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Abstract 

 Density Function Theory (DFT) is a popular quantum chemistry calculation method with 

many appeals but also deficiencies. Many modification and additions to the method have been 

made over the years, such as self-interaction corrections and new density functional 

approximations. We review here the theoretical background needed for a basic understanding of 

quantum chemistry calculations. In addition, we present the quantum chemistry calculation 

method used in this paper called Fermi-Lowdin Self-Interaction Correction (FLOSIC), including 

the base code it was implemented on, the Naval Research Laboratory Molecular Orbital Library 

(NRLMOL) Code, and the resulting modified code simply called FLOSIC. Furthermore, we 

explore a new method of obtaining the so-called Fermi Orbital Descriptors (FODs) by looking at 

the Hartree self-repulsion energy between electrons. Lastly, we test two density functional 

approximations called RPBE and revPBE.  
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1 Introduction 

Density Functional Theory (DFT) has been a popular method for quantum chemistry 

calculations since the advancement of computational power. Despite its shortcomings such as 

overestimation  of dissociation energies for simple molecules and underestimate of band gaps in 

semiconductors [1], it has still proven successful in other areas such as handling zero-gap 

materials, i.e. metals, without falling to the problem of singularities and in addition showing its 

versatility in being useful not only in chemistry and material science but also for biological 

systems, astrophysics, and geological systems [2], in which the idea of taking a density as the 

basic variable is implemented. DFT has its appeal because it has novelties compared to other 

methods. One such novelty is that it is computationally simpler than say first principle methods 

such as Hartree-Fock when calculating the same properties of the system. This is due to DFT 

using the electron density of the system instead of the product of one electron wave functions, 

each of which has as its arguments three position coordinates and one spin coordinate. Thus, the 

total electron density is only a function of four variables as opposed to four times the number of 

electrons, which is the number of coordinates needed in Hartree-Fock and other ab-initio 

methods.  DFT has proven to be more computationally cheap than many post-Hartree-Fock 

methods such as Coupled Cluster and MP perturbation theory due to the coupling of coordinates 

in these more advanced ab initio methods [2]. 

In DFT the total energy is a functional of electron density. Although DFT is exact in 

principle, practical applications rely on approximations to the exchange-correlation energy 

functional.  The failures of density functional approximations (DFA) are well documented.  

Many different successful DFAs have been made since its inceptions. One of the DFAs’ 

shortcoming is the self-interaction error (SIE) which arises because of incomplete cancellation of 
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the self-Coulomb by self-exchange.  Perdew and Zunger [3] have provided an orbital by orbital 

correction to self-interaction error.  In PZSIC the orbital by orbital correction is added to the 

DFA exchange correlation energy term.   

The presence of self-interaction error leads to incorrect asymptotic decay of the potential 

an electron sees. The DFAs to exchange-correlation potential gives the potential decaying as -

exp(-r) instead of the correct -1/r. As a result, the DFT potentials are shallow which leads to a 

shallow potential for the valence electrons. Furthermore, the ionization potential and electron 

affinities in DFT are underestimated when estimated from the energy eigenvalues of the highest 

occupied orbitals. We test the performance of the PZSIC with two different exchange-correlation 

energy functionals. The PZSIC approach is used within the Fermi-Lowdin orbital self-interaction 

correction scheme.  

The Fermi-Lowdin orbital (FLO) self-interaction correction uses Fermi orbitals which are 

local orbitals. [4] The Fermi orbitals are obtained after a unitary transformation of the DFT 

canonical orbitals.  The Fermi orbitals are uniquely described by a special position known as 

Fermi orbital descriptor. The calculations are started with a set of trial FODs equal to the number 

of electrons in the system. The self-interaction corrected DFT energy is minimized by varying 

the positions of the FODs. The optimization of FODs is a time and resource consuming task.  In 

this work we also outline a scheme to obtain better trial FODs by minimizing the Coulomb 

interaction between the Fermi orbitals.  



3 

2 Theoretical Background 

In this chapter we introduce the theoretical concepts that we will be using throughout this 

paper. These include concepts in quantum chemistry, including a brief review of the 

fundamentals of quantum mechanics, the idea of quantum chemistry calculations, and the 

methods used to compute such calculations; delving deeper into the density functional theory 

method and self-interaction corrections for density functional theory within certain orbital 

frameworks. 

2.1 Quantum Mechanics Review 

In quantum chemistry, the Schrodinger equation dictates the time evolution of the state of 

a system, and by system we mean any physical object of interest whether it be a single atom, a 

single molecule, or a collection of them. This Schrodinger equation is a partial differential 

equation that involves the partial derivative with respect to time of the wavefunction and the 

Hamiltonian operator, which in this context is the sum of the component energy operators which 

include the kinetic energy and any potential energies present. 

 iħ∂Ψ(r,t)/∂t = [-ħ^2/(2m)∇2+V(r,t)]Ψ (r,t) = HΨ(r,t) (1) 

Here, the potential may be a function of the position and time. However, in many cases, 

including our own, the potential may be a function of only position. If so, then we can derive the 

time-independent Schrodinger equation: 

 Hψ(r) = [-ħ^2/(2m)∇2+V(r)]ψ(r) = Eψ(r) (2) 

In which the time-independent wavefunction depends only on the position coordinates of 

the system and is denoted by lowercase psi (ψ). 

The solutions for the time-independent Schrodinger equation are the eigenfunctions of 

the Hamiltonian operator and are called stationary states [4]. The stationary states have definite 
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energy E. The stationary states form an infinite set of eigenfunctions {φi} with corresponding 

eigenvalues {Ei}. 

 Hφi= Eiφi (3) 

Each eigenfunction describes a possible stationary state for the system, and each 

corresponding eigenvalue is the energy of the system at that stationary state [4]. The first 

stationary state and the one with the lowest energy is called the ground-state and the energy the 

ground-state energy. 

 HφGS=EGSφGS (4) 

 This ground-state energy is the minimum possible energy of the system, and it is never 

zero. Therefore, even with zero thermal energy, that is, at absolute zero temperature, all systems 

have some energy associated with them. 

The state of a system can not only be in just one of the stationary states, but it can in fact 

be in a linear combination of any number of them, that is, the system can be in a superposition of 

stationary states for they form a complete basis for the whole space that includes all the possible 

states the system can occupy [4]. 

 ψ=c1φ1+c2φ2+...+cnφn (5) 

 The function that describes the state of the system is thus called the wavefunction. The 

wavefunction is in the span of the infinite set of eigenfunctions we obtain from the Schrodinger 

equation. 

However, the energies that can be obtained when measuring the system can only be a 

member of the set of eigenvalues that correspond to the eigenfunctions. When the system is in a 

linear combination of stationary states, then all the eigenvalue energies associated with those 

stationary states can be obtained in a measurement. Each energy has a nonzero probability of 
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being read in a measurement of the system’s energy. This means that the system has a 

probability associated with each eigenstate of collapsing into that stationary state when a 

measurement is made. This probability is determined by the coefficient ci accompanying the 

corresponding eigenfunction φi . The probability is simply the norm squared of the coefficient: 

 p(system in state i) = c*i·ci = |ci|
2 (6) 

Furthermore, the norm squared of the wavefunction |ψ(r) |2 is the so-called probability 

density and |ψ(r) |2 d3r is the probability of the system (if it were a single particle) of being in the 

interval (r,r+dr) [4]. Integrating over a range yields the probability of the particle being in the 

range (r1,r2) as such: 

 p(r ∈ (r1,r2)) = ∫|ψ(r) |2 d3r from r=r1 to r=r2 (7) 

 When a measurement is made of any other property of the system, the probability of that 

measurement being in a certain range can be obtained by transforming the time-independent 

wavefunction ψ into the space of the physical property we measured and following similarly as 

for position in the previous example. 

2.2 Quantum Chemistry Calculation Methods 

Quantum chemistry calculations seek to find physical properties of chemical systems. 

These chemical systems include single atoms, complex molecules, or a collection of molecules 

such as crystal structures.  

