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ABSTRACT 

 

The Hohenberg-Kohn-Sham (HKS) density functional theory (DFT) is widely used to 

compute electronic structures of atoms, molecules, and solids. It is an exact theory in which ground 

state electron density plays the role of basic variable, same as the wavefunction does in quantum 

mechanics. The total ground state energy is a functional of electron density. The practical 

application of HKS DFT require approximation to the exchange-correlation energy functional.  

Many density functional approximations (DFAs) with various degree of sophistication and 

complexities have been developed. Depending on the complexity, these functionals include 

electron density, density gradients, density Laplacian, kinetic energy densities, Hartree-Fock 

exchange etc. Some examples of widely used non-empirical functionals are local density 

approximation (LDA), Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation 

(GGA), and strongly constrained and appropriately normalized (SCAN) meta-GGA. 

     Practically all DFAs suffer from a systematic error known as self-interaction error (SIE) where 

an electron incorrectly interacts with itself. These DFAs can fail dramatically for cases such as 

systems with a stretched bond where SIE is pronounced.  The SIE arises from an improper 

cancellation of the self-Coulomb energy with the approximated self-exchange-correlation energy 

for the one-electron limit.  Perdew and Zunger self-interaction correction (PZSIC) provides the 

exact cancellation for one- and two-electron self-interaction, but it does not necessarily eliminate 

many-electron self-interaction. The present work uses Fermi-Lowdin orbitals (FLOS) which are 

Fermi orbitals orthogonalized via Löwdin scheme. FLOs are localized orbitals through Fermi 

orbital descriptors (FODs) which are special positions to capture the electronic density of a system. 

The PZSIC implementation using FLOs, called FLOSIC, results in size-extensive implementation 

of the PZSIC. The PZSIC calculations provide more accurate results for stretched bond and anionic 

states but worsen properties where DFA performs well, this is known as the PZSIC paradox.  

The present thesis deals with development and assessments of methods to overcome the 

paradoxical behavior of PZSIC. We compare PZSIC against the new local scaling SIC (LSIC) with 

two different approaches. The first approach uses ratio of kinetic energy densities referred to as 

LSIC(z) hereafter. It showed impressive results by keeping the correct behavior PZSIC and 
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improving it where PZSIC fails. LSIC(w), the second method that uses orbital and total densities 

as scaling factor is proposed in this work. We compare the methods against orbital scaling SIC 

(OSIC).  The comparison is done with an extensive test of different properties such as total 

energies, ionization potentials and electron affinities for atoms, atomization energies, dissociation 

and reaction energies, and reaction barrier heights of molecules.  We also show that unlike LSIZ(z) 

the simple scaling factor in LSIC(w) can describe binding of hydrogen bonded water well. This 

work also presents an extensive study of OSIC applied to SCAN functional for different forms of 

scaling factors to identify one-electron regions, OSIC-SCAN provides better results than the 

previously reported OSIC-LSDA, -PBE and -TPSS results. Furthermore, we propose a new 

method of selective scaling of OSIC to remove the major shortcoming of OSIC that destroys the 

−1/𝑟 asymptotic behavior of the potential shape. The SOSIC gives the HOMO eigenvalues 

practically identical to PZSIC, unlikely to OSIC. Overall, the thesis presents new methods for self-

interaction free density functional calculations.   
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CHAPTER 1: DENSITY FUNCTIONAL THEORY 

 

 This chapter aims to provide the background theory.  Starting with the Schrödinger 

equation, followed by brief discussion of methods that simplify the many-body problem, we 

introduce density functional theory. A brief discussion of exchange-correlation functionals is also 

given.   

 

1.1 SCHRÖDINGER EQUATION 

 

The Schrödinger equation plays fundamental role in quantum mechanics like the Newton 

equations do in classical mechanics. Newton equations or classical mechanics describe the 

position, velocity, momentum, kinetic energy, potential energy, total energy, and force of a specific 

system, to achieve it, we must solve a differential equation given by Newton’s second law.  

To obtain properties of a quantum system one needs to solve the Schrodinger equation, solution 

of which provides a wavefunction (WF) of a particle. The wavefunction is used to calculate 

properties such as total energy, kinetic energy and another set of properties [131]. The Schrödinger 

equation for one particle is: 

 

𝑖 ℏ
𝜕Ψ(𝑟,𝑡)

𝜕𝑡
 =  −

ℏ2 

2𝑚
 ∇2 Ψ(𝑟) + 𝑉(𝑟) Ψ(𝑟, 𝑡)                               (1.1.1) 

 

here ℏ is the Planck's constant, 𝑚 is the particle mass, 𝑉(𝑟) is the potential and Ψ is the time-

dependent wavefunction of a particle (e.g. electron). When the potential does not depend explicitly 

on time, one can write the solution as Ψ(𝑟, 𝑡)  =  𝜙(𝑟)𝜓(𝑡).  Dividing both sides of above equation 

by Ψ,  we get the following equation: 

 

 

𝑖 ℏ
1

𝜓(𝑡)

𝜕𝜓(𝑡)

𝜕𝑡
 =  −

ℏ2 

2𝑚
 ∇2𝜙(𝑟)

1

𝜙(𝑟)
 + 𝑉(𝑟)   =  𝐸                              (1.1.2) 
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Eq. (1.1.2) is an eigenvalue problem, where 𝐸 is a constant number and it represents the 

equilibrium energy of a system: 

 

−
ℏ2 

2𝑚
 ∇2𝜙(𝑟)  + 𝑉(𝑟) 𝜙(𝑟)  =  𝐸𝜙(𝑟)                                             (1.1.3) 

 

the Hamiltonian operator is known as: 

 

𝐻̂ =  −
ℏ2 

2𝑚
 ∇2 + 𝑉(𝑟)                                                         (1.1.4) 

 

the components of Eq (1.1.4) are the kinetic energy operator (𝑇̂) and potential (𝑉), and 𝐻̂ provides 

the total energy of the system, in this case, of the wavefunction. The next set of equations are the 

definitions of the operators and the operational form of the Hamiltonian. 

 

𝑝̂ = −𝑖ℏ𝛻                                                               (1.1.5) 

 

𝑇̂ =  
𝑝2

2𝑚
=  −

ℏ2 

2𝑚
 ∇2                                                      (1.1.6) 

 

𝑉(𝑟) =
𝑞1𝑞2

4𝜋𝜖0

1

    |𝑟−  𝑟′⃗⃗⃗⃗⃗ |  
                                                      (1.1.7) 

 

𝐻̂𝜙(𝑟) = 𝐸𝜙(𝑟)                                                          (1.1.8) 

 

𝑝̂ is the momentum operator, 𝑉 is defined as the Coulomb potential, where  |𝑟 − 𝑟′| is the distance 

between two charged particles (e.g. electron charge or proton charge) with charges 𝑞1 and 𝑞2.The 

interpretation of quantum mechanics is probabilistic.  A normalized wavefunction can be obtained 

by  

 

∫  ( 𝜙′(𝑟) )∗ 𝜙(𝑟) 𝑑𝑟
∞

− ∞  
 = 1                                              (1.1.9) 
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here 𝜙∗ is the complex conjugate of the wavefunction. This integration is related to the number of 

electrons, also the inner terms of the integral are related to the electronic density, whose definition 

is: 

 

𝜌(𝑟) = (𝜙′( 𝑟))
∗
𝜙(𝑟) = |𝜙(𝑟)|2                                         (1.1.10) 

 

in quantum mechanics, the physical properties are obtained by taking the expectation value of the 

corresponding Hermitian operator 𝑂̂ .   The total energy of a quantum system is obtained by taking 

expectation value of the Hamiltonian operator. 

 

∫ (𝜙′(𝑟 ))
∗
 𝐻̂ 𝜙(𝑟)𝑑𝑟

∞

−∞
= 𝐸                                           (1.1.11) 

 

 Eq. (1.1.11) can be written compactly using Dirac notation: 

 

⟨𝜙′| 𝐻̂ |𝜙⟩  =  𝐸                                                     (1.1.12) 

 

this notation has the introduction to bra ⟨𝜙|  as complex conjugate 𝜙 and ket  |𝜙⟩ as just 𝜙, this 

set forms the bracket notation. 

 

1.1.1 MANY-BODY SCHRÖDINGER EQUATION  

 

The description of a quantum system depends on the number of nuclei and electrons [130].   

An example of the simplest real system is the hydrogen atom that has one electron and one proton, 

using the Eq. (1.1.4), leads to the next equation:   

 

𝐻̂ =  −
ℏ2 

2𝑚𝑛
  𝛻𝑛

2  −
ℏ2 

2𝑚𝑒
  𝛻𝑒

2  −
𝑒2

4𝜋𝜖0

1

|𝑟𝑛⃗⃗⃗⃗⃗−𝑟𝑒⃗⃗ ⃗⃗ |
                              (1.1.13) 
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the last term of the Eq. (1.1.13) is  the attractive potential between proton-electron ( 𝑉𝑒𝑝(𝑟) =

 −
𝑒2

4𝜋𝜖0

1

|𝑟𝑝⃗⃗⃗⃗⃗−𝑟𝑒⃗⃗ ⃗⃗ |
 ). In a similar fashion for a system containing M nuclei with mass 𝑀𝐼 at position 𝑅⃗⃗𝐼, 

and  N electrons with mass 𝑚𝑒 , the Hamiltonian can be expressed as: 

 

𝑇̂ =  − ∑
ℏ2

2𝑀𝐼
𝛻𝐼

2𝑁
𝐼 − ∑

 ℏ2 

2𝑚𝑒
𝛻𝑖

2𝑁
𝑖                                         (1.1.14) 

𝑉(𝑟) = 𝑉𝑒𝑒 + 𝑉𝑛𝑛 + 𝑉𝑒𝑛                                                (1.1.15) 

 

here 𝑉𝑒𝑒 is the Coulomb interaction between electrons, 𝑉𝑒𝑛is the Coulomb interaction between 

electron and nuclei, and 𝑉𝑛𝑛 is the Coulomb interaction between nuclei. Their definitions are: 

 

𝑉𝑒𝑒 =  
1

2
∑

𝑒2

4𝜋𝜖0

1

|𝑟𝑖⃗⃗⃗ ⃗−𝑟𝑗⃗⃗⃗⃗ |

𝑁
𝑖 ≠ 𝑗                                                (1.1.16) 

𝑉𝑛𝑛 =  
1

2
∑

𝑒2

4𝜋𝜖0

𝑍𝐼 𝑍𝐽

|𝑅𝐼⃗⃗⃗⃗⃗−𝑅𝐽⃗⃗ ⃗⃗ ⃗|
𝑀
𝐼 ≠ 𝐽                                              (1.1.17) 

𝑉𝑒𝑛 =  − ∑
𝑒2

4𝜋𝜖0

𝑍𝐼

|𝑟𝑖⃗⃗⃗ ⃗−𝑅𝐼⃗⃗⃗⃗⃗|

𝑁,𝑀
𝑖 ,𝐼                                               (1.1.18) 

 

𝑉𝑒𝑒 and 𝑉𝑛𝑛 are repulsive potentials, and 𝑉𝑒𝑛 is an attractive potential. Putting all the pieces together 

in the Hamiltonian, we can rewrite the Eq. (1.1.13) as: 

 

[− ∑
ℏ2 

2𝑀𝐼
  𝛻𝐼

2

𝑀

𝐼

 − ∑
ℏ2 

2𝑚𝑒
  𝛻𝑖

2

𝑁

𝑖

+
1

2
∑

𝑒2

4𝜋𝜖0

1

|𝑟𝑖⃗⃗⃗ − 𝑟𝑗⃗⃗⃗|

𝑁

𝑖 ≠ 𝑗

+
1

2
∑

𝑒2

4𝜋𝜖0

𝑍𝐼𝑍𝐽

|𝑅𝐼
⃗⃗⃗⃗⃗ − 𝑅𝐽

⃗⃗⃗⃗⃗|

𝑀

𝐼 ≠ 𝐽

 

+  ∑
𝑒2

4𝜋𝜖0

𝑍𝐼

|𝑟𝑖⃗⃗⃗ − 𝑅𝐼
⃗⃗⃗⃗⃗|

𝑁,𝑀

𝑖 ,𝐼

 ] 𝛹 = 𝐸𝑡𝑜𝑡𝑎𝑙  𝛹 

(1.1.19) 

Eq. (1.1.19) is the Schrödinger equation for the 𝑖-th electron and 𝐼-th nuclei with 𝑍𝐼 protons, this 

provides the total energy of the system. The wavefunction depends on the position of each electron 

and nuclei, it is as follows: 

 

Ψ = Ψ(𝑟1, … , 𝑟𝑁 , 𝑅⃗⃗1, … , 𝑅⃗⃗𝑀)                                             (1.1.20) 
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the probability of a finding an electron at 𝑟1 is given by  

 

𝑃(𝑟1 = 𝑟) = ∫ Ψ∗(𝑟, 𝑟2 … , 𝑟𝑁 , 𝑅⃗⃗1, … , 𝑅⃗⃗𝑀)Ψ(𝑟, 𝑟2 … , 𝑟𝑁 , 𝑅⃗⃗1, … , 𝑅⃗⃗𝑀)𝑑𝑟      (1.1.21) 

 

it is useful to remember that in QM the electrons are indistinguishable particles, so Eq. (1.1.21) is 

N times the same probability distribution,  or simply speaking, 𝑁  electrons by the integral, leading 

to the following description for the electronic density: 

 

𝜌(𝑟) =  ∑ 𝑃(𝑟𝑖 = 𝑟)𝑁
𝑖=1 = 𝑁 𝑃(𝑟)                                   (1.1.22) 

 

𝜌(𝑟) = 𝑁∫ Ψ∗(𝑟, 𝑟2 … , 𝑟𝑁 , 𝑅⃗⃗1, … , 𝑅⃗⃗𝑀)Ψ(𝑟, 𝑟2 … , 𝑟𝑁 , 𝑅⃗⃗1, … , 𝑅⃗⃗𝑀)𝑑𝑟         (1.1.23) 

 

the integral of the total electronic density is the number of electrons in the system. 

 

∫ 𝜌(𝑟)𝑑𝑟 = 𝑁                                                                                  (1.1.24) 

 

1.1.3 ATOMIC UNITS 

 

 The Schrödinger equation contains fundamental constants [130] like electron mass 𝑚𝑒, 

proton mass 𝑚𝑝, electron charge 𝑒, reduced Plank’s constant ℏ and  the permittivity of vacuum 𝜖0. 

The official values retrieved from (https://physics.nist.gov/cuu/Constants/index.html) are: 

 

ℏ = 1.05457163 ∗ 10−34𝐽  

𝑚𝑒 = 9.10938291 ∗ 10−31𝑘𝑔 

𝑚𝑝 = 1.67262164 ∗ 10−27𝑘𝑔 

𝑒 = 1.60217649 ∗ 10−19𝐶 

𝜖0 = 8.85418782 ∗ 10−12𝐹/𝑚 

 

https://physics.nist.gov/cuu/Constants/index.html
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the hydrogen at its ground state has an average orbital radius of 𝑎0 ≅ 0.529 𝐴̇ for the electron, if 

we use this value in the Coulomb formula (Eq. (1.1.18)), it gives the average Coulomb energy for 

a proton-electron pair. 

 

𝐸𝑒𝑝 = −
𝑒2

4𝜋𝜖0𝑑𝑒𝑝
= −

𝑒2

4𝜋𝜖0𝑎0
= 27.2114 𝑒𝑉                           (1.1.25) 

 

the previous value is known as the Hartree energy (𝐸𝐻𝑎), which is the typical unit of energy. In 

atomic units, 𝑎0 = 1, 𝑚𝑒 = 1, 𝐸𝐻𝑎 = 1  and 𝑒 = 1 numerically. Thus, the many-body Schrödinger 

equation in atomic units can be expressed as  

 

[− ∑
1

2𝑀𝐼
  𝛻𝐼

2

𝑀

𝐼

 − ∑
1

2
𝛻𝑖

2

𝑁

𝑖

+
1

2
∑

1

|𝑟𝑖⃗⃗⃗ − 𝑟𝑗⃗⃗⃗|

𝑁

𝑖 ≠ 𝑗

+
1

2
∑

𝑍𝐼𝑍𝐽

|𝑅𝐼
⃗⃗⃗⃗⃗ − 𝑅𝐽

⃗⃗⃗⃗⃗|

𝑀

𝐼 ≠ 𝐽

                           

+  ∑
𝑍𝐼

|𝑟𝑖⃗⃗⃗ − 𝑅𝐼
⃗⃗⃗⃗⃗|

𝑁,𝑀

𝑖 ,𝐼

 ] 𝛹 = 𝐸𝑡𝑜𝑡𝑎𝑙𝛹 

(1.1.31) 

here 𝐸𝑡𝑜𝑡𝑎𝑙 is measured in Hartree energy units, and 𝑀𝐼 in atomic mass units. 

 

1.1.4 BORN-OPPENHEIMER APPROXIMATION 

 

The Born-Oppenheimer approximation allows separation of nuclear and electronic degrees 

of freedom based on the observation that the nuclei being much heavier than electrons move much 

slower compared to the electrons. Consequently, the wavefunction of a system can be separated 

into nuclear and electron wavefunctions [115]. Within this consideration in Eq (1.1.31) for the 

kinetic energy contribution, the nuclei do not add much change compared to the electron 

contribution, therefore, we can take out the nuclei contribution of kinetic energy. The potential 

given by the nuclei-nuclei interaction is also frozen and it can be taken as constant. Any constant 

value added to the Hamiltonian operator will not affect the eigenvalues of the eigenfunctions or 



 7 

wavefunctions, and the remaining pieces of the Hamiltonian take the name of electronic 

Hamiltonian or the Hamiltonian description of  N electrons in a field presence of M point charges.  

 

𝐻̂𝑒𝑙𝑒𝑐 = − ∑
1

2
𝛻𝑖

2𝑁
𝑖 +

1

2
∑

1

|𝑟𝑖⃗⃗⃗ ⃗−𝑟𝑗⃗⃗⃗⃗ |

𝑁
𝑖 ≠ 𝑗 + ∑

𝑍𝐼

|𝑟𝑖⃗⃗⃗ ⃗−𝑅𝐼⃗⃗⃗⃗⃗|

𝑁,𝑀
𝑖 ,𝐼                        (1.1.32) 

 

the application of this Hamiltonian is: 

 

𝐻̂𝑒𝑙𝑒𝑐|𝜙𝑒𝑙𝑒𝑐⟩ = 𝐸elec |𝜙𝑒𝑙𝑒𝑐⟩                                           (1.1.33) 

 

then, the electronic wavefunction has the next description: 

 

𝜙𝑒𝑙𝑒𝑐 = 𝜙𝑒𝑙𝑒𝑐({𝑟𝑖}, {𝑅⃗⃗𝐼})                                            (1.1.34) 

 

𝜙𝑒𝑙𝑒𝑐 depends explicitly on the position of the electrons and parametrically on nuclei coordinates, 

Eq. (1.1.34) also describes the motion of the electrons. When we get the energy of an electronic 

system through this approach, it still has a parametric dependence on the nuclei coordinates, this 

theory is known as clamped nuclei approximation. 

 

𝐻̂𝑒𝑙𝑒𝑐 |𝜙𝑒𝑙𝑒𝑐({𝑟𝑖}, {𝑅⃗⃗𝐼})⟩  = Eelec({𝑅⃗⃗𝐼})  |𝜙𝑒𝑙𝑒𝑐({𝑟𝑖}, {𝑅⃗⃗𝐼})⟩               (1.1.35) 

 

to get the total energy of the system, one needs to add the constant nuclear repulsion. 

