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Lemma

With the assumption that the linear growth condition holds,if x(t) is a solution of equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t)

then

E
�

sup
t0tT

|x(t)|2
�
 (1 + 3E|x0|2) exp 3k(T � t0)(t� t0 + 4)

In particular, x(t) belongs to M
2([t0, T ;Rn]). [22]

Proof

For every integer n � 1, define the stopping time

⌧n = min{T, inf{t 2 [t0, T ] : |x(t)| � n}}

Set xn(t) = x(min{t, ⌧n}) 8t 2 [t0, T ].

Xn thus satisfy the equation

xn(t) = x0

Z
t

t0

f(xn(s), s)I[[t0,⌧n]](s)ds+

Z
t

t0

g(xn(s), s)I[[t0,⌧n]](s)ds

We now use the elementary inequality

|a+ b+ c|2  3(|a|2 + |b|2 + |c|2),

the linear growth condition and the Hölder’s inequality we have that:

|xn(t)|2  3|x0|2 + 3K(t� t0)

Z
t

t0

(1 + |xn(s)|2)ds+ 3

����
Z

t

t0

g(xn(s), s)I[[t0,⌧n]](s)ds

����
2
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We apply the linear growth condition and previous theorem, to obtain:

E
�

sup
t0st

|xn(s)|2
�
 3E|x0|2 + 3K(T � t0)

Z
t

t0

(1 + E|xn(s)|2ds+ 12E
Z

t

t0

|g(xn(s), s)|2I[[t0,⌧n]](s)ds

 3E|x0|2 + 3K(T � t0 + 4)

Z
t

t0

(1 + E|xn(s)|2ds

Consequently

1 + E
�

sup
t0st

|xn(s)|2
�
 1 + 3E|x0|2 + 3K(T � t0 + 4)

Z
t

t0

⇥
1 + E( sup

t0rs

|xn(s)|2)
⇤
ds

By Gronwall inequality we have:

1 + E
�

sup
t0tT

|xn(t)|2
�
 (1 + 3E|x0|2) exp{3k(t� t0)(T � t0 + 4)}

By Gronwall inequality we have:

E
�

sup
t0t⌧n

|xn(t)|2
�
 (1 + 3E|x0|2) exp{3k(t� t0)(T � t0 + 4)}

If we let n ! 1 we get the desired inequality.

2.6.2 Existence and uniqueness of solutions

Uniqueness

If we let x(t) and x̄ be two solutions, by the previous lemma, both solutions belong to

M
2([t0, T ];Rn).

We have that

x(t)� x̄(t) =

Z
t

t0

�
f(x(s), s)� f(x̄(s), s)

�
ds+

Z
t

t0

�
g(x(s), s)� g(x̄(s), s)

�
dB(s), (2.36)

Applying the H ölder inequality, the previous theorem and Lipschitz condition we have
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that:

E
�

sup
t0st

|x(s)� x̄(s)|2
�
 2K̄(T + 4)

Z
t

t0

E
�

sup
t0rs

|x(r)� x̄(r)|2
�
ds

Proof

E
�

sup
t0tT

|x(t)� x̄(t)|2
�
= 0

Hence, x(t) = x̄(t) for all t0  t  T almost surely, concluding the proof of uniqueness of

solutions.

2.6.3 Existence

We have that x0(t) ⌘ x0 and, for n = 1, 2, 3, ... define the Picard’s iterations

xn(t) = x0 +

Z
t

t0

f(xn�1(s), s)ds+

Z
t

t0

g(xn�1(s), s)dB(s)

for t 2 [t0, T ], we have that x(·) 2 M
2([t0, T ];Rn), by induction we have that xn(·) 2

M
2([t0, T ];Rn) since we have that

E|xn(t)|2  c1 + 3K(T + 1)

Z
t

t0

E|xn�1(s)|2ds

where c1 = 3E|x0|2 + 3KT (T + 1).

For any k � 1

max
1nk

E|xn(t)|2  c1 + 3K(T + 1)

Z
t

t0

max
1nn

E|xn�1(s)|2ds

 c1 + 3K(T + 1)

Z
t

t0

�
E|x0|2 + max

1nk

E|xn(s)|2
�
ds

 c2 + 3K(T + 1)

Z
t

t0

max
1nk

E|xn(s)|2ds

where c2 = c1 + 3KT (T + 1)E|x0|2.
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Ten random paths were generated and their mean was computed and plotted as shown

with the legend in black. 4.1 illustrates the results.

