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3. Abstract 

The structural analysis of Industrial Gas Turbine (IGT), Aeroengine, Gen IV nuclear 

components under in-service conditions at various stress and temperature are susceptible to time-

dependent creep deformation and creep induced failure. Such failure phenomena are exacerbated 

by the randomness in material properties, oscillating loading conditions, and other sources of 

uncertainty. The demand for physically based probabilistic creep modeling is highly sought by 

alloy designers. The objective of this study is to develop and validate a probabilistic creep-damage 

model incorporating multi-sources of uncertainty to replace the traditional deterministic and 

empirical decision-based modeling. In this study, the deterministic Sine-hyperbolic (Sinh) creep-

damage model is carefully tuned into a probabilistic model.  The creep test data of alloy 304 

stainless steel with replicates over a range of stress and temperature are gathered from the 

literature. First, the Sinh model is calibrated deterministically to determine the test-specific 

material constants and their associated statistical variability. A probabilistic framework is 

developed where the hypothesized sources of uncertainty: test conditions (stress and temperature), 

pre-existing damage, and material properties are introduced. The sources of uncertainties are 

carefully tuned based on the ASTM standards, statistical goodness-of-fit test, and the nature of 

deterministically calibrated constants. The probabilistic distribution function (pdfs) of each 

sources of uncertainty are determined in sequence to encapsulate the full experimental uncertainty. 

Single source probabilistic predictions are performed to determine the influence of each source of 

uncertainty on the creep deformation, damage, and rupture predictions. Full interaction 

probabilistic predictions are performed to demonstrate the interference effect of all the sources of 

uncertainty on the prediction of creep deformation, ductility, and rupture. The Sinh model 

constitutive equations are implemented into a USERCREEP.F, user material subroutine of the 
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ANSYS finite element software. For verification and validation (V&V), a finite element 

simulation in ANSYS Mechanical APDL (ANSYS Parametric Design Language) is conducted on 

1-D and 2-D element model. Furthermore, the probabilistic model is applied to an expanded 

database of engineering alloys to validate the probabilistic prediction. Future work will focus on 

developing a multi-stage Sinh, stochasticity, time-dependent pdfs for improved uncertainty 

quantification.  

Keywords: Creep; Life prediction; Monte Carlo method; Probabilistic; Reliability; 

Uncertainty. 
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1. Chapter 1: Introduction 

 

1.1 MOTIVATION 

Drives to increase the efficiency of Advance Ultrasupercritical (A-USC) and Fossil Energy 

(FE) power plants lead to designs with steam pressures up to 4000 psi and temperatures ranging 

0.3 0.5m mT T T  , where mT  is the melting temperature of the specific material. The complexity 

in which these power plants operate pushes the limits of material science and the properties of 

materials [1]. The power plant operation, especially for the hot gas path in industrial gas turbines 

(IGTs) illustrated in Figure 1.1 [2]. The complex components exposed to high loadings and 

temperature for entirety of service life are susceptible to creep and creep induced failures. The  

catastrophic failure, as illustrated in the turbine blade of Figure 1.2, caused by creep and combined 

damage factors [3]. Creep is a stress, temperature, and time dependent phenomenon that exhibits 

considerable scatter. When the results of many creep tests are aggregated, the minimum-creep-

strain-rate (MCSR), stress-rupture (SR), and creep deformation curves exhibit substantial 

scattering. At normal operating conditions (low stress – high temperature), the SR data can scatter 

spanning logarithmic decades as shown in Figure 1.3 for Gr. 91 steel [4]. The accurate service life 

is difficult to estimate without extensive testing program, reliability analysis, inflated safety 

factors, and compromised design decision. The origin of the uncertainty stems from various 

sources; notably, test condition, service conditions, metallurgical inhomogeneities (due to 

thermomechanical processing, prior service, surface, and subsurface defects), geometric 

parameters, and test procedure error [5-8]. These random factors cannot be eliminated entirely 

from the experimentation, pre-processing, service condition, and modeling approaches and must 

be characterized adequately. The significance of uncertainty quantification is compounded when 

the high reliability and durability is demanded. The design process become intensive and weary  



2 

 

Figure 1.1 : GE H-Class 9HA.01/.02 Gas Turbine (50 Hz) (9HA.01 at 446 MW and the 9HA.02 

at 571 MW) [2] 

 

Figure 1.2 : Industrial gas turbine creep failure (Berkeley Research Company, Berkeley, 

California) [3] 
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Figure 1.3 : Stress-rupture data of Gr. 91 steel gathered from NIMS database [4]. 

 

when there is limited to no experimental observation. In such instances, traditional deterministic 

and empirical decision-based modeling do not generate optimal solutions. There is a demand for 

rapid uncertainty quantification, reliability, and durability for reduced risk service life. 

Furthermore, new candidate alloys and superalloys design for complex components become 

challenging due to time and cost constraints. To address these concerns, the uncertainties in creep 

data should be integrated into probabilistic modeling approach to enable a more reliable prediction 

of creep deformation, damage evolution, and rupture in structures.  

 

1.2 RESEARCH OBJECTIVE 

The objective of this study is to develop a probabilistic Sine-hyperbolic (Sinh) model to 

predict the uncertainty of creep deformation, damage, and rupture in alloys. To meet the research 
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goals, this thesis shall: (a) assess the Sinh model from a deterministic standpoint; (b) develop a 

probabilistic calibration approach; (c) perform a sensitivity analysis to determine the extent that 

each source of uncertainty contributes to creep resistance; (e) verify the deterministic model with 

finite element analysis; (d) perform the validation of full interaction probabilistic model against 

uncertain creep data. 

 

1.3 ORGANIZATION 

The organization of this study is as follows: Chapter 2 provides background information 

on creep, creep-damage, and uncertainties encountered in creep data. Existing probabilistic creep 

models and test programs to capture the experimental uncertainty are discussed in a non-exhaustive 

manner. Chapter 3 introduces and describes the material used in each study providing mechanical 

properties, nominal chemical composition, and scattering in creep data in replicated tests across 

multiple isostress-isotherm. Chapter 4 introduces the Sine-hyperbolic (Sinh) creep-damage model 

to be employed for deterministic and probabilistic predictions. The constitutive equation and 

calibration approach are discussed. Validation and verification (V&V) are performed and 

discussed in chapter 5 for both deterministic and probabilistic prediction. Finally, chapter 6 offers 

an overview of the results and concluding remarks as well as the future work. 
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2. Chapter 2: Background 

 

2.1 INTRODUCTION 

To develop a probabilistic creep model, a background study is needed to understand creep 

phenomenon. Creep is a phenomenological event that is divided in regimes. Thus far, many 

deterministic models are designed to understand MCSR, SR, and creep deformation behavior. A 

summary of the existing probabilistic models is discussed. To carefully tune a deterministic creep-

damage model into a probabilistic one, an overview of recent probabilistic modeling approaches 

is needed to perceive the existing limitations. The probabilistic Sinh model is discussed later to 

give a stronger flow to the narrative.  

 

2.2 CREEP PHENOMENON 

Creep is the progressive time-dependent inelastic deformation under constant load and 

temperature. For many structural materials, creep is observed above a specified elevated 

temperature and loadings over an extended time of operation. Examples include structural 

components of power generation plants, chemical facilities, heat engines, and other high-

temperature equipment. Creep and creep induced failure is accompanied by progressive 

deformation, relaxation and redistribution of stresses, local reduction of material strength, etc. The 

aim of creep modeling is to predict time-dependent changes of stress and strain up to the critical 

stage of creep rupture [9-10].  
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Figure 2.1 : Typical creep deformation curve under uniaxial loading F and temperature T (I –

primary creep, II – secondary creep, III – tertiary creep) [10] 

 

A number of creep material properties can be deduced from the uniaxial creep curve. The 

notable ones are the duration of the stages, the minimum-creep-strain-rate, min , rupture time, rt , 

and creep ductility, cr . The shape of the creep curve is determined by several competing processes 

[11]. The reactions mainly include: strain hardening; softening processes such as recovery, 

recrystallization, strain softening, and precipitate overaging; Damaging processes such as 

cavitation and cracking, and specimen necking. Of these factors, strain hardening tends to decrease 
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the creep rate, cr , whereas the other factors tend to increase the creep rate, cr . The 

microstructural mechanism such as precipitate carbides prevents the grain boundary sliding. In 

tertiary regime, grain boundary sliding contributes to crack propagation and void nucleation and 

growth which ultimately leads to rupture in the specimen 11]. The interaction of these processes 

determine the shape of the creep curve [11-14].    

