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ABSTRACT 

As land use around bodies of water changes, the need to model the body of water increases. 

Models help to educate, understand, and predict the state of water. Process-based models are 

commonly used in modelling bodies of water, but there are challenges with these kinds of models. 

They require data which can be difficult for certain communities to obtain due to logistics or cost, 

are computationally intensive, technically complicated, and require calibration. In contrast, a data-

driven model simply connect relationships from the data, are not as computationally intensive nor 

technically complicated, and do not require calibration. This research compared a data-driven 

model with a process-based model to verify if a data-driven model is a viable alternative to process-

based model using the same sets of data. The research also attempted to find a relationship between 

water quality data, hydrological data, meteorological data, and remote sensing data in the form of 

electromagnetic radiation obtained by satellites Landsat 5 and Landsat 7. The study area for this 

research was in Occoquan Reservoir over a five-year period (2008-2012). A long short-term 

memory neural network model was developed and fed with data. The results of the model were 

then compared with the results from a CE-QUAL-W2 analysis. The comparison suggested that a 

data-driven model cannot be used as an alternative to a process-based model. Further research is 

required as the data used had multiple gaps which affected the performance of the data-driven 

model. Optimal data for future research should have high frequency of sampling, less censored 

data, and electromagnetic radiation readings obtained from an unmanned aerial vehicle as opposed 

to a satellite. 
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CHAPTER 1: INTRODUCTION 

Water quality is an important issue as water sustains life. As land use changes around 

bodies of water, the influx of nutrients gets affected. In order to understand the state of a body of 

water, computer modeling is required. A computer model can predict the changes in water quality 

occurring within a body of water. For example, an increase of nutrients, such as phosphates and 

nitrates, within the water can promote harmful algal blooms (HABs) Algal blooms can affect the 

taste of water as well as being toxic to both humans and animals (Falconer, 1989). Though water 

quality parameters are commonly modeled using a process-based model, there are difficulties that 

arise in that the underlying equations used in the models require extensive data, some of which 

can be difficult to obtain due to logistics, costs, or other reasons. Software that run the models 

require multiple inputs aside from the raw data, such as the area, depth, precipitation, and 

evaporation to name a few thus increasing both the complication of the software and the work 

needed to collect such data (Tong and Chen, 2002). They also require calibration which increases 

the amount of effort required to run the model. The benefit of these steps though is that they add 

real world boundaries to the model parameters increasing the accuracy and precision. Additionally, 

due to the number of processes the software runs concurrently, the computer that runs the software 

must have a high computing power (Cox, 2003). The lower the computing power, the longer it 

takes to run the software.  

In contrast, data-driven models completely ignore the equations and simply bridge the input 

and output variables through statistical or machine learning methods (Orouji et al., 2013). Data-

driven models are less technically complicated as it only requires a background of statistical 

knowledge. With data-driven models, while there are no strict rules in what kind of data can be 

used, there should at least be some degree of relationship between the data. This can be both an 



2 

advantage and a disadvantage as the model can detect relationships between data where none was 

thought possible, but also not able to detect the difference between actual data and erroneous data. 

Without calibration and additional inputs, the model isn’t constrained by physical and scientific 

laws. Data-driven models allow for the combination of data from different sources that is normally 

not seen in process-based models (Shen et al., 2019). The source that is used in process-based 

models are the water itself as well as the weather conditions. The source not commonly used in 

process-based models comes from the electromagnetic radiation that’s being sent by the sun and 

being reflected off the Earth’s surface. 

 Remote sensing is the act of recording data at a place of interest without physically being 

at that location. Some examples of remote sensing are installing a sensor in a river to measure flow 

rate, using cameras to count the number of cars that pass through an intersection, and using 

satellites to measure the electromagnetic radiation. Satellites, such as the Landsat series, are used 

to record the electromagnetic radiation reflected off the Earth’s surface. All particles on Earth 

reflect and absorb light, or electromagnetic radiation, to some degree. Clear water can be thought 

of as clean water whereas water with high turbidity, or cloudiness, can be thought of as dirty as it 

indicates a high amount of particles. Those particles can then be detected using RS which leads to 

further improving our understanding of bodies of water. Some examples of RS in water quality are 

using RS for monitoring purposes (Ritchie et al., 2003), quantification of shallow water quality 

parameters (Liu et al., 2003), and estimating coastal water quality (Brando and Dekker, 2003). 

There are some limitations in remote sensing for water quality though. RS can only capture the 

state of the water at the surface. As the depth increases, the amount of light that can penetrate the 

water decreases. There is also interference with the data recorded depending on the state of the 
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weather at the time the images are taken. Clouds can completely cover up a scene and atmospheric 

effects can affect the readings of the images. 

The purpose of this project was to compare a data-driven model with a process-based 

model. Due to the reliance on computers and processing power, data-driven models and remote 

sensing are still relatively new technologies compared to how well-established process-based 

models are. What this research did was take the data from water quality sampling, hydrological 

data, and meteorological data and combine it with data obtained from remote sensing to predict 

the nutrients in the water. A long short-term memory neural network (a type of data-driven model) 

was developed with which the data was fed into and the results compared with a previous analysis 

done using CE-QUAL-W2 (a process-based model). The CE-QUAL-W2 analysis was used as a 

criterion to rank the performance of the data-driven model.   

This project used Occoquan Reservoir, a highly eutrophic reservoir located in Virginia, as 

a testbed. It has a seasonal pattern of high nutrients in the summer which produces a large amount 

of HABs in the water. The reservoir is used for recreational purposes as well as a source of drinking 

water for the population living nearby. This is a cause for concern as, previously stated, algal 

blooms affect the taste of water and can be toxic to humans. This location was chosen as there has 

been a previous analysis using a CE-QUAL-W2 (a process-based model) by the Occoquan 

Watershed Monitoring Laboratory (OWML). The analysis was from 2008 to 2012. 

Study Area 

Occoquan Reservoir is a body of water in northern Virginia that sustains life for both 

residential and wildlife, as well as being used for recreational purposes. The reservoir is formed 

by a dam on Occoquan River and the river is fed by two sub-basins, Bull Run and Occoquan Creek 
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(The Occoquan Watershed | OWML | Virginia Tech). The reservoir occupies an area of 2100 acres 

and supplies 40% of clean drinking water for approximately 2 million people. The watershed 

which drains into the river covers 590 square miles and according to the 2000 census, contains a 

population of 363,000 residents (Occoquan Reservoir par. 6). The major land use is for agricultural 

with urban land use on the rise (Miller et al., 1997). 

While being used as a fresh water supply, the reservoir is currently on Virginia’s Impaired 

Waters – 303(d) list which is a list of a state’s list of impaired and threatened waters. The reasons 

for being on the list are due to high levels of phosphorous, turbidity, low dissolved oxygen, the 

presence of copper sulfate, and growing presence of pharmaceuticals (Occoquan Reservoir). The 

reservoir is considered highly eutrophic during the summer which leads to algal blooms. 

