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Abstract

Microemulsion systems are a great pharmaceutical tool for the delivery of formulations

containing multiple hydrophilic and hydrophobic ingredients of varying physicochemical

properties. These systems are gaining popularity because of its long shelf life, improved

drug solubilisation capacity, easy preparation and improvement of bioavailability. Despite

the advantages associated with the use of microemulsion systems in pharmaceutical in-

dustries, the major challenge impeding their use has been and continues to be the lack of

understanding of these systems.

Microemulsions can be mathematically modeled by an initial boundary value problem in-

volving a sixth order nonlinear time dependent equation. In this thesis, we present a numer-

ical method simulating the process of microemulsions. Relying on the mathematical model

proposed by Gommper et. al [8], we show that our numerical method successfully captures

the microemulsification process and is uniquely and unconditionally solvable. While we

use the C0 Interior Penalty finite element method for the spatial discretization, the time

discretizations are based on a modified convex splitting of the energy of the systems.
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Chapter 1

Introduction

Microemulsions form when a surfactant or more commonly a mixture of surfactants and/or

co-surfactants, lowers the interfacial tension to ultra-low values, permitting the thermal

motions to spontaneously disperse the two immiscible phases.

Depending on the phase, there are two types of microemulsions: water-in-oil (w/o) and

oil-to-water (o/w). For microemulsions, the size of the droplets of the dispersed phase

ranges between 5 and 100nm while that of macroemulsion is greater than 100 nm.

Microemulsions at the molecular scale are a finely even system. Here, the energetics of

entropy and surface energies are opposing each other. The increment in entropy system

depends of the higher number of droplets dispersed. This starts out as the most simple form

where oil, water surfactant are mixed in di↵erent ratios and then the formed phases are

tracked. Accordingly, single phases when spherical oil droplets are dispersed in water and

the other where spherical water droplets are dispersed in oil.The change of these droplets

may be from spherical to cylindrical or to worm-like micelle e.t.c [14]. Some instrumental

techniques like nuclear magnetic resonance, dynamic light scattering, X-ray scattering e.t.c

and their derivatives are widely used to study and carrry out related experimentations on

microemulsions.

These microemulsion systems are highly useful and have several key applications which

span a lot of areas including drug delivery, food, fuel, consumer and industrial cleaning

formulations, polymerization, cosmetics, agrochemicals e.t.c.

Microemulsions are thermodynamically stable, fluid and optically clear dispersions of two

immiscible liquids such as oil and water.This is basically done by the dispersion of droplets

of one liquid into the other. These droplets are called the dispersed phase while the
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second liquid is the continuous phase.

To describe the microemulsification process, we first introduce the model of phase separa-

Figure 1.1: Whisking an emulsion of oil-in-water (left) and water-in-oil (right).

tion described by the fourth order Cahn-Hilliard equation and then, derive the sixth-order

Cahn-Hilliard equation modeling the microemulsification process.

1.1 Phase Separation

Consider two immiscible liquids oil and water confined to a region ⌦ ⇢ R2
, as described in

Figure 1. In the absence of any mixing, there are two distinct phases oil-rich phase �o = �1

and water-rich phase �w = 1. This can be mathematically described by means of

� : ⌦ ! R, � = �1 in ⌦o ⇢ ⌦ indicates an oil-rich region.

Similarly, � = 1 in ⌦w ⇢ ⌦ indicates the water-rich region. It is known that at high

temperatures, we achieve a uniform mixing/distribution of the volume fractions (50-50)

mixture of water and oil indicated by � = 0). Upon cooling this solution, below a certain

temperature, the solution separates into oil-rich and water-rich phase one observes that

while the total volume of oil and water stays the same, some regions occupied by oil shrink
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and those occupied by water grow and vice versa. This describes the phenomena of spinodal

decomposition investigated by Cahn and Hilliard [?] and with associated energy of the fluid

given by

E(�) =

Z

⌦

"
1

✏
f(�) +

✏

2
|r�|2

#
dx, (1.1)

where

• f(�) = 1
4(�

2�1)2 denotes the bulk energy associated with the propensity of separation

into the pure states ±1 ,

• ✏

2 |r�|
2 denotes the gradient energy density associated with the interfacial energy

depicting the tendency to mix.

Note that if � = ±1 then, r� = 0 so in the regions of pure states, this term vanishes.

The pure phases are separated by a di↵use interface of thickness ✏. In order to model

the interface between two phases, phase field models, such as the use of the Cahn-Hilliard

equation, place a di↵use interface between the phases of the system. This also allows for a

natural description of topological changes in the model, without relying on any additional

input from the user.

1.2 Microemulsions

To induce an emulsification, a surfactant/emulsifier is added to this system. A surfactant

is a surface active molecule which exhibits an amphiphilic nature; with a coexistence of a

hydrophilic (water-loving) and a lipophilic (fat-loving) component. When a small amount

of amphiphilic molecules is added to a phase separated mixture of oil and water, a homo-

geneous microemulsion phase forms at � = 0. (See Figure below.)
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Figure 1.2:
Left: Adding surfactant to a composition of water-oil. Right: This
surfactant contains both hydrophobic or lipophilic (fat-loving tail) and
hydrophilic (water-loving head) properties

Derivation of Mathematical Model

According to Gompper and Zschocke 91 [9], there are two approaches to understand the

oil-water-surfactant mixture systems and their properties. These can be described as:

1. Microscopic approach: molecules and their interaction. Here the variables in this

theory are the local concentrations of the molecules.

2. Interfacial approach: the amphiphiles form monolayers at the microscopic oil-water

interface. Since the monolayers are almost incompressible their area is almost con-

stant so that their interfacial fluctuations are controlled by the elastic bending energy.

Relying on the Ginzburg-Landau free energy functional, there are two order parameters: �

and ⌧ that describe the free energy functional. Here � is a scalar order parameter which is

proportional to the local di↵erence of the oil and water concentration. While ⌧ characterizes

surfactant and ⌧ points in the direction of the heads of surfactant molecules. Assuming

that the interface thickness is of the same order as the length of a surfactant molecules and

that the surfactant molecules are aligned exactly along the local interface normal n that is

4



⌧ = ⌧0n where ⌧0 is the surfactant density at the interface, the free energy functional is of

the form:

E(�) = F0(�) +G0(�) (1.2)

where 2 > 0,

G0(�) =

Z

⌦

⇢
1(�)

2
|r�|2 + 2

2
(��)2

�
dx,

| {z }
tendency to mix

,

and

F0(�) =
�

2

Z

⌦

(�� �o)
2(�2 + h0)(�� �w)

2
dx

| {z }
interaction to separate

(1.3)

with � > 0 is surface energy density and the parameter h0 measures the deviation from

the oil-water-microemulsion coexistence. F0(·) has three local extrema at the oil-rich phase

� = �o = �1, the water-rich phase � = �w = 1 and the microemulsion phase � = 0

respectively.

Remark 1.2.1. We note that the properties of the surfactant and its concentration are

expressed through F0(�) and 1(�). The latter term is determined experimentally to be a

second order polynomial 1(�) = a0 + a2�
2. For more details of the (neutron-scattering)

experiments used to determine 1(�) see [16] and [17]. Thus,

G0(�) =

Z

⌦

⇢
a0 + a2�

2

2
|r�|2 + 2

2
(��)2

�
dx.

Remark 1.2.2. The energy functional (1.2) is similar to phase separation energy (1.1)

except for having an additional term which measures the bending energy 2
2 (��)

2 of the

energy E(�) in (1.2) and, F0(�) which introduces a microemulsion state through the addi-

tional term (�2 + h0). In the absence of amphiphillic molecules F0(�) possesses only two

states namely oil-rich and water-rich at �o and �w respectively.
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Remark 1.2.3. If 1(�) = a0 and 2 = 0, and F0(·) is adjusted accordingly, then the

energy functional E(�) represents classical Cahn-Hilliard free energy (1.1).

E(�) =
a
�1
0

4

Z

⌦

(�+ 1)2(�� 1)2 dx+

Z

⌦

a0

2
|r�|2 dx. (1.4)

1.3 Conservation Law

Since the order parameter � is a conserved quantity, it satisfies the following conservation

law:

@t�+r · j = 0 (1.5)

with mass flux j given by

j = �Mrµ,

where M ⌘ M(�) = 1 > 0 is a mobility, µ is the chemical potential di↵erences between

the phases defined as the first variation of the free energy ��E.

Conservation Law for phase separations

Set ⌦ ⇢ R2 is a bounded domain occupied by the binary mixture. For phase separation

phenomena, the energy functional E is given by (1.1). The conservation law assumes

the form of the fourth order Cahn-Hilliard equation (1.6)-(1.8) and which capturing the

dynamics of phase separation.

@t��r · (Mrµ) = 0, in ⌦ ⇥ (0, T ) (1.6)

µ := ��E = ✏
�1
�
�
3 � �

�
� ✏�� = 0 in ⌦ ⇥ (0, T ), (1.7)

@n� = @µ = 0 on @⌦ ⇥ (0, T ), (1.8)

where T denotes final time, M denotes the mobility function, µ denotes the chemical

potential and ��E denotes the variational derivative of E with respect to �. The details of

the calculation of ��E is provided in Appendix B.
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We note that the minimizing function � satisfies the which represent the Cahn-Hilliard

equation

Conservation Law for microemulsions

Now, let ⌦ ⇢ R2 is a bounded domain occupied by the ternary mixture. For microemulsions,

the energy functional E is given by (1.2). Furthermore, the chemical potential is

µ := ��E = f0(�)� 1(�)��� a2�|r�|2 + 2�
2
�, (1.9)

where 1(�) = a0 + a2�
2
, a2 > 0 and f0(�) := ��F0(�). The details of the calculation of

��E is provided in Appendix C. We note that f0(·) assumes the following form:

f0(�) =
�

2

⇣
6�5 + 4(h0 � 2)�3 + 2(1� 2h0)�

⌘
. (1.10)

Thus, the system we end up with is:

@t��r ·Mrµ = 0, (1.11)

f0(�)� 1(�)��� a2�|r�|2 + 2�
2
�� µ = 0. (1.12)

This system represents a system of DAE (Di↵erential Algebraic equations) consisting of a

linear second order evolutionary equation (1.11) and a fourth order nonlinear Cahn-Hilliard

type equation (1.12). We set the parameters appearing in the system as:

• h0 = 0.5, � = 1/3, 2 = 1;

• 1(�) = a2�
2 + a0 = �

2 � 4.

