Step 3: Assume a step-by-step increase in water level and velocity profile as used in the dual 

rail pusher sleds where water is deployed in the trough between the rails at increasing depths, 

and the depth is controlled using frangible dams that are inserted into the trough at planned 

locations. 

 

 

 

 

 

 

Figure 3.4: 2D Volume 

fraction 

Contour at 

100 m/s 

Figure 3.5: 2D Volume 

fraction 

at 300 

m/s 

Figure 3.6: 2D Static 

pressure at 

100 m/s 

(blue – Low 

PRESSUR; 

Red – High 

PRESSURE) 

 

Figure 3.7: 2D Dynamic 

pressure at 

100 m/s   

(blue – Low 

pressure; Red 

– High 

PRESSURE)   
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Figure 3.8: 3D Model 

 

 

3.4 RESULTS AND DISCUSSION 

The 2D model in Figure 3.2, illustrates the control volume (domain) and fluid flow. 2D 

models were run with different initial velocity vectors for both air and water inlet while everything 

else remained the same. The magnitudes were 50 meters/second (m/s), 75 m/s, 100 m/s, 150 m/s, 

and 300 m/s. The 2D model reviewed in this section is the second iteration of the 2-D model. Both 

air and water are always run at the same speed in all models. The geometry created is just a general 

scoop with no correlation to any scoops used on the track. As previously stated, the purpose of the 

2D model was to establish initial conditions and boundary conditions. Also, the 2D model was also 

used to validate models’ calculations with hand calculations at 300 m/s.  

 

Force (by hand) = 1.35e7 N/m      Force (2D model) = 1.4e7 N/m 

 

The simplicity of the design allowed for hand calculations to be done and compared to results from 

the 2D model in Fluent. Having validated the 2D model, we could proceed to the more 

sophisticated 3D model. The mesh was refined for reduced skewness and quality was improved 

around the scoop. The mesh grid is also mostly structured for faster conversion. BCs are Two 
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inlets, one air the other water, One outlet for pressure, Six walls (4 for the scoop, one for the top 

wall, and one for the bottom wall). The mesh consisted of 41,591 cells. The set-up is illustrated in 

Figure 2. Gravity was enabled at -9.81 m/s2. The solver used was pressure-based transient allowing 

for a Multiphase Volume of Fluid (VOF) type of model with time steps. Making it pressure based 

allowed for multiphase flow modeling of air and liquid water. The VOF consisted of 2 Eulerian 

phases, air and water, and the k-ε viscous model was used for turbulence. Energy equation was 

accounted for when inlet velocities were equal to or higher than 100 m/s, the density of air becomes 

compressible an ideal gas can be used to control the density. Water is assumed to be incompressible 

with constant density. To simulate the sled’s scoop entering water braking, air and water were used 

as velocity inlets at the desired velocity of sled entering water braking. For boundary condition to 

simulate the real-world situation, the top and right side (red) are pressure outlets, bottom, as well 

as four scoop boundaries (green), are walls with no slip, and finally, in dashed blue and black lines, 

we have velocity inlet of air and water at varying velocities. 

Figures 3.4, 3.5, 3.6, 3.7 are for qualitative purposes. The volume fraction contour displays the 

water (blue) hitting the scoop and going over. We will study the sensitivity of the results to the 

computational mesh. Red is air, while light blue and green represent a mixture of air and water, 

water is sprayed back. At 100m/s, water does not have enough velocity to be pushed forward. 

The volume fraction contour displays the water (blue) hitting the scoop and going over, Figure 

3.4. Red is air, while light blue and green represent a mixture of air and water, water is sprayed 

back. At 100m/s, water does not have enough velocity to be pushed forward. Water was 

accelerated to 300 m/s or about Mach 0.87. At this velocity, we can see that the water no longer 

flows over the scoop (Figure 3.5). It is reflective of what had been observed in an actual test of 

sleds entering at velocities close to Mach 1. Most interesting is the effect of the water behind 
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scoop, having water jump up as such with still significant velocity can cause damage to the sled 

behind the scoop. In Figure 6, High static pressure is produced in the frontal area of the scoop 

and is responsible for water building up and going over at 100 m/s. This pressure on the scoop is 

also accountable for creating drag and acting as a braking force on the scoop which is 

transitioned to the sled. Dynamic pressure builds up can be observed; this creates lift that can be 

dangerous for a sled as it can cause it to lift from the rails (Figure 3.7). 