 

Figure 2.2 : Damage evolution caused by creep and corresponding service condition. Herein A – 

observation, B – observation, fixed inspection intervals, C – limited service until repair, D- 

immediate repair [15] 

 

The creep behavior can be divided into three stages as shown in Figure 2.1. During primary 

creep, strain hardening causes the slope of the creep curve to decrease. Secondary creep is 
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explained in terms of balance between strain hardening and the softening processes resulting in 

nearly constant creep rate. During this stage, an equilibrium is achieved between the hardening 

and the damage in the material. The tertiary creep stage marks the onset of internal- or external- 

damage processes resulting in a decrease in the resistance to load or a significant increase in the 

net section stress. The softening process coupled with the balance achieved in secondary stage to 

achieve a rapidly increasing tertiary stage of creep. Note that some materials show no tertiary 

creep, others have a very short primary creep period.  

Time-dependent creep deformation and damage processes are induced by the nucleation 

and the growth of microscopic cracks and cavities in metals and alloys. The creep induced damage 

evolution at various stages of a material life is shown in Figure 2.2. Damage accumulates in the 

form of internal cavities during creep. The damage first appears at the start of tertiary creep regime 

of the creep curve and grows at an increasing rate thereafter. The shape of tertiary creep regime of 

the creep curve reflects this : as the cavities grow, the cross-section of the specimen decreases, and 

at constant load the true stress,   goes up. The creep rate, cr  goes up even faster than the true 

stress,   does caused by creep damage. . To characterize the damage evolution and the increase 

of creep strain rate in tertiary creep regime, the continuum damage mechanics (CDM) has been 

established and demonstrated to be a powerful approach [16]. A lot of application of creep CDM 

are related to long-term predictions in power and chemical plants.  



9 

 

Figure 2.3 : Sources of uncertainty encountered in replicated creep test [5-8] 

 

2.3 UNCERTAINTY IN CREEP DATA 

By its very nature, creep deformation data takes a long time to accumulate and there is 

usually a remarkable amount of scattering in the data. For steels, within the nominal chemical 

composition, the creep rupture properties show considerable batch to batch scatter [17-24]. There 

are a number of sources of uncertainty that cause this scattering in the creep data. The most notable 

uncertainties are boundary condition uncertainty, material properties related uncertainty due to 

thermomechanical processing, surface and sub-surface defects and priori damage, model 

variations, geometric parameters, operator and machine error [5-8]. These varying sources of 

uncertainties are idealized in Figure 2.3. These and other uncertainties have justified the 

completion of replicant many long-term test programs for power plant steels in various product 

forms (e.g. tube, pipe, plate, and forgings). Studies of Rutmen et al. revealed the variation of creep 

rupture by an order of magnitude for two different high temperature alloy [17]. Creep rupture tests 
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on 316 stainless steel by Garofalo et al. revealed a rupture variation by a factor of 4.5 [18]. Penny 

et al. noticed the scattering of rupture on the order of 10 hours in the replicated creep rupture 

experiments [19]. Hayhurst directed his research towards explaining the effects of test variables 

on the scatter in creep data and revealed a small fluctuation of temperature ±3°C can lead to ±8% 

variation in creep rupture [20]. It was also reported that loading eccentricity of 1.5% can reduces 

the rupture life by up to 60%. Farris et al. showed experimental evidence for load eccentricity with 

creep rupture tests of copper-bicrystal exhibiting 60% life reduction due to 2-12% eccentric 

loading [21]. Kim et al. performed the short-term creep test on 304 Stainless Steel and found that 

Coefficient of variation (%CoV) of initial strain, minimum-creep-strain-rate, and creep ductility 

are two to three times higher than creep rupture [22]. Evans et al. statistically analyzed the creep 

rupture data of 0.25Cr-0.5Mo-0.25V and observed the scattering of failure time by a factor of 6-7 

[23]. In a separate study by Booker et al. conducted on creep rupture properties of 2.25Cr-1Mo 

steel of 53 different heats of materials and concluded that average rupture time for single-heat vary 

over staggering range of 4000 to 100000 hours [24]. These wide ranges of scattering in creep 

deformation to rupture data spanning decades make the accurate lifetime estimation a cumbersome 

and crude procedure. 

 

2.4 PROBABILISTIC CREEP MODELING 

The probabilistic modeling begins with the selection of a random sampling method. The 

aim of random sampling method is to provide information on a given population by studying a 

subset of it [25-28]. Over the course of time, many probabilistic analysis methods are developed. 

Most of the methods are approximate in nature and strive to provide very efficient analysis. The 

selection of an appropriate method should be guided by several considerations, including required 

computational time, complexity of problems, and solution accuracy.  
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One of the most used random sampling methods for engineering and mathematical problem 

is Monte Carlo method. The Monte Carlo method uses the given sample to determine the 

probability of success and/or failure for the given constraints. Latin Hypercube Simulation (LHS) 

method is similar to Monte Carlo except that each input distribution is partitioned into equal 

probability intervals. For each random variable, one sample is taken from each probability interval. 

First- and Second- Order Reliability Method (FORM and SORM) provide the approximate 

estimates requiring much less model evaluation than Monte Carlo or Latin Hypercube sampling. 

These methods search for the most probable failure point (MPP) and then compute reliability based 

on an approximate to the constraint. The mean value (MV) method based on the derivatives of the 

performance function at the mean of the inputs. The advanced mean value (AMV) method 

constructs a first-order Taylor series approximation of the performance function at the mean of the 

inputs and uses this approximation to estimate the MPP. Response Surface Method (RSM) 

approximate a constraint using one of three experimental designs: Central Composite, Box 

Behnken, or Koshal (one at a time). Once the constraint is approximated with substantial 

reliability, Monte Carlo method is used to perform the probabilistic analysis. Gaussian Process 

Response Surface Response Method (RSM_GP) approximates the true limit state function by 

constructing a Gaussian Process response surface model. The Weiner process: often called 

Brownian Motion is employed to describe the complicated stochastic processes into the 

probabilistic analysis. The Bayesian Network is a probabilistic graphical model that represents a 

set of variables and their conditional dependencies via a directed acyclic graphs (DAG). The 

probabilistic methods are listed in Table 2.1. 
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Table 2.1 : The probabilistic methods in engineering, mathematical, and structural reliability 

analysis. 

Acronym Probabilistic Analysis Method 

MONTE Monte Carlo Method 

LHS Latin Hypercube Simulation  

FORM First Order Reliability Method 

SORM Second Order Reliability Method 

MV Mean Value Method 

AMV Advanced Mean Value Method 

RSM Response Surface Method 

RSM_GP Gaussian Process Response Surface Method 

BM Weiner Process/ Brownian Motion  

BN Bayesian Network 

 

Creep constitutive models are often applied deterministically where scatter is not 

considered; rather, the best-line through the scattered data is the target of calibration. Creep models 

such as MPC-Omega, Theta-projection, Wilshire, and Sine-hyperbolic are employed in this 

fashion [29-32]. Deterministic models can be converted into probabilistic models by injecting 

uncertainty into their formulation. 

Several “single-source” uncertainty models have been developed [33-38]. Appalanaidu 

developed a stochastic creep damage growth model where temperature uncertainty is modeled 

using white noise functions [33]. It was determined that the choice of noise function has a 

significant impact on the scatter in damage predictions. Harlow et al. proposed a probabilistic 
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Kachanov-Rabotnov CDM-based model where material property uncertainty is incorporating 

using probability distribution functions (pdfs) and exact relations from probability theory [34]. 