In view of of the above values, the system simplifies to:

@t��r · (rµ) = 0, (1.13a)

�
5 � �

3 + �|r�|2 �r · (�2r�) + 4��+ �2
�� µ = 0. (1.13b)

7



1.4 Convex Splitting Scheme for Cahn-Hilliard Equa-

tion

The numerical scheme uses a modified energy splitting technique which was introduced by

Eyre [7]. This scheme is first order accurate in time and results in an unconditionally energy

stable and unconditionally uniquely solvable. The idea of this scheme is to decompose the

energy E(�) described by either (1.1) or (1.2) for the phase separation or microemulsions

energy respectively into the di↵erence of two convex energies:

E(�) = Ec(�)� Ee(�)

and to treat Ec implicitly while Ee explicitly. This has been successfully applied to develop-

ing a time stepping scheme for the fourth order Cahn-Hilliard equation where the splitting

assumes the form

Ec(�) =

Z

⌦

⇢
�
4 + 1

4✏
+
✏|r�|2

2

�
dx, Ee(�) =

Z

⌦

�
2

2✏
dx.

The above convex splitting does not however, apply to the energy associated with the

microemulsions. As a consequence, we propose a new scheme derived from the Eyre’s

convex splitting scheme and will be discussed in Chapter 4.

1.5 Thesis Outline

The remaining thesis is organized as follows. In Chapter 2, we introduce useful notations,

definitions and results including the finite element method for second order problem. In

Chapter 3, we describe the C0 Interior Penalty (IP) finite element method for the fourth

order elliptic problem and then in Chapter 4, introduce the fully discrete modified convex

time splitting finite element scheme. Our proposed numerical scheme is based on a variant

of the Eyre’s convex splitting scheme in conjunction with the C0 interior penalty method [3]

8



and backward Euler for the space-time discretization. The main heart of the thesis lies in

proving the unique solvability of the scheme presented in Chapter 4. Chapter 5 presents

the numerical validation of our method and finally, we conclude the thesis in Chapter 6

with some future work directions. The table below lists the operators and function spaces

used in this chapter.

Additional definitions of the di↵erential operators such as r, �2 used throughout this

thesis are provided in Appendix A.

9



Table 1.1: Operators and Function Spaces

Notations

Chapters S/No Operators Function Spaces

1 ⌦ ⇢ R
d; d = 1, 2 : bounded

domain/microemulsion re-

gion.

L
2(⌦): Hilbert Space of square inte-

grable functions on ⌦ endowed with the

norm: kfk
p
=
�R

⌦ |f |p
� 1

p .

2 �0 : Oil-rich phase H
m(⌦):Sobolev space of order ‘m’ on ⌦

= {v 2 L
2(⌦); @xi 2 L

2(⌦) ; 1  i  d}

3 �w : Water-rich phase (r2
u : r2

v): inner product of the trace

of Hessian Matrice of u and the trace of

Hessian Matrix of v.

Chapter 1 4 � : Scalar order parameter

proportional to the local dif-

ference of oil and water con-

centration.

5 µ : chemical potential of the

Free Energy Functional.

6 ru =
⇣

@

@x
+ @

@y

⌘
u

7 r2
u=trace(H(u)) where

H(u) is the Hessian

Matrix of u. H(u) =0

BBB@

@
2
u

@x
2
1

· · · @
2
u

@x1@xn

@
2
u

@x2@x1
· · · @

2
u

@x2@xn

@
2
u

@xn@x1
· · · @

2
u

@x2
n

1

CCCA

trace(H(u)) = @
2
u

@x
2
1
+ @

2
u

@x
2
2
+

· · ·+ @
2
u

@x2
n
= r2

u

8 ��E = lim
↵!0

E(�+↵�)�E(�)
↵

:

The Gateaux Derivative of

E w.r.t �.

9 �u: Laplacian operator=

(r ·r)u = trace(H(u)).
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Chapter 2

Mathematical Preliminaries

2.1 Notation

Table 2.1: Operators and Function Spaces

Notations

Chapters S/No Operators Function Spaces

10 � = @⌦: Piecewise smooth

boundary of ⌦.

C(⌦): the set of continuous functions

on ⌦.

11 D
↵ = @

↵1

@
x
↵1
1

,
@
↵2

@
x
↵2
2

, . . .,
@
↵n

@x↵n
n

C
k(⌦): the set of continuous functions

whose first kth derivatives are also con-

tinuous on ⌦.

Chapter 2 12 C0(⌦):The space of bounded real-

valued continuous functions on ⌦ with

compact support in ⌦.

13 C0
¯(⌦):The space of bounded real-

valued continuous functions in C0(⌦)

on the clo.sure of ⌦ with compact sup-

port in ⌦.

14 H
k

0 (⌦) : Sobolev spaces of order k with

compact support in ⌦.

11



2.2 Definitions, Lemmas and Theorems

Proper Convex Functionals

A functional J : V ! R̄ is called convex if for all u, v 2 V and � 2 [0, 1] there holds;

J(�u+ (1� �)v)  �J(u) + (1� �)J(v)

J is proper convex if J(v) > �1, v 2 V , and J 6= +1.

and strictly convex if;

J(�u+ (1� �)v) < �J(u) + (1� �)J(v)

for all u, v 2 V , u 6= v, and � 2 [0, 1]. See [11] for more details.

Coercive Functionals

A functional J : V ! R̄ is said to be coercive if

J(v) ! +1 for k v kV! +1.

Gateaux Derivative

A functional J : V ! R̄ is called Gateaux-di↵erentiable in u 2 V if;

J
0(u, v) = lim

�!0+

J(u+ �v)� J(u)

�

exists for all v 2 V . Moreover, if there exists J 0 2 V
⇤ such that

J
0(u, v) = J

0(u)(v) = hJ 0(u), viV ⇤,V

v 2 V , then J
0(u) is called the Gateaux-derivative of J in u 2 V .
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Sobolev Spaces

Let ⌦ ✓ R
2 be a bounded domain and let ↵ = (↵1, ...,↵n) be a multi index of order

|↵| = ↵1 + ...+ ↵n = k, define;

D
↵ =

@
↵1

@x
↵1
1

. . .
@
↵n

@x↵n
n

where the derivative is understood in the sense of weak derivatives. Sobolev semi-norms

when k is a positive integer are defined as follows:

D
(1,0)

u =
@u

@x
, D

(0,1)
u =

@u

@y
↵ = (0, 1) and ↵ = (1, 0), with |↵| = 1

Thus for k = 1,

|v|2
H1(⌦) =

X

|↵|=1

||D↵
v||2

L2(⌦)

let v be C
1 function on ⌦ ✓ R

2. Then,

|v|2
H1(⌦) = ||D(1,0)

v||2
L2(⌦) + ||D(0,1)

v||2
L2(⌦)

=

Z

⌦

|@v
@x

|2dxdy +
Z

⌦

|@v
@y

|2dxdy

For k = 2 we have;

|v|2
H2(⌦) = ||D(2,0)

v||2
L2(⌦) + ||D(0,2)

v||2
L2(⌦) + ||D(1,1)

v||2
L2(⌦)

=

Z

⌦

|@2
x
v|2 dxdy +

Z

⌦

|@2
y
v|2 dxdy +

Z

⌦

|@x@yv|2 dxdy

Semi Norm

|v|H1(⌦) = 0 =) 5v = 0 but ; v = 0

Poinćare Inequality holds true on ⌦, i.e

||v||L2(⌦)  c||5 v||L2(⌦)

13



thus;

||v||2
H1(⌦) = ||v||2

L2(⌦) + ||D(1,0)
v||2

L2(⌦) + ||D(0,1)
v||2

L2(⌦)

= ||v||2
L2(⌦) + ||@xv||2L2(⌦) + ||@yv||2L2(⌦)

note; ||v||H1(⌦) = 0 =) v = 0 because |↵|  1

Define the Sobolev Spaces Hk(⌦) as follows;

H
k(⌦) = {v 2 L

2(⌦) : ||v||Hk(⌦) < +1}

Define;

H
k

0 (⌦) = {v 2 H
k(⌦) : D↵

v = 0 on @⌦ for |↵| < k}

The following theorem states that | · |Hk(⌦) is a norm on H
k

0 (⌦).

Theorem: Poincarè Inequality

Let ⌦ be a bounded polygonal domain. Then there exists a constant C such that;

||v||Hk(⌦)  C|v|Hk(⌦) 8v 2 H
K

0 (⌦)

thus;

H
K

0 (⌦) ⇢ H
k(⌦) such that D↵

v = 0 for |↵| < k

for k = 2;

H
2
0 (⌦) = {v 2 H

2(⌦) : D↵
v = 0 for |↵| < 2, |↵| = 0 and |↵| = 1}

= {v 2 H
2(⌦) : v = 0 and

@v

@x
=
@v

@y
= 0 on @⌦}

14



Figure 2.1: Deflection of a clamped membrane

2.3 Euler Lagrange Equations for membrane problem

In this section, we introduce the necessary and su�cient conditions for the existence of a

minimizer to the energy functional associated with the microemulsions. It turns out that

these conditions are the Euler Lagrange (EL) equations. Deriving these equations is impor-

tant because they represent the optimality conditions for existence of the minimizer � that

minimizes the energy E(�) functional. Furthermore, these EL equations are the building

blocks for the finite element method we rely on to compute the energy minimizer.

We start this chapter by deriving the EL equations for a stationary membrane problem

and then, present the finite element method for solving it. Finally, we present the EL

equations for the existence of a minimizer to the energy functional associated with the

microemulsions.

A membrane is a surface elastic body in its ground state whose potential energy is directly

proportional to the change of the surface area. Here, the ground state is a bounded domain

⌦ ⇢ R
2 with boundary � = @⌦ which is assumed to be piecewise smooth.

Under the influence of an external force with density f = f(x), x 2 ⌦ which acts perpendic-

ular to the (x1, x2)-plane, the membrane is deflected in the x3 plane. There is no deflection

for x 2 � since the membrane is clamped.

15



The equilibrium state is characterized as the physical state where the total energy of the

membrane attains its minimum. Thus, the total energy for this system is

J = Jp � Jf (2.1)

where Jp is the potential energy and Jf is the energy associated with the exterior force as

seen in [11]. Since the potential energy is proportional to the change in surface area;

Z

⌦

(1 + |5 u|2) 1
2dx�

Z

⌦

dx (2.2)

with the restriction |5 u|  1, we obtain;

Z

⌦

(1 + |5 u|2) 1
2dx�

Z

⌦

dx =

Z

⌦

dx+
1

2

Z

⌦

|5 u|2dx+ o(|5 u|2)

the o(|5 u|2) term is neglected resulting in;

Jp(u) =
µ

2

Z

⌦

|5 u|2dx (2.3)

where µ > 0 is a material constant that reflects the elastic response of the membrane.

