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Abstract 

As cities continue to grow, their urban form continues to evolve over. Understanding this 

evolution allows for planners, engineers, and decision makers to plan for a sustainable 

community. Change analysis was conducted for El Paso, Texas county to determine the areas of 

growth within the past 15-years (2001-2016). The results indicate that growth has primarily 

occurred within the city of El Paso, in particular Districts 5 (east side), 1 (west side), and 4 

(northeast), with District 5 experiencing substantial growth. Developed sub-categories medium 

and High intensity experienced the fastest growth, which represents single-family housing and 

compact/commercial areas. However, landscape metrics indicate that the dominating land-use is 

single-family housing (low and medium intensity). Landscape metrics suggest as the districts 

continue to grow, fragmentation and shape irregularity of developed areas decrease. The metrics 

also indicate a diverse sub-category landscape, which may suggest mixed-use within developed 

areas.  

Using past growth trends, CA-Markov is employed to predict 2031 land-use. The 

counties’ projected growth is evenly contributed to El Paso city and outside city limits. Growth 

outside city limits is expected within Plan El Paso’s potential annexation areas (City of El Paso 

2012), with the exception of projected growth adjacent to District 1.  Similar trends for city 

growth are suggested in 2031 land-use, with Districts 1, 4, and 5 dominating the cities’ growth. 

The landscape metrics suggest as Districts 1 and 5 continue to expand, there is a decline in 

fragmentation. However, District 4 indicates an increase in fragmentation as the districts’ 

developed areas expand. Panel data analysis was performed to investigate the relationship 

between landscape metrics and electricity consumption. The results indicate that the developed 

mean patch area is positively correlated with consumption, provided the metric does not remain 
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constant. The findings suggest that future growth continues to be directed within Districts 1 and 

4, with fragmentation discouraged through city policies. The vast growth concentration within 

single-family housing should be redirected to compact housing within the high-intensity sub-

category. Though these categories have experienced the fastest growth, high intensity comprises 

the smallest area of the districts’ landscape. Further research should be conducted to include 

metrics that describe the interconnection of developed patch areas and an increase in time 

observations to provide a better understanding of the landscape metrics and electricity 

consumption relationship.      



viii 

Table of Contents 

Acknowledgements ..........................................................................................................................v 

Abstract .......................................................................................................................................... vi 

Table of Contents ......................................................................................................................... viii 

List of Tables ................................................................................................................................. xi 

List of Figures ............................................................................................................................ xiiiii 

Chapter 1: Introduction ....................................................................................................................1 

1.1 Problem Statement ............................................................................................................1 

1.2 Objectives .........................................................................................................................1 

1.3 Significance of Research...................................................................................................2 

1.4 Organization ......................................................................................................................3 

Chapter 2: Literature Review ...........................................................................................................5 

2.1 Background .......................................................................................................................5 

2.2 Understanding Urban Development Utilizing Remote Sensing .......................................6 

2.2.1 Urban Development Analysis within Arid Regions/El Paso ................................8 

2.2.2 National Land cover Database (NLCD) ...............................................................9 

2.2.3 Classification Accuracy Assessment ..................................................................11 

2.3 Landscape Metrics ..........................................................................................................13 

2.3.1 FRAGSTATS Landscape Metrics Model ...........................................................14 

2.4 Future Land Use ..............................................................................................................15 

2.4.1 CA-Markov Model..............................................................................................16 

2.4.2 TerrSet Geospatial Monitoring and Modeling System .......................................19 

2.5 Electricity Consumption and Urban Development .........................................................20 

2.5.1 Panel Data Analysis ............................................................................................21 

2.6 Summary ................................................................................................................21 

Chapter 3: Data and Methodology .................................................................................................23 

3.1 Geographical Location ....................................................................................................25 

3.2 Land-Use Change Analysis.............................................................................................26 

3.2.1 National Land Cover Database ...........................................................................28 



ix 

3.2.2 Classification Accuracy Assessment ..................................................................29 

3.2.3 El Paso Land-Use Maps ......................................................................................30 

3.3 Dynamic Growth Pattern Analysis .................................................................................31 

3.4 Future Prediction of Land-Use ........................................................................................33 

3.5 Land-Use Patterns and Electricity Consumption ............................................................37 

3.6 Summary .........................................................................................................................40 

Chapter 4: Data Analysis ...............................................................................................................42 

4.1 Land-Use Change Analysis.............................................................................................42 

4.1.1 Classification Accuracy Assessment ..................................................................42 

4.1.2 Change Analysis Results.....................................................................................46 

4.1.2.1 Comprehensive Developed Class ...........................................................46 

4.1.2.2 Developed Sub-Categories......................................................................52 

4.2 Landscape Metrics ..........................................................................................................58 

4.2.1 Comprehensive Developed Class .......................................................................58 

4.2.2 Developed Sub-Categories ..................................................................................61 

4.3 Future Prediction of Land-Use ........................................................................................67 

4.3.1 Verification of CA-Markov Model .....................................................................67 

4.3.2 2031 Future Land-Use Prediction .......................................................................69 

4.3.2.1 2031 CA-Markov Model.........................................................................69 

4.3.2.2 County 2031 Change Analysis Results ...................................................71 

4.3.2.3 City of El Paso 2031 Change Analysis Results ......................................73 

4.3.2.4 Outside El Paso City 2031 Change Analysis Results .............................76 

4.4 2031 Landscape Metrics .................................................................................................77 

4.5 Relationship of Urban Form and Electricity Consumption ............................................80 

4.6 Summary .........................................................................................................................84 

Chapter 5: Conclusion....................................................................................................................86 

5.1 Summary of Research Objectives and Findings ......................................................................86 

5.2 Significance and Recommendations ........................................................................................89 

5.3 Limitations and Future Studies ................................................................................................89 

 



x 

References ......................................................................................................................................92 

Vita ...............................................................................................................................................98 



xi 

List of Tables 

Table 2.1: NLCD 2016 Land Cover Classification. ....................................................................... 9 

Table 2.2: Error Matrix ................................................................................................................. 10 

Table 2.3: Kappa Coefficient Agreement Range .......................................................................... 12 

Table 3.1: Land Cover Classification for Study ........................................................................... 27 

Table 3.2: Description of Landscape Metrics ............................................................................... 31 

Table 3.3: Transition Matrix for Developed and Barren .............................................................. 33 

Table 3.4: Suitability Map Criteria ............................................................................................... 34 

Table 4.1: County/City 2001-2006 Classification Accuracy ........................................................ 42 

Table 4.2: County/City 2011-2016 Classification Accuracy ........................................................ 43 

Table 4.3: County Land-Use Area and Change in Percentage ..................................................... 46 

Table 4.4: Contribution of City Growth Towards County Expansion .......................................... 48 

Table 4.5: City Land-Use Area and Change in Percentage .......................................................... 48 

Table 4.6: Developed Class Detailed Descriptions ....................................................................... 51 

Table 4.7: 5-Year Sub-Category Growth Relative to Growth Within the District ....................... 53 

Table 4.8: CA-Markov Accuracy Utilizing 2001 and 2011 Data to Predict 2016 ....................... 67 

Table 4.9: Transition Matrix for Developed and Barren Class ..................................................... 69 

Table 4.10: County Land-Use Area and Change in Percentage ................................................... 71 

Table 4.11: Contribution of City Growth Towards County Expansion ........................................ 71 

Table 4.12: Percentage of District Barren Area Relative to City ................................................. 73 

Table 4.13: F-Test Results ............................................................................................................ 80 

Table 4.14: Hausman Test Results................................................................................................ 80 

Table 4.15: Random Effects Panel Data Analysis Results ........................................................... 81 



xii 

Table 4.16: Metrics Percentage Change ....................................................................................... 82 

 

 



xiii 

List of Figures 

Figure 2.1: Future Land-Use Map. ............................................................................................... 15 

Figure 3.1: Workflow Diagram for Research Methodology ......................................................... 23 

Figure 3.2: El Paso County and Surrounding Area....................................................................... 25 

Figure 3.3: Land-Use Change Analysis Methodology ................................................................. 26 

Figure 3.4: 2001 Random Points for County/City of El Paso....................................................... 28 

Figure 3.5: Analyzing Developed Areas within El Paso Region .................................................. 29 

Figure 3.6: Dynamic Growth Pattern Analysis Methodology ...................................................... 30 

Figure 3.7: Future Prediction of Land-Use Methodology ............................................................ 32 

Figure 3.8: Fuzzy Function a) Distance from Developed Areas and b) Distance from Roads..... 34 

Figure 3.9: 5x5 Contiguity Filter .................................................................................................. 35 

Figure 3.10: Random Points for County/City of El Paso.............................................................. 36 

Figure 3.11: Landscape Metrics and Electricity Consumption Methodology .............................. 37 

Figure 4.1: 2001 and 2016 County Land Cover Maps .................................................................. 46 

Figure 4.2: 2001 to 2016 County Growth ..................................................................................... 47 

Figure 4.3: 2001-2016 District Growth Relative to City Growth ................................................. 49 

Figure 4.4: 5-Year District Growth Relative to City Growth ....................................................... 50 

Figure 4.5: 2001-2016 Change in Developed Sub-Categories ..................................................... 52 

Figure 4.6: District 5 Developed, Medium and High Intensity Growth ....................................... 54 

Figure 4.7: District 1 Developed, Open, Medium and High Intensity Growth ............................ 55 

Figure 4.8: District 4 Developed, Medium and High Intensity Growth ....................................... 56 

Figure 4.9: Class-Level Metrics .................................................................................................... 59 

Figure 4.10: Percentage of Landscape and Number of Patches Metrics ...................................... 62 



xiv 

Figure 4.11: Landscape Shape Index and Mean Patch Area Metrics ........................................... 63 

Figure 4.12: Patch Density and Edge Density Metrics ................................................................. 64 

Figure 4.13: Landscape-Level Metrics ......................................................................................... 66 

Figure 4.14: Suitability Map and Input Data ................................................................................ 69 

Figure 4.15: 2031 Projected County Land Cover Map ................................................................. 70 

Figure 4.16: 2016 to 2031 County Growth ................................................................................... 72 

Figure 4.17: 2016 to 2031 Projected District Growth Relative to City ........................................ 73 

Figure 4.18: 15-Year District and Projected Growth .................................................................... 74 

Figure 4.19: City Contributions to Projected Growth Outside City Limits .................................. 75 

Figure 4.20: Growth Clusters Outside City Limits ....................................................................... 76 

Figure 4.21: District 1 Landscape Metrics for 2016 and 2031 ..................................................... 77 

Figure 4.22: District 5 Landscape Metrics for 2016 and 2031 ..................................................... 78 

Figure 4.23: District 4 Landscape Metrics for 2016 and 2031 ..................................................... 79 

Figure 4.24: Projected Electricity Consumption Trend ................................................................ 82  

 



1 

Chapter 1: Introduction 

1.1 Problem Statement 

Urbanization has become an increasing concern to planners, engineers, decision-makers, 

and the public in recent years. Urban growth is a necessary process to meet the needs of a 

growing population through housing, roadways, and commercial buildings; which are examples 

of what encompasses urban growth. The patterns and rate of urban expansion have been studied 

extensively in various cities of the United States through the use of remote sensing and 

geographic information system (GIS). However, minimal research has been conducted to 

understanding the urbanization growth of El Paso, Texas in the past 15 years. Understanding El 

Paso’s past urban growth patterns allows for a basis to predict future trends of urbanization. 

Understanding future urban growth patterns allows decision-makers and stakeholders to plan 

accordingly for a sustainable El Paso. According to the El Paso Comprehensive Plan (Plan El 

Paso), “managing El Paso’s outward expansion is perhaps the most complex and difficult 

strategy…” (City of El Paso 2012). Landscape metrics are a means to understand various aspects 

of urban growth patterns including fragmentation, sporadic growth, infill, or outward sprawl. 

Understanding growth patterns allows informed policy creation to plan for smart communities, 

which consist of dense development to limit transit times, reduce infrastructure costs, and are 

environmentally conscious. Urban growth has also placed a strain on resources such as energy 

consumption. Residential and commercial sectors account for 40% of U.S. energy consumption. 

Relating El Paso’s urban growth patterns to electricity consumption allows decision-makers and 

the public to make informed decisions based on scientific analysis for policies and urban 

planning strategies.  

 

1.2 Objectives 

The following objectives illustrate the focus of this dissertation:  
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1) Provide an understanding of El Paso’s past growth from 2001 – 2016 utilizing change 

analysis.  

2) Utilize landscape metrics to analyze El Paso’s urban dynamic growth patterns. 

3) Predict future land-use within El Paso County for 2031 utilizing CA-Markov and 

apply landscape metrics to understand growth patterns. 

4) Examine the relationship between El Paso’s landscape metrics and electricity 

consumption. 

 

1.3 Significance of Research 

“The proper design and management of the physical environment-both the natural and 

man-made realms – will determine if we can provide an even better El Paso to our children and 

grandchildren than the one we know today,” from El Paso’s City Comprehensive Plan. The 

purpose of this study was to provide decision-makers and stakeholders with an understanding of 

El Paso’s urban growth patterns within the last 15-years, project and analyze future growth 

patterns, and its’ subsequent impact on electricity consumption in order to make informed 

decisions. Cities typically consist of an urban center that consists of the cities’ nucleus from 

which employment, entertainment, and government resources are centered. Thus, a cities’ 

growth is centered around the urban centers. The urbanization analysis of such cities’ focus on 

growth trends from the urban center. However, El Paso’s growth has dispersed into three main 

wedges due to El Paso’s unique geographical setting consisting of urban growth constrains. The 

constraints include a countries’ border (Mexico), state border (New Mexico), largest urban park 

in the United States (Franklin Mountains State Park), and military reservations; which dictate El 

Paso’s urban expansion locations. These constraints have forced urban expansion beyond El 
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Paso’s urban center (City of El Paso 2012). This study focused on specific districts within the 

county that possessed the majority of urban growth within the study period. Minimal research 

has been conducted on El Paso’s urban growth trends and consequential patterns. Therefore, this 

study adds to the existing research and provided an analysis of El Paso’s urban growth trends 

from 2001-2016, and utilized landscape metrics to quantify the resulting urban dynamic patterns. 