The Occoquan Watershed Monitoring Laboratory (OWML) collects and analyzes water 

samples from the Occoquan Reservoir on a weekly basis at various sampling stations located 

throughout the reservoir. Figure 1 shows the reservoir and the locations of the sampling stations. 

In this figure, the water is flowing towards the SE point. 
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Figure 1 Occoquan Reservoir 

 While the samples taken are from the surface and bottom of the reservoir, this project 

focuses on just the surface as well as for just one station, RE02. A previous analysis was done by 

OWML on Occoquan Reservoir using a linked model of a watershed model, HSPF and a receiving 

water model, CE-QUAL-W2 for the years 2008-2012.  

Figure 2 shows the complete watershed which ultimately flows to the reservoir. 
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Figure 2 Occoquan Watershed Linked Model (Kumar et al., 2014) 

 

The analysis uses the  flow rate of the reservoir, dissolved oxygen (DO), temperature, 

alkalinity, organic phosphorous (OP), Total Nitrate [ammonium (NH3-N) + Nitrate-Nitrite (Ox-

N)], total suspended solids (TSS), chlorophyll a (Chla) as well as meteorological data which 

consists of air temperature, dew temperature, wind speed, and cloud cover. CE-QUAL-W2 is a 

process-based model in that it uses mathematical equations derived from mass, energy, and 

momentum conservation along with empirical observations to simulate conditions. 
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CHAPTER 2: GOALS AND OBJECTIVES 

The main goal of this project is to predict concentrations of nutrients in water using 

machine learning combined with remote sensing data. Specific objectives include: 

1) Develop a machine learning model using Long Short-Term Memory neural 

network to estimate concentration of nutrients in a eutrophic reservoir.  

2) Compare the neural network model with CE-QUAL-W2, a process-based model.  

3) Determine non-parametric relationships between remote sensing data, hydrologic 

data, and water quality data using machine learning. 
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CHAPTER 3: LITERATURE REVIEW 

Water Quality Modeling 

Managing water is an important task as water is required for all living organisms. To 

manage water, a model is required in order to simulate the system and see where, if any, problems 

are occurring. The change in regulations are the deciding factor in what the specific problem can 

be. Due to that, as regulation changes, so do models (Ambrose et al., 2004).  

Though observed data is preferred in determining if a body of water is impaired, there are 

situations where models are used. Models are an option in areas where getting water samples would 

be difficult. Another situation would be to predict the change in water quality due to change in 

land use or from changes in water management (Loucks et al., 2017).  

The models can simulate and predict the changes in chemical pollutant through three 

fundamental principles, the conservation of energy, mass, and momentum. Conservation in such 

that all three can neither be created nor destroyed but can be altered in some form. The amount 

going into a system should be equal to the amount coming out of the system. The applications of 

the conservation of energy in water modeling is to model evaporation of water through the change 

in temperature within the system and to find the interactions of water due to kinetic energy. 

Conservation of mass is the base of most water quality models. It is applied to water mass for 

hydrodynamics and the mass of matter to find the change in concentration of said matter. Newton’s 

first law of motion, which is based off the law of conservation of momentum, states that an object 

at rest will stay at rest and an object in motion will remain in motion until acted upon by an external 

force. From the conservation of momentum, multiple equations for fluid motion are derived. 

(Martin and McCutcheon, 1999). Mass balance, for example, combines the conservation of mass 

and the conservation of momentum. Multiple flow rates going into a lake combine to equal the 
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flow rate coming out of the lake with each different inflow carrying different concentrations of 

matter. The matter can interact with one another once inside the lake to change form, but the total 

mass will remain the same which then comes out of the lake. The equation for a mass balance as 

well as conservation in general is shown below: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡𝑠 ± 𝐶ℎ𝑎𝑛𝑔𝑒  

These models which are derived from laws are considered a mechanistic model. We can 

apply mathematics to known relationships and calculate the changes. The other type of model is 

called an empirical model. Empirical models use statistics to find relationships within the data 

without using any established laws or background information of the data. Many modern software 

which can model water quality use a combination of mechanical and empirical models.  

Models can range from simple to complex where some factors are omitted in the simple 

models and in a complex model, multiple factors are included in the calculation. The simple 

models model an ideal world where the properties stay constant and as the model gets more 

complex, it starts to get closer to reality. No model can accurately capture reality though as reality 

always has some degree of randomness. Simple models can also be done by hand as the 

calculations are relatively quick.  

While this project focuses on the CE-QUAL-W2 model, there are numerous other models 

being used in water quality. Watershed models that are commonly used are Soil and Water 

Assessment Tool (SWAT) (Neitsch et al., 2002), Storm Water Management Model (SWMM) 

(Huber and Barnwell, 1988), and Hydrologic Simulation Program-FORTRAN (HSPF) (Bicknell 

John C Imhoff John L Kittle et al, 2005.). OWML uses a linked model for their analysis of 

Occoquan Reservoir in which the outputs of an HSPF model are the used as the inputs for the CE-

QUAL-W2 model. 
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CE-QUAL-W2 

CE-QUAL-W2 (W2) is a two-dimensional hydrodynamic and water quality model that is 

commonly used in long and narrow waterbodies. The model was developed by Edinger and 

Buchak in 1975 and is still currently being updated. The most recent version of the model is version 

4.2.1 which was released on July 21, 2020 (ce.pdx.edu/w2). It has been used in various waterbodies 

worldwide since as early as 1979. The W2 model was first used for Occoquan Reservoir in 1994 

by the Northern Virginia Planning District Commission (NVPDC 1994). W2 models basic 

eutrophication processes such as algae/nutrient/DO dynamics. It can simulate the water surface 

elevation, velocity, temperature, and other water quality constituents, some of which are DO, 

alkalinity, NH3-N, Ox-N, TSS, and CHLa. The model assumes lateral homogeneity which explains 

the longitudinal and vertical water quality gradients. Some of the capabilities of the model are long 

term simulations, multiple branches, waterbodies, inflows, and outflows which allow complex 

water systems to be modeled, variable grid spacing so that higher resolution can be used where 

needed, and customization in the output. (Cole and Wells, 2003). The W2 model uses five 

governing equations, the x and z momentum, continuity equation state equation, and free surface 

equation. Table 1.1 shows the data required to run the model as well as a brief description of the 

data. 

Table 1.Required Data for W2 Model 

Data Required Brief Description of Data 

Geometric Data Defines the finite difference in the watershed. 

Initial Conditions The condition of waterbody when model first starts 

Boundary Conditions Inflows, Outflows, Head and Surface Boundary Conditions. 

Hydraulic Parameters Dispersion and diffusion coefficients. 

Kinetic Parameters Coefficients that affect the constituent kinetics. 

Calibration Data Provides initial and boundary conditions and assesses performance. 
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Data-Driven Modeling (Machine Learning) 

Data-driven, or machine learning, models are a relatively new concept in water quality 

modeling. The rise of technology in computational power allows us the capability to feed data into 

an algorithm and produce results formed from the hidden relationships in the data as well as 

capturing the underlying physics and chemistry. Some of the methods used are neural networks 

(Kuo et al., 2007), fuzzy inference methods (Orouji et al., 2013), support vector machines (He et 

al., 2014), and k-nearest neighbors (Towler et al., 2009). As this project uses a neural network, this 

section will cover the neural network concept as well as previous literature on water quality that 

uses neural networks. Before neural networks are discussed though, statistical modeling needs to 

be reviewed as it is the basis to data-driven models. 