The 2D model initial conditions and boundary conditions were validated though drag 

calculations and visual inspection of volume fraction contours. Having proper understanding and 

conditions established, work on the 3D model could proceed. Several cases of 2D were run, 

different velocity and water height. The slight difference in the calculation, from one of the cases, 

between the 2D CFD model and the one by hand is the slight arc in the geometry at the top. For 

simplicity, the hand calculation was taking as if the scoop was deflecting water straight up. In the 

CFD case, however, there is a slight arc that pushes water towards the front causing slightly higher 

braking force.  

The 3D Test model was built as a precursor to the scoop of an actual sled and to study 

specific geometry effects on the water (Figure 3.8). The point of attack of the scoop and the 

geometry of the scoop remained the same as in the 2-D model. The difference was the cuts on the 

front of the sled. The trough for the water was added to the geometry.  

The 3D Test model was built as a precursor to the scoop of an actual sled and to study 

specific geometry effects on the water (Figure 3.8). The point of attack of the scoop and the 

geometry of the scoop remained the same as in the 2-D model. The difference was the cuts on the 

front of the sled. The trough for the water was added to the geometry. From Figure 3.8, looking at 

the right side of the 3-D Geometry is the 2-D model used earlier. Actual environmental geometry 
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was added such as the trough where the water is. The angle at the tip of the scoop to its sides varied 

between 0, 5, 35, and 60 degrees as well as the level of the water. The different water heights for 

the water entry were 6in, 8in, 10in, 12in. The scoop geometry remained the same with those 

exceptions. Cases were created for all combinations of degrees and water height. The geometry 

had a small domain for quicker initial results. The model geometry is not yet representative of the 

actual track. The mesh for the 3-D Test Model was considerably larger even as the domain was 

kept small. It had a total of 493,806 elements (3D polygons through which flow is modeled). 

The boundary conditions are like the 2D with the exception that sections were coupled 

together into larger sections. Mostly remained the same, except instead of the boundaries being 

1D they became 2D. The boundary sections at the desired velocity of the sled is entering water 

braking. To converge the initial mesh time step sizes had to be 1e-7. The domain is 5 meters long 

meant that at 100 m/s it would take 500,000 time-steps for air and water to make it from one side 

of the control volume to the other. For accuracy, 50 iterations per time step would be taken 

bringing the total number of iterations required for a single model to go from one end to the other 

to 25 million iterations. Even parallelized depending on the number of cores it would take a day. 

Due to a large amount of time to complete, because of the number of elements and time steps, 

the mesh was redone with a much smaller mesh and time step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: 3-D Scoop Model Static Pressure and Volume Fraction Contour at 50m/s 
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Scoop area was water makes contact has high static pressure build-up (Figure 3.9), like 2-

D. The volume fraction contour on the left is interesting as there is no water shown near the bottom 

sides. A mesh with higher resolution will be required to identify if there is truly no water there or 

if it is an error being propagated by the mesh elements being too large. However, it may make 

sense if there were no water there as the scoop cuts the water. 

A total of 96 cases are planned. Different angles, water heights, and velocities. Cases were 

not able to be completed in time, due to the small-time step size required for converting the number 

of time steps needed had to be very large. Contours of cases shown in results were acquired using 

a very coarse mesh that could provide a glimpse of water behavior phenomena. Without a finer 

mesh, it will be challenging to get accurate results. Results may be affected by large element size, 

therefore, may be misleading. Cases must be run with much higher mesh density. Large amounts 

of HPC hours are required. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: 3D Model Volume Fraction and Vorticity at 50 m/s 

 
 