CA-Markov was incorporated to project 2031 future growth to understand where urban 

development is projected to occur within El Paso county and analyze its’ projected landscape 

patterns. Urbanization demands an increase in resources, such as electricity, to meet the needs of 

a growing community. According to Plan El Paso, the sustainable energy goal consists of 

“promote behavioral changes and consumption pattern that conserve energy…” (City of El Paso 

2012). Due to data availability, this study focused on El Paso’s urban dynamic patterns impact 

on electricity consumption, a secondary source of energy, within El Paso’s fastest-growing areas 

within the last 15 years (2001-2016). Lessons learned from this relationship will provide 

decision-makers, urban planners, and residents a statistical basis for making informed decisions 

on how to expand El Paso to provide the optimum quality of life for the residents. This study is 

an example for urban areas, like El Paso, which possess constraints that influence urban growth 

patterns, and how these areas impact electricity consumption. El Paso is also a case study for 

cities who exhibit growth within specific regions of the city and wish to have an understanding 

of the growth characteristics.   

1.4 Organization 

This dissertation begins with the literature review of topics such as the application of 

remote sensing in understanding urban development, landscape metrics for dynamic urban 

growth patterns, predictions of land-use, and the relationship between electricity consumption 
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and urban growth. The methodology adopted and data collection for this study are discussed in 

Chapter 3. This chapter discusses the location of the study area, land-use change analysis 

implemented along with the landscape matrices utilized, land-use prediction for 2026, and the 

role of electricity consumption in urban growth. Chapter 4 discusses the results of the analysis, 

including the change analysis, the accuracy of the data utilized in the study, landscape matrices 

and their findings, future prediction of land-use for 2026, and the relationship between urban 

patterns and electricity consumption. A summary of the study, concluding remarks, limitations, 

and recommendations are presented in Chapter 5 of this dissertation.  
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Chapter 2: Literature Review 

2.1 Background 

The world’s population is estimated to grow by approximately one billion people within 

the next decade, reaching 8.5 billion by 2030 (United Nations 2017). According to the United 

Nations, 3.5 billion people, half of the world’s population, currently reside within cities and is 

expected to increase to 5 billion by the year 2030 (United Nations 2016). This results in “60% of 

the world’s population will live in cities by 2030 (United Nations n.d.).” The term “cities” is 

commonly referred to as incorporated areas that have legal jurisdiction to conduct governmental 

activities, such as collecting taxes, within “legally defined geographic boundaries” (U. C. Bureau 

2015). The U.S. Census Bureau defines urban areas as “a cluster of densely settled census blocks 

that together have a population of at least 2,500 people” (U. C. Bureau 2015). Thus, the term 

“urbanization” refers to the spatial distribution of former rural areas into urban, built 

environments (United Nations 2018). In 1990, the U.S. possessed 86 cities with a population of 

300,000 or more. The number of cities grew to 144 in 2018 and is projected to contain 158 cities 

with a population of 300,000 or more in 2030 (United Nations 2018). Within the past eight years 

(2010 – 2018), the United States has experienced an approximate 6% population increase, with 

Texas ranked first in population growth at nearly 3.6 million people added (U. C. Bureau 2015). 

In 2001, 79% of the US population lived in urban areas. The percentage increased to 82% in 

2016 and is projected to increase to 85% by 2031 within the US (United Nations 2018). 

Metropolitan areas are designated by the U.S. Office of Management and Budget, and may 

consist of one or several counties, an urban center of a minimum of 50,000 people, and may 

include additional cities that rely on the urban center for their economic and social benefits (U. 

C. Bureau 2015). Cities are the center of economic prosperity and advancement opportunities. As 
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a result, population growth is considered an indicator of projected city growth to accommodate 

the needs of residences such as drinking water and wastewater, transportation, and housing. As 

cities continue to expand, it is vital to plan and manage expansion wisely and not randomly. El 

Paso County is expected to reach a population of over 1 million by 2030, which has continuously 

expanded outward since 1873 (City of El Paso 2012). Understanding past and future urban 

growth and their patterns are vital in planning and designing sustainable and efficient future 

development. To ensure a sustainable environment, consideration of energy efficiency within 

new development is a priority under the Energy goal in Plan El Paso. Meeting the energy needs 

for the present without compromising future El Pasoan’s resources, is the goal of understanding 

the relationship between urban growth and electricity consumption. Providing an analysis of past 

and future land-use within the region, and how these patterns affect energy consumption will 

provide decision-makers and stakeholders vital information to make informed and sustainable 

decisions.  

2.2. Understanding Urban Development Utilizing Remote Sensing 

As a result of city expansion, land cover is rapidly changing to accommodate the needs of 

a growing population (Tv, Aithal, and Sanna 2012). Urbanization incorporates land cover and 

land-use change in and around metropolitan areas. Land cover pertains to the current land 

features (Sudhira, Ramachandra, and Jagadish 2004; Tv, Aithal, and Sanna 2012), which can 

include the natural environment (Chen Liping, Sun Yujun, and Saeed 2018), while land-use 

relates to human dwellings and resulting modification of land cover (Chen Liping, Sun Yujun, 

and Saeed 2018; Sudhira, Ramachandra, and Jagadish 2004; Tv, Aithal, and Sanna 2012). Land-

use and land cover (LULC) change refers to the transformation of one land classification to 

another. This transformation occurs during urbanization when the native land cover is 



7 

transformed to built-up urban areas. Urbanization is the fastest growing classification of land-use 

(United Nations 2016). Synonymous with impervious surface cover, urbanization includes road, 

residential/commercial buildings, and structures. LULC change of cities exhibits various growth 

patterns and size over time. This spatial-temporal relationship has played a critical role in 

monitoring and mapping urbanization trends. The tools used in analyzing and understanding 

spatial-temporal trends are Remote Sensing (RS) and Geographic Information Systems (GIS). 

The coupled relationship between RS and GIS application has been well-documented for its 

effective use in mapping and analyzing urban development. This relationship incorporates 

satellite imagery to perform LULC changes and ultimately a change detection analysis (Aburas 

et al. 2017). Change detection analysis provides both, a visual and quantitative analysis, as to the 

amount of change that has occurred over a specified length of time. It is primarily used to 

measure, monitor, and evaluate LULC changes that have occurred within a study area (Aburas et 

al. 2017). The stages of change detection analysis are data acquisition and processing, accuracy 

assessment, mapping, and identifying occurrences of change (Aburas et al. 2017; Alkan et al. 

2013; Suribabu, Bhaskar, and Neelakantan 2012). Data acquisition is dependent upon the desired 

study and availability of data.  

An error matrix and kappa index are popular accuracy assessments conducted for 

verification of data. Various maps are then created to identify and analyze land-use change. The 

final product consists of maps and statistical information to provide a visual and quantitative 

understanding of land-use change (Aburas et al. 2017). Change detection analysis is vital in 

understanding the characteristics and processes of city growth.  

 



8 

2.2.1 Urban Development Analysis within Arid Regions/El Paso 

Earlier research studies have been conducted to understand urban dynamics for 

metropolitan areas centered within wooded or agricultural rich regions within the United States 

(US), including Washington, D.C. – Baltimore and Minneapolis-St. Paul (Sexton et al. 2013; 

Yuan et al. 2005). These studies discuss the effects of urbanization on deforestation and 

farmlands. On the contrary, for arid urban environments, research has incorporated Phoenix, AZ 

as a study area , where the region is used for a proposed expert land cover classification system 

(Stefanov, Ramsey, and Christensen 2001). Phoenix Metropolitan area has also been the study 

area to examine possible land fragmentation due to rapid urban growth, and examine the 

accuracy of land cover data by the National Land Cover Database (Shrestha et al. 2012). A 

comparison of spatiotemporal patterns among Phoenix, AZ and Las Vegas, NV was conducted to 

compare growth patterns of the vastly growing urban areas (Wu et al. 2011). Urban growth 

patterns have focused included Tucson, AZ to measure the effects of urbanization (DiBari 2007).          

El Paso, Texas is one such city located within an arid environment. Numerous research 

articles have included a discussion of El Paso’s growth using remote sensing. However, these 

articles focus on a larger study region which includes the entire El Paso Del Norte Region. Few 

urban dynamic studies focused solely on the City of El Paso to provide an extensive 

understanding of its’ spatiotemporal patterns and drivers. Remote sensing technology has been 

utilized for analyzing critical areas within El Paso-Juarez for flood control as a result of the 

extreme weather events (such that occurred in 2006 (Barud-Zubillaga 2011)), evaluating extreme 

rainfall scenarios and subsequent runoff due to land-use change and studying its’ impact on 

watersheds within El Paso (Neelam 2018). Studies also incorporated remote sensing to analyze 

air pollutants within the region (Mahmud 2016), nighttime urban heat retention and subsequent 

health effects within El Paso (Amaya et al. 2016), and land-use change effects on the ecosystem 

(Miyazono, Patiño, and Taylor 2015). Land-use change analysis was conducted for the Middle 

Rio Grande Basin along a 16km swath of either side of the Rio Grande River, which includes 
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portions of El Paso-Ciudad Juarez. Ciudad Juarez is located directly adjacent to El Paso, 

separated only by the Rio Grande River. Mubako et al. discussed the spatiotemporal changes 

occurring over a period of 25-years (1990 – 2015) for water resource and policy management 

(Mubako et al. 2018). Everett included portions of El Paso in land-use change analysis and its’ 

impact on the Native American community of Ysleta del Sur Pueblo’s culture (Everett 2016).   

 

2.2.2 National Land Cover Database (NLCD) 

The National Land Cover Database (NLCD) is a result of a collaboration among federal 

agencies (Multi-Resolution Land Characteristics Consortium) and was the pioneer in providing 

consistent land cover information for the conterminous United States utilizing Landsat imagery 

(Wickham et al. 2014; Shrestha et al. 2012). The most recent version of NLCD is the 2016 

product suite, which covers a 15-year period from 2001 – 2016 (2001, 2004, 2006, 2008, 2011, 

2013, 2016) for the Continental United States (CONUS) using categorical land cover 

information. The suite was developed based on four extensive mapping techniques which 

include: spectral signatures, time-dependent spectral succession and trajectory patterns, spectral 

patch shape, and ancillary data (Homer et al. 2020). This more comprehensive method updates 

previous NLCD releases and allows a comparison of land cover data among the time periods 

provided (Homer et al. 2020).  

The NLCD 2016 provides 30m revolution images with eight class categories for CONUS 

(MRLC 2016). Within each class category, the categories are further divided into classification 

descriptions. The developed class category consists of four classification descriptions based on 

varying impervious surface percentages (Table 2.1). The remaining categories pertain to non-

impervious areas, such as water, barren land, forest, and shrubland. The NLCD 2016 classes and 

descriptions allow for the creation of land-use maps, which provide a visual interpretation of 

land-use for regions of interest.  
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Table 2.1: NLCD 2016 Land Cover Classification 

Class Description 

Water 
Open Water: < 25% of vegetation or soil 

Perennial Ice/Snow: > 25% of ice and/or snow 

Developed 

Developed, Open Space: < 20% impervious surface 

Developed, Low Intensity: 20% - 49% impervious surface 

Developed, Medium Intensity: 50% - 70% impervious surface 

Developed, High Intensity: 80% - 100% impervious surface 

Barren Barren Land: < 15% vegetation 

Forest 

Deciduous Forest: > 20% vegetation, > 75% of trees shed leaves 

seasonally 

Evergreen Forest: > 20% vegetation, > 75% of trees maintain leaves 

yearly 

Mixed Forest: > 20% vegetation, neither deciduous/evergreen > 75% 

Shrubland 
Dwarf Scrub: > 20% shrub, < 20 cm tall shrubs 

Shrub/Scrub: > 20% shrub, < 5 m tall shrub 

Herbaceous 

Grassland/Herbaceous: gramanoid/herbaceous vegetation > 80%  

Sedge/Herbaceous: sedges/forbs > 80% 

Lichens: fruticose/foliose lichens > 80% 

Moss: > 80% moss 

Planted/Cultivated 
Pasture/Hay: > 20% pasture/hay vegetation 

Cultivated Crops: > 20% crop vegetation 

Wetlands 

Woody Wetlands: > 20% forest/shrubland, soil/substrate 

saturated/covered with water 

Emergent Herbaceous Wetlands: > 80% perennial herbaceous, 

soil/substrate saturated/covered with water 

 

The NLCD 2016 suite is the most accurate release in NLCD history (Homer et al. 2020) 

and has been used extensively to study urbanization (Shrestha et al. 2012; Bounoua et al. 2018; 

Kew and Lee 2013). However, an argument has been posed to question past versions of NLCD 

reliability in forest areas where satellite imagery does not detect minor development (Irwin and 

Bockstael 2007). Shrestha, et al. 2012 found that the NLCD, in particular 2001 NLCD, was 

“very accurate” for assessing developed areas in the treeless desert region of Phoenix, due to the 

lack of satellite obstruction from the treeless environment (Shrestha et al. 2012). It was 
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recommended that NLCD be used in analyzing urban dynamics in desert environments to save 

time and resources (Shrestha et al. 2012).      

 

2.2.3 Classification Accuracy Assessment 

An imperative step in developing land-use maps is determining the accuracy of the maps. 

This process begins by creating ground-referenced random points of the subject area and 

determining the classification of each point using Google Earth images. The ground-referenced 

points are then matched and compared to the land-use classified image. The amount of 

“matches” and “mismatches” are utilized in an error matrix (confusion matrix), which includes 

various probability terms that describe the performance of the classification data (Table 2.2) 

(Keranen and Kolvoord 2014; Mubako et al. 2018).  

Table 2.2: Error Matrix  

 

Actual Category: Ground 

Truth 
Total 

Errors of 

Commission 

User's 

Accuracy Classified 

Category (0) Developed 

(1) 

Barren 

(0) Developed TD FD 

(TD+F

D) FD/(TD+FD) TD/(TD+FD) 

(1) Barren FB TB 

(FB+T

B) FB/(FB+TB) TB/(FB+TB) 

Total (TD+FB) (FD+TB) 

Grand 

Total* 

(TD+TB)/Grand 

Total 

Overall 

Accuracy 

Errors of 

Omission FB/(TD+FB) 

FD/(FD+T

B)  
Producer's 

Accuracy TD/(TD+FB) 

TB/(FD+T

B)  
 

The terms utilized in the error matrix are described as the following: 

• True Developed (TD): The classification map states it's developed, and it is a developed 

area. 