Hossain and Stewart developed a probabilistic CDM-based Sine-hyperbolic (Sinh) creep-damage 

model where material property uncertainty is added using normal distributions and Monte Carlo 

methods [35]. A similar framework was developed for Modified Wilshire Creep-damage model 

[36]. Appalanaidu et al. developed a stochastic finite element methodology for pipe where material 

properties are spatially uncertain (i.e., inhomogeneous) using 2-D non-Gaussian random fields 

[37]. Kim and colleagues employed four different probabilistic methods to add material property 

uncertainty into a creep-crack-growth-rate model (least square fitting method, mean value method, 

probabilistic distribution method, and Monte Carlo method) [38]. A comparison between the four 

methods showed that the Monte Carlo method is expected to achieve a more accurate and 

economically viable solution due to the inherent conservatism of the technique. 

Other researchers have developed “multiple-source” of uncertainty models [21,40-42]. 

Penny et al proposed a stochastic Kachanov-Rabotnov (KR) CDM based model where load and 

material uncertainties are modeled using Monte Carlo methods [19]. Farris performed probabilistic 

stress-rupture simulations that included temperature, stress, and eccentricity uncertainty using 

Monte Carlo methods [21]. The three uncertainties matched the scatter observed in short-term data 

but did not capture the full experimental uncertainty in long-term data suggesting additional 

sources. Bhattacharya et al. proposed a CDM-based model that encompasses several categories of 

material property uncertainty, microstructural damage evolution properties, critical damage, and 

macroscopic material properties [40]. It was concluded that the source of uncertainty and the type 

of probability distribution function (normal, uniform, lognormal) applied have a large influence 

on the scatter observed in predictions. Vojdani et al. developed a stochastic creep-fatigue crack 
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propagation model that included geometric, material property, and operating condition uncertainty 

[5]. It was determined that a sensitivity analysis of the random parameters must be performed to 

elucidate the order of importance of the random variables. Kim and colleagues developed a service 

condition creep rupture interference (SCRI) model where both the cumulative uncertainty of 

stress-rupture test conditions and service conditions are considered in rupture predictions [41-42]. 

Monte Carlo simulations showed a rapid decrease in reliability of stress-rupture at higher 

fluctuation of service stress and temperature. 
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3. Chapter 3: Materials 

Creep data for alloy 304 stainless steel (304 SS) is selected for this study. The 304 stainless 

steel is the most versatile and widely used stainless steel. Creep data across multiple isostress-

isotherm is gathered form the literature [43]. The chemical composition of the alloy 304 SS is 

listed in Table 3.1.  

Table 3.1 : Chemical composition (wt%) of 304 SS [43] 

C Si Mn P S Ni Cr Mo Cu N 

0.02 0.40 1.83 0.029 0.009 8.13 18.22 0.24 2.06 0.102 

 

The 304 stainless steel has high corrosion resistant, high ductility, excellent drawing, 

forming, and spinning properties. Upon cold work nonmagnetic 304 SS may become slightly 

magnetic. The room temperature tensile strength, yield strength, and elongation are 706 MPa, 490 

MPa, and 18% respectively. The conventional creep test (CCT) were conducted at elevated 

temperature of 600, 650, and 700°C. The creep test specimens were of 6 mm gauge diameter and 

30 mm gauge length, fabricated from 20 mm diameter bar and experiments were carried out 

according to ASTM E139 standard [44].  

 



16 

 

Figure 3.1 : Experimental scattering of (a) MCSR and (b) rupture time across multiple isostress. 

 

A total of thirty creep curves were collected with tests conducted in quintuplicate (five 

repeats) at each stress range. The experimental MCSR and rupture time shows substantial scatter 

as shown in Figure 3.1. The test condition along with the statistical uncertainty of MCSR and 

rupture time are tabulated in Table 3.2. The coefficient of variation up to 48% and 16% are 

observed in the MCSR and rupture data respectively. 

  

Table 3.2 : Statistical uncertainty of MCSR and rupture time of replicated creep test [43] 

Temperature, 

T 

Stress, 

  

MCSR, min  Rupture, rt  

Max Min %COV Max Min %COV 

(°C) (MPa) (%·hr) (%·hr)  (hr) (hr)  

600 320 0.072 0.029 34.57 147.43 100.00 16.12 

600 300 0.025 0.011 34.95 63.36 46.05 12.55 

650 260 0.188 0.108 23.33 42.12 26.88 16.60 
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650 240 0.461 0.017 48.02 163.52 127.61 9.48 

700 180 0.056 0.020 43.02 93.12 82.73 4.48 

700 160 0.008 0.006 12.74 196.41 156.95 8.79 
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4. Chapter 4: Deterministic Creep-Damage Model 

When subject to a high stress-temperature environment, 304 stainless steel (304 SS) is 

susceptible to creep and creep induced failure despite having high temperature strength, toughness, 

and resistance to degradation. The alloy 304 SS does not show an abrupt boundary between elastic 

and inelastic deformation rather shows a unified viscoplastic response [45]. Thus, it is susceptible 

to room temperature creep or relaxation depending on the applied boundary condition [45]. The 

creep response of the alloy 304 SS is critically important from a deterministic viewpoint. 

Secondary creep-based classical life prediction models such as Larson-Miller, Manson-

Hafred, or Monkman-Grant models can only predict the rupture life [46-48]. Tertiary creep regime 

can initiate quickly and unexpectedly under the high loadings and temperature where primary and 

secondary regimes are subordinate [49-50]. Often the primary creep regime is a short-lived 

phenomenon in creep deformation and can be neglected in gas turbine applications.   

 

4.1 SINE-HYPERBOLIC (SINH) CREEP DAMAGE MODEL 

Recently, a novel multistage Sine-hyperbolic (Sinh) model has been developed by Stewart 

that can model secondary and tertiary creep stages [51]. The Sinh model has been applied to 

Waspaloy, 304 SS, alloy 18Cr-8Ni, alloy 18Cr-12Ni-Mo a systematic calibration approach exists 

for calibrating the conventional creep curves [29,34,52-53]. The Sinh model has been employed 

to deal with 3D notches using Hayhurst triaxial stress [52]. The Sinh model has been compared to 

Kachanov-Rabotnov (KR) model and found to exhibit less stress sensitivity, mesh-dependence, 

and better convergence [53]. The Sinh has been employed to deal with the disparate creep data 

where creep data is not always available in the quantity, quality, or type needed for modeling [54].  
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The temperature-dependent form of Sinh consists of a creep-strain-rate (CSR) and damage 

evolution equation as follows 

 
exp sinh exp( )c

cr
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RT


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 − 
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(4.2) 

where   is stress,  T  is temperature in Kelvin, R  is the universal gas constant, cQ  is the 

apparent activation energy, A  and s  are the secondary creep constants,   is the strain trajectory 

constant, M  , t  , and   are rupture constants,   is the damage trajectory constant, and   is 

damage an internal state variable that evolves from an initial damage, 0   to unity [53]. These 

equations can be simplified for isothermal conditions by setting ( )exp 1cQ RT− = . 

Assume that initial damage is zero, 0 0 = . The secondary creep material constants, A  and 

s , can be calibrated using the “temperature-normalized” minimum-creep-strain-rate (MCSR) 

 
min sinh

exp c s

A
Q

RT

 



 
=  

−   
 
 

 
(4.3) 

where the min  is the minimum-creep-strain-rate (MCSR) measured from creep data. The 

activation energy, cQ  is obtained by maximizing the log-log square of the Pearson product moment 

correlation coefficient of a regression line through MCSR or stress-rupture (SR) data. 

