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Abstract

High frequency data are becoming increasingly popular these days. They are fundamental

in basically every facet of people’s lives. They are the determining factors in hedging in the

field of finance. In geology, they help in the accurate prediction of earthquakes’ magnitude

which goes along way to help save lives and properties.

High frequency data are also used more and more frequently for speculations. For this

reason, it is important not only for scientists to apply models allowing correct quantification

of these data, but also to improve the e�ciency of these models.

The Black-Scholes model, which is widely used because of its simplicity and comprehen-

siveness has so many drawbacks that a lot of literature has covered. Although Black-Scholes

will undoubtedly continue to be useful for a very long time, it is clear that the model un-

derlying its use is strongly at odds with the observed data.

The simulation of high frequency data has become essential in this fast paced world.

The quest to predict the path of these kind of data in finance is essential to be able to curb

loses or maximize profit in the field of seismic modeling. It is prudent to be able to find

the magnitude of earthquake at any given time because of the numerous negative impact

it has on properties and lives. These kinds of data are volatile which, makes them very

di�cult to simulate.

The Gamma-OU model and Black-Scholes model are known to be used to predict the

path of earthquakes and stock-prices, respectively. The Gamma-OU works well with earth-

quake data, while the Black-Scholes model functions very well with option pricing.

This study is to present how to predict the path of high frequency data using the Barndor↵-

Nielsen and Shephard model with the Gamma-OU process and demonstrate that it is su-

perior to the Gamma-OU model.
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Chapter 1

Introduction

1.1 Earthquakes

Earthquakes, simply referred to as quakes are seismic events that are characterized by

motion within the Earth’s crust caused by the release of stress piled up by eruption of the

crust or by geological faults.

The first recorded earthquake occurred at Mount Tai in 1831, no known fatalities

recorded. Ever since the first earthquake, the number of lives claimed by this phenomenon

is more than hundreds of millions. In 2019 alone earthquakes with magnitude between

4.0 � 9.9 occurred 12, 985 times and destroyed billions of dollars worth of properties, in-

jured 8, 989 people and took 288 lives. Table 1.1 gives the break down. These figures even

though staggering happens to be the lowest since the year 2000.

Japan is the country where most earthquakes are located. However Indonesia is the

country with most earthquakes. Earthquakes cause more damages and fatalities in China

and Iran than in any other country.

1.2 Option Pricing

Option pricing is the use variables such as stock price, exercise price, volatility, interest

rate, time to expiration) to determine the value an option Stock prices cannot be ascertain

deterministically, that is using a di↵erential equation either by the ordinary or partial one.

If they could be determined by a di↵erential equation, then the stock exchange would be

very di↵erent from what it is now, even somewhat boring.

1



Table 1.1: Break down of earthquakes in 2019
Month Number of Injuries Fatalities

January 113 5
February 143 4
March 188 8
April 321 20
May 38 3
June 283 13
July 415 31

August 92 9
September 2721 85
October 822 34
November 3624 63
December 229 13

Total 8989 288

In 1973, Black et al.[7] presented the use of Brownian motion to explain the pattern of

volatile assets prices. The use of the Brownian motion to model the stock market prices

has a drawback which is its independent increment property.This implies that the price

at a current time must not a↵ect the price at a future time, but the prices currently may

have an e↵ect in determining the future price. This drawback makes the Brownian motion

process not meritorious to model stock price.

To model the price of a financial asset, we must always take into account disturbances

of the market which are reflected in the volatility of asset price.

1.3 High-frequency Data

High-frequency data are a set of data that is collected at a very fast rate. [1].The fulcrum

of these kinds of data is how they are collected in terms of time. High-frequency data

generally refers to data that is collected at a very rapid rate. Data can be collected at

di↵erent times intervals. This makes the rate of collection di↵er. The highest rate at which

data can be collected every time that new information comes in is referred to as ultra-

2



frequency data. The information that arrives can take di↵erent forms in di↵erent data sets.

The most fundamental data must be prices and quantities, however, there might be more

than one type of price and more than one type of quantity that can be reported.

3



Chapter 2

Related Literature

In this chapter, we provide a brief introduction to the theory of stochastic di↵erential

equation which is the bedrock of the BNS-Gamma-Ornstein-Unlenbeck process in Chapter

3. We will look at the notation and definitions necessary to accurately formulate the

BNS-Gamma-Ornstein-Unlenbeck process.

2.1 Motivation

In a lot of games, a coin is tossed to determine who plays first. The result of such experiment

is either head or tail. The complete description of the trajectory of this simple experiment is

rather challenging. It is mostly assumed that both outcomes can occur when the probability

is one-half. In this sense, we switch from deterministic domain to the of stochastic.

Table 2.1: Temperature of a rod in Deterministic and Stochastic sense
Type of Variable Deterministic Stochastic
Single Variable. R Random Variable

(Temperature of a rod) T = 46o E , Variance, e.t.c
Dynamic Variable R+ ! R Stochastic Process

(Temperature of a rod for the first 3 seconds) T (1) = 38o

T (2) = 47o

T (2) = 56o

Table 2.1 illustrates how a quantity is moved from the Deterministic world to that of the

Stochastic world.

The Theory of Stochastic Processes belongs to the field of mathematics known as Stochastic.

Basically, there are three disciplines which are related to Stochastic. They are probability

4



theory, mathematical statistics, and theory of the stochastic processes. However, there

are other disciplines such as jump processes, stochastic calculus, stochastic di↵erential

equations, population dynamics, and many others. It is clear from the above table that, to

talk of stochastic, we have to deal with random variables.

PROBABILITY SPACES

To define the ”random”, properly, it is essential to define what a probability space is. We

commence with a set, we represent that set by ⌦, which is made up of certain subsets that

we will refer to as ”events”. A ��algebra is a collection U of subsets of ⌦ with these

properties:

i ;,⌦ 2 U .

ii If A 2 U =) Ac 2 U .

iii f A1, A2, A3, ... 2 U , =)
S1

k=1 Ak,
T1

k=1 Ak 2 U

Let U be ��algebra of subsets of ⌦. We denote P : U ! [0, 1] a probability measure

provided:

i P (;) = 0.

ii P (⌦) = 1.

iii If A1, A2, A3, ... 2 U , =) P
�S1

k=1 Ak

�

P1

k=1 P (Ak)

iv If A1, A2, A3, ...disjoint sets 2 U , =) P
�S1

k=1 Ak

�
=
P1

k=1 P (Ak)

It follows that if A, B 2 U , thenA ✓ B =) P (A)  P (B).

A triple (⌦,U , P ) is called a probability space provided ⌦ is any set, U is a �-algebra

of subsets of ⌦, and P is a probability measure on U .

5



Remark

i A set A 2 U is called an event; points ! 2 ⌦ are sample points.

ii P (A)is the probability of the event A.

iii A property which is true except for an event of probability zero is said to hold almost

surely abbreviated ”a.s”.

Let ⌦ = {!1,!2,!3, ...,!N} be a finite set, and we assume the given values 0  pj  1 for

j = 1, 2, 3, ..., N which satisfies
P

pj = 1. We let U to consist all subsets of ⌦. For each

set A = {!1,!2,!3, ...,!jm} 2 U with The smallest �� algebra containing all the open

subsets of Rn is called the Borel �� algebra, denoted B. Assuming that f is a nonnegative,

integrable function, such that
R
Rn fdx = 1. We define

P (B) :=

Z

B

f(x)dx

for each B 2 B. Then ()Rn,B, P is a probability space. f is called the density probability

measure P .

Every probability needs to be set in an appropriate (⌦,U , P ). The word ”random,” then

have di↵erent interpretation to distinct models of (⌦,U , P ).