Again,

Jf (u) =

Z

⌦

fu dx (2.4)

Thus the total energy from equations 2.3 and 2.4 yields:

J(u) =
1

2

Z

⌦

|5 u|2dx�
Z

⌦

fu dx. (2.5)

Minimization Problem

Our goal is to determine the displacement u that yields the minimum energy J(u).

That is we seek u 2 H
1
0 ⌘ H

1
0 (⌦) such that ;

J(u) = inf
v2H1

0

J(v) (2.6)

16



Application to the Membrane Problem

We are required to show that the membrane problem (1.5) has a unique solution u 2 H
1
0 (⌦)

that is the solution of the variational equation;

µ

Z

⌦

ru ·rvdx =

Z

⌦

fvdx 8v 2 H
1
0 (⌦). (2.7)

Proof. Required to show that:

1. J is convex

2. < J
0(u), v >= µ

R

⌦

ru ·rvdx�
R

⌦

fvdx = 0 , v 2 V .

3. There exists a unique solution u 2 H
1
0 (⌦) that is the solution to 2.7.

We first compute J(u+�v)�J(v)
�

as follows:

J(u+ �v) =
µ

2

Z

⌦

|r(u+ �v)|2dx�
Z

⌦

f(u+ �v)dx; and

=
µ

2

Z

⌦

|ru|2dx�
Z

⌦

fu dx

J(u+ �v)� J(v)

�
=

µ

2

R

⌦

(|r(u+ �v)|2 � |ru|2)dx�
R

⌦

f(�v)dx

�
(2.8)

using the definition; |~x|2 = ~x
T
~x, we see that:

|(ru+ �rv)|2 = (ru+ �rv)T (ru+ �rv)

= (ru)Tru+ �(ru)Trv + �(rv)Tru+ �
2(rv)Trv

= |ru|2 + �(ru)Trv + �(rv)Tru+ �
2|rv|2

and;

|(ru+ �rv)|2 � |ru|2

�
=
�(ru)Trv + �(rv)Tru+ �

2|rv|2

�

= (ru)Trv + (rv)Tru+ �|rv|2

= 2(ru)Trv + �|rv|2

17



substituting this value into equation 2.8 yields;

J(u+ �v)� J(v)

�
=

µ

2

R

⌦

(|r(u+ �v)|2 � |ru|2)dx

�
�
�
R

⌦

fv dx

�

=
µ

2

Z

⌦

(2(ru)Trv + �|rv|2)dx�
Z

⌦

fv dx

now letting �! 0 we see that;

J(u+ �v)� J(v)

�
! µ

2

Z

⌦

2(ru)Trv dx�
Z

⌦

fv dx

Thus;

µ

Z

⌦

(ru)Trv dx�
Z

⌦

fv dx = 0. (2.9)

In order to show the third part we make use of The Green’s Theorem [11], Thus, let us

assume that f 2 C(⌦) and the solution u 2 H
1
0 (⌦) of 2.7 has the regularity property

u 2 C
2(⌦) \ C0(⌦̄). Then by Green’s formula;

Z

⌦

ru ·rvdx = �
Z

⌦

�uvdx+

Z

�

@u

@n
vd�

where n := (n1, n2)> is the exterior unit normal vector.Thus equation 2.9 can be written

as;
Z

⌦

(�µ�u� f)vdx = 0 ; 8v 2 H
1
0 (⌦) (2.10)

Since 2.10 holds true 8v 2 H
1
0 (⌦), we conclude that ;

�µ�u(x) = f(x) , f.f.a. x 2 ⌦

and by continuity, we find that u satisfies the boundary value problem ;

�µ�u(x) = f(x) , 8x 2 ⌦ (2.11)

u(x) = 0 x 2 � (2.12)
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Optimality Condition: Let ⌦ be a bounded polygonal domain and f 2 L
2(⌦).

The optimality condition;

Z

⌦

ru rv dx =

Z

⌦

fv dx 8 v 2 H
1
0 (⌦)

can be expressed as;

Z

⌦

ru rv dx = �
Z

⌦

�uv dx 8v 2 H
1
0 (⌦)

thanks to integration by parts and zero boundary condition.

Consequently;

��u = f in ⌦ (2.13)

u = 0 on @⌦ (2.14)

We begin with the weak form of equation (2.2) and thus seek a u 2 H
1
0 (⌦) such that;

a(u, v) = F (v) 8v 2 H
1
0 (⌦) (2.15)

where the bilinear form a(·, ·) is defined as;

a(w, v) =

Z

⌦

rw. ·rv dx 8w, v 2 H
1
0 (⌦)

and the linear functional F (·) is defined as;

F (v) =

Z

⌦

fv dx 8v 2 H
1
0 (⌦).

Below we show that a(w, v) is a bilinear form.

Proof. Let u, w, v 2 H
1
0 (⌦). Then a(·, ·) defines a bilinear form because it satisfies:

1. a(w, v) =
R
⌦ rw ·rv dx =

R
⌦ rv ·rwdx = a(v, w).

2. a(w,w) =
R
⌦ rw ·rwdx � 0 since rw � 0 and so;

a(w,w) = 0 if and only if
R
⌦ rw ·rwdx = 0 this implies that w = 0
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3. a(u+ �w, v) =
R
⌦ r(u+ �w) ·rv dx

=
R
⌦ ru ·rvdx+ �

R
⌦ rw ·rvdx

= a(u, v) + � a(w, v)

Next, we show that F (·) is a linear functional.

Proof. Let u, v 2 H
1
0 (⌦)

1. i. F (u+ v) =
R
⌦ f(u+ v) dx

=
R
⌦(fu+ fv)dx

=
R
⌦ fu dx+

R
⌦ fv dx

= F (u) + F (v)

2. ii. F (�v) =
R
⌦ f(�v) dx

= �
R
⌦ fv dx

= �F (v)

Therefore, F is a linear functional.

2.4 The Finite Element Method

In general, it is di�cult to access the solution to the variational equation 2.15 analytically.

We therefore resort to using numerical methods where we seek an approximate solution in

a suitable finite dimensional subspace H⇤ ⇢ H
1
0 (⌦):

Find uh 2 H⇤ such that;

a(uh, vh) = F (vh) vh 2 H⇤ (2.16)

Since a(·, ·) is a bounded, H1
0 (⌦)-elliptic bilinear form, then the Lax Milgram Lemma guar-

antees that 2.5 admits a unique solution uh 2 H⇤ Now, the choice of H⇤ will reflect on two
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important factors namely:

• Construction of H⇤ such that the linear algebraic system represented by (2.16) can

be solved e�ciently.

• Estimation of the global discretization error (u� uh).

We pick a proper selection of a basis of H⇤:

H⇤ = span{'1,'2, ...,'nh
} thus dim H⇤ = nh (2.17)

since the solution uh 2 H⇤, it can be written as a linear combination of the basis functions

and so;

uh =
nhX

j=1

↵j 'j (2.18)

Obviously, 2.5 holds for any vh 2 H⇤ if and only if it holds true for all basis functions

'i; for 1  i  nh. Therefore substituting 2.6 into 2.5 and choosing vh = 'i, i =

1, 2, ..., nh, we get that 2.5 corresponds to the linear algebraic system below;
nhX

j=1

a('j,'i)↵j = F ('i) , 1  i  nh (2.19)

From applications in structural mechanics, we define the Sti↵ness Matrix and Load

Vector.

The matrix Ah = (aij)
nh
i,j=1 with entries;

aij := a('j,'i) , 1  i, j  nh (2.20)

That is;
0

BBBBBBBBBBBB@

a('1,'1) a('2,'1) ... a('nh
,'1)

a('2,'1) a('2,'2) ... a('nh
,'2)

. . ... .

. . ... .

. . ... .

a('nh
,'1) a('nh

,'2) ... a('nh
,'nh

)

1

CCCCCCCCCCCCA

0

BBBBBBBBBBBB@

↵1

↵2

.

.

.

↵nh

1

CCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

F ('1)

F ('2)

.

.

.

F ('nh
)

1

CCCCCCCCCCCCA
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where the F ('i) , 1  i  nh is the load vector and Ah is the sti↵ness matrix.

Properties of Ah: Banded Matrix

The matrix Ah = (aij)
nh
i,j=1 with entries;

• aij := a('j,'i) , 1  i, j  nh is called the sti↵ness matrix and the vector;

bh = (b1, b2, ..., bnh
)T with components;

• bi := l('i) , 1  i  nh

is referred to as the load vector.

The unknowns in the first part are the cor�cients ↵i, 1  i  nh which constitute

the solution vector ↵h = (↵1,↵2, ...,↵nh
)T .. In summary, the linear algebraic system

can be concisely written as;

Ah↵h = bh (2.21)

2.4.1 Importance of the Finite Element Method

The Finite Element Method (FEM) has the following advantages:

1. Modeling: FEM makes modeling of complex geometrical and irregular shapes easier

and achievable. Here, both interior and exterior parts of these shapes can be modeled

and the mathematician predicts or determines how how critical factors might a↵ect

the entire structure and why failures might occur.

2. Visualization: Engineers can easily spot any vulnerability in design with the de-

tailed visualizations FEM produces, then use the new data to make a new design.

3. Accuracy: While modeling a complex physical deformity by hand can be impractical,

a computer using FEM can solve the problem with a high degree of accuracy.
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4. Time-dependent simulation: FEM is highly useful for certain time dependent

simulations, such as crash simulations, in which deformations in one area depend on

deformation in another area.

5. Boundaries: With FEM, designers can use boundary conditions to define to which

conditions the model needs to respond. Boundary conditions can include point forces,

distributed forces, thermal e↵ects (such as temperature changes or applied heat en-

ergy), and positional constraints.

6. Adaptability: FEM can be adapted to meet certain specifications for accuracy in

order to decrease the need for physical prototypes in the design process. Creating

multiple iterations of initial prototypes is usually a costly and timely process. Instead

of spending weeks on hard prototyping, the designer can model di↵erent designs and

materials in hours via software.

In the Finite Element Method, we:

• Obtain the weak formulation of the equation which is also called the Variational state-

ment.

• Choose approximations for unknown functions which in our case are displacements.

• Solve the current equation(s) augmented with boundary values.

Numerical Experiments

Under the Finite Element Numerical Method, the approximate solution to 2.2 is gotten

through Fenics. Thus, a bunch of experiments are done for di↵erent values of the step

size h = 1
N
, errors at each ‘N’ for norms L

2 and H
1, corresponding maximum errors and

convergence rates.
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Experiment 1

This first example is a FEniCS tutorial demo program called ‘assignment-poisson.py’:

Poisson equation with Dirichlet boundary conditions. Test problem is chosen to give an

exact solution at all nodes of the mesh.