• False Developed (FD): The classification map states it's developed, and it is not a 

developed area. 

• True Barren (TB): The classification map states it's barren, and it is a barren area. 
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• False Barren (FB): The classification map states it's barren, and it is not a barren area. 

• Errors of Commission: Probability that the category is identified, actual conditions state it 

does not exist (the map says “it is, and it isn’t”). 

• User's Accuracy: Probability of correct classification in comparison to actual conditions. 

• Errors of Omission: Probability that the category is omitted from the correct class (the 

map says “it isn’t, and it is”). 

• Producer's Accuracy: Probability of a correctly assigned classification to the correct 

class. 

• Overall Accuracy: Probability of overall correct classification. 

 

The column information relates to the pixel classification in relation to the ground truth. 

The rows indicate the pixel classification in relation to their assigned class. The producer’s 

accuracy provides insight for the creator of the classified map, as it relates to the probability that 

a land use type is classified correctly. Its’ complement metric is error of omissions. Whereas, the 

user’s accuracy relates to the probability of the classification to the actual site conditions, and is 

essential for map users (Rwanga and Ndambuki 2017). Thus, its’ complement is errors of 

commission. Both producer’s and user’s accuracy are essential in understanding the validity of 

the data (Congalton 1991). The overall accuracy provides insight into the validation of the entire 

data set.    

In land-use research, the error matrix also includes the Kappa coefficient. The Kappa 

coefficient (herein Kappa) is used extensively for accuracy assessment in various research 

subjects, including medical, psychology, and remote sensing to understand data accuracy 

(Stehman 1996; TANG et al. 2015; Viera and Garrett 2005). Kappa provides an understanding of 

the classified data compared to the classification by chance. The Kappa coefficient calculates the 

difference between observed agreement and expected agreement. The observed agreement, or 

overall agreement; represents the number of instances that are correctly classified. Whereas, 

expected agreement considers the correctly classified instances based on chance (Foody 2020; 

Viera and Garrett 2005).  
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The following provides the general Kappa coefficient equation: 

        (2.1) 

           

Where the observed agreement,  = observed agreement and  = expected agreement 

A suggested agreement range to assist in interpreting the Kappa coefficient results, is depicted in 

Table 2.3 (Landis and Koch 1977; Viera and Garrett 2005): 

Table 2.3: Kappa coefficient agreement range 

 

Kappa Statistic Strength of Agreement 

< 0% Less than chance 

0% – 20% Slight 

21% – 40% Fair 

41% - 60% Moderate 

61% - 80% Substantial 

81% - 100% Almost Perfect 

 

Although the Kappa coefficient has been used extensively in remote sensing applications, 

recently a call to abolish the use of Kappa for remote sensing applications has gained 

momentum. The argument centers around Kappa’s focus on agreement beyond chance. Rather 

than the accuracy of the data. Kappa is also hard to interpret, even with the use of the suggested 

ranges outlined in Table 1. With highly favorable overall accuracy results, the Kappa can vary 

significantly. Instead, the assessment of each class should be considered such as the producer’s 

and user’s accuracy along with the error matrix is suggested (Foody 2020).  

2.3 Landscape Metrics 

Landscape metrics enhance the change detection analysis by providing an effective 

means to quantify spatiotemporal patterns of the urban landscape (Tv, Aithal, and Sanna 2012). 

Landscape metrics also provide a quantifiable understanding of urban sprawl. Urban sprawl 
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typically occurs on the outskirts of a city, where urban growth is sporadic and not properly 

planned. Landscape metrics provide an understanding of growth attributes; such as shape, 

complexity, aggregation, and diversity of growth (Tv, Aithal, and Sanna 2012) through the use of 

size, shape, and patches as a result of remote sensing (Shrestha et al. 2012). Research suggests 

that a few selected landscape metrics are capable to successfully explain the spatiotemporal 

characteristics of urbanization (Wu et al. 2011). Specific metrics utilized include patch density, 

number of patches, and class area (Shrestha et al. 2012; Wu et al. 2011; Flores 2008). Landscape 

metrics are typically used for entire city areas. This includes analyzing landscape metrics at 

differing spatial resolutions (Wu et al. 2011) and concentric circles with an increasing specific 

distance surrounding the study area ((Tv, Aithal, and Sanna 2012). However, limited research 

has been conducted on comparing the landscape metrics of the entire city to specific districts 

within the city that have illustrated the most growth.  

Utilizing landscape metrics for the El Paso regions includes past research for Las Cruces, 

NM and Ciudad Juarez, Mexico, where fragmentation patterns due to urban expansion were 

investigated (Flores 2008; York et al. 2011). However, limited research has been conducted to 

understand the urban dynamics of El Paso using landscape metrics.   

2.3.1 FRAGSTATS Landscape Metrics Model 

FRAGSTATS is a popular computer software program that generates landscape metrics 

and was developed in 1995 by Dr. Kevin McGarigal and Barbara Marks of Oregon State 

University (McGarigal and Marks 1995). The program has undertaken several upgrades and 

currently is compatible with ArcGIS. FRAGSTATS has been used extensively in research as a 

tool in determining the landscape metrics for various study areas around the world. Past research 

study areas using FRAGSTATS include India, Canada, and China  (Cumming and Vernier, n.d.; 
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X. Li et al. 2001; Midha and Mathur 2010). A comparison of landscape metrics of Phoenix, AZ 

and Las Vegas, NV, and spatiotemporal pattern analysis studies have been performed for Austin 

TX and Phoenix Metropolitan Area using the program (Kim et al. 2018; Shrestha et al. 2012). 

FRAGSTATS is a preferred tool in measuring urban dynamics.   

2.4 Future Land-use 

Predicting future land-use cover is an additional but critical aspect in analyzing 

urbanization in order to make informed decisions today to ensure an optimal future living 

environment for residents and the environment. Plan El Paso Comprehensive Plan discusses a 

“Future Land-use Map”, Figure 1, which depicts areas that are available for immediate urban 

expansion and potential annexation areas that are deemed not necessary immediately but are 

available if needed (City of El Paso 2012). The areas available for immediate growth are 

designated O-7 Urban Expansion and are Areas 1 – 3 in Figure 2.1. These areas are ideal for 

immediate expansion as the areas are owned by the City itself, within city limits, and the city can 

decipher when and how the expansion will occur through the use of municipal services, zoning, 

and subdivision of land (City of El Paso 2012). Area 1 is located west of the Franklin Mountains, 

Area 2 is east of the Franklin Mountains, and Area 3 is adjacent to the military and industrial 

areas.  

Potential annexation areas are located far east of El Paso city. The city has limited 

authority over areas outside the city boundary and would require annexation to have full control. 

This option is less favorable than encouraging growth within the city limits, due to the expense 

of providing necessities such as roads and utilizes and competitive interest in the land from other 

cities, governments, and stakeholders. However, annexed areas would be subject to municipal 

services, zoning, and subdivision of land along with collecting required city taxes. Providing a 

statistical basis for predicting future land-use, is critical in providing decision-makers with an 

understanding of the areas projected urban growth patterns.  
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Figure 2.1: Future Land-use Map (City of El Paso 2012) 

.  

2.4.1 CA-Markov Model 

Predicting future land-use has been used extensively in the past 15 years (Aburas et al. 

2016) for urban development planning and management using the CA-Markov model (Chen 

Liping, Sun Yujun, and Saeed 2018; Jokar Arsanjani et al. 2013; Tang and Di 2019; Rimal et al. 

2017). CA-Markov is a hybrid model that incorporates past spatial and temporal trends to predict 

future projections. CA (cellular automata) is limited due to its’ inability to consider outside 

factors such as, physical and socioeconomic factors (Aburas et al. 2016). Therefore, a 

quantitative system must be included such as Markov Chain model. The probability model, 
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Markov Chain model, is used extensively in analyzing land-use change due to its’ stochastic 

process of predicting the probability of change from one state to another using the preceding 

state conditions (Subedi, Subedi, and Thapa 2013; Chen Liping, Sun Yujun, and Saeed 2018; 

Taha 2007). The analysis is conducted for a specific time period, with the start time as the 

baseline and is discrete in time and state. The Markov model is based on transition probability 

(Fu, Wang, and Yang 2018). Thus, it results in a transition probability matrix, which describes 

the probability of a state transitioning into another in matrix form. The following illustrates the 

Markov Chain probability matrix:  

 

       (2.2)    

 

 
 

 
 

 

P =  

 

 

 

 

 
 

Along with the Markov probability matrix, suitability maps are also implemented in the 

CA-Markov model. Suitability maps illustrate the probability of a cells’ transition by utilizing 

transition rules for each land-use class. Transition rules incorporate socio-economic and/or 

physical factors’ influence on land-use change through the use of multi-criteria evaluation 

(MCE) (Subedi, Subedi, and Thapa 2013). MCE combines transition rules for constraints and 
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factors to form a single index accurately predict land-use change (Chen Liping, Sun Yujun, and 

Saeed 2018). Constraints do not allow class expansion, while factors provide a probability of 

class expansion typically based on distance (Chen Liping, Sun Yujun, and Saeed 2018). The 

result of the MCE analysis is presented as suitability maps.  

The Markov transition probability matrix along with suitability maps are then applied in 

the CA-Markov model where spatial relations among states are analyzed. Cellular Automata 

(CA) considers discrete spatial and time configurations for complex arrangements. Therefore, the 

study time period is incorporated, along with the state of neighboring cells. The hybrid model is 

expressed as follows (Fu, Wang, and Yang 2018): 

 

        (2.3)    

 

 

 

 

 

 

 

 

CA is an iterative process that is composed of cells, each cell changes/maintains a state at 

each time iteration based on rules provided by the transition probability matrix and area, and can 

be utilized from the simplest of patterns to complex algorithmic problems (Berto and Tagliabue 

2017). As a result, cells within close proximity to existing areas possess an increase in transition 

probability resulting in land-use changes (Fu, Wang, and Yang 2018). The CA-Markov output 

provides a projected land cover map of the time period in question.  

The advantage of the hybrid CA-Markov model is that the Markov Chain model 

considers the change of a cell from one point in time to another. However, the influence of the 
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neighboring cells is not considered. Whereas the CA model does consider the state of the 

surrounding cells. The state of the neighboring cells influences the potential for a cell change in 

state (Jokar Arsanjani et al. 2013). The disadvantage of the CA-Markov model is the lack of 

integrating socio-economic influence within the expansion scenario. However, integration of 

models such as fuzzy logic, logistic regression, and multiple criteria evaluation allows the 

inclusion of socio-economic factors such as population and income. These methods incorporate 

weighted factors from historical data, policies, surveys, and literature review  (Fu, Wang, and 

Yang 2018; 2018) 

Once the results are provided, a verification of the CA-Markov model output is 

conducted. This process follows the same procedure outlined in Section 2.2.3 Classification 

Accuracy Assessment. The CA-Markov model is used to predict the land-use of a time period 

with reference data. The predicted results are compared to the reference data for validation using 

the accuracy assessment procedure. If the accuracy assessment is acceptable, the projection of 

future land-use is predicted (Chen Liping, Sun Yujun, and Saeed 2018; Rimal et al. 2017; Jokar 

Arsanjani et al. 2013).  

 

2.4.2 TerrSet Geospatial Monitoring and Modeling System 

TerrSet is a software package possessing a wide range of monitoring and modeling 

applications using geospatial data. One of the popular applications is IDRISI GIS Analysis 

Tools. IDRISI possesses a variety of statistical analysis tools that incorporate raster data, which 

is the matrix cell formation that results in land-use maps. One of the analytical tools within 

IDRISI is the CA-Markov tool. The CA-Markov tool has been used extensively in land-use 

prediction (Subedi, Subedi, and Thapa 2013; Rimal et al. 2017; Chen Liping, Sun Yujun, and 

Saeed 2018; Wang, Zheng, and Zang 2012; Fu, Wang, and Yang 2018). This analytical tool can 

and has been used to understand what future landscapes will exhibit to implement policies, 

environmental constraints, and utilize in urban development planning.   
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2.5 Electricity Consumption and Urban Development 

Globally, cities contribute to 70% of energy use and an average of 45% of greenhouse 

gas emissions (United Nations 2015). For energy consumption within the U.S., 40% is attributed 

to residential and commercial sectors (US Energy Information Administration 2019). Thus, as 

urban growth continues, the demand for energy will increase to meet the communities’ needs. 

Various socio-economical and physical attributes contribute to a society's energy use. Income, 

education, unemployment percentage are examples of socio-economical attributes (Abbasabadi 

et al. 2019), while travel distance, building characteristics, and land-use are physical attributes 

that contribute to energy consumption (Abbasabadi et al. 2019; Zhao, Thinh, and Li 2017). The 

relationship between urban form and energy consumption, in particular electricity, has been 

studied at various levels. The levels include neighborhood attributes including street 

configurations and tree shade (C. Li, Song, and Kaza 2018); to the city level where density and 

location were factors found to contribute to electricity consumption (Wilson 2013). While these 

relationships have been extensively studied, minimal research has been conducted to quantify the 

correlation between spatiotemporal information, utilizing landscape metric results, to energy 

consumption (Zhao, Thinh, and Li 2017). Zhao et al. (2017). These studies have indicated that 

urban growth and irregular patterns contribute to energy consumption (Zhao, Thinh, and Li 

2017). Therefore, it is imperative to examine the impact of urban dynamics on energy 

consumption to allow decision-makers and planners make informed decisions and policies for a 

sustainable community.  

Several studies have examined energy consumption, in particular electricity consumption, 

within El Paso, Texas. Electricity is a secondary source of energy, generated from renewable and 

nonrenewable sources (US Energy Information Administration 2020). Research for the El Paso 

area related to energy consumption has focused on building optimization (Moreno and Taboada 

2013), electricity consumption and economic factors (Fullerton Jr and Walke 2019; Fullerton and 

Walke 2018), and implementation of solar technology for water desalination (Delgado, Beach, 
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and Luzzadder-Beach 2020; Lu, C. Walton, and H.P. Swift 2001). Little is known about the 

relationship among El Paso’s landscape patterns and energy consumption, in particular electricity 

consumption.  