3D Scoop Model is the same as 3D Test Model except for a much larger domain and the 

scoop geometry. Everything else stayed the same. The cases created for it are based only on water 

height and velocity of fluids (air and water). Water heights planned are the same as in 3D Test 
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Model, 6in, 8in, 10in, 12in. The geometry of the new scoop is much more complex, the arc at the 

top allows it to provide much higher braking force as it shoots water to the front. Another notable 

difference is the created were air inlet, water inlet, scoop walls, a bottom wall, top outlet, back 

outlet, left outlet, and right outlet. To simulate the sled’s scoop entering water braking, air and 

water were used as velocity inlets “guards” on the sides that keep some of the water from escaping 

to the sides. This allows for more water to be thrown forward, increasing braking force. The mesh 

consists of 464,423 elements with refinement near the scoop and on the bottom wall where water 

will run.  In similar fashion to the 3-D test model, a total of 16 cases are planned. Different water 

heights and velocities. Cases were not able to be completed in time due to the small-time step size 

required for converting the number of time steps needed had to be very large. Contours of cases 

shown in results were acquired using very coarse mesh and much smaller time steps. This, 

however, caused the model to fail to converge soon after the results shown in Figure 10. Without 

finer mesh, it’ll be challenging to get analyzable results. Cases have been created to run, but 

summer ended before being able to run them. Cases must be run with much higher mesh density. 

Large amounts of HPC hours are required. Even with an original mesh of over 464,000 the mesh 

elements seem too large due to the large control volume. 

 

3.5 VERIFICATION AND VALIDATION (V&V) FRAMEWORK (FUTURE WORK) 

In the last decades or so, the CFD simulations has undergone a strong development and has 

become a powerful tool both for the analysis and understanding of fluid dynamics phenomena, and 

similarly for the design of AF systems such as the sled test, made possible due to the advent of 

faster and faster supercomputers with increasing memory capabilities and advanced computing 

algorithms. However, the CFD results are strongly affected by the numerical methodology 

employed (i.e., accuracy, efficiency, geometrical modeling, etc.) and computer resources for real-
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life problems. The limitations of CFD need to be addressed due to the lack of understanding and/or 

inappropriate physical modeling as well as limited experimental information. The credibility of 

CFD simulations can only be established by a rigorous process of verification and validation[22–

25]. 

Over several decades, the HHSTT has conducted several high-speed sled tests with water 

braking mechanism and collected data of predicted profile with varying degree of success, 

confidence, and fidelity. This along with tremendous knowledge built around the braking 

mechanism would provide a rich dataset for the team to perform validations of predicted CFD 

results with a high degree of confidence. We propose to follow the established guidelines for 

assessing the credibility of the CFD Modeling and Simulation (M&S) results [22,26,27]. A 

possible roadmap to build a validation strategy is described in Table 3.2. The two main principles 

that are necessary for assessing the results are Verification and Validation.  

 

Table 3.2: A roadmap to build a verification & validation strategy 

Step 1 Step 2 Step 3 
• Consider simple flow features 

with simple scoop design. 

• Identify test cases for which 

analytic or hand-calculation are 

available/can be estimated with 

a high degree of confidence. 

• Assess the accuracy, 

convergence, and capability of 

the CFD results. 

• Consider simple/moderate 

flow physics. 

• Establish grid requirements 

for various geometry & 

operating conditions. 

• Assess model assumptions 

through comparison with 

benchmark experiments. 

 

• Consider full Multiphysics 

physics flow to assess accuracy 

by comparing the high fidelity 

CFD results with experiments. 

• Evaluate model limitations and 

determine grid requirements. 

• Carry out the parametric 

analysis with through 

comparison with test data. 

 

 

Verification is the process of determining how accurate a computational simulation 

represents a given conceptual model. The verification process will be subdivided into two major 

components: code verification and calculation verification. Since we propose to use ANSYS 

Fluent, commercial software that has gone through rigorous code development test, we propose to 



39 

do testing for simple 2D geometries mimicking hand calculation and compare the results with the 

HHSTT hand calculated results to establish confidence in the computer program. In the calculation 

verification, we propose to estimate and develop the basis for numerical errors due to discretization 

approximations. Validation determines how accurate a simulation (i.e., the conceptual model) 

represents the phenomenon to be investigated.  

In general, the verification must precede validation. The need for validation experiments 

and the associated accuracy requirements for computational model predictions are based on the 

intended use of the model and should be established as part of V&V activities. Validation of an 

HHSTT braking phenomena will be pursued hierarchically from the component level to the system 

level starting with hand-calculation to check-out runs and sled tests with varying degree of 

component complexity and operating speeds. The validation strategies will include the predictive 

capability of the model in the physical realm of interest by addressing uncertainties that arise from 

both simulation results and experimental data. 