��u = f in ⌦ = (0, 1)2

u = uD on the boundary

uD = 1 + x
2 + 2y2

f = �6

The mesh was created for each n starting with; mesh = UnitSquareMesh(8, 8) and the

function space defined as; V = FunctionSpace(mesh, ‘P’ , 1).

The Numerical Analysis carried out yielded the table below;

Table 2.2: Numerical Simulations

Numerical Results for polynomial of degree 2

h =

1
N

Error in L2 Error in H1 Maximum Error Convergence Rate (r)

or Order in L2

1
8 8.2351⇥ 10�3 1.6158⇥ 10�1 1.3323 exp�15 —

1
16 2.0588⇥ 10�3 8.0713⇥ 10�2 5.7732 exp�15 2.0001

1
32 5.2469⇥ 10�4 4.0347⇥ 10�2 2.2204 exp�14 1.9724

1
64 1.2867⇥ 10�4 2.1722⇥ 10�2 1.0436 exp�13 2.0280

1
128 3.2168⇥ 10�5 1.0086⇥ 10�2 4.5053 exp�13 2.0001

1
256 8.0420⇥ 10�6 5.0430⇥ 10�3 1.8863 exp�12 2.0001

1
512 2.0105⇥ 10�6 2.5215⇥ 10�3 7.6514 exp�12 2.0001
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Convergence Rate

For finite element methods, this typically corresponds to proving, theoretically or empiri-

cally, that the error e = ue � u is bounded by the mesh size h to some power r; that is,

||e||  Ch
r for some constant C 2 R. The number r is called the convergence rate of the

method. Note that di↵erent norms, like the L2-norm ||e|| or H1-norm ||r e|| typically have

di↵erent convergence rates.

In computing these convergence rates, we first define the element size h = 1
N
, where N

is the number of cell divisions in the x and y directions. We perform experiments with

h0 > h1 > h2...and compute the corresponding errors E0, E1, E2... as indicated above. As-

suming Ei = Ch
r

i
for these unknown constants C and r, we can compare two consecutive

experiments, Ei�1 = Ch
r

i�1 and Ei = Ch
r

i
, and solve for r:

r = Log(Ei/Ei�1)
Log(hi/hi�1)

The r values should approach the expected convergence rate as i increases.
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Chapter 3

A C0 Interior Penalty Finite Element

Method

This chapter describes the spatial discretization of the fourth order term involving the

operator �2 which appears in (4.6a)-(4.6b). To simplify, we present the spatial discretiza-

tion for the following biharmonic equation augmented with Cahn-Hilliard type boundary

conditions.

�2
u(x) + u(x) = f(x) 8x 2 ⌦, (3.1)

@u(x)

@n
=
@�u(x)

@n
= 0 8x 2 @⌦. (3.2)

The fundamental challenge with the equation is that it takes four derivatives of the solution.

In the case of the Laplace equation seen in 2.13.

But for the biharmonic equation, if one followed the same procedure using the test and

trial functions that work for the weak form of the Laplace equation, these test and trial

functions contain insu�cient regularity to support the integration by parts performed twice

over ⌦. Instead, if one were to partition ⌦ =
S

K2Th

K and use the usual globally continuous,

cellwise polynomial functions with their kinks on the cell interfaces, say v, w 2 C
1(K̄)

where K 2 Th. This allows us to perform the integration by parts twice in the following
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manner:
Z

K

v(�2
w) dx =

Z

@K

v
@�w

@n
ds�

Z

K

rv ·r(�w) dx

=

Z

@K

v
@�w

@n
ds�

Z

@K

rv · @rw

@n
dx

+

Z

K

D
2
v : D2

w dx.

When we sum over all cells K 2 Th, we end up with multi-valued gradient and third order

derivative on each interface shared by K+ and K�.

3.0.1 History of the C
0 IP method

The C0IP methods became very attractive in the recent past for approximating the solutions

of higher order problems like the Biharmonic equation. Since a natural idea is to use

finite elements that are “C1 continuous”, i.e., that use shape functions which are not just

continuous but also have continuous first derivatives. An example of such an element is

the Argyris element developed in the late 1960s. However, owing to their computational

cost, have been seldom used. Another approach is to consider mixed methods however this

results in a saddle point problem and hence an indefinite system. The approach followed in

this thesis relies on using continuous (but not C1 continuous) shape functions and penalize

the jump in the derivative to obtain a scheme for an equation that has two derivatives

on each shape function. In analogy to the Interior Penalty (IP) method for the Laplace

equation, this scheme for the biharmonic equation is typically called the C
0 IP method,

since it uses C
0 (continuous but not continuously di↵erentiable) shape functions with an

interior penalty.

3.0.2 Derivation of the C
0 IP method

This method relies on the use of C
0 Lagrange finite elements where the C

1 continuity

requirement is relaxed and has been replaced with interior penalty techniques. To derive
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K+ n�

K�

n+e

Figure 3.1:
Orientation of the unit normal, tangent to the interface e shared by the
cells K� and K+ in 2D.

this method, we consider a C
0 shape function vh which vanishes on @⌦. Since the higher

order derivatives of vh have two values on each interface e 2 Eh (shared by the two cells

K+, K� 2 Th), we cope with this discontinuity by defining the following single-valued

functions on e:
""
@
k
vh

@nk

##
=
@
k
vh|K+

@nk

����
e

�
@
k
vh|K�

@nk

����
e

,

((
@
k
vh

@nk

))
=

1

2

✓
@
k
vh|K+

@nk

����
e

+
@
k
vh|K�

@nk

����
e

◆

for k = 1, 2 (i.e., for the gradient and the matrix of second derivatives), and where n

denotes a unit vector normal to e pointing from K+ to K� (cf. Figure 1 below). In

the literature, these functions are referred to as the “jump” and “average” operations,

respectively. To obtain the C
0 IP approximation uh, we left multiply the biharmonic

equation by vh, integrate and apply the following integration-by-parts formula on each

mesh cell K 2 Th:

Z

K

(�2
w)v dx =

Z

@K

@�w

@n
v ds�

Z

@K

@
2
w

@n@t

@v

@t
ds�

Z

@K

@
2
w

@n2

@v

@n
ds

+

Z

K

D
2
w : D2

v dx,
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K+

e3

e1 e2

e4

n�

K�

n+e
⇤

Figure 3.2:
Representation of two cells K� and K+ in 2D having a shared edge e

⇤

and boundary edges e1, e2, e3, and e4

where t is the counterclockwise tangent and D
2
v : D2

w is the Frobenius inner product

of Hessian matrices of v and w, @

@n
and @

@t
denote the exterior normal derivative and

the counterclockwise tangential derivative. Then, summing over all the cells or triangles

K 2 Th, with w = u and after like cancellations, we get;

X

K2Th

Z

K

(�2
u)vdx = �

X

K2Th

Z

@K

 
@
2
u

@n2

! 
@v

@n

!
ds+

X

K2Th

Z

K

D
2
u : D2

v dx (3.3)

Take for example, the edges and shared edge between two cells in the diagram below; Re-

writing the first term in the right hand side of 3.3 as a sum over the edges in Eh , we

get:

�
X

K2Th

Z

@K

 
@
2
u

@n2

! 
@v

@n

!
ds =

Z

e⇤

 
@
2
u1

@n
2
1

@v1

@n1

!
ds+

Z

e1[e2[e3[e4

 
@
2
u

@n2

@v

@n

!
ds

| {z }
this term equals zero

(3.4)

+

Z

e⇤

 
@
2
uk

@n
2
4

@vk

@n4

!
ds (3.5)

where u1, u2, u3, uk are the restrictions of u on K1, K2, K3, K4 likewise v1, v2, v3, v4, e⇤ rep-

resents the common edge shared by cells, e1, e2, e3, e4 which are boundary edges. Conse-
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quently, we require single valued function for @
2
u

@n2 and @v

@n
on e ⌘ e

⇤ for edge e, thus we fix

n = ne = n1 = �n2. Note that n1and n2 are replaced interchangeably with n+ and n�.

Now according to the figure above, equation 3.4 becomes:

�
X

K2Th

Z

@K

 
@
2
u

@n2

! 
@v

@n

!
ds =

Z

e⇤

 
@
2
u1

@n
2
+

@v1

@n+
+
@
2
u2

@n
2
�

@v2

@n�

!
ds (3.6)

=

Z

e

@
2
u

@n2
e

 
@v1

@n+
+
@v2

@n�

!
ds (3.7)

=

Z

e

@
2
u

@n2
e

 
@v1

@n+
� @v2

@n+

!
ds (3.8)

Here, n1 = �n2 or n+ = �n� e.t.c. We then arrive at this equation;

�
X

K2Th

Z

@K

 
@
2
u

@n2

! 
@v

@n

!
ds =

X

e2 Eh

Z

e

 
@
2
u

@n2
e

!
@v

@ne

��
ds (3.9)

where ne is a unit vector normal to the edge e and the jump


@v

@ne

��
is defined as follows.

Note that the negative sign in 3.9 is absorbed due to the choice of n1 or n2 e.t.c. Thus,

for an interior edge shared by two cells K± where ne points from K� to K+, we define the

jump on this edge as;


@v

@ne

��
= ne · (rv+ �rv�) (3.10)

and;

@
2
u

@n2
e

= ne · (r2
u)ne (3.11)

for a boundary edge, the jump is defined as;


@v

@ne

��
= �ne · (rvK) (3.12)

and 3.11 remains the same.

combining equations 3.3 to 3.9 together with the right hand side of the model problem 3.1,
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we arrive at;

X

K2Th

Z

K

D
2
u : D2

v dx+
X

e2 Eh

Z

e

 
@
2
u

@n2
e

!
@v

@ne

��
ds =

Z

⌦

fv dx 8v 2 Vh (3.13)

Since @
2
u

@n2
e
has the same trace from either side of the edge e, it can be re-written as;

@
2
u

@n2
e

=

⇢⇢
@
2
u

@n2
e

��

Recall that u 2 H
4(⌦) satisfies 3.1, thus the average of the second order normal derivative

from the two sides of the edge e is defined on an interior edge as;

@
2
u

@n2
e

=
1

2

 
@
2
u�

@n2
e

+
@
2
u+

@n2
e

!
=

⇢⇢
@
2
u

@n2
e

��

and on a boundary edge as;

@
2
u

@n2
e

=
@
2
uK

@n2
e

=

⇢⇢
@
2
u

@n2
e

��

3.13 becomes;

X

K2Th

Z

K

D
2
u : D2

v dx+
X

e2 Eh

Z

e

⇢⇢
@
2
u

@n2
e

��
@v

@ne

��
ds =

Z

⌦

fv dx 8v 2 Vh (3.14)