The   and   constants exhibit stress and temperature dependence. The strain trajectory 

constants,   is unitless and equal to 
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where final  is the final-creep-strain-rate (FCSR) measured from creep data and 0  . The 

damage-trajectory constant   is unitless and equal to  
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where the minimum-damage-rate, min  and final-damage-rate, final  are not experimentally 

measured but can be analytical calculated and 1  . Analytical damage, 
*  and damage rates, 

*  

data can be calculated from [Eq. (4.1)] as follows 
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(4.6) 

The creep strain trajectory constant,   and damage trajectory constant,   exhibit stress 

and temperature-dependence. The dependencies of   and   are modeled according to Eyring’s 

equations 
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(4.8) 

where 0  and 0  are a unitless coefficients, 
*V  and 

*V  are the activation volume for   

and   respectively,   is stress , T  is temperature, and bk  is the Boltzmann constant.  
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Integration of the damage evolution [Eq. (4.2)] furnishes damage,   and the “temperature-

normalized” rupture, rt  as follows 
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1
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Damage [Eq. (4.9)] depends on the constant   and rupture, rt . Rupture [Eq. (4.10)] 

depends on the M  , t  , and   material constants. 

Assume that initial damage is 0 0  . The “temperature-normalized” MCSR and rupture 

predictions are reintegrated as 

 
min

0 sinh exp( )

exp
o

c s

A
Q

RT

 




 
=  

−   
 
   

(4.11) 

  

 0

exp( ) exp( )
exp

sinh exp( ) 1

oc
r

t

Q
t

RT
M



 






− − −− 
= 

   
− − 

   

(4.12) 

where the presence of initial damage will cause the MCSR to increase and rupture time to 

decrease. Damage with initial damage is also furnished as 
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where the presence of initial damage causes the damage to increase. 

A closed-form creep strain equation can be derived as 
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This equation, can be employed for 0 0 =  or 0 0   conditions by using the appropriate 

rupture prediction equation [Eq. (4.10)] or [Eq. (4.12)] respectively. The integration of a closed-

form creep strain equation indicates that a closed-form material Jacobian for finite element analysis 

also exists. 

 

Figure 4.1: Normalized (a) MCSR and (b) SR data and calibrated best-fit model [Eqs (4.3) and 

(4.10)] 
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( ), , , , , , , ,pr c s tQ A M      : four are fixed ( ), , ,c s tQ     and five are specimen-specific 
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( ), , , ,pr A M   . The deterministic calibration follows a previously established approach by 

Haque et al [54]. The normalized MCSR and SR [Eqs. (4.3)-(4.10)] are calibrated through the best-

fit in the experimental data to produce the fixed material constants ( )* *, , , ,c s tQ A M   listed in 

Table 4.1. The 
*A  and *M  constants are the best-fit material constants that pass through the middle 

of the data. The activation energy, cQ  is comparable to literature [55]. The specimen-specific 

material constants arise as follows. Specimen-specific A  and M  constants are back-calculated 

from [Eqs. (7)-(8)] compared to creep-data to produce perfect MCSR and SR predictions. The   

constant is calculated from the MCSR and FCSR data using [Eq. (4.4)]. The specimen-specific 

material constant   is numerically optimized using the closed-form creep strain [Eq. (4.14)]. The 

specimen-specific primary creep strain, pr  is measured directly from creep data. The specimen-

specific material constants ( )0 0, , , , prA M     for all thirty creep tests are provided in Table 9.1 of 

the Appendix. 

Table 4.1 : Fixed material constants for Sinh model of alloy 304 SS 

cQ  
*A  s

 
*M  t

 
  

1(kJ mol )−
 

1 17(% hr 10 )− 
 (MPa) 

1 17(hr 10 )− 
 (MPa)  

419 3.310 21 9.462 66.5 3.0 

*these are the best-fit material constants for all the data. The specimen-specific material constants 

are provided in the Appendix Table 9.1. 
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Figure 4.2: Deterministic creep deformation and damage predictions using the Sinh model for 

304SS (a) 600°C at 300 and 320 MPa, (b) 650°C at 260 and 240 MPa, and (c) 700°C at 180 and 

160 MPa 
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The Creep deformation and damage predictions using the specific-specimen constants are 

shown in Figure 4.2. Qualitative and quantitatively, the model is highly accurate with a mean % 

Error in MCSR of 10.433%. The mean %Error in creep ductility is low at 8.978%. The SR 

predictions perfectly match the data. The %Error statistics of MCSR and creep ductility is shown 

in Table 4.2. Critical damage is always unity. These deterministic predictions represent the case 

where uncertainty is carried 100% by the specimen-specific material properties.  

 

Table 4.2 : Percent Error % in Deterministic MCSR and Creep Ductility Predictions 

Parameter Max Min Mean Std Dev CoV 

MCSR 17.100 2.493 10.433 3.245 31.107 

Ductility 15.533 3.274 8.978 2.817 31.378 
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Figure 4.3: Probability distribution functions (pdfs) for (a) stress,   (b) temperature, T (c) initial 

damage, 0  (d) primary creep strain, pr  (e) creep strain trajectory constant,  , and (f) damage 

trajectory constant,  . These set of pdfs are for case 320 MPa at 600°C. 

(a)

(f)(e)

(d)(c)
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4.3 PROBABILISTIC CALIBRATION 

The probabilistic calibration process and model employs the Sinh equations with initial 

damage [Eqs. (4.11)-(4.13)]. The previously determined fixed material constants 

( )* *, , , ,c s tQ A M   are preserved. Scatter in the experimental data is calibrated into the model by 

defining probability distribution functions (pdfs) for the test conditions (  and T ), initial damage, 

0 , and material constant ( ), ,pr    uncertainty. Note, these uncertainties are not co-calibrated; 

rather, they are individually applied to the data and then aggregated together once the full 

probabilistic model is enabled. The calibrated pdfs are shown in Figure 4.3 and their parameters 

are summarized in Table 4.3. The Matlab distribution fitter app and/or Anderson-darling (AD) 

goodness-of-fit test are employed to identify and calibrate the pdfs. The probabilistic parameters 

conform to ASTM standards, CDM rules, and the nature of the specimen-specific constants. A 

monograph of the calibration process follows. 

 Table 4.3 : Probability distributions shapes and parameters for probabilistic prediction 

Parameter Distribution Shape Distribution Parameters 

  Normal Gaussian 

*                 MPa ,

0.006) / 4 MPa

X



=

= (+
  

T  Normal Gaussian 
* ,  / 8X C C =  =    

    Exponential  =    

pr   Lognormal   = − =    

   Lognormal   = =    

   Lognormal   =  =    
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Figure 4.4: Illustration of (a) eccentric loading and (b) temperature fluctuations during a creep test. 

Herein, max min,   -  Maximum and minimum normal bending stress, F - Applied load, t  - 

tolerance in dimensions relative to neutral axis, e  - eccentricity of loading, and iT  - Temperature 

recorded from thermocouple. 

 

Test condition uncertainty can usually be calibrated by measuring the eccentricity of the 

specimen and load frame and examining thermocouple data. In this study, that information is not 

available; therefore, to be conservative, the worst-case scenario allowed under ASTM standards is 

applied. Stress and temperature uncertainties are idealized in Figure 4.4. Stress fluctuations arise 

from the eccentric loading of a specimen due to the misalignment of the load-frame and/or 

dimensional tolerance. The ASTM E8 standard calls for a stress increase of 1.5, 2.5, and 3.2% for 

12.5, 9, and 6 mm diameter specimens respectively when eccentricity is held to 0.025 mm [56]. In 

this study, the specimens have a diameter of 6 ± 0.025 mm, thus the worst-case scenario is +3.2% 

stress. Stress uncertainty is applied using Normal Gaussian pdf where the mean is equal to nominal 

stress and the standard deviation is equal to 1/4th of a linear function (0.046 × mean stress + 0.006) 
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as shown in Figure 4.3(a). The chosen pdf is appropriate because more than 95% of the distribution 

is captured within the 3.2%  bands. A more elaborate formula for adding stress uncertainty 

could be derived by using solid mechanics to solve for the stress increase caused by the interaction 

of load/geometric eccentricity, concentricity of the specimen gauge section and the load-frame, 

and load-frame misalignment as illustrated in Figure 4.4(a) information is not available to 

implement it here. 