Practical and useful quantum chemistry calculations in modern times can only be done 

numerically and computationally. That is, the wavefunction of almost all real systems cannot be 

found analytically, and thus is approximated with numerical methods. Furthermore, the 

numerical methods developed are extremely demanding for the number of computations 
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performed, and thus manual computation is impossible. For this reason, quantum chemistry and 

solid-state physics programs were developed. 

In this context, when doing quantum chemistry calculations, there are two things that one 

must specify: the method and the basis set used [5]. The basis is a limited set of functions that are 

used to express the approximated wavefunction, or any function that can describe the system, 

and any functions that the method uses to arrive at a satisfactory approximated wavefunction, 

those being for example the so-called orbitals.  These basis sets are chosen with care because 

they are limited and therefore are not complete. Depending on the method and the system, one 

tries to make sure the wavefunctions and orbitals of the system fall reasonably near the span of 

the basis set. The choice of method and basis set help determine the accuracy of the results and 

the computational cost [5]. 

Many molecular properties calculation methods have been developed since the early 20th 

century, but they can be classified by most into four categories: ab until methods, semiempirical 

methods, the density functional theory methods, and the molecular mechanics methods [7]. 

Semiempirical methods use a simplified Hamiltonian and adjustable parameters, while molecular 

mechanical methods are not quantum mechanical in nature but instead treat atoms as classical 

particles [7]. These methods are not relevant to this paper and are only mentioned for 

completeness. 

On the other hand, ab initio methods use an extremely accurate Hamiltonian and seek to 

find the wavefunction of the system, while density functional methods seek to find the electron 

probability density instead of the molecular wave function [7]. These types of methods are more 

relevant to this paper, and will be explored in later sections, especially density functional theory 

methods.  
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2.3 Atomic Units 

All equations presented in this text will be expressed in atomic units.  The benefit of 

using this system of units is the simplification of all equations without the need of physical 

constants, for many physical constants or combinations of them are used as the base units of 

measurement. For completeness, the atomic units for each physical quantity are as follows:  

Table 2.1: Atomic Units Base Units 

Physical Quantity Base Units 

Mass me (mass of an electron) 

Charge e (charge of a proton) 

Angular Momentum h/(2π) (where h is Planck’s constant) 

Energy mee
4/(h/(2π))2 (one Hartree) 

 

The first three units alone suffice to derive all other quantities such as energy and length 

[8]. 

2.4 Born-Oppenheimer Approximation 

The Hamiltonian operator for a molecule has the following form [9]: 

 Hop = Top,N(R) + Top,e(r) + Vop,eN(r,R) + Vop,NN(R) + Uop,ee(r) (8) 

Where from left to right of the right-hand-side of the equation, each term represent 

respectively the operators of: the nuclei kinetic energy, the electrons kinetic energy, the electron-

nuclei interaction potential, the nuclei-nuclei interaction potential, and the electron-electron 

interaction potential. In addition, the vector R represents the collective position vectors of the 

nuclei and r the collective position vectors of the electrons. 

One of the approximations density functional theory and first principle methods make to 

simplify this equation is the Born-Oppenheimer approximation. This approximation states that 
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the motion of electrons and nuclei in a system can be separated in the sense that the motion of 

nuclei do not change appreciably during a complete cycle of motion of electrons. The reasoning 

behind this is that nuclei are several thousand times heavier than electrons, and thus their larger 

inertia makes them seem extremely slow compared to the motion of electrons. Therefore, nuclei 

are nearly fixed with respect to electron motion and thus their kinetic energy term is neglected 

[9]: 

 Hop,el = Top,e(r) + Vop,eN(r;R) + Vop,NN(R) + Uop,ee(r) (9) 

This results for the operation on the wavefunction to yield: 

 Hop,elψ(r,R)=Eelψ(r,R) (10) 

Where Hop,el is now the electronic Hamiltonian, Eel the electronic energy, and now ψ(r,R) 

is referred to as the electronic wavefunction. Furthermore, despite the term Vop,eN(r;R) being 

large and not being neglectable, the R doesn’t change appreciably, and thus Vop,eN depends on 

them parametrically, allowing for the wavefunction related to Hop,el to be written in terms of the 

electronic wavefunction ψ(r,R) and a nuclei wavefunction χ(R) [9]: 

 Ψ(r,R)=ψ(r,R)χ(R) (11) 

The nuclei wavefunction can be obtained by trying different sets of nuclei position 

vectors R and determining a potential energy curve affecting the nuclei [9]. However, because 

the most interesting properties of a system involve only its electrons, especially during chemical 

reactions, and because the Born-Oppenheimer approximation allows us to investigate the 

electronic system separately from the nuclei without introducing significant error, this paper 

concerns itself  only with the electronic part of a system, that is, its electronic Hamiltonian, 

energy, wavefunction,  and associated electron density.  

2.5 Density Functional Theory Method  
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Density functional theory was first alluded in a paper by Kohn and Hohenberg in 1964 

[10] and the next year (1965) published as a full-fledged theory by Kohn and Sham [11]. The 

main premise of density functional theory is to replace the electronic wavefunction of a system 

by the electron density of the system to calculate properties of the system. The electron density 

of the system is determined by the wavefunction in the following way 

 n(r) = N∫d3 r2∫d
3r3...∫d

3rNψ*(r,r2,r3...,rN)ψ(r,r2,r3...,rN)  (12) 

This shows that the electron density is a functional of the electronic wavefunction. 

However, the Hohenberg-Kohn theorem states that for a system composed of an arbitrary 

number of electrons, that the external potential v, due to the nuclei, of the system is a unique 

function of the electron density and nGS and vice versa [10]: 

 v = v[nGS] and nGS = nGS[v] (13) 

This implies that the electron density is uniquely determined by the coulomb potential of 

the nucleic outside the electronic system. Hohenberg and Kohn showed that the ground state 

energy is a functional of ground state electron density and can be used as the basic variable 

instead of the electron wave function also note that the wavefunction is a functional of the 

electron density: 

 EGS = E[nGS] (14) 

Thus, this shows how the ground-state electron density can replace the ground-state 

wavefunction to determine the properties of the system since for quantum systems we only have 

information about the probability distribution of measuring outcomes of observables and the 

expectation value is the average of those measurements on the observable [12]. However, it must 

be noted that DFT is, on its own, restricted to finding the electron density of the ground state. 

The reason for this will be apparent shortly. 
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The following mathematical framework for DFT is derived with the help of a section in 

Ira N. Levine's book Quantum Chemistry [13]. We start laying the framework of DFT with the 

electronic Hamiltonian operator of an n-electron system under some external potential due to the 

positive nuclei: 

 Hop = Vop(r;R) + Top(r) + Uop(r) = ∑i=1
nv(ri) + -1/2∑i=1

n∇2
i + 

1/2∑j=1
n∑i=1

n1/|ri-rj| 

(15) 

Where Vop refers to the electron-nuclear interaction potential, Top the electrons kinetic 

energy, Uop the electron-electron interaction potential, and the nuclear-nuclear repulsion 

Vop,NN(R) is neglected due to R being parameters and thus Vop,NN(R) being a constant that just 

shifts the eigenvalue energies by a constant amount [9].  

The difficulty of obtaining the electronic wavefunction is the electron-electron 

interactions that are not only intrinsically present in the Coulomb repulsion operator Uop(r) but 

are also present in the kinetic energy operator Top(r). For this reason, we develop a new reference 

system called S in which there are no interelectronic interactions. For this new system with non-

interacting electrons to be useful, we impose an external potential vS such that this potential 

produces an electron density nS for the reference system S that is equal to the ground state 

electron density nGS of the real system: 

 nS = nGS  (16) 

The similarity between the real system and system S is that their electron densities are 

equal, but their differences can be formally stated in this equation for the general Hamiltonian 

dependent on the parameter λ [14]: 

 Hλ = Σi (-1/2∇2 + vλ)i + λ1/2Σj≠iΣi 1/|rj - ri| (17) 
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Where λ=1 for the real system and λ=0 for system S, but the corresponding external 

potential vλ is determined such that nλ is constant regardless of the value of λ, namely nλ=nGS. 