RANDOM VARIABLES

Let (⌦,U , P ) be a probability space. A mapping X : ⌦ ! Rn is called a n� dimensional

random variable if for each B 2 B, we have X�1(B 2 U ). We thus say X is U �

measurable.

Lemma Let X : ⌦ ! Rn be a random variable. Then

U (X) := {X�1(B)|B 2 B}

6



is a ��algebra, called the ��algebra generated by X. Thus the smallest sub ��� algebra

of U with respect to which X. is measurable.

Proof

It is clear that {X�1(B)|B 2 B} is a ��algebra which is the smallest ��algebra with

respect to which X, is measurable.

Indicator Function

Let A 2 U . The indicator function of A,

�A(!) :=

8
><

>:

1 if ‘! 2 A

0 if ! 2 A

is a random variable.

Simple Function

If A1, A � 2, A � 3, ..., Am 2 U with ⌦ =
S

m

i=1 Ai and a1, a2, a3, ..., am are real numbers,

then

X =
mX

i=1

ai�Ai

is a random variable, called a simple function.

Remark

The ��algebra U (X) is seen to contain all relevant information about the random variable

X. If we have a random variable say Y, that is if Y = �(X), for a function �, then Y is

U (X)� measurable. [13]

We now present the idea of stochastic rigorously by looking at this phenomenon .

7



If we fix a point x0 2 Rn and take a look at the ordinary di↵erential equation:

8
><

>:

ẋ(t) = b
�
x(t)

�
(t > 0)

X(0) = x0

(2.1)

where x : Rn ! Rn is a smooth vector field and solution is the trajectory x(·) : [0,1) ! Rn.

Figure 2.1: Path of a Di↵erential Equation.

Fig 2.1 does not really depicts the experimental trajectories modeled by 2.1.

Figure 2.2: Path of a Stochastic Di↵erential Equation.

This makes it essential to modify 2.1, to account for the possibility of randomness having

an e↵ect on the system. We thus rewrite the equation to account for the random e↵ect

that might disturb the system.

8
><

>:

Ẋ(t) = b
�
X(t)

�
+B

�
X(t)

�
⇠(t) (t > 0)

X(0) = x0

(2.2)

8



where B : Rn ! Mn⇥m and ⇠(·) := m - dimensional ”white noise”.

We will go ahead to define ”white noise” ⇠(·) rigorously and then go ahead to for-

mally defineX(·), show that it has a unique solution, and discuss its asymptotic behavior

dependence on x0,b, and B.

2.2 Stochastic Processes.

Stochastic Processes are the bedrock of many disciplines which includes population dy-

namics, Insurance, Medicine,Qualitative Finance, Biology, Stochastic modeling,and many

more.

2.2.1 Martingales

Filtration

Given (⌦,F , P ) and T � 0, we assume for every 0 � t � T , there exists a ��algebra F (t)

such that F (t) ⇢ F whenever s  t then F (t) ✓ F (s).

Then {F (t)}0�t�T is called a filtration associated with the space (⌦,F , P ). [10]

Given a stochastic process {X(t)}0�t�T is said to be adapted to the filtration {F (t)}0�t�T

if X(t) is {F (t)}�measurable, that is X(t)�1(B) 2 F (t) , for all Borel set B 2 R

We look at the filtration which can be continuous or discrete, but our study will focus

mainly on application where we have an end time hence discrete. Hence, given {Fm}Nm=0

is a given filtration and {Xn}Nn=0 is a stochastic process adapted to the filtration {Fn}, we

will call {Xn} to be a discrete martingale if

E[Xn+1|Fn] = Xn

9



and its continuous martingale is equivalent to:

E[Xt|Fs] = Xs a.s for 0  s  t  1.

Basically, martingales are special kinds adapted stochastic process. [19]

If

E[Xt|Fs]  Xs a.s for 0  s  t  1.

it is called a Supermartingale and when we have the inequality sign change to

E[Xt|Fs] � Xs a.s for 0  s  t  1.

it is called a Submartingale.

Theorem (Kolmogorov)

Let X = {X.F , t � 0} be an integrable process. Then, we define Ft+ := ^✏>0Ft+ and

also the partial augmentation of F and by F̃t = �(Ft+,N ). If t ! E(Xt) is continuous,

there exists an F̃t adapted stochastic process X̃ = {X̃.F̃ , t � 0} with sample paths which

are right continuous, with left limits (CÀDLÀG) such that X and X̃ are modifications of

each other.

Definition

A martingale X = {X.F , t � 0} is said to be an L2-martingale or a square integrable

martingale if E(X t

2) < 1 for every t � 0.

Definition

A process X = {X.F , t � 0} is said to be Lp bounded if and only if sup
t�0 E(|Xt|p < 1).

The space of L2 bounded martingales is denoted by M2, and the subspace of continuous

L2 bounded martingales is denoted M2
c
.

10



Definition

A process X = {X.F , t � 0} is said to be uniformly integrable if and only if

sup
t�0

E(|Xt|1|Xt|�N) ! 0 as N ! 1.

2.2.2 Stopping Times

Let X = Xt, t � 0 be a stochastic process. A stopping time with respect to X is a random

time such that for each n � 0, he event {⌧ = n} is completely determined by (at most) the

total information known up to time n,{X0, ..., Xn}.In gambling, in where Xn denotes the

total earnings after the nth gamble, a stopping time ⌧ is thus a rule that tells the gambler

at what time to stop gambling. The decision for a gambler to stop gambling depends on

the information known at that time. [12]

2.2.3 Theorem (Doob’s Martingale Inequalities).

Let M be a uniformly integrable martingale, and let M⇤ := sup
t�0 |Mt|. Then:

i Maximal Inequality, for � > 0

�P(M⇤ � �)  E[|M1|1M⇤<1]

ii LPmaximal inequality, for a < p < 1

||M⇤||p 
p

p� 1
||M1||p

The norm used in the Doob Lp is defined as

||M ||p = [E(|M |p)]
1
p

11



[11]

Why we need a Stochastic Integral

We now delve into the depths of why the ordinary integral cannot be used on a path at a

time basis ((i.e separately for every ! 2 ⌦)). Assuming it is possible to do that, we set:

It(X) =

Z
t

0

Xs(!)dMs(!)

for M 2 M c

2 ; but for a martingale which is not zeros a.s the total variation is not finite, even

when it is evaluated on a closed interval let say [0, T ]. This implies that the he Lebesgue-

Stieltjes integral definition does not hold in such a situation. We rather use the quadratic

variation that is appropriate in such situation.

Theorem

If T is a subordinator then its Lèvy symbol takes the form as shown in Bertoin,1999: [6]

⌘(u) = ibu+

Z 1

0

�
exp(iuy)� 1

�
�(dy)

where b � 0 and the Lèvy measure � satisfy the following conditions:

�(�1, 0) = 0 and

Z 1

0

(y ^ 1)�(dy)

. A concise proof of this theorem can be found in Rogers and Williams [25].

12



2.3 Itô’s Integral.

Earlier in this chapter, the quest was to develop a stochastic di↵erential equation that is

of the form: 8
><

>:

dX = b
�
X, t

�
dt+B

�
X, t

�
dW

X(0) = X0

(2.3)

Definition 1 Let W(·) be a one dimensional Brownian motion defined on the space
�
⌦, U, P

�
. A family F of �-algebras ✓ U is called a filtration with respect to W(·) if

(a) F (t) ◆ F (s) 8 t � s � 0

(b) F (t) ◆ W (t) 8 t � 0

(c) F (t)is independent of 8 t � 0

Basically F (t) contains all information needed at a particular time t.