 

𝐸𝑡𝑜𝑡({𝑅⃗⃗𝐼}) = 𝐸𝑒𝑙𝑒𝑐 + +
1

2
∑

𝑍𝐼𝑍𝐽

|𝑅𝐼⃗⃗⃗⃗⃗−𝑅𝐽⃗⃗ ⃗⃗ ⃗|
𝑀
𝐼 ≠ 𝐽                                          (1.1.36) 

 

 

if we apply Eq. (1.1.32) to the electronic wavefunction, and measure the energy through Eq. 

(1.1.11), which is the expectation value, we can approximate the total nuclei Hamiltonian with the 

next expression: 
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𝐻̂𝑛𝑢𝑐 = − ∑
1

2𝑀𝐼
  𝛻𝐼

2𝑀
𝐼 + 𝐸𝑡𝑜𝑡({𝑅𝐼})                                     (1.1.37) 

 

the Eq. (1.1.36) provides a potential (surface) description for the nuclear dynamics. To get the 

energy of the nuclear Schrödinger equation, one has to the solve the following equation. 

 

𝐻̂𝑛𝑢𝑐|𝜙𝑛𝑢𝑐⟩ = 𝐸|𝜙𝑛𝑢𝑐⟩                                                (1.1.38) 

 

here 𝜙𝑛𝑢𝑐  ≡ 𝜙𝑛𝑢𝑐({𝑅⃗⃗𝐼}). The nuclear Hamiltonian describes the vibration, rotation, and 

translation of a molecule, and this is the Born-Oppenheimer approximation for the total energy of 

the molecule. The approximation for the total wavefunction (molecular orbital) of this method is: 

 

𝜙({𝑟𝑖}, {𝑅⃗⃗𝐼}) = 𝜙𝑒𝑙𝑒𝑐({𝑟𝑖}, {𝑅⃗⃗𝐼}) 𝜙𝑛𝑢𝑐({𝑅⃗⃗𝐼})                            (1.1.39) 

 

we will focus on just the electronic problem and drop the “elec” suffix of every equation, so the 

energy is going to be the electronic energy unless otherwise indicated. 

 

1.1.5 ANTISYMMETRY PRINCIPLE  

 

The description of the electron wavefunction is not yet complete given that 𝜙 only depends 

on the positions of electrons and nuclei, this means that we have a lack of description of the spin 

in our wavefunction. To include such description, we need to introduce two spin functions [115] 

in the context of nonrelativistic theory, these are 𝛼(𝜔) for spin up and 𝛽(𝜔) for spin down. The 

variable  𝜔 can be 𝛼 or 𝛽, and must meet the following conditions of orthogonality for a complete 

set. 

 

⟨𝛼|𝛼⟩  = ⟨𝛽|𝛽⟩ = 1                                                 (1.1.40) 

⟨𝛼|𝛽⟩  = ⟨𝛽|𝛼⟩ = 0                                                 (1.1.41) 
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within this formalism, one electron is described by position coordinates 𝑟 and one spin coordinate 

𝜔, leading to a four (𝑥, 𝑦, 𝑧, 𝜔) coordinate description: 

 

𝑥⃗ = {𝑟, 𝜔}                                                        (1.1.42) 

 

therefore, the wavefunction for the 𝑖-th electron is 𝜙({𝑥⃗𝑖}, {𝑅⃗⃗𝐼}), even though we don’t have an 

explicit dependence in the Hamiltonian for this spin variable, it is not worthless to include an extra 

requirement for the wavefunction such as the antisymmetric interchange of electrons or coordinate 

exchange as follows: 

 

𝜙(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁) = −𝜙(𝑥⃗2, 𝑥⃗1, … , 𝑥⃗𝑁)                                   (1.1.43) 

 

this requirement is known as the antisymmetry principle, which is a simple and general statement 

of the Pauli exclusion principle. Thus, our wavefunction has not only to satisfy the Schrödinger 

equation, but also the antisymmetry principle, which is an independent postulate of the quantum 

mechanics theory. In following sections will be used this principle. 

 

1.2 HARTREE-FOCK THEORY 

 

 This chapter has the goal of presenting the electronic orbitals and molecular orbitals within 

Hartree products to construct the Slater determinant, which is a type of orbital that obeys the 

antisymmetry principle. Following this, basic definitions of Hartree-Fock equations will be 

presented. Finally present the self-consistency field approximation of Hartree-Fock, which gives 

the approximation of the Hartree-Fock method [115,116]. 
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1.2.1 TYPES OF ORBITALS  

 

This section introduces notations for further usage in the Hartree-Fock theory [116]. In the 

following, we will define what a Slater determinant is, and use many-electron wavefunctions that 

are either single Slater determinant or a linear combination of Slater determinants. To achieve this, 

we need to consider the nature of an orbital wavefunction and the single electron wavefunction. 

For a molecule, a wavefunctions will be molecular orbital (MO) for an electronic structure. A 

spatial orbital 𝜓𝑖(𝑟) is just a function of spatial coordinates, and it describes the electron 

distribution in space, in a molecule, these orbitals are taken as an orthonormal set: 

 

∫ 𝜓𝑖
∗(𝑟)𝜓𝑗(𝑟)𝑑𝑟 = 𝛿𝑖𝑗                                                 (1.2.1) 

 

if the spatial orbitals form a complete set, we must be able to describe any arbitrary function 𝑓(𝑟) 

in terms of this complete set, therefore, it can be described as follows: 

 

𝑓(𝑟) =  ∑ 𝑎𝑖𝜓𝑖(𝑟)∞
𝑖=1                                                  (1.2.2) 

 

where 𝑎𝑖 are constant coefficients. This kind of expansion is only possible if the set is complete, 

and that completeness is only reached when the set is infinite. In practice we have finite sets, this 

means that it only spans a certain region of the complete space, thus, the results can be 

approximated to the exact description through a spanned subspace. 

Once again, there is a lack of spin description, so we will define a wavefunction that not only 

depends on the position 𝑟, but also its spin, that is an electron wavefunction containing both  spatial 

and spin parts as 𝜒(𝑥⃗). One can build an electron wavefunction according to the spin-state 

functions 𝛼(𝜔) (up) and 𝛽(𝜔) (down), and the spatial electron distribution 𝜓(𝑟). A simple and 

useful description for one-electron wavefunction including position and spin is: 

 

𝜒(𝑥⃗) = {
𝛼(𝜔)𝜓(𝑟)

𝛽(𝜔)𝜓(𝑟)
                                                     (1.2.3) 
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two different orbitals obey the orthonormality principle when the spatial orbitals are orthonormal. 

 

∫ 𝜒𝑖
∗(𝑥⃗)𝜒𝑗

∗(𝑥⃗)𝑑𝑥⃗ = 𝛿𝑖𝑗                                                   (1.2.4) 

 

1.2.2 INDEPENDENT ELECTRON APPROXIMATION AND HARTREE PRODUCTS 

  

 Once we observed the electron-orbital wavefunction 𝜒(𝑥⃗), which is the chosen description 

for this subchapter, we continue with the consideration of 𝑁 electrons. But before we get a 

definition of a wavefunction that describes an interacting system for the electrons, let us consider 

a simpler system of noninteracting electrons [115]. For such a system, the electron-electron 

contribution of the Hamiltonian will not be considered (𝑉̂𝑒𝑒 = 0), therefore we define the one-

electron Hamiltonian as:  

 

ℎ̂(𝑥⃗𝑖) = −
1

2
∇𝑖

2 − ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀
𝐴                                               (1.2.5) 

 

the 𝑟𝑖𝐴 is |𝑟𝑖 − 𝑅⃗⃗𝐴| , 𝑥⃗𝑖 are the electron coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖, 𝜔𝑖), the Laplacian applied to the 𝑖-th 

electron and ℎ𝑖 is the Hamiltonian for a noninteracting electron. Then the whole Hamiltonian for 

a set of noninteracting electrons will be: 

 

𝐻̂ = ∑ ℎ̂𝑁
𝑖 (𝑥⃗𝑖)                                                        (1.2.6) 

 

Eq. (1.2.6) is a dramatic simplification, but it allows us to handle the equations separately and 

solve electron by electron with ℎ𝑖 operator. The operator is applied to a set of eigenfunctions 𝜒𝑗 

and provides the eigenvalues corresponding to the energy of each orbital (𝜀𝑗).  

 

ℎ̂(𝑥⃗𝑖)𝜒𝑗(𝑥⃗𝑖) = 𝜀𝑗𝜒𝑗(𝑥⃗𝑖)                                                (1.2.7) 
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Our interest resides in the wavefunction of the whole Hamiltonian, which a collection of all the 

one-electron Hamiltonians. A one-electron Hamiltonian is independent of any other orbital. We 

can invoke a wavefunction that is a product of all the orbitals 𝜒, we get: 

 

Ψ𝐻𝑃(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁) = 𝜒𝑖(𝑥⃗1)𝜒𝑗(𝑥⃗2) ⋯ 𝜒𝑘(𝑥⃗𝑁)                            (1.2.8) 

 

this wavefunction placed in 𝐻̂ will provide: 

 

∑ ℎ𝑖Ψ𝐻𝑃(𝑥⃗1, . . , 𝑥⃗𝑖 , … , 𝑥⃗𝑁)𝑁
𝑖 = (𝜀𝑖 + 𝜀𝑗 + ⋯ + 𝜀𝑘)Ψ𝐻𝑃(𝑥⃗1, . . , 𝑥⃗𝑖, … , 𝑥⃗𝑁)        (1.2.9) 

 

Eq. (1.2.9) is an eigenvalue equation, whose eigenvalue is the summation of all the wavefunction 

energies  in the form ( 𝐸 = 𝜀𝑖 + 𝜀𝑗 + ⋯ + 𝜀𝑘). 

 

𝐻̂Ψ𝐻𝑃 = 𝐸Ψ𝐻𝑃                                                   (1.2.10) 

 

a many-electron wavefunction with this behavior is called Hartree product, where the description 

of electron 𝑖-th is given by 𝜒𝑖, electron two is described by 𝜒𝑗 and consequently. The product of 

wavefunctions has the meaning of the intersection of probabilities, which is the product of 

independent events. On the other hand, the electrons interact with each other and they will repel, 

so the motion of the electrons will be explicitly correlated. This model has a deficiency of 

distinguishing electrons, but it is needed to have an indistinguishable system of electrons to 

describe the antisymmetry principle. 

 

1.2.3 SLATER DETERMINANTS 

  

 The Hartree product does not satisfy the antisymmetry principle. But it is possible to get a 

wavefunction that describes the antisymmetry principle and the indistinguishability of electrons. 

This can be done by a suitable linear combination of two Hartree products [115]. The 

distinguishability of a Hartree product comes out from describing two different electrons: 
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Ψ12
𝐻𝑃(𝑥⃗1, 𝑥⃗2) = 𝜒𝑖(𝑥⃗1)𝜒𝑗(𝑥⃗2)

Ψ21
𝐻𝑃(𝑥⃗1, 𝑥⃗2) = 𝜒𝑖(𝑥⃗2)𝜒𝑗(𝑥⃗1)

                                       (1.2.11) 

 

these wavefunctions show that electrons 𝑥⃗1 and 𝑥⃗2 swap in different orbitals and make a distinction 

between those two electrons. The convenient wavefunction is as follows: 

 

Ψ(𝑥⃗1, 𝑥⃗2) =
1

√2
( 𝜒𝑖(𝑥⃗1)𝜒𝑗(𝑥⃗2) −  𝜒𝑗(𝑥⃗1)𝜒𝑖(𝑥⃗2))                        (1.2.12) 

 

where 1/√2 is a normalization factor, if we look at the interchange of electrons 𝑥⃗1 and 𝑥⃗2, the 

antisymmetry principle is included ( Ψ(𝑥⃗2, 𝑥⃗1) = −Ψ(𝑥⃗1, 𝑥⃗2) ) and describes the Pauli exclusion 

principle, which says that two electrons cannot be in the same occupied orbital. The Eq. (1.2.12) 

can be written as a determinant: 

 

Ψ(𝑥⃗1, 𝑥⃗2) =
1

√2
|
𝜒𝑖(𝑥⃗1) 𝜒𝑗(𝑥⃗1)

𝜒𝑖(𝑥⃗2) 𝜒𝑗(𝑥⃗2)
|                                         (1.2.13) 

 

the Eq. (1.2.13) is the famous Slater determinant, and its general form for N electrons is: 

 

Ψ(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁) =
1

√𝑁! ||

𝜒𝑖(𝑥⃗1) 𝜒𝑗(𝑥⃗1) ⋯

𝜒𝑖(𝑥⃗2) 𝜒𝑗(𝑥⃗2) ⋯

⋮ ⋮ ⋱

𝜒𝑘(𝑥⃗1)

𝜒𝑘(𝑥⃗2)
⋮

𝜒𝑖(𝑥⃗𝑁) 𝜒𝑗(𝑥⃗𝑁) ⋯ 𝜒𝑘(𝑥⃗𝑁)

||                        (1.2.14) 

 

again 
1

√𝑁!
 is the normalization factor, the electrons are the rows with 𝑥⃗𝑖 positions and the columns 

are the orbitals from 𝜒𝑖 to 𝜒𝑘. This clever idea carries the concept of swapping electrons or orbitals, 

to create a change of sign. The change of sign is made by determinant properties to fit the 

antisymmetry principle. A sort hand notation for the Slater determinant is: 

 

Ψ(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁) = |𝜒𝑖(𝑥⃗1)𝜒𝑗(𝑥⃗2) ⋯ 𝜒𝑘(𝑥⃗𝑁)⟩                          (1.2.15) 
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if we have the same order of electrons as 𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁, the Eq. (1.2.15) can be further reduced to 

the next expression: 

 

Ψ(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁) = |𝜒𝑖𝜒𝑗 ⋯ 𝜒𝑘⟩  =|𝑖 𝑗 …  𝑘⟩                            (1.2.16) 

 

realize that 𝜒𝑖 becomes 𝑖 to avoid long notation. We will discuss this wavefunction and some usage 

in the preceding sections.  

 

1.2.4 NOTATION FOR HARTREE-FOCK THEORY 

  

 Before continuing with the Hartree-Fock approximation, we need to introduce the 

necessary notation [116]. In section 1.2.2 we defined the Hamiltonian for one electron, now it is 

necessary to specify the rest of the pieces for the Hamiltonian. The one-electron Hamiltonian 

contains the kinetic energy of the electron and the Coulomb attraction with nuclei, but to 

completely describe the electronic Hamiltonian, we need to add the nuclei-nuclei interaction (𝑉̂𝑛𝑛) 

which is parametric (or functional) and the electron-electron Coulomb interaction (𝑉̂𝑒𝑒). The 

Coulomb repulsion of two electrons will be simplified as: 

 

𝑉(𝑟𝑖, 𝑟𝑗) =
1

|𝑟𝑖−𝑟𝑗|
=

1

𝑟𝑖𝑗
                                                  (1.2.17) 

 

𝑟𝑖𝑗 is the distance between the electron positions and will be for simplicity 𝑉𝑖𝑗 = 1/𝑟𝑖𝑗. The 

Hamiltonian for this notation is as follows: 

 

𝐻̂𝑒 = ∑ ℎ̂(𝑥⃗𝑖)𝑁
𝑖=1 +

1

2
∑ 𝑉𝑖𝑗

𝑁
𝑖,𝑗 + 𝑉𝑛𝑛                                       (1.2.18) 
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applying ⟨Ψ|𝐻̂𝑒|Ψ⟩ , we get the total energy of the electronic system, also looking at the nature of 

𝑉𝑖𝑗, which only operates on pairs of electrons and it will generate many Kronecker deltas for the 

Hamiltonian, depending on the orbitals and their orthonormality. 

 

⟨Ψ|𝐻̂𝑒|Ψ⟩  = ∑ ⟨Ψ|ℎ̂(𝑥⃗𝑖)|Ψ⟩𝑁
𝑖=1 +

1

2
∑ ⟨Ψ|Vij|Ψ⟩𝑁

𝑖,𝑗 + ⟨Ψ|𝑉𝑛𝑛|Ψ⟩             (1.2.19) 

 

for each of these ingredients, it will generate a matrix element that corresponds to 𝐻𝐼𝐽, each of 

these elements contains multiplications of their corresponding 𝐼-th and 𝐽-th orbitals, which will 

invoke the orthonormality property of Eq.(1.2.4), and if any pair of orbitals are not the same index, 

it will vanish. This leads to the next equation: 

 

𝐸𝐻𝐹 = ∑ ⟨𝑖|ℎ̂|𝑖⟩𝑁
𝑖=1 +

1

2
∑ ⟨𝑖𝑗||𝑖𝑗⟩𝑁

𝑖,𝑗                                       (1.2.20) 

 

the Eq. (1.2.20) is the Hartree-Fock energy equation that uses the Slater determinant wavefunction. 

Since the nuclei-nuclei term is constant, it will be taken out for now. The first component of the 

Hartree-Fock energy is: 

 

⟨𝑖| ℎ̂ |𝑗⟩ = ∫ 𝜒𝑖
∗(𝑥⃗1) ℎ𝑖 (𝑥⃗1)𝜒𝑗(𝑥⃗1)𝑑𝑥⃗1                              (1.2.21) 

 

the Eq. (1.2.21) includes the kinetic energy of one electron and the nuclei-electron attraction, 

ℎ𝑖(𝑥⃗1) is integrated over 𝑥⃗1 electron coordinates that sweep overall space, and since the electrons 

are indistinguishable, this 𝑥⃗1 electron position will describe any other electron as well. Also, the 

integral carry the overlap of  the orbitals 𝜒𝑖
∗  and 𝜒𝑗,  which is the probability density of the electron 

𝑥⃗1 to be in the orbital 𝑖 and 𝑗. The second integral is known as the double bar integral. Required 

notation and Its generic form are as follow: 

 

⟨𝑖𝑗||𝑘𝑙⟩   = ⟨𝑖𝑗|𝑘𝑙⟩ − ⟨𝑖𝑗|𝑙𝑘⟩                                           (1.2.22) 
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⟨𝑖𝑗|𝑘𝑙⟩  ≡  ∫ 𝑑𝑥⃗1 ∫ 𝑑𝑥⃗2  𝜒𝑖
∗(𝑥⃗1)𝜒𝑗

∗(𝑥⃗2)𝑟12
−1𝜒𝑘(𝑥⃗1)𝜒𝑙(𝑥⃗2)                   (1.2.23) 

 

the Eq. (1.2.22) and (1.2.23) are written in physics notation or Dirac notation. Note that ⟨𝑖𝑗|𝑘𝑙⟩  =

⟨𝑖𝑗|𝑉12|𝑘𝑙⟩ to simplify representation, also that the electrons 𝑥⃗1 and 𝑥⃗2 are dummy indexes. This 

is possible given the indistinguishability of the electrons and that we will always integrate over a 

pair of electrons. For last, we show the representation of Eq. (1.2.23) in chemist notation [116] to 

further usage. 

 

[𝑖𝑗|𝑘𝑙] ≡ ∫ 𝑑𝑥⃗1 ∫ 𝑑𝑥⃗2  𝜒𝑖
∗(𝑥⃗1)𝜒𝑗(𝑥⃗1)  𝑟12

−1 𝜒𝑘
∗(𝑥⃗2)𝜒𝑙(𝑥⃗2)                   (1.2.24) 

 

the Hartree-Fock energy expression in both notations are as follows: 

 

𝐸𝐻𝐹 = ∑ ⟨𝑖|ℎ̂|𝑖⟩𝑁
𝑖=1 +

1

2
∑ (⟨𝑖𝑗|𝑖𝑗⟩ − ⟨𝑖𝑗|𝑗𝑖⟩)𝑁

𝑖,𝑗                               (1.2.25) 

𝐸𝐻𝐹 = ∑ [𝑖|ℎ̂|𝑖]𝑁
𝑖=1 +

1

2
∑ ( [𝑖𝑖|𝑗𝑗] − [𝑖𝑗|𝑗𝑖] )𝑁

𝑖,𝑗                              (1.2.26) 

 

from Eq. (1.2.26), we observe the Coulomb repulsion of two electrons in the terms [𝑖𝑖|𝑗𝑗] and 

[𝑖𝑗|𝑗𝑖], which is a quantum mechanical Coulomb description for a pair of electrons. 