 

3.6 CONCLUSION 

We developed 2D and 3D models for the scoop system of the sled. The CFD calculations 

were validated for drag calculations using simple momentum balance on the sled. Boundary 

conditions were ensured by visual inspection of volume fraction contours and conservation laws. 

The slight difference in the calculation, from one of the cases, between the 2-D CFD model and 

the one by hand is the small arc in the geometry at the top. For simplicity, the hand calculation 

was taken as if the scoop was deflecting water straight up. In the CFD case, however, there is a 

slight arc that pushes water towards the front causing slightly higher braking force. Several cases 

of 2D geometries were run to develop basic understandings of drag profile for different velocity 
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and water height. Mesh independency for the 3D model has not been done, the 3D model is still a 

work in progress. 
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Chapter 4: Turbulence Deconvolution using a Conditional Generative Adversarial Net  

 

4.1 INTRODUCTION 

Atmospheric turbulence varies on many factors including air direction, temperature, speed, 

and density. It is responsible for the blurring effects seen on images taken of objects in space. In 

Figure 1, the image on the left illustrates the turbulence phenomena. Turbulence phenomena are 

mostly modeled by Kolmogorov’s theory of turbulence, it will be used to simulate turbulence in 

non-provided generated images. The research objective is to create a model that can reverse 

turbulent effects, in images, caused by atmospheric conditions (see Figure 4.1) to identify objects, 

and its features, in space with greater ‘clarity’. Priority number one is to achieve a high degree of 

image quality when compared to a ‘pristine’ pre-turbulence image (greater than 90 percent 

accuracy to the original). A secondary objective is to reduce the time required to remove turbulence 

on an image to 3 seconds, while still maintaining enough image quality to identify objects. 

 

 

 
 

Figure 4.1: Satellite turbulence deconvolution 

 

4.2 METHODS 

For removing turbulent effects on images, a Conditional Generative Adversarial Net 

(cGAN) will be used. A Generative Adversarial Net (GAN) consists of two neural nets being 

trained simultaneously as they are pitted against each other [31]. One acting as a generative model 
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(Generator) and the other as a discriminative model (Discriminator), the Generator is tasked with 

‘tricking’ the Discriminator into thinking that the images it will provide it are from a ‘real’ dataset. 

The Discriminator on the other hand is tasked with determining if an image is ‘pristine’ or not. 

The Generator will work by generating images from turbulent images given, the 

Generator will initially build images of objects in turbulence but will slowly converge towards 

images without turbulence as it ‘learns’ from feedback provided by the Discriminator. As the 

Discriminator rejects the images being given to it by the Generator as fake, the Generator 

receives a ‘generated output’ from a generator loss function that the generator then optimizes to 

reduce and hence converges towards the minimization of the loss function output. By minimizing 

the loss, the Generator gets closer to tricking the Discriminator. In this process the Generator 

learns to apply ‘deconvolution’ to turbulent images as it attempts to trick the Discriminator into 

believing that the image it gives it are ‘real’ or non-turbulent. See Figure 4.3.  

The Discriminator works by training it on images with pristine, blurred (turbulent), and 

generated images simultaneously. It learns to classify images as turbulent or non-turbulent, 

assigning probability of the ladder through a sigmoid function. Its role in the GAN is to train the 

Generator by telling it how ‘close’ the images it generates are to the non-turbulent images. If 

training is successful, the Discriminator’s classification of generated images as non-turbulent will 

be around 50%. Anything below 40% and the Generator model would not be a successful 

deconvolution model, it may still be improved. Anything more than 60% and the Generator has 

become too good, its potential to get better decreases as the Discriminator is determined to struggle 

classifying turbulent and non-turbulent images. It may signify Discriminator is not capable of 

determining non-turbulent images and therefore providing the Generator bad feedback, meaning 

the Generator model may not be very good. A well-trained GAN will achieve an equilibrium of 
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about 50% accuracy for the Discriminator, the Generator is good enough to trick the Discriminator, 

but the Discriminator is good enough to keep improving the Generator. As the purpose of this 

report is to address the deconvolution of Turbulence in images and not GANs, GANs are only 

briefly explained. For greater detail on GANs please refer to [31,32]. 