STATISTICAL MODELING 

Statistical modeling is the process applying mathematical equations to raw data and 

reaching a conclusion. The models can be used to find the relationship between variables and non-

variables and measuring the correlation. The purposes of a statistical model are to predict, estimate, 

and describe (Friendly and Meyer, 2015).  

Linear regression is one such method used to model the relationship between single or 

multiple variables. The model has a dependent variable, the variable that you’re interested in, and 

the independent variables, which can explain the dependent variable. The equation for a univariate 

linear regression is: 

𝑌 = 𝑎 + 𝑏𝑋 

Where Y is the dependent variable, X is the independent variable, b is the slope of the line, 

and a is the intercept of the line. 
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For multivariate linear regression: 

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 +⋯+ 𝑏𝑛𝑋𝑛  

Where n is the number of variables that are being used to explain the dependent variable. 

An error term is commonly added to the equation to account for the difference between the 

model and observed values. A scatterplot is useful when looking at raw data as a trend can be 

inferred by visual inspection. A regression line can then help identify the outliers and influential 

data points. The closer the points are to the line, the more those points influence the direction of 

the line. A coefficient of correlation, R value, can be calculated with values ranging from -1 to 1 

to determine the degree of relationship between the variables. At 1, as one variable increases, so 

does the other; and at -1, as one variable increases, the other decreases. In situations with multiple 

variables, the coefficient of determination, R2, is a better term. The values for the coefficient of 

determination range from 0 to 1 and explain the percentage variation in y explained by all the x 

variables. A value close to 1 shows that the variables are highly correlated. 

The phrase, “correlation does not imply causation” appears in statistical literature. It 

indicates that even if variables have a high correlation, it is not the direct cause of the variable that 

you’re interested in.   

NEURAL NETWORK 

Neural networks get its name from the neural network of an animal’s brain. A neural 

network can be described as a network of nodes with weights in-between that adjust as the learning 

progresses. Neural networks are typically made up of three layers, the input layer, the hidden layer, 

and the output layer. The input layer, in statistical terms, can be thought of as the independent 

variable. In machine learning terms, it is the features of the dataset. The output layer, in statistical 
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terms, can be thought of as the dependent variable.  In machine learning terms, it is the label of the 

dataset. The hidden layers contain the activation functions. The activation function are monotonic 

differential functions that assigns an output value from an input. Depending on the function used, 

it can range from 0 to 1, 0 to ∞, or -1 to 1 (Fausett, 1994). Figure 3 shows a basic neural network 

with three layers. The input layer has three neurons, the hidden layer has six neurons, and the 

output layer has one neuron. 

  

Figure 3. Basic Neural Network with three inputs and one output 

A neural network is considered deep learning if the number of hidden layers is larger than 

one or the total layers, including input and output, are greater than three. Deep learning can be 
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beneficial for more complex datasets that involve time-series or computer vision (Hinton and 

Osindero, 2006).  

Some examples of previous literature that have used neural networks is the prediction of 

monthly water quality parameters in Axios River in Northern Greece (Diamantopoulou et al., 

2005), estimating the biochemical oxygen demand (BOD) of an inlet to a wastewater treatment 

plant (Dogan et al., 2008), computing the dissolved oxygen (DO) and BOD using eleven water 

quality input variables (Singh et al., 2009), multi objective optimization of water quality 

management (Wen and Lee, 1998), estimating water quality index in the Langat River Basin, 

Malaysia (Juahir et al., 2004). 

NEURON 

A neuron is basis for other neural networks. The equations for other forms of neural 

networks are essentially made up of neurons. A neural network is made up of inputs (x), hidden 

states (h), and outputs (y). To get both the hidden states and the output, a sigmoid function, or an 

activation function, is applied to a linear equation with the inputs and a weight applied to it and a 

bias term to squash the values between 0 and 1. 

ℎ = 𝜎(𝑊ℎ
𝑇𝑥 + 𝑏ℎ) 

𝑦̂ = 𝜎(𝑊𝑜
𝑇ℎ + 𝑏𝑜) 

Ultimately, the goal of neural networks is to optimize the weights of each neuron with an 

optimization function. 
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HYPERPARAMETERS 

The hyperparameters of a neural network determine how complex the model is. It allows 

the model to be more flexible depending on your inputs and the output you’re interested in. The 

activation function is considered a hyperparameter, and it for example, can be changed to better 

suit if the output you’re looking for is categorical or quantitative.  

Another hyperparameter, the optimization function, determines how the model is learning 

and how quick it’s learning. Gradient descent is one example of an optimizer. Optimization 

functions, like activation functions, have advantages and disadvantages to different datatypes. 

Knowing when to use which function is learned either through experience or with the use of a 

hyperparameter tuner.  

RECURRENT NEURAL NETWORK 

While an artificial neural network can handle time series data, a recurrent neural network 

(RNN) is better suited to handle time series data as it can use its internal state (memory) to process 

sequences of inputs. A standard artificial neural network is a feed forward model in that the data 

only moves forward. While it’s still learning, it’s not learning using previous memory. An RNN 

uses back propagation to take what it has learned and apply it to new data. Due to this, it is 

becoming the common choice for sequential, or time series prediction.  

The figure below is a diagram for how data travels through an RNN. 
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Figure 4: RNN Diagram Olah, Christopher “Understanding LSTM Networks” August 2015 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

The diagram can be explained through the following equations: 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡) 

𝑦𝑡=𝑊ℎ𝑦ℎ𝑡 

Where ht is the hidden state, or output vector, Whh is the weight for the hidden state, ht-1 is 

the previous hidden state, Wxh is the weight of the input, xt is the input, Why is the weight of the 

output, and yt is the output. In this case, the activation function is a tanh. Essentially, both the 

previous state and the current input along with the corresponding weights applied are summed and 

squashed to a value between -1 and 1 through the tanh function. That value is then fed as the next 

hidden state into the next cell along with the input at time step +1. This is repeated until all time 

steps are used, then the final output is produced. 

One of the drawbacks of an RNN is that as the gap increases between two points in time, 

the RNN has difficulty in learning to connect the information (Hochreiter, 1991). Long Short Term 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Memory (LSTM) is a type of RNN which can handle long-term dependencies (Hochreiter and 

Urgen Schmidhuber, 1997).  

LONG SHORT-TERM MEMORY (LSTM) 

The cell of an LSTM contains multiple gates that allow or prevent data from moving to the 

next cell using a range of 0 to 1 where 0 stops data from passing through and 1 completely opens 

the gate to allow data through. The figure below shows the diagram of an LSTM. 