Temperature fluctuations arise during creep testing and exhibit both spatial (along the 

specimen gauge-length) and temporal properties. The ASTM E139 standard states that temperature 

must not fluctuate more than ±2°C below 1000°C and ±3°C above 1000°C duration of testing [44]. 

Furthermore, since two thermocouples are required, fluctuations must remain below this limit at 

each location and between them, respectively. In this study, the specimens are subjected to 

temperatures below 1000°C, thus the worst-case scenario is ±2°C temperature. Temperature 

uncertainty is applied using a Normal Gaussian pdf where the mean is equal to nominal 

temperature and the standard deviation is equal to 1/8th of the temperature range as shown in 

Figure 4.4(b). The chosen pdf is appropriate because 100% of the distribution is captured within 

the ±2°C bands. 

Initial damage,    is influenced by residual stresses [40], pre-existing cavities and defects 

[57-60], and loading history including the monotonic loading need to reach the creep load [61-63]. 

Rather than evaluate these sub-sources of uncertainty, a collective approach is applied where the 

remaining uncertainty in the SR data is eliminated by adding initial damage. Note, the MCSR data 

is not employed to calibrate initial damage. It will be shown in the following section that, given a 

fixed   and  , initial damage has marginal impact on MCSR unless the magnitude of initial 
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damage values are large 0.2o  . Conversely, changing   and   has minimal impact on the SR 

predictions. 

 

Figure 4.5: Initial damage,    versus stress calculated employing the specimen-specific   and 

  to obtain specimen-specific o  from the SR data 

Initial damage,    is obtained for each data point by applying the specimen-specific    

constants (that were obtained when  =  ) and rearranging the rupture equation [Eq. (4.12)] to 

solve for initial damage. The resulting initial damage,    versus stress is plotted in the Figure 4.5. 

A trend of initial damage with stress or temperature is not observed; suggesting that the calculated 

values are free of stress- and temperature-dependence. Positive (n=13) and negative (n=17) initial 

damage values are calculated. In the deterministic calibration, [Eq. (4.2)] is employed to calibrate 

the specimen-specific constants for a perfect fit to SR data where the initial damage is zero. In the 

probabilistic calibration, the same specimen-specific constants are used but for non-zero initial 

damage [Eq. (4.12)]. To preserve accuracy, often the initial damage becomes negative. Negative 

damage, 0 0   violates CDM [64]. To be conservative and meet CDM rules, the 0   values 

are discarded. Discarding 0  , the average    is 0.01. The MATLAB distribution fitter app is 
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employed to determine the distribution parameter of the chosen pdf. In the probabilistic model, the 

uncertainty for    is set between 0 to 0.01 with an exponential distribution and the distribution 

parameter mean,  =   as shown in Figure 4.3(c). The chosen pdf is appropriate because the 

specimens are likely to be virgin with minimum initial damage. Densitometry techniques can also 

be employed to estimate initial damage by measuring the bulk porosity and/or the local void 

volume fraction within the microstructure before testing [61-63].  

The uncertainty of pr  is based on the specimen-specific values. The measured pr  do not 

trend with stress or temperature. Uncertainty of pr  is applied using a Lognormal pdf where the 

mean and standard deviation are equal to -0.309 and 0.362 respectively as shown in Figure 4.3(d). 

The Anderson-Darling (AD) goodness-of-fit test statistics were employed to identify and calibrate 

the pdf. In the future, a multistage Sinh model could be employed [64]. 

 

Figure 4.6: Eyring prediction [Eq. (4.7) and (4.8)] of the specimen-specific constant   and    

versus stress. The solid line is the best fit. The dashed line represents ±1/2 standard deviation. 

The uncertainty of   and   is established based on the specimen-specific constants. 

Eyring predictions [Eqs. (4.7) and (4.8)] of   and   are plotted versus stress in Figure 4.6. Best-

Stress,  (MPa)
200 300 400100

C
re

e
p

 S
tr

a
in

 T
ra

je
c
to

ry
 C

o
n

s
ta

n
t,

 

0

1

2

3

4

5

6

Exp 

Best-Fit

+/- 1/2 Std Dev

Stress,  (MPa)
200 300 400100

D
a

m
a

g
e

 T
ra

je
c
to

ry
 C

o
n

s
ta

n
t,

 

0

2

4

6

8

10

Exp 

Best-Fit

+/- 1/2 Std Dev

(a) (b)



32 

fits are obtained by numerically optimizing the coefficients (   and  ) and activation volumes (

*V  and 
*V ) as reported in Table 4.4. The standard deviation of the specimen-specific   and   

are 0.892 and 1.523 respectively. The dashed lines are obtained by taking the best-fit constants (

  and 0 ) ± 1/2 standard deviation. The uncertainty of   and   are set with a Lognormal 

distribution as shown in Figure 4.3(e)-(f) respectively. The pdfs were selected based on Anderson-

Darling (AD) goodness-of-fit test.  

Table 4.4 : Eyring’s constants for   and    

Parameter Coefficient Activation Volume 

  ( 23 310 cm− ) 

  [Eq. (4.7)] 5.295 3.392 

  [Eq. (4.8)] 2.715 2.795 
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Figure 4.7: Flowchart of Sinh model creep deformation and damage prediction using Monte Carlo 

sampling method 

 

4.4 MONTE CARLO SAMPLING 

A MATLAB subroutine is developed to generate probabilistic Sinh model predictions. The 

flowchart is illustrated in Figure 4.7. The global inputs of the subroutine are the fixed material 

constants ( )* *, , , ,c s tQ A M   and Eyring constants reported in Table 4.1 and Table 4.4 
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respectively. Monte Carlo sampling is applied to the ( , , , , )prT        pdfs reported in Table 

4.3 to generate 1000 unique creep deformation and damage evolution predictions. First, 1000 

rupture times, rt  [Eq. (4.12)] are predicted. The predicted rupture times, rt  are divided by 100 to 

create unique time vectors, t . The closed-form damage and creep deformation equations [Eqs. 

(4.13)-(4.14)] are employed in conjunction with time vectors, t  to predict the damage evolution, 

ω  and creep strain, cr
ε  at each iteration. The results are stored in a RESULTS matrix. Thus, 1000 

unique creep deformation and damage evolution curves are generated. 
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Figure 4.8: Probabilistic creep deformation curves for single source of uncertainty: (a) stress,   

(b) temperature, T  (c) initial damage, 0  (d) primary creep, pr  (e) creep strain trajectory constant, 

  , and (f) damage trajectory constant,   uncertainty at 320 MPa and 600°C. 1000 Monte Carlo 

simulations were performed for each source. 



36 

Figure 4.9: Probabilistic damage evolution curves for single source of uncertainty: (a) stress,   

(b) temperature, T  (c) initial damage, 0  (d) primary creep, pr  (e) creep strain trajectory constant, 

  , and (f) damage trajectory constant,   uncertainty at 320 MPa and 600°C. 1000 Monte Carlo 

simulations were performed for each source. 
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4.5 PROBABILISTIC PREDICTION: INDIVIDUAL SOURCE 

Individual source predictions are performed by turning on each source of uncertainty 

individually. The influence of that source of uncertainty on creep deformation and damage 

evolution is evaluated. For brevity, only the creep deformation and damage predictions 

corresponding to the 320 MPa and 600°C creep data are evaluated. The creep deformation 

predictions are shown in Figure 4.8. The black solid lines represent the nominal state where stress 

and temperature are exact and initial damage is zero. Qualitatively, increasing stress and 

temperature shifts forward the creep deformation curve reducing the rupture time as shown in 

Figure 4.8(a) and Figure 4.8(b). This is expected from literature [65-66]; however, only a token 

increase of creep ductility is observed, and it is restricted to stress increases only. The effect of 

stress is more pronounced than temperature. In addition, the MCSR increases with stress but not 

temperature. Adding initial damage,    decreases both creep ductility and rupture as shown in 

Figure 4.8(c). Adding or decreasing primary creep, pr  shifts the creep deformation curve up and 

down respectively as shown in Figure 4.8(d). Increasing the creep strain trajectory constant,   

increases creep ductility with negligible impact on rupture as shown in Figure 4.8(e). Increasing 

the damage trajectory constant,   decreases creep ductility and rupture as shown in Figure 4.8(f). 