As such, the non-interacting electrons of system S only have kinetic energy and potential 

energy due to the potential v0 = vS. This makes the Hamiltonian of system S be 

 Hop,S =Top,S+Vop,S = ∑i=1
n[-1/2∇2

i,S + vS(ri)] (18) 

This operator would consider the kinetic energy and potential energy of each ith electron. 

Now, because the electrons in system S are noninteracting, its wavefunction will simply be a 

Slater determinant of Kohn-Sham orbitals, that is, an antisymmetric product of Kohn-Sham 

orbitals uKS
i as such: 

 ΨS = 1/√N⌉·|uKS
1u

KS
2...u

KS
n| (19) 

It is worth noting that it is harder to extract quantitative information from Kohn-Sham 

orbitals, but their number, symmetry, and shape are as expected from orbitals obtained in 

wavefunction-based methods such as Hartree-Fock [15]. 

The reasoning behind the wavefunction being a Slater determinant is that when applying 

the separation of variables method, the total Hamiltonian is formed as a sum of one-particle 

dependent operators. Each operator affects only one electron’s coordinates, leading to the total 

wavefunction of a system of n non-interacting particles being composed of a product of n 

independent single-electron wavefunctions, each wavefunction dependent only on the position 

coordinates of one electron as shown below [16]: 

 ψ(q1,q2,...,qn)=G1(q1)G2(q2)···GN(qN) (20) 

 Hop=Hop,N+Hop,2+...+Hop,N (21) 

With the energy following similarly due to applying the total Hamiltonian operator on the 

total wavefunction: 
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 E = E1 + E2 + … + EN (23) 

with  

 HiGi=EiGi , i=1,2,...,n (22) 

The Slater determinant ensures the Pauli exclusion principle is fulfilled. 

Now we introduce Kohn and Sham’s formulation of the ground state electronic energy  

by introducing the quantities for the difference between the kinetic energy of the real system and 

the kinetic energy of system S and the difference between the real system inter-electronic energy 

and the classical electrostatic energy of a continuous charge distribution (Uclass): 

 ΔTavg = Tavg - Tavg,S  (23) 

 ΔUavg =Uavg-Uclass  

= Uavg - 1/2∫∫n(r)n(r’)/|r-r’|d3rd3r’ 

(24) 

Where the average values are the expectation values of the corresponding operators and 

calculated as such: 

 Tavg= ⟨ΨGS|Top|ΨGS⟩ (25) 

 Tavg,S= ⟨ΨGS|Top,S|ΨGS⟩ (26) 

 Uavg= ⟨ΨGS|Uop|ΨGS⟩ (27) 

With these definitions, we can write the ground-state electronic energy of the system as 

such: 

 EGS= Vavg + Uclass + Tavg,S + ΔTavg + ΔUavg (28) 

This can further be expanded upon if we consider Vop as the potential by the nuclei 

imposed upon a continuous distribution of charge, namely the electron density. Therefore, the 

ground-state energy can be written as: 

 E0= ∫n0(r)v(r)d3r + 1/2∫∫n0(r)n0(r’)/|r-r’|d3rd3r’ + Tavg,S + ΔTavg + ΔUavg (29) 
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With 

 Vavg=∫n0(r)v(r)d3r (30) 

Two of the terms in the energy are functionals of the electron density and thus can easily 

be determined if we had such function. Now, we can use the fact that the ground state 

wavefunction of system S is determined by the determinant of Kohn-Sham spin orbitals as 

shown in equation (20). 

Each Kohn-Sham orbital is equivalent to the product of a spatial-orbital θKS
i and a spin-

orbital σi as such: 

 uKS
i=θKS

iσi (31) 

 

As a result, the ground state electron density of system S, which is assumed to be 

equivalent to that of the real system, is this: 

 nS=n0=∑i=1
n|θKS

i|
2 (32) 

The kinetic energy operators of Top,S act individually and only on the spatial part of the 

Kohn-Sham orbitals because the electrons are not interacting with each other in system S, and 

thus the kinetic energy of system S is 

 Tavg,S=-1/2∑i=1
n⟨θi(r)|∇2

i|θi(r)⟩ (33) 

 

As a result, we can now write the ground-state energy in a more explicit fashion as such: 

 E0=∫n0(r)v(r)d3r+1/2∫∫n0(r)n0(r’)/|r-r’|d3rd3r’ (34) 

 -1/2∑i=1
n⟨θi(r)|∇2

i|θi(r)⟩+ΔTavg+ΔUavg  

Now, because the ground-sate electron density is determined by the spatial-components 

of the Kohn-Sham spin orbitals, as was shown above, Tavg,S has the same dependency as nGS, that 
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is, they are both determined by the correct set of spatial Kohn-Sham orbitals {θKS
i}. Therefore, 

again, if we can determine this set, we can calculate all three quantities Vavg, Uclass, and Tavg,S 

relatively easily. The only quantities we need to determine are ΔTavg and ΔUavg. In reality, these 

quantities cannot be determined exactly, but must redefined jointly and approximated, but to do 

this we must first explore why Uclass and Tavg,S fail to adequately describe the true interelectronic 

repulsion energy of the electrons and their true kinetic energy respectively. 

As is well known in quantum mechanics, electrons interact with each other in two ways: 

Coulombic repulsion and Pauli repulsion. Because electrons all have the same negative charge, 

they feel a repulsive force from each other and thus tend to move away from each other. This 

effect has a correlation with their motion and a so-called Coulomb hole forming around each 

electron with respect to all other electrons [17]. This indicates that the set of Kohn-Sham spatial 

orbitals {θKS
i} with the kinetic operator Top,S , which are determined for non-interacting 

electrons, cannot adequately describe the kinetic energy of the actual electrons. The energy 

determined by Top,S , that is Tavg,S , must thus be an underestimation of the true kinetic energy 

Tavg because interacting electrons repel each other and thus increase their kinetic energy. 

Furthermore, although Uclass accounts for most of the repulsion energy between electrons, 

it is still derived from a potential that is an average effect from all other electrons: 

 Vclass(r) = 1/2∫n0(r’)/|r-r’|d3r’  (35) 

where 

 Uclass[n]=∫Vclass(r)n(r)d3r (36) 

Since Vclass is an average potential, it does not account for the effect of other electrons on 

the potential of a single electron. This neglects the so-called exchange and correlation effects. 
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In addition, because all electrons have the same fractional spin quantum number, namely 

one half, all electrons are fermions. Thus, as is shown, because the interchange of two electrons 

with the same position and spin lead to the wavefunction being multiplied by negative one, the 

probability of two electrons with the same spin quantum number being in the same place is zero. 

 ψ(r1,...,ri,...,rj,...,rN;σ1,...,σi,...,σj,...,σN)= 

-ψ(r1,...,ri,...,rj,...,rN;σ1,...,σi,...,σj,...,σN)=0 for ri = rj and σi = σj 

(37) 

This implies that the integral involved in calculating the probability of an electron being 

near the vicinity of an electron with the same spin, either 1/2 or -1/2 , will be smaller. This is 

interpreted as a repelling force, and thus leads to another source of repulsion between electrons 

and a so-called Fermi-hole forming around each electron with respect to another electron of 

equal spin [17]. On the other hand, if the two electrons of differing spin are near each, they do 

not experience this unfavorable probability, and thus feel no spin repulsion, although they still 

experience Coulomb repulsion. These nuances in the interaction between electrons are not 

addressed by Uclass and Tavg,S. 

The Coulomb and Fermi holes lead to electrons having regions around them where the 

probability of finding another electron is lower. These two types of interactions between 

electrons make it more difficult to account for the extra energy terms ΔTavg and ΔUavg. 