Example F (t) := U

✓
W (s)(0  s  t),X0

◆
, such that X0 is a random variable that

is independent of W
+(0).

Properties of Itô’s Integral

For every constant a, b 2 < and for every G,H 2 L2(0, T ) we have:

i Z
T

0

�
aG+ bH

�
dW = a

Z
T

0

GdW + b

Z
T

0

HdW

Proof. This follows form the corresponding linearity property for step processes.

ii

E

✓Z
T

0

G dW

◆
= 0

Proof. This also follows form the corresponding linearity property for step processes.
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iii

E

✓✓Z
T

0

G dW

◆2◆
= E

✓Z
T

0

G2 dt

◆

Proof. This also follows form the corresponding linearity property for step processes.

iv

E

✓Z
T

0

G dW

Z
T

0

H dW

◆
= E

✓Z
T

0

GH dt

◆

Proof of (iv) results from (iii) and the identity 2ab = (a+ b)2 � a2 � b2 [8]

Itô’s Formula

Definition 2 By absolute width W of an interval x = [x�, x+], we mean twice the absolute

half-width of x, i.e.,

X(r) = X(s) +

Z
r

s

F dt+

Z
R

s

G dW

for some F 2 L1(0, T ), G 2 L2(0, T ) and 0  s  r  T we say that X(·) has the

stochastic di↵erential

dX = Fdt+GdW

for 0  t  T. [14]

Theorem 1 Suppose that X(·) has a stochastic di↵erential

dX = Fdt+GdW

for F 2 L1(0, T ), G 2 L2(0, T ). Assuming u : R ⇥ [0, T ] ! R is continuous and that

@u

@t
, @u
@x
, @

2
u

@x2 exist and are continuous.

Y (t) := u(X(t), t)

14



Then Y has the stochastic di↵erential

dY =
@u

@t
dt+

@u

@x
dX +

1

2

@2u

@x2
G2dt (2.4)

=

✓
@u

@t
+

@u

@x
F +

1

2

@2u

@x2
G2

◆
dt+

@u

@x
GdW

we call 2.4 Itô’s formula.

2.3.1 Lèvy process

The Lèvy process plays a significant role in this thesis which serves as building blocks for

the BNS-Gamma-OU model. High frequency time series models studied are driven by Lèvy

processes. To understand how they are used, some background material is needed.In this

study, we use the Lèvy processes in mathematical finance and application to seismic data

from a computational and applied view.

Definition 3 Let X = (X(t), t � 0) be a stochastic process defined on a probability space

(⌦,F , P ). We say that it has independent increments if for each n 2 N and each 0  t1 <

t2 < ... < tn+1 < 1the random variables (X(tj+1)X(tj), 1  j  n) are independent and

that it has stationary increments if each X(tj+1)X(tj) = X(tj+1tj)X(0). We say that X is

a Lèvy process if:

1. X(0) = 0 (a.s);

2. X has independent and stationary increments;

3. X is stochastically continuous, i.e. for all a > 0 and for all s � 0

lim
t!s

P (|X(t)X(s)| > a) = 0.

Note that in the presence of (1) and (2), (3) is equivalent to the condition

lim
t!0

P (|X(t)| > a) = 0

15



for all a > 0.

Brownian Motion

Definition (Brownian Motion). A one dimensional Brownian motion is an R� valued Lèvy

process B = (Bt), t � 0 such that [18] :

i. B0 = 0 P� almost surely.

ii. B has independent increments, i.e for every 0  t  s  u < v, the random variable

Bv � Bu and B � t� Bs are independent.

iii. B has stationary normally distributed increments with

Bt � Bs ⇠ N (0, t� s), 8t < s � 0

iv. B has P� a.s continuous paths.

The characteristic and the moment generating function of a Brownian motion are

�B(u) = E[exp{iuBt}]

= exp{�1

2
u2t}

and

mt(u) = E[exp{uBt}]

= exp{1
2
u2t}

respectively since Bt ⇠ N (0, t), 8t with u 2 R. A Brownian motion is an Rn valued process

(n 2 N⇤)

B =
�
(B(1)

t , B(2)
t , B(3)

t , ..., B(n)
t ), t � 0

�
,

16
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Figure 2.3: Two sample paths

where 8i = 1, 2, ..., n, n 2 N⇤, B(i)
t are n independent one-dimensional Brownian motion.

Remark: The Brownian motion is a Markov process and has martingale properties.

The Poisson process

To define a Poisson process, we must first look at what is meant by a counting process to

possess independent increments.

Definition 4 A counting process is said to possess independent increments if the number

of events that occur in disjoint time intervals are independent.

A counting process is said to have stationary increments if the distribution of the number

of events which occur in any interval depends only on the length of the interval. [17]

Definition 5 A counting process (N(t), t � 0) is said to be a Poisson process with mean

�t, for � > 0 if it satisfies the following conditions:

N(0) = 0

P (N(h) = 1) = �h+ O(h)

Process has stationary and independents increments.

17



P (N(h) � 2) = O(h)

The compound Poisson process

Definition 6 Let (N(t), t � 0) be a Poisson process with rate �, so that E[N(t)] = �t for

t � 0.Let X1, X2, be iid random variables independent of N . Let D(t) be the random sum

D(t) ⌘
N(t)X

i=1

Xi, t � 0.

Then D(t), t � 0) is a compound Poisson process. [26].

Definition 7 A subordinator is a one-dimensional Lèvy process that is non-decreasing

(a.s.). These kind of processes can be considered as random models of time evolution since

when ever T =
�
T (t), t � 0

�
is a subordinator, we also have that T (t) � 0 a.s 8t > 0 and

T (t1)  T (t2) a.s whenever t1  t2 [3].

2.4 Ornstein-Uhlenbeck process

We now present the OrnsteinUhlenbeck process with Lèvy stochastic integral. Let us

(X(t), t � 0) be a Rn� valued Lèvy and f 2 L2(R+). We consider the Lèvy Integral

Y = (Y (t), t � 0) such that:

Y (t) =

Z
t

o

f(s)Xds (2.5)

then Y according to Applebaum [3] has independent increment.

Let us take f 2 L2(R) and a shift in s ! s� t such that f(s� t) 2 L2(R). We further

assume that f is càdlàg. The moving-average process Z = (Z(t), t � 0) is given by

Z(t) =

Z
t

�1
f(s� t)Xds (2.6)

This moving-average process Z = (Z(t), t � 0) is stationary. The Ornstein-Uhlenbeck

process is basically a kind of moving average process. To obtain this kind let fix � > 0 ,

18



s  0, t � 0, taking f(s) = e�s we have:

Z(t) =

Z
t

�1
f(s� t)dX(s) (2.7)

=

Z
t

�1
e�(s�t)dX(s) (2.8)

=

Z 0

�1
e�(s�t)dX(s) +

Z
t

0

e�(s�t)dX(s) (2.9)

= e��tZ(0) +

Z
t

0

e�(s�t)dX(s) (2.10)

Example

A better model of Brownian motion given by the Ornstein-Uhlenbeck equation

8
><

>:

Ÿ = �bẎ + �⇠

Y (0) = Y0, Ẏ (0) = Y1.
(2.11)

where Y (t) is the position of Brownian particle at the time t, Y0, and Y1 are given Gaussian

variables. ⇠(·) is the white noise, b > 0 and � are the friction coe�cient and di↵usion

coe�cient respectively.

Y (t) = Y0 +

Z
t

0

Xds (2.12)

= E(Y0) +

Z
t

0

E(X(s))ds (2.13)

= E(Y0) +

Z
t

0

e�bsE(Y1)ds (2.14)

= E(Y0) = +

✓
1� e�bt

b

◆
E(Y1) (2.15)

V (Y (t)) = V (Y0) +
�2

b2
t+

�2

2b3
(�34e

�bt � e�2bt) (2.16)

Ornstein-Uhlenbeck processes (OU processes) are used for the stochastic description of
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volatility in the Black-Scholes model [5].