 

2.5.1 Panel Data Analysis 

Panel data analysis has been used for analyzing the relationship between landscape 

metrics and electricity consumption within urban environments (Zhao, Thinh, and Li 2017; Chen 

et al. 2011). The advantage of panel data is that it considers both time and space, as it analyzes a 

particular individual (cities, districts, companies) over various points in time. Panel data can be 

presented in a balanced or unbalanced panel form. The balanced panel indicates the individuals 

are observed over the same points in time. Whereas, unbalanced panel data possesses individuals 

with some observations over points in time. This study utilized balanced panel data. Panel 

analysis consists of three major regression models: pooled regression, variable intercepts and 

constant coefficients, and variable intercepts and variable coefficients models. An F-test is 

performed in order to determine which model is best fits the data. The pooled regression 

indicates that the additional random or fixed effects do not significantly affect the model. If the 

pool regression model is rejected, then a Hausman test is performed to determine if random or 

fixed effects should be considered. The selected model is then implemented to determine the 

metrics that exhibit a significant relationship with electricity consumption.    

 

2.6 Summary 

Urban growth has been widely examined using spatiotemporal technology of remote 

sensing and geographic information systems (GIS). The results obtained through these 

technologies provide an understanding of where the growth has transpired within a study area 

and to what extent. Resources, such as the National Land Cover Database (NLCD), provide land-

cover and land-use information, for the United States, for use in understanding urban dynamic 
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trends. Patterns exhibited within the change of urban dynamics can be quantified using landscape 

metrics. FRAGSTATS has been the preferred program to perform the landscape metrics for 

research studies. Understanding past land-use patterns of growth provide a basis for predicting 

future land-use. TerrSet Geospatial Monitoring and Modeling System is utilized to incorporate 

the statistical CA-Markov model which incorporates past spatial and temporal attributes in 

predicting future land-use for a study area. As urban areas continue to grow, electricity 

consumption will inevitably increase. This relationship between landscape patterns and 

electricity consumption will provide decision-makers, planners, and residents with a statistical-

based methodology to make informed decisions, policies, and urban planning procedures for a 

sustainable community.  
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Chapter 3: Data and Methodology 

This research provides a comprehensive analysis of past and future urban growth trends, 

landscape metrics to quantify growth patterns, and the relationship between urban patterns and 

electricity consumption. The methodology adopted for this research is depicted in Figure 3.1. 

The methodology is discussed in detail later in this chapter.   
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Figure 3.1: Workflow diagram for research methodology 
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3.1 Geographical Location 

El Paso County is located at the westernmost point of Texas and borders the state of New 

Mexico and the country of Mexico. It lies within the largest desert region in North America, the 

Chihuahuan Desert. The region is comprised of a variety of features including the Rio Grande 

River, desert shrublands, and the largest urban national park, Franklin Mountains State Park, at 

approximately 104 km2 (Fig 3.2). Though the area resides within the largest desert region in 

North America, the Chihuahuan Desert, the area includes agricultural farmland of various crops 

including cotton, pecans, and hay (United States Department of Agriculture 2017), as a result of 

irrigation from the Rio Grande. Several U.S. military reservations are also located within El Paso 

County. The reservations include the main post of the countries’ second-largest U.S. Army base - 

Fort Bliss, Castner Range, and Biggs Army Airfield (“Fort Bliss, TX (TEXAS)” 2018). El Paso 

County was home to more than 840 thousand people in 2018, with the population estimated to 

increase to over 952,000 by 2020 (Texas Department of State Health Services 2014; U.S. Census 

Bureau 2019). The county consists of several minor cities and towns including Horizon City, 

Socorro, Clint, Vinton, and Anthony. City of El Paso (hereafter El Paso) is by far the largest 

populous city in the county and was ranked 22nd among the most populous cities in the nation by  

2018 (U. S. C. Bureau 2019) with an estimated population of over 683 thousand. El Paso 

accounted for 70% of the county’ population in 2018 (U. S. C. Bureau 2019).  

Unlike many other cities that are able to expand in various directions around urban 

centers, such as Phoenix and Las Vegas, El Paso’s growth is restricted due to several jurisdiction 

entities. The jurisdictions include a country (Mexico) and states (New Mexico and Chihuahua, 

Mexico) that lie adjacent to the study area. This uniqueness adds to the complexity and interest 

of understanding the growth patterns of not only an urbanized area located within a desert region 
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but the second-largest US-Mexico border city next to San Diego, CA. El Paso wraps around the 

southern tip of the Franklin Mountains and extends along the west and east side of the mountain. 

On the eastern side of the mountain, the city can expand northward and eastward. However, new 

development is limited on the western side as the boundaries to Mexico and New Mexico are in 

close proximity. The city is comprised of eight representative districts. Each district elects a 

representative to reside on the City Council for administering/amending the cities legislative 

duties, including budgets, taxes, policies, and ordinances. 

Figure 3.2: El Paso County and surrounding area 

 

3.2 Land-Use Change Analysis 

Land-use change analysis provides information on the growth or decline in land-use 

utilizing a combination of remote sensing and data management (Figure 3.3).  
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Figure 3.3: Land-use change analysis methodology 

 

Applying georeferenced imagery from remote sensing, land-use maps are created to 

provide a visual representation of land-use within an area of interest. Viewing land-use maps 

over a desired time period, changes in land-use can be viewed through visual inspection. The 

maps also incorporate a database management system, which allows cell count of specified 

classes or categories, queries, and calculations in order to analyze data. Analyzing land-use maps 

and its’ data over time provides insight into land-use changes. The focus of this study is on urban 

development changes within the El Paso region. Therefore, the land-use maps generated focus on 

the urban development that has transpired during 2001 – 2016.  
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3.2.1 National Land Cover Database 

This study focuses on the NLCD developed class as an entirety and as individual sub-

categories (Table 3.1) utilizing the NLCD 2016 suite of land cover data. Whereas, the remaining 

classes are combined into an “undeveloped” class due to their lack of inclusion of impervious 

surface.   

Table 3.1: Land Cover Classification for Study 

Class Descriptions 

D
ev

el
o

p
ed

 Developed, Open Space: < 20% impervious surface 

Developed, Low Intensity: 20% - 49% impervious surface 

Developed, Medium Intensity: 50% - 70% impervious surface 

Developed, High Intensity: 80% - 100% impervious surface 

U
n
d
ev

el
o
p
ed

 (
B

ar
re

n
) 

Barren Barren Land: < 15% vegetation 

Forest 

Deciduous Forest: > 20% vegetation, > 75% of trees shed leaves 

seasonally 

Evergreen Forest: > 20% vegetation, > 75% of trees maintain leaves 

yearly 

Mixed Forest: > 20% vegetation, neither deciduous/evergreen > 

75% 

Shrubland 
Dwarf Scrub: > 20% shrub, < 20 cm tall shrubs 

Shrub/Scrub: > 20% shrub, < 5 m tall shrub 

Herbaceous 

Grassland/Herbaceous: gramanoid/herbaceous vegetation > 80%  

Sedge/Herbaceous: sedges/forbs > 80% 

Lichens: fruticose/foliose lichens > 80% 

Moss: > 80% moss 

Planted/Cultivated 
Pasture/Hay: > 20% pasture/hay vegetation 

Cultivated Crops: > 20% crop vegetation 

Wetlands 

Woody Wetlands: > 20% forest/shrubland, soil/substrate 

saturated/covered with water 

Emergent Herbaceous Wetlands: > 80% perennial herbaceous, 

soil/substrate saturated/covered with water 

Water 
Open Water: < 25% of vegetation or soil 

Perennial Ice/Snow: > 25% of ice and/or snow 
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3.2.2 Classification Accuracy Assessment 

An accuracy assessment of the classified maps is an essential process in change detection. 

This process incorporates ground-referenced random points of the subject area and comparing 

them to the classification of each point using Google Earth images. This study utilized 300 

random points for the county and 150 random points for the city level assessment (Fig 3.4). 

Congalton (1991) suggests a minimum of 50 random points per class (Congalton 1991). At the 

county level, the developed class random points ranged from 53 (2006) to 62 (2016); and 237 

(2016) to 246 (2006) for the barren class. The number of random points varied from 73 (2001) to 

96 (2016) for the developed class, and 54 (2016) to 77 (2001) for the barren class at the city 

level. The amount of random points for the developed category at the county and city level 

reflects the proportion of developed areas at these levels. Between 2001 and 2016, the developed 

area averages 22% at the county level and roughly 60% at the city level. The comparison of the 

random points between the ground reference data and the classification images are incorporated 

into an error matrix to provide an understanding of the accuracy of the data.  

 

Figure 3.4: 2001 Random Points for County (left) and city of El Paso (right) 
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3.2.3 El Paso Land-Use Maps 

Once the accuracy of land-use maps is assessed and deemed acceptable to utilize, the 

percentage of development growth was analyzed at the county level. The assessment includes 

determining where the majority of the developed growth took place within the county during the 

study period (2001-2016). This area is further analyzed to delineate regions of development at a 

smaller scale (Fig 3.5). This analysis is conducted through the use of land-use maps generated in 

ArcGIS utilizing the NLCD data.  

 

Figure 3.5: Analyzing developed areas within the El Paso region. 

 

To measure the developed growth and determine the areas where the majority of the 

growth occurred, the percentage change in development was utilized.  

    (3.1) 
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3.3 Dynamic Growth Pattern Analysis  

Dynamic growth pattern analysis is conducted by incorporating land-use maps to calculate 

landscape metrics (Figure 3.6).  

 

Figure 3.6: Dynamic growth pattern analysis methodology 

 

FRAGSTATS has been used extensively to determine the landscape metrics of urban 

spatiotemporal dynamics in research (Kim et al. 2018; Megahed et al. 2015; Shrestha et al. 2012; 

Wu et al. 2011). FRAGSTATS 4.2 software was utilized to analyze class and landscape metrics 

for the top 3 districts (Districts 5, 1, and 4) with the most urban growth within El Paso during 

2001 - 2016. A minimal amount of landscape metrics can demonstrate the urban dynamic 

behavior within a study area (Wu et al. 2011). Six metrics were utilized for the class level and 

four metrics for the landscape level to further understand the urban dynamics (Table 3.2). The 

class metrics (PLAND, AREA_MN, ED, LSI, NP, and PD) focuses on the developed land-use 
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type, as this class is the focus of this study. The comprehensive developed class was first 

analyzed, followed by the NLCD developed sub-categories. The landscape metrics (LPI, PD, 

SHDI, and CONT) pertains to the dynamics with respect to the entire landscape within each 

district. Patch is a term used extensively in landscape metrics and refers to the cluster of joining 

cells with the same land-use type (Turner and Gardner 2015).  

Table 3.2: Description of landscape metrics 

Metric 

Type 

Metric Acronym Range Units Description 

Class Percentage of 

Landscape 

PLAND 0 < PLAND 

≤ 100 

% Percentage of a 

specific class area 

within data 

Class Number of 

Patches 

NP NP ≥ 1 Dimensionless Number of 

patches within the 

landscape 

Class Mean Patch 

Area 

AREA_MN AREA_MN 

> 0 

m2 Sum of all patch 

areas for specific 

patch type, 

divided by the 

number of patches 

of the same type.  

Class Edge Density ED ED ≥ 0 m/ha Total length of 

edge segments per 

area for class or 

landscape  

Class, 

Landscape 

Landscape 

Shape Index 

LSI LSI ≥ 1 Dimensionless A standardized 

measure of edge 

density which 

adjusts for the 

size of the 

landscape.  

Class, 

Landscape 

Patch Density PD PD > 0 Number per 

100 hectares 

Indicates the 

number of patches 

per unit area of 

the landscape. 

Landscape Shannon's 

Diversity 

Index 

SHDI SHDI ≥ 0 Dimensionless Measures diverse 

landscapes. 

Landscape Contagion CONT 0 < 

CONTAG ≤ 

100 

% Indicates the class 

occupancies 

within the 

landscape. 
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3.4 Future Prediction of Land-use 

In this study, spatial and temporal trends of urban development are utilized to predict 

future land-use changes (Figure 3.7).  

 

Figure 3.7: Future prediction of land-use methodology 

 

IDRISI analysis package, in TerrSet software, incorporates CA-Markov statistical 

analysis to predict future land-use. El Paso Counties’ land-use classification was predicted for 

2031. Utilizing the urban area land-use maps, a Markov Chain model was developed utilizing a 

base year and a second time period land-use image. The number of time periods between the 

base and second time period is used as an input, along with the number of time periods beyond 

the second time period that is required to be projected. The results of the Markov model are 

presented as a transition matrix, which provides the probability of one state transitioning to 

another. Utilizing the basic scenario of two states, an example of the transition matrix of the 

probability of the developed class transitioning into the barren (undeveloped) class is 
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demonstrated in Table 3.3. As the number of states increases, the number of rows and columns 

also increase within the transition probability matrix dependent upon the data analyzed. 

Table 3.3: Transition matrix for developed and barren (undeveloped)  

Developed Undeveloped (Barren) 

Developed Probability that state 
Developed will remain at 

state Developed  

Probability that state 
Developed will transition to 

state Barren 

Undeveloped  
(Barren) 

Probability that state 
Barren will transition to 

state Developed 

Probability that state Barren 
will remain at state Barren 

 

Along with the Markov transition matrix, suitability maps are created for each land-use 

class to incorporate socio-economic and/or physical influences on land-use change. Utilizing 

transition rules, the criteria include constraints and factors of influence. Constraints are criteria 

that will not be suitable for change, and factors implement the probability of change. This study 

implemented two physical factors: 1) distance from developed areas and 2) distance from 

roadways due to the availability of data. While the constraint was the developed area. This 

implies that the existing developed area will remain developed and will not change from this 

class. Distance to existing urban areas are considered influencers for future urban growth 

(Subedi, Subedi, and Thapa 2013; Chen Liping, Sun Yujun, and Saeed 2018), and suggest fuzzy 

functions (linear and J-shaped) and control points. The weights of each factor were selected from 

a consensus of research for the multi-criteria evaluation (MCE) model (Rimal et al. 2017; 2017; 

Chen Liping, Sun Yujun, and Saeed 2018), as demonstrated in Table 3.4.  
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Table 3.4: Suitability map criteria 

Type Description Fuzzy Function Control Points Weight 

Factor Distance from 

roads 

J-shaped/Monotonically 

decreasing 

1-100m highest suitability 

100 – 9500m decreasing 

suitability 

0.42 

Factor Distance from 

the developed 

area 

Linear/Monotonically 

decreasing 

1-100m highest suitability 

100 – 8000m decreasing 

suitability 

0.58 

Constraint Developed 

area 

   

 

The results from the fuzzy function for the physical factors are demonstrated in Figure 

3.8. The maps depict the possibility of a cell changing to another class due to the influence of the 

factor. The closer a cell is to a physical factor, the higher the probability of it changing class.  