Observe that the first term at the left hand side of 3.14 is symmetric as should be but the

second term is not since its symmetric equivalent


@u

@ne

��
= 0 8e 2 Eh. Due to this, we

introduce this symmetric equivalent as an extra term which does not change anything at

all. We get;

X

K2Th

Z

K

D
2
u : D2

v dx+
X

e2 Eh

Z

e

⇢⇢
@
2
u

@n2
e

��
@v

@ne

��
ds (3.15)

+
X

e2 Eh

Z

e

⇢⇢
@
2
v

@n2
e

��
@u

@ne

��
ds =

Z

⌦

fv dx 8v 2 Vh (3.16)

This has better properties due to the inclusion of the symmetric term since 3.15 is not

coercive; a property crucial for well-posedness. (note that3.15 has to satisfy Lax Milgram’s

Theorem to ensure the availability of a solution to the linear system). This is done by
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including a stability term to the equation which balances everything out. We then arrive

finally at the last equation;

X

K2Th

Z

K

D
2
u : D2

v dx+
X

e2 Eh

Z

e

⇢⇢
@
2
u

@n2
e

��
@v

@ne

��
ds (3.17)

+
X

e2 Eh

Z

e

⇢⇢
@
2
v

@n2
e

��
@u

@ne

��
ds+

X

e2 Eh

↵

he

Z

e


@u

@ne

��
@v

@ne

��
ds (3.18)

=

Z

⌦

fv dx 8v 2 Vh (3.19)

where ↵ > 0 is a penalty parameter of choice and he is the length of an edge e 2 Eh

We now formulate the C
0 interior penalty method for 3.1 as follows;

Find uh 2 Vh such that:

Ah(uh, v) = F (v) holds for all test functions v 2 Vh (3.20)

where the bilinear form Ah(uh, v)defined on the piecewise Sobolev space H
3(⌦,Th) is ex-

pressed as;

Ah(uh, v) :=
X

K2Th

Z

K

D
2
uh : D2

v dx+
X

e2 Eh

Z

e

⇢⇢
@
2
uh

@n2
e

��
@v

@ne

��
ds (3.21)

+
X

e2 Eh

Z

e

⇢⇢
@
2
v

@n2
e

��
@uh

@ne

��
ds+

X

e2 Eh

↵

he

Z

e


@uh

@ne

��
@v

@ne

��
ds (3.22)

=

Z

⌦

fv dx 8v 2 Vh (3.23)

and

F (v) :=
X

K2Th

Z

K

fv dx+
X

e2 Eh

↵

he

Z

e

@v

@ne

j ds. (3.24)

Note that ;

D
2
u : D2

v =
2X

i,j

uxixjvxixj . (3.25)
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Thus;

For all uh 2 H
2(⌦,Th) and v 2 Vh such that uh vanishes at all the vertices of Th. Then,we

sum up allK 2 Th, then by integration by parts and using the equality ab+cd = (a+c)(b+d)
2 +

(a�c)(b�d)
2 , we get

X

K2Th

Z

K

D
2
uh : D2

vdx =
X

K2Th

Z

@K

⇣
@
2
uh

@n2

@v

@n
+
@
2
uh

@t@n

@v

@t

⌘
ds

= �
X

e2Eh

Z

e

nn
@
2
uh

@n2

oohh
@v

@n

ii
ds�

X

e2Ei
h

Z

e

nn
@v

@n

oohh
@
2
uh

@n2

ii
ds

(3.26)

Now, we define ||.||h,

||v||2
h
= ah(v, v) +

X

e2Eh

↵

he

Z

e

hh
@v

@n

ii2
ds 8v 2 H

2(⌦,Th) (3.27)

where the bilinear form ah(·, ·) is defined by,

ah(u, v) =
X

K2Th

Z

K

D
2
u : D2

v dx 8v, u 2 H
2(⌦,Th) (3.28)

Now, |.|ah is the seminorm corresponding to ah(·, ·), i.e.

|v|2
ah

= ah(v, v) =
X

K2Th

Z

K

D
2
v : D2

v dx =
X

K2Th

|v|2
H2(K)

|v|ah = |v|2
H2(⌦) 8v 2 H

2(⌦)

⇤

3.0.3 Continuity of Ah(uh, vh)

Theorem:

There exists a constant C1 > 0 which depends only on the shape regularity of Th such that

8uh, vh 2 Vh |Ah(uh, vh)|  C1||uh||h||vh||h (3.29)
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Proof. From (3.21) we know,

Ah(uh, vh) :=
X

K2Th

Z

K

D
2
uh : D2

vh dx+
X

e2 Eh

Z

e

⇢⇢
@
2
uh

@n2
e

��
@vh

@ne

��
ds

+
X

e2 Eh

Z

e

⇢⇢
@
2
vh

@n2
e

��
@uh

@ne

��
ds+

X

e2 Eh

↵

he

Z

e


@uh

@ne

��
@vh

@ne

��
ds

= E1 + E2 + E3 + E4

(3.30)

Now, by using Cauchy-Schwarz inequality we get,

|E1| = |
Z

K

D
2
uh : D2

vh dx| 
⇣Z

K

|D2
uh|2

⌘1/2⇣Z

K

|D2
vh|2

⌘1/2


����uh

����
h

����vh
����
h

(3.31)

Then, implementing the trace inequality and standard inverse estimate for the symmetry

terms E2,E3, we arrive at;

|E2| =
X

e2 Eh

����
Z

e

⇢⇢
@
2
uh

@n2
e

��
@vh

@ne

��
ds

���� 
 

X

e2 Eh

|he|
����

⇢⇢
@
2
uh

@n2
e

������
2

L2(e)

! 1
2
 

X

e2 Eh

|he|�1

����


@vh

@ne

������
2

L2(e)

! 1
2

 c
1
2

 
X

e2 Eh

X

K2Te

��uh

��2
H2(K)

! 
X

e2 Eh

|he|�1

����


@vh

@ne

������
2

L2(e)

! 1
2

 c
1
2

 
X

K2Te

��uh

��2
H2(K)

! 
X

e2 Eh

|he|�1

����


@vh

@ne

������
2

L2(e)

! 1
2

 c
1
2 ||uh||h||vh||h

(3.32)

Now, similarly for E3 we get;

|E3| =
X

e2 Eh

����
Z

e

⇢⇢
@
2
vh

@n2
e

��
@uh

@ne

��
ds

����  c
1
2 ||vh||h||uh||h (3.33)
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For the last term E4, we apply the Cauchy-Schwarz inequality again to get;

|E4| = |
X

e2 Eh

↵

he

Z

e


@uh

@ne

��
@vh

@ne

��
ds|


 
X

e2Eh

↵

he

||
hh
@uh

@ne

ii
||2
L2(e)

!1/2 X

e2Eh

↵

he

||
hh
@vh

@ne

ii
||2
L2(e)

!1/2

 ||uh||h||vh||h

(3.34)

Finally, collecting all from (3.31), (3.32), (3.33) and (3.34) we get;

|Ah(uh, vh)|  |E1|+ |E2|+ |E3|+ |E4|  C1||uh||h||vh||h 8uh, vh 2 Vh
(3.35)

where the mesh-dependent norm k·k
h
is defined as;

kvk2
h
=

X

K2Th

|v|2
H2(K) +

X

e2Eh

↵

|he|

����


@v

@ne

������
2

L2(e)

3.0.4 Coercivity of Ah(uh, vh)

Theorem:

There exists a constant C↵ > 0 and ↵⇤
> 0 which depends only on the shape regularity of

Th such that if ↵ > ↵
⇤, then;

8uh, vh 2 Vh Ah(uh, uh) � C↵||uh||2h (3.36)

Proof. 8uh, vh 2 Vh from (3.21) we know,

Ah(uh, uh) =

Z

K

D
2
uh : D2

uh dx+ 2
X

e2Eb
h

Z

e

((
@
2
uh

@n2
e

))""
@uh

@ne

##
ds+

X

e2Eh

↵

he

Z

e

hh
@uh

@ne

ii2
ds

=
X

K2Th

|uh|2H2(K) + 2
X

e2Eb
h

Z

e

((
@
2
uh

@n2
e

))""
@uh

@ne

##
ds+

X

e2Eh

↵

he

Z

e

||
hh
@uh

@ne

ii
||2
L2(e)

(3.37)
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Now following (3.32) we get that,

|
X

e2Eb
h

Z

e

((
@
2
uh

@n2
e

))""
@uh

@ne

##
ds| 

 
X

e2Eh

he

����

⇢⇢
@
2
uh

@n2
e

������
2

L2(e)

!1/2 X

e2Eh

h
�1
e

����


@uh

@ne

������
2

L2(e)

!1/2

 (c)1/2
X

K2Th

|uh|H2(K)

X

e2Eh

h
�1/2
e

����


@uh

@ne

������
L2(e)

(3.38)

Now,

Ah(uh, uh) �
X

K2Th

|uh|2H2(K) � 2(c)1/2
X

K2Th

|uh|H2(K)

X

e2Eh

h
�1/2
e

����


@uh

@ne

������
L2(e)

+
X

e2Eh

↵

he

����


@uh

@ne

������
2

L2(e)

Now we use the following inequality, let � be a positive real number and ↵ > �
2 then for

all x, y 2 R

x
2 � 2�xy + ↵y

2 � ↵� �
2

1 + ↵
(x2 + y

2)

By applying this inequality with � = 2(c)1/2, x = |uh|H2(K), y = h
�1/2
e

����


@uh
@ne

������
L2(e)

Ah(uh, uh) �

P
e2Eh

↵

he
� 4c

he

1 +
P
e2Eh

↵

he

⇣ X

K2Th

|uh|2H2(K) +
X

e2Eh

h
�1
e

����


@uh

@ne

������
2

L2(e)

⌘

= C↵|uh|h

The continuity and coercivity of the bilinear form (3.21) guarantees a unique solution

uh 2 Vh.

3.0.5 Quality of the Solutions

On polygonal domains, the weak solution u to the biharmonic equation lives in H
2+↵(⌦)

where ↵ 2 (1/2, 2] is determined by the interior angles at the corners of ⌦. For instance,
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whenever ⌦ is convex, ↵ is larger than 1 and ↵ is close to 1 if one of the interior angles is

close to ⇡.

Convergence Rates

Suppose that the C
0 IP solution uh is approximated by C

0 shape functions whose degree

on each cell is at most p � 2.

Convergence in the C
0 IP-norm:

Assume that f 2 H
m(⌦), u 2 H

k(⌦) where 2 < k  m+ 4, m � 0. Then, the convergence

rate of the C0 IP method is O(hmin{p�1,k�2}) measured in the following mesh-dependent C0

IP norm:

kuhk2h :=
X

K2Th

��uh

��2
H2(K)

+ ↵

X

e2 Eh

h
�1
e

�� ⇥⇥@uh/@n
⇤⇤ ��2

L2(e)
.