Therefore, as was done by Kohn and Sham in their 1965 paper [11], these corrective 

energy terms ΔTavg and ΔUavg are redefined as a single term called the exchange-correlation 

energy 

 EXC=ΔTavg+ΔUavg (38) 
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The reason for the definition is that the errors in energy ΔTavg and ΔUavg are due to the 

correlation between the motion of all electrons and the anti-symmetry effect present when 

electrons’ coordinates are exchanged. This exchange correlation energy EXC can only be 

approximated but it must be a functional of the electron density since total energy is a functional 

of density: 

 EXC=EXC[n] (39) 

 Many types of exchange correlation functionals exist. Some deal with the exchange and 

correlation parts separately, others deal with them together. These functionals fall into categories 

that include Local Density Approximation (LDA), Local Spin Density Approximation (LSDA), 

Generalized Gradient Approximation (GGA), meta-GGA, and so on. However, for the purposes 

of this paper, the exchange-correlation functional used will be indicated but the mechanics 

behind it will not be delved into. 

Having defined the exchange-correlation energy, we can now write the electronic ground-

state energy of the n-electron system as such  

 E0=∫n0(r)v(r)d3r+1/2∫∫n0(r)n0(r’)/|r-r’|d3rd3r’-

1/2∑i=1
n⟨θi(r)|∇2

i|θi(r)⟩+EXC[n] 

(40) 

With an approximated exchange-correlation functional, we now have an expression for 

all the energy terms, but the problem remains on finding the set of Kohn-Sham orbitals {θKS
i}. 

The correct set of Kohn-Sham orbitals will minimize the above expression (41) for the ground 

state energy, and in addition will yield a ground-state electron density n0(r) such that when 

integrated over all space should yield the total number of electrons in the system N. Thus, 

through the method of Lagrange multipliers and other constraints, including the requirement that 

the orbitals be orthogonal to each other, we derive this self-consistent equation [18]: 
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 [-1/2∇2-∑αZα/|Rα-r|+∫n(r’)/|r-r’|d3r’+vxc(r)]θKS
i= εKS

iθ
KS

i’ (41) 

Where the term vxc(r) is the functional derivative of the exchange-correlation energy 

functional: 

 vxc(r)=∂EXC[n(r)]/∂n(r) (42) 

Equation (42) constitutes a self-consistent field (SCF) calculation in the sense that the 

initial Kohn-Sham orbitals that are used on the left-hand side of the equation produce new 

orbitals on the right-hand side of the equation (hence the primed orbitals) that are closer to the 

correct set of KS orbitals. As a result, the orbitals that correctly optimize the ground-state energy 

are derived through an iterative method. This method starts with an initial guess, and in practice 

the method concludes when the forces on the electrons are small. If this is achieved, then the 

method is said to have converged. 

At this point it is important to emphasize that in this paper we will be looking at the 

ground-sate electron density and the ground-state energy. The reason we limit our exploration to 

this state is because the basic density functional method aims to minimize the energy functional 

E[n]. Minimization with no constraints is the simplest approach to find an allowed energy of the 

system, and this energy happens to be the ground-state energy E0 because, by definition, it is the 

lowest allowed energy.  
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3 Fermi-Lowdin Orbital Self-Interaction Correction (FLOSIC) 

In this chapter we introduce the self-interaction error (SIE) present in DFT. We then 

delve into the modification made into DFT to solve for SIE called self-interaction correction 

(SIC). With this, the emergence of DFT SIC began and further improvements were made to the 

methods, including consideration of the type of orbitals used besides the standard Kohn Sham 

orbitals. 

3.1 Self-Interaction Error 

The self-interaction error (SIE) in DFT is an energy that is not physical and thus should 

not be present but is a by-product of the mathematical method used. This SIE energy is due to an 

electron interacting with itself [19]. This can be seen clearly in the hydrogen atom system. In this 

system, there is only one electron, and because an electron cannot physically interact with itself 

(e.g. it cannot repel itself), then there should be no Hartree energy or Exchange-Correlation 

energy. That is, the ground state energy should only have a kinetic energy term and an external 

potential energy term as such: 

 E0
H=Vavg+Tavg,S=∫n0(r)v(r)d3r-1/2∑i=1

n⟨θ1(r)|∇2
1|θ1(r)⟩ (43) 

 Therefore, ideally, the sum of the Hartree energy and the Exchange-Correlation energy 

for Hydrogen should add up to zero. In particular, the Hartree energy and the exchange energy 

should cancel each other out and the correlation energy should equal to zero [19]: 

 Ex[n]+U[n]=0; Ec[n]=0  (44) 

Where 

 Ex[n]+Ec[n]=Exc[n] (45) 
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However, when a calculation of the ground state energy of the Hydrogen atom is made, 

one sees that the Hartree energy and the Exchange-Correlation energy altogether do not cancel 

each other out: 

 Uclass+EXC ≠ 0 (46) 

3.2 Self-Interaction Correction 

A self-interaction correction (SIC) for SIE was introduced in a paper by Perdew and 

Zunger in 1981 [3]. This modification gets inspiration from one-electron systems such as 

Hydrogen. For Hydrogen, this SIC modifies the Exchange-Correlation terms such that it is as 

such: 

 EXC
PZSIC[n]=EXC[n]-EXC[n]-Uclass[n] (47) 

Therefore, the total ground state energy would be correct, that is, being the sum of kinetic 

and external potential energy terms only. In Perdew and Zunger’s SIC-DFT (PZSIC-DFT), this 

modification is taken in an orbital by orbital basis, looking at each Hartree energy and Exchange-

Correlation functional as being composed of a sum of single-orbital-density dependent 

functionals, like one-electron systems, and subtracting the error (in an orbital-by-orbital basis). 

This leads to the reformulation of the Exchange-Correlation energy for any system as such [20]: 

 EXC
PZSIC=EXC[n]-∑iUclass[ni]+EXC[ni] (48) 

Where ni is the electron density due to only the ith orbital as such: 

 ni=|θKS
i|

2 (49) 

And n is the sum of such one-orbital densities: 

 n=∑i=1
n|θKS

i|
2 (50) 

With this reformulation of the Exchange-Correlation energy, we can rewrite the ground 

state energy as such: 
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 E0=Vavg+Uclass+Tavg,S+EXC
PZSIC (51) 

With n = n0 in this situation. The new method PZSIC-DFT mitigates the SIE but does not 

eliminate it completely. Besides this reformulation, another improvement can be made by 

improving the orbitals generated from the SCF equation. 

3.3 Fermi Orbitals Framework in Fermi-Lowdin-Orbital Self-Interaction Correction  

The Perdew-Zunger correction to DFT is better suited for small systems, such as 

molecules of a handful of atoms. However, for larger systems, such as crystals where an 

arrangement of atoms is repeated throughout space, the correction tends to diminish and vanishes 

completely in the limit of infinitely large periodic systems [20]. 

 This problem shows up in any situation in which the system is extended throughout 

space, another example being stretched bonds. This is called the size-extensivity problem where 

size-extensivity refers to the property of a quantum chemistry calculation method to properly 

calculate properties that are size-independent or that scale linearly with the number of electrons 

[21].  