Figure 4.1: Sample paths of Gamma-OU process for Earthquake

With the same data set, we implemented the BNS-Gamma-OU model using the algorithm

discussed under section 3.3.

Figure 4.2: Sample paths of BNS-Gamma-OU process for Earthquake
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4.3 Application to Data from Stock Market

The data set used for the simulation is the Standard and Poors 500 index frequently referred

to as S & P 500. This data is a high frequency data. The log returns of S & P 500 are

what was used. S & P 500 index is one of the most widely traded and closely watched

stock index. It is regarded as the best single goal of the United States of America equities’

market. [9]

The S & P 500 index includes a representative sample of 500 leading companies in the

US economy. Although the S & P 500 focuses on the large cap segment of the market with

over 75 percent coverage of the US equities. It is viewed as the proxy of the market.[2]

The algorithm for of Gamma-OU process was implemented for the S & P 500 price

data available with one-minute frequency from August 1st,1997 through to September

28th, 2005.

We once again simulated 10 results and found the mean and plotted it as well, as shown

in figure 4.3.

Figure 4.3: Sample paths of Gamma-OU process for Stock price

The data set of S & P 500 was used to simulate the BNS-Gamma-OU model, the same

routine was done, 10 di↵erent paths were generated and the mean of these paths was found

and plotted as well. The plot is shown in figure 4.4.
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Figure 4.4: Sample paths of BNS-Gamma-OU process for Stock price

It is significant to note that the path taken by the BNS-Gamma-OU model was almost that

of the original. We noted that no matter the random generator used to path was almost

the same. When they were all normalized and plotted, all the paths almost lied on each

other.
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4.4 Discussion of Results

To access the performance of the two models, we used the method of calibration and also

calculating the residuals. For the earthquake, 100 of the mean simulated points from

Gamma-OU were selected at random and plotted against the corresponding time on the

BNS-Gamma-OU and the actual values. It was seen from figure 4.5 that the BNS-Gamma-

OU model points were significantly close to that of the actual magnitude of the earthquake

than that of the Gamma-OU.

Figure 4.5:
BNS-Gamma-OU and Gamma-OU calibrations for the Magnitude of
Earthquake

The residuals were calculated using the Root Mean Square Error (RMSE) we had for

Gamma-OU 0.1767 and that of BNS-Gamma-OU we had 0.1023. shown in 4.1

Similarly we performed the calibration using 100 data points that were selected randomly

from the actual data set of S & P 500 and plotted against the corresponding mean simulated

results from Gamma-OU and BNS-Gamma-OU. We found that the simulated results from
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Gamma-OU were close to the actual prices but the results from BNS-Gamma-OU were very

close.in most cases than that of the Gamma. This is shown figure in 4.6. This was also

Figure 4.6: BNS-Gamma-OU and Gamma-OU calibrations for the stock price.

Table 4.1: Root Mean Square Error Comparison

RMSE Gamma-OU BNS-Gamma-OU
Earthquake 0.1767 0.1023
Option Pricing 0.2173 0.1006

further collaborated when the residuals were calculated using the Root Mean Square Error

(RMSE). For Gamma-OU the RMSE was found to be 0.2173 and that of BNS-Gamma-OU

was less than half of that of the Gamma-OU which was 0.1006 as shown in 4.1.
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Chapter 5

Conclusion and Future Work

5.1 Introduction

In this chapter we make concluding remarks by highlighting the main results of this work

and look at other areas where further work can be done to augment the results we have

arrived at.

5.2 Conclusion

We developed a more superior model to Gamma-OU model to model high frequency data.

We illustrated how the BNS Gamma-OU has a better Root Mean Square Error as compared

to the Gamma-OU model, also when both were calibrated against the original data once

again the BNS Gamma-OU was very close to the real data. It is worthy to note that since

both the Gamma-OU and BNS Gamma-OU models are mean-reverting, hence they tend

to drift towards their mean function. The BNS-Gamma-OU model will converge faster to

the mean function as compared to the Gamma-OU model. BNS-Gamma-OU model proved

to be better than the Gamma-Ou model and Black-Scholes models for predicting option

price. The Black-Scholes model for predicting the earthquake data did not produce any

significant results but the BNS-Gamma-OU and Gamma-OU did. We thus conclude that

the BNS-Gamma-OU model is excellent to predict high frequency data such as option price

and magnitude of earthquake.
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