The optimal convergence rate O(hm+2) is achieved whenever u 2 H
m+4(⌦) and p is chosen

to be at least m+ 3. This regularity assumption does not always guaranteed on polygonal

domains however, is satisfied on smooth domains which do not contain angular corners.
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Table 3.1: Operators and Function Spaces

Notations

Chapters S/No Operators Function Spaces

1 h: mesh size C
1 ¯(⌦): The space of infinitely di↵er-

entiable functions on ⌦.

Chapter 3 2 Th = {Ki : i = 1, 2, ...,M}:

triangulation of ⌦ for each

K per mesh size.

3 Eh: The set of all edges in

Th.

4 K: non-overlapping trian-

gles (finite elements).

5
S

K2Th

K = ⌦

6 Pq(K): set of polynomials

of degree  q 2 N on K.

7 (D2
u : D2

v): Frobenius In-

ner Product of the Hessian

Matrices of u and v.

8 he = the length of an edge

e 2 Eh.

38



Chapter 4

Fully Discrete Convex Splitting

Scheme

Numerical approximations for modeling microemulsions using the Gompper model has

been presented by Hoppe and Linsenmann in [12] also using the C0 interior penalty method

however, the results derived do not establish unconditional unique solvability and no energy

stability is presented. Our proposed scheme presented in this chapter addresses both these

concerns the latter in shown numerically in Chapter 5.

4.1 Weak Form

Following [13], the dynamics of phase transitions in ternary oil-water-surfactant systems is

given by the following conservation law

@t��r · (M (rµ)) = 0 (4.1)

where M ⌘ M(�) = 1 > 0 is the mobility and µ is the chemical potential di↵erences

between the phases given by ��E, the variational derivative of the energy functional E

with respect to �:

µ := ��E =��f0(�) + ��

✓
1

2
�
2|r�|2

◆
+ 4��+ �2

�. (4.2)

We augment (4.1) with the initial value condition

�(0) = �0 2 H
4(⌦) such that n ·r�0 = 0, (4.3)
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and the homogeneous Neumann type boundary conditions

n ·r� = n ·r�� = n ·rµ = 0. (4.4)

We note that ��f0(�) = �
5 � �

3 and

��

✓
1

2
�
2|r�|2

◆
= �|r�|2 �r · (�2r�). (4.5)

The system becomes:

@t��r · (Mrµ) = 0, (4.6a)

�
5 � �

3 + �|r�|2 �r · (�2r�) + 4��+ �2
�� µ = 0. (4.6b)

The weak formulation of (4.6) relies on the spaces

Z := {z 2 H
2(⌦)| n ·rz = 0 on @⌦}, V = H

1(⌦)

and amounts to seeking (�, µ) 2 Z ⇥ V satisfying

h@t�, ⌫i+ (M(�)rµ,r⌫) = 0, 8 ⌫ 2 V (4.7a)
�
�
5 � �

3 + �|r�|2, 
�
+ a(�, ) +

�
(�2 � 4)r�,r 

�
� (µ, ) = 0 8 2 Z (4.7b)

for almost all 0 < t  T with the compatible initial data (4.3), boundary conditions (4.4)

and where a(u, v) := (r2
u : r2

v) is the Frobenius inner product of the matrices r2
u and

r2
v. Here and in the sequel, we employ the standard notation for well-known Sobolev

spaces and the norms and inner products defined on them. Our numerical scheme is based

on a variant of the Eyre’s convex splitting scheme in conjunction with the C0 interior

penalty method [3] and backward Euler for the space-time discretization.

4.2 Time Discretization

Let M be a positive integer such that tm = tm�1+⌧ for 1  m  M where t0 = 0, tM = tF

with ⌧ = tF
M

and denote by �m an approximation of � at time tm and define the numerical
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time derivative as �⌧� := �
m+1��

m

⌧
. To describe our time splitting scheme, we decompose

the energy E (1.2) into E = Ei + Ee + Eie so that (4.6) becomes

�⌧�
m = r ·rµ

m
, (4.8a)

µ
m = ��Ei(�

m) + ��Ee(�
m�1) + ��Eie(�

m�1
,�

m), (4.8b)

where ��Ei(�) = �
5 + �2

� is treated implicitly, ��Ee(�) = ��3 + 4�� is treated explicitly

and

��Eie(�
m�1

,�
m) = �

m|r�m�1|2 �r ·
�
(�m�1)2r�m

�
.

The weak formulation (4.7) becomes: given (�m�1
, µ

m�1) 2 Z ⇥ V , find (�m
, µ

m) 2 Z ⇥ V

such that

(�⌧�
m
, ⌫) + (rµ

m
,r⌫) = 0, (4.9a)

�
(�m)5 + �

m|r�m�1|2 � (�m�1)3, 
�
+
�
(�m�1)2r�m � 4r�m�1

,r 
�

+ a(�m
, )� (µm

, ) = 0 (4.9b)

holds for each ( , ⌫) 2 Z ⇥ V , 1  m  M and satisfying the initial condition �0 (4.3) and

µ
0 is constructed using �0 and (4.6b).

We note the time stepping scheme (4.9) is a modification of the Eyre’s convex splitting

scheme where the convex energy is treated implicitly and the concave component is treated

explicitly.

4.2.1 Fully Discrete C0 Interior Penalty Method

For presenting the spacial discretization, we let Th be a geometrically conforming simplicial

triangulation of ⌦ and recall the following notation:

• hK = diameter of triangle K (h = maxK2Th
hK),

• vK = restriction of the function v to the triangle K,

• |K| = area of the triangle K,
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• Eh = the set of the edges of the triangles in Th,

• e = the edge of a triangle,

• |e| = the length of the edge,

• Zh := {v 2 C(⌦)|vK 2 P2(K) 8K 2 Th} the standard finite element space associated

with Th of degree 2,

• Vh := {v 2 C(⌦)|vK 2 P1(K) 8K 2 Th} the standard Lagrange finite element spaces

associated with Th of degree 1.

Accordingly, we seek the continuous approximations (�m

h
, µ

m

h
) 2 Zh ⇥ Vh to (4.9) satisfying

(�⌧�
m

h
, ⌫) + (rµ

m

h
,r⌫) = 0, 8⌫ 2 Vh (4.10a)

�
(�m

h
)5 � '

m

h
|r�m�1

h
|2 � (�m�1

h
)3, 

�
+
�
(�m�1

h
)2r�m

h
� 4r�m�1

h
,r 

�

+ a
IP

h
(�m

h
, )� (µm

h
, ) = 0 8 2 Zh, (4.10b)

with initial data taken to be �0
h
:= Ph�0 = Ph�(0) where Ph : Z ! Zh is a Ritz projection

operator such that

a
IP

h
(Ph�� �, ⇠) = 0 8 ⇠ 2 Vh, (Ph�� �, 1) = 0, (4.11)

Here

a
IP

h
(w, v) :=

X

K2Th

Z

K

�
r2

w : r2
v
�
dx+

X

e2Eh

Z

e

s
@
2
w

@n2
e

{ s
@v

@ne

{
dS

+
X

e2Eh

Z

e

s
@
2
v

@n2
e

{ s
@w

@ne

{
dS + ↵

X

e2Eh

1

|e|

Z

e

s
@w

@ne

{ s
@v

@ne

{
dS, (4.12)

with ↵ � 1 known as a penalty parameter used to weakly enforce the homogeneous Neu-

mann boundary condition. The jumps and averages that appear in (4.12) are defined as

follows. For an interior edge e shared by two triangles K± where ne points from K� to K+,

we define on the edge e

s
@v

@ne

{
= ne · (rv+ �rv�) and

s
@
2
v

@n2
e

{
=

1

2

✓
@
2
v�

@n2
e

+
@
2
v+

@n2
e

◆
, (4.13)
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where
@
2
u

@n2
e

= ne ·
�
r2

u
�
ne and where v± = v|K± . For a boundary edge e which is an edge

of the triangle K 2 Th, we take ne to be the unit normal pointing towards the outside of

⌦ and define on the edge e;
s
@v

@ne

{
= �ne ·rvK and

s
@
2
v

@n2
e

{
= ne ·

�
r2

v
�
ne. (4.14)

Remark 4.2.1. Note that the definitions (4.13) and (4.14) are independent of the choice

of K±, or equivalently, independent of the choice of ne.

The accuracy of the C0-IP method is measured by the following mesh dependent norm

kvhk22,h := a(vh, vh) +
X

e2Eh

↵

|e|

����

s
@v

@ne

{����
2

L2(e)

. (4.15)

The following lemma guarantees the boundedness of aIP
h

(·, ·) and is has been shown in [2]

and presented in Chapter 3.

Lemma 4.2.1 (Boundedness of aIP
h

(·, ·)). There exists positive constants Ccont and Ccoer

such that for choices of the penalty parameter ↵ large enough we have

a
IP

h
(wh, vh)  Ccont kwhk2,h kvhk2,h 8wh, vh 2 Vh, (4.16)

Ccoer kwhk22,h  a
IP

h
(wh, wh) 8wh 2 Vh, (4.17)

where the constants Ccont and Ccoer depend only on the shape regularity of Th.

4.3 Unconditional Unique Solvability

For proving the unique solvability of the fully discrete scheme (4.10), we need to rely on

nonlinear operator analysis techniques similar to [6]. To this end, we first introduce the

spaces

L
2
0(⌦) := {v 2 L

2(⌦)| (v, 1) = 0}, H̊
1(⌦) := H

1(⌦) \ L
2
0(⌦),

H̊
�1
N

(⌦) := {v 2 H
�1
N

(⌦)|hv, 1i = 0}, Z̊h := Zh \ L
2
0(⌦), and V̊h := Vh \ L

2
0(⌦).
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The operator T : H̊�1
N

(⌦) ! H̊
1(⌦) is often referred to as the ‘inverse Laplacian’ and is

defined via the following variational problem: given ⇣ 2 H̊
�1(⌦), find T⇣ 2 H̊

1(⌦) such

that

(rT⇣,r�) = h⇣,�i 8� 2 H̊
1(⌦). (4.18)

The well posedness of the operator T is well known, see for example [5], and an induced

negative norm may be defined such that kvk
H

�1
N

= (rTv,rTv)
1
2 = hv,Tvi 1

2 = hTv, vi 1
2 .