Lèvy process with positive increments, �2 = (�2
t
)t�0is an Ornstein-Uhlenbeck process

driven by L = (Lt)t�0 , B = (Bt)t�0 is a Brownian motion, � > 0, ⇢  0. A Lèvy process

L = (Lt)t�0 is called background driving Lèvy process (BDLP).

2.5 Stochastic Di↵erential Equations

We now have all the tools to define what a Stochastic Di↵erential Equation is. In this section

we define Stochastic Di↵erential Equations and look at the linear SDE’s and examples

finally look at some theorems and solutions.

Definition 8 An <n-valued stochastic process X is a solution of the stochastic di↵erential

8
><

>:

dX = b
�
X, t

�
dt+B

�
X, t

�
dW

X(0) = X0

(2.17)

for 0  t  T .

where:

W(·) is an m-dimensional Brownian motion,

b : Rn ⇥ [0, T ] ! R and

B : Rn ⇥ [0, T ] ! Mn⇥m

A higher order SDE of the form

Y (n) = f(t, Y, ..., Y (n�1)) + g(tY, ...Y (n�1))⇠ (2.18)

where ⇠ represents the ”white noise”.
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Example Let m = n = 1 and we let g be a continuous function .Then the unique solution

of 8
><

>:

dX = gXdW

X(0) = 1
(2.19)

is

X(t) = e�
1
2

R t
0 g

2
ds+

R t
0 gdW (2.20)

for 0  t  T. To verify the solution, we have that:

Y (t) := �1

2

Z
t

0

g2ds+

Z
t

0

gdW

which satisfies

dY = �1

2
g2dt+ gdW

Using the Itô’s lemma for u(x) = ex gives

dX =
@u

@x
dY +

1

2

@2u

@x2
g2dt

= eY
�
� 1

2
g2dt+ gdW +

1

2
g2dt

�

= gXdW (2.21)

Example (Stock prices). Let P (t) denote the price of a stock at time t. We can model

the evolution of P (t) in time by supposing that
dP

P
,the relative change of price, P evolves

according to the SDE.
dP

P
= µdt+ �dW

for certain constants µ > 0 and �, called the drift and the volatility of the stock. Hence

dP = µPdt+ �dPW; (2.22)
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and so

d
�
log(P )

�
=

dP

P
� 1

2

�2P 2dt

P 2

By Itô’s formula

=

✓
µ� �2

2

◆
dt+ �dW

consequently

P (t) = p0e
�W (t)+

✓
µ�

�2

2

◆
t

,

Since the prices is always positive, we assume p0 > 0, hence we have

P (t) = p0 +

Z
t

0

µPds+

Z
t

0

�PdW

and E

✓R
t

0 �PdW

◆
= 0 we see that

E(P (t)) = p0 +

Z
t

0

µE(P (s))ds

Then

E(P (t)) = p0e
µt t � 0

2.6 Existence and Uniqueness of Stochastic Di↵eren-

tial Equation

In this section, we will discuss the existence and uniqueness of solutions to a stochastic

di↵erential equation:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), t 2 [t0, T ] (2.23)

with x(t0) = x0 as initial value, such that 0  t0 < 1,
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The essence of looking at this is to be able to answer the fundamental questions posed by

such equations which are:

Do solutions exist to such equations?

If solutions exist, are they unique.?

What are the behaviors of such solutions?

How can such solutions be arrived at in practice?

In this discussion, we assume the following:

(⌦,F , P ) be a probability space.

(B1(t),B1(t),B2(t), ...,Bm(t))T be a m-dimensional Brownian motion.

x0 be an Ft0�measurable, such that 0  t0 < T < 1 Rn� valued random variable

where E|x0|2 < 1.

f : Rn ⇥ [t0, T ] ! Rn and g : Rn ⇥ [t0, T ] ! Rn⇥m be Borel measurable.

Equation 2.23 is equivalent to the stochastic integral equation:

x(t) = x0 +

Z
t

t0

f(x(s), s)ds+

Z
t

t0

g(x(s), s)dB(s), t0  t  T (2.24)

Definition

A stochastic process {x(t)}t0tT is a solution to

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t),

with x(t0) = x0 as the initial value if these conditions are satisfied:

1. {x(t)} is continuous and Ft� -adapted;
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2. {f(x(t), t)} 2 L
1([t0, T ];Rn) and {g(x(t), t)} 2 L

2([t0, T ];Rn⇥m)

3. The integral equation

x(t) = x0 +

Z
t

t0

f(x(s), s)ds+

Z
t

t0

g(x(s), s)dB(s) (2.25)

holds for every t 2 [t0, T ] with probability of 1.

Definition

A solution {x(t)} to a stochastic di↵erential equation is unique if any other solution {x̄(t)}

is indistinguishable from {x(t)}, that is, almost all their sample paths agree

P{x(t) = x̄(t) for all t0  t  T} = 1

Example with a unique solution

We consider the stochastic di↵erential equation given by:

dNt = rNtdt+ ↵NtdBt (2.26)

Equation 2.26 can be equivalently written as

dNt

Nt

= rdt+ ↵dBt (2.27)

This results in: Z
t

0

dNs

Ns

= rdt+ ↵dBt (B0 = 0) (2.28)

In other to evaluate the left hand side, we apply the Itô’s formula for the function

g(t, x) = ln x, x > 0
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to obtain

d(lnNt) =
1

Nt

· dNt +
1

2

✓
� 1

N2
t

◆
(dNt)

2 (2.29)

Thus

d
dNt

Nt

= d(lnNt) +
1

2
↵2dt (2.30)

Therefore, from Equation 2.28 we conclude that:

ln
Nt

N0
=
�
r � 1

2
↵
�
t+ ↵Bt (2.31)

which is equivalent to:

Nt = N0 exp

⇢�
r � 1

2
↵
�
t+ ↵Bt)

�

The solution Nt is a process of the form

Xt = X0 exp{µt+ ↵Bt}, µ,↵ are constants (2.32)

Such processes are called geometric Brownian motion.

Remark

The following can be observed:

If Bt is independent of N0 we would have

E[Nt] = E[N0] exp{rt}

To confirm that such is the situation we let

Yt = exp↵Bt
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When Itô’s formula we get:

dYt = ↵ exp{↵Bt}dBt +
1

2
↵2 exp{↵Bt}dt

which is equivalent to:

Yt = Y0 + ↵

Z
t

0

exp{↵Bs}dBs +
1

2
↵2

Z
t

0

exp{↵Bs}ds

Since

E
 Z

t

0

exp{↵Bs}dBs

�
= 0

we get

E[Yt] = E[Y0] +
1

2
↵2

Z
t

0

E[Ys]ds

Hence
d

dt
E[Yt] =

1

2
↵2E[Yt], E[Y0] = 1

Therefore, we have:

E[Yt] = exp

⇢
1

2
↵2t

�

Hence we conclude that :

E[Nt] = E[N0] exp{rt}

If g(x, t) ⌘ 0, then the Stochastic Di↵erential Equation 2.23 reduces to:

dx(t) = f(x(t), t)dt t 2 [t0, T ] (2.33)

However the initial condition x(t0) = x0 can still be a random variable.
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Example with infinitely many solutions

We consider the example

ẋ = 3x
2
3 t 2 [t0, T ] (2.34)

with initial condition x(t0) = 1A, where A 2 Ft0 . We observe that for each 0 < ↵ < T � t0

, the stochastic process:

x(t) = x(t,!) =

8
>>>>><

>>>>>:

(t� t0 + 1)3 t0  t  T, ! 2 A

0 t0  t  t0 + ↵, ! /2 A

(t� t0 � ↵)3 t0 + ↵ < t  T, ! /2 A

is a solution of equation 2.35.