 

Figure 5: LSTM Diagram Olah, Christopher “Understanding LSTM Networks” August 2015 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

 The first gate, called the forget gate (ft), determines if the data should be kept or thrown 

away with the equation: 

𝑓𝑡 = 𝜎(𝑤𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) 

The next gate, the input gate (it), determines which value will get updated. This is done through 

two equations: 

𝑖𝑡 = 𝜎(𝑤𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) 
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𝑐𝑡̅ = 𝜎(𝑤𝑐𝑥𝑡 + 𝑅𝑐ℎ𝑡−1 + 𝑏𝑐) 

Then, the cell state is updated using the equation: 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐𝑡̅ 

The final gate, the output gate (yt), then determines what exactly is going to be outputted using the 

equations: 

𝑦𝑡 = 𝜎(𝑤𝑦𝑥𝑡 + 𝑅𝑦ℎ𝑡−1 + 𝑏𝑦) 

ℎ𝑡 = 𝑦𝑡𝜎(𝑐𝑡) 

Where xt is the input vector, wi, wf, and wy are weights matrix for the input, forget, and output 

gates to the input, Ri, Rf, and Ry define the weights matrix for the input, forget, and output gates 

to the input, bi, bf, and by are the input, forget, and output gate bias, ct-1 and ht-1 are the previous 

cells output vector and ht is the output vector (Barzegar et al., 2020). 

Remote Sensing 

Remote sensing, as the name implies, is the process of obtaining data from an object 

without physically being there. Generally, the term is applied when the object of interest is the 

Earth. Sensors are attached to either a satellite or an aircraft and records images when flown over 

the point of interest. The type of remote sensing can be either passive, which relies on the radiation 

emitted from the Sun, or active, which the sensor itself emits energy. The data that’s being recorded 

is the reflection and absorption of electromagnetic radiation. The data is then preprocessed to 
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account for the atmospheric effects on the radiation. Further processing of the images involves 

removing the cloud cover, changing the resolution of the images, or to stich the images into a 

mosaic. 

Electromagnetic radiation is a type of energy that can propagate through space. All matter 

that are above absolute zero emit some electromagnetic energy. Electromagnetic energy is 

modeled either with a wave model or a particle model. In a wave model, the electromagnetic 

radiation is modeled as harmonic waves which are characterized by the wavelength and frequency. 

The formula used to calculate the wavelength is: 

𝑐 = 𝜆𝑣 

Where c is the speed of light (c=3x108 m/s), λ is the wavelength (measured in meters), and 

v is the frequency (measured in hertz). 

The electromagnetic spectrum, as seen in Figure 6, is a representation of the range of the 

electromagnetic energy.  
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Figure 6. Electromagnetic Spectrum Ronan, Philip “EM spectrum” August 2007 

https://en.wikipedia.org/wiki/File:EM_spectrum.svg Licensed under the Creative Commons Attribution SA 3.0 

In remote sensing, the visible spectrum, infrared (IR), and microwave are commonly used. 

The visible spectrum is what the human eye perceives as visible light. It ranges from approximately 

400 nanometers to 700 nanometers. Infrared can be broken up into three sections, near infrared, 

mid infrared, and thermal infrared. Both the visible and infrared range can be used to detect 

composition of the area of interest and vegetation. The values within the electromagnetic spectrum 

are what is measured with sensors. As the sun emits electromagnetic radiation, the sensors pick up 

what is reflected from the Earth’s surface. Since the air in the atmosphere is made up of multiple 

gases, there is an atmospheric interference on the radiation. As the electromagnetic radiation 

travels through the atmosphere, the molecules of in the air cause the radiation to get absorbed or 

scatter.  

The factors that affect the quality of the data taken by sensors are the spatial resolution, 

temporal resolution, spectral resolution, and the radiometric resolution. Digital images are made 

https://en.wikipedia.org/wiki/File:EM_spectrum.svg
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up of pixels, essentially a square made of varying color intensities. The higher the resolution an 

image has, the more pixels there are. The spatial resolution is the ratio of a pixel to an area within 

the image taken. When the area is smaller, it is easier to identify features within the image, such 

as buildings, trees, or plants for example. With a larger area, the multiple features within the pixel 

are obscured by performing an algorithm on the electromagnetic data of all the features in the 

pixel. A sensor attached to a satellite has a larger field of view than a sensor attached to an aerial 

vehicle on Earth. The tradeoff though is that the images taken from the satellite have a much larger 

pixel area.  

The temporal resolution of a dataset is the time between when the image is taken of the 

point of interest. Sensors are commonly attached to satellites which revolve around the Earth 

taking images. Different satellites revolve around the Earth at various velocities and orbits. When 

the satellites take an image at a certain location, it takes time for the satellite to get back to the 

same spot over the Earth to take another image. Sensors on an aerial vehicle aren’t restricted by 

time as they can be flown when needed. Which satellite to use and if an aerial vehicle can be used 

is highly dependent on user interest. 

Sensors cannot detect the complete range of the electromagnetic spectrum. Sensors have 

multiple bands where each band has a specific range of values of the electromagnetic spectrum 

which can be captured. The more bands a sensor has, the more information can be obtained within 

a single pixel. Sensors can be divided into two categories, hyperspectral and multispectral. While 

both include multiple bands, the main difference being that the bands in hyperspectral are 

contiguous. Since different components on Earth will reflect and absorb electromagnetic radiation, 

choosing a sensor that has a higher number of bands isn’t necessarily the correct choice. If the 
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electromagnetic characteristics of the substance of interest is known, the sensors that can detect 

those values can be chosen.  

Radiometric resolution describes the brightness or the shade of each pixel which relates to 

the amount of detail in an image. Sensors take images with a certain amount of bits per pixel. As 

the bits increase, the higher shades of a color can be recorded. For example, a 1-bit image will only 

show black or white whereas a 2-bit image will show black, dark grey, light grey, and white. The 

range of shading grows exponentially as the bit size increases. 

Landsat 5 and Landsat 7 are two satellites that have been used for remote sensing. Landsat 

5 was launched into orbit on March 1st, 1984 and was deactivated on June 5th, 2013. Landsat 7 was 

launched into orbit on April 15, 1999 and is still in used today. Both satellites orbit the Earth every 

16 days at an altitude of 705 kilometers. Landsat 5 carries two sensors, a multispectral scanner 

(MSS) and a thematic mapper (TM). Landsat 7 carries only one sensor, an enhanced thematic 

mapper plus (ETM+). The two tables below show the bands and the spectral ranges of each band. 

For this research, TM bands 1-7 of Landsat 5 and ETM+ bands 1-7 of Landsat 7 were used. 