 

[𝑖𝑖|𝑗𝑗] = ∫ 𝑑𝑥⃗2 ∫ 𝑑𝑥⃗1 𝜒𝑖
∗(𝑥⃗1)𝜒𝑖(𝑥⃗1) 𝑟12

−1𝜒𝑗
∗(𝑥⃗2)𝜒𝑗(𝑥⃗2)                     (1.2.27) 

 

𝜒𝑖
∗(𝑥⃗1)𝜒𝑖(𝑥⃗1) is the probability of finding the electron one in orbital 𝑖 at position 𝑥⃗1,  likewise for 

electron two in orbital 𝑗 at position 𝑥⃗2, the peculiar term is [𝑖𝑗|𝑗𝑖] represented as: 

  

[𝑖𝑗|𝑗𝑖] = ∫ 𝑑𝑥⃗2 ∫ 𝑑𝑥⃗1 𝜒𝑖
∗(𝑥⃗1)𝜒𝑗(𝑥⃗1) 𝑟12

−1𝜒𝑗
∗(𝑥⃗2)𝜒𝑖(𝑥⃗2)                     (1.2.28) 

 

it is hard to interpret, Eq. (1.2.28) does not have a straightforward explanation. Eq. (1.2.27) is the 

“interaction-energies” for a pair of electrons, and Eq. (1.2.28) is an interchange of orbital indexes 
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of Eq. (1.2.27). In literature, this term is called the exchange term. This term comes from the nature 

of a Slater determinant wavefunction that accomplishes the antisymmetry principle and the Pauli 

exclusion principle. 

 

1.2.5 HARTREE-FOCK APPROXIMATION 

 

This section has the Hartree-Fock approximation [115,116], which assumes that the 

wavefunction can be approximated by a single Slater determinant and this approximation is done 

with the variational principle (undetermined multipliers to enforce orthonormality of the orbitals), 

thus it will minimize the Hartree-Fock energy by tweaking the orbitals 𝜒. 

 

ℒ[{χi}] = 𝐸𝐻𝐹[{𝜒𝑖}] − ∑ 𝜀𝑖𝑗(⟨𝑖|𝑗⟩ − 𝛿𝑖𝑗)𝑁
𝑖,𝑗                             (1.2.29) 

 

𝜀𝑖𝑗 is the Lagrange multiplier. 

 

𝛿ℒ = 𝛿𝐸𝐻𝐹[{𝜒𝑖}] − ∑ 𝜀𝑖𝑗
𝑁
𝑖,𝑗 𝛿⟨𝑖|𝑗⟩                                  (1.2.30) 

 

where 𝛿⟨𝑖|𝑗⟩ is the variation of the overlap between orbitals 𝑖 and 𝑗. 

 

𝛿⟨𝑖|𝑗⟩  = ⟨𝛿𝜒𝑖|𝜒𝑗⟩  + ⟨𝜒𝑖|𝛿𝜒𝑗⟩                                   (1.2.31) 

 

if we do the variation of the Hartree-Fock energy, and recall that 𝑖 and 𝑗 indexes are just dummy 

indexes, it provides: 
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𝛿ℒ =  ∑[⟨𝛿𝜒𝑖|ℎ̂|𝜒𝑖⟩ + ⟨𝜒𝑖|ℎ̂|𝛿𝜒𝑖⟩]

𝑁

𝑖

+ ∑([𝛿𝜒𝑖𝜒𝑖|𝜒𝑗𝜒𝑗] + [𝜒𝑖𝛿𝜒𝑖|𝜒𝑗𝜒𝑗])

𝑁

𝑖,𝑗

− ∑([𝛿𝜒𝑖𝜒𝑗|𝜒𝑗𝜒𝑖] + [𝜒𝑖𝛿𝜒𝑗|𝜒𝑗𝜒𝑖])

𝑁

𝑖,𝑗

− ∑ 𝜀𝑖𝑗

𝑁

𝑖,𝑗

(⟨𝛿𝜒𝑖|𝜒𝑗⟩  + ⟨𝜒𝑖|𝛿𝜒𝑗⟩)    

      (1.2.32) 

 

in shorthand, Eq. (1.2.32) can be described in terms of  an expression and its complex conjugate, 

e.g., (⟨𝜒𝑖|ℎ̂|𝛿𝜒𝑖⟩)
∗

  = ⟨𝛿𝜒𝑖|ℎ̂|𝜒𝑖⟩, this is helpful given that the Hamiltonian is a Hermitian 

operator. The Hartree-Fock minimum energy is reached by 𝛿ℒ = 0. 

 

 

𝛿ℒ =  ∑[< 𝛿𝜒𝑖|ℎ̂|𝜒𝑖 >]

𝑁

𝑖

+ ∑([𝛿𝜒𝑖𝜒𝑖|𝜒𝑗𝜒𝑗])

𝑁

𝑖,𝑗

− ∑([𝛿𝜒𝑖𝜒𝑗|𝜒𝑗𝜒𝑖])

𝑁

𝑖,𝑗

− ∑ 𝜀𝑖𝑗

𝑁

𝑖,𝑗

(< 𝛿𝜒𝑖|𝜒𝑗 >)

+ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 = 0 

(1.2.33) 

 

with some algebraic manipulation of Eq. (1.2.33), we get the Hartree-Fock equation that defines 

the orbitals. 

 

ℎ̂(𝑥⃗1)𝜒𝑖(𝑥⃗1) + ∑ 𝜒𝑖(𝑥⃗1) [∫ 𝑑𝑥⃗2|𝜒𝑗(𝑥⃗2)|
2

𝑟12
−1]

𝑁

𝑖≠𝑗

− ∑ 𝜒𝑗(𝑥⃗1) [∫ 𝑑𝑥⃗2𝜒𝑗
∗(𝑥⃗2)𝜒𝑖(𝑥⃗2)𝑟12

−1]

𝑁

𝑖≠𝑗

= ∑ 𝜀𝑖𝑗𝜒𝑗(𝑥⃗1)

𝑁

𝑗

 

(1.2.34) 

 

the right side of the Eq. (1.2.34) can be diagonalized by a rotation, becoming 𝜀𝑖𝜒𝑖(𝑥⃗1). This 

equation can minimize a set of guess orbitals. The equations are solved iteratively until self-

consistency is obtained. 
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1.3 KOHN-SHAM THEORY 

 

As in previous sections, the Kohn-Sham (KS) Theory [1] can provide description of many-

body electronic structure systems, it is widely used to obtain electronic properties of atoms, 

molecules and solids. This method leads to Density Functional Theory (DFT), which uses the KS 

Theory with a functional approximation for the exchange-correlation of electrons. 

 

1.3.1 HOHENBERG-KOHN THEOREM 

 

 The energy is a functional of a wavefunction (𝐸 = ℱ[𝜓]). A functional takes a function 

as input and returns a number [130].  The main concept of DFT is to describe the properties of 

system using the electron density. The ground state energy is a functional of the electronic density 

(𝐸 = 𝐹[𝜌]). This is remarkable, given that instead of having 3𝑁 variables from the wavefunction, 

now we have a functional 𝜌(𝑟) that depends on 3 variables. The Hohenberg-Kohn theorem [132] 

allows this. In general, if it is not a ground state system, we must use the whole wavefunction to 

calculate the energy. 

 

𝐸 = {
𝐹[𝜌(𝑟)]               𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒

ℱ[𝜓(𝑟1, … , 𝑟𝑛)]    𝑒𝑥𝑖𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒
                                         (1.3.1) 

 

therefore, any operator described before will be in terms of the electronic density 𝜌(𝑟). 

 

2.3.2 KOHN-SHAM EQUATION 

 

The Hohenberg-Kohn theorem describes the total energy of many-electrons in their ground 

state as a functional of the electronic density [130], unfortunately, the exact form of this functional 

is still unknown and approximations are used. 

 

𝐸 = 𝐹[𝜌(𝑟)] = ∫ 𝑑𝑟𝜌(𝑟)𝑉𝑛(𝑟) + ⟨𝜓[𝜌]| 𝑇̂ + 𝑊̂|𝜓[𝜌]⟩                      (1.3.2) 
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where 𝑊̂ =
1

2
∑

1

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗  is the Coulomb potential and 𝑉𝑛 is the potential shape given by the 

parametric positions of the nuclei. The Eq. (1.3.2) depends explicitly on 𝜌 in the first term, the 

second term has an implicit dependence. The main idea of [1] was to break into pieces the kinetic 

and Coulomb energy terms as independent electrons and include an extra term to describe the 

exchange and correlation of the electrons. 

 

𝐸 = 𝐹[𝜌] = ∫ 𝑑𝑟𝜌(𝑟)𝑉𝑛(𝑟) − ∑ ∫ 𝑑𝑟𝜙𝑖
∗(𝑟) (

∇2

2
) 𝜙𝑖(𝑟)

𝑖

+
1

2
∫ 𝑑𝑟𝜌(𝑟)𝑉𝐻(𝑟) + 𝐸𝑥𝑐[𝜌] 

(1.3.3) 

𝑉𝐻(𝑟) = ∫ 𝑑𝑟′ 𝜌(𝑟′)

|𝑟−𝑟′|
                                                 (1.3.4) 

 

the summation of all the terms correspond to the total energy of the independent electron 

approximation, except for 𝐸𝑥𝑐, which is the exchange-correlation energy, and 𝑉𝐻 is the Hartree 

potential. If we knew 𝐸𝑥𝑐, then we would be able to calculate the total energy of a system in its 

ground state with just the electron density (𝜌). 

 

2.3.2 VARIATIONAL PRINCIPLE IN KS-EQUATION 

 

   The ground state density (𝜌0) is obtained by minimizing the total energy 𝐸[𝜌], and this 

property is stated in Hohenberg-Kohn variational principle [130] as follows: 

 

𝛿𝐹[𝜌]

𝛿𝜌
|𝜌0

= 0                                                        (1.3.5) 

 

this description is equivalent to the variational principle in the Hartree-Fock equation. The 

variational principle applied to the functional will lead to an equation for the KS orbitals 𝜙𝑖(𝑟), 

that is used to construct the electronic density. Minimizing the energy functional by enforcing the 

orthogonality of orbitals, leads to the following set of equations: 
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[−
1

2
∇2 + 𝑉𝑛(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟)] 𝜙𝑖(𝑟) = 𝜖𝑖𝜙𝑖(𝑟)                        (1.3.6) 

 

where 𝑉𝑛 is the nuclear potential, 𝑉𝐻 is the Hartree potential, the squared gradient contains the 

kinetic energy and 𝑉𝑥𝑐 is an extra term that describes the exchange-correlation potential, defined 

as: 

 

𝑉𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌
|𝜌(𝑟)                                                   (1.3.7) 

 

Eq. (1.3.6) is called Kohn-Sham equations, which is a very powerful tool to calculate the electronic 

properties of molecules.  The approximation of 𝐸𝑥𝑐[𝜌] introduce errors or inaccuracies. Therefore, 

search for more sophisticated and accurate approximation is an active area of research.  

 

1.3.3 LOCAL DENSITY APPROXIMATION 

 

The search for approximations of exchange-correlation functionals 𝐸𝑥𝑐[𝜌]  has led to large 

number of approximation, the simplest functional  being the Local Density Approximation (LDA) 

[9,128]. This functional is based on the homogeneous electron gas. The free electron gas model 

assumes that electrons do not interact with each other, nuclear potential is constant and that there 

are 𝑁 electrons within a box of volume 𝑉 [129]. 

 

𝜙𝑘⃗⃗
(𝑟) =

1

√𝑉
exp(𝑖𝑘⃗⃗ ∙ 𝑟)                                               (1.3.8) 

𝜖𝑘 =
 |𝑘⃗⃗|

2

2
                                                             (1.3.9) 

 

here, Eq. (1.3.8) is the stationary wavefunction with 𝑘⃗⃗ as wavevector and Eq. (1.3.9) are the 

eigenvalue of this wavefunction. The highest occupied state is the Fermi level that corresponds to 

the Fermi energy 𝜖𝐹 and wavevector 𝑘⃗⃗𝐹. The usefulness of this method comes from the unique 

dependence on the electron density. 
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𝑘⃗⃗𝐹 = (3𝜋𝜌)
1

3                                                      (1.3.10) 

 

knowing all these considerations, we can approximate the exchange energy using plane waves 𝜙𝑘⃗⃗ 

in the Hartree-Fock exchange energy.  We then get the next expression: 

 

𝐸𝑥[𝜌] = −
3

4
(

3

𝜋
)

1

3
𝜌

4

3 𝑉                                             (1.3.11) 

 

this ignores the correlation, but it was possible to get the correlation energy by solving directly 

from the many-body Schrödinger equation with stochastic numerical methods [128]. The 

generated data from this approach led to the correlation energy approximation for electron gas 

frame, such approximation was developed by Perdew and Zunger (1981) [9], resulting in the 

following expression: 

 

𝐸𝐶[𝜌] = 𝜌𝑉 {

−0.048 + 0.0311 ln 𝑟𝑠 + 0.002𝑟𝑠 ln 𝑟𝑠 − 0.0116𝑟𝑠         𝑖𝑓 𝑟𝑠 < 1

                         −
0.1423

1 + 1.0529√𝑟𝑠 + 0.3334𝑟𝑠

                     𝑖𝑓 𝑟𝑠 ≥ 1 

(1.3.12) 

 

𝑟𝑠 it the Wigner-Seitz radius, this is the radius of an average occupied sphere by an electron. 

 

1.3.4 GENERALIZED GRADIENT APPROXIMATION 

 

The LDA functional is too simple to lack of description for inhomogeneous systems.  A 

step to account for inhomogeneity is to include reduced gradient [5,125-127]. This has led to the 

development of semilocal approximation. 

 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌↑, 𝜌↓ ] = ∫ 𝑑𝑟 𝑓(𝜌↑, 𝜌↓, ∇⃗⃗⃗ 𝜌↑, ∇⃗⃗⃗𝜌↓)                               (1.3.13) 
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this semilocal functional recovers the second-order gradient approximation for slowly varying 

density and fits extra exact constraints of exchange-correlation energy. A widely used semilocal 

functional is the Perdew-Burke-Ernzerhof (PBE) functional [5,6]. The exchange energy for spin 

unpolarized is as follows: 

 

𝐸𝑥
𝑃𝐵𝐸[𝜌] = ∫ 𝑑𝑟 𝜌(𝑟) 𝜖𝑥

𝑢𝑛𝑖𝑓[𝜌] 𝐹𝑥(𝑠)                                  (1.3.14) 

 

where 𝜖𝑥
𝑢𝑛𝑖𝑓

[𝜌] = −
3

4𝜋
(3𝜋2𝜌)1/3 is the exchange energy density of LDA, 𝐹𝑥(𝑠) is the 

enhancement factor, and 𝑠 = |∇⃗⃗⃗𝜌|/(2𝜌(3𝜋2𝜌)1/3) is the dimensionless density gradient. The 

enhancement factor of PBE is: 

 

𝐹𝑋(𝑠) = 1 + 𝜅 −
𝜅

1+𝜇 𝑠2/𝜅
                                            (1.3.15) 

 

where the constant values are 𝜅 = 0.804, and  𝜇 = 0.21951. The enhancement factor obeys the 

uniform electron gas density limit 𝐹𝑋(0) = 1, and Lieb-Oxford lower bound given by 𝐹𝑥(𝑠) ≤

1.804. The correlation energy is expressed as: 

 

𝐸𝐶
𝑃𝐵𝐸[𝜌↑, 𝜌↓] = ∫ 𝑑𝑟 𝜌(𝑟) [𝜖𝑐

𝑢𝑛𝑖𝑓(𝑟𝑠, ζ, t) + 𝐻(𝑟𝑠, ζ, t)]                       (1.3.16) 

 

where 𝑡 = |∇⃗⃗⃗𝜌|/(2𝜙𝑘𝑠𝜌) is another dimensionless density gradient, 𝑘𝑠 = √4𝑘𝐹/𝜋𝑎0 is the 

Thomas-Fermi screening wave vector, 𝜁 =
𝜌↑+𝜌↓

𝜌
 is the relative spin polarization, and 𝜙(𝜁) =

[(1 + 𝜁)
2

3 + (1 − 𝜁)
2

3 ]/2 is the spin scaling factor.  The 𝐻 function is defined as follows: 

 

𝐻(𝑟𝑠, 𝜁, 𝑡) = 𝛾𝜙3 ln [1 +
𝛽

𝛾
𝑡2 ∙

1+𝐴𝑡2

1+𝐴𝑡2+𝐴2𝑡4
 ]                              (1.3.17) 

 

where the constant values are 𝛽 = 0.066725, 𝛾 = 0.031091, and 𝐴 is defined as: 
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𝐴 =
𝛽

𝛾
(exp [−

𝜖𝑐
𝑢𝑛𝑖𝑓

𝛾𝜙3 ]  − 1)
−1

                                           (1.3.18) 

 

if  𝑡 → 0 then the function 𝐻 →  𝛽𝜙3𝑡2, then this is the slow varying limit that is described by a 

second-order gradient expansion. The opposite case is the rapidly varying limit, which uses 𝑡 → ∞ 

to reach the limit 𝐻 →  −𝜖𝑐
𝑢𝑛𝑖𝑓

, this makes correlation vanish. In the high-density case, the 

correlation energy reaches a constant value when 𝑟𝑠 → 0. 

 

1.3.5 META-GENERALIZED GRADIENT APPROXIMATION  

 

 Meta-generalized approximation (meta-GGA) [75] is a further improvement that includes 

kinetic energy or density Laplacian to describe improve chemical properties compared to LDA of 

GGAs functionals. The exchange-correlation energy is defined as: 

 

𝐸𝑋𝐶
𝑀𝐺𝐺𝐴[𝜌↑, 𝜌↓] = ∫ 𝑑𝑟 𝜌(𝑟)𝜖𝑥𝑐(𝜌↑, 𝜌↓, ∇⃗⃗⃗𝜌↑, ∇⃗⃗⃗𝜌↓, 𝜏↑, 𝜏↓)                     (1.3.19) 

 

where 𝜏𝜎 =
1

2
∑ |∇⃗⃗⃗𝜓𝑖𝜎|

2𝑂𝐶𝐶𝑈
𝑖    is the kinetic energy density of Kohn-Sham orbital with spin 𝜎.   

The inclusion of 𝜏𝜎 in meta-GGA functional enables the recovery of the description of fourth-

order gradient expansion at a slowly-varying density limit. Nowadays, there are many meta-GGAs 

[71,117-122]. Our work aims for studies with Strongly Constrained and Appropriately Normed 

(SCAN) functional [75]. The unpolarized exchange energy in SCAN is as follows: 

 

𝐸𝑥[𝜌] = ∫ 𝑑𝑟 𝜌(𝑟)𝜖𝑥
𝑢𝑛𝑖𝑓

𝐹𝑥(𝑠, 𝛼)                                      (1.3.20) 

 

where 𝛼 =
𝜏−𝜏𝑤

𝜏𝑢𝑛𝑖𝑓 is a dimensionless variable, 𝜏𝑤 =
|∇⃗⃗⃗𝜌|

2

8𝜌
 is the Von-Weizsäcker kinetic energy 

density, which is exactly 𝜏 for single orbital density limit, and 𝜏𝑢𝑛𝑖𝑓 =
3

10
(3𝜋2)2/3𝜌5/3 is the 

Thomas-Fermi kinetic energy density or uniform kinetic energy density limit. The quantity 𝛼 can 
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describe nicely the chemical bonding, 𝛼 near to zero describes a covalent single bond, near to one 

describes a metallic bond, and 𝛼 ≫ 1 is a weak interaction. The enhancement factor is defined as: 

 

𝐹𝑥(𝑠, 𝛼) = (ℎ𝑥
1(𝑠, 𝛼) + 𝑓𝑥(𝛼)[ℎ𝑥

0 − ℎ𝑥
1(𝑠, 𝛼)])𝑔𝑥(𝑠)                      (1.3.21) 

 

with 

 

𝑓𝑥(𝛼) = exp [−
𝑐1𝑥𝛼

1−𝛼
] 𝜃(1 − 𝛼) − 𝑑𝑥 exp [

𝑐2𝑥

1−𝛼
] 𝜃(𝛼 − 1)                    (1.3.22) 

𝑔𝑥(𝑠) = 1 − exp[−𝑎1𝑠−1/2]                                         (1.3.23) 

 

where ℎ𝑥
0 = 1.174, and 𝑎1 = 1.4979. The other parameters are 𝑐1𝑥 = 0.667, 𝑐2𝑥 = 0.8 and 𝑑𝑥 =

1.24. 𝜃(x) is a step function of 𝑥. When 𝛼 ≈ 1, the enhancement factor becomes 𝐹𝑥(𝑠, 𝛼) =

ℎ𝑥
1(𝑠, 𝛼), which is similar to the PBE enhancement factor that recovers the slow-varying limit, but 

this satisfies the fourth-order gradient approximation. 