We furthermore define a discrete analog of the inverse Laplacian, Th : Z̊h ! Z̊h, via the

variational problem: given ⇣ 2 Z̊h, find Th⇣ 2 Z̊h such that

(rTh⇣h,r�h) = (⇣h,�h) 8�h 2 Z̊h. (4.19)

Again, the well posedness of the operator Th is well known and an induced discrete negative

norm on W̊h is defined as

kvhk�1,h = (rThvh,rThvh)
1
2 = (vh,Thvh)

1
2 = (Thvh, vh)

1
2 .

Remark 4.3.1. The scheme (4.10) satisfies the discrete conservation property (�m

h
, 1) =

(�0
h
, 1) = (�0, 1) for any 1  m  M . This is easy to see by choosing ⌫h ⌘ 1 in (4.10a).

The quantity 1
|⌦| (�0, 1) is referred to as the average of �0 over ⌦ and is denoted by �0. Due

to the discrete conservation property, it follows that (�m

h
, 1) = (�0

h
, 1) = |⌦|�0.

We prove the unique solvability for any choice of ⌧ and h and for any model parameters by

first establishing the existence and uniqueness of the solution for the following intermediate

problem (4.20)- (4.10b) and then, proving the equivalence of (4.10a)- (4.10b) and this

intermediate problem.For any 1  m  M , given 'm�1
h

2 Z̊h find ('h, µh,?) 2 Z̊h ⇥ V̊h such

that

a
IP

h
('m

h
, h) +

⇣�
'
m

h
+ �0

�5
, h

⌘
�
�
('m

h
+ �0)|r'm�1

h
|2, 

�
�
�
('m�1

h
+ �0)|r'm

h
|2, 

�

�
�
µ
m

h,?
, h

�
=
�
('m�1

h
+ �0)

3
, h

�
� 4

�
r'm�1

h
,r h

�
(4.20)

for all  h 2 Z̊h, where µ
m

h,?
2 V̊h is the unique solution to

�
rµ

m

h,?
,r⌫h

�
= �

✓
'
m

h
� '

m�1
h

⌧
, ⌫h

◆
8 ⌫h 2 V̊h. (4.21)
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The existence and uniqueness of the intermediate formulation (4.20)- (4.21) is proved

through the properties of the following functional Gh. Let 'm�1
h

2 Z̊h be given. For

all 'h 2 Z̊h, define the nonlinear functional

Gh('h) :=
⌧

2

����
'h � '

m�1
h

⌧

����
2

�1,h

+
1

2
a
IP

h
('h,'h) +

1

6

��'h + �0

��6
L6(⌦)

+
1

2

��'m�1
h

r'h

��2
L2(⌦)

+
1

2

��('h + �0)r'm�1
h

��2
L2(⌦)

�
⇣�
'
m�1
h

�3
,'h

⌘
� 4

�
r'm�1

h
,r'h

�
. (4.22)

The following lemma proves the properties of Gh.

Lemma 4.3.1. The functional Gh given by (4.22) is strictly convex and coercive on the

linear subspace Z̊h. Consequently, Gh has a unique minimizer, call it 'm

h
2 Z̊h. Moreover,

'
m

h
2 Z̊h is the unique minimizer of Gh if and only if it is the unique solution to (4.20)-

(4.21).

Proof. We begin by showing Gh is strictly convex. To do so, we consider the second

derivative of Gh('h + s ) with respect to s and set s = 0. Hence,

Gh('h + s ) =
⌧

2

����
'h + s � '

m�1
h

⌧

����
2

�1,h

+
1

2
a
IP

h
('h + s ,'h + s )

+
1

6

��'h + s + �0

��6
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+
1

2

��('h + �0 + s )r'm�1
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+
1
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��2
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�
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�3
,'h + s 

⌘
� 4

�
r'm�1

h
,r('h + s )

�
.

Taking the derivative with respect to s, we have

G
0
h
('h + s ) =

1

⌧

�
'h + s � '

m�1
h

, 
�
�1,h

+ a
IP
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+
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� 4
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, (4.23)

where (⇣, ⇠)�1,h := (⇣,Th⇠). Taking the second derivative with respect to s, we have

G
00
h
('h + s ) =

1

⌧
k k2�1,h + a

IP

h
( , ) + 5

⇣�
'h + s + �0

�4
, 

2
⌘

+
�� r'm�1

h

��2
L2(⌦)

+
��'m�1

h
r 

��2
L2(⌦)

.
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Setting s = 0 and using the coercivity of aIP
h
(·, ·), we have

G
00
h
('h) =

1

⌧
k k2�1,h + a

IP

h
( , ) + 5

⇣�
'h + �0

�4
, 

2
⌘

+
�� r'm�1

h

��2
L2(⌦)

+
��'m�1

h
r 

��2
L2(⌦)

> 0

for all 'h 2 Z̊h.

To show Gh is coercive, we need to show that there exists constants � > 0, � � 0 such that

Gh('h) � � k'hk2,h � � for all 'h 2 Vh. Using the Cauchy Schwartz inequality, Young’s

inequality, and Poincarè’s inequality,

Gh('h) � C0 k'hk22,h � C1

��r'm�1
h

��2
L2(⌦)

� C2 k'hk22,h ,

where C0 depends on the coercivity of the a
IP

h
(·, ·) inner product, C1 depends on the

Poincarè constant, and C2 is chosen to be less than C0. Therefore,

Gh('h) � � k'hk22,h � �,

where � = C0 � C2 and � = C1

��r'm�1
h

��2
L2(⌦)

do not depend on 'h. Hence, Gh has a
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h
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G
0
h
('m

h
) =

1

⌧

�
'
m

h
� '

m�1
h

, 
�
�1,h

+ a
IP

h
('m

h
, ) +

⇣�
'
m

h
+ �0

�5
, 

⌘
+
⇣�
'
m�1
h

�3
, 

⌘

� 4
�
r'm�1

h
,r 

�
= 0,

for all  2 Z̊h where we have set s = 0 in (4.23). Therefore, 'm

h
2 Z̊h is the unique

minimizer of Gh if and only if it is the unique solution to
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Theorem:

The scheme (4.20) – (4.21), or, equivalently, the scheme (4.10a) – (4.10b), is uniquely

solvable for any mesh parameters ⌧ and h.

Proof. Suppose
�
'
m�1
h

, 1
�
= 0. It is clear that a necessary condition for solvability of (4.20)

– (4.21) is that

('m

h
, 1) =

�
'
m�1
h

, 1
�
= 0, (4.24)

as can be found by taking ⌫h ⌘ 1 in (4.21). Now, let ('m

h
, µ

m

h,?
) 2 Z̊h ⇥ V̊h be a solution of

(4.20) – (4.21). Set

µ
m

h
:=

1

|⌦|

⇣
('m

h
+ �0)

5 �
�
'
m�1
h

+ �0

�3
, 1
⌘

(4.25)

and define µm

h
:= µ

m

h,?
+µ

m

h
. There is a one-to-one correspondence of the respective solution

sets: 'm

h
, µ

m

h,?
2 Z̊h ⇥ V̊h is a solution to (4.20) – (4.21) if and only if �m

h
, µ

m

h
2 Zh ⇥ Vh is a

solution to (4.10a) – (4.10b), where

�
m

h
= '

m

h
+ �0, µ

m

h
= µ

m

h,?
+ µ

m

h
. (4.26)

But (4.20) – (4.21) admits a unique solution, which proves that (4.10a) – (4.10b) is uniquely

solvable.
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Chapter 5

Numerical Results

All numerical results are obtained using the FEniCS project [1]. Thanks to The Texas

Advanced Computing Center (TACC) at The University of Texas at Austin for providing

HPC, visualization, database, or grid resources that have contributed to the research re-

sults reported within this thesis.

In this chapter, we show that our method converges with first order accuracy with re-

gard to both time and space. We furthermore show that the discrete energy:

E(�) :=
1

6
k�k6

L6(⌦) �
1

4
k�k4

L4(⌦) +
1

2
k�r�k2

L2(⌦) � 2 kr�k2
L2(⌦) +

1

2
a
IP

h
(�,�) +

|⌦|
12

.

dissipates over time. To demonstrate this, we consider two tests.

5.0.1 Accuracy Test

The first tests the accuracy of the method. We set the initial conditions to be:

�(x, y) = 0.3 cos (3x) + 0.5 cos (y)

and solve on the domain ⌦ = [0, 2⇡]2 to a final stopping time of T = 0.1. We solve using

the mesh sizes shown in the table below and scale the time step size with the mesh size

via ⌧ = 0.05h. We set the mobility as M(�) ⌘ 1, and the penalty parameter ↵ = 20.

We point out that Neumann boundary conditions are implemented and the finite element

space utilizes P2 Lagrange finite elements. To show first order convergence in the energy

norm, we let the solution from a mesh size of h = 2⇡
2 with ⌧ with ⌧ = 0.05h and T = 0.1

as the ‘exact’ solution, �exact. Then we define �� := �h � �exact, where �h indicates the
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solution on the mesh size h with ⌧ = 0.05h and T = 0.1. Table 5.1 shows the errors and

rates of convergence given the parameters noted in the text above. We solve the resultant

nonlinear system using Newton’s solver.

The number of Newton’s iterations needed for convergence stays constant at 3. Time

Table 5.1:
Errors and convergence rates of the C0-IP method. Parameters and
initial conditions are given in the text.

h k��kL2 k��k2,h rate

2⇡
2 2.041987039187612 52.2412 –

2⇡
4 0.5610049780129817 4.0433 –

2⇡
8 0.0761185133187028 0.9087 1.7972358771640413

2⇡
16 0.054101647325269085 0.14239 1.054682778650358

2⇡
32 0.02834778857415166 0.03203 1.2631240026538169

2⇡
64 0.014612189335501178 0.00780 1.0541769089838793

evolution of the free energy functional is seen in Examples 5.0.1 and 5.0.2. The energy

curves show monotone decays for both.

5.0.2 Formation of oil-in-water and water-in-oil droplets

We present a visualization of the microemulsification process obtained by the numerical

solution of the sixth order Cahn-Hilliard equation.

The pure water phase � = 1 is depicted and � = �1 corresponds to pure oil phase and

microemulsification at c = 0. We set the initial conditions to be the randomly perturbed

concentration fields:

�(x, y) = �̄0 + � rand(x, y),

where rand(x, y) denotes a random number between �1 and 1 and �̄0 denotes a homoge-

neous concentration and � = 0.001.
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Figure 5.1:

The time evolution of the scaled total energy
(F� |⌦|

12 )
|⌦| . The mesh size

is h = 2⇡
256 and ⌧ = 0.05h. All other parameters are defined in the text.

cases.

• In a homogeneous mixture, we introduce a randomized concentration field and place

a weight of � which controls the level of randomized input.

• We set the mesh size at 2⇡
128 and extend the time to T = 1.