 

 

Figure 3.8: Fuzzy function results a) distance from developed areas b) distance from roads 

 

Typically, constraints such as roads, slope, construction, and water areas are considered 

constraints within the CA-Markov model. In this study, roads are classified as developed or sub-

category of developed. There are no existing water areas within the districts studied. The slope 

was not a factor as the Franklin Mounts State Park area was removed from the original data and 
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the vast majority of the districts are flat open areas. With the removal of constraints from the 

original data by extracting the military reservations and the Franklin Mountains State Park, 

development was free to expand into the remaining undeveloped (barren) areas within each 

district.  

The Markov transition probability matrix and suitability maps are then applied in the CA-

Markov model where spatial relations are among states that are analyzed. Additional inputs into 

the CA-Markov model is a base year land cover image and the number of iterations, which is 

dependent on the number of time periods the future period to be projected is. A 5x5 continuity 

filter type was also implemented in the model as demonstrated in Figure 3.9.  

 
 

Figure 3.9: 5 x 5 contiguity filter  

 

The continuity filter is a kernel that considers the state of neighboring cells as spatially 

explicit for weighing factors. This results in cells farther from a land-use class possessing less 

suitability than closer cells to transition into another state. The CA-Markov model uses the input 

information to run a series of iterations resulting in each cell assigned to a class based on the 

highest weighted suitability. The process is verified by analyzing and predicting a time period 

where data is known.  

The verification process follows the classification accuracy assessment procedure. The 

procedure uses the known NLCD data to compare to the prediction results. 1000 random points 

for both county and city levels were utilized (Fig 3.10). The developed class possessed 255 

random points at the county level and 667 at the city level. The barren (undeveloped) class 
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contained 743 random points at the county level and 331 at the city level. The amounts exceed 

the recommended 50 random points per class for accuracy assessment (Congalton 1991). The 

results of the comparison of the random points between the NLCD data and the predicted data 

are incorporated into an error matrix to understand the CA-Markov models’ accuracy.  

 

 

 

 

 

 

 

 

 

Figure 3.10: Random Points for County (left) and city of El Paso (right)  

 

3.5 Land-use Patterns and Electricity Consumption 

Landscape metrics provide a quantitative analysis of the urban landscape within a study 

area. In order to example the relationship between landscape metrics and their possible impacts 

on electricity consumptions, a panel data analysis is adopted (Figure 3.11).  
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Figure 3.11: Landscape metrics and electricity consumption methodology 

 

Panel data analysis consists of three models: pooled regression, variable intercepts and 

constant coefficients, and variable intercepts and variable coefficients models. Pooled regression 

is expressed as the following (Zhao, Thinh, and Li 2017; Brooks 2019): 

 

       
 

Where: 

 

` 

 

 

 

 

 

 
 

The variable intercepts and constant coefficients model pertain to both the fixed and 

random-effects models. Fixed-effects model applies to non-random sampling/selection panel 

data (Seddighi 2012), and assumes “the intercept αi, is uncorrelated with xit and a constant value 

for i” (Zhao, Thinh, and Li 2017; Hsaiao 2003). Whereas, random-effects model applies to 
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random sampling/selection data (Seddighi 2012) where “αi is affected by xit [and] αi involves not 

only a constant but also a random term caused by xit” (Zhao, Thinh, and Li 2017; Hsaiao 2003). 

The fixed/random-effects model is expressed as: 

 

       
 

Where: 

 

 

 

 

 

 

 

 
 

The third model indicates coefficients may vary among individuals: 

 

       
 

Where: 

 

 

 

 

 

 

 

An F-test is first conducted in order to verify which model to incorporate. The hypothesis 

states: 
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 Where H1 refers to the pooled regression model, where intercepts and coefficients are 

constant for individuals and time. H2 states intercepts are variable and coefficients are constant. 

If H1 is accepted, then the pooled regression model is incorporated. If H2 is accepted, intercepts 

are variable and coefficients are constant (Chen et al. 2011; Hsaiao 2003). The Hausman test is 

then implemented to indicate whether the fixed or random model is implemented.  

The panel data analysis is limited to the number of time series observations, t is at least as 

large as the total number of independent variables, indicating that t ≥ k +1. For this study the 

number of time periods, t = 2 and the number of independent variables, k = 6. Therefore, a single 

independent variable must be analysis at a time for this study.  

 

3.6 Summary 

Using the NLCD land-cover data, a land-use change analysis was conducted for El Paso 

County for the 15-year study period of 2001-2016. The change analysis consisted of verifying 

the NLCD for the region, and examining land-use maps to understand growth trends. The 

analysis provided an understanding of the locations of concentrated growth. The land-use maps 

provided allowed for an urban dynamic analysis through landscape metrics. The metrics 

provided a quantitative depiction of the urban land-use patterns. Utilizing the previous 15-year 

land-use maps, allowed for predicting the 2031 future land-use for El Paso. Change analysis was 

also conducted for the projected land-use, along with the landscape metrics to understand the 

predicted urban dynamics. Finally, the relationship between the past concentrated growth areas 

and electricity consumption was analyzed to understand which metrics were possibly correlated 
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with electricity consumption. This study provides a synopsis of past and future growth trends and 

patterns, and the impact on electricity consumption for the El Paso area.    
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Chapter 4: Data Analysis  

This chapter discusses the data analysis and results conducted for this study. The 

following sections discuss the findings of the past and future land-use change analysis, 

consequential urban dynamic patterns, and their relationship to electricity consumption.  

4.1 Land-Use Change Analysis 

Land-use change analysis incorporates land-use maps generated from remote sensing and 

corresponding database management techniques to analyze land-use change over time. In order 

to use analyze the data, a classification accuracy assessment must first be conducted. After the 

data has been verified and is deemed acceptable for analysis, the generated maps and data are 

then assessed as to the changes in land-use that have occurred over a study period. The following 

sections provide the results of the accuracy assessment and land-use change analysis.   

 

4.1.1 Classification Accuracy Assessment 

The classification accuracy assessment was conducted for both El Paso County and the 

city of El Paso. Utilizing 300 random points for the county and 150 random points for the city, 

the results are illustrated in Table 4.1 – 4.2.  
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Table 4.1: County/City 2001 – 2006 classification accuracy 

 2001 

 

Overall 

Accuracy 

Kappa 

Coeff. 

Kappa 

Coefficient 

Agreement 

User's 

accuracy 

Error of 

Commission 

Producer's 

accuracy 

Error of 

Omission 

  Dev. Barren Dev. Barren Dev. Barren Dev. Barren 

County 94% 81% Almost Perfect 83% 97% 17% 3% 86% 96% 14% 4% 

City 90% 80% Substantial 92% 88% 8% 12% 88% 92% 12% 8% 

 2006 

 

Overall 

Accuracy 

Kappa 

Coeff. 

Kappa 

Coefficient 

Agreement 

User's 

accuracy 

Error of 

Commission 

Producer's 

accuracy 

Error of 

Omission 

  Dev. Barren Dev. Barren Dev. Barren Dev. Barren 

County 98% 92% Almost Perfect 98% 98% 2% 2% 90% 100% 10% 0% 

City 94% 87% Almost Perfect 97% 90% 3% 10% 94% 95% 6% 5% 
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Table 4.2: County/City 2011-2016 classification accuracy 

 2011 

 

Overall 

Accuracy 

Kappa 

Coeff. 

Kappa 

Coefficient 

Agreement 

User's 

accuracy 

Error of 

Commission 

Producer's 

accuracy 

Error of 

Omission 

  Dev. Barren Dev. Barren Dev. Barren Dev. Barren 

County 97% 91% 

Almost 

Perfect 95% 98% 5% 3% 90% 99% 10% 1% 

City 93% 86% 

Almost 

Perfect 98% 87% 2% 13% 92% 96% 8% 4% 

 2016 

 

Overall 

Accuracy 

Kappa 

Coeff. 

Kappa 

Coefficient 

Agreement 

User's 

accuracy 

Error of 

Commission 

Producer's 

accuracy 

Error of 

Omission 

  Dev. Barren Dev. Barren Dev. Barren Dev. Barren 

County 96% 88% 

Almost 

Perfect 98% 95% 2% 5% 84% 100% 16% 0% 

City 95% 88% 

Almost 

Perfect 98% 89% 2% 11% 94% 96% 6% 4% 
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As the focus of this study is on the expansion of the developed areas, the accuracy 

assessment results discussed will concentrate on the developed class. As previously discussed, 

the producer’s and user’s accuracy is recommended to provide insight into the performance of 

classification. The user’s accuracy, which is vital from the user’s perspective as it relates to the 

probability of correct classification to actual conditions on-site (Rwanga and Ndambuki 2017), 

ranges from 83% (2001) to 98% (2006 and 2016) for the developed class. The corresponding 

error of commission ranged from 2% (2006 and 2016) to 17% (2001). The producer’s accuracy 

for the developed class ranged from 84% (2016) to 90% (2006 and 2011). The error of omission 

ranged from 10% (2006 and 2011) to 16% (2016). The overall accuracy for the developed class 

ranged from 94% (2001) to 98% (2006). A rigorous method of interpreting accuracy lies with the 

Anderson classification system. This system recommends the “minimum level of interpretation 

accuracy in the identification of land-use and land cover categories from remote sensor data 

should be at least 85 percent (Anderson et al. 1976). The overwhelming majority of the accuracy 

terms met this stringent classification. The exception includes the counties’ user’s accuracy in 

2001 at 83% and producer’s accuracy at 84% in 2016. However, these percentages fall in the 

upper range of 75-85% region perceived as satisfactory for the overall and categorical accuracy 

considering a balance between the “ideal and the affordable” (Mubako et al. 2018; Congalton 

1991).  

The Kappa coefficient was also determined to provide a complete traditional error matrix. 

The Kappa ranged from 81% (2001) to 92% (2006) and are rated “almost perfect” at the county 

level. At the city level, Kappa ranged from 80% (2001) to 88% (2016), and was rated 

“substantial” for 2001; while the years 2006 – 2016 rated “almost perfect”. The “substantial” 
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agreement ranges between 61% - 80%, with the cities’ 2001 Kappa located at nearly the “almost 

perfect” agreement.  

Due to the vast majority of assessment terms meeting the stringent Anderson 

classification system requirements of at least 85% accuracy and the remaining assessments 

reaching the higher end of the acceptable range of 75-85% accuracy, and all Kappa agreements 

either meeting or border “almost perfect” agreement; the classification data were suitable to 

proceed with the analysis.    

4.1.2 Change Analysis Results 

The land-use change analysis for this study incorporated land-use maps (generated from 

remote sensing) and the corresponding database management techniques to analyze land-use 

change over time. The land-use maps were generated based on two methods: 1) developed, 

which combines all sub-categories within the NLCD developed category vs barren 

(undeveloped) class and 2) the sub-categories within the developed class outlined in NLCD. The 

goal of this process was to provide a comprehensive and detailed understanding of urban 

development within the region.  

 

4.1.2.1 Comprehensive Developed Class 

The land-use classification process resulted in four land-use maps, which provided a 

detailed understanding of where the concentration of urban expansion took place within El Paso 

County from 2001 to 2016 (Fig 4.1), excluding the military reservation areas and Franklin 

Mountains State Park. The urban expansion analyzed the NLCD developed class 

comprehensively, as a single class.  
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Figure 4.1: 2001 (left) and 2016 (right) county land cover maps. 

 

At the county level, the results demonstrated the developed class increased by 24% from 

2001 – 2016 (Table 4.3). The largest development growth occurred from 2001 to 2006 at 

12.73%. Urban growth proceeded to decrease in the following 5-year increments, from 5.66% 

(2006-2011) to 4.15% (2011-2016).  

Table 4.3: County land-use area and change in percentage 

Land-use type 

2001 Class 

Area (km2) 

2006 Class 

Area (km2) 

2011 Class 

Area (km2) 

2016 Class 

Area (km2) 

Developed 382.52 431.21 455.63 474.54 

Barren (Undeveloped) 1619.20 1570.50 1546.04 1527.12      
 

2001 - 2006 2006 - 2011 2011 - 2016 2001 - 2016 

% Change in 

Development 

12.73% 5.66% 4.15% 24.06% 

 

Within the county’s growth in development that occurred from 2001 – 2016, 68% of the 

expansion transpired within the City of El Paso. Figure 4.2 illustrates the counties’ urban growth 

with the expansion concentrated within the city of El Paso.  



48 

 

Figure 4.2: 2001 to 2016 County Growth (red). 

 

The counties’ urban growth, within the 5-year incremental study period, was also largely 

contributed to within the City of El Paso (Table 4.4). To measure the percentage of the cities’ 

contribution to the growth of the county, the following formula was utilized. 

 
 

    (4.1) 

 

 

 
 

The city originally contributed 71% of the county's development from 2001 – 2006, and 

gradually decreased to 68% (2006 – 2011) and 59% (2011 – 2016).  

 



49 

Table 4.4: Contribution of city growth towards county expansion  

2001 - 2006 2006 - 2011 2011 - 2016 

% County change occurring 
within City of El Paso 

71.43% 68.23% 59.15% 

 

Due to the majority of development occurring within the city limits of El Paso, the city 

was further analyzed to determine the amount and location of growth within its’ limits. The city 

of El Paso (herein El Paso) grew by over 21% from 2001 to 2016 (Table 4.5). Similar to the 

county, El Paso’s largest developmental growth occurred from 2001 – 2006 at almost 12%. The 

urban development continued to decline to 5% (2006-2011) and 3.25% (2011–2016). The growth 

percentages and patterns of El Paso reciprocate the growth patterns at the county level.  