 

ℎ𝑥
1(𝑠) = 1 + 𝜅1 −

𝜅1

1+𝜇𝑥2/𝜅1
                                           (1.3.24) 

 

and 𝑥 is defined as: 

 

𝑥 = 𝜇𝐴𝐾𝑠2 [1 + (
𝑏4𝑠2

𝜇𝐴𝐾
) exp (−

|𝑏4|𝑠2

𝜇𝐴𝐾
)]                           

+ [𝑏1𝑠2 + 𝑏2(1 − 𝛼) exp(−𝑏3(1 − 𝛼)2)]2 

(1.3.25) 

 

the constant values are 𝜇𝐴𝐾 = 10/11, 𝑏2 = (5913/405000)1/2, 𝑏1 = (511/13500)/(2𝑏2), 

𝑏3 = 0.5, and 𝑏4 = 𝜇𝐴𝐾/𝜅1   − 1606/18225 − 𝑏1
2, and 𝜅1 = 0.065. SCAN satisfies a tight bound 

condition 𝐹𝑥 ≤ 1.174 [73], this condition is also satisfied by LDA. The correlation energy is: 

 

𝐸𝐶[𝜌↑, 𝜌↓] = ∫ 𝑑𝑟 𝜌(𝑟)( 𝜖𝑐
𝑢𝑛𝑖𝑓

(𝑟𝑠, 𝜁, 𝑠, 𝛼))                             (1.3.26) 
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the components of Eq. (1.3.26) are: 

 

𝜖𝑐 = 𝜖𝑐
1 + 𝑓𝑐

1(𝛼)[𝜖𝑐
0 − 𝜖𝑐

1]                                        (1.3.27) 

𝑓𝑐(𝛼) = exp [−
𝑐1𝑐𝛼

1−𝛼
] 𝜃(1 − 𝛼) − 𝑑𝑐 exp [

𝑐2𝑐

1−𝛼
] 𝜃(𝛼 − 1)                (1.3.28) 

 

Eqs (1.3.26-28) are analogous to exchange energy terms. Therefore, the coefficients are 𝑐1𝑐 =

0.64, 𝑐2𝑐 = 1.5, and 𝑑𝑐 = 0.7. SCAN has proven to be superior to many GGAs and meta-GGAs, 

some of this are for liquid water [152], metal surface [153] and many others referred in [154]. 

  

1.4 BASIS FUNCTIONS AND GAUSSIAN BASIS SET 

 

 The Kohn-Sham equations are often solved using the basis sets. The Kohn-Sham orbitals 

are often expressed as a linear combination of plane waves [114] or Gaussians [115]. This thesis 

will use gaussian basis sets and the molecular orbitals are constructed as follows: 

 

𝜓𝑖(𝑟) = ∑ 𝐶𝜇𝑖𝐺𝜇
𝑁𝐵𝐹
𝜇=1 (𝑟)                                                  (1.4.1) 

 

from Eq. (1.4.1), 𝜓𝑖 is the molecular orbital (MO), 𝐺𝜇 is the Gaussian basis function which is fixed, 

and 𝐶𝜇𝑖 is the coefficient which is determined by the SCF calculation.  

The gaussian basis functions are commonly used by chemists; besides, it is efficient 

computationally speaking given the simplicity of a gaussian integral. The used version of 

Gaussians for this document is the primitive Gaussian functions or primitive GTO (Gaussian Type 

Orbital) [115], in cartesian coordinates. 

 

𝑔𝜇(𝑟) = 𝑥𝑘𝑦𝑚𝑧𝑛𝑒−𝜁𝜇(𝑥2+𝑦2+𝑧2)                                           (1.4.2) 

 

nowadays, there are many data sets for the description of the atoms in terms of Gaussians, the 

minimal set is STO-2G, but there is a lot of choices such as 4-31G that is denser in basis functions 
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and 6-31G* contains the description of d-type functions of heavy atoms. Our calculations are done 

with the default basis set of NRLMOL-UTEP program [93], it will be indicated if this is not used. 

 

1.5 SELF-INTERACTION CORRECTION 

 

Self-interaction has its origins in the approximation of the exchange-correlation functional.  

Recalling the Hartree-Fock type exchange energy for a pair of orbitals is: 

 

𝐸𝑥 =
1

2
∑ ∑ ∫ 𝑑𝑟 ∫ 𝑑𝑟′⃗⃗⃗ 𝜓𝑖𝜎(𝑟)𝜓𝑗𝜎(𝑟′⃗⃗⃗⃗ )𝜓𝑗𝜎(𝑟)𝜓𝑖𝜎(𝑟′⃗⃗⃗⃗ )

|𝑟−𝑟′⃗⃗⃗⃗ |
 𝑖,𝑗𝜎                         (1.5.1) 

 

when the coefficients 𝑖 = 𝑗, the expression in Eq. (1.5.1) becomes the self-exchange energy. This 

is an incorrect behavior of the electron that can see itself in density functional approximations 

(DFAs) and produces a dramatic failure in cases such as stretched bond system. This misbehavior 

is addressed as self-interaction error (SIE). SIE arises from an improper cancellation of the self-

Coulomb energy with the approximate self-exchange energy for the one-electron density limit in 

DFA. The self-Coulomb energy (𝑈[𝜌𝑖𝜎]) is the integration of Eq.  (1.3.4), described as: 

 

𝑈[𝜌𝑖𝜎] =
1

2
∫ 𝑑𝑟𝜌𝑖𝜎(𝑟) ∫ 𝑑𝑟′⃗⃗⃗⃗

𝜌𝑖𝜎(𝑟′⃗⃗⃗⃗⃗)

|𝑟−𝑟′⃗⃗⃗⃗⃗|
                                     (1.5.2) 

 

Perdew and Zunger [9] in 1981 proposed a method to correct SIE known as self-interaction 

correction (PZSIC), this method removes the SIE from a DFA calculation in an orbital by orbital 

basis from the total DFA energy. 

𝐸𝑃𝑍𝑆𝐼𝐶−𝐷𝐹𝐴[𝜌↑, 𝜌↓] = 𝐸𝐷𝐹𝐴[𝜌↑, 𝜌↓] − ∑ (𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎 , 0])𝑖𝜎              (1.5.3) 

 

in a traditional PZSIC approach, the orbitals used in Eq. (1.5.3) must satisfy the localization 

equation (LE) [16,17] to find the minimum energy of the variational method. The LE is a pairwise 

condition for orbitals 𝜙𝑖𝜎 as follows: 

 

⟨𝜙𝑖𝜎|𝑉𝑖𝜎
𝑆𝐼𝐶 − 𝑉𝑗𝜎

𝑆𝐼𝐶|𝜙𝑗𝜎⟩ = 0                                          (1.5.4) 
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an alternative to solve the PZSIC Eq. (1.5.3) is using the Fermi-Löwdin orbitals, introduced by 

Pederson, Perdew and Ruzsinszky, this implementation is called FLO-SIC [80,140]. FLOs are 

Löwdin orthogonalized set of Fermi orbitals (FOs) whose advantage is to be local orbitals, 

providing a total energy which is unitary invariant. FOs (𝜙𝐹𝑂) are constructed from Fermi orbital 

descriptors (FODs), which are parameters in space. 

 

𝜙𝑖
𝐹𝑂(𝑟) = ∑  

𝜓𝑗(𝑎𝑖⃗⃗⃗⃗⃗)𝜓𝑗(𝑟)

√𝜌𝑖(𝑎𝑖⃗⃗⃗⃗⃗)

𝑁𝑜𝑐𝑐𝑢
𝑗                                              (1.5.5)  

 

here, 𝑖 and 𝑗 are the orbital indexes, 𝜓 is the KS orbital, 𝜌𝑖 is the electron spin density, and 𝑎𝑖⃗⃗⃗⃗  is 

the FOD position. FLOSIC method has computational advantage over the traditional PZSIC 

because it requires the optimization of 3𝑁 parameters coming from the FODs, compared to the LE 

(Eq. 1.5.4) that needs to optimize 𝑁2 parameters. The FOD optimization is analogous to the 

optimization process of geometry for 3𝑁 parameters.  
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CHAPTER 2: PERFORMANCE OF LOCAL SELF-INTERACTION 

CORRECTION METHOD WITH SIMPLE SCALING FACTOR 

 

2.1 ABSTRACT 

 

A recently proposed local self-interaction correction (LSIC) showed improved 

performance over PZSIC and gave a step toward in resolving the paradox of SIC. In LSIC, an iso-

orbital indicator, quantity to identify chemical properties, is used to apply SIC locally in space. 

LSIC showed remarkable performance when applied to LSDA. In the original LSIC work, the ratio 

of von Weizsäcker and total kinetic energy densities was used, but that is not the only choice for 

the iso-orbital indicator. In 2006, Vydrov et al. proposed a simpler orbital scaling factor, consisting 

in orbital and total densities in place of the kinetic energy densities and showed some success when 

applied to their orbital scaling scheme.  In this work, we examine the performance of LSIC when 

used with the said ratio of orbital and total densities. We compare LSIC(w) vs LSIC(z) 

performance and show LSIC(w) can be a good alternative to LSIC(z). We compare LSIC(w) vs 

OSIC(w) performance to show how this iso-orbital indicator perform differently for interior and 

exterior scaling. We found that.... 

If we want, we can also include cases where LSIC(z) fails in this paper e.g. binding energy of 

water and LSIC(w) corrects that. It shows limitation and importance of iso-orbital indicator used 

supporting the motivation of this work. 

 

2.2 INTRODUCTION 

 

 Kohn-Sham (KS) formulation of Density functional theory (DFT) [1] is widely used 

method to study electronic structures of atoms, molecules, and solids because of its inexpensive 

computational cost and easy to use software packages. Although the KS theory is exact theory for 

obtaining the ground state energy of many-electron systems, the exact form of exchange-

correlation (XC) energy is unknown. Its practical applications require an approximation to the XC 
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functional. In the quantum chemistry community, there has been effort to develop accurate 

exchange-correlation functional, and many semi-local and empirical functionals have been 

proposed and implemented in DFT software. As the functionals improved their chemical accuracy, 

so did the density functional approximations (DFAs) over the course of decades. The simplest 

form of the XC functional is local spin density approximation (LSDA) [133,134], which was one 

of the pioneers functional based on the uniform electron gas model. LSDA depends only on local 

electron density but showed commendable success in DFA in the early days. Years later, 

generalized gradient approximations (GGAs) were proposed.  GGA incorporates density gradient 

in addition to electron density and has contributed on improving the predicting power of DFA. 

One of the notable GGA functional is Perdew–Burke-Ernzerhof (PBE) [5,6], a widely used 

functional even to date. To further improve the accuracy, scientists have been developing meta-

GGA and hyper-GGA functionals in the last two decades. The meta-GGAs include kinetic energy 

density or density Laplacian to describe chemical properties more accurately than their 

predecessors. In 2000s, Tao-Perdew-Staroverov-Scuseria (TPSS) [71,118] and Minnesota 06 

meta-GGA [135] gained popularity among the meta-GGAs. Hybrid functionals [7,136], which has 

a certain percentage of Hartree-Fock, were another area of functional development and were able 

to mitigate the shortcomings in DFAs.  In 2015, the meta-GGAs gained further attention from the 

scientific communities as Strongly Constrained and Appropriately Normed (SCAN) [75] 

functional showed its appearance. SCAN is a semilocal functional that satisfies all the 17 known 

exact constraints of the meta-GGA functionals. SCAN showed success in predicting a wide array 

of properties as accurately as hybrid functionals or in some cases better [137]. Because of those 

XC functional development, DFAs are able to describe fair amount of electronic structure 

properties, and its efficient implementation in DFT is available in a vast number of codes.  

Despite of its success, DFAs are known to have a systematic error known as self-interaction  error 

(SIE) where an electron can, incorrectly, see itself and can fail drastically for cases such as a system 

with a stretched bond where the SIEs are pronounced.  SIE in DFAs arises from an improper 

cancellation of the self-Coulomb energy with the approximated self-exchange-correlation energy 

for the one electron density limit. It has been shown that many failures of DFAs can be traced 

down to SIE. SIE causes DFAs to predict wrong chemical reaction barriers, not bind anions [9], 

cause HOMO eigenvalues to be too shallow, give incorrect asymptotic potentials, and is known to 
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cause electron delocalization errors [138,139].To accurately describe these properties with a DFA 

theory, a method to correct SIE is needed. 

 

In 1981, Perdew and Zunger (PZ) [9] proposed a method to eliminate the one-electron SIEs from 

DFA calculations. Their approach is commonly referred as PZ self-interaction correction (PZSIC) 

where the SIE is removed from a DFA calculation in an orbital by orbital basis. PZSIC provides 

the exact cancellation for one- and two-electron self-interaction, but not necessarily for many-

electron self-interaction [74]. PZSIC treat the self-Hartree correction exactly and leaves residual 

self-exchange-correlation via approximation given with a DFA. PZSIC provides no correction to 

the exact functional [9]. PZSIC, when used with the KS orbitals, causes orbital dependent 

Hamiltonians and size extensivity problem; it is known that PZSIC formalism leads to an orbital 

dependent theory. In PZSIC, use of local orbitals is desired for the total energy to be invariant 

under unitary transformations. Traditionally, PZSIC requires solving the so called Pederson or 

localization equation (LE) [16,17] to find the set of orbitals that minimize the total energy. Solving 

the LE and finding the optimal orbitals compliant with the condition is computationally expensive 

since it requires a unitary transformation of 𝑁2 coefficients.  A few decades after the appearance 

of PZSIC, a new way to deal with the computational expensiveness of PZSIC was introduced by 

Pederson, Perdew, and Ruzsinszky where Fermi-Löwdin orbitals (FLOs) are used to solve the 

PZSIC equation. This method is known as FLO-SIC [80,140]. FLOs are Löwdin orthogonalized 

set of Fermi orbitals (FOs). Using FLOs in PZSIC has a formal advantage that they are local 

orbitals and total energy becomes unitary invariant and that size-consistency is guaranteed for all 

systems.  For construction of FLOs, Fermi orbital descriptor (FOD) positions are needed as 3𝑁 

parameters in space that can be optimized in analogous to the geometrical optimization processes. 

FLOSIC method has computational advantage over the traditional PZSIC since it requires 

optimizing only 3𝑁 parameters instead of 𝑁2 parameters. 

 

In earlier studies, FLO-SIC was applied for LSDA and showed significant improvements in atomic 

and molecular properties over SI-uncorrected LSDA performance [63,43,141,142]. Naturally, 

FLOSIC was later also applied to more sophisticated XC functionals, such as PBE and SCAN, to 

see if SIC improves the performance of those functionals [44,57-60,62,64,65,67,69,79,97, 

106,113,143] Unfortunately, when SIC is applied to modern semilocal functionals, PBE and 
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SCAN, the predictive power of these semilocal functionals are lost where total energies become 

overestimated and atomization energies worsen, etc. 

In literature, it is shown that, although PZSIC provides more accurate descriptions in stretched 

bond or in an anionic state, PZSIC worsens the performance in properties where uncorrected DFA 

performs well. Vydrov and Scuseria [28] reported that SIC worsens thermo-chemical properties 

for GGAs, meta-GGAs, and hybrid functionals. Klüpfel and Jónsson [144] applied complex 

orbitals to PZSIC, showing an affinity with PBE semilocal functional to improve the total atomic 

energies. Shahi et al. [106] reported that atomization energies worsen in PZSIC approach, some 

are due nodality in orbital-densities and can be removed with the usage of complex orbitals. This 

puzzling behavior of PZSIC was referred as the paradox of SIC [145]. In many situations, PZSIC 

was found to overcorrect the energy. It was not well understood why the paradox occurs, and it 

has kept the SIC theory away from DFT of al-most everything. In a recent year, Santra and Perdew 

[107] showed that using SIC for semilocal DFA breaks at least one of the exact constraints that 

they are designed with – a possible explanation of the paradox. 

Several approaches have been proposed to improve the performance of SIC in hope for resolving 

the paradox. Many methods involve scaling down of the SIC contribution in the many-electron 

regions.  Jónsson’s group used a constant scaling factor to reduce the overcorrection (global 

scaling) [70]. In the similar spirit, Vydrov et al. used a method to scale down the SIC by the orbital 

contribution (orbital scaling) [30] and found some improvement in performance. A lot of effort 

has been put into alleviating the overcorrection made by PZSIC. Though there were some success 

and thought to be a solution to resolve the paradox at the time, those methods also tends to 

deteriorate the good behaviors of PZSIC such as the correct −1/𝑟 asymptotic nature of the 

potential seen by an electron for a localized system. Ruzsinszky et al. [146] found that many-

electron SIE and fractional-charge dissociation behavior of positively charged dimers reappear 

with such scaling approach.  The real challenge in resolving the paradox is to remove many-body 

SIEs while maintaining what is correctly described with PZSIC. 

Recently, a new scaling-down approach was proposed where scaling of PZSIC is done locally in 

a pointwise manner using an iso-orbital indicator as a local scaling factor. This local scaling factor 

identifies the single-orbital regions where full correction is needed and uniform density regions 

where correction is not needed. The proposed method is known as local-SIC (LSIC) [69], and 

LSIC has shown remarkable performance for a wide array of properties when applied to LSDA. 
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On the other hand, the gauge problem needs to be addressed for application of LSIC to a XC 

functional at higher rungs of Jacob’s ladder [147]. Currently, LSIC is an active subject of research 

in the SIC community. In the original LSIC work, we used a ratio of von-Weiszäcker and total 

kinetic energy densities as a choice of the local scaling factor. However, there are different choices 

of local scaling factor available. Itis possible to use the local orbital density and total orbital density 

to identify single-electron regions and many-electron regions.  In this work, we explored the LSIC 

method using a simpler iso-orbital indicator. The selected iso-orbital indicator in this study is the 

ratio of the orbital density and the total density. We shall refer this as LSIC(w) for the remainder 

of this manuscript. We investigated the performance of LSIC(w) for atomic properties: total 

energy, ionization potentials, and electron affinities. For molecules, we calculated the total 

energies, atomization energies, the dissociation energies for selected systems. We found that 

LSIC(w) provides comparable results to LSIC that uses the ratio of kinetic energy densities. 