The cGAN, that would remove turbulence, started with a GAN that would generate images 

from random noise. This simpler GAN is shown in Figure 4.2, below. The objective is to add 

components and capability to this simpler GAN to eventually evolve into something that would 

remove turbulence. 

 

 

Figure 4.2: Deep Convolution GAN, used for MNIST and Ellipse dataset 

 

After successful training and testing of GAN with MNIST and random Ellipse data, another 

component to the GAN is to be added. Shown below in Figure 4.3, turbulent images are added 

along with the pristine images in the training of the GAN. It is a model similar in function to the 

one used in [33] to recover degraded images. 
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Figure 4.3: Conditional GAN, planned for use with generated Turbulent and Pristine Ellipse dataset as well as 

generated Satellite Dataset 

 

 

4.3 EXPERIMENTS 

All current results are qualitative. The Generator NN for the DCGAN in Figure 4.2 was 

initiated with random noise. The dataset used to train the DCGAN is data from MNIST. It includes 

60,000 samples of written integers, Figure 4.4. 

 

 
Figure 4.4: MNIST dataset sample 
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After 50 epochs or cycles, the GAN managed to produce some realistic results for some 

digits. They can be viewed in the figure below, Figure 4.5. 

 

 
Figure 4.5: DCGAN MNIST results 

 

For the Ellipse dataset, 200 random ellipses were generated using python. All 200 have 

different sizes, major and minor radius lengths, orientation, and location. Figure 4.6 illustrates 

three potential samples from the dataset. For the DCGAN (same GAN as MNIST) only ellipses as 

in Figure 4.6 were used. The next training, after MNIST, was to teach the GAN to ‘create’ ellipses 

in a similar manner to how it learned to ‘write’ integers in Figure 4.5. 

 

 
Figure 4.6: Sample of random Ellipses in Ellipse dataset 
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The result of the cGAN are shown below in Figure 4.7. The GAN again starts from random 

noise and slowly begins to converge into what can qualitatively be classified as learning to create 

ellipses of different size. 

 

 
Figure 4.7: DCGAN learning to draw ellipses based on Ellipse Dataset 

 

After the successful training of the Ellipse drawing GAN, the ellipse from the dataset 

undergoing turbulence were to be incorporate. At the point of incorporation of turbulent images, 

the GAN in Figure 4.3 is used instead of GAN in Figure 4.2. The turbulent ellipses are created by 

applying turbulent filters onto the images, simulating what the image would look like at turbulent 

levels desired. Turbulence filters are created by applying a filter based on Kolmogorov’s equation. 

These same filters are applied to generated satellite images shown in Figure 4.8. At the writing of 

this report the CGAN with turbulent images is still a work in progress. 
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Figure 4.8 illustrations satellite data in which the Conditional GAN will be trained on at 

the conclusion of the study. Currently, the study is not far along to remove turbulence from blurred 

figures and produce the pristine images (shown in Figure 4.8). 

 

 
Figure 4.8: Generated Blurred (turbulent) and Pristine (non-turbulent) Satellite images 

 

4.4 DISCUSSION 

Preliminary results show promise in the DCGAN. Qualitatively, the Generator is 

approaching the ‘real’ images provided to the Discriminator. The next phase of the research is to 

replace random noise initialization for the Generator with turbulent Ellipse images and have it 

train towards non-turbulent images. The idea is that the Generator model would then be able to 

provide deconvolution to images with turbulence.  

An advantage of using generated images is having exact images without turbulence, 

something not possible in the real world. This allows the deconvolution training to converge 

towards a ‘perfect’ image. A disadvantage however is that turbulent images are generated and not 

an exact reflection of turbulence, they approximate atmospheric conditions using Kolmogorov’s 
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equation for Turbulence. Another limitation is that a cGAN would have to be trained for 

‘categories’ of turbulence, as one cGAN model fits all would not provide accurate results. The 

dataset would have to be partitioned and trained on similar turbulent levels. The result would be 

many cGAN model corresponding accordingly to turbulence category.  

For future work, the goal is to complete the research and use the large declassified dataset 

of generated satellite images to train different turbulence models according to turbulence category. 