It was discovered that for PZSIC DFT to acquire size-extensivity, the orbitals used must 

be localized. This means that the orbitals making up the electron density must peak at certain 

points in space and decay in value as the distance from these points increases. That is, these 

localized orbitals exist essentially only in a limited region in space as opposed to covering the 

whole space occupied by the whole system [22]. For the method used in this research, the 

procedure followed to localize the canonical orbitals, that is the Kohn-Sham orbitals, was 

through the FLOSIC framework. Briefly explained, with the FLOSIC method, the KS orbitals 

are linearly transformed into the so-called Fermi Orbitals (FOs). These FOs are localized and as 

a result do not need to satisfy the so-called localization equations [23], which would make the 
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method more computationally expensive. The linear transformation from KS orbitals to FO is as 

follows: 

 Fiσ(r)=∑α{ψ*ασ(aiσ)ψασ(riσ)/(∑α|ψασ(aiσ)|2)½ } (52) 

Where the Fermi orbitals (FOs) are denoted by Fiσ, in which α denotes the occupied 

canonical orbital index, i denotes the Fermi orbital in question, and σ denotes the spin quantum 

number. The Kohn-Sham Orbitals are denoted by ψασ and the vectors aiσ are the position vectors 

of the so-called Fermi-Orbital Descriptors (FODs) [20]. These FODs can be thought of as semi-

classical electrons, and the number of FODs equals the number of electrons Nσ. In FLOSIC, 

these FOs are then orthogonalized with respect to each other, that is, their dot product, which is 

an integral over all space, equals zero as such: 

 ∫all spaceφασ(r)φα’σ’(r)d3r = 0 for  

 α≠α’ and σ≠σ’ , 

(53) 

where the new Fermi-Lowdin Orbitals are denoted by φασ . For the purposes of this paper, 

the Lowdin orthogonalization scheme will not be delve into despite being implemented on the 

codes used for this paper.  
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4 Naval Research Laboratory Molecular Orbital Library Code 

In this chapter, we cover the program used that implements DFT for quantum chemistry 

calculations. This program is called Naval Research Laboratory Orbital Library or NRLMOL. 

NRLMOL was initiated mainly by Dr. Mark Pederson and others [24][25][26][27][28][29][30]. 

We will go over the input files, the code procedure, and the output files. NRLMOL can calculate 

several properties of a system, but for this research, the molecular geometry and the electronic 

geometry optimizations were the only ones considered. Molecular geometry optimization is 

when the positions of the nuclei of the system yield the minimum energy of the system, while 

electronic geometry optimization is when the positions of the FODs yield the minimum 

electronic energy. These energies will be considered for a system in absolute zero and in the 

ground state. The code was originally used for molecular geometry optimization before the 

FLOSIC version of it was developed. As such, the molecular geometry optimization is discussed 

first. 

4.1 Input Files 

To start things off, NRLMOL is a program written in FORTRAN. To execute this file for 

a molecular geometry optimization, one needs at minimum one input file that contains the 

information about the system. This sole input file must be named CLUSTER. This CLUSTER 

file must provide these details for the program to run: the exchange-correlation parametrization, 

the point groups of symmetry, the number of inequivalent atoms, the coordinates of the atoms, 

the atomic numbers, the number of electrons for each atom, the charge of the system and the 

dipole moment. 

The exchange-correlation parametrization refers to the exchange-correlation functional 

used. NRLMOL has a list of exchange-correlation functionals implemented into it. The default 
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functionals used are from the GGA group and for both the exchange and correlation the Perdew-

Burke-Ernzerhof (PBE) and variations of it are used. The point group symmetry of the system 

comes from the set of atom-coordinate transformations that leave the system unchanged. The 

types of symmetries a molecule can have fall under line of symmetry, plane of symmetry, center 

of symmetry, rotation and reflection axis, and identity. All these are operators that act on the 

position-coordinates of the atoms. The name point groups of symmetry comes from the fact that 

molecules have a group of symmetry operators that leave one point in space unchanged. 

The number of inequivalent atoms refers to the number of distinct atoms in the system. 

For example, for a water molecule, there would be only two inequivalent atoms, those being the 

oxygen atom and the hydrogen atom despite there being three atoms in total. Next, the positions 

of the atoms are specified in cartesian coordinates using Bohrs, the atomic units of length. The 

atomic number refers to the number of protons in the nuclei of each atom type, and the number 

of electrons specifies how many electrons each atom has. All this information is specified for 

each atom, inequivalent or not, in their own line. One thing to note is that the number of 

electrons is specified while the number of neutrons, that is, the possibility of isotopes of that 

atoms, is not specified because chemical reactions occur due only to the interaction between 

charged particles. 

Finally, the last line of CLUSTER specifies the total charge of the system in units of 

proton charge. The moment of the system is specified by the number of unpaired electrons. 

The file CLUSTER is what is required to run NRLMOL for the start of the calculation. 

More files are produced on each SCF cycle. These files specify various information about the 

system and are updated after each SCF cycle until the procedure is finished.  
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A pair of input files can be used to replace CLUSTER to run nrlmol_exe. These files are 

called SYMBOL and ISYMGEN. These files better specify the information that CLUSTER 

provides. Both inputs types were used for this research. 

4.2 Running High-Performance Calculations with NRLMOL 

NRLMOL can be run on any desktop computer or laptop for only small systems. These 

may include single atoms or small molecules. The code can be used for several hundreds of 

atoms using high-performance computing platforms where the code runs parallelly. Usually a 

batch job script is used to submit jobs to the queue. 

The job script is a file written for the message passing interface (mpi), which is a 

message passing standard used to run multiple processors and manage traffic between the local 

computer and the cores used to perform the calculation. The job scrip has some other 

specifications, such as the number of cores requested for use or the allowed amount of runtime 

for the job. One specification of interest for this paper is if the program will run more than once. 

That is, the job script can specify a loop dictating how many times NRLMOL will run. This loop 

can stop once a condition is achieved. For the experiments performed on this paper, the program 

stopped once a certain condition was set (e.g. the biggest force on the collection of atoms or 

FODs was smaller than a set tolerance). 

4.3 Output Files 

Once NRLMOL finishes an SCF cycle, the code prints several output files. These output 

files are either updated after each SCF cycle or are used as input files for the next SCF cycle. The 

previously mentioned files SYMBOL and ISYMGEN are produced after the first SCF cycle, and 

they then replace CLUSTER as the information needed for the code about the system of interest, 
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for the position coordinates of the molecules are updated for a geometry optimization 

calculation. 

The output file GEOCNVRG indicates as true or false whether the geometry has 

converged or not, with the tolerance for convergence indicated as well. The file indicates the 

total electronic  energy as well as the current largest nuclear gradient (i.e. the biggest force from 

the set acting on the nuclei). If this gradient is smaller than a set tolerance, then the geometry is 

said to have converged. 

Of the output files of interest, the position coordinates of the atoms in an XMOL file is 

included. This file lets us see the molecule in any molecule visualization programs. The one used 

here is called Avogadro. The benefit of this is to keep track of the molecule’s shape and 

qualitatively make sense of it to make sure the calculation is converging to a realistic geometry. 

Another output file of interest for this research is the file named SUMMARY. This file 

documents the energy of the system after each SCF cycle. This cycle is useful because, as we 

mentioned before, DFT is a variation method, and as such, we hope the energy of the system 

decreases and does not either increase or oscillate for these are indications of the calculation 

diverging. 
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5 Fermi-Lowdin Orbital Self-Interaction Correction (FLOSIC) Code 

As previously mentioned, despite the success of DFT, the method still suffers from SIE. 

Over the development of NRLMOL, new versions of the code were made that included SIC. 

This new code that built upon NRLMOL is named Fermi-Lowdin Orbital Self-Interaction 

Correction or FLOSIC for short. This new method requires either one or two additional input 

files in addition to NRLMOL executable and outputs new files that involve the Fermi orbital 

descriptors previously mentioned. 

5.1 Input Files 

The code used for DFT SIC calculations the input files needed for DFT calculations, the 

input file CLUSTER and a job script for large systems. However, FLOSIC is based upon 

defining new orbitals called Fermi Orbitals and later Fermi-Lowdin orbitals to improve upon the 

DFA. As was explained previously, Fermi Orbitals are defined according to FODs. As such, an 

input file specifying the FODs is required.  

The additional input file specifying the FODs must be named FRMORB. This file must 

contain an equal number of FODs as the number of electrons in the system, and the number of up 

and down spin electrons must be specified, with the first set of coordinates indicating the up-spin 

electron FODs and the last set the down-spin electron FODs. These FODs can only be guesses 

for the initial input. The guess for the FODs must be reasonable for the SIC calculation to 

converge. There is a theoretical procedure to place the FODs in reasonable places for non-

transition metal elements. However, for the purposes of this research, a program called fodMC, 

developed by Trepte and Schwalbe [1], was used to generate guesses for the FODs.  