Table 2: Landsat 5 Bands 

Bands Spectral Range 

Band 4 Visible Green (MSS) (0.5 to 0.6 µm) 

Band 5 Visible Red (MSS) (0.6 to 0.7 µm) 

Band 6 Near-Infrared (MSS) (0.7 to 0.8 µm) 

Band 7 Near-Infrared (MSS) (0.8 to 1.1 µm) 

Band 1 Visible (TM) (0.45 - 0.52 µm) 

Band 2 Visible (TM) (0.52 - 0.60 µm) 

Band 3 Visible (TM) (0.63 - 0.69 µm)  

Band 4 Near-Infrared (TM) (0.76 - 0.90 µm) 

Band 5 Near-Infrared (TM) (1.55 - 1.75 µm) 

Band 6 Thermal (TM) (10.40 - 12.50 µm) 

Band 7 Mid-Infrared (TM) (2.08 - 2.35 µm)  
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Table 3: Landsat 7 Bands 

Bands Spectral Range 

Band 1 Visible (ETM+) (0.45 - 0.52 µm) 

Band 2 Visible (ETM+) (0.52 - 0.60 µm) 

Band 3 Visible (ETM+) (0.63 - 0.69 µm) 

Band 4 Near-Infrared (ETM+) (0.77 - 0.90 µm) 

Band 5 Near-Infrared (ETM+) (1.55 - 1.75 µm) 

Band 6 Thermal (ETM+) (10.40 - 12.50 µm) 

Band 7 Mid-Infrared (ETM+) (2.08 - 2.35 µm) 

Band 8 Panchromatic (ETM+) (0.52 - 0.90 µm) 
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CHAPTER 4: METHODOLOGY 

Data Collection 

Two types of data were provided by Occoquan Watershed Monitoring Laboratory 

(OWML) for this research: water quality data and hydrological and meteorological data.  

WATER QUALITY AND HYDROLOGICAL AND METEOROLOGICAL DATA 

The data consisted of weekly readings (with the occasional missing data for a week) of 

dissolved oxygen (DO), temperature, alkalinity, ortho-phosphate phosphorus (OP), ammonia 

nitrogen (NH3-N), oxidized nitrogen (Ox-N), total suspended solids (TSS), and chlorophyll a 

trichromatic (CHLA) and flow rate at various sampling stations from the year 2008 to 2012. As 

seen in Figure 1, RE02 was the station chosen. This station is located at the very end of the reservoir 

so that all the tributary streams and rivers are included in the analysis. In addition to the water 

quality data, the meteorological data was also provided. The meteorological data consisted of the 

air temperature (TAIR), dew temperature (TDEW), wind speed, and cloud cover. The data was 

obtained from the weather station at Dulles International Airport. In addition, the flow rate (Q), 

given by OWML, was included into the meteorological dataset. OWML used the data to predict 

nutrients to do an analysis using CE-QUAL-W2 which will be used as a comparison to the model 

developed in this project. The data that CE-QUAL-W2 and other process-based models don’t 

utilize is electromagnetic data obtained from satellites. 

The table below shows the distribution of total weekly samples provided by OWML for 

each year for a total of 193 entries. 



25 

Table 4: Description of Water Quality Data 

Total Weekly Samples Year Comments 

44 2008 2 weeks were skipped in Spring (dd),1 week skipped in 

Summer, 5 weeks skipped in Winter. 

36 2009 4 weeks skipped in Spring, 4 weeks skipped in Fall, 8 

weeks skipped in Winter. 

36 2010 5 weeks skipped in Spring, 4 weeks skipped in Fall, 9 

weeks skipped in Winter. 

34 2011 6 weeks skipped in Spring, 4 weeks skipped in Fall, 8 

weeks skipped in Winter. 

40 2012 5 weeks skipped in Spring, 1 week skipped in Summer, 1 

week skipped in Fall, 5 weeks skipped in Winter. 

 

The following tables give a summary of the water quality data and the hydrological and 

meteorological data. 

 
Table 5: Summary of Water Quality Data 

 
DO 

(mg/L) 

TEMP 

(ºC) 

TALK 

(mg/L as 

CaCO3) 

OP 

(mg/L 

as P) 

NH3-N 

(mg/L as 

N) 

OX-N 

(mg/L 

as N) 

TSS 

(mg/L) 

CHLA 

(µg/L) 

count 193 193 193 193 193 193 193 193 

mean 8.70 18.77 48.31 0.01 0.05 1.32 4.26 12.56 

std 2.88 8.19 12.03 0.01 0.05 0.81 3.16 10.14 

min 1.63 2.5 20.4 0.005 0.005 0.05 0.5 1 

25% 7.2 11.7 39.1 0.005 0.02 0.83 2.7 5.3 

50% 8.93 19.6 47.5 0.005 0.04 1.1 4 12 

75% 10.98 26 56.1 0.01 0.07 1.61 4.8 17 

max 13.83 31.7 74.3 0.07 0.26 4.35 25 79 

 
Table 6: Summary of Hydrological and Meteorological Data 

 
TAIR (ºC) TDEW (ºC) WIND 

SPEED 

(m/sec) 

CLOUD 

COVER 

Q (m3/s) 

count 193 193 193 193 193 

mean 17.6818 9.5328 2.5032 6.0811 15.5843 

std 8.9038 9.6401 1.3582 3.2285 13.6130 

min -3.8545 -15.3157 0 1.25 1.35 

25% 10.972 2.8867 1.545 2.8125 5.6 

50% 18.4795 10.528 2.54 5.9375 12.32 

75% 24.693 17.637 3.245 9.1667 21.55 

max 33.1125 27.6855 6.19 10 86.34 



26 

SATELLITE DATA 

The satellite data was obtained using a Python Script that pulled pixel data from the Landsat 

7 and Landsat 5 satellite images in the Google Earth Engine archive. Specifically, the script was 

fed the coordinate data of the RE02 sampling station and a circular area with a radius of 100 meters 

centered around that point. The script then takes the average of the pixel data within the area. The 

radius of 100 meters ensures that multiple pixels are selected, and that no foliage is within the area. 

There were two problems encountered with the satellite data. The first is that both Landsat 

7 and Landsat 5 takes images of an area every 16 days. Most of the days that images were taken 

do not match up with the days that water samples were taken. The other problem, which 

contributed to the previous, is that a large chunk of satellite data was missing during the time span 

of 2008 to 2012 as can be shown in Table 7. A device which corrects the swaying of the satellite 

failed on May 31st, 2003. As a result, there are gaps in the images obtained by Landsat 7 leaving 

78% of the pixels remaining.  
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Table 7: Description of Remote Sensing Data 

Images 

Obtained 

Images Missing Year Comments 

7  28 2008 Images obtained were clustered around June to 

September. 

9 24 2009 Images obtained were clustered around May to 

August, one image in October, and one image 

in November. 

15 17 2010 Images obtained were clustered around April to 

September, one image in October, and one 

image in December. 

8 19 2011 Images obtained were clustered around May to 

August, one image in February, and one image 

in October 

4 15 2012 Two images obtained for May, one in July, and 

one in August. 

A summary of the dataset is shown in Table 8. 