This initial problem has an infinitely many solutions.

Example with no solution

ẋ = x2 t 2 [t0, T ] (2.35)

with x(t0) = x0 as initial condition, a random variable which takes values larger than 1
T�t0

.

It is verified that initial value problem above has a unique solution

x(t) =

✓
1

x0
� (t� t0)

◆�1

for t0  t  t0 +
1
x0

< T. However, there is no solution for this initial value problem which

is defined for all t 2 [t0, T ].

2.6.1 Existence and uniqueness of solution

Theorem 2 Let there exist two positive constants K̄ and K such that these conditions hold:
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1. Lipschitz condition: 8x, y 2 Rn
and t 2 [t0, T ]

max{|f(x, t)� f(y, t)|2, |g(x, t)� g(y, t)|2}  K̄|x� y|2

2. Linear growth condition: 8(x, t) 2 Rn ⇥ [t0, T ]

max{|f(x, t)|2, |g(x, t)|2}  K(1 + |x|2)

We assume x0 to be a random variable which is independent of the ��algebra F
(m)
1 gen-

erated by Bs(·), s � 0 such that E|x0|2 < 1.

Then there exists a unique t�continuous solution Xt(!) of the initial value problem in

Equation 2.23. With the property Xt(!) is adapted to the filtration F
x0
1 generated by x0

and Bs(·), s  t. Furthermore, such solution belongs to M
2([t0, T ];Rn).

We will now discuss some lemmas that will aid us in the proof of the above theorem.

Theorem 3 Let p � 2 and let g 2 M
2([t0, T ];Rn⇥m) be such that

E
Z

T

0

|g(s)|pds
�
< 1

Then we have

E
Z

T

0

|g(s)|pds
�

✓
(p(p� 1))

2

◆ p
2

T
(p�2)

2 E
Z

T

0

|g(s)|pds
�

In particular, the quality holds for p = 2.

Proof

For 0  t  T, set

x(t) =

Z
t

0

g(s)dB(s)
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using Itô’s formula and Itô’s integral properties, we have:

E|x(t)|p = p

2
E
Z

t

0

✓
|x(s)|p�2|g(s)|2 + (p� 2)|x(s)|p�4|xT (s)g(s)|2

◆
ds

 p(p� 1)

2
E
Z

t

0

|x(s)|p�2|g(s)|2ds

Using H’́older’s’s inequality, for 1  p, q  1 such that 1
p
+ 1

q
= 1, X 2 Lp, Y 2 Lq we have

E|XY | 
�
E|X|p

� 1
p
�
E|Y |q

� 1
q

we have

E|x(t)|p = p(p� 1)

2

⇣
E
Z

t

0

|x(s)|pds
⌘ p�2

p
⇣
E
Z

t

0

|g(s)|pds
⌘ 2

p

 p(p� 1)

2

⇣Z t

0

E|x(s)|pds
⌘ p�2

p
⇣
E
Z

t

0

|g(s)|pds
⌘ 2

p

We note that E|x(t)|p is non-decreasing in t, we obtain

E|x(t)|p = p(p� 1)

2

h
tE|x(t)|p

i p�2
p
⇣
E
Z

t

0

|g(s)|pds
⌘ 2

p

This the becomes:

E|x(t)|p 
 
p(p� 1)

2

! p
2

t
p�2
p E

Z
t

0

|g(s)|pds

This concludes the proof of this theorem.

Theorem 4 Under the same assumptions in the previous theorem. This then becomes:

E


sup
0tT

����
Z

t

0

g(s)dB(s)

����
p�


 

p3

2(p� 1)

! p
2

T
p�2
p E

Z
T

0

|g(s)|pds
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Proof

We have that the stochastic integral

Z
t

0

g(s)dB(s)

is a martingale.

By the Doob martingale inequality, we have that this then becomes:

E


sup
0tT

����
Z

t

0

g(s)dB(s)

����
p�


 

p

p� 1

!p

E
����
Z

T

0

g(s)dB(s)

����
p

using the previous theorem, we obtain the desired inequality. theorem.

Theorem 5 (Gronwall’s inequality) Let T > 0 and c � 0. Let u(·) be a Borel mea-

surable bounded non-negative function on [0, T ], and let v(·) be a non-negative integrable

function on [0, T ]. [24]

If

u(t)  c+

Z
t

0

v(s)u(s)ds, 8 0  t  T,

then

u(t)  c exp

⇢Z
t

0

v(s)ds

�
, 8 0  t  T,

Proof

It is clear we have:

log(z(t)) = log(c) +

Z
t

0

v(s)u(s)

z(s)
ds  log(c) +

Z
t

0

v(s)ds

This implies that

z(t)  c exp

⇢Z
t

0

v(s)ds

�
, 8 0  t  T

The required inequality follows since u(t)  z(t).
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Lemma

With the assumption that the linear growth condition holds,if x(t) is a solution of equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t)

then

E
�

sup
t0tT

|x(t)|2
�
 (1 + 3E|x0|2) exp 3k(T � t0)(t� t0 + 4)

In particular, x(t) belongs to M
2([t0, T ;Rn]). [22]

Proof

For every integer n � 1, define the stopping time

⌧n = min{T, inf{t 2 [t0, T ] : |x(t)| � n}}

Set xn(t) = x(min{t, ⌧n}) 8t 2 [t0, T ].

Xn thus satisfy the equation

xn(t) = x0

Z
t

t0

f(xn(s), s)I[[t0,⌧n]](s)ds+

Z
t

t0

g(xn(s), s)I[[t0,⌧n]](s)ds

We now use the elementary inequality

|a+ b+ c|2  3(|a|2 + |b|2 + |c|2),

the linear growth condition and the Hölder’s inequality we have that:

|xn(t)|2  3|x0|2 + 3K(t� t0)

Z
t

t0

(1 + |xn(s)|2)ds+ 3

����
Z

t

t0

g(xn(s), s)I[[t0,⌧n]](s)ds

����
2
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We apply the linear growth condition and previous theorem, to obtain:

E
�

sup
t0st

|xn(s)|2
�
 3E|x0|2 + 3K(T � t0)

Z
t

t0

(1 + E|xn(s)|2ds+ 12E
Z

t

t0

|g(xn(s), s)|2I[[t0,⌧n]](s)ds

 3E|x0|2 + 3K(T � t0 + 4)

Z
t

t0

(1 + E|xn(s)|2ds

Consequently

1 + E
�

sup
t0st

|xn(s)|2
�
 1 + 3E|x0|2 + 3K(T � t0 + 4)

Z
t

t0

⇥
1 + E( sup

t0rs

|xn(s)|2)
⇤
ds

By Gronwall inequality we have:

1 + E
�

sup
t0tT

|xn(t)|2
�
 (1 + 3E|x0|2) exp{3k(t� t0)(T � t0 + 4)}

By Gronwall inequality we have:

E
�

sup
t0t⌧n

|xn(t)|2
�
 (1 + 3E|x0|2) exp{3k(t� t0)(T � t0 + 4)}

If we let n ! 1 we get the desired inequality.

2.6.2 Existence and uniqueness of solutions

Uniqueness

If we let x(t) and x̄ be two solutions, by the previous lemma, both solutions belong to

M
2([t0, T ];Rn).