The program fodMC requires the position of the atoms of the system, the number of up 

and down electrons, and the types of bonds between the atoms (at least if there is a double or 
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higher order bond, these must be specified). The program then treats the FODs as classical 

electrons and uses the Coulomb repulsion between them to find the positions in which the 

electrons feel the least amount of repulsion, while still being bound to the correct subshell. This 

program only works for non-transition metals and thus this research only made calculations 

using systems composed of relatively low atomic numbers. 

Although the FRMORB file suffices to start an SIC calculation, this file can be replaced 

by two other files called FRMIDT and FRMGRP. The file FRMGRP contains the group 

symmetry transformation matrix of the molecule while the file FRMIDT contains the same 

information as FRMORB. The program outputs the XMOL files of the FOD positions and 

XMOL movie files of the movement of the FODs. 

5.2 Output Files 

The FRMORB file is not only used as an input but also as an output file. The FODs are 

used to calculate the Fermi orbitals and in turn the electron density. As previously stated, the 

SCF equation updates the electron density by updating the FODs in FRMORB. As previously 

mentioned, another file that can be generated using the file FRMORB is a molecular visualizer 

file for the FODs. This file is extremely useful for qualitative evaluation of the calculation. 

Although a methodical procedure for the initial guess of FODs is an unresolved matter, it is 

known that the the number and position of FODs should be the same as the number of electrons 

forming a bond and near the vicinity of that bond. Therefore, the molecular visualizer file of 

FODs lets us keep track of the position of the FODs and make sure the system is converging to 

FODs that are reasonable. 

Another file of interest is the SUMMARY file once again. In this file, various energies 

and other information is listed, including: the trace of the Hamiltonian matrix, the total energy, 
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the total charge of the system, and the sum of the total energy and the SIC energy, each one 

corresponding to a SCF cycle and program iteration. However, as opposed to the DFT 

calculation, in SIC the column named DFT+SIC is not equivalent to the DFT energy, for the SIC 

calculation is performed this time. This also indicates the type of calculation performed. As the 

theory suggests, the energy in this column usually is smaller, i.e. more negative, than the energy 

in the DFT column because SIC energy is negative. This can be seen easily when considering 

that the SIE energy of a hydrogen atom is due to a non-existing interelectronic repulsion energy. 

Because it is a repulsive energy, it would increase the kinetic energy of the system as particles of 

the system move away from each other, and thus, it is a positive energy. Therefore, the SIC 

energy must be negative to cancel out this energy.  

Two more important files are fande.dat and fforce.dat. The file fande.dat indicates four 

pieces of information, but for our purposes we are interested in the total energy and the 

magnitude of the maximum force on the FODs from the latest SCF cycle respectively. As a 

calculation converges, this maximum force should decrease. The file fforce.dat on the other hand 

contains the forces on each of the FODs. 

As has been stated before, DFT is a variational method, and so is the SIC modification. 

Therefore, with this procedure, we not only expect the DFT+SIC energy to be lower than the 

DFT energy, but we expect the energy to be continually decrease until in converges. That is, we 

hope the energy from the next SCF cycle to be lower than the energy of the current SCF cycle. 
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6 Optimization of FODs with Hartree Self-Repulsion Energy Minimization 

In this chapter, we introduce a modification that can help in fast generation of initial FOD 

positions. This modification attempts to optimize the Coulomb energy between the Fermi 

orbitals of the system, that is the energy due to the repulsion between electrons, here referred to 

as the Hartree energy. 

Equations Derivation 

We start off with the expression for the Hartree energy 

 U[ρ]=½∑k,j∫∫ρk(r)ρj(r’)/|r-r’|d3rd3r’. (54) 

This energy is treated as the classical electrostatic energy of a continuous volume charge 

distribution. This energy can be thought of as adding the works in taking infinitesimal amounts 

of the charge distribution from infinity to the configuration in question [34]. One thing to note is 

that the ½ factor in front is to avoid double counting. 

This energy, along with the exchange-correlation energy described previously, make up 

the contributions to the interelectronic interaction energy, and, between the two, the Hartree (or 

Coulomb) term dominates for the computational cost as a system grows larger [32]. This 

functional is homogenous of degree two with respect to density scaling and is strictly local [33]. 

This energy in DFT comes from treating the probabilistic nature of electrons as a density. That 

is, the electrons are considered together and spread out throughout space.  

Afterwards, because we define the electron density in terms of Fermi orbitals, which are 

defined according to the FODs, we can explicitly state the dependency of the Hartree energy on 

the FODs as shown: 

 U=U(a) (55) 
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The FODs are contained inside the electron densities ρi(r) and ρj(r’). As such, we must 

use the expression for the electron density of the ith electron: 

 ρi(r)=∑σ|Fiσ(r)|2 (56) 

In addition, we may also note that the total electron density is the sum over all the 

individual electrons densities as such: 

 ρ(r)=∑iρi(r) = ∑i∑σ|Fiσ(r)|2 (57) 

Going back to the individual electron density, we look at the expression for the ith Fermi 

orbital with spin sigma to find the dependency of the orbitals in the FODs: 

 Fiσ(r)=∑α{ψ*ασ(aiσ)ψασ(riσ)/(∑α|ψασ(aiσ)|2)½ }  (58) 

With 

 ρσ(aiσ)=∑α|ψασ(aiσ)|2 (59) 

 

yields this expression for Fiσ(r) as well: 

 Fiσ(r)=∑α{ψ*ασ(aiσ)ψασ(riσ)/(ρσ(aiσ)) ½ } (60) 

 

 where each ψασ is a Kohn Sham orbital for the αth electron with spin orbital σ.  

In addition, since we are making a linear transformation from the set of Kohn Sham 

orbitals to the set of Fermi orbitals, we can express a Fermi orbital as the linear combination of 

Kohn Sham orbitals like so: 

 Fiσ(r)=∑αF
σ

iα·ψασ(riσ) (61) 

where the Fσ
iα are the elements of the transformation matrix, which is defined when given 

the set of FODs ({a}). 
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Thus, we now see from where the FODs come into play in the electron density for the ith 

electron. The motivation to find this relationship between the Hartree energy and the FODs is to 

experiment whether minimizing the Hartree energy with respect to the FODs will improve the 

convergence of the calculation by improving the quality of the FOs. For this, we need to take the 

negative gradient with respect to the FODs of the Hartree energy U to find the direction of 

greatest descent in the immediate vicinity. Because we treat the FODs as a given degree of 

freedom of the system, we refer to this vector as a Hellmann-Feynman force [37] and call it f: 

 fi = -∇aiU (62) 

   

which can be expanded as follows:  

 fi =-∇ai ½∑k,j∫∫ρi(r)ρj(r’)/|r-r’|d3rd3r’ (63) 

This can be calculated with the help of the generalization of the DFT version of the 

Hellmann-Feynman theorem in which λ is a degree of freedom of the system [38]: 

 ∂E/∂λ=∫d3rρ(r)∂v(r)/∂λ  (64) 

Using this vector fi in numerical methods will allow us to find a minimum of U. When 

taking this gradient, we note that it only acts on one of the electron densities, the ith ones, and 

that we can move it inside both integrals as such:  

 fi=-½∑j∫∫∇ai{ρi(r)ρj(r’)/|r-r’|}d3rd3r’ (65) 

Because the only factor dependent on the ith FODs is ρi(r), we only take the gradient of 

the electron density of the ith electrons in ρi with respect to FOD a of the ith electron, 

disregarding spin σ in calculation since we separate the spin up and spin down electrons into 

noninteracting sets during numerical methods: 

 ∇aiρi=∑x=1
3(∂ρi/aix)ex (66) 
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Here the x indicates the x-component of the FOD ai, which in this case there are three, for 

ai is a position vector in three-dimensional real space. As such, we look only at one 

representative x-component for we can iterate the procedure with the rest of the components. 