Table 4.5: City land-use area and change in percentage 

Land-use type 
2001 Class 
Area (km2) 

2006 Class 
Area (km2) 

2011 Class 
Area (km2) 

2016 Class 
Area (km2) 

Developed 292.27 327.06 343.71 354.90 

Barren 
(Undeveloped) 

265.90 231.12 214.42 203.23 

     

 2001 - 2006 2006 - 2011 2011 - 2016 2001 - 2016 

% Change in 
Development 

11.90% 5.09% 3.25% 21.43% 

 

 To understand the areas experiencing the urban growth within the city, the 8 districts that 

comprise the city were further analyzed. Each districts’ urban growth was determined relative to 

the total growth within the city. This allowed a comparison between the districts.  
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(4.2) 

 

 

 

 

 

 
 

From 2001 – 2016, the districts with the highest city contribution of growth were Districts 5 and 

1 at approximately 31.5% and 28.00%; respectively (Fig 4.3). Districts 6 and 4 follows at 

14.84% and 12.25%, respectively. The remaining districts contributed less than 6% of the cities’ 

urban growth.   

 

Figure 4.3: 2001 – 2016 district growth relative to city growth.  

 

District 6 is the third-highest contributor to growth at 14.84% from 2001-2016. However, 

District 6 growth mainly occurred from 2001 – 2006 (Fig 4.4). After 2006, District 6 seen a 

drastic decline in its’ contribution to growth at 7.54% (2006-2011) and 6.32% (2011-2016). 

Districts 5, 1, and 4 have the most contribution of growth and have ranked in top contributing 
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districts throughout 2001-2016. The contribution is illustrated among the 2006-2011 and 2011-

2016 time series. For 2001-2006, District 1 and 5 were the top 2 districts in growth, followed by 

district 6 and 4. Due to Districts 5, 1, and 4 consistent top growth relative to the city, these 

districts were further analyzed for urban dynamic patterns and developed sub-category growth.  

 

Figure 4.4: 5-year district growth relative to city growth. 

 

El Paso County and the city exhibited similar growth trends. Urban expansion was 

highest within the 2001-2006 5-year period. The vast majority of the counties’ growth transpired 

within the city of El Paso for both the 15-year and 5-year incremental study period. Within the 

city, the consistent growth occurring within District 5 (east side), 1 (west side), and 4 (northeast), 

with District 5 experiencing the fast growth rate. District 6 experienced large growth between 
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2001 to 2006, but drastically decreased after this time period. Due to consistent and high growth 

rates within District 5, 1, and 4, these districts landscape patterns were further analyzed. 

4.1.2.2 Developed Sub-categories  

Districts 5, 1, and 4 exhibited the highest and consistent development growth patterns 

relative to the city of El Paso. Therefore, the development within these three districts was studied 

further by analyzing the developed NLCD sub-category growth patterns relative to the districts 

themselves. The developed sub-categories represent various percentages of impervious surface 

area as described in Table 4.6.  

Table 4.6: Developed class detailed descriptions 

Class Value # Sub-category Description Examples 

D
ev

el
o

p
ed

 

21 Developed, 
Open Space 

< 20% impervious 
surface 

large-lot single-family housing, 
parks, golf courses, recreational 
areas with vegetation 

22 Developed, 
Low Intensity 

20% - 49% 
impervious surface 

single-family housing 

23 Developed, 
Medium 
Intensity 

50% - 70% 
impervious surface 

single-family housing 

24 Developed, 
High Intensity 

80% - 100% 
impervious surface 

apartment complexes, row 
houses, commercial/industrial 
areas 

 

The change percentage patterns described in this section are relative to the district itself.  

  (4.3) 

 

 

 
 

The developed sub-category with the highest percentages of change from 2001 to 2016 

within District 5 was medium intensity at 289% (Figure 4.5), which is three-fold its’ original 

area. Closely following was developed, the high intensity at 276%. The highest change 
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percentage for District 1 was 79% in developed, open space; followed by developed, high 

intensity at 60%. District 4 exhibited a 58% change in developed, high intensity and 42% in 

developed, medium intensity. The majority of developed sub-categories’ change occurred within 

the medium intensity and high-intensity sub-categories within these districts.  

 

Figure 4.5: 2001-2016 change in developed sub-categories. 

 

The districts' 5-year growth mimics those of the 15-year study period (2001-2016). The 

developed sub-categories exhibiting the largest change percentage are concentrated in high 

intensity, followed by medium intensity (Table 4.7). The exception is District 1 from 2001 to 

2006, the largest change in growth occurred in the developed, open space sub-category at the rate 

of over 57%. After 2006, the change in District 1 open space drastically reduced to 8.48% and 

4.84% in 2006-2011 and 2011-2016, respectively. 
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Table 4.7: 5-year sub-category growth relative to growth within the district.  

District 5 

Developed Sub-Category 2001-2006 2006-2011 2011-2016 

21) Developed, Open Space 55.74% 26.05% 4.60% 

22) Developed, Low Intensity 46.95% 24.23% 13.13% 

23) Developed, Medium Intensity 129.26% 33.52% 27.02% 

24) Developed High Intensity 92.78% 46.34% 33.12%     

District 1 

Developed Sub-Category 2001-2006 2006-2011 2011-2016 

21) Developed, Open Space 57.25% 8.48% 4.84% 

22) Developed, Low Intensity 14.31% 3.62% 4.53% 

23) Developed, Medium Intensity 28.08% 9.63% 8.30% 

24) Developed High Intensity 30.95% 11.65% 9.77%     

District 4 

Developed Sub-Category 2001-2006 2006-2011 2011-2016 

21) Developed, Open Space 6.77% 8.51% 0.10% 

22) Developed, Low Intensity 2.82% 5.77% 1.67% 

23) Developed, Medium Intensity 16.02% 14.55% 7.03% 

24) Developed High Intensity 21.75% 16.38% 11.57% 

 

A visual representation of these changes is presented as land-use maps. The concentration 

of developed high and medium intensity change within District 5 is visually compared in 5-year 

increments in Figure 4.6. It is observable that the medium intensity, depicted in blue, is the 

dominant sub-category within District 5. This category had the largest percentage change of all 

the districts and their sub-categories at 129% from 2001 to 2006. Developed, high intensity 

(shown in red) possessed the second-largest sub-category change at roughly 93% from 2001 to 

2006. The developed, high-intensity category had the largest change percentage from 2006 to 

2011 and 2011 to 2016, at 46% and 33%; respectively. The developed medium intensity 

followed at roughly 33.5% and 27% from 2006 to 2011, and 2011 to 2016; respectively.    
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District 5 possessed a significant growth within medium intensity from 2001-2006, 

indicating single-family housing development dominated. In the following years, high intensity 

(compact housing and commercial areas) dominated with medium intensity following. This 

indicates compact housing and commercial areas followed the intense single-housing growth.  

 

Figure 4.6: District 5 23) Developed, Medium Intensity (blue) and 24) Developed, High Intensity 

(red). 

 

 District 1 urban change was dominated by developed, open space for 2001-2006 

at 57% as illustrated in green in Figure 4.7. Followed by developed, high intensity (shown in red) 

at 31%. However, the developed, open space category drastically reduced to nearly 8.5% and 

4.8% change from 2006 to 2011 and 2011 to 2016; respectively. Developed, high intensity is the 

leader in percent change at approximately 11.5% and 9.5% for 2006-2011 and 2011-2016; 
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respectively. Developed, medium intensity (shown in blue) followed at roughly 9.5% and 8% for 

2006-2011 and 2011-2016 respectively.  

District 1 highest growth occurred in open space from 2001-2006, with high intensity and 

medium intensity following at nearly 31% and 28%; respectively. Medium and high intensity 

categories maintained a consistent and high growth percentages within District 1 throughout the 

5-year increments, indicating the consistent growth for single-family housing (medium intensity) 

and compacted living and commercial areas (high intensity).  

 

Figure 4.7: District 1 21) Developed, Open Space (green), 23) Developed, Medium Intensity 

(blue), and 24) Developed, High Intensity (red). 

  

District 4 percent change was concentrated within developed, high (red) and medium 

(blue) intensity (Fig 4.8). The high-intensity sub-category led the change in percentage for the 

three 5-year study periods at 21.8% (2001-2006), 16.4% (2006-2011), and 11.6% (2011-2016). 
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Medium intensity followed at approximately 16% (2001-2006), 14.5% (2006-2011), and 7% 

(2011-2016). 

 

Figure 4.8: District 4 23) Developed, Medium Intensity (blue) and 24) Developed, High Intensity 

(red). 

 

The NLCD developed sub-categories were examined within Districts 5, 1, and 4 due to 

their high and consistent growth rates with respect to the district itself. The districts’ growth 

trends for the 5-year increments mimic the trends for the 15-year study period. Medium and high 

intensity sub-categories are the fastest-growing developed land-use within each district. The 

exception is District 1, who possessed open space as the largest growth within 2001-2006. By 

visual inspection, the medium intensity category dominates the growth in all districts. Indicating 

the vastly growing single-family housing. High intensity categories (compact housing and 
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commercial areas) experienced large percentage growth but encompass a smaller area. These two 

sub-categories dominate urban growth.  

 

4.2 Landscape Metrics 

The landscape metrics were selected to provide an understanding of the urbanization 

patterns for the developed class comprehensively and as sub-categories as outlined in NLCD. 

When analyzing the comprehensive developed class, class-level metrics were utilized due to the 

limited number of classes (developed and undeveloped). Both class-level and the landscape-level 

metrics were utilized in understanding the urban patterns for the developed sub-categories within 

the top three developmental growth districts in El Paso (Districts 5, 1, and 4). The class level 

pertains to the urban dynamics exhibited by a particular class (developed, developed-open space, 

developed-low intensity, etc.). The landscape-level provides an understanding of land-use in 

relation to all of the data, including the undeveloped class. Six metrics were selected for class 

level and four metrics were chosen for the landscape level, which were deemed acceptable to 

provide an understanding of the landscape (Wu et al. 2011; Zhao, Thinh, and Li 2017; Shrestha 

et al. 2012). Two of the metrics, including the landscape shape index and patch density, were 

administered for both the class and landscape levels.  

4.2.1 Comprehensive Developed Class  

The landscape metrics provided an understanding of the comprehensively developed 

class growth characteristics within Districts 5, 1, and 4. The results for the class-level metrics 

were relative to the district itself (Figure 4.9). The developed percentage of landscape increased 

linearly for District 5 from 27% in 2001 to 74% in 2016. Districts 1 and 4 also exhibited an 

increase in development from 36% to 51.5% and 27% to 33%, respectively. This reflects the vast 
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urban growth within District 5 and the consistent growth that transpired within Districts 1 and 4 

for the 15-year study period.  

Urban growth can occur with fragmented patterns of patches. Patches are clusters of cells 

with the same land-use type. The number of patches significantly decreased for Districts 5 and 1. 

District 5 decreased by 73% of the number of patches from 2001 to 2016. District 1 had an 

approximate 63% decrease in the number of patches. District 4 had a smaller decrease in the 

number of patches at over 16.5%. This indicates that District 5 and 1 had an extensive decrease 

in fragmentation of the developed land-use. This also illustrates in-fill development to connect 

the patches of existing urban development. Thus, the significant decrease in patch density for 

District 5, a relative decrease in District 1, and a slight decrease in District 4. The edge density 

for District 5 decreased, while remained relatively constant for the remaining districts. This can 

be attributed to Districts 5 drastic urban growth that encompasses a large amount of the 

landscape. While the remaining districts saw relatively constant edge density due to the smaller 

developed area relative to the districts themselves. In other words, the landscape of the districts 

is not dominated by developed area. Therefore, the length of all edge segments per hectare 

remained relatively constant. As the developed class increased, the mean patch area also 

significantly increased for Districts 5 and 1. As the number of patches decreased, the complexity 

of the shape of the developed class also decreased as illustrated with the landscape shape index 

(LSI). The decrease in LSI indicates a decrease in the irregularity of the developed class shape.   
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Figure 4.9: Class-level metrics.  

 

The percentage of developed landscape demonstrates that District 5 experienced a linear 

growth rate from 2001-2016, compared to the remaining districts (Districts 1 and 4) which 

experienced gradual continued growth. As the districts expanded, fragmentation decreased as 

illustrated by the decrease in the number of patches and patch density, and the increase in mean 

patch area. The increase in urban development also decreased the irregularity of the developed 

shape areas within the districts.  
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4.2.2 Developed Sub-Categories  

The developed class metric results for the sub-categories within the three districts 

(District 1, 4, and 5) are demonstrated in Figures 4.10 to 4.12. The metric results are relative to 

the district itself. For Districts 1 and 4, developed, low intensity dominated the landscape; 

followed by medium intensity in percentage of landscape (PLAND) depicted in Figure 4.10. 

District 5 was dominated by the developed, low intensity in 2001. However, the medium 

intensity quickly became the prevailing category after 2006; followed by low intensity. Medium 

intensity development within Districts 4 and 5 possessed the greatest number of patches; 

followed by open space.  District 1 had the largest number of patches within open space, 

followed by medium intensity. Intuitively, the open space category would possess a high number 

of patches due to its’ composition of parks, golf courses, and recreational areas. These areas 

should be fragmented or spread throughout the landscape. Whereas the medium intensity 

category was comprised of single-family housing and possessed a high number of patches within 

the three districts. This may be an indication of mixed-use within the urban areas. Patch density 

(PD) for Districts 1 and 4 followed a similar pattern as the number of patches, with open space 

dominating District 1 and medium intensity leading District 4, suggesting landscape 

fragmentation per unit area of landscape within these categories. District 5 demonstrated the 

dominating patch density occurring within the low intensity and its’ vast increase in patch 

density from 2001 to 2016. The second leading category was open space. Therefore, 

fragmentation within District 5 was occurring within the low-intensity category per unit area. 

The three districts' edge density (ED) was similar to the percentage of landscape (PLAND) due 

to its’ depiction of the total length of edge segments for the sub-category per hectare. The 

dominating sub-category within the district also would possess the majority of edge distance. 

The landscape shape index (LSI) indicated the complexity of the shape relative to the entire 

landscape. Within the three districts, low intensity and medium intensity were among the top two 

categories exhibiting complexity to shape. Within Districts 1 and 4, the mean patch area 
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(AREA_MN) was led by the low-intensity category. Whereas, District 5 was dominated by 

medium intensity. The mean patch area followed the percentage of landscape and these were the 

categories dominating the district areas.   