The damage evolution predictions are shown in Figure 4.9. Meeting CDM rules, damage is always 

unity at rupture as shown in Figure 4.9(a)-(f) [64]. Qualitatively, increasing stress, temperature, 

and initial damage shifts the damage curve forwards reducing rupture time as shown in Figure 

4.9(a)-(c) respectively. Again, the effect of stress is the most pronounced. Primary creep, pr  and 

the creep strain trajectory constant,   have no impact on damage evolution as shown in Figure 
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4.9(d)-(e) respectively. Increasing the damage trajectory constant,   causes the damage evolution 

curve to exhibit a sharper trajectory with a shorter rupture time as shown in Figure 4.9(f).  

 

Figure 4.10: Analysis of variance (ANOVA) of individual parameters on MCSR, SR, and creep 

ductility prediction. 

A quantitative analysis is performed on the sources of uncertainty using the analysis of 

variance approach (ANOVA). This analysis is restricted to the influence of individual sources on 

the predicted MCSR, SR, and creep ductility as shown in Figure 4.10. The Relative Effect (%) 

expresses the influence of one source relative to other sources in an assessment. The MCSR, SR, 

and creep ductility are most influenced by initial damage, stress, and the damage trajectory 

constant,   respectively at 97.410, 89.631, and 78.444% of relative effect. Temperature most 

influences SR at 4.944%. The primary creep strain and creep strain trajectory constant,   solely 

influence the creep ductility at 12.169 and 6.686% respectively.   
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Figure 4.11: Normalized (a) MCSR and (b) SR predictions using the full interaction model 

 

 
Figure 4.12: Predicted (a) MCSR and (b) SR bands across multiple isotherms using the full 

interaction model. 
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Figure 4.13: Creep deformation curves using the full interaction model at 600°C subjected to (a) 

320 MPa and (b) 300 MPa, at 650°C subjected to (c) 260 MPa and (d) 240 MPa, and at 700°C 

subjected to (e) 180 MPa and (f) 160 MPa respectively. 1000 Monte Carlo simulations for each 

condition. 
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4.6 PROBABILISTIC PREDICTION: FULL INTERACTION 

The full interaction simulations are performed where the fidelity of the full probabilistic 

model is evaluated. In these simulations all source of uncertainty are “turned on”. The 

“Normalized” MCSR and SR predictions are shown in Figure 4.11(a)-(b). The goodness-of-fit of 

the MCSR and SR predictions are satisfactory. The predictions cover the bounds of the 

experimental data (across isostress-isotherm conditions). The isotherms can be better examined 

individually in the Figure 4.12(a)-(b) where the predictions agree with the experimental data at 

each isotherm. The extrapolated MCSR and SR predictions, show a narrowing band at low-stress 

and a constant bandwidth with respect to temperature. This is opposed to creep theory where scatter 

is expected to increase in the low-stress high-temperature regime primarily due to the additional 

energy and time allowing for stochastic metallurgical processes and time-temperature-

transformation (TTT) and precipitation (TTP) [68-69]. Mathematical analysis was performed to 

identify the root cause. It was determined that the deterministically measured damage trajectory 

constant,  , (N=30) increases with stress as shown Figure 4.6(b) which is opposed to previous 

studies on alloy 18Cr-12Ni-Mo  (N=322) [70]. Ultimately, the probabilistic model is only as good 

as the quality and quantity of data employed in calibration. A lack of low-stress high-temperature 

data, results in the model incorrectly extrapolating that regime. Future investigations can further 

improve the model by: (a) employing a higher quality and quantity of data during calibration; (b) 

applying stochastic time-dependent probability distribution functions (pdfs) which expand as a 

function of time; and (c) incorporating TTT and TTP diagrams (experimentally- or CALPHAD-

derived) into the calibration and modeling process.  

The creep deformation predictions of the experimental data are shown in Figure 4.13(a)-

(f). The goodness-of-fit with the experiment across multiple isostress-isotherm is satisfactory. 
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Qualitatively, the predictions at 600 and 700°C matches the MCSR, SR, and creep ductility of the 

experiment. At 650°C, the prediction at 260MPa underpredicts creep ductility while at 240 lacks 

in accurate rupture prediction. The underlying cause of shorter ductility and  rupture prediction are 

the fixed material constant, *A  and *M , respectively. At 260 MPa, the average specimen-specific 

0A  is 100% higher than *A . At 240 MPa, the average specimen specific 0M  is 39% lower than 

*M . The resulting effect is seen in the shorter creep ductility and rupture prediction. Herein, 1000 

Monte carlo simulation is performed per test condition as further simulation does not improve the 

accuracy of the prediction.   

 

Figure 4.14: Coefficient of variation (CoV) of predicted (a) MCSR, (b) SR, and (c) creep ductility 

at 320-160 MPa and 600-700°C 
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The coefficient of variation (CoV) of predicted MCSR, SR, and creep ductility across 

multiple isostress-isotherm is shown in Figure 4.14. At constant temperature, the predicted MCSR 

and creep ductility variation decrease with stress as shown in Figure 4.14(a) and Figure 4.14(c) 

respectively. On the contrary, the predicted rupture variation increases with stress as shown in 

Figure 4.14(b). The predicted MCSR and creep ductility show increasing trend with temperature 

while the opposite is noticed for predicted rupture. The observed variation is more appreciable for 

stress than temperature. As low stress – high temperature regime approach, the variation is 

significant. 

 

 

Figure 4.15: Extrapolation of the creep deformation using the full interaction model at (a) 400 MPa 

and 550°C and (b) 120 MPa and 750°C respectively. 

To further evaluate the extrapolation ability of the model, probabilistic simulations are 

performed at 400 MPa and 550°C and at 120 MPa and 750°C as shown in Figure 4.15. The 

extrapolated predictions exhibit the expected creep response trends. The prediction at 400 MPa 

show shorter MCSR and SR with more scattering while at 120 MPa show longer, consistent, and 

less scatter. The prediction at 120 MPa exhibit significantly higher creep ductility with more 
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scattering compared to 400 MPa. The relative scatter bands in MCSR and SR tends to decrease at 

low-stress matching the “normalized” MCSR and SR prediction.  
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5. Chapter 5: Verification and Validation 

5.1 INTRODUCTION 

The objective of Chapter 5 is the Verification and Validation (V&V) of the probabilistic 

Sinh prediction described in the preceding chapters. To accomplish the objective, the following 

steps are undertaken. For deterministic validation, FEA simulation is performed in ANSYS APDL 

employing a user creep subroutine (USERCREEP.f), an ANSYS user-programmable feature 

(UPF) for 1D and 2D geometry. The simulated creep deformation and damage evolution for 1D 

and 2D elements are compared with experiment and deterministic Sinh prediction. For 

probabilistic prediction, an expanded database of engineering alloys is gathered from NIMS 

(National Institute for Material Science) and probabilistic model is applied. The probabilistic 

model is validated by comparing the “Normalized” MCSR and SR prediction. The accuracy of the 

deterministic and probabilistic result demonstrates the verification and validation of the proposed 

model. For brevity, the experiment at 320 and 300 MPa at 600°C are accomplished in this chapter. 

 

 

Figure 5.1: Simplified geometry of (a) 1D and (b) 2D models for simulation in ANSYS.   

 

(a) (b)
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5.2 FEA MODELS: 1D AND 2D 

For simplification of the analysis, smooth creep specimen is simulated by simplifying the 

geometry to a single element 1D and 2D model. The geometry for 1D and 2D model are shown in 

Figure 5.1. The Young’s Modulus and Poisson ratio are taken as 
52.65 10E =   MPa and  =

, respectively. For 1D geometry, SOLID185 elements are chosen. Number of nodes per element is 

8 and total number of elements is 1. For 2D geometry, eight node PLANE183 elements with plane 

stress option are chosen. Total number of the elements is 3890. A uniform load according to test 

condition is applied on the top surface. Appropriate displacement constraints are applied to 

replicate the uniaxial stress state. The constitutive equations are implemented into USERCREEP 

UPF. For every Newton-Raphson iteration and material integration point, the USERCREEP UPF 

is called. At the beginning of the time increment, the inputs are current stresses, strains, and state 

variables. The USECREEP provide the updated stresses, strains, state variables, and the material 

Jacobian matrix as outputs [67]. Note that, the Sinh rate-based creep strain [Eq. (4.1)] and damage 

[Eq. (4.2)] equation are employed. The critical damage is set at unity.  