Using the definition of ρi (58) that was previously stated, we arrive at 

 ∂ρi/∂aix = Σσ=1
22Fiσ(r)∂Fiσ/∂aix (67) 

Noting that because the Fermi orbitals are real functions, the absolute value in the 

expression for the electron density of the ith electron ρi is inconsequential. However, we now 

need to calculate the partial derivative of the ith Fermi orbital Fi with respect to the x-component 

of the ith FOD ai. This is accomplished by using the expression of the Fermi orbitals as functions 

of the FODs as shown below: 

 ∂Fiσ/∂aix=∂{∑αψ*ασ(aiσ)ψασ(riσ)/(∑α|ψασ(aiσ)|2)1/2}/∂aix (68) 

And now using the product rule to distribute the derivative over each of the factors in the 

expression that contain the variable aix: ψ*ασ(aiσ) in the numerator and the terms in 

(∑α|ψασ(aiσ)|2)1/2 in the denominator we get:  

 

∂Fiα/∂aix=∑α{∂(ψ*ασ(aiσ))/∂aix·ψασ(riσ)/(ρσ(aiσ))1/2-

(1/2){ψ*ασ(aiσ)ψασ(riσ)/(ρσ(aiσ))3/2}·∂ρσ(aiσ)/∂aix}  

(69) 

This can be furthered simplified if we use the expression for an element in the 

transformation matrix from Kohn Sham orbitals to Fermi orbitals: 

 Fσ
iα=ψ*ασ(aiσ)/(∑α|ψασ(aiσ)|2)1/2 = ψ*ασ(aiσ)/ρσ(aiσ)1/2 (70) 

With these coefficients, we can factor out common terms from the two summands as the 

following series of derivations demonstrate: 

 

∂Fi/∂aix=∑α{(∂ψ*ασ(aiσ)/∂aix)ψασ(riσ)/(ρσ(aiσ))1/2 ·ψ*ασ(aiσ)/ψ*ασ(aiσ) -

(1/2){ψ*ασ(aiσ)ψασ(riσ)/(ρσ(aiσ))1/2}·(∂ρσ(aiσ)/∂aix)/ρσ(aiσ)} 

(71) 
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∂Fi/∂aix=∑α{{ψ*ασ(aiσ)/(ρσ(aiσ))1/2}·ψασ(riσ)·(∂ψ*ασ(aiσ)/∂aix)/ψ*ασ(aiσ) -

(1/2){ψ*ασ(aiσ)/(ρσ(aiσ))1/2}·ψασ(riσ)·∂ρσ(aiσ)/∂aix/ρσ(aiσ)} 

(72) 

Where the first factor in each summand is the element from the transformation matrix 

Fσ
iα. We further simplify: 

 

∂Fi/∂aix=∑α{Fσ
iα·ψασ(riσ)·(∂ψ*ασ(aiσ)/∂aix)/ψ*ασ(aiσ)-

Fσ
iα·ψασ(riσ)·∂ρσ(aiσ)/∂aix/(2ρσ(aiσ))} 

(73) 

We note that the first two products inside the summation over α for each summand is the 

ith Fermi orbital and thus: 

 ∂Fi/∂aix= Fiσ·{(∂ψ*ασ(aiσ)/∂aix)/ψ*ασ(aiσ) -∂ρσ(aiσ)/∂aix/(2ρσ(aiσ))} (74) 

Looking back at the definition of the electron density but as a function of the FODs 

instead of the electron positions we can write: 

 ρ(a)=∑iρi(a) (75) 

 

Taking the derivative and replacing i by β as the dummy variable yields:  

 ∂ρσ(aiσ)/∂aix=∂∑β|ψβ(ai)|
2/∂aix (76) 

 ∂ρσ(aiσ)/∂aix=∑β2ψβ(ai)·∂ψβ(ai)/∂aix (77) 

Plugging this into the expression for ∂Fi/∂aix yields: 

 ∂Fi/∂aix= Fiσ·{(∂ψ*ασ(aiσ)/∂aix)/ψ*ασ(aiσ) -∑β2ψβ(ai)·∂ψβ(ai)/∂aix/(2ρσ(aiσ))} (78) 

Which readily simplifies to 

 ∂Fi/∂aix= Fiσ·{(∂ψ*ασ(aiσ)/∂aix)/ψ*ασ(aiσ) -∑β{ψβ(ai)·∂ψβ(ai)/∂aix}/ ρσ(aiσ)} (79) 

Now we can plug this back into the derivative of the ith electron density which in turn is 

plugged back into the component derivative of the self-repulsion energy, noting that it is 
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sufficient to look at just one of the components (x) of the Hellmann Feynman force fi for the ith 

electron: 

 fix=-½∑j∫∫∂{ρi(r)ρj(r’)/|r-r’|}/∂aixd
3rd3r’ (80) 

 fix=-½∑j∫∫{∂ρi(r)/∂aix}ρj(r’)/|r-r’|d3rd3r’ (81) 

Plugging in for ∂ρi(r)/∂aix we get: 

 fix=-½∑j∫∫∂{2Fi(r)∂Fi/∂aix}ρj(r’)/|r-r’|d3rd3r’ (82) 

 fix=-∑j∫∫Fi(r){∂Fi/∂aix}ρj(r’)/|r-r’|d3rd3r’ (83) 

From this, we see that the coulomb potential vc is present, that is 

 vc= -∑j∫ρj(r’)/|r-r’|d3r’ (84) 

As a result, we replace this into the expression for fix  

 fix=∫ Fi(r){∂Fi/∂aix}vcd
3r (85) 

Now, for purposes of the code implementation, we want to express the ith Fermi orbital 

as a linear combination of the Kohn Sham orbitals as so: 

 Fiσ(r)=∑αF
σ

iα·ψασ(riσ) (86) 

But, as was previously stated, we want to disregard the spin components because the spin 

up and the spin down electrons can be separated into two sets. Therefore, we can write for the ith 

Fermi orbital just 

 Fi(r)=∑αFiα·ψασ(riσ) (87) 

We thus insert this expression for the x-component of the force in the ith FOD: 

 fix=∑α ∫ Fiα·ψασ(riσ){∂Fi/∂aix}vcd
3r (88) 

In bra-ket notation this becomes 

 fix= ∑β∑α∂Fi/∂aix⟨ψβ|vc|ψα⟩ (89) 
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Afterward, we want to do the same for the Fermi orbitals inside the bra, with a β as the 

dummy variable over the sum 

 Fi=∑βFiβψβ (90) 

This gives that  

 fix=∑i∑α∑β∂Fi/∂aix⟨ψβ|vc|ψα⟩ (91) 

This is the expression we can use to determine the forces on each FOD, extending to all three 

components and for all the FODs. These equations can be implemented in code in future studies. 
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7 The revPBE and RPBE Exchange Functionals Testing 

In this chapter, we go over the GGA-RPBE and GGA-REVPBE exchange functionals. The 

revPBE and RPBE functionals are functionals based on the PBE (Perdew-Burke-Ernzerhof) 

functional. The PBE functional itself was based on a numerical GGA in which the exchange 

correlation hole satisfied exact constraints [31]. The revPBE functional was constructed by 

optimizing one parameter of the PBE functional against the exchange energy of noble gase 

elements from He to Ar [35]. The RPBE functional on the other hand gives nearly the same 

results as the revPBE functional but without the fitting of parameters [35]. 

These functionals were tested with a set of neutral atoms, anions, and cations. For a good 

calculation, the first ionization energies and electron affinities had to be in good agreement with 

experimental results from literature [36]. The all energies were calculated using FLOSIC.  

 

7.1 The revPBE First Ionization Energy 

This table (Table 7.1) gives the first ionization energy of the atoms using the revPBE 

functional. The first ionization energy represents the energy required to free the outermost-bound 

electron from a neutral atom. The energy is calculated by subtracting the ground state energy of 

the neutral atom from that of the cation. The conversion is made to electron volts (1 Hartree = 

27.2114 eV). 