Table 8: Summary of Remote Sensing Data 

 
B1 B2 B3 B4 B5 B6 B7 B32 B3/B

2 

B2/B

3 

count 146 146 146 146 146 146 146 146 146 146 

mean 110.6

9 

127.4

5 

106.5

7 187.15 78.79 860.93 48.21 43819.46 0.25 0.36 

std 191.5

2 

213.2

1 

180.7

9 312.70 

143.8

9 

1337.3

9 90.03 93719.75 0.39 0.56 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

75% 246.3

0 

296.7

5 

240.0

4 452.49 

152.9

2 

2885.8

5 78.57 57674.10 0.74 1.08 

max 963.6

4 

925.6

3 

755.1

6 

1400.4

1 

615.2

9 

2995.0

0 

438.2

9 

570270.5

2 1.15 1.45 

 

Preprocessing the Data 

Before the data can be fed into a machine learning algorithm, it was preprocessed using a 

Python script. For this project, as the data covers a span of five years, it was split so that the model 

will train with the first four years (2008 to 2011) and then tested on the fifth year (2012). 
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So that the datasets can be merged properly and leave the minimal amount of gaps, the 

dates were converted to week per year. 

The features range from values of thousandth for concentrations and up to tens of thousands 

for the spectrum. So that the data is closer together in range, scaling was applied. Since water 

quality data can have outliers which can be attributed to rare events like storms, robust scaling was 

chosen as it is highly resistant to the effects of outliers (Spence and Lewandowsky, 1989). 

𝑧 =
𝑋 −  𝑀𝑑𝑛

𝑄3 − 𝑄1
 

X is the value of interest, Mdn is the median, Q3 is the 75th percentile and Q1 is the 25th 

percentile.  

Grouping the Data 

The data was separated into three main groups:  

1) Water Quality Data (W) 

2) Hydrological and Meteorological Data (H) 

3) Remote Sensing Data (R) 

Data sets were then created for all possible combinations for a total of seven different data 

sets as shown in Table 9. 

Table 9: Dataset Combinations 

Combination 1 W 

Combination 2 H 

Combination 3 R 

Combination 4 WH 

Combination 5 WR 

Combination 6 HR 

Combination 7 WHR 

The idea behind using several combinations is to compare the accuracy of the results to see 

how well nutrients can be modeled while omitting certain set(s) data and if having remote sensing 
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data can improve the results of current modeling methods. CE-QUAL-W2, the process-based 

model, used the dataset of combination 4, water quality data and hydrological and meteorological 

data.  

Creating the Neural Network Model 

The neural network model chosen for this project was a Long Short Term Memory (LSTM) 

RNN which can handle long-term dependencies (Hochreiter and Urgen Schmidhuber, 1997). 

While an artificial neural network can be used for water quality data, RNN is better suited for time 

series data like the water quality data that was used in this project. 

The code that was used for the LSTM model was written in Python coding language. The 

Python libraries used are listed in Table 10 along with a description of what they are used for.  

Table 10: Libraries Used in Code. 

Library Description 

Numpy Numerical computing. 

Pandas Data manipulation and analysis. 

Matplotlib Data visualization. 

Statsmodels Statistical analysis. 

Seaborn Data visualization. 

Tensorflow Machine learning platform. 

Geextract Extract satellite imagery data from Google Earth Engine. 

Keras Tuner Optimizes the hyperparameters for neural network. 

 

The code was written using a Jupyter Notebook environment. The benefit of using a Jupyer 

Notebook to run the code is the non-linearity of its workflow. It allows the changing of the models 

hyperparameters and to run the snippet of code for the model rather than having to run through the 

whole script. 
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Three models were created to predict three different parameters in water: chlorophyll a, 

total nitrogen, and total suspended solids. For each model, the datasets created from the 

combination of data groups were used as input.  

Hyperparameter Tuning 

A library for Python called Keras Tuner was utilized to tune the hyperparameters. In the 

code, the options for the number of neurons per layer were given, the number of layers, the 

activation function, the optimizer, and the learning rate for the optimizer. Table 11 shows the 

hyperparameters and the options that were entered. 

Table 11: Hyperparameter Options 

Hyperparameter Options 

Number of Neurons 32, 64, 96, 128, 160, 192, 224, 256 

Number of Layers 1, 2, 3, 4 

Activation Function ReLU, Sigmoid, Tanh. 

Optimizer Adam, SGD 

Learning Rate 0.0001, 0.001, 0.01, 0.1 

   

Table 12 lists the optimal hyperparameters found using Keras Tuner for the seven combinations. 

Table 12: Optimal Hyperparameters Found 

Combination Number of 

Neurons 

Number of 

Layers 

Activation 

Function 

Optimizer Learning 

Rate 

1 (W) 256,128,224 3 sigmoid adam 0.01 

2 (H) 192,192,160 3 sigmoid adam 0.01 

3 (R) 128,128,224,256 4 sigmoid adam 0.01 

4 (WH) 224,192,256 3 sigmoid adam 0.01 

5 (WR) 128,128,224,224 4 sigmoid adam 0.01 

6 (HR) 192,224,256,224 4 sigmoid adam 0.01 

7 (WHR) 192,192,224 3 sigmoid adam 0.01 

 

In a sigmoid function, for values less than -5, it returns a value close to 0. For values greater than 

5, it returns a value close to 1. The equation used is as follows 



31 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
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CHAPTER 5: RESULTS AND DISCUSSIONS 

Processed data 

A summary of the of the processed data for the water quality data, hydrological and 

meteorological data, and remote sensing data is shown in the table below. Merging all the datasets 

together to a week per year entry introduced additional zero values into the datasets. The additional 

zero values come from weeks where there is no water quality data, but there is remote sensing data 

and vice versa.  

Table 13: Summary of Processed Water Quality Data 

 
DO TEMP TALK OP NH3-N OX-N TSS CHLA 

count 219 219 219 219 219 219 219 219 

mean -0.1508 -0.0949 -0.1731 0.9886 0.2972 0.1792 0.1704 0.1048 

std 0.7057 0.5339 1.0729 2.3278 0.8429 1.0241 1.1678 0.7596 

min -1.4885 -0.9651 -2.4378 -1 -0.5455 -1.1561 -1.1429 -0.7410 

25% -0.5982 -0.5871 -0.5135 0 -0.3636 -0.3757 -0.4286 -0.4980 

50% 0 0 0 0 0 0 0 0 

75% 0.4018 0.4129 0.4865 1 0.6364 0.6243 0.5714 0.5020 

max 0.9593 0.7346 1.5784 13 4.1818 3.8728 7.7857 4.9163 

 

Table 14: Summary of Processed Hydrological and Meteorological Data 

 
TAIR TDEW WIND 

SPEED 

CLOUD 

COVER 

Q 

count 219 219 219 219 219 

mean -0.0703 -0.0239 -0.0277 -0.0208 0.2332 

std 0.5920 0.5685 0.7579 0.4839 0.8490 

min -1.1753 -1.4261 -1.1107 -0.7222 -0.6032 

25% -0.5791 -0.5121 -0.5826 -0.5556 -0.3822 

50% 0.0000 0.0000 0.0000 0.0000 0.0000 

75% 0.4209 0.4879 0.4174 0.4444 0.6178 

max 0.96032 1.140054 1.958678 0.611111 4.771242 
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Table 15: Summary of Processed Remote Sensing Data 

 
B1 B2 B3 B4 B5 B6 B7 B3Squa

red 

B3/

B2 

B2/

B3 

count 219 219 219 219 219 219 219 219 219 219 

mean 73.79

11 

84.96

67 

71.04

56 

124.76

97 

52.52

79 

573.95

41 

32.13

85 

29212.9

729 

0.16

38 

0.23

90 

std 164.7

156 

184.0

150 

155.8

087 

269.91

88 

123.1

167 

1164.1

020 

76.87

36 

79188.5

148 

0.33

56 

0.48

87 

min 0 0 0 0 0 0 0 0 0 0 

25% 0 0 0 0 0 0 0 0 0 0 

50% 0 0 0 0 0 0 0 0 0 0 

75% 0 0 0 0 0 0 0 0 0 0 

max 963.6

442 

925.6

350 

755.1

626 

1400.4

135 

615.2

867 2995 

438.2

931 

570270.