 

 

Figure 5.2: Simulated creep strain for (a) 1D and (b) 2D model geometry at 320 MPa at 600°C.  

(a)

(b)
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The simulation is run up to the experimental rupture time to facilitate comparison with 

experimental data. The Sinh material constants summarized in Table 9.1 are employed for the 

simulation.  

 

Figure 5.3: Deterministic (a) and (c) creep deformation, and (b) and (d) damage evolution 

prediction by FEA simulation subjected to 320 and 300 MPa at 600°C.  

 

5.3 DETERMINISTIC PREDICTION: FEA MODEL 

The creep deformation and damage evolution employing the deterministic Sinh material 

constants are compared with the experiment and deterministic Sinh prediction. A representative 

simulation of creep strain for 1D and 2D model preformed at 320 MPa and 600°C are shown in 
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Figure 5.2(a)-(b) respectively. For each test condition, elastic strain, creep strain, and damage 

evolution is calculated and stored. The deterministic creep deformation and damage evolution 

prediction by FEA simulation for 1D and 2D elements subjected to 320 and 300 MPa at 600°C are 

compared to experiment and deterministic Sinh prediction as shown in Figure 5.3. Qualitatively, 

the FEA 1D and 2D simulation show remarkable accuracy compared to experiment as shown in 

Figure 5.3(a) and (c). The ductility prediction underpredicts while the rupture prediction 

overpredict slightly compared to experiment. This is due to time-stepping settings inside the FEA 

simulation. Minimizing the time-stepping will improve the accuracy in the ductility and rupture 

prediction. Quantitatively, for 1D and 2D simulation mean %Error in creep ductility with 

experiment is 5.24% and 5.09%. The rupture prediction mean %Error between experiment and 

simulation is low at 1.50 and 1.66% for 1D and 2D respectively. The creep ductility prediction 

show more scatter compared to rupture prediction. The %Error statistics for creep ductility and 

rupture are summarized in Table 5.1. The damage prediction always goes to unity at rupture 

meeting the CDM laws as shown in Figure 5.3(b) and (d).   

 

Table 5.1 : Error Statistics in FEA simulated creep ductility and rupture predictions.  

Type Parameter Max Min Mean Std Dev CoV 

FEA 1D 

Creep Ductility 8.471 3.544 5.245 1.538 29.145 

Rupture 1.663 1.278 1.501 0.123 8.034 

FEA 2D 

Creep Ductility 8.474 3.594 5.097 1.481 29.194 

Rupture 1.826 1.413 1.678 0.131 7.973 
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5.4 PROBABILISTIC PREDICTION: NIMS DATABASE 

 

5.4.1 Material 

The material used for verification and validation of the probabilistic approach are 

Austenitic stainless steel of type 18Cr-8Ni and 18Cr-12Ni-Mo. The creep data was collected from 

open source NIMS database [71-72]. For 18Cr-8Ni, this database contains 310 SR and 20 MCSR 

datapoints and for 18Cr-12Ni-Mo, 323 SR and 32 MCSR datapoints. The materials were in tube 

form with the dimension of 50.8 mm outer diameter, 8 mm wall thickness, and 5000 mm length. 

The processing steps includes hot extrusion followed by cold drawing and water quenched at 

1130°C. The room temperature (approximately 23-25°C) tensile properties are reported in  

Table 5.2 : Tensile properties at RT [71-72].  

Property 18Cr-8Ni 18Cr-12Ni-Mo 

Yield Stress (MPa) 280 224 

Ultimate Tensile Strength (MPa) 610 578 

% Elongation 67 68 

% Reduction of Area 83 81 

 

The specimen for the creep tests were taken longitudinally from the as-received boiler tubes 

at the middle of wall thickness. The test specimen has the geometry of 6 mm in diameter (tolerance 

is ±0.01 mm) and 30 mm (tolerance is ±0.1 mm) in gauge length. The creep-rupture tests were 

conducted as specified in JIS Z 2272 standard. The accuracy of loading was within ±0.5% of the 

required load.  
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5.4.2 Deterministic Calibration 

The deterministic calibration follows the same approach described in Chapter 4. The 

calibrated fixed material constants for the alloys are reported in Table 5.3. As there are no full 

creep deformation curves, an approximation approach is adopted to calibrate the specimen-specific 

  and  . This approach is later verified by parametric simulation across multiple isostress-

isotherms. FCSR and final damage rate is calibrated by taking the slope at 2/3rd of rupture time of 

creep strain and damage evolution curves, respectively. MCSR is taken form the creep datasheet 

[71-72]. The material constant,   is calibrated through [Eq. (4.3)]. The damage rate equation can 

be rearranged into the following form in terms of initial and final damage rate.    

 
final

min

1
ln

1




 

 
=  

−  
 (5.1) 

An initial guess value of   is assumed based on prior studies to calibrate the initial damage rate, 

   using the [Eq. (4.2)] [35,53]. Initial damage,    is calibrated by setting the worst-case 

temperature and stress fluctuation to encapsulate the remaining uncertainty in the MCSR data. 

Material constant,   is determined by employing [Eq. (5.1)] and numerically refined to find the 

best-fit specimen-specific   constant. The calibrated specimen-specific   and   are employed 

later during probabilistic predictions. 

Table 5.3 : Fixed material constants for Sinh model of alloy 18Cr-8Ni and 18Cr-12Ni-Mo 

Material 
cQ  *A   s

 
*M  

 
t
 

  

 1(kJ mol )−
 

1 17(% hr 10 )− 
 (MPa) 

1 17(hr 10 )− 
 (MPa)  

18Cr-8Ni 414.7 8.50 11.5 9.092 58 3 

18Cr-12Ni-Mo 402.9 3.00 11.5 1.507 59 3 
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5.4.3 Probabilistic Calibration 

The probabilistic calibration follows the similar approach explained in Chapter 4. The 

distribution shape and parameter for the sources of uncertainty are estimated by ASTM standard, 

CDM-laws, and Anderson-Darling (AD) goodness-of-fit test. The sources of uncertainty with the 

respective distribution shape and parameter are summarized in Table 5.4. 

Table 5.4 : Probability distributions shapes and parameters for sources of uncertainty 

Parameter Distribution Shape Alloy 18Cr-8Ni Alloy 18Cr-12Ni-Mo 

   Normal Gaussian 

*          MPa ,

(6.4% / 8) MPa

X

X





=

= 
  

*        MPa ,

(6.4% / 8) MPa

X

X





=

= 
  

T   Normal Gaussian 
* ,  X C C =  =      

* ,  X C C =  =      

    Exponential  =     =    

   2-Parameter Weibull  5.006,  3.565a b= =   2.758,  2.043a b= =   

   2-Parameter Weibull 3.553,  2.458a b= =   19.872,  3.016a b= =   

*X is the nominal stress/temperature of interest. 
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Figure 5.4: “Normalized” (a) MCSR and (b) SR prediction employing the probabilistic Sinh model 

for (i) alloy 18Cr-8Ni and (ii) alloy 18Cr-12Ni-Mo 

 

5.4.4 Probabilistic Prediction 

The probabilistic Sinh prediction for the “normalized” MCSR and SR are accomplished 

employing the MATLAB subroutine developed in Chapter 4. The predictive capability of the 

probabilistic Sinh is validated by comparing the “normalized” MCSR and SR prediction with 

experiment as shown in Figure 5.4. The good-of-fit of the probabilistic prediction is satisfactory. 