After turbulent models are trained for each specific turbulence category, a third neural net would 

have to be integrated to act as a turbulence classifier to assign the appropriate turbulence model to 

a provided turbulent image. In addition, perhaps Reinforcement Learning could be included during 

the training of the GANs to improve learning capability. 

 

4.5 CONCLUSION  

The research is to be conducted in 5 stages, see Figure 4.9. First, the Generative Adversarial 

Net (GAN) and python Turbulence models, which will act as filters on images, were developed in 

parallel. Second, GAN was tested using MNIST dataset and images of ellipses, of different sizes 

and orientation, were created with and without a turbulence filter. Third (current stage), the ellipse 

turbulent and pristine images are to be fed into the GAN to test the loading and training of the 

GAN with generated images. Fourth, test ellipse model on blurred (turbulent) satellite images 

provided. Fifth, train the GAN with generated satellite data provided and quantify the quality of 

the deconvolution of images, from blurred to pristine. 

 

 
Figure 4.9: Research plan in stages 
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At the conclusion of 7 weeks the research is in stage 3, see Figure 4.9. Stages 1 and 2 

were successfully completed as demonstrated in the Experiments section. At Stage 3 the 

integration of a Variational Auto-Encoder (VAE) as the Generator is not yet complete. By using 

a VAE the objective is to be able to process and manage turbulent images as input into the 

Generator and begin the training of a deconvolution model.  

At the moment of writing this report, all results are qualitative. The datasets previous to 

the generated satellites, MNIST and Ellipse, were used to build up towards the GAN being able to 

process different data structures. They were used as proof of concept. 

 

RESEARCH MILESTONES  

1) Initial GAN (MNIST Test) ------------------------------------------------------------> COMPLETE  

- Had GAN generate handwritten numbers from data  

- Qualitative results  

2) GAN (Ellipse Test, see Ellipse Dataset in Supporting Graphics) ----------------> COMPLETE  

- generated 200 random ellipses as dataset to test GAN  

- Qualitative results  

3) GAN (Ellipse; Blurred and Pristine Training) -------------------------------------> CURRENT  

4) GAN Ellipse Model Test (w/ Generated Satellite Data) -------------------------> INCOMPLETE  

5) GAN Train and Test (using Generated Satellite Data) ---------------------------> INCOMPLETE 
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Chapter 5: Conclusion 

As defined by the roadmaps provided for each project, Modeling Water Braking and 

Turbulence Deconvolution using a Conditional Generative Adversarial Network, there is still work 

stages to be completed. Proof of concept for both has been established, however, and that is enough 

to get a glimpse of the potential impact of an integration of both.  

 

5.1 PUTTING IT TOGETHER 

By completing the complex 3D CFD models laid out, we will have and be able to produce 

data for the cGAN to learn from. The main goal of the integration is to improve testing capability 

at HHSTT by melding strengths of CFD and cGANs. As advantages as their strengths are, we must 

not forget that their shortcoming will only magnify when put together. As CFD is inherently with 

errors due to the inability to capture unsteady fluid phenomena that occurs at high Reynolds 

numbers, training a cGAN with errors which itself will not be entirely correct because it is also 

only trying to replicate real data will increase the error margins. This perhaps will make the use of 

a cGAN with CFD unpalatable if error control and tolerance are a concern. There is hope however 

that at the very least there will be qualitative data good enough to warrant combining two. 

Qualitative, though not as useful as quantitative, can be of used for general understanding of fluid 

mechanics during specific test that can help identify areas of high importance, focus, and potential 

concern. This then still becomes advantages as the number of CFD analysis can be reduced and 

therefore meeting the established objective of reducing cost, computational resources 

requirements, and increasing testing.  
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5.2 FUTURE WORK 

After the completion of a cGAN that can help determine qualitative results of water 

breaking, the next step is to use the expanded capability for the development and engineering of 

new sleds that would allow better braking at HHSTT. The new sleds could then do more with less 

by being able to expand on real world testing capabilities. By using CFD and cGAN a sled with 

more optimal braking potential can be built. New sled designs can be analyzed without the risk of 

failure in real world or without taking too much computational resources. This can allow for the 

conception of a sled with greater and safer braking potential at a relatively lower cost of what it 

would be now. This would in turn help increase the speed at which test can be made and still allow 

for recoverability using water braking.   
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