 

2.3 THEORY AND COMPUTATIONAL METHOD 

 

2.3.1 PERDEW-ZUNGER SELF-INTERACTION CORRECTION 

 

 In PZSIC [9], SIE is removed in an orbital by orbital basis from the DFA energy as 

 

𝐸𝑃𝑍𝑆𝐼𝐶−𝐷𝐹𝐴 = 𝐸𝐷𝐹𝐴[𝜌↑, 𝜌↓] − ∑ {𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎 , 0]}𝑂𝐶𝐶

𝑖𝜎                       (2.1) 

 

where 𝑖 is the orbital index, 𝜎 is the spin index, 𝑈[𝜌𝑖𝜎] is the exact self-Coulomb energy, and 

𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎 , 0] is the self-exchange-correlation energy for a given DFA XC functional. In a 

traditional PZSIC approach, the orbital used in the Eq. (2.1) must satisfy LE for variationally 

minimum energy. The LE for the orbitals 𝜙𝑖𝜎 is a pairwise condition and given as 

 

⟨𝜙𝑖𝜎|𝑉𝑖𝜎
𝑆𝐼𝐶 − 𝑉𝑗𝜎

𝑆𝐼𝐶|𝜙𝑗𝜎⟩ = 0                                                  (2.2) 

in FLOSIC approach, FLOs are used in place of directly solving the Eq. (2.2). First, FOs 𝜙𝐹𝑂 are 

constructed with the density matrix and spin density at special positions in space called Fermi 
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orbital descriptor (FOD) positions. The FODs are used to transform KS orbitals 𝜓 to a set of FOs 

as follows, 

 

𝜙𝑖
𝐹𝑂(𝑟) =

∑ 𝜓𝑗(𝑎𝑖⃗⃗⃗⃗⃗)𝜓𝑗(𝑟)
𝑁𝑜𝑐𝑐𝑢
𝑗

√𝜌𝑖(𝑎𝑖⃗⃗⃗⃗⃗)
                                                 (2.3) 

 

here, 𝑖 and 𝑗 are the orbital indexes, and 𝜓 is the KS orbital, 𝜌𝑖 is the electron spin density, and 𝑎𝑖⃗⃗⃗⃗  

is the FOD position. The obtained FOs are then orthogonalized with the Löwdin’s scheme to form 

FLOs. In the FLOSIC method, optimal set of FLOs are found by finding the FODs that minimizes 

total energy. This optimization process is similar to that for geometry optimization. 

 

2.3.2 OSIC 

 

 As mentioned in Sec.  I, PZSIC tends to overcorrect the DFA calculations.  That is why 

some studies proposed schemes to scale down the PZSIC correction through applying different 

schemes. One notable example of this is Vydrov and co-workers’ work [30] where they proposed 

a scaled down scheme according to the local orbitals applied to PZSIC. In their scaling down 

approach, PZSIC equation [Eq. (2.1)] is modified to 

 

𝐸𝑂𝑆𝐼𝐶−𝐷𝐹𝐴 = 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌↑, 𝜌↓] − ∑ 𝑋𝑖𝜎

𝑘 (𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎, 0])𝑂𝐶𝐶

𝑖𝜎                     (2.4) 

 

where each local orbital SIC term has a different scaling factor 𝑋𝑖𝜎
𝑘  defined as 

 

𝑋𝑖𝜎
𝑘 = ∫ 𝑧𝜎

𝑘𝜌𝑖𝜎(𝑟)𝑑𝑟                                                     (2.5) 

 

here, 𝑖 indicates the orbital, 𝜎 is the spin, 𝑧𝜎 is the iso-orbital indicator, and 𝑘 is an integer. We 

will refer to this method as orbital scaling or OSIC. The 𝑧𝜎 is used to interpolate the single-electron 

regions (𝑧𝜎 = 1) and uniform density region (𝑧𝜎 = 0).  In their original work, Vydrov et al. used 

𝑧𝜎 = 𝜏𝜎
𝑊/𝜏𝜎 to study the performance of OSIC with various XC functionals where 𝜏𝜎

𝑊(𝑟)  =

|𝛻⃗⃗𝜌𝜎(𝑟)|
2

/(8𝜌𝜎(𝑟)) is the von Weiszäcker kinetic energy density and 𝜏𝜎(𝑟) =
1

2
∑ |𝛻⃗⃗𝜓𝑖𝜎(𝑟)|

2

𝑖  is 
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the non-interacting kinetic energy density. Satisfying the gradient expansion in 𝜌 requires 𝑘 ≥ 1 

for LSDA, 𝑘 ≥ 2, and 𝑘 ≥ 3 for meta-GGA. Vydrov et al., however, used various values of 𝑘 to 

study its effect on OSIC performance. 

In their subsequent work, Vydrov et al. [148] proposed an alternative choice of the iso-orbital 

indicator for OSIC as 

 

𝑤𝑖𝜎
𝑘 (𝑟) = (

𝜌𝑖𝜎(𝑟)

𝜌𝜎(𝑟)
)

𝑘

                                                      (2.6) 

 

𝑤𝑖𝜎 was used in place of 𝑧𝜎 in Eq. (2.5). Notice that Eq. (2.6) contains a local orbital index. 𝑤𝑖𝜎 

approaches unity at single orbital regions since 𝜌𝜎(𝑟)  = 𝜌𝑖𝜎(𝑟) at those regions. Similarly, 𝑤𝑖𝜎 

approaches zero at many-electron region since 𝜌𝜎(𝑟) ≫ 𝜌𝑖𝜎(𝑟) at those regions. It was reported 

that the OSIC with Eq. (2.6) showed comparable performance as 𝑧𝜎 = 𝜏𝜎
𝑊/𝜏𝜎 despite of its simpler 

form. 

 

2.3.3 LSIC 

 

Though OSIC had some success in improving the performance with SIC, the approach lead 

to parameter 𝑘 dependent performance, −𝑋𝐻𝑂/𝑟 asymptotic potential instead of −1/𝑟 [30], and 

inaccurate description of dissociation behavior [74]. Recently proposed LSIC applies scaling to 

PZSIC in a different way than OSIC and showed promising results while keeping many benefits 

of PZSIC. In LSIC, PZSIC energy density is scaled down locally as follows, 

 

𝐸𝑋𝐶
𝐿𝑆𝐼𝐶−𝐷𝐹𝐴 = 𝐸𝑋𝐶

𝐷𝐹𝐴[𝜌↑, 𝜌↓] − ∑ (𝑈𝐿𝑆𝐼𝐶[𝜌𝑖𝜎] + 𝐸𝑋𝐶
𝐿𝑆𝐼𝐶[𝜌𝑖𝜎 , 0])𝑂𝐶𝐶

𝑖𝜎                    (2.7) 

 

where 

 

𝑈𝐿𝑆𝐼𝐶[𝜌𝑖𝜎] =
1

2
∫ 𝑑𝑟 𝑧𝜎

𝑘(𝑟) 𝜌𝑖𝜎(𝑟) ∫ 𝑑𝑟′⃗⃗⃗⃗
𝜌𝑖𝜎(𝑟′⃗⃗⃗⃗⃗)

|𝑟−𝑟′⃗⃗⃗⃗⃗|
                                 (2.8) 

𝐸𝑋𝐶
𝐿𝑆𝐼𝐶[𝜌𝑖𝜎 , 0] = ∫ 𝑑𝑟 𝑧𝜎

𝑘(𝑟) 𝜌𝑖𝜎(𝑟) 𝜖𝑋𝐶
𝐷𝐹𝐴([𝜌𝑖𝜎, 0], 𝑟)                             (2.9) 
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in this study, we used 𝑤𝑖𝜎(𝑟) = 𝜌𝑖𝜎(𝑟)/𝜌𝜎(𝑟) in place for 𝑧𝜎 in Eqs.  (8) and (9) and investigated 

how this quantity would affect the LSIC performance. We refer the LSIC with 𝑧𝜎(𝑟) as LSIC(z) 

and LSIC with 𝑤𝑖𝜎(𝑟) as LSIC(w) to differentiate the two cases. LSIC incorporates an iso-orbital 

indicator to apply SIC pointwise in space. LSIC reduces to DFA in uniform gas limit and reduces 

to PZSIC in pure one-electron limit. 

 

2.3.4 COMPUTATIONAL DETAILS 

 

 All of the calculations were performed using the developmental version of FLOSIC code 

[95,142], a software based on the UTEP-NRLMOL code. This code has an implementation of the 

FLOSIC, OSIC, and LSIC methods. FLOSIC/NRLMOL code uses Gaussian type orbitals [96] 

whose default basis sets are in similar quality as quadruple zeta basis sets. We used the NRLMOL 

default basis sets throughout our calculations. For calculations of atomic anions, long range s, p, 

and d single Gaussian orbitals are added to give a better description of the extended nature of 

anions. The exponents 𝛽 of these added single Gaussians were obtained using the relation, 𝛽(𝑁 +

1) = 𝛽(𝑁)2/𝛽(𝑁 − 1), where 𝑁 is the 𝑁-th exponent. FLOSIC code uses a variational integration 

mesh [96] that provides accurate numerical integration. In this work, our focus is on the LSDA 

functional because LSIC applied to LSDA is free from the gauge problem [147] unlike GGAs and 

meta-GGAs where a gauge transformation is needed since their XC potentials are not in the Hartree 

gauge. We used an SCF energy convergence criteria of 10−6 Ha for the total energy and an FOD 

force tolerance of 10−3 Ha/bohr for FOD optimizations in FLOSIC calculations. For OSIC and 

LSIC calculations, we used respective FLOSIC densities and FODs as a starting point and 

performed a non-self-consistent calculation. The additional computational cost of the scaling 

factor in OSIC and LSIC is very small compared to a regular FLOSIC calculation. 

 

2.4 RESULTS 

 

 In the original LSIC article, the method was evaluated for a wide array of electronic 

structure properties to account a good picture of how the new methodology performs. Here, we 
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follow the same set of properties to assess the performance of LSIC(w). The performance of 

LSIC(w) is compared to LSIC(z) and OSIC(w). We considered total energies, ionization 

potentials, and electron affinities for atoms and atomization energies, reaction barrier heights, and 

dissociation energies for molecules.  

 

2.4.1 ATOMS 

 

TOTAL ENERGY OF ATOMS 

 

We compared the total atomic energies of the atoms 𝑍 = 1 − 18 against the accurate non-

relativistic values reported by Chakravorty et al. [99]. Various integer values of 𝑘 were used for 

LSIC(w) and OSIC(w). The total energy difference is shown in Fig. 2.1. LSIC(w) and OSIC(w) 

recover PZSIC when 𝑘 = 0. For the other values of 𝑘 > 0 provide different interpolation between 

𝑤𝑖𝜎
𝑘 = 0 and 𝑤𝑖𝜎

𝑘 = 1. We show the mean absolute errors (MAEs)in total energy with respect to 

the reference in Table 2.1. The MAE of PZSIC is 0.381 Ha whereas LSIC(w) and OSIC(w) have 

MAEs of 0.061 and 0.074 Ha with 𝑘 =  1, respectively. LSIC(w) shows a better performance 

than OSIC(w), and LSIC(w) MAE is in the same order of magnitude as the earlier reported MAE 

of LSIC(z) of 0.041 Ha [69]. Our results show that LSIC(w) indeed reduces the error compared 

to PZSIC for all four 𝑘’s we studied in this work. The smallest error of LSIC(w) was obtained for 

𝑘 = 1. On the other hand, for 𝑘 = 2 − 4, the total energies start approaching the LSDA energies 

deviating away from the theoretical energies. Also, we observed that OSIC(w) behaves differently 

as a function of 𝑘 than LSIC(w). The smallest error is achieved at 𝑘 =  2 with MAE of 0.070 Ha. 
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Fig. 2.1. Total energy difference (Ha) of atoms 𝑍 = 1 − 18 with respect to the theoretical values 

from Ref. [99]. 

 

Table 2.1. Mean absolute error of the total atomic energy (in hartree) for atoms 𝑍 =  1 − 18 

with respect to theoretical accurate energies. 
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IONIZATION POTENTIAL 

 

 The ionization potential (IP) is the energy required to remove an electron from the 

outermost orbital. Since electron removal has a relation to the asymptotic shape of potential, one 

would expect SIC plays an important role in IPs. We calculated the IPs using the ∆SCF method 

defined as 

 

𝐸𝐼𝑃 = 𝐸𝑐𝑎𝑡 − 𝐸𝑛𝑒𝑢𝑡                                                   (2.10) 

 

where 𝐸𝑐𝑎𝑡 is the total energy in the cationic state and 𝐸𝑛𝑒𝑢𝑡 is the total energy at the neutral state. 

The calculations were performed for atoms from helium to krypton, and we compared the 

computed IPs against the experimental ionization energies [101]. Fig. 2 shows the energy 

difference of IPs with respect to the reference values. MAEs were also calculated and shown in 

Table 2. We show MAEs for a subset 𝑍 = 2 − 18 as well as for the entire set 𝑍 = 2 − 36 to 

facilitate a comparison against literature. For the smaller subset, Z= 2−18, we observe that the 

MAEs are 0.248, 0.206 and 0.223 eV for PZSIC, LSIC(z) and OSIC(w,𝑘 = 1), respectively.  

LSIC(w,𝑘 = 1) show MAE of 0.251 eV, a similar error as PZSIC. MAEs increase for 

LSIC(w, 𝑘 ≥ 2) in comparison to LSIC(w,𝑘 = 1). Interestingly, however, when we considered the 

entire set of atoms (𝑍 = 2 − 36), LSIC(w) has MAEs of 0.238 and 0.216 eV for 𝑘 = 1 and 𝑘 =

2 respectively showing a smaller error than PZSIC (MAE, 0.364 eV) but fall short to LSIC(z) 

(MAE, 0.170 eV). For this case, OSIC(w,𝑘 = 1) (0.267 eV) shows performance worse than 

LSIC(w,𝑘 = 1), and this trend remains for all 𝑘. Investigating outliers, we observe that Ti for 

LSIC(w) and LSIC(z) show 12.5 and 3 % of deviation from reference, the difference comes mainly 

from cation total energy. Likewise, Ni shows 13.6 and 2.2 % of deviation. In contrast, a counter 

performance is present in K with −0.128 and −4.4 %, and Ca with −1.5 and 4.5 % respectively 

for LSIC(w) and LSIC(z). 
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Fig. 2.2. Energy difference in ionization potential (in eV) for a set of atoms 𝑍 = 2 − 36 with 

respect to experiment. 

 

Table 2.2. Mean absolute error of ionization potentials (in eV) for set of atoms 𝑍 = 2 − 18 and 

𝑍 = 2 − 36 with respect to experiment. 
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ELECTRON AFFINITY 

 

 The electron affinity (EA) is the energy needed to add an electron to a system.  We studied 

EAs for 20 atoms that are experimentally found to bind an electron [101]. They are H, Li, B, C, O, 

F, Na, Al, Si, P, S, Cl, K, Ti, Cu, Ga, Ge, As, Se, and Br. The EAs were calculated using the ∆SCF 

method 𝐸𝐸𝐴 = 𝐸𝑛𝑒𝑢𝑡 − 𝐸𝑎𝑛𝑖𝑜𝑛 and the values were compared against the experimental EAs [101]. 

 
Fig.  2.3 shows the energy difference of EAs with the reference using several methods. MAEs are 

summarized in Table 2.3.  Similarly to IPs, we present the MAEs for smaller subset, hydrogen to 

chlorine (12 EAs) and for the complete set, hydrogen to bromine (20 EAs). MAEs for PZSIC, 

LSIC(z), LSIC(w, 𝑘 = 1), and OSIC(w, 𝑘 =  1) are 0.152, 0.097, 0.235, and 0.152 eV, 

respectively for 12 EAs. MAEs for 20 EAs are 0.190, 0.102, 0.224, and 0.172 eV, in the 

respective order. The MAEs of 12 EAs and 20 EAs for LSIC(w) and OSIC(w) methods tend to 

decrease as 𝑘 increases. 

 

 

Fig. 2.3. Electron affinity (eV) for atoms Z=2 − 36. 
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Table 2.3. Mean absolute error in electron affinities (in eV) for 12 EAs and 20 EAs set of atoms 

with respect to experimental. 

 
 

2.4.2 ATOMIZATION ENERGY 

 

To study the performance of LSIC(w) for molecules, first, we calculated the atomization 

energies (AEs) of 37 selected molecules. Many of these molecules are subset of the G2/97test set 

[149].  The 37 molecules set includes systems from the AE6 set [102], small but a good 

representative of the main group atomization energy (MGAE109) set [103].  The AEs were 

calculated by taking the energy difference of the fragment atoms and the complex as 

 

𝐴𝐸 = ∑ 𝐸𝑖
𝑁𝑎𝑡𝑜𝑚
𝑖 − 𝐸𝑚𝑜𝑙 > 0                                               (2.11) 

 

where 𝐸𝑖 is the total energy of an atom, 𝐸𝑚𝑜𝑙 is the total energy of the molecule, and 𝑁𝑎𝑡𝑜𝑚 is the 

number of atoms in the molecule. The calculated AEs are compared to the non-spin-orbit coupling 

values [103] for AE6 set and to the experimental values [101] for the set of 37 molecules. The 

percentage errors obtained through various methods are shown in Fig.  2.4.  The AEs overestimated 

with PZSIC-LSDA are reduce with the application of LSIC(w). In Table 2.4, we show MAEs and 

mean absolute percentage errors (MAPEs) of AE6 set and MAPEs of the full set of molecules for 
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various theories. For AE6 set, MAEs for PZSIC, LSIC(z), LSIC(w, 𝑘 = 1) and OSIC(w, 𝑘 = 1) 

are 57.9, 10.0, 13.8 and 33.7 kcal/mol respectively. We find that LSIC(z) and LSIC(w, 𝑘 = 1) 

differ by only a few kcal/mol, and LSIC(w) shows noticeably better performance than PZSIC or 

OSIC(w). For the larger 𝑘 in LSIC(w), however, we find the performance starts to degrade.  On 

the contrast, the performance for OSIC improves with larger 𝑘.  But we expect the OSIC 

performance to degrade eventually since OSIC recovers DFA in the large 𝑘 limit.  For the full set 

of 37molecules, PZSIC, LSIC(z), LSIC(w, 𝑘 = 1), and OSIC(w, 𝑘 = 1) show the MAPEs of 13.4, 

6.9, 9.5 and 11.9 % respectively against experimentally reported AEs. The other values of 𝑘 for 

LSIC(w) tested show MAPE within ±0.4 % of LSIC(w, 𝑘 = 1). OSIC(w) shows a few percent 

improvement in MAPE for larger 𝑘. Interestingly, in the comparison against the experimental AEs, 

LSIC(w) consistently shows smaller MAPEs than OSIC(w) for 𝑘 = 1 − 3. All value of 𝑘 with the 

LSIC(w) in this study showed better performance than PZSIC for the 37 molecules set. 

 

 

Fig. 2.4. Percentage difference of atomization energy (%) for a set of 37 molecules with respect 

to experimental reference values for various methods. 
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Table 2.4. Mean absolute error (in kcal/mol) and mean absolute percentage error (in %) of 

atomization energy for AE6 set of molecules and a set of 37 molecules. 

 
 

2.4.3 BARRIER HEIGHTS 

 

 Accurately describing a chemical reaction barrier is challenging for DFAs. SIC improves 

providing an accurate picture of reaction barriers. Applying a scaled-down PZSIC to barrier height 

calculations is a real test whether it retains the benefit of PZSIC. We studied the reaction barriers 

using the BH6 set of molecules for LSIC(w) method. BH6 is a representative subset of the larger 

BH24 set consisting of three reactions 𝑂𝐻 + 𝐶𝐻4 → 𝐶𝐻3 + 𝐻2𝑂, 𝐻 + 𝑂𝐻 → 𝐻2 + 𝑂, and 𝐻 +

𝐻2𝑆 → 𝐻2 + 𝐻𝑆. We calculated the total energies of left- and right-hand side and at the saddle 

point of these chemical reactions. The barrier heights for the forward (f) and reverse (r) reactions 

were obtained by taking the energy differences of their corresponding reaction states. 