The model prediction resides within the experimental bounds across multiple isostress. The 

probabilistic prediction tends to show conservative prediction. The predicted MCSR and SR scatter 

bands exhibit the design point for future modeling of complex components exposed to high stress 
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and temperature. Based on the prediction, a design decision can be made on the associated safety 

factor and remaining lifetime of the components. The model does not capture all the experimental 

uncertainty at lower stress. Several reasons of such behavior are explained in the previous chapter. 

However, the probabilistic Sinh can generate reasonable prediction across the material databases 

given the right material properties, fixed constants, and probabilistic parameters.  

 

Figure 5.5: Parametric simulation with (a) constant temperature at 750°C and (b) constant loading 

at 30 MPA for alloy 18Cr-8Ni 

 

5.5.5 Parametric Simulation 

In this verification and validation study, an approximation approach is followed to calibrate 

the material constants ( )  . In prior studies, these material constants ( )   are calibrated directly 

from the creep deformation curves [35,53]. It requires a new approach for calibration of these 

material constants when there are no experimental creep deformation curves. For performing the 

parametric simulation, the Advanced Ultra Super Critical (A-USC) power plants service condition 

is chosen. Such power plants typically operate between 1300-1400°F (704-760°C) and 4000-5000 

psi (27.57-34.47 MPa). In this parametric case study, temperature starting at 700°C and stress 

starting at 30 MPa is employed. The closed- form Sinh creep strain equation [Eqs. (4.14) and 
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(4.13)] is employed to produce the creep deformation curves. Note that, the material constant 

calibrated for 18Cr-8Ni are employed. The parametric simulation result shows expected trend of 

creep deformation curves. With increasing temperature and stress, a decreasing trend of rupture 

and an increasing trend of creep ductility is noticed. At high temperature-stress regime, such 

behavior of the creep deformation curves verified the reliability of the approximation method 

adopted in absence of full creep deformation curves. 
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6. Chapter 6: Conclusion and Future Work 

6.1 CONCLUSION 

The objective of this study was to investigate and convert the CDM-based deterministic 

Sinh model into a probabilistic model by incorporating the uncertainty of creep. The deterministic 

calibration reveals the inherent uncertainty associated with model constants. The probabilistic 

calibration determines the distribution shape and parameter of the sources of uncertainty. Monte 

carlo sampling is employed to generate the individual source and full interaction probabilistic 

prediction of MCSR, SR, and creep ductility. The assessment led to the following insights. 

• The deterministic prediction of MCSR, SR, and creep ductility are accurate, with 

a mean error between the model and experiment data at 10.433, 0.000, and 8.978%, 

respectively. 

• The individual probabilistic predictions at 320 MPa and 600°C, show that the 

MCSR, SR, and creep ductility are most influenced by initial damage, stress, and 

the damage trajectory constant at 97.410, 89.631, and 78.444% of relative effect, 

respectively. These relative effects change as a function of stress and temperature. 

• The full interaction probabilistic predictions of MCSR and SR agree with the 

experimental data exhibiting a similar scatter band across multiple isotherms. The 

extrapolation when there is no experimental observation show that the relative 

scatter bands in MCSR and SR tends to decrease at low-stress matching 

“normalized” MCSR and SR prediction. The predicted MCSR and SR scatter 

bands remain consistent for individual isotherms. 

• The full interaction creep deformation predictions fit the experimental data across 

the multiple isostress-isotherms conditions. The qualitative predictions of MCSR, 
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SR, and creep ductility at 600 and 700°C are satisfactory. At 650°C, prediction at 

260 MPa lacks in accurate creep ductility prediction due to 100% underprediction 

of fixed material constant, 0A  while at 240 MPa, show shorter rupture prediction 

due to 39% under-prediction of fixed material constant, *M .  

• Overall, the proposed probabilistic model is good for interpolation but lacks in 

extrapolation ability. 

 

 

Figure 6.1: Reliability assessment of a turbine blade simulation with probabilistic tools. 

 

6.2 FUTURE WORK 

The avenues of future work in this field of study are many. The future investigation will 

introduce the multi-stage Sinh model. The current model lacks in modeling of primary creep stage. 

Incorporation of time-, strain-, and mixed/work hardening viscous function will enable the model 

to generate realistic creep deformation curves. The addition of stochasticity into the proposed 
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probabilistic model will facilitate the application at an industrial setup where the prevailing service 

condition uncertainty is cruder. The time-dependent pdfs will capture the variation in material 

constants as a function of time. As Sinh is a phenomenological model, different micro-structural 

degradation at component level are beyond the scope of the model. Inserting the micro- and meso-

scale degradation and material behavior will enhance the accuracy of the probabilistic prediction. 

The probabilistic tool NESSUS will be employed in conjunction with ANSYS to simulate the FEA 

1D, 2D, and 3D model for reliability assessment of critical components e.g. turbine blade as shown 

in Figure 6.1. There is scope to apply the probabilistic model to Accelerated Creep Testing (ACT) 

data to extrapolate the creep response of a new candidate alloy across multiple isostress-isotherm 

[73].       
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9. Appendix 

 

Table 9.1 : Specimen-specific material constants for Sinh model of alloy 304 SS 

Test ID 

Stress, 

  pr
 0A

 oM
     min  

Exp 

Rupture 

time,  rt  

MPa  %  
1 17% 10hr −   1 1710hr−     1% hr −  hr  

600°C 

320_T1 320 0.85 4.12 10.89 3.16 6.26 0.073 46.05 

320_T2 320 1.45 2.49 8.85 1.59 4.08 0.044 56.64 

320_T3 320 0.76 2.42 9.14 3.04 5.90 0.043 54.87 

320_T4 320 1.20 2.33 7.91 1.85 4.98 0.041 63.36 

320_T5 320 0.82 1.68 7.93 2.46 3.01 0.029 63.23 

300_T1 300 0.80 3.75 12.37 2.09 7.04 0.025 100.00 

300_T2 300 0.82 2.11 11.05 2.72 4.91 0.014 111.86 

300_T3 300 0.73 1.96 9.85 3.39 7.24 0.013 125.48 

300_T4 300 0.95 2.20 8.61 1.47 3.31 0.015 143.52 

300_T5 300 0.63 1.65 8.39 2.25 5.95 0.011 147.43 

650°C 

260_T1 260 0.45 8.05 12.28 2.53 2.98 0.046 26.88 

260_T2 260 1.05 8.10 10.21 2.05 3.99 0.017 32.31 

260_T3 260 0.83 5.44 10.10 2.79 3.54 0.022 32.67 

260_T4 260 0.70 6.89 10.27 3.25 5.85 0.020 32.14 

260_T5 

26260_

T5 

260 1.00 4.66 7.83 2.12 3.65 0.017 42.12 

240_T1 240 0.70 5.14 6.38 2.57 4.37 0.187 127.61 

240_T2 240 0.55 1.98 6.02 2.37 2.49 0.188 135.14 

240_T3 240 0.50 2.51 5.57 2.03 3.44 0.126 146.18 

240_T4 240 0.70 2.32 5.77 2.25 4.96 0.160 141.10 

240_T5 240 0.65 1.96 4.98 2.96 4.05 0.108 163.52 

700°C 

180_T1 180 0.90 6.61 9.03 2.21 4.70 0.056 82.73 

180_T2 180 1.55 3.25 8.67 2.78 3.15 0.027 86.14 

180_T3 180 0.43 3.52 8.35 3.55 3.51 0.030 89.48 
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180_T4 180 0.65 3.11 8.31 3.80 3.74 0.026 89.83 

180_T5 180 0.60 2.42 8.02 3.05 2.75 0.020 93.12 

160_T1 160 1.45 2.67 10.52 4.55 4.22 0.008 176.84 

160_T2 160 0.42 2.43 11.86 3.84 3.96 0.007 156.95 

160_T3 160 0.41 2.26 11.24 4.39 4.05 0.007 165.63 

160_T4 160 0.56 2.14 10.09 4.09 3.89 0.007 184.51 

160_T5 160 0.45 1.90 9.47 5.02 4.34 0.006 196.41 
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