The low and medium intensity domination in each district demonstrates the prevailing 

single-family housing within the urban landscape. This is verified in Plan El Paso, which states 

“the detached home on a moderately sized lot has been the predominant pattern since early in El 

Paso’s history, accounting for two-thirds of the City’s current housing units” (City of El Paso 

2012). While, “El Paso has relatively little multi-family housing” (City of El Paso 2012) as 

illustrated by high intensity (compact and commercial areas) compromised the least amount of 

area within each district.  Mixed-use areas, consisting of a variety of land-use areas, may suggest 

a slight increase in the number of patches, edge density, patch density, and landscape shape 

index within each category.  District 5 experienced a linear increase in single-family housing 

(medium and low intensity) mean patch area, indicating the rapid growth within this land-use 

type.  
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Figure 4.10: % of Landscape and Number of Patches metrics 
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Figure 4.11: Landscape Shape Index and Mean Patch Area metrics 
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Figure 4.12: Patch Density and Edge Density metrics
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Landscape metrics provide a deeper understanding of the entire landscape by 

considering the landscape as an entirety. The landscape metrics considers all developed 

sub-categories and barren (undeveloped) areas. The linear increase in landscape shape 

index (LSI) for District 5 indicated a continuous increase in the shape complexity within 

this district (Fig 4.13). Districts 1 and 4 also had an increase in complexity, but at a slow 

rate compared to District 5 due to the changes within the landscape. Patch density is a 

metric in relation to a unit area of the landscape. District 5 again had a drastic linear 

increase in patch density, compared to Districts 1 and 4. This was indicative of landscape 

fragmentation concentrated within District 5. Increasing uneven distribution or diversity of 

land-use types was evident in District 5 as depicted by Shannon’s diversity index. This 

uneven distribution greatly increased between 2001 to 2006 and began to taper after 2006. 

Diversity had also gradually increased within Districts 1 and 4. All three districts decreased 

within the Contagion metric, which measures diversity of classes. Thus, suggesting 

diversity among class types within the landscape.  

Fragmentation within the districts developed areas is suggested from the significant 

landscape shape index (LSI) for Districts 5 and 1, a significant increase in District 5 patch 

density (PD), and increases in Shannon’s diversity index (SHDI). The decrease in 

Contagion indicates an increase in a diverse landscape. The fragmentation and diversity in 

landscape, may suggest an increase in mixed-use due to urban development. Mixed-use is 

encouraged in Plan El Paso to reduce transit time, accessibility to city transit, and offer 

local amenities, such as goods and services (City of El Paso 2012).  
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Figure 4.13: Landscape-level metrics 

 

4.3 Future Prediction of Land-Use 

Providing a prediction of future land-use in El Paso based on statistical analysis will 

equip decision-makers, planners, and developers to make informed decisions to prepare for the 

expansion of the area with the goal to provide an optimal quality of life for the community. To 

model future expansion, the model itself must first be verified using existing data.  

 

4.3.1 Verification of CA-Markov Model 

Verification of the CA-Markov model was conducted using the acquired NLCD data for 

2001 and 2011 to predict the land-use for 2016. Using 1,000 random points for both County and 

City level, the results are provided in Table 4.8.  
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Table 4.8: CA-Markov accuracy utilizing 2001 and 2011 data to predict 2016 

 

 Using 2001 and 2011 data to Predict 2016 

 

Overall 

Accuracy 

Kappa 

Coeff. 

Kappa 

Coefficient 

Agreement 

User's 

accuracy 

Error of 

Commission 

Producer's 

accuracy 

Error of 

Omission 

  Dev. Barren Dev. Barren Dev. Barren Dev. Barren 

County 96% 89% 

Almost 

Perfect 91% 98% 9% 2% 93% 97% 7% 3% 

City 93% 85% 

Almost 

Perfect 94% 91% 6% 9% 95% 89% 5% 11% 
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Adopting the Anderson classification system, all of the accuracy terms exceed the 

stringent 85 percent minimum accuracy (Anderson et al. 1976) for both the county and city level. 

The inclusion of the Kappa to satisfy the traditional error matrix, are rated “almost perfect”, 

above 81% accuracy, for both levels. This is consistent with previous research where the CA-

Model accuracy was found to possess Kappa coefficient of 81% and greater (Rimal et al. 2017; 

Chen Liping, Sun Yujun, and Saeed 2018; Subedi, Subedi, and Thapa 2013; Fu, Wang, and 

Yang 2018), and overall accuracy of 91% (Fu, Wang, and Yang 2018). The assessment results 

verify the use of the CA-Markov method for predicting future land-use in the El Paso area.  

 

4.3.2. 2031 Future Land-Use Prediction 

Future land-use prediction consists of determining the landscape in 2031 utilizing the 

CA-Markov model. The resulting land-use maps are analyzed for change analysis to understand 

the locations of projected urban growth.   

 

4.3.2.1. 2031 CA-Markov Model  

Utilizing El Paso County NLCD land cover data for 2001 and 2016, land-use was 

predicted for 2031 by applying the CA-Markov method. The land-use image for the base year 

2001 and second time period of 2016, Markov analysis resulted in a transition matrix providing 

the probability of the developed state transitioning into a barren (undeveloped) state (Table 4.9). 

The matrix indicates the developed cells will remain developed, and the developed cells will not 

transition into barren state. A barren cell has a 0.0568 probability to transition into a developed 

state, and 0.9432 probability of remaining as a barren cell.  
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Table 4.9: Transition matrix for developed and barren class  

Developed Undeveloped (Barren) 

Developed 1.0000  0.000 

Undeveloped  

(Barren) 

0.0568 0.9432 

 

The Markov transition matrix considers temporal trends to land-use changes, while 

suitability maps consider spatial trends. The suitability maps were created with physical factors 

of distance from developed areas and distance from roadways as discussed in Section 3.4 (Fig 

4.14). The suitability maps provide the probability of a cells’ land-use transition with respect to 

the spatial aspect.  

 

 
Fig 4.14: Suitability map and input data: a) barren class b) developed class c) roads  
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The Markov transition probability matrix and suitability maps were utilized in the CA-

Markov model, resulting in the predicted land-use for 2031 (Fig 4.15).  

 

 
Figure 4.15: 2031 projected county land cover map 

 

4.3.2.2 County 2031 Change Analysis Results 

Discussion of the projected growth within the study area, is similar to the format 

explaining change analysis for known data in Section 4.1.2. Comparing the 15-year incremental 

time periods (2001-2016 and 2016-2031), the county urban growth from 2016 to 2031 decreased 

to 18.24% (Table 4.10). This is in comparison to the previous 15-year period (2001-2016) which 

possessed a 24% change in development. The decline is expected, as previously discussed, the 5-

year incremental time periods from 2001-2016, continuously declined as well (Section 4.1.2).  
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Table 4.10: County land-use area and change in percentage 

Land-use type 2001 Class 

Area (km2) 

2016 Class 

Area (km2) 

2031 Class Area 

(km2) 

Developed 382.52 474.54 561.12 

Barren (Undeveloped) 1619.20 1527.12 1439.60     

 

2001 - 2016 2016-2031 
 

% Change in Development 24.06% 18.24% 
 

Of the projected expansion that occurred within the county, 51% occurred within the city 

of El Paso compared to approximately 66% for 2001-2016 (Table 4.11). Therefore, urban growth 

is projected to be evenly split within the city limits of El Paso and outside the city boundary.   

 

Table 4.11: Contribution of city growth towards county expansion 

 2001-2016 2016-2031 

% County change 

occurring within 

City of El Paso 65.91% 51.03% 

 

The projected development from 2016-2031 is expected to occur 51% within the city of 

El Paso and 49% outside the city limits as illustrated in Figure 4.16.  
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Figure 4.16: 2016 to 2031 county growth (red). 

4.3.2.3 City of El Paso 2031 Change Analysis Results 

Due to the even projected contribution of growth within the city of El Paso and outside 

city limits, both areas’ expansion patterns will be discussed. First, the projected growth within 

the city of El Paso is presented. The 8 districts within the city were analyzed to determine the 

locations of concentrated growth. District 1 is projected to have the largest percentage of growth 

at roughly 24% (Fig 4.17). Followed by Districts 4 and 5 at 22.66% and 13.76%, respectively. 

The projected growth is logical, as Districts 1 and 4 possess the largest percentage of the barren 

area within the city in 2016 at 27.27% and 41.20%, respectively; among the districts (Table 

4.12).  
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Table 4.12: Percentage of district barren area relative to the city.  

2016  
District 

1 

District 

2 

District 

3 

District 

4 

District 

5 

District 

6 

District 

7 

District 

8 

Barren 

(Undev.) 

Area 

(km2) 

27.27% 10.87% 0.33% 41.20% 5.43% 7.53% 1.75% 5.61% 

 

Districts 1 and 4 were also leaders in city growth from 2001-2016. Districts 8 and 2 

follow with projected percentage growth at 11.91% and 11.43%, respectively. The remaining 

districts possess less than 9% growth.  

 

 

 

 

Figure 4.17: 2016 to 2031 projected district growth relative to the city. 

Comparing the districts’ 15-year growth percentages between 2001-2016 and 2016-2031, 

the increase and decrease in growth is visibly evident in Figure 4.18. The districts with the 

largest increase in growth percentage from 2001-2016 to 2016-2031 are Districts 4, 8 and 2. 

District 4 projects the highest increase at 10.41% compared to 2001-2016. Districts 8 and 2 have 

an increase of 8.42% and 5.5%. District 4 contained the cities’ majority of barren land for 
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development in 2016 at 41.20%. Therefore, it is logical that District 4 would have an increase in 

development. District 1 contained the largest amount of the cities barren land in 2016 at 27.27%. 

However, the projection indicates that District 1 has a decrease in growth percentage by -3.61% 

compared to 2001-2016. District 5 exhibits the largest difference in growth percentage among 

the 15-year comparisons, at nearly 18%. The substantial growth that District 5 possessed during 

2001-2016 may have an impact on the projected growth.  

 

 
 

Figure 4.18: 15-year district and projected growth.  

 

The leading districts in projected growth (Districts 1, 4, and 5) mimic the previous 15-

year growth. However, District 1 is predicting to experience the highest growth, followed by 

District 4 and 5. District 1 and 4 growth follows Plan El Paso’s Comprehensive Plan designation 

districts for immediate growth. District 4 experiences growth within the specific area designated 

for the districts’ growth. However, District 1 indicates growth outside of the designated area. 
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This may suggest possible infill of future growth. District 5 expansion is expected, as the district 

continues to expand within the plans designated suburban area for this district.  

 

4.3.2.4 Outside El Paso City 2031 Change Analysis Results 

Outside the city limits of El Paso, 49% of the projected growth for 2031 occurs. The 

county of El Paso is comprised of several cities including El Paso, Anthony, Clint, Horizon City, 

Socorro, Vinton, and Fabens. With the exception of El Paso, the cities’ total contribution to the 

counties projected growth in 2031 is approximately 25% (Figure 4.19). The majority of future 

growth is to occur outside city limits.  

 

 

Figure 4.19: City contributions to projected growth outside El Paso city limits. 

 

Figure 4.20 displays where future growth is projected outside of the city limits. The 

projected growth is concentrated in 3 main areas: Area 1) adjacent to District 5, Area 2) adjacent 

to District 6, and Area 3) adjacent to District 1 along the New Mexico border. Area 1 and 2 are 

located within the potential annexation areas proposed by the Plan El Paso Comprehensive Plan. 

The potential annexation spaces will be utilized for urban growth by 2031. Area 3 is not located 
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within a preferred annexation area. Therefore, the growth in Area 3 should be mitigated through 

policies.  

 

 

Figure 4.20: Growth clusters outside city limits.  

Outside the city limits of El Paso, urban growth adjacent to Districts 5 and 6 (Areas 1 and 

2) occur within potential annexation areas according to Plan El Paso Comprehensive Plan. The 

growth projected adjacent to District 1 (Area 3) does not occur within a potential annexation 

area. Therefore, actions should be taken to mitigate growth within this area, and encourage 

growth within the designated immediate or possible annexation areas.  

 

4.4 2031 Landscape Metrics 

Landscape metrics were analyzed for Districts 1, 4, and 5 to provide an understanding of 

the projected growth patterns for 2031. The comparison of District 1 in 2016 to the projected 

2031 land-use of the developed and undeveloped (barren) area is illustrated in Figure 4.21. The 
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percentage of the developed area (PLAND) increased by 18%. The number of patches (NP) 

decreased by 24%, indicating infill within the existing developed area. The patch density (PD), 

measuring the number of patches per 100 hectares of developed area, decreased slightly (23%) 

compared to 2016; also indicates infill development. Edge density (ED), which measures the 

total edge distance per developed patch, and the landscape shape index (LSI), indicates shape 

regularity, decreased. Suggesting as the developed class increased, the edge length of the 

developed patches decreased, and the irregularity of the developed class decreased. The mean 

patch area (AREA_MN) also increased, due to the increase in the developed class.  

 

Figure 4.21: District 1 landscape metrics for developed class (red) in 2016 (left) and 2031 

(right) 

 

District 5 possesses similar results as District 1 (Figure 4.22). The percentage of the developed 

area (PLAND) increased by 19%. The number of patches (NP), patch density (PD), edge density 

(ED) decreased indicating infill within District 5. The mean patch area increase of 77% is 

indicative of the increase in the developed class area.   
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Figure 4.22: District 5 landscape metrics for developed class (red) in 2016 (left) and 2031 

(right) 

District 4 possesses slightly different metric results compared to Districts 1 and 5. The 

percentage of the developed area (PLAND) also increased in District 5 by 24% (Fig 4.23). The 

number of patches (NP) and patch density (PD) slight increase at 27% for both metrics, suggests 

possible slight fragmentation within District 4. The decrease in edge density (ED) suggests the 

patch areas increased. The decrease in landscape shape index (LSI), indicates a decrease in shape 

irregularity for the developed class. The mean patch area relatively stayed constant, suggesting 

the developed growth area relative to the number of patches remained constant 
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Figure 4.23: District 4 landscape metrics for developed class (red) in 2016 (left) and 2031 

(right) 

According to the landscape metrics, Districts 1, and 5 experience infill development. 

However, district 4 experiences slight fragmentation compared to the other districts. The rate of 

infill for district 4 is slower than the other districts. Infill should be encouraged for District 4.  