Initially, the two fluids are well mixed, and they sooner start to decompose due to surface

tensions. We present results for:

�̄0 = �0.5, � = 0.001, 0.1.

What is crucial to observe is the time step on which the dynamics appears. Our final time

here is T = 0.1 with 407 snapshots of concentration. While the pictures evolve very quickly

within the first 100 time steps.
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Figure 5.2:
�̄0 = �0.5, � = 0.001; Evolution over time top left snapshot of initial
random configuration. The bifurcation times and their snapshots are
presented. The snapshots at timesteps 3,62,78,126,180,210,229,255 and
290, 350 and final time at time step 407.
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Figure 5.3:
Left: �̄0 = �0.5, � = 0.1; Right: �̄0 = �0.5, � = 0.5 at final time
T = 4.
We remark that in this figure (5.3), irrespective of �, if we extend the
final time to T = 4, we observe the dominance of the energy;✓

1
6

R

⌦

(� + 1)2(�2 + 0.5)(� � 1)2 dx

!
corresponding to separation of

phases.
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Chapter 6

Conclusion

6.1 Significance of the Result

6.1.1 Significance of Mathematical Modeling of Microemulsions

1. Modeling Microemulsions is of immense relevance particularly in pharmacetuoical

industries where the formation and dissapearance as well as the stability of the mi-

croemulsion is of great significance. This is e↵ective in predicting the outcome of

experiments numerically before actually conducting the physical experiments.

2. Microemulsions are generally wonderful. They have unique distinguishing features

like enhanced bioavailability due to their ability to solubilize lipophilic drugs [15].

3. They have and can carry water-soluble drugs into aqueous phase, and hence demon-

strate the ability to carry both lipophilic as well as hydrophilic drugs [15].

4. They have extensive protection from hydrolysis and oxidation.

5. They demonstrate greater longevity.

Clearly, modeling of microemulsions is absolute necessary and significant and has thus

caused great breakthroughs in science particularly in pharmaceutical industries.

6.1.2 Applications of Microemulsions in Drug Delivery

Microemulsion formulations are normally beneficial over the conventional oral formulations

for oral drug administration/delivery. They o↵er increased absorption, enhanced clinical
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potency, and less drug toxicity. Thus microemulsions have been scientifically reported to be

more ideal delivery carriers of drugs such as hormones, steroids, antibiotics, and diuretics

[4]. The oral route is the major route for drug delivery in many diseases. The major prob-

lem that we face in the delivery of oil-soluble drugs in the oral route is the poor aqueous

solubility. One way to sort out this problem is to deliver the drug in the microemulsion

form.

Modeling an e↵ective oral delivery system has always been problematic for scientists and

researchers, because of poor solubility and instability of the drugs in the GI fluid. Mi-

croemulsions have the unique ability to circumvent these problems [10]. Microemulsions

encapsulate the drugs with varying solubility because of the presence of polar, nonpolar, and

interfacial domains in them [15]. Microemulsions protect the incorporated drugs from ox-

idative and enzymatic degradation. The absorption e�ciency of levofloxacin hemihydrate,

a synthetic quinolone antibiotic, was found to be enhanced by the use of a water-in-oil

microemulsion system [10] thus proving generally useful in drug delivery.

6.2 Future Work

Our next phase is twofold: to improve our time-stepping scheme and replace it with an

adaptive scheme. To use real data provided by the laboratory experiments and test the

e↵ectiveness of our numerical method/ simulation against physical experiments.
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Appendix A

Di↵erential Operators

1. Unit vectors:

e1 = (1,0)T, e2 = (0,1)T

2. x = (x1, x2) = x1e1 + x2e2.

3. Gradient:

rp =
@p

@x1
e1 +

@p

@x2
e2

4. Divergence:

r · v =
@v1

@x1
+
@v2

@x2
.

5. Laplacian:

�p = r ·rp =
@
2
p

@x
2
1

+
@
2
p

@x
2
2

.

6. Biharmonic/BiLaplacian:

�2
p = �(�p) = r4

p =
@
4
p

@x
4
1

+ 2
@
4
p

@x
2
1@x

2
2

+
@
4
p

@x
4
2

.
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Appendix B

Theorem: The Gateaux derivative ��E of the following energy

E(�) =

Z

⌦

"
1

✏
f(�) +

✏

2
|r�|2

#
dx, f(�) =

1

4
(�2 � 1)2, ✏ > 0. (B.1)

is

��E =
�
3 � �

✏
� ✏��

Proof. Thus we compute lim
�!0+

E(�+��)�E(�)
�

.

E(�) =

Z

⌦

"
1

✏
f(�) +

✏

2
|r�|2

#
dx =

1

✏

Z

⌦

f(�)dx+
✏

2
|r�|2dx (B.2)

E(�+ ��) =

Z

⌦

"
1

✏
f(�+ ��) +

✏

2
|r(�+ ��)|2

#
dx =

1

✏

Z

⌦

f(�+ ��)dx+
✏

2

Z

⌦

|r�+ �r�|2dx.

(B.3)

substituting; |(r�+ �r�)|2 = |r�|2 + �(r�)Tr�+ �(r�)Tr�+ �
2|r�|2 in (B.3) gives:

E(�+ ��) =
1

✏

Z

⌦

f(�+ ��)dx+
✏

2

Z

⌦

|r�|2 + �(r�)Tr� + �(r�)Tr�+ �
2|r�|2dx.

(B.4)

Then,

E(�+��)�E(�) =
1

✏

Z

⌦

f((�+��)�f(�))dx+
✏

2

Z

⌦

�(r�)Tr�+�(r�)Tr�+�2|r�|2dx.

Now, from the definition of f , we get the terms:

f(�+ ��)� f(�) =
1

4

"
4��3� + 6�2�2�2 + 4�3��3 + �

4�4 � 4��� � 2�2�2

#
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Observe that

E(�+ ��)� E(�)

�
=

�

4✏

R

⌦

"
4�3� + 6��2�2 + 4�2��3 + �

3�4 � 4�� � 2��2

#
dx+ �✏

2

R

⌦

"
2(r�)|r� + �|r�|2

#
dx

�

letting �! 0+

lim
�!0+

E(�+ ��)� E(�)

�
=

1

✏

Z

⌦

 
�
3� � ��

!
dx+

✏

2

Z

⌦

2(r�)|r�dx

=
1

✏

Z

⌦

 
�
3� � ��

!
dx+ ✏

Z

⌦

(r�)|r�dx

=
1

✏

Z

⌦

 
�
3� � ��

!
dx� ✏

Z

⌦

r ·r�� +

Z

�

@�

@n
� ds

=
1

✏

Z

⌦

 
�
3� � ��

!
dx� ✏

Z

⌦

���dx

=

Z

⌦

 
�
3 � �

✏
� ✏��

!
�dx = 0 8v

=
�
3 � �

✏
� ✏�� = 0

where we have used integration by parts and vanishing boundary conditions.

Thus denote µ = ✏
�1(�3 � �) � ✏�� which is the chemical potential ��E denoting the

variational derivative of E with respect to �.
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Appendix C

Theorem: The Gateaux derivative ��E of the following energy

E(�) = F0(�) +G0(�) (C.1)

where 2 > 0,

G0(�) =

Z

⌦

⇢
a0 + a2�

2

2
|r�|2 + 2

2
(��)2

�
dx

and

F0(�) =
�

2

Z

⌦

(�� �o)
2(�2 + h0)(�� �w)

2
dx (C.2)

with � > 0 is surface energy density and the parameter h0 measures the deviation from the

oil-water-microemulsion coexistence. is

��E =
�

2

�
6�5 + 4(h0 � 2)�3 + 2(1� 2h0)�

�
�r · (1(�)r�) +

1

2

0
1(�)|r�|2 + 2�

2
�

Proof. We express Gateaux Derivative of E w.r.t � as and prove the result for each term

on the right hand side.
�E(�)

��
=

�F0(�)

��
+
�G0(�)

��

• For �F0(�)
��

;

F0(�+ ↵�) =
�

2

Z

⌦

(�+ ↵� + 1)2((�+ ↵�)2 + h0)(�+ ↵� � 1)2dx

F0(�+ ↵�)� F0(�) =
�

2

Z

⌦

�
(�+ ↵� + 1)2((�+ ↵�)2 + h0)(�+ ↵� � 1)2

 

�
�
(�+ 1)2(�2 + h0)(�� 1)2

 
dx

lim
↵!0

F0(�+ ↵�)� F0(�)

↵
=
�

2

Z

⌦

�
6�5 � 8�3 + 2�+ 4�3

h0 � 4�h0

 
� dx
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Thus;

�F0(�)

��
=
�

2

�
6�5 + 4(h0 � 2)�3 + 2(1� 2h0)�

 
(C.3)

• For �G0(�)
��

;

G0(�+ ↵�) =

Z

⌦

⇢
1(�+ ↵�)

2
|r�+ ↵r�|2 + 2

2
(��+ ↵��)2.

�
dx

G0(�+ ↵�)�G0(�) =
1

2

Z

⌦

�
1(�+ ↵�)|r�+ ↵r�|2 � 1(�)|r�|2

 

+
�
2��+ ↵��)2 � 2(��)

2
 
dx

Now;

lim
↵!0

Z

⌦

G0(�+ ↵�)�G0(�)

↵
dx =

Z

⌦

1(�)r� ·r� dx+
1

2

Z

⌦


0
1(�)|r�|2� dx

+

Z

⌦

2���� dx. (C.4)

Each of the terms on the right hand side of (C.4) can be expressed below thanks to inte-

gration by parts with the following formulas;

Z

⌦

1(�)r� ·r� dx = �
Z

⌦

r · (1(�)r�)� dx+

Z

@⌦

n · (1(�)r�)� ds (C.5)

Z

⌦

���� dx =

Z

⌦

@��

@n
� ds�

Z

@⌦

@
2
�

@n2

@�

@n
ds+

Z

⌦

(�2
�)� dx. (C.6)

Using the fact that � = @n� = 0 and substituting equations C.5 and C.6 into C.4 we have;

lim
↵!0

Z

⌦

G0(�+ ↵�)�G0(�)

↵
dx =

Z

⌦

�
�r · (1(�)r�)� + 

0
1(�)|r�|2� dx+ 2�

2
� �

 
dx.

Thus;

�G0(�)

�(�)
= �r · (1(�)r�) +

1

2

0
1(�)|r�|2 + 2�

2
� (C.7)
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The Gateaux Derivative of E w.r.t � becomes;

�E(�)

��
=
�

2

�
6�5 + 4(h0 � 2)�3 + 2(1� 2h0)�

�
�r · (1(�)r�) +

1

2

0
1(�)|r�|2 + 2�

2
�

(C.8)
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