We have that

x(t)� x̄(t) =

Z
t

t0

�
f(x(s), s)� f(x̄(s), s)

�
ds+

Z
t

t0

�
g(x(s), s)� g(x̄(s), s)

�
dB(s), (2.36)

Applying the H ölder inequality, the previous theorem and Lipschitz condition we have
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that:

E
�

sup
t0st

|x(s)� x̄(s)|2
�
 2K̄(T + 4)

Z
t

t0

E
�

sup
t0rs

|x(r)� x̄(r)|2
�
ds

Proof

E
�

sup
t0tT

|x(t)� x̄(t)|2
�
= 0

Hence, x(t) = x̄(t) for all t0  t  T almost surely, concluding the proof of uniqueness of

solutions.

2.6.3 Existence

We have that x0(t) ⌘ x0 and, for n = 1, 2, 3, ... define the Picard’s iterations

xn(t) = x0 +

Z
t

t0

f(xn�1(s), s)ds+

Z
t

t0

g(xn�1(s), s)dB(s)

for t 2 [t0, T ], we have that x(·) 2 M
2([t0, T ];Rn), by induction we have that xn(·) 2

M
2([t0, T ];Rn) since we have that

E|xn(t)|2  c1 + 3K(T + 1)

Z
t

t0

E|xn�1(s)|2ds

where c1 = 3E|x0|2 + 3KT (T + 1).

For any k � 1

max
1nk

E|xn(t)|2  c1 + 3K(T + 1)

Z
t

t0

max
1nn

E|xn�1(s)|2ds

 c1 + 3K(T + 1)

Z
t

t0

�
E|x0|2 + max

1nk

E|xn(s)|2
�
ds

 c2 + 3K(T + 1)

Z
t

t0

max
1nk

E|xn(s)|2ds

where c2 = c1 + 3KT (T + 1)E|x0|2.
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Applying Gronwall’s inequality we have that

max
1nk

E|xn(t)|2  c2 exp{3KT (T + 1)}

Since k is arbitrary, we have that

Exn(t)|2  c2 exp{3KT (T + 1)} 8 t0  t  T, n � 1.

We note that:

|x1(t)� x0(t)|2 = |x1(t)� x0|2  2

����
Z

t

t0

f(x0, s)ds

����
2

+ 2
��
Z

t

t0

g(x0, s)dB(s)
��2

Taking the expectation and using the linear growth condition we have:

E|x1(t)� x0(t)|2  2K(t� t0)
2(1 + E|x0|2) + 2K(t� t0)(1 + E|x0|2)  C

where C = 2K(T � t0 + 1)(T � t0)(1 + E|x0|2)

We claim that n � 0,

E|xn+1(t)� xn(t)|2 
c[M(t� t0)]n

n!
, 8 t0  t  T,

where M = 2K̄(T � t0 + 1)

By induction, we have that

E|xn+1(t)� xn(t)|2 
c[M(t� t0)]n

n!

holds for n+ 1

We have that:

|xn+2(t)�xn+1(t)|2  2
��
Z

t

t0

[f(xn+1(s), s)�f(xn(s), s)]ds
��2+2

��
Z

t

t0

[g(xn+1(s), s)�g(xn(s), s)]
��2
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We take the expectation and apply the Lipschitz condition we obtain:

|xn+2(t)� xn+1(t)|2  2K̄(T � t0 + 1)E
Z

t

t0

|xn+1(s)� xn(s)
��2ds

 M

Z
t

t0

E|xn+1(s)� xn(s)
��2ds

 M

Z
t

t0

C[M(s� t0)]n

n!
ds

 M

Z
t

t0

C[M(t� t0)]n+1

(n+ 1)!
ds

If we replace n with n� 1 we have that:

sup
t0tT

|xn+1(t)�xn(t)|2  2K̄(T�t0)

Z
T

t0

|xn(s)�xn�1(s)|2ds+2 sup
t0tT

Z
T

t0

|g(xn(s), s)�g(xn�1(s), s)dBs|2

Taking the expectation and using the previous theorem, we have that

✓
sup

t0tT

|xn+1(t)� xn(t)|2
◆

2K̄(T � t0 + 4)

Z
T

t0

|xn(s)� xn�1(s)|2ds

4M

Z
T

t0

C[M(s� t0)]n�1

(n� 1)!
ds

=
4C[M(T � t0)]n

n!
/

Thus

P

⇢
sup

t0tT

|xn+1(t)� xn(t)| >
1

2n

�
 4C[4M(T � t0)]n

n!

Since
1X

n=0

<
4C[4M(T � t0)]n

n!

, the Borel-Cantelli lemma yields for almost all ! 2 ⌦ there exists a positive integer
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n0 = n0(!) such that:

sup
t0tT

|xn+1(t)� xn(t)| 
1

2n
, n � n0.

This follows that with probability of 1, the partial sums:

x0(t) +
n�1X

i=0

[xi+1(t)� xi(t)] = xn(t)

are convergent uniformly in t 2 [0, T ].

We denote the limit by x(t), we have that x(t) is continuous and Ft� adapted. For every

t, {xn(t)n�1} is a Cauchy sequence in L2. Hence xn(t) ! x(t) in L2.

If we let n ! 1 in

E|xn(t)|2  c2 exp{3KT (T + 1)}

and we have

E|x(t)|2  c2 exp{3KT (T + 1)}, 8 t0  t  T.

Hence x(·) 2 M ([t0, T ];Rn)

To show that x(t) satisfies the equation We obtain that

x(t) =

Z
t

t0

f(x(s), s)ds+

Z
t

t0

g(x(s), s)dB(s) (2.37)

We note that

E
����
Z

t

t0

f(xn(s), s)ds�
Z

t

t0

f(x(s), s)ds

����
2

+ E
����
Z

t

t0

g(xn(s), s)dB(s)�
Z

t

t0

g(x(s), s)dB(s)

����
2

 K̄(T � t0 + 1)

Z
T

t0

E|xn(s)� x(s)|2ds ! 0
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When we let n ! 1 in

xn(t) = x0 +

Z
t

t0

fn�1(x(s), s)ds+

Z
t

t0

gn�1(x(s), s)dB(s), t0  t  T (2.38)

we obtain

x(t) = x0 +

Z
t

t0

f(x(s), s)ds+

Z
t

t0

g(x(s), s)dB(s), t0  t  T (2.39)

as desired.

Thus we have shown that the Picard’s iterations xn(t) converges to the unique solution

x(t) of the equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t)

2.7 Black-Scholes

Black-Scholes (BS) formula also known as Black-Scholes-Merton formula, was named after

Fischer Black, Myron Scholes and Robert Merton. Myron Scholes and Robert Merton re-

ceived the noble prize for Economics for laying the foundation for the most famous equation

in the field of finance. [20]

Development of the Equation. To evaluate the price of a stock option we take into ac-

count the following parameters.

1. S = stock price.

2. E = exercise price.

3. t = time

4. ⇢ = risk-free interest rate.

5. T = time to expiration.
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6. µ = average rate of growth of the stock.

7. � = standard deviation of log returns (volatility)

The option value can be written as

V (S, t, �, µ, E, T, r) ⌘ V (S, t)

The equivalent relation holds because apart from S and t, which are the independent

variables the rest of the variables are just parameters.

We denote a portfolio of one long option position by ⇧ and a short position of some quantity,

� of the underlying, S:

⇧ = V (S, t)�� · S. (2.40)

We assume S follows a log-normal random walk hence we have that:

dS = µSdt+ �SdX

where dX = N(0, 1)dt
1
2 hence the average of ¯dx2 = dt.