 

4.5 Relationship of Urban Form and Electricity Consumption 

The panel data analysis to understand the relationship between urban form and electricity 

consumption was performed using STATA software. To determine which panel regression 

model to use, the f-test was conducted (Table 4.13). The constant intercepts and coefficients 

model, contained one metric that was significant. Whereas, the variable intercepts and constant 

coefficients, indicate three metrics are significant. R-squared (R2) was also considered when 

choosing a model, due to its’ ability to interpret how well the model fits the data. The variable 

intercepts and constant coefficients model possess significantly higher R2 values than the 
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constant intercepts and coefficients model, indicating this model fits the data well. Therefore, the 

variable intercepts and constant coefficients model was further analyzed.   

   Table 4.13: F-test results.   

F-test PLAND NP PD ED LSI AREA_MN 

Constant 

intercepts 

and 

coefficients 

Prob > F 0.5924 0.8614 0.5395 0.9291 0.6756 0.0325** 

R-squared 0.0778 0.0086 0.1009 0.0022 0.0483 0.7206 

Variable 

intercepts 

and 

constant 

coefficients 

Prob > F 0.0763* 0.2984 0.1143 0.1051 0.0166** 0.0916* 

R-squared 0.8531 0.4923 0.7844 0.8008 0.9670 0.8252 

* Significant at 0.10 

** Significant at 0.05 

 

The Hausman test was implemented to determine if fixed or random effects should be 

implemented in the variable intercepts and constant coefficients model, using the following 

hypothesis: 

Ho = random-effects model selected (null hypothesis) 

H1 = Ho is not true, fixed effect model selected 

Using a significance level, α, of 0.10, the Hausman test results (Table 4.14) indicate the 

null hypothesis cannot be rejected. Therefore, the random-effects model was selected for 

analysis.  

   Table 4.14: Hausman test results   

Hausman Test Results  
PLAND NP PD ED LSI AREA_MN 

Probability 0.0002*** 0.1543 0.0057*** 0.0044*** 0.0000*** 0.2463 

* Significant at 0.10 

** Significant at 0.05 

***Significant at 0.01 
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The relationship between landscape metrics and electricity consumption is as follows: 

      (4.4)     

 

 

 

 

 

 

 

 

The panel data analysis utilizing the random-effects was performed to understand the 

impact of a metric on electricity consumption. The random-effects model indicates that one 

metric is significantly correlated with electricity consumption, mean patch area (AREA_MN), 

with a 0.01 significant level (Table 4.15). The remaining metrics were not significantly 

correlated with electricity consumption for this study.  

 

Table 4.15: Random effects panel data analysis results.  

PLAND NP PD ED LSI AREA_MN 

Coefficient 2.0280 -0.3468 -138.7726 -0.1452 -46.8625 4.1058* 

Constant 183.1866 307.6474 391.2038 290.9861 980.9685 14.5148 

* Significant at 0.01 

  

The mean patch area describes the sum of all developed patch areas divided by the 

number of patches for a class. This metric increased within each district throughout the study 

period, with the exception of District 4; indicating that as the developed area increased, 

fragmentation decreased (Table 4.16). Districts 1 and 5 projected a decrease in the number of 

patches (NP) and an increase in the percentage of developed area. Thus, an increase in mean 

patch area. However, District 4 projected a relatively constant mean patch area from 2016 to 

2031. This is due to the increase in the developed area (24%) and the number of developed 

patches (27%) increasing from 2016 to 2031.  
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Table 4.16: Metrics Percentage Change  

%age Change from 2016 - 2031  
AREA_MN PLAND NP 

District 1 55% 18% -24% 

District 4 -2% 24% 27% 

District 5 77% 19% -33% 

 

Electricity consumption will increase by 4.1058 (106 kWh) for every unit increase in the 

mean patch area. This indicates that District 1 will increase by 209.27 (106 kWh), exhibiting a 

linear increase in electricity consumption (Fig 4.24). District 5 increase of 262.035 (106 kWh), 

indicating a sharp increase within the 5-year period from 2011 to 2016. However, a slight decline 

in electricity consumption from 2016 to 2031. This is indicative of the decline in urban 

development within the district. District 4 increases the least at 18.96 (106 kWh). This is due to 

District 4 experiencing a relatively constant mean patch area, AREA_MN, from 55.1832 (2016) 

to 54.1004 (2031).  

 

 

Figure 4.24: Projected electricity consumption trend 
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District 1 and 5 findings are consistent with recent research, as urban areas expand 

consequentially electricity consumption increases (Zhao, Thinh, and Li 2017; Chen et al. 2011). 

However, additional factors of fragmentation, such as the number of patches (NP) and the 

percentage of developed area, were found to be correlated with energy consumption (Chen et al. 

2011). This study did not support this finding. It is suggested to increase the number of time 

periods analyzed and the number of metrics in order to provide a better understanding of the 

relation of landscape metrics and electricity consumption over time.  

 

4.6 Summary 

From 2001-2016, urban growth within El Paso county concentrated within the city limits 

of El Paso. The majority of growth occurred within Districts 5 (east side), 1 (west side), and 4 

(northeast), with District 5 experiencing a vastly increase in linear growth. The developed 

growth is concentrated within medium and high intensity sub-categories; which represents 

single-family housing, and compact housing and commercial use; respectively. However, high 

intensity does not dominate the districts’ landscape. Single-family housing dominates the 

districts landscape as represented with low and medium intensity categories. The fragmentation 

and increase in the irregularity of sub-categories indicates possible mixed-use within the 

developed categories.  

Future growth is expected to be evenly distributed within the city of El Paso and outside 

the city limits. The future city landscape mimics that of the past, with Districts 1, 4, and 5 

dominating in the percentage of growth. However, the intensity differs from past growth trends 

with District 1 leading in percentage growth followed by District 4 and lastly District 5. These 

districts are expected to experience infill of development, with District 4 experiencing slight 

fragmentation. Outside the city limits of El Paso, growth is concentrated adjacent to Districts 5, 

6, and 1. These areas concentrated within potential annexation areas, with the exception of 

outside District 1 growth.  
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Mean patch area is positively correlated with electricity consumption. This metric 

describes the developed area per number of patches. Contrary to recent research, various metrics 

describing fragmentation and growth, such as the number of patches (NP) and percentage of 

landscape (PLAND) were not found to be significantly correlated with electricity consumption  
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Chapter 5: Conclusion 

5.1 Summary of Research Objectives and Findings 

Objective 1) Provide an understanding of El Paso’s past growth from 2001 – 2016 utilizing 

change analysis.  

Using land-cover data from the U.S. government generated National Land Cover 

Database (NLCD), a land cover change analysis was performed for El Paso County. The land 

cover classes examined were developed (all urban growth) vs barren (undeveloped) classes. In 

addition, the NLCD developed sub-categories vs barren (undeveloped) classes were examined. 

The results indicate El Paso experienced constant growth from 2001-2016, with 2001-2006 

experiencing the largest percentage of growth at 12.73%. The counties’ urban growth continued, 

however at a lower percentage of 5.66% and 4.15%, in 2006-2011 and 2011-2016, respectively.  

The majority of this growth occurred within the city limits of El Paso. The city accounted for 

71.43% of the counties’ growth from 2001-2006; and decreased to 68.23% and 59.1% in the 

following 5-year increments.  

The cities’ consistent growth primarily occurred within Districts 5 (31.72%), 1 (28%), 

and 4 (12.25%) from 2001-2016. Examining urban growth in 5-year increments, from 2001-

2006, the cities’ growth occurred within Districts 1 (30.47%) and 5 (25.61%); followed by 

District 6 (21.08%). The following years, Districts 5, 1, and 4 were the top districts of city 

growth, with District 5 exceeding at 36.25% and 43.94% from 2006-2011 and 2011-2016; 

respectively. 

Examining a breakdown of the developed area within each district, the NLCD developed 

sub-categories growth were examined. High and medium intensity sub-categories were the 

leading categories of growth within each district. The high intensity represents compact housing 

(apartments) and commercial areas; while medium intensity consists of single-family housing. 

District 5 experienced nearly a three-fold increase from 2001-2016 in medium intensity (single-

family) and high intensity (compact housing high and commercial area) at 289% and 276%, 
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respectively. District 5 continued to lead in the largest percentage growths within high and 

medium intensity among the 5-year incremental periods, with 129.26% percent growth within 

medium intensity from 2001-2006. District 1 experienced the top growth sub-category was open 

space at 79% from 2001-2016. However, further examination of the 5-year increments indicate 

this growth mainly occurred from 2001-2006, and changed to high and medium intensity within 

the following 5-year study periods.  

Objective 2) Utilize landscape metrics to analyze El Paso’s urban dynamic growth patterns. 

Class-level landscape metrics were calculated for both developed and developed sub-

categories within Districts 5, 1, and 4. The developed landscape metrics results suggest a 

decrease in fragmentation within each district. This indicates infill occurred as the developed 

areas increased within each district. This is in compliance with the overall goal within Plan El 

Paso’s Comprehensive Plan to “encourage infill development within the existing City over 

peripheral expansion to conserve environmental resources, spur economic investment, repair 

social fabric, reduce the cost of providing infrastructure and services, and reclaim abandoned 

areas” (City of El Paso 2012).   

Single-family housing dominates the districts landscape as the low and medium intensity 

sub-categories. Though high intensity was one of the leading growth sub-categories, it comprises 

the least amount of area within each district. This is verified in Plan El Paso, which states El 

Paso offers limited multi-family housing, with the majority of housing comprised of single 

detached homes (City of El Paso 2012). The increase in fragmentation within the sub-categories 

suggests possible mixed-use neighborhoods.  

Landscape-level metrics examine the landscape in its’ entirety including barren 

(undeveloped) areas. The results indicate fragmentation among all districts, suggesting mixed-

use neighborhoods with diverse land-use categories.  

Objective 3) Predict future land-use within El Paso County for 2031 utilizing CA-Markov 

and apply landscape metrics to understand growth patterns.  
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Utilizing CA-Markov, El Paso’s future land-use for 2031 was projected. The CA-Markov 

model was found to be highly accurate with a Kappa Coefficient Agreement of “almost perfect”, 

above 85%, and an overall accuracy of above 93%. Contrary to the previous 15-year period 

(2001-2016), the projected developed growth percentages are evenly distributed among the city 

of El Paso and outside city limits at 51% and 49%, respectively. Therefore, both areas were 

examined further. The city growth patterns mimic those of the previous 15-year period with 

growth concentrating within Districts 1, 4, and 5. However, District 1 leads in growth, followed 

by District 4 and 5.  

Outside El Paso city limits, growth is concentrated adjacent to Districts 1, 5, and 6. The 

areas adjacent to Districts 5 and 6 are in potential annexation areas according to Plan El Paso 

Comprehensive Plan. The growth outside of District 1 does not occur within a potential 

annexation area.  

 The landscape metrics were applied to the fastest-growing districts within the city of El 

Paso, Districts 1, 4, and 5. These districts experienced infill. However, District 1 experiences 

infill at a slower rate than the remaining district. Infill should be encouraged as discussed in Plan 

El Paso (City of El Paso 2012). 

Objective 4) Examine the relationship between El Paso’s landscape metrics and electricity 

consumption. 

Using a random effects panel analysis, mean patch aria (AREA_MN) was positively 

correlated with electricity consumption. This suggest that as developed areas increased and patch 

areas decrease, consequently electricity consumption increased. This is due to the increase in 

developed area. While, the remaining metrics were not found to be significantly correlated. 

Suggesting that more observations, both time and metrics, should be implemented for further 

study.  
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5.2 Significance and Recommendations 

“Managing El Paso’s outward expansion is perhaps the most complex and difficult 

strategy…”, Plan El Paso Comprehensive Plan (City of El Paso 2012). This study aims to assist 

decision-makers and stakeholders with lessons learned from El Paso’s past and future urban 

growth trends and subsequent patterns, and their influence on electricity consumption in order to 

make informed decisions for a better future for El Pasoan’s. Knowing where El Paso has 

experienced growth and the projected growth areas for 2031, allows decision-makers to mitigate 

unwanted growth patterns and encourage optimal patterns such as infill. The following 

recommendations are based on the findings of this study: 

• Continue to encourage high intensity growth, in particular compact housing such 

as apartments. Thus, will increase the sub-categories’ area and provide compact 

housing options.     

• Plan for annexation adjacent to District 5 due to the extensive growth this district 

experienced and is projected to experience. The projected growth is to continue 

adjacent to the district. However, outside the city limits.  

• Encourage infill/compact growth within District 1 as apposed to the projected 

growth adjacent to District 1, which is in agreement with Plan El Paso’s goals. 

• Continue infill/compact growth to reduce electricity consumption.  

These recommendations may be enforced through policies, zoning, subdivision planning, 

and availability of utilities as the state in Plan El Paso (City of El Paso 2012).  

 

5.3 Limitations and Future Studies 

This study consists of the following limitations and recommendations to improve this 

study for future research:   
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• The proposed Borderland Expressway project is not included in this study. 

Construction for the project is slated to begin 2022 and would extend the existing 

Loop 375 to the New Mexico state line located within District 4 (TxDOT 2020). 

The Borderland Expressway and its’ impact on urban growth is suggested to be 

included for future studies.  

• The CA-Markov presented in this study considered the spatiotemporal aspects of 

the study area. It is recommended that socio-economic factors such as population 

change, employment change, highway accessibility, and income be incorporated 

into the model to provide a more thorough understanding of various factors 

affecting urban growth.  

• This study utilized past urban trends to predict future urban expansion. It is 

recommended that various growth percentage scenarios be incorporated to 

provide an understanding of future growth pattens, based on the scenarios along 

with a sensitivity analysis for each scenario.  

• Obtaining electricity consumption data for developed sub-categories is suggested 

to analyze the relationship of the landscape metrics and consumption among the 

sub-categories.  

• The NLCD data used in the study were limited to 5-year increments from 2001-

2016. Obtaining land-use data for current years, is recommended to provide a 

more current study. This limitation also affected the landscape metrics and 

electricity consumption analysis to a 2-year study period (2011 and 2016). 

Additional land-use information would improve the metrics and electricity 

consumption analysis. In addition, the panel data analysis may support the 

fixed/random-effects model with the additional time periods.    

• Continued projection of growth past 2031 is recommended to understand long-

term land-use growth.  
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• A policy scenario of implementation of El Paso’s Smart Code (City of El Paso 

2020) and its’ impact on urban growth is recommended to be included in the 

study.  
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