5172 

1.15

33 

1.44

55 

Due to the large amount of zero values in the remote sensing data, the scaling method had little 

effect.  

Neural Network Model 

The following figure shows the flow of the neural network for just the water quality data 

by itself. 

 

Figure 7: Neural Network Process 
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The steps are as follows: 

1. Data is fed into the neural network. 

2. Chlorophyll-a is predicted. 

3. A loss function, mean squared error, is applied using the predicted chlorophyll-a and the 

actual chlorophyll-a. 

𝑀𝑆𝐸 =
1

𝑛
𝛴(𝑦 − 𝑦̂)2  

n is the number of data points, y is the actual value, and ŷ is the predicted value. 

4. The calculated error is then backpropagated through the neural network to update the 

weights. 

5. This process is repeated to minimize the loss function until it starts to plateau and the 

network stops learning. 

 

The model uses the first 177 entries as the train data as it represents data taken from 2008 

to 2011. The first entry is the first week of 2008 and the 177th entry is the 51st week of 2011 (52nd 

week is missing data). Since the window of time steps used is 5, there are 37 entries available to 

test on. The 37 entries represent 2012 starting with the 178th entry as the first week in 2012 and 

the 214th entry as the 47th week in 2012. In the following figures, know that the time steps are 

weekly for a year, but with missing gaps in-between. 

The R2 score used to evaluate the performance of the models uses the following equation. 

𝑅2 = 1 −
𝛴(𝑦 − 𝑦 )

𝛴(𝑦 − 𝑦̅)
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Because the score is being evaluated on unseen data, the results can fall outside of the range 

of 0 to 1 that is commonly seen in statistical analysis. A negative result means that the model is 

performing worse with the new unseen dataset than on the data that the neural network trained on. 

This suggests that for the fifth year which the model tested on, it’s receiving a combination of 

values which the model had not seen for the first four years that the model trained on. 

CHLOROPHYLL A 

Figure 8 through Figure 14 represent the combinations 1-7 as previously seen in Table 9. 

The table that follows the figures lists the R2 values for all the models.  

 

Figure 8: Chlorophyll-a - Combination 1 (W) 
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Figure 9: Chlorophyll-a - Combination 2 (H) 

 

Figure 10: Chlorophyll-a - Combination 3 (R) 
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Figure 11: Chlorophyll-a - Combination 4 (WH) 

 

Figure 12: Chlorophyll-a - Combination 5 (WR) 
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Figure 13: Chlorophyll-a - Combination 6 (HR) 

 

Figure 14: Chlorophyll-a - Combination 7 (WHR) 
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Table 16: Chlorophyll a Coefficient of Determination 

Combination R2 

1 (W) 0.127 

2 (H) 0.012 

3 (R) -0.077 

4 (WH) 0.016 

5 (WR) 0.121 

6 (HR) -0.024 

7 (WHR) 0.095 

 

The model that has the highest R2 value is combination 1, water quality data by itself. The 

model that has the lowest R2 value is combination 3, remote sensing data by itself. The models are 

underfitting and fail to estimate the sudden peaks of the actual values. The CE-QUAL-W2 model 

results, which are in the appendix, has an R2 value of 0.23. While the R2 is still low, the CE-QUAL-

W2 model does estimate spikes in the data. 

TOTAL NITROGEN 

Figure 15 through Figure 21 represent the combinations 1-7 as previously seen in Table 9. 

The table that follows the figures lists the R2 value for all the models. 
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Figure 15: Total Nitrogen - Combination 1 (W) 

 

Figure 16: Total Nitrogen - Combination 2 (H) 



41 

 

Figure 17: Total Nitrogen - Combination 3 (R)  

 

Figure 18: Total Nitrogen - Combination 4 (WH) 
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Figure 19: Total Nitrogen - Combination 5 (WR) 

 

Figure 20: Total Nitrogen - Combination 6 (HR) 
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Figure 21: Total Nitrogen - Combination 7 (WHR) 

 

Table 17: Total Nitrogen Coefficient of Determination 

Combination R2 

1 (W) 0.013 

2 (H) -0.064 

3 (R) -0.004 

4 (WH) -0.001 

5 (WR) 0.041 

6 (HR) -0.195 

7 (WHR) 0.003 

 

The model that has the highest R2 value is combination 5, water quality data and remote sensing 

data together. The model that has the lowest R2 value is combination 6, hydrological and 

meteorological data and remote sensing data. The overall performance for total nitrogen is lower 

than the models for chlorophyll a. The CE-QUAL-W2 model has an R2 value of 0.168. 
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TOTAL SUSPENDED SOLIDS 

Figure 22 through Figure 28 represent the combinations 1-7 as previously seen in Table 9. 

The table that follows the figures lists the R2 value for all the models. 

 

 
Figure 22: Total Suspended Solids - Combination 1 (W) 
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Figure 23: Total Suspended Solids - Combination 2 (H) 

 
Figure 24: Total Suspended Solids - Combination 3 (R) 
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Figure 25: Total Suspended Solids - Combination 4 (WH) 

 
Figure 26: Total Suspended Solids - Combination 5 (WR) 
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Figure 27: Total Suspended Solids - Combination 6 (HR) 

 
Figure 28: Total Suspended Solids - Combination 7 (WHR) 

 
Table 18: Total Suspended Solids Coefficient of Determination 

Combination R2 

1 (W) 0.006 
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2 (H) -0.43 

3 (R) -0.156 

4 (WH) -0.299 

5 (WR) -0.374 

6 (HR) -0.388 

7 (WHR) -0.517 

 

The model that has the highest R2 value is combination 1, water quality data by itself. The 

model that has the lowest R2 value is combination 7, all three datasets combined. The overall 

performance of total suspended solids is lower than chlorophyll a and total nitrogen. The CE-

QUAL-W2 model has an R2 value of 0.197. 

One thing to note though about the comparison between the neural network and CE-

QUAL-W2 is that CE-QUAL-W2 has used the dataset as calibration so it’s modelling from data 

that it has already seen. The neural network is created by learning the weights from the data for 

the first four years, but is being tested on the fifth year, which it has never seen.  