The barrier heights are typically poorly described by DFAs. In most of the cases, the saddle point 

energies are underestimated since DFAs do not perform well for a non-equilibrium state that 

involves a stretched bond. This misbehavior of DFAs on a stretched bond arises from SIE; when 

an electron is shared and stretched out, SIE incorrectly lowers the energy. SIC handles the stretched 

bond states accurately and provides a correct picture in chemical reaction paths. We computed the 

barrier heights and compared them against the reference values [102]. Mean errors (MEs) and 
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MAEs for BH6 set are summarized in Table 2.5 MAEs for PZSIC, LSIC(z), LSIC(w, 𝑘 = 1), and 

OSIC(w, 𝑘 = 1) are 4.84, 1.30, 3.64, and 3.58 kcal/mol, respectively. PZSIC reduces MAE 

compared to LSDA, but the barrier heights are still underestimated. This can be seen from its ME 

and MAE. OSIC(w) shows marginally better performance in barrier heights than PZSIC. There is 

no dramatic improvement in MEs and MAEs. LSIC(w, 𝑘 = 1) further reduces the error from 

PZSIC. Its ME and MAE indicate that there is no systematic underestimation or overestimation.  

LSIC(w, 𝑘 = 1) shows laudable improvement over PZSIC but not as good as LSIC(z). For 𝑘 ≥ 2, 

MAEs increase systematically for LSIC(w, 𝑘 ≥ 2) though small MEs are seen for LSIC(w, 𝑘 =

2,3).The performance deteriorates for 𝑘 ≥ 2. 

 

Table 2.5. Mean error (in kcal/mol) and mean absolute error (in kcal/mol) of BH6 sets of 

chemical reactions. 

 

 

2.4.4 DISSOCIATION AND REACTION ENERGIES 

 

A pronounced SIE effect can be seen by considering dissociation of positively charged 

dimers 𝑋2
+. SIE causes the system to dissociate into two 𝑋+0.5 instead of 𝑋 and 𝑋+. To account for 

the effect of SIE, it is worthwhile to study a set of chemical reactions that are directly affected by 
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SIE. In this section, we show our study of the SIE4x4 [58] and SIE11 [59] sets. The SIE4x4 set 

consists of dissociation energy calculations of four positively charged dimers at varying distances 

𝑅 from their equilibrium distance 𝑅𝑒 such that 𝑅/𝑅𝑒 =  1.0, 1.25, 1.5 and 1.75. The dissociation 

energy 𝐸𝐷 is calculated as 

 

𝐸𝐷 = 𝐸(𝑋) + 𝐸(𝑋+) − 𝐸(𝑋2
+)                                           (2.12) 

 

the SIE11 set consists of eleven reaction energy calculations: six cationic reactions and five neutral 

reactions. These two sets are commonly used for SIE related problems. The calculated dissociation 

and reaction energies were compared against the CCSD(T) reference values [104,150], and MAEs 

were obtained.  The MAEs are summarized in Table 2.6.  For the SIE4x4 set, PZSIC, LSIC(z), 

LSIC(w, 𝑘 = 1), and OSIC(w, 𝑘 = 1) show MAEs of 3.0, 2.6, 4.7 and 5.2 kcal/mol.  LSIC(z) 

provides small improvement in equilibrium energies while keeping accurate behavior of PZSIC at 

the dissociation limit resulting in marginally better performance. LSIC(w) shows errors a few 

kcal/mol larger than PZSIC. This increase in error arises because LSIC(w) changes the (𝑁𝐻3)2
+ 

dissociation curve.  OSIC(w) has a slightly larger error than LSIC(w). 

 

Table 2.6. Mean absolute error for dissociation and reaction energies (in kcal/mol) of SIE4x4 

and SIE11 sets of chemical reactions. 
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For the SIE11 set, MAEs are 11.5, 4.5, 8.3, and 11.1 kcal/mol for PZSIC, LSIC(z), LSIC(w, 𝑘 =

1), and OSIC(w, 𝑘 = 1), respectively. For both z and w, LSIC showed improvement in 

performance from PZSIC. LSIC(z) shows the error reduction of 60%, and LSIC(w, 𝑘 = 1) shows 

28% compared to PZSIC. OSIC(w)’s MAEs are within 1 kcal/mol of PZSIC. But OSIC 

performance is expected to deteriorate after an SCF cycle. LSIC method improves more for 

cationic reactions than neutral reactions with respect to PZSIC. For LSIC(w, 𝑘 ≥ 2), there are 

slight increases in MAEs up to 1.0 kcal/mol. LSIC(w) yielded consistently smaller MAEs than 

OSIC(w) for SIE11. 

Finally, we show the ground-state dissociation curves for 𝐻2
+ and 𝐻𝑒2

+ in Fig. 2.5. As previously 

discussed in literature [60], DFAs at large separation cause the fragment atoms to dissociate into 

two 𝐻+0.5 fragments. PZSIC restores the correct dissociation behavior at the large separation 

distance. When LSIC is applied, the behavior of PZSIC at the dissociation limit is preserved in 

both LSIC(z) and LSIC(w).  For 𝐻2
+, a one-electron system, LSIC reproduces the identical 

behavior as PZSIC [Fig. 2.5 (a)]. For 𝐻𝑒2
+, a three-electron system, LSIC applies the correction 

only to near equilibrium distance where more than one electron (two in this case) have an 

interaction [Fig. 2.5 (b)]. LSIC brings the equilibrium energy closer to PBE energy. The 

implication is that the selected iso-orbital indicator behaves well for differentiating the single-

orbital like regions and many-electron like regions. 

 

 

(a) 
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(b) 

Fig. 2.5. Dissociation curves of (a) 𝐻2
+ and (b) 𝐻𝑒2

+. 

 

2.5 DISCUSSION 

 

LSIC(w) uses 𝑤𝑖𝜎  = 𝜌𝑖𝜎/𝜌𝜎 as the iso-orbital indicator in the LSIC method. The 

motivation to used this simpler indicator was inspired from the work of Vydrov et al. [32]. The 

calculation of 𝑤𝑖𝜎 is slightly inexpensive and easier to obtain than 𝑧𝜎, and its simpler form may 

help us understand better about why the LSIC method works well in many electronic structure 

properties. Also, this indicator may accelerate the development of the variational LSIC 

implementation. 

A study done by Santra and Perdew [107] showed that, although semilocal DFA functionals are 

designed to satisfy the uniform electron gas limit, this exact condition is no longer satisfied when 

PZSIC is applied to the functionals. There has been efforts to restore the condition to the PZSIC-

DFA, but simply restoring the condition was not enough to resolve all of the poor performance in 

PZSIC. Nevertheless, it is a good indication if the method and iso-orbital indicator recover the 

broken exact condition. Santra and Perdew computed the exchange energies of noble gas atoms 

and extrapolated using the large-Z expansion of 𝐸𝑋 as a fitting function. The calculations were 
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performed to obtain the exchange energy (𝐸𝑋) of LSIC(w)-LSDA for Ne, Ar, Kr, and Xe atoms. 

Then the obtained set of 𝐸𝑋’s were fitted into a curve using the fitting function, 

 

𝐸𝑋
𝑎𝑝𝑝𝑟𝑜𝑥

−𝐸𝑋
𝑒𝑥𝑎𝑐𝑡

𝐸𝑋
𝑒𝑥𝑎𝑐𝑡 ∙ 100% = 𝑎 + 𝑏𝑥2 + 𝑐𝑥3                                       (2.13) 

 

where 𝑥 = 𝑍−1/3  and a, b and c are fitting parameters. The obtained extrapolation curves are 

shown in Fig. 2.6. In the large-Z limit, the percentage error of LSIC(w) is 0.4 %, the correct limit 

within uncertainty. 

 

 

Fig. 2.6. Plot of percentage error of the approximated exchange energy compared to the exact 

exchange energy as a function of 𝑍−1/3. 

 

 

 

 



 50 

2.6 CONCLUSIONS 

 

We investigated the performance of LSIC with a simple iso-orbital indicator that only 

depends on local and total densities. This alternative iso-orbital indicator used with LSIC method 

gives performance comparable or slightly worse in comparison to the LSIC with 𝑧𝜎 for almost all 

cases. We also compared the performance of 𝑤𝑖𝜎 for LSIC against OSIC. 
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CHAPTER 3: IMPROVEMENTS IN THE ORBITALWISE SCALING DOWN OF 

PERDEW–ZUNGER SELF-INTERACTION CORRECTION IN MANY-ELECTRON 

REGIONS   

 

“Reproduced from  Yoh Yamamoto,  Selim Romero,  Tunna Baruah, and  Rajendra R. 

Zope.  Improvements in the orbitalwise scaling down of Perdew–Zunger self-interaction 

correction in many-electron regions, J. Chem. Phys. 152, 174112 (2020); 

https://doi.org/10.1063/5.0004738 with permission of AIP Publishing” 

 

3.1 ABSTRACT 

 

  The Perdew–Zunger (PZ) method provides a way to remove the self-interaction (SI) error 

from density functional approximations on an orbital by orbital basis. The PZ method provides 

significant improvements for the properties such as barrier heights or dissociation energies but 

results in over-correcting the properties well described by SI-uncorrected semi-local functional. 

One cure to rectify the over-correcting tendency is to scale down the magnitude of SI-correction 

of each orbital in the many-electron region. We have implemented the orbitalwise scaled down SI-

correction (OSIC) scheme of Vydrov et al. [J. Chem. Phys. 124, 094108 (2006)] using the Fermi–

Löwdin SI-correction method. After validating the OSIC implementation with previously reported 

OSIC-LSDA results, we examine its performance with the most successful non-empirical SCAN 

meta-GGA functional. Using different forms of scaling factors to identify one-electron regions, 

we assess the performance of OSIC-SCAN for a wide range of properties: total energies, ionization 

potentials and electron affinities for atoms, atomization energies, dissociation and reaction 

energies, and reaction barrier heights of molecules. Our results show that OSIC-SCAN provides 

superior results than the previously reported OSIC-LSDA, -PBE, and -TPSS results. Furthermore, 

we propose selective scaling of OSIC (SOSIC) to remove its major shortcoming that destroys the 

−1/𝑟 asymptotic behavior of the potentials. The SOSIC method gives the highest occupied orbital 

eigenvalues practically identical to those in PZSIC and unlike OSIC provides bound atomic anions 

even with larger powers of scaling factors. SOSIC compared to PZSIC or OSIC provides a more 

balanced description of total energies and barrier heights. 

https://aip.scitation.org/author/Yamamoto%2C+Yoh
https://aip.scitation.org/author/Romero%2C+Selim
https://aip.scitation.org/author/Baruah%2C+Tunna
https://aip.scitation.org/author/Zope%2C+Rajendra+R
https://aip.scitation.org/author/Zope%2C+Rajendra+R
https://doi.org/10.1063/5.0004738


 52 

3.2 INTRODUCTION 

 

The Kohn–Sham (KS) formulation [1,2], of the density functional theory (DFT) is formally 

an exact approach to obtain the ground state energy of a many-electron system. It is by far the most 

widely used method for obtaining the electronic and structural properties of molecules and solids. 

Its practical applications require an approximation to the exact exchange-correlation functional 

that is representative of the non-classical energy contributions. There is no systematic way to 

construct the functional, and a large number of approximate functionals have been proposed and 

widely used. The exchange-correlation functional approximations are classified by Perdew and 

Schmidt [3] using an analogy to Jacob’s ladder wherein the functional approximation corresponds 

to the rungs of a ladder. The earliest functional approximation is the celebrated local spin density 

approximation (LSDA) [4] that forms the first rung of the ladder. The functionals with more 

complex ingredients such as density gradients, density Laplacians, or Kohn–Sham orbitals belong 

to the higher rungs. Thus, the generalized-gradient approximation (GGA) [5,6], goes beyond the 

LSDA by capturing non-homogeneity of density using density gradients, corresponding to the 

second rung. Likewise, the third rung of the ladder corresponds to the meta-GGAs that use kinetic 

energy densities or density Laplacians, while the fourth one corresponds to the hyper-GGA 

functionals, examples of which are the hybrid functionals [7] that include certain percentages of 

the Hartree–Fock (HF) exchange in the functional approximation. The functionals from the second 

to fourth rungs (GGAs, meta-GGAs, and hyper-GGAs) are widely used today in the molecular 

physics, solid state physics, and materials science. These functionals can describe many physical 

properties with sufficient accuracy. Their efficient numerical implementations, available in a large 

number of easy-to-use codes, have led to a proliferation of density functional based studies. One 

shortcoming of the majority of the density functional approximations (DFAs) mentioned above is 

that these approximations suffer from the self-interaction error (SIE), which arises due to 

incomplete cancellation of the classical Coulomb interaction of an electron with itself by the 

approximate exchange-correlation term in the energy functional. In general, the modern semi-local 

functionals are sophisticated enough to provide a fairly accurate description of the equilibrium 

properties such as atomization energies, but they fail to describe the properties such as transition 

states in chemical reactions, charge-transfer excitations, binding of an electron in some anions, 

and dissociation of molecules. The SIE in these functionals is considered to be responsible for 
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these failures.[8,9] Indeed, the SIE is recognized to be a major limitation of DFAs that limits their 

universal usage [10-14] In 1981, Perdew and Zunger [9] (PZ) proposed a method to eliminate SIE 

on an orbital by orbital basis. They applied this self-interaction correction (SIC) scheme to the 

LSDA that was the only known approximation at that time and found significant improvements in 

atomic properties. Their scheme later came to be known as PZSIC. Subsequent calculations on 

molecules in the mid-1980s by the Wisconsin group [15-17] used localized orbitals to compute the 

self-interaction (SI) energies of molecules. Since then, a number of studies have used SIC 

implementations [8,18-59] to study atoms, molecules, and solids. It has been found in a number of 

studies that the PZSIC when used to compute thermochemical properties such as enthalpies of 

formation provides improvement over the LSDA functional, but the results are still not as accurate 

as those obtained using the GGAs. In particular, PZSIC when used with GGAs and meta-GGAs 

often worsens the results for thermochemical properties. It, however, does provide significantly 

improved results for properties such as reaction barriers and barrier heights where chemical bonds 

are stretched. This improvement is observed for all the DFAs (LSDA, GGA, and metaGGAs). This 

conflicting performance of PZSIC for thermochemical properties and barrier heights is called the 

paradox of PZSIC [68], resolution of which was recently suggested by using the local scaling of 

the exchange-correlation and Coulomb energy densities [69]. A few schemes to rectify the over-

correcting tendency of PZSIC have been proposed and examined. Klüpfel and co-workers [70] 

scaled down the entire SIC contribution by 50% and reported improved performance in 

atomization energy. They also reported that using complex orbitals can improve the performance, 

especially in the case of LSDA. In 2006, Vydrov et al. [30] proposed a method that scales down 

SIC in the many-electron region using an iso-orbital indicator weighted by the density of the local 

orbital. To distinguish from the constant (global) scaling approach of Jónsson and co-workers, we 

shall hereafter call the orbital dependent scaling approach by Vydrov and co-workers the orbital 

scaling method. Vydrov and co-workers examined in detail the performance of various powers of 

scaling factors for correcting the SIE in the LSDA, Perdew, Burke, and Ernzerhof (PBE) [5]; Tao, 

Perdew, Staroverov, and Scuseria (TPSS) [71]; and a hybrid of PBE with 25% of exact exchange 

(PBEh) [72,73] functionals. Subsequently, they also employed the orbital scaling to SIC to study 

the effect of scaled down SIC on the dissociation curves of 𝐻2
+ ,  𝐻𝑒2

+ , 𝐿𝑖𝐻+, and 𝑁𝑒2
+ [74] . They 

found that only the unscaled PZSIC consistently yielded qualitatively correct curves for all four 

systems [74]. Their orbital scaling approach to PZSIC is free from exact one- and nearly exact 
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two-electron SI but still suffers many-electron SIE [74]. Thus, the benefit of the orbital scaling 

was primarily limited to equilibrium properties.  

 Since the report of the work by Vydrov and co-workers, a number of advances in the functional 

development have been reported. One important advance at the meta-GGA level is the 

development of strongly constrained and appropriately normed (SCAN) semilocal functional 

[75]. SCAN satisfies all 17 known exact constraints that a meta-GGA functional can satisfy. A 

number of studies reported in the literature show that the SCAN functional provides improvement 

over other functionals for a wide variety of solid-state and molecular properties [76-78]. Recently, 

we investigated the performance of the SCAN functional and self-interaction corrected SCAN 

functional for a wide array of molecular properties and found that eliminating self-interaction 

errors improves the performance of SCAN for dissociation energies and barrier heights, but it 

worsens the atomization energies [79]. The goal of the present work is multifold. We first want to 

examine the performance of orbital scaling when used with SCAN meta-GGA functionals for 

various electronic properties such as total atomic energies, ionization potentials (IP), electron 

affinities (EA), molecules atomization energies, reaction barrier heights, and dissociation and 

reaction energies. We also want to explore the use of alternative scaling factors in order to see if 

they provide any improvement over the scaling factor used by Vyrdov and co-workers. Finally, 

we want to explore if the orbital scaling approach can be modified by differentially scaling the SIC 

for orbitals to obtain even better all-around performance. We illustrate this idea by proposing a 

new orbital scaling scheme that preserves correct -1/r asymptotic behavior of the potentials for 

atoms. We also show that this new scaling scheme leads to significant improvements over the 

original orbital scaling approach for a number of properties. 

 

3.2 THEORY 

 

The PZSIC method removes the SIE in the approximate density functionals by means of 

orbital-dependent corrections to the approximate functional as follows: 

 

𝐸𝑋𝐶
𝑃𝑍𝑆𝐼𝐶−𝐷𝐹𝐴 = 𝐸𝑋𝐶

𝐷𝐹𝐴[𝜌↑, 𝜌↓] − ∑ {𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎 , 0]}.𝑜𝑐𝑐

𝑖𝜎                    (3.1) 
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Here, 𝜌𝑖𝜎 is the density of the 𝑖th orbital of spin 𝜎, and 𝑈[𝜌𝑖𝜎] and 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎] are the self-Coulomb 

and the self-exchange-correlation energies, respectively. In their 1981 work, Perdew and Zunger 

[9] presented SIC calculations on atoms using the orbital densities obtained from the KS orbitals. 

They also noted that the delocalized nature of KS orbitals for extended systems will make the SIC 

non-size-extensive. Subsequently, Pederson, Heaton, and Lin [16,17] implemented PZSIC using 

local orbitals and performed the first SIC calculation on molecules. These localized orbitals are 

obtained from the unitary transformation of the KS orbitals by minimizing the energy, which 

results in the Pederson localization equation, 

 

⟨𝜙𝑖𝜎|𝑉𝑖𝜎
𝑆𝐼𝐶 − 𝑉𝑗𝜎

𝑆𝐼𝐶|𝜙𝑗𝜎⟩ = 0.                                              (3.2) 

 

Fermi–Löwdin orbital SIC (FLOSIC) [80] is a recently proposed approach to remove the 

SIE using the PZSIC methodology. In the FLOSIC, the optimal local orbitals, called Fermi–

Löwdin orbitals (FLOs), are obtained by a unitary transformation that depends on position-like 

variables such that the unitary invariance of the total energy is ensured. The Fermi orbitals are 

constructed by introducing the Fermi orbital descriptor (FOD) positions [81-83]. Using the FOD 

positions 𝒂𝑗, the KS orbitals 𝜓𝑖 are transformed into the Fermi orbitals 𝜙𝑗 as follows: 

 

𝜙𝑖(𝑟) = ∑  
𝜓𝑗(𝑎𝑖⃗⃗⃗⃗⃗)𝜓𝑗(𝑟)

√𝜌𝑖(𝑎𝑖⃗⃗⃗⃗⃗)

𝑁𝑜𝑐𝑐𝑢
𝑗 .                                               (3.3)  

 

here, 𝑁 is the number of occupied orbitals. The localized Fermi orbitals {𝜙𝑖} are subsequently 

orthogonalized using Löwdin orthogonalization to obtain the FLOs. By finding the optimal FOD 

positions that minimize the total energy, we can find the solution of Eq. (3.1). The optimal 

positions of the FODs are obtained by minimizing the energy using either the conjugate-gradient 

method or the L-BFGS algorithm [84]. 