 

Table 7.1 Ionization Energy from revPBE Functional Comparison  with Accepted Values 

Element 

Ref. 1st Ionization Energy 

(Ev) 

revPBE 1st Ionization Energy 

(Ev) 

Percent Error 

revPBE 

2 24.29282145 24.29314022 0.001312 
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3 5.460959863 5.413495358 0.86916 

4 8.901934572 8.841234483 0.681875 

5 8.558937093 8.42316688 1.586298 

6 10.97391934 10.7691723 1.86576 

7 13.79089864 13.54331424 1.795274 

8 13.69189937 13.47553072 1.580268 

9 16.61187791 16.30645304 1.838593 

10 20.10685222 19.75708078 1.739563 

11 5.194961818 5.090926749 2.002615 

12 7.477945038 7.372522253 1.409783 

13 5.980956041 5.91387894 1.121511 

14 7.828942458 7.706353516 1.565843 

15 9.933926987 9.757505798 1.775946 

16 10.29392434 9.740897278 5.372364 

17 12.49090819 11.94816965 4.345069 

18 14.99888976 14.78822666 1.404525 

20 5.891956695 5.776443433 1.960525 

26 8.17293993 8.267721509 1.1597 

27 7.77294287 7.593415576 2.309644 

30 9.024933668 8.812480981 2.354064 

32 7.452945222 7.307749023 1.948172 

33 9.371931118 9.221050586 1.609919 

34 9.533929927 9.380492383 1.609384 
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36 13.49090084 13.29345981 1.463513 

 

7.2 RPBE First Ionization Energy 

This table (Table 7.2) is derived from the same procedure as in the last section except the 

RPBE functional was used this time. The values for the IP’s are expressed in electro-volts as well. 

 

Table 7.2 Ionization Energy from RPBE Functional Comparison  with Accepted Values 

Element 

Ref. 1st Ionization Energy 

(Ev) 

RPBE 1st Ionization 

Energy (Ev) 

Percent Error 

RPBE 

2 24.29282145 24.29314022 0.001312 

3 5.460959863 5.45569138 0.096475 

4 8.901934572 8.900635894 0.014589 

5 8.558937093 8.42825324 1.52687 

6 10.97391934 10.76969132 1.861031 

7 13.79089864 13.53916211 1.825382 

8 13.69189937 13.48549583 1.507486 

9 16.61187791 16.30852911 1.826096 

10 20.10685222 19.75002216 1.774669 

11 5.194961818 5.137015393 1.115435 

12 7.477945038 7.425669519 0.699063 

13 5.980956041 5.929241821 0.864648 

14 7.828942458 7.721301184 1.374915 

15 9.933926987 9.790722839 1.441566 
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16 10.29392434 10.17437966 1.161313 

17 12.49090819 12.31106583 1.439786 

18 14.99888976 14.79653092 1.349159 

20 5.891956695 5.826268994 1.114871 

26 8.17293993 8.35740752 2.257053 

27 7.77294287 7.639919434 1.711365 

30 9.024933668 8.81912439 2.280452 

32 7.452945222 7.327679248 1.680758 

33 9.371931118 9.214407178 1.680806 

34 9.533929927 9.413709424 1.260975 

36 13.49090084 13.30010322 1.414269 

 

7.3 The revPBE First Electron Affinity 

This table (Table 7.3) gives the first electron affinities of the atoms using the revPBE 

functional. The electron affinity represents the energy needed to remove the outermost electron 

from an anion to bring the element back to neutral. The electron affinity is calculated by subtracting 

the ground state energy of the anion from that of the neutral element. 

 

Table 7.3 Electron Affinities  from revPBE Functional Comparison  with Accepted Values 

Element Ref. 1st Electron Affinity (Ev) 

revPBE 1st Electron Affinity 

(Ev) Percent Error revPBE 

1 0.754189457 0.329229859 56.34653128 

3 0.431996825 0.428227346 0.872571072 
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5 -0.124999081 -0.239474105 91.58069212 

6 0.562995862 0.403483245 28.33282227 

8 0.347997442 0.128300821 63.13167704 

11 0.478996479 0.460471231 3.867512428 

14 0.966992893 0.869456049 10.08661438 

15 0.568995818 0.514864136 9.513546584 

16 1.575988417 1.861815149 18.13634727 

17 2.892978737 3.079219702 6.437688697 

33 0.913993282 0.498255615 45.48585589 
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7.4 RPBE First Electron Affinity 

The table below (Table 7.4) is derived from the same procedure as the last table except the 

RPBE functional is used this time around. The values for the EA’s are expressed in electro-volts 

as well. 

 

Table 7.4 Electron Affinities  from RPBE Functional Comparison  with Accepted Values 

Element 

Ref. 1st Electron Affinity 

(Ev) 

RPBE 1st Electron Affinity 

(Ev) Percent Error RPBE 

1 0.754189457 0.329229859 56.34653128 

3 0.431996825 0.455826035 5.516061514 

5 -0.124999081 -0.232726894 86.18288329 

6 0.562995862 0.404417474 28.16688334 

8 0.347997442 0.13432141 61.4016101 

11 0.478996479 0.506144662 5.667720786 

14 0.966992893 0.873608179 9.657228581 

15 0.568995818 0.497425189 12.57841033 

16 1.575988417 1.442450006 8.473311681 

17 2.892978737 2.732101624 5.560950428 

33 0.913993282 0.498255615 45.48585586 
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8 Conclusion 

In this chapter, we explore the results of the exchange-correlation functionals we tested on 

chapter 7. 

8.1 Exchange-Correlation Functionals Evaluation 

The performance of one functional over the other for the IP and EA values of each atom is 

evaluated relatively to all other results.  

Analyzing the results for the first ionization potentials of the systems tested, from tables 7.1 

and 7.2, we can plot the data as shown below (Figure 8.1): 

 
Figure 8.1 DFAs' Ionization Potentials Percent Differences from Accepted Values 

 

The data visualization indicates that for elements atomic numbers 3, 4, 8, 11 to 18, 20, 27, 

32, and 34 the RPBE functional yields better results. On the other hand, only for elements of atomic 

number 26 and 33 did the revPBE functional work better. For the rest of the elements atomic 

numbers there was no significant performance difference between the DFA’s.  
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In the case of the electron affinities, we look at the data from tables 7.3 and 7.4 and plot it 

against the base element as shown below: 

 
Figure 8.2 DFAs' Electron Affinities Percent Differences from Accepted Values 

 

 For the electron affinities, we do not see significant difference between the performance of 

revPBE and RPBE as can be seen from the above plot.  

 Overall, the FLOSIC-revPBE and FLOSIC-RPBE functionals did yielded better results for 

the ionization potentials than with the electron affinities as can be easily seen in figures 8.1 and 

8.2, where the percent differences for the ionization potentials tend to fall in the range of 0 to 6% 

while that of the electron affinities spread out more into the range of 0 to 100%. However, in 

comparison to each other, the data for IP’s strongly suggests that the RPBE functional performs 

better than the revPBE functional. In addition, the mean average error (MAE) from the reference 

values for the revPBE functional IP was 0.19 eV while that for the RPBE functional IP was 0.14 

eV. This gives a more quantitative indication that the RPBE function did better. On the other hand, 

at first glance, the EA data does not seem to strongly indicate that either functional performs better. 

However, a quantitative analysis indicates that the MAE for revPBE functional’s EA from the 
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reference values evaluates to 0.18 eV while that of the RPBE functional’s EA is 0.17 eV.  As such, 

the RPBE functional again performs better than the revPBE functional since for this data as well 

it has the lower MAE. This shows that the MAE for both IP and EA are of similar order although 

the percent error is large. We point out that the IP of the systems are much larger than the typical 

electron affinity which leads the larger percent errors for EA compared to IP although the absolute 

errors are of similar order.  The small errors (<0.2 eV) shows that FLOSIC with both revPBE and 

RPBE can be used to determine the IP and EA of atomic systems. 
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