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Abstract

Modeling and predicting of ordinal outcomes have become essential study to many statis-

ticians due to the numerous forms of data encountered in real life, which has such format.

Many authors have proposed variant methods in modeling these type of data either in clas-

sical approaches (McCullagh, 1980a) or from the Bayesian perspective (Albert and Chib,

1993) (Cowles et al., 1996).

A commonly adopted way of modeling ordinal data is via an underlying continuous

latent variable. That is to say that the observed ordinal outcomes have a correspondence

with the latent variable through some set of cutoff points. Thus, it can be established that

the probability of an ordinal outcome is equivalent to a continuous latent variable falling

into an interval on the real line. Sometimes, there exist some difficulties in the estimation

of these cutoff categories. (Albert and Chib, 1993) proposed an ordinal probit model in a

Bayesian framework, in-cooperating a vague prior on the cutoff point parameters.

However, in this work, we try to establish a correspondence between the cutoff categories

through the Dirichlet distribution via a reasonable transformation. The Gibbs sampling

approach is used to estimate these parameters from their posterior distribution. We then

compare our result after prediction to the well known Polytomous Ordinal Logistic Regres-

sion. It tends out that, our method yields more parsimonious results as compared to the

POLR model.

Key Words: Latent Variable, Gibbs Sampling, Ordinal Outcomes, POLR Model, and

Dirichlet Distribution.
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Chapter 1

Introduction

In recent years, modeling and predicting of ordinal outcomes have become an essential study

for many mathematicians and statisticians. Various forms of data encountered in real life

have some natural ordering. For instance, in social and economic sciences, we usually come

across ordinal outcomes. Sometimes, the magnitude of the order is readily not available.

For example, the level of education consists of high school, bachelors degree, masters degree,

and doctoral degree. This variable can be viewed as an ordinal variable but with no scale

or magnitude between each order or category (Sirisrisakulchai and Sriboonchitta, 2016).

There are numerous and well-known methods which are used in the analysis of ordinal

outcomes. One of which is the Ordinal Logistic Regression (OLR). In the case where the

outcome is binary, the binary logistic regression is used. However, since this paper deals

with multinomial outcomes, we would concentrate on the Polytomous Ordinal Logistic Re-

gression (POLR) and compare it to our method, i.e., using Bayesian approach in predicting

ordinal outcomes through some continuous latent variable.

1.1 The POLR Model

Ordinal outcomes are usually modeled by logistic regression. They can also be modeled

by nominal regression model (Johnson and Wichern, 1992). However, to yield a more

parsimonious and easily interpretable model is to use the Polytomous Ordinal Logistic

Regression (POLR) which accounts for the natural ordering of the categories. (Walker and

Duncan, 1967) initially proposed the cumulative logit model for modeling ordinal outcomes

but later (McCullagh, 1980b) called it the proportional odds model. Given a multinomial
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response variable Z with categorical outcomes denoted j = 1, 2, , ..., J − 1, if x is a p-

dimensional vector of variates, β = (β1, β2, ...βp−1)
′ then the dependence of Z on x is given

as:

P (Zi ≤ j | xi) =
exp(γj + x′iβ)

1 + exp(γj + x′iβ)
, j = 1, 2, 3, ..., J − 1 (1.1)

This can be rewritten in logit form as:

logit(πj) = log
[ πj

1− πj

]
= γj + x′iβ

log

[
P (Zi ≤ j | x)

P (Zi > j | x)

]
= γj + x′β, j = 1, 2, 3, ..., J − 1. (1.2)

where πj = P (Zi ≤ j) is the cumulative probability for the event (Zi ≤ j) and γj are

unknown intercept of parameters satisfying the condition γ1 ≤ γ2 ≤, ...,≤ γJ . The Propor-

tional Odds Model (POM) for ordinal logistic regression models the cumulative probabili-

ties P (Zi ≤ j) rather than the specific category probabilities P (Zi = j) as in the nominal

logistic regression.

1.2 Outline of Thesis

The remaining parts of the thesis is organized in this manner. Chapter two provides

a literature review on some Bayesian analysis of ordinal outcomes and other traditional

known methods such as the Polytomous Ordinal Logistic Regression. Chapter three talks

about the methodology, specifically the Gibbs sampling and other derivations. Chapter

four outlines the simulation studies and the results from the estimates of parameters from

the Gibbs sampling and the various prediction techniques.