As mentioned in Sec. 3.1, the application of PZSIC worsens the description of equilibrium 

properties when used with semilocal functionals. To rectify the overcorrecting tendency of PZSIC, 

Vydrov and co-workers [30] scaled down the SIC in the many-electron region using an orbital 

dependent scaling factor, 𝑋𝑖𝜎
𝑘  = ∫ 𝑧𝜎

𝑘(𝑟)𝜌𝑖𝜎(𝑟)𝑑𝑟. Here, 𝑘 is an integer and 𝑧𝜎(𝑟) =

𝜏𝜎
𝑊(𝑟)/𝜏𝜎(𝑟), where 𝜏𝜎(𝑟) =

1

2
 ∑ |𝛻𝜓𝑖𝜎(𝑟)|2 𝑖  , is the non-interacting kinetic energy density, and 
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𝜏𝜎
𝑊 is the von Weizsäcker kinetic energy density. The iso-orbital indicator 𝑧𝜎 is a function of 

position in space and interpolates between the uniform density region (𝑧𝜎 = 0) and one-electron 

region, 𝑧𝜎 = 1. Vydrov et al. [30] recommended 𝑘 ≥  3 for the TPSS meta-GGA to preserve the 

correct fourth-order expansion in the limit of slow varying density. The same consideration should 

apply to SCAN meta-GGA. This way of scaling down PZSIC with an orbital dependent scaling 

factor will be hereafter referred to as OSIC. 

The SIC energy in the OSIC approach of Vydrov et al. [30] is given by 

 

𝐸𝑂𝑆𝐼𝐶 = − ∑ 𝑋𝑖𝜎
𝑘 (𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶

𝐷𝐹𝐴[𝜌𝑖𝜎 , 0])𝑂𝐶𝐶
𝑖𝜎 .                               (3.4) 

 

it is evident that OSIC reduces to PZSIC for 𝑘 =  0. In the 𝑘 →  ∞ limit, Eq. (3.4) becomes zero 

with an exception of one-electron system. For the one-electron systems, the scaling factor will be 

1 for any integer 𝑘. The scaling factor 𝑧𝜎(⃗𝑟)  =  𝜏𝜎
𝑊(𝑟)/𝜏𝜎(𝑟) has the advantage that it vanishes 

in the uniform electron gas limit. It is not the only choice for the scaling factor in OSIC. A number 

of alternative choices can be made. Vydrov and Scuseria subsequently used the ratio of the orbital 

density to the total-spin density [32]. This does not require kinetic-energy densities and gave 

results comparable to those obtained using 𝑧𝜎(𝑟)  =  𝜏𝜎
𝑊(𝑟)/𝜏𝜎(𝑟). In this work, we also explore 

the use of two other scaling factors. The first one is the electron localization function (ELF) 

introduced by Becke and Edgecombe [85]. The ELF is commonly used for classifying chemical 

bonds and is defined as follows: 

 

𝐸𝐿𝐹 =
1

1+𝛼2
                                                          (3.5) 

 

where 𝛼 = (𝜏 −  𝜏𝑊)/𝜏𝑢𝑛𝑖𝑓 and 𝜏𝑢𝑛𝑖𝑓 = (
3

10
) (3𝜋2)2/3𝜌5/3 is 𝜏 in the uniform-density limit. 

Using 𝐸𝐿𝐹 in place of 𝑧𝜎 partially satisfies the correct limits of the OSIC scaling factor. Although 

𝐸𝐿𝐹 =  1 for the single orbital limit, 𝐸𝐿𝐹 =  0.5 in the uniform gas limit. Additionally, we also 

use 𝛽, another iso-orbital indicator defined as  

 

𝛽 =
𝜏−𝜏𝑊

𝜏−𝜏𝑢𝑛𝑖𝑓
                                                            (3.6) 
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which has been used recently in the construction of meta-GGA functionals [86].  Following how 

𝛽 is used in the functional design, we use 1 − (2𝛽)2 as the alternative for 𝑧𝜎 in 𝑋𝑖𝜎
𝑘 . Although this 

form can become negative, we included it nonetheless for comparison since it has the correct 

interpolation between the single orbital limit, lim
𝜏→𝜏𝑊

  {1 − (2𝛽)2} = 1, and uniform-gas limit, 

lim
 ∣𝛻𝜌∣→0,𝜏→𝜏𝑢𝑛𝑖𝑓

{1 −  (2𝛽)2} = 0, since 𝜏𝑊 becomes 0. Thus, OSIC with this scaling factor also 

recovers the uniform gas limit as the SI-correction vanishes in this limit and OSIC reduces to the 

DFA. 

Appraisal of the orbital scaling factor for various electronic properties [30] showed that orbital 

scaling requires different values of 𝑘 for different properties to obtain improved results. For 

example, excellent atomic energies are obtained for 𝑘 =  4, but 𝑘 =  1 or less is needed to obtain 

good estimates of reaction barrier heights. The orbitalwise scaling down of PZSIC leads to 

violation of some exact constraints satisfied in PZSIC. One such consequence is that it destroys 

the desirable correct −1/𝑟 behavior of the exchange-correlation potential of the PZSIC. The 

orbital scaling of Eq. (3.4) also provides poor performance for many-electron SIC [74] compared 

to the original PZSIC. As the asymptotic behavior is important in many physical processes such 

as electron delocalization or in an accurate description of the charge transfer process, a new scaling 

approach that preserves −1/𝑟 asymptotic of the potential can be formulated. We refer to this 

approach as selective-scaling-OSIC (SOSIC). The SOSIC correction to the energy in this approach 

is given by  

 

𝐸𝑆𝑂𝑆𝐼𝐶 = − ∑ 𝑋𝑖𝜎
𝑘 (𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶

𝐷𝐹𝐴[𝜌𝑖𝜎, 0])

𝑀

𝑖𝜎

                                  

− ∑ 𝑌𝑖𝜎(𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎 , 0])

𝑃

𝑖𝜎

,  

(3.7) 

 

where 𝑀 = 𝑁 − 𝑃, with 𝑁 being the total number of occupied electrons. 𝑃 is the number of local 

orbitals corresponding to the electrons in the highest occupied orbital (HOO) shell. For example, 

for an Ar atom, 𝑃 =  8 as there are six electrons in the degenerate HOO shell that project onto 

8 𝑠𝑝3 local orbitals. We set 𝑌𝑖𝜎 = 1 to maintain the accurate asymptotic description of the 
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exchange-correlation potential. We shall show later that this SOSIC essentially preserves the 

accuracy of unscaled PZSIC HOO eigenvalues and leads to overall improvements of electronic 

properties in both the equilibrium cases as well as in stretched bond situations. The application of 

SOSIC requires identifying the FODs or FLOs that correspond to the HOO. This can be 

accomplished by finding the FLO that has a maximal overlap with the KS HOO. We note that even 

though we used 𝑌𝑖𝜎 as unity, its value can be adjusted so that the negative of HOO eigenvalue 

matches with the exact experimental ionization potential. Adjusting the potential so that the 

magnitude of the HOO eigenvalue agrees with the first ionization potential has been done 

previously in the context of fully analytic (grid free) Slater–Roothaan method [87]. In recent years, 

a similar procedure has been used to obtain the range separation parameters in many applications 

of the range separated hybrid method [88–92]. 

We implemented the OSIC and SOSIC method in the FLOSIC code [93,94] that is based on 

UTEP-NRLMOL. The Porezag–Pederson NRLMOL basis set [95], which is roughly similar to 

quadruple zeta quality basis, was used. FLOSIC uses a variational mesh [96] that provides 

efficient numerical integration. The SCAN meta-GGA [75] was recently implemented [79] in 

the FLOSIC code. We used very dense mesh tailored for SCAN that provides energy 

convergence with respect to the radial mesh within 10-8 hartree accuracy [79]. For 

calculations of anions, in addition to NRLMOL extra basis sets, long range s, p, and d single 

Gaussian orbitals are used here their exponents (𝛽) are extrapolated from the 𝑁th basis of a 

given system using a relation as 𝛽(𝑁)2/𝛽(𝑁 −  1). This inclusion of additional diffuse 

exponents was suggested by Withanage et al. [97] for giving better descriptions of the extended 

nature of the anions. The full Hamiltonian in the OSIC is given by 
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𝐻𝑖 = −
1

2
∇2 + 𝑣(𝑟) + ∫

𝜌(𝑟′⃗⃗⃗⃗ )

|𝑟 − 𝑟′⃗⃗⃗⃗ |
𝑑𝑟′⃗⃗⃗⃗ + 𝑣𝑋𝐶

𝐷𝐹𝐴([𝜌↑, 𝜌↓], 𝑟)                

−  𝑋𝑖
𝑘 (∫

𝜌(𝑟′⃗⃗⃗⃗ )

|𝑟 − 𝑟′⃗⃗⃗⃗ |
𝑑𝑟′⃗⃗⃗⃗ + 𝑣𝑋𝐶

𝐷𝐹𝐴([𝜌↑, 0], 𝑟))              

− 𝑧𝜎
𝑘(𝑟)(𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶

𝐷𝐹𝐴[𝜌𝑖𝜎 , 0])                                 

− ∑(𝑈[𝜌𝑖𝜎] + 𝐸𝑋𝐶
𝐷𝐹𝐴[𝜌𝑖𝜎, 0])

𝑚

𝜕𝑋𝑚
𝑘

𝜕𝜌(𝑟)
. 

(3.8) 

 

in the present implementation, we ignore the last two terms that arise due to the variation of scaling 

factors in constructing the Hamiltonian. The calculations are performed self-consistently using 

Jacobi updates [98] similar to earlier reported FLOSIC calculations [57–59,63–65,67,79,97], but 

they are not full variational due to the neglected terms. We assessed the importance of the 

neglected terms by comparing our OSIC results with those of Vydrov and co-workers for the 

LSDA functional and obtained essentially the same results for various electronic properties studied 

here. For instance, using the OSIC-LSDA with 𝑘 =  1, mean absolute error (MAE) per electron 

of total energies for Li–Ar is 0.004 hartree in both methods, and MAEs for AE6 and BH6 are 18.0 

kcal/mol and 3.3 kcal/mol with our implementation, whereas Vydrov et al. obtained 21.0 kcal/mol 

and 3.5 kcal/mol, respectively. The small differences can arise from the different choice of the 

basis sets used to obtain these MAEs. These results also indicate that variations in the scaling 

factor are not too crucial for the properties studied here. Full variational calculation will be 

implemented in the future. Thus, the orbital SIC energies are scaled down as Eqs. (3.4) or (3.7), 

and self-interaction correction to the Hamiltonian matrix elements of ith orbital is scaled down 

accordingly as Eq. (3.8) by ignoring the last two terms.  

The orbital scaling calculations performed this way has comparable computational cost as PZSIC. 

The only additional cost is the calculation of the scaling factor, which is not significant. For SCAN 

calculations, the FODs used in this study were optimized at the FLOSIC-SCAN level of theory 

where a convergence tolerance of at least 10-6 hartree was used. For all orbital scaling calculations, 

the FOD positions and electron densities optimized at the FLOSIC-SCAN level of theory were 

used as a starting point for a given system. For the AE6, BH6, SIE4 × 4, and SIE11 calculations, 
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we used the geometries from the test sets as provided. The SIE4 × 4 calculations required us to use 

simple mixing with a larger mixing parameter α = 0.15–0.35 to achieve SCF convergence. OSIC-

LSDA calculations were performed self-consistently in a similar fashion where we used FLOSIC-

LSDA FODs and densities as a starting point.  

Fig. 3.1 shows the values of the scaling factors 𝑋𝑖𝜎
𝑘  for the Kr atom and benzene within OSIC-

SCAN calculations. In both cases, core orbitals tend to have a larger value than the rest. For the 

case of benzene, the factors for C–C 𝜎 bonds and 𝜋 bonds have the values less than 0.5. The actual 

values of the OSIC scaling factor depend on two elements: (i) compactness of the local orbital and 

(ii) size of the single orbital regions identified from the iso-orbital indicator. For instance, the 

scaling factor of core orbitals in benzene is larger than that of the 1s orbital in the Kr atom, as 

shown in the contour maps of the scaling factors in Fig. 3.2. 
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Fig. 3.1.  Scaling factors 𝑋𝑖𝜎
𝑘  with 𝑧𝜎(𝑟) = 𝜏𝜎

𝑊(𝑟)/𝜏𝜎(𝑟) and varying values of 𝑘: (a) the 

averaged values for each electron shell of the Kr atom and (b) the average values for each bond 

type of benzene. 
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Fig. 3.2. The contour map of 𝑧𝜎(𝑟) = 𝜏𝜎
𝑊(𝑟)/𝜏𝜎(𝑟) for (a) the Kr atom and (b) benzene in 

OSIC-SCAN (𝑘 =  1) calculations. Similarly, 1 −  (2𝛽)2 is shown for the (c) Kr atom and (d) 

benzene. 𝑧𝜎(𝑟) = 1 for the single orbital regions, and 𝑧𝜎(𝑟) = 1 for the uniform density regions. 

For simplicity, only the spin-up kinetic energy density ratio is shown. 

 

3.3 RESULTS 

 

3.3.1 ATOMS: TOTAL ENERGIES, IONIZATION POTENTIALS, AND ELECTRON 

AFFINITIES   

 

We studied atoms Z = 1–18 and compared the total energies using different scaling powers 

on PZSIC and OSIC with accurate non-relativistic calculated reference values obtained by 
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Chakravorty et al.  [99] The total energy differences with respect to reference values are shown in 

Fig. 3.3 for various values of 𝑘. The PZSIC corresponds to 𝑘 = 0, and all 𝑘 ≥ 1 results shown are 

with the OSIC method. We include the recently reported DFA-SCAN and PZSIC-SCAN results79] 

here for comparison. DFA-SCAN shows a small MAE of 0.019 hartree, and correcting for self-

interaction results in significantly over-corrected total energies (MAE 0.147 hartree) with a 

systematic increase in error with an increase in the number of electrons. For Ar, the SI-correction 

is ∼ 0.46 hartree. We note that the application of OSIC reduces the MAE, and as the 𝑘 values 

increase, the MAE becomes smaller. The results for different scaling powers are summarized in 

Table 3.1. OSIC-SCAN with 𝑘 =  1 reduces the MAE from 0.147 hartree to 0.069 hartree, 

whereas 𝑘 = 3 shows comparable performance with DFA-SCAN. The best total energies are 

obtained with 𝑘 = 4 with an MAE of only 0.012 hartree. These results are consistent with earlier 

reports [30] that increasing value of 𝑘 results in better total energies. A comparison with previously 

reported results shows that OSIC-SCAN with 𝑘 = 4 gives atomic energies that are better than the 

previously reported OSIC-LSDA, OSIC-PBE, or OSIC-TPSS. The MAE per electron of atoms Li 

to Ar for OSIC-SCAN 𝑘 = 4 is 0.002 Hartree, whereas the reported best MAEs for OSIC-LSDA 

𝑘 = 1, OSIC-PBE 𝑘 = 3, and OSIC-TPSS 𝑘 = 3 are 0.004 hartree, 0.007 hartree, and 0.003 

hartree, respectively.  
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Fig. 3.3. Total energy difference (in Hartree) of atoms Z = 1–18 with respect to exact energies 

in various methods. 

 

Table 3.1. The mean absolute error (MAE) of total atomic energies in various methods. These 

MAEs are in Hartree atomic unit. 
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IONIZATION POTENTIAL 

 

Ionization potentials (IP’s) and electron affinities (EA’s) are determined by processes that 

involve electron removal and electron addition, respectively. These processes are therefore 

sensitive to the asymptotic structure of the effective potential. One would therefore expect that 

removal of self-interaction in DFAs would result in significant improvement in the quality of these 

quantities. In general, however, it has been found that these quantities calculated as the difference 

of total energies of neutral and charge systems are fairly accurately predicted by many DFAs. The 

calculation of IPs (EAs) from the self-consistent total energy differences of atoms and their cation 

(anion) is called the ΔSCF method [100]. We calculated the IPs for atoms from hydrogen through 

krypton using the ΔSCF method and compared them against the experimentally reported values 

from Ref. 101 in Table 3.2. To facilitate a direct comparison with the values reported by Vydrov 

et al., we also present results for a subset of atoms, from hydrogen through argon. For this smaller 

subset of atoms Z =  2– 18, the MAEs are 0.175 eV and 0.274 eV for SCAN and PZSIC-SCAN, 

respectively. The OSIC-SCAN results for various k values have similar performance with MAEs 

within 0.178– 0.181 eV. Vydrov et al. [30] reported that the OSIC with 𝑘 =  2 and 3 improves 

IPs of atoms Z =  1– 18 for LSDA, PBE, TPSS, and PBEh functionals. A similar trend was also 

observed in the present OSIC-SCAN ionization potentials for the subset of atoms. For this subset, 

the DFA already performs well and OSIC lowers the larger errors produced by PZSIC bringing 

the resultant errors close to those in DFA and in some cases improves them further. However, if 

one extends the dataset to include a larger number of atoms (Z =  2– 36), then a different trend is 

observed. In this case, PZSIC-SCAN (MAE of 0.259 eV) shows better performance than DFA-

SCAN (MAE of 0.273 eV). The OSIC-SCAN results have MAEs ranging 0.304– 0.349 eV, and 

these errors are larger than those of both DFA and PZSIC. This result suggests that full SIC 

treatment is needed to obtain accurate estimates of IPs of heavier atoms. All OSIC results for the 

complete set (Z =  2– 36) studied here have similar errors as we have seen for the smaller subset 

(Z =  2– 18), but there is a slight but noticeable decrease in errors as the value of 𝑘 increases. 
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Table 3.2. The mean absolute error (in eV) of ΔSCF ionization potentials computed in various 

methods. 

 

 

ELECTRON AFFINITY 

 

We studied EAs of 20 atoms, specifically H, Li, B, C, O, F, Na, Al, Si, P, S, Cl, K, Ti, Cu, 

Ga, Ge, As, Se, and Br atoms. These 20 atoms are experimentally shown to bind an extra electron, 

and their experimental EAs are found in the NIST database in Ref. 101. Similar to the IP 

calculations, EAs were obtained using the ΔSCF approach.  

In Table 3.3, we present results for a subset of 12 EAs for the first three rows of periodic table and 

the third column shows the results that include the fourth row in addition to the 12 EAs, resulting 

in 20 EAs. For the 12 EAs, DFA-SCAN shows the smallest error, but it has the problem of positive 

HOO eigenvalues. Correcting for SIE results in binding of the electron, and PZSIC-SCAN shows 

the MAE of 0.364 eV for ΔSCF EAs. The OSIC-SCAN with 𝑘 =  4 improves the EAs to an MAE 

of 0.125 eV. For the larger set of 20 EAs, MAEs are 0.148 eV and 0.341 eV for SCAN and 

PZSIC-SCAN in the respective order. The OSIC-SCAN gives performance improvement, 

especially when 𝑘 =  2 is used. The error in this case is the smallest with an MAE of 0.128 eV. 