Discussion 

All three neural network models performed worse than the CE-QUAL-W2 model. While 

all three don’t do a good job predicting the spikes in the data, chlorophyll-a appears to perform the 

worst out of the three nutrients. In chlorophyll-a, the remote sensing data by itself has the lowest 

R2 value but is improved when coupled with water quality data. Water quality and remote sensing 

together perform better than water quality and hydrological and meteorological data. In total 

nitrogen, the model is improved according to the R2 when remote sensing data is added to water 

quality data, but not with the hydrological and meteorological data. In total suspended solids, the 

R2 value suggests that the remote sensing data does not improve the performance.  

There are multiple factors that could be affecting the performance of these models. The 

factors can be separated into two categories, external factors and internal factors. 
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EXTERNAL FACTORS 

The glaring issue that contributes the most to the performance is the remote sensing data. 

Aside from the large amount of missing data that had been previously mentioned, there are issues 

with the temporal resolution, spatial resolution, and the spectral resolution. Since images are taken 

from Landsat 5 and Landsat 7 every 16 days, the readings do not match up with the dates at the 

time the water samples are taken. At best, they are within a few days of the sampling date. Landsat 

5 and Landsat 7 has a pixel resolution of 30 meters by 30 meters. There is a loss of data when 30 

square meters is condensed into one pixel. Especially when the model is predicting nutrients which 

are magnitudes smaller in comparison. The two satellites can only detect seven bands of spectral 

data. There could be still be a relationship occurring in the electromagnetic spectrum that isn’t 

being detected by the Landsat satellites. The peak reflectance of chlorophyll-a is at about 700 nm 

wavelength (Jiao et al., 2006) which is between the detectable range of the bands of the Landsat 

satellites. 

The water quality data itself contributes to the performance. A true value of the 

concentration of a nutrient is difficult to detect. If the concentration falls below a certain threshold, 

a sensor detects a large amount of noise so common practice is to set the concentration to the 

threshold limit regardless of what’s being read or simply state that the value is less than the limit. 

The term used for this practice is censored data. As a result, the dataset will have deceiving 

repeated values which introduce errors in analysis and models. This is apparent in Table 5 for 

Organic Phosphorous as 50% of the data has a value of 0.005. The method of collecting water 

samples is another possible contributor. The current method collects water samples once every 

week, but not at a set time step. For example, on one week the sample is collected on a Monday, 

but then on the following week, the sample is collected on a Wednesday, then the week after that, 
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the sample is taken on a Tuesday. Some weeks are skipped as well due to the reservoir being frozen 

at the sampling station. (Tate et al., 1999) suggest that not only is frequency important for 

modeling, but also timing. Samples should be taken before, during, and after storms. 

Some papers have attempted to resolve the issue of censored data. (El-Shaarawi and Dolan, 

1989) estimate water quality concentrations using maximum likelihood. (Gilliom and Helsel, 

1986) found that the best method to minimize errors is the log-probability regression method.    

The CE-QUAL-W2 analysis provided to me by OWML is for 2008 to 2012, but the 

complete data they have collected goes from 1973 to the present. Since this research was to 

compare the results of the neural network model and the CE-QUAL-W2 model, it was limited to 

the amount of samples used. Next step in the research would be to remove the limits and feed all 

the data available into the neural network model.  

INTERNAL FACTORS 

While it is possible that a LSTM neural network would not work for water quality 

prediction, the results of other research papers say otherwise. A hybrid CNN/LSTM model 

successfully predicts dissolved oxygen and chlorophyll-a with data samples every 15 minutes 

(Barzegar et al., 2020). They used electrical conductivity, oxidation-reduced potential, pH, and 

water temperature as inputs. Another LSTM model predicts nutrients with a high degree of 

accuracy with samples every 6 hours and a total of 2188 entries (Xu et al., 2019). The two papers 

suggest that for a neural network to predict successfully, a large data set and high frequency of 

sampling are required. In comparison, the dataset for this project could be considered sparse. The 

data being sparse is what could be contributing to the model performance. Something else that the 

sparse data affects is the scaling of the data. While robust scaling can be used to reduce the impact 
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of outliers, the addition of multiple zero values into the dataset reduces the utility of the scaling. 

And in the case of remote sensing data where most of the dataset is missing, it does not work.  

The hyperparameters in a neural network allow for multiple combinations of parameters. 

As each parameter becomes a choice, the total amount of simulations required become 

multiplicative. The total amount of simulations requires a longer time to run a search algorithm for 

the optimal hyperparameters so the choices for this project had to be culled to a reasonable length. 

Future attempts could attempt a brute force method on a dedicated computer and largely increase 

the choices and run the search.  
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CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 

When comparing the R2 values of a data-driven model and a process-based model, the data-

driven model performs less than the process-based model. The performance of the data-driven 

model could be improved with a high frequency dataset, but the same could be said for a process-

based model. The comparison between the two with high frequency data would be for future 

research. What this research revealed though is that a data-driven model, specifically a long short-

term memory recurrent neural network, fails at predicting with low frequency, small dataset 

compared to the process-based model.  

The remote sensing data from Landsat 5 and Landsat 7 at the particular location and for 

the particular time span is unfortunately not usable. It is inconclusive if remote sensing data could 

be used to enhance the accuracy of a neural network for nutrient prediction. A suggestion for future 

research would be to use unmanned aerial vehicles (UAV). UAV’s are small enough that they can 

be carried to the field on the same day sampling occurs. Instead of the data being several days 

apart, it can be reduced to within hours of when the water sample was taken. Since the UAV is 

closer to the surface of the water than a satellite, the spatial resolution is higher detailed. The UAV 

also bypasses any atmospheric interference that occurs as well as cloud coverage. Different sensors 

can be attached to the UAV for a wider spectral range allowing for further inputs into the neural 

network model. 

Other types of satellites could also be used. Various satellites that are currently in orbit 

have different resolutions than the resolutions mentioned for Landsat. While Landsat images are 

freely available to the public, some satellite images have a cost attached to them. The costs for 

obtaining images from those satellites may be cheaper than the cost-of-entry for UAVs. 
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Future research would benefit from using an alternate form of assessing the performance 

of the model rather than using an R2 score that this research did. The values were low for this 

research, but had the R2 been higher, an additional measure would’ve been utilized such as 

ANOVA. The negative values of the R2 can also be misleading for those not familiar with neural 

networks. 

Future research should investigate hybrid models which combine both data-driven models 

and process-based models. (Mekonnen et al., 2015) fused a data-driven model, an artificial neural 

network, with a process-based model, Soil and Water Assessment Tool, to predict the runoff 

generation from prairie landscapes. Their results suggested that the fused model can improve 

modelling capabilities. 
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APPENDIX 

The figure shows a plot of the estimation of chlorophyll a from CE-QUAL-W2. The 

calculated R2 value is 0.23.  
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The figure shows a plot of the estimation of total nitrogen from CE-QUAL-W2. The R2 value is 

0.168.  
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The figure shows a plot of the estimation of total suspended solids from CE-QUAL-W2. The R2 

value is 0.197. 
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