We now evaluate d⇧ in equation 2.40.

d⇧ = dV = �dS (2.41)

The change in the value of the portfolio from t to t+dt is: Using Taylor series and expanding

to second order.

dV =
@V

@S
dS +

@V

@t
dt+

1

2

@2V

@S2
dS2 +

1

2

@2V

@t2
dt2 +

1

2

@2V

@S@t
dSdt (2.42)

Using Itô’s Lemma and substitution dS2 = �2S2dt

dV =
@V

@S
dS +

@V

@t
dt+

1

2
�2S2@

2V

@S2
dt (2.43)
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Hence we have:

d⇧ =
@V

@t
dt+

1

2
�2§2@

2V

@S2
dt+

@V

@S
dS ��dS. (2.44)

If we choose � = @V

@S
the randomness (risk) is reduced to zero, then is referred to as Delta

hedging.

Thus changes are completely risk-less, then it must be the same as the growth we would

get if we put the equivalent amount of cash in a risk-free interest-bearing account. Thus

d⇧ = r⇧dt

and that results in the Black-Scholes-Morten equation:

@V

@t
+

1

2
�2S2@

2V

@S2
+ rS

@V

@S
� rV = 0 (2.45)

Remark

There is no e↵ect of the µ.

There is no information about the kind of option being considered. Hence all the

options follow the same equation. The information of di↵erent option would be found

in the boundary condition and initial condition that would be included to completely

solve the Black-Scholes-Morten equation.

The equation is a parabolic equation.
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Chapter 3

The

BNS-Gamma-Ornstein-Uhlenbeck

Process

Beginning with this chapter, we present the formulation of the BNS-Gamma-Ornstein-

Uhlenbeck Process which will pave the way for its parameter estimation. We will first look

at the Gamma distribution, then go ahead and look at the superposition of Gamma-OU

process and finally present the BNS-Gamma-Ornstein-Uhlenbeck Process.

3.1 Definitions

Definition 9 Gamma function

�(a) =

Z 1

0

xa�1 exp(�x)dx, a > 0. (3.1)

It turns out that :

�(n) = (n� 1)! for n a positive integer.

�(x+ 1) = x�(x)

�(12) =
p
⇡
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A pdf related to the Gamma function is gotten by normalizing. 3.5. This is achieved by

dividing the equation by �(a) and we get:

1 =

Z 1

0

1

�(a)
xa�1 exp(�x)dx, (3.2)

This
1

�(a)
xa�1 exp(�x), is called the �(a, 1) probability density function (pdf). A more

general one is obtained by making change of variables and that results in the Gamma

distribution.

Definition 10 A Gamma distribution random variable X with parameters ↵ and � has a

density function [21]

f(x) =
�↵

�(↵)
x↵�1 exp(��x), x,↵, � > 0. (3.3)

The Gamma distribution has a corresponding characteristic function defined as

'(x) =

✓
1� ix

�

◆�↵

(3.4)

X ⇠ �(a, b) is infinitely divisible distribution. This enables us to conclude that it is a

Gamma Lvy process.

A Self-decomposable distribution is a distribution that belongs to a subclass of infinitely

divisible distribution.

Definition 11 A random variable X is self-decomposable if, for all f , its characteristic

function can be decomposed as,'X(z) = 'cX(z) ⇥ 'c(z), for some characteristic function

'c(z), Z 2 R.
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3.2 Superposition of the Gamma-OU process

Definition 12 A Gamma distribution random variable X with parameters ↵ > 0 and

� > 0 has a density function

f(x) =
�↵

�(↵)
x↵�1 exp

�
��x

 
, x � 0 (3.5)

It is self-decomposable, hence we have a stationary OU process{Y (t), t/geq0} with gamma

marginal distribution. It characteristic function is given as:

'�(Z) = E[exp{izX}] (3.6)

=
�
1� iz

�

��↵

(3.7)

which has a convolution property on ↵ according to [15] Grahovac et al. The stationary

Gamma OU process {Y (t), t/geq0} and a corresponding gamma marginal distribution has

a cumulant generating function defined as :

X(z) = logE
⇥
exp{izY (t)}

⇤
(3.8)

= �↵ log
�
1� iz

�

�
(3.9)

=
1X

m=1

↵(iz)m

m�m
(3.10)

=
1X

m=1

↵(m� 1)!

�m

(iz)m

m!
z < � (3.11)

(3.12)

The characteristic function X(Z) is analytic around the origin since at any point in the

neighborhood of the origin, the Taylor series converges to the value of the function.

(m)
X

=
↵(m� 1)!

�m
(3.13)
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Hence for m = 1,(1)
X

= E(Y (t)) =
↵

�
and when m = 2,(2)

X
= V ar(Y (t)) =

↵

�2
. The

corresponding covariance function is given as:

RY (t) = Var(Y (t)) exp{��|t|} =
↵

�2
exp{��|t|}. (3.14)

Thus, we can now find the superposition of the stationary Gamma OU type process.We

take {Y (t), t/geq0}, k � 1 are independent stationary OU Gamma processes with marginals

�(↵k, �), k � 1 such that ↵k = ↵k�(1+2(1�H)), H 2 (12 , 1).

Let ↵(H) =
P1

k=1 k
�(1+2(1�H)) be Riemann zeta-function ⇣(z) with z = 1+2(1�H) and

the same treatment for IG�OU and the conditions been satisfied we have the superposition

OU given by:

Y1(t) =
1X

k=1

Y (k)(t), t � 0, (3.15)

has a marginal distribution �

✓P1
k=1 ↵k, �

◆
and the covariance function is given as:

RY1(t) =
1X

k=1

Var
⇥
Y (k)(t)

⇤
exp{��(k)t} (3.16)

=
1

�2

1X

k=1

↵k exp{��(k)t}. (3.17)

A particular choice of �(k) =, we obtain a long range dependent stationary Gamma-OU

process.

Simulation Algorithm for Gamma-OU process

The Gamma-OU process simulation through the Background Driving Lvy Process(BDLP)

is given by the following algorithm:

1. Simulation of the Poisson process
�
N(t), t � 0

�
) with intensity parameter a�t in the

time points n�t, n = 1, 2, 3, ...
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(a) Simulation of the uniform independent random numbers un ⇠ Uniform(0, 1)

(b) Simulation of the independent exponential random numbers xn ⇠ Exp(b)

xn = log(un)/b

.

(c) Let:

s0 = 0, sn = sn�1 + xn

(d) Sample the path of the Poisson process N = (Nt)t�0 in the time points n�t.

N0 = 0, Nn�t = sup(k : sn  n�t), n > 1.

2. Sample the path of the Gamma-Ou process X =
�
Xt

�
)t�0 in the time points n�t.

Xn�t = exp (���t)X(n�1)�t +
Nn�tX

n=N(n�1)�t

Xn, X0 > 0

3.3 BNS-Gamma-OU Model

We now develop the Barndor↵-Nielsen and Shephard (BNS) model that would be used to

predict the value of the high-frequency data at a time t and then use the model to predict

the path of the Stochastic Di↵erential Equation.

The BNS model is reformulated from the Black-Scholes(BS) [16]. Stochastic Di↵erential

Equation discussed in Chapter 2. For the Black-Scholes the log of the option price S at

time t in 2.45 satisfy the equation .

d log(St) =

✓
µ� 1

2
�2

◆
dt+ �dW̄t, log(S0). (3.18)
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We let log(St) = Zt and log(S0) = Z0 3.18 becomes:

dZt =

✓
µ� 1

2
�2

◆
dt+ �dW̄t, Z0 (3.19)

Since the volatility is dynamic and random we let � be stochastic.The volatility follows a

Gamma distribution.The price of an asset will jump decrease when there a jump in volatil-

ity takes place. When there the stock price is stable asset price moves continuously, along

with the continuously decreasing volatility.