Thus, OSIC-SCAN provides better performance for the EAs than the PZSIC-SCAN. We note that 

although the ΔSCF approach yields positive EAs for the DFAs, the eigenvalue corresponding to 

the added electron becomes positive in all DFA anion calculations, indicating that the extra 
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electron is not actually bound in the complete basis set limit. This problem is due to the incorrect 

asymptotic form of the potential in the DFA calculations. SIC fixes this [9], leading to bound states 

for the HOO in the anions. As mentioned in the Introduction, the OSIC has an undesirable effect 

on the asymptotic potential. In OSIC, the correct −1/𝑟 behavior of asymptotic potential in PZSIC 

is replaced by −𝑋𝐻𝑂/𝑟, where 𝑋𝐻𝑂 is the scaling factor for the electronic shell to which HOO 

belongs. In Fig. 3.4, we compared the HOO eigenvalues for PZSIC and OSIC calculations along 

with the experimental electron affinity. PZSIC gives negative HOO eigenvalues for all systems, 

indicating that the HOO electrons are bound to those atoms. It is evident from Fig. 3.4 that the 

absolute HOO eigenvalue in PZSIC overestimates the electron affinity. Applying OSIC shifts the 

eigenvalues upward. This upward shift for 𝑘 =  1 reduces the overestimation of absolute HOO as 

seen in PZSIC and brings it closer to the experimental electron affinities. However, the shift 

systemically increases with the scaling factor as 𝑘 increases. As a consequence, the sign of the 

eigenvalue eventually changes for some systems and the electron in HOO becomes unbound as 

the asymptotic potential becomes too shallow to provide sufficient attractive potential for the 

electron. This behavior was not noted earlier in the OSIC calculations of Vydrov and co-workers, 

but it was expected as scaling down SIC by larger factors brings OSIC results closer to those of 

DFAs. The OSIC with 𝑘 = 4 has a drawback that several atomic anions are unbound in this model. 

Exceptions are alkali metals and halogens that maintained negative eigenvalues with OSIC unless 

very large scaling power 𝑘 is applied. These exceptions occur as halogens have larger electron 

affinities and because the scaled down factor for the HOO of alkali anions is large (e.g., 0.83 for 

Li- and 0.71 for Na-) even for 𝑘 = 4. For the rest of the atom families, anion HOO eigenvalues 

become positive with a scaling power of 2–3. This is not too surprising considering OSIC recovers 

DFA performance in the 𝑘 →  ∞ limit. 
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Table 3.3. The mean absolute error (in eV) of ΔSCF electron affinities computed in various 

methods. 

 

 

 

Fig. 3.4. The HOO eigenvalue of 20 atoms within various models along with the negative of 

experimental EA values (in eV). 

 



 69 

3.3.2 ATOMIZATION ENERGIES 

 

The AE6 benchmark set [102] was used to study the performance of the OSIC approach in 

atomization energies. This set includes six molecules: 𝑆𝑖𝐻4, 𝑆𝑖𝑂, 𝑆2, propyne (𝐶3𝐻4), glyoxal 

(𝐶2𝐻2𝑂2), and cyclobutane (𝐶4𝐻8), and it is a good representation of the larger main group 

atomization energy (MGAE109) set [103]. The geometries and reference values are obtained at 

the QCISD/MG3 level of theory. The atomization energy (𝐴𝐸) of a molecule is obtained with 

 

𝐴𝐸 = ∑ 𝐸𝑖
𝑁
𝑖 − 𝐸𝑚𝑜𝑙 > 0,                                                  (3.9) 

 

where 𝐸𝑖 is the energy of the atom, 𝐸𝑚𝑜𝑙 is the energy of a given molecule, and 𝑁 is the number 

of atoms in the molecule.  𝐴𝐸s were compared against the non-spin-orbit coupling reference values 

reported in Ref. [103]. The results are summarized in Table 3.4. The DFA-SCAN provides quite 

accurate estimates of 𝐴𝐸 with an MAE of only 2.85 kcal/mol. However, correcting for SIE 

worsens 𝐴𝐸s. PZSIC-LSDA FODs were used for the MAE reported in Ref. [69]. It is found that 

relaxation of FODs within PZSIC-SCAN increases the error (MAE 26.52 kcal/mol) using the data 

extracted from Ref. [79]. We observed that scaling down PZSIC improves the performance as the 

value of 𝑘 increases with 𝑘 = 4, yielding the best MAE of 4.10 kcal/mol; although this error is 

larger in comparison with that of DFA-SCAN, the value is six times smaller compared to the 

PZSIC-SCAN result. PZSIC-SCAN tends to overestimate total energies, especially for molecules, 

and this leads to a large discrepancy in atomization energies. Scaling down PZSIC helps reduce 

the overestimation and improves prediction of atomization energies. This result shows that DFA-

SCAN is better for predicting atomization energies without the self-interaction correction. 

Atomization energy calculations involve equilibrium molecular structure where the SCAN 

functional performs well.  
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Table 3.4. The mean absolute and mean absolute percentage errors of AE6 set of molecules in 

various methods. 

 

 

3.3.3 REACTION BARRIER HEIGHTS 

 

The BH6 benchmark set [102] was used to study the scaling down performance in the 

reaction barrier. The BH6 set consists of three hydrogen transfer reactions (𝑂𝐻 +  𝐶𝐻4  →

 𝐶𝐻3  +  𝐻2𝑂, 𝐻 +  𝑂𝐻 →  𝑂 + 𝐻2, 𝑎𝑛𝑑 𝐻 +  𝐻2𝑆 →  𝐻2  +  𝐻𝑆). Total energies for the 

leftand right-hand sides and saddle-point of a given reaction formula were calculated, and the 

barrier heights of forward (f) and reverse (r) reactions were obtained from the energy differences 

of these three points. Errors are summarized in Table 3.5. 
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Table 3.5. The mean and mean absolute errors (in kcal/mol) in barrier heights of BH6 set of 

molecules. 

 

 

Many DFA functionals including SCAN do not give a correct picture of the chemical reaction 

because in most cases, the saddle point energies are underestimated. These are the cases where 

self-interaction correction becomes important. From Table 3.5, it can be seen that PZSIC corrects 

the shortcoming of DFA in this situation. The full SIC treatment with 𝑘 = 0 reduces both ME and 

MAE. When orbital scaling is applied to PZSIC, i.e., OSIC with 𝑘 = 1, the MAE increases to 3.96 

kcal/mol from the PZSIC’s 2.96 kcal/mol. The MAE systematically increases with higher powers 

of the scaling factor. In all cases of OSIC, the reaction barriers are underestimated for all six 

reactions as can be seen from the MEs and MAEs in Table 3.5. For the saddle-point calculations 

with stretched bonds, one needs full SIC correction. The increase in the value of 𝑘 results in larger 

percent of SIC correction being scaled down, which leads to poor estimates of barrier heights. Note 

that for 𝑘 = 4, the error is comparable to the DFA error. A further discussion is presented in Sec. 

3.5. 

 

3.3.4 SIE BENCHMARK SETS 

 

The SIE11 sets consist of five cationic and six neutral chemical reactions that are very 

sensitive to self-interaction errors [104]. The SIE4×4 sets consist of dissociation energy 
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calculations of positively charged dimers at four different distances 𝑅 from their equilibrium 

distances 𝑅𝑒: 𝑅/𝑅𝑒 =  1.0, 1.25, 1.5, and 1.75 Ref. [105]. Reaction energies for SIE11 and 

dissociation energies for SIE4×4 were computed and compared against the reference values. The 

dissociation energies and reaction energies are obtained from the energy difference between left- 

and right-hand sides of a given chemical reaction formula. The reference values provided in Ref. 

[104] obtained at the coupled-cluster single double and perturbative triple [CCSD(T)]/CBS level 

of theory are used for comparison with our values. The results are presented in Table 3.6. 

 

Table 3.6. The mean absolute error (in kcal/mol) of SIE4 × 4 and SIE11 sets of molecules. 

 

 

From SCAN to PZSIC-SCAN, there is a substantial decrease in errors: for SIE4×4, the MAE is 

decreased from 17.9 kcal/mol to 2.2 kcal/mol. Similar performance improvements are also seen 

in the SIE11 test set where the MAEs decrease from 10.4 kcal/mol to 5.1 kcal/mol for the cationic 

reactions and from 9.9 kcal/mol to 6.2 kcal/mol for the neutral reactions. On the other hand, all of 

the OSIC results show larger errors compared to PZSIC-SCAN. Especially, for SIE4×4 and SIE11 

cationic reactions, larger MAEs are seen for higher 𝑘. For the SIE11 neutral systems, however, the 

error decreases for larger values of 𝑘 although it is still larger than that of the PZSIC-SCAN. In 
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our previous study [69], we used a pointwise local scaling approach on PZSIC-LSDA for the SIE 

sets. We found MAEs of 2.6 kcal/mol, 2.31 kcal/mol, and 6.31 kcal/mol for SIE4×4, SIE11 

cationic, and SIE11 neutral reactions, respectively. In all three cases, deviations were decreased 

from PZSIC-LSDA. In contrast, our OSIC results in Table 3.6 show an increase in errors going 

from PZSIC-SCAN to OSIC-SCAN. We find that orbital scaling does not perform well for the 

SIE4×4 and SIE11 calculations, while LSIC [69], which is an interior scaling approach, does not 

experience the same performance degradation. The ideas to improve upon these shortcomings are 

discussed in Sec. 3.5. 

 

3.4 PERFORMANCE OF DIFFERENT SCALLING FACTORS 

 

In Table 3.1, we compare the results of OSIC-LSDA with different iso-orbital indicators. 

For this comparison, we used 𝑘 =  1. We used ELF and 1 −  (2𝛽)2 as alternatives for the scaling 

factor in OSIC. We investigated the effect of these scaling factors in OSIC-LSDA and OSIC-

SCAN on four different properties: total energies of atoms, atomization energies (AE6), barrier 

heights (BH6), and SIE sets of reactions. With OSIC-LSDA, 1 −  (2𝛽)2 produces a larger MAE 

of 0.062 hartree in the total energies of atoms compared to ELF (0.037 hartree) and 𝜏𝑊/𝜏 (0.035 

hartree). However, for the other properties, 1 −  (2𝛽)2 shows better performance than the others. 

For atomization energies, the factor 1 −  (2𝛽)2 yields an MAE of 11.7 kcal/mol compared to the 

MAE of 23.2 kcal/mol and 18.9 kcal/mol for ELF and 𝜏𝑊/𝜏, respectively. Similarly, for barrier 

heights, 1 −  (2𝛽)2 (MAE of 2.3 kcal/mol) shows better performance than ELF (MAE of 3.2 

kcal/mol) and 𝜏𝑊/𝜏 (MAE of 3.3 kcal/mol). A large difference can be seen for SIE11 where MAE 

is 5.9 kcal/mol for 1 −  (2𝛽)2. This is almost half of PZSIC-LSDA MAE of 11.7 kcal/mol, 

whereas the other two scaling factors show larger error than PZSIC-LSDA.  

In addition to OSIC-LSDA, we also studied the effect of alternative scaling factors with OSIC-

SCAN. For OSIC-SCAN, all three scaling factors have comparable performance in atomic total 

energies, AE6, and BH6. There are some differences for the SIE sets where ELF is similar to 𝜏𝑊/𝜏 

(𝑘 = 3) and 1 −  (2𝛽)2 is similar to 𝜏𝑊/𝜏 (k = 2) in performance. Overall, the performance of 

PZSIC is best for the SIE sets of reactions. 
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3.5 DISCUSSION AND IMPROVEMENTS TO THE OSIC 

 

Applications of OSIC in the present work to the SCAN functional show that the OSIC can 

overcome the worsening effects of the PZSIC results for equilibrium properties such as 

atomization energies or total energies if higher values of 𝑘 are used. For example, OSIC-SCAN 

with 𝑘 = 4 gives good total energies and atomization energies. On the other hand, the OSIC-SCAN 

with the same 𝑘 = 4 results in deterioration of barrier heights or dissociation energies where the 

bonds are stretched. In this case, unscaled PZSIC (OSIC with k = 0) works better than all scaled 

down PZSIC studied herein. Thus, no single value of 𝑘 is sufficient to obtain good results for all 

properties. These results are consistent with earlier scaled down PZSIC calculations of Vydrov 

and co-workers. The explanation as to why PZSIC does not perform well for semi-local functionals 

has been understood in terms of the orbital densities. It was shown that noded orbital densities 

produce large errors when used to estimate the self-interaction correction using the Perdew–

Zunger method [30,106]. It was found that these errors can be reduced but not eliminated using 

nodeless densities of complex orbitals. Another source of error in PZSIC is that its application to 

a semilocal functional causes appropriate norm that are built in to the functional to be violated 

[107]. With OSIC, the loss of the uniform electron gas limit depends on the form of the scaling 

factor used to identify the many-electron region. As discussed in Sec. 3.2, except for the ELF 

scaling factor used in this work, the OSIC has the correct uniform electron gas limit. The OSIC 

approach shows behavior that is opposite to the paradoxical behavior of the original PZSIC. It 

improves some properties (equilibrium properties) at the cost of worsening the barrier heights 

where the bonds are stretched. The recent interior local scaling LSIC approach that corrects for the 

self-interaction in the single-orbital region by scaling energy densities does not suffer from such 

conflicting behavior [69]. The OSIC thus has limited usefulness over PZSIC unless the property 

dependent choice of 𝑘 (powers of scaling factor) is made. The external scaling form of OSIC [Eq. 

(3.4)] offers unique ways to apply the SIC [Eq. (3.7)]. For example, the paradoxical behavior of 

OSIC can be mitigated by selectively applying the orbital scaling factor used in each local orbital. 

That is, one can apply the scaling with 𝑘 = 4 for most orbitals (core and part of valence states) 

and keep the full PZSIC correction for the orbitals that require full SIC treatment. We considered 

a few cases to demonstrate the potential of this approach, which are discussed below. 
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3.5.1 HOO EIGENVALUES 

  

 One known shortcoming of orbital scaling is that the magnitude of the highest occupied 

eigenvalues (𝜖𝐻𝑂) becomes underestimated. In exact DFT, the highest occupied eigenvalue equals 

the negative of the ionization potential [108-112]. This relationship does not strictly hold for 

approximate density functionals, and in most DFAs, the absolute value of the HOO eigenvalue 

substantially underestimates the first ionization potential due to SIE. In Table 3.7, we compared 

MAEs of the HOO eigenvalues of atoms Z =  1– 36 against the experimental IPs [101] using 

several different methods. PZSIC shows the smallest MAE of 0.606 eV as expected from the 

PZSIC’s correct asymptotic potential shape, and the OSIC (scaled down PZSIC with 𝑘 > 0) 

generally shows larger deviations. This arises due to scaling down the correction for the highest 

occupied orbital. The correct asymptotic behavior can be preserved if Eq. (3.7) is used instead of 

Eq. (3.4). To illustrate this, we applied the orbital scaling to PZSIC, except for the local orbitals 

on the electron shell that belong to the outermost electrons. The full PZSIC is used for these 

outermost orbitals. A comparison of the HOO eigenvalues of atoms so obtained are compared 

against experimental IPs [101] for a smaller subset of atoms with Z = 1– 18 presented in Fig. 3.5. 

For this set, the OSIC with 𝑘 = 4 has an MAE of 2.414 eV, which is significantly larger compared 

to that of the PZSIC (MAE of 0.763 eV). On the other hand, SOSIC has an MAE of only 0.754 

eV, which shows that SOSIC can provide the −𝜖𝐻𝑂 of the same quality as the PZSIC. It is 

interesting to see how the SOSIC affects total energies. We have shown this for atoms in Fig. 3.3 

[SOSIC-SCAN (𝑘 = 4)]. Since orbitals other than those belonging to the HOO shell are scaled, 

the total energy in SOSIC would lie between OSIC 𝑘 = 4 and PZSIC total energies. Thus, lighter 

atoms for which most of the orbitals belong to the HOO shell have total energies closer to PZSIC. 

For benefiting both accuracy of PZSIC’s −𝜖𝐻𝑂 and improved total energies from the orbital 

scaling, the best case is when a small fraction of local orbitals is mapped to HOO and is treated 

with full PZSIC. This is the case for the alkali metal atoms. In the worst case, SOSIC recovers the 

PZSIC energies. Halogens and noble gas atoms are the examples of such cases (see Fig. 3.3). 
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Table 3.7. The mean absolute errors (in eV) in the highest occupied eigenvalues (−𝜖𝐻𝑂) for 

atoms hydrogen through argon and hydrogen through krypton. 

 

 

 

 

Fig. 3.5. The difference in HOO eigenvalue of atoms Z = 1–18 with respect to experimental IP 

(in eV). Note that, unlike OSIC eigenvalues, SOSIC eigenvalues closely mimic PZSIC 

eigenvalues. 
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3.5.2 BARRIER HEIGHT 

 

Barrier height is another property that can benefit from selective scaling in OSIC. From 

Sec. 3.3, we know that OSIC with 𝑘 = 4 gives good atomization energies but poor barrier heights. 

The calculations of saddle points with stretched bonds are responsible for the increased 

discrepancies in the BH6 benchmark result. To see if barrier height estimates can be improved 

using selective scaling, we calculated the BH6 barrier heights using the following approach. Since 

we know that exterior scaling works well for the local orbitals in an equilibrium state, we applied 

the scaled down PZSIC (𝑘 = 4) for these orbitals while using full PZSIC for the orbital 

corresponding to the hydrogen transfer. With this selective scaling, we obtained an MAE of 1.92 

kcal/mol and ME of −0.75 kcal/mol. Curiously, this error is even smaller than the MAE of 2.96 

kcal/mol with PZSIC. This finding suggests that good results for barrier height calculation using 

the OSIC method can be achieved if scaling factors for certain orbitals are chosen according to the 

characteristics of orbitals as the spirit of SOSIC. 

Finally, we comment on the possible effect of SOSIC on the dissociation energy curves. As 

mentioned in the Introduction, Ruzsinszky and co-workers have studied the dissociation energy 

curves of 𝐻2
+ , 𝐻𝑒2

+ , 𝐿𝑖𝐻+, and 𝑁𝑒2
+ using OSIC and have noted that unlike PZSIC, OSIC does 

not provide qualitatively correct curves for all four systems [74]. The SOSIC may correct this 

failure of OSIC as it provides the correct asymptotic description of the potential. Our attempts to 

compute the dissociation curves for 𝐿𝑖𝐻+,  and 𝑁𝑒2
+ were not successful due to difficulties in 

obtaining convergence in the far stretched regime using the Jacobi scheme of Ref. [98]. A new 

method with a single SIC Hamiltonian is being developed [113], which shows promise in handling 

dissociating fractions with correct charge. We will study dissociation with SOSIC in the future. 

 

3.6 CONCLUSIONS 

 

We have implemented the orbitalwise scaling down of PZSIC using the FLOSIC 

methodology. The OSIC method is used in combination with the SCAN meta-GGA functional to 

assess its performance for a wide array of properties—for atoms: total energies, ionization 

potential, electron affinities, and for molecules: atomization energies, reaction barrier heights, and 
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dissociation energies. We find that for equilibrium properties, the OSIC with 𝑘 = 4 works well, 

and it recovers the performance of the uncorrected SCAN. For non-equilibrium properties, we 

observed that full PZSIC treatment is necessary in many situations. The comparison of present 

OSIC-SCAN results with earlier reported OSIC-PBE and OSIC-TPSS meta-GGA [30] indicates 

superior performance of OSIC-SCAN over the OSIC-PBE and OSIC-TPSS. We also show that by 

selectively scaling down and applying full PZSIC correction on active or outermost orbitals, the 

inconsistencies of OSIC can be mitigated or eliminated and its performance can be improved 

beyond equilibrium properties. Thus, the selective scaling down approach presented here can 

provide a good description of equilibrium properties, estimates of ionization energies from the 

HOO eigenvalues, stable atomic anions, and reaction barrier heights. The SOSIC thus provides 

major improvement over the OSIC formalism. It is interesting to compare the SOSIC approach 

with the LSIC method that we recently proposed [69]. The LSIC method removes the self-

interaction selectively in the spatial region where the correction is necessary and resolves the 

paradoxical behavior of PZSIC. It provides good results for both equilibrium properties and for 

properties where bonds are stretched. The SOSIC approach, though not as elegant as LSIC [69], 

accomplishes this goal by choosing the scaling factors according to the characteristic of orbitals. 

We hope that the present results along with our recent results [69,79] provide a more sanguine 

future of SIC-DFA that has broader applicability than the standard DFAs. 
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