Barndor↵-Nielsen and Shephard proposed a model where �2 is defined by an Ornstein Uh-

lenbeck process [4]. [23]

Thus �2 satisfy the Stochastic Di↵erential Equation

d�2
t
= ���2

t
dt+ dz̄�t (3.20)

such that x = {x̄t, t � 0} is a Lvy process with a subordinator. Assuming that x̄ has

density for it Lvy measure and it has no drift. We thus have:

dZt =

✓
µ� 1

2
�2
t

◆
dt+ �tdW̄t + ⇢dZ̄�t, log(S0) = Zo = x0. (3.21)

where ⇢ serves as the positive leverage, while St is Wiener process. The sample path for a

stock price is given by:

Zn�t = Z(n�1)�t +
�
µ� �2

n�t

2

�
�t+ �n�t

�
�t

� 1
2⌫n + ⇢

�
Z�n�t � Z�(n�1)�t

�
(3.22)
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Simulation Algorithm for BNS-Gamma-OU process

BNS Model with Gamma-OU process is simulate by taking the following steps:

1. Generate Poisson process by the method above with the parameter of a�.

2. Calculate the number of jumps in each interval.

Zn�t = Z(n�1)�t +
�
µ� �2

n�t

2

�
�t+ �n�t

�
�t

� 1
2⌫n + ⇢

�
Z�n�t � Z�(n�1)�t

�
(3.23)

3. Obtain St, stock price, by St = exp(Zt);

4. Obtain option price by exp(�µt)max(St �Xt, 0).
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Chapter 4

Numerical Results and Application

To Real Live Data

4.1 Introduction

This chapter is devoted to documentation of numerical results that demonstrate the per-

formances of Gamma-OU and BNS-Gamma-OU models and compare them by applying

them to high frequency data arising from finance and geology, that is stock and earthquake

respectively. MATLAB version R2020a was used to perform the simulations.

4.2 Application to Data from Earthquakes

The algorithm for superposition of Gamma-OU process was implemented. The data used

for the simulation was earthquake data from California for the year 1973. This data was

extracted from the data set provided by the United States Geological Survey. The area

associated with the data is carefully selected to avoid disturbance due to noise from un-

related activities. The most crucial factor was that the area should not be too small else

fitting of the data would be close to impossible and should not be too big to prevent undue

interference from activities that are not related to the seismic under study. The dimensions

of the area taken which was a quadrilateral selected as ±(0.1o � 0.2o) and ±(0.2o � 0.4o)

in latitude and longitude respectively. The recorded magnitude of the earthquake assumed

that the magnitude has no dimension and it ranges between 1�12. The moment magnitude

is what is recorded.
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Ten random paths were generated and their mean was computed and plotted as shown

with the legend in black. 4.1 illustrates the results.

Figure 4.1: Sample paths of Gamma-OU process for Earthquake

With the same data set, we implemented the BNS-Gamma-OU model using the algorithm

discussed under section 3.3.

Figure 4.2: Sample paths of BNS-Gamma-OU process for Earthquake
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4.3 Application to Data from Stock Market

The data set used for the simulation is the Standard and Poors 500 index frequently referred

to as S & P 500. This data is a high frequency data. The log returns of S & P 500 are

what was used. S & P 500 index is one of the most widely traded and closely watched

stock index. It is regarded as the best single goal of the United States of America equities’

market. [9]

The S & P 500 index includes a representative sample of 500 leading companies in the

US economy. Although the S & P 500 focuses on the large cap segment of the market with

over 75 percent coverage of the US equities. It is viewed as the proxy of the market.[2]

The algorithm for of Gamma-OU process was implemented for the S & P 500 price

data available with one-minute frequency from August 1st,1997 through to September

28th, 2005.

We once again simulated 10 results and found the mean and plotted it as well, as shown

in figure 4.3.

Figure 4.3: Sample paths of Gamma-OU process for Stock price

The data set of S & P 500 was used to simulate the BNS-Gamma-OU model, the same

routine was done, 10 di↵erent paths were generated and the mean of these paths was found

and plotted as well. The plot is shown in figure 4.4.
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Figure 4.4: Sample paths of BNS-Gamma-OU process for Stock price

It is significant to note that the path taken by the BNS-Gamma-OU model was almost that

of the original. We noted that no matter the random generator used to path was almost

the same. When they were all normalized and plotted, all the paths almost lied on each

other.
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4.4 Discussion of Results

To access the performance of the two models, we used the method of calibration and also

calculating the residuals. For the earthquake, 100 of the mean simulated points from

Gamma-OU were selected at random and plotted against the corresponding time on the

BNS-Gamma-OU and the actual values. It was seen from figure 4.5 that the BNS-Gamma-

OU model points were significantly close to that of the actual magnitude of the earthquake

than that of the Gamma-OU.

Figure 4.5:
BNS-Gamma-OU and Gamma-OU calibrations for the Magnitude of
Earthquake

The residuals were calculated using the Root Mean Square Error (RMSE) we had for

Gamma-OU 0.1767 and that of BNS-Gamma-OU we had 0.1023. shown in 4.1

Similarly we performed the calibration using 100 data points that were selected randomly

from the actual data set of S & P 500 and plotted against the corresponding mean simulated

results from Gamma-OU and BNS-Gamma-OU. We found that the simulated results from
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Gamma-OU were close to the actual prices but the results from BNS-Gamma-OU were very

close.in most cases than that of the Gamma. This is shown figure in 4.6. This was also

Figure 4.6: BNS-Gamma-OU and Gamma-OU calibrations for the stock price.

Table 4.1: Root Mean Square Error Comparison

RMSE Gamma-OU BNS-Gamma-OU
Earthquake 0.1767 0.1023
Option Pricing 0.2173 0.1006

further collaborated when the residuals were calculated using the Root Mean Square Error

(RMSE). For Gamma-OU the RMSE was found to be 0.2173 and that of BNS-Gamma-OU

was less than half of that of the Gamma-OU which was 0.1006 as shown in 4.1.
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Chapter 5

Conclusion and Future Work

5.1 Introduction

In this chapter we make concluding remarks by highlighting the main results of this work

and look at other areas where further work can be done to augment the results we have

arrived at.

5.2 Conclusion

We developed a more superior model to Gamma-OU model to model high frequency data.

We illustrated how the BNS Gamma-OU has a better Root Mean Square Error as compared

to the Gamma-OU model, also when both were calibrated against the original data once

again the BNS Gamma-OU was very close to the real data. It is worthy to note that since

both the Gamma-OU and BNS Gamma-OU models are mean-reverting, hence they tend

to drift towards their mean function. The BNS-Gamma-OU model will converge faster to

the mean function as compared to the Gamma-OU model. BNS-Gamma-OU model proved

to be better than the Gamma-Ou model and Black-Scholes models for predicting option

price. The Black-Scholes model for predicting the earthquake data did not produce any

significant results but the BNS-Gamma-OU and Gamma-OU did. We thus conclude that

the BNS-Gamma-OU model is excellent to predict high frequency data such as option price

and magnitude of earthquake.
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5.3 Future Work

A natural extension of this present work is to look at the BNS-Gamma-OU Model. Further

studies can be done on BNS models that are driven by other processes instead of Gamma-

OU, such as Meixner-OU, IG-OU and NIG-OU processes.

Secondly, further studies could be done in applying Lvy models to high frequency data that

the time can be stochastic.

An issue that remains to be addressed is how is the parameter ⇢ in the BNS-Gamma-OU

model. What range would it give an accurate solution further works could be done to study

this parameter and how it relates to specific type of high frequency data.

Finally, we can look at the convergence rate of both the Gamma-OU and BNS-Gamma-OU

model and the factors that a↵ect the order of convergence.
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