2



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a literature review on some Bayesian methods used in the analysis

of ordinal outcomes. The section also outlines some weaknesses and strengths of some of

these methods. Ordinal data is usually classified into several groups where there exists a

natural ordering among the groups. There has been much increase in modeling these type

of data, especially where there exists some correlation in the ordered categories. Usually,

the data is either treated as continuous or reduced to binary outcomes, with the purpose

to lower the complexity in its analysis and presentation. In the quest to implement such

analysis to the data, leads to the underestimation of the variance and loss of information.

Many authors have proposed variant methods in modeling these type of data either

in classical approaches (McCullagh, 1980a) or from the Bayesian perspective (Albert and

Chib, 1993) (Cowles et al., 1996). A commonly adopted way of modeling ordinal data is via

an underlying continuous latent variable. The model thus relies on the assumption that the

latent variable has a correspondence to the ordinal variable based on some interval. That

is to say that the observed ordinal outcomes have a relationship with the latent variable

through some set of cutoff points. Thus , it can be established that the probability of an

ordinal outcome is equivalent to a continuous latent variable falling into an interval on the

real line.

(Agresti, 1996) proposed that the latent variable linear models imply cumulative link

models. He realized that, with many ordinal variables, it is realistic to regard the observed

response as a crude measurement of some continuous latent variable. His method is very

3



similar to that of (Albert and Chib, 1993). (Agresti, 1996) also made inferences for multi-

nomial models using the Bayesian approach. He argued that it is common to use diffuse

normal priors on the effect parameters. Moreover, for any link function, Bayesian model

fitting uses MCMC with the product of the chosen prior densities and the multinomial like-

lihood function for the model. For cumulative link models, the prior distributions for the

intercept parameters should take into account the ordering constraint by rightly truncating

the priors that would be used without the constraints. In his illustration of the Bayesian

approach, he modeled the mental impairment data file, where he used a relatively flat nor-

mal prior for the parameters, with mean 0 and standard deviation 10. The posterior mean

estimates are based on a long run of the MCMC process.

(Sirisrisakulchai and Sriboonchitta, 2016) also used a Bayesian analysis approach to

develop a parametric model to investigate the effect of a binary treatment variable on an

ordinal outcome of interest through a latent variable. (Kwon et al., 2007) also used the

probit model in identifying biomarkers from mass spectrometry data with ordinal outcomes,

a method similar to that adopted in this work with the difference existing in finding the cut

off boundaries estimation. One of the issues often associated with ordinal data modeling is

the slow convergence rate of the samples generated from the MCMC process. (Albert and

Chib, 1993) proposed an ordinal probit model in a Bayesian framework, in-cooperating a

vague prior on the cutoff point parameters. The problem encountered in his approach is

the slow convergence of the Gibbs sampling implementation for a large sample size.

In avoiding such issues in the estimation of cutoff point parameters jointly with other

parameters, (Zhou, 2006) in her work proposed a mixture model which can model the

ordinal property of the data without the need to estimate these parameters. However, in

our setting, we try to establish a correspondence between the cutoff categories through the

Dirichlet distribution via a reasonable transformation. The Gibbs sampling approach is

used to estimate these parameters from their posterior distribution.

4



2.2 Gibbs Sampling

Gibbs sampling is one MCMC algorithm that repeatedly samples from the conditional

distribution of one variable of the target distribution given all of the other variables. It is

applicable when the joint distribution is not explicitly known or is complicated to sample

from directly, but quite easy to sample from the conditional distributions of each variable.

Samples are obtained by running through all the posterior conditionals, with one random

variable at a time. Since random values initiate the algorithm, the samples simulated at

early iterations may not necessarily be a representation of the actual posterior distribution.

However, the theory of MCMC guarantees that the stationary distribution of the sam-

ples generated using this approach is the target joint posterior that we are interested in

(Gilks et al., 1995). Thus, the MCMC algorithm is run for a large number of iterations

with the belief that convergence to the desired posterior distribution would be obtained.

Since samples from the early iterations are not from the target posterior, it is essential to

discard them. The immediately discarded samples from the iterations are often referred to

as the ”burn-in” period.

The logic behind the implementation of the MCMC sampling is that we can estimate

any desired expectation by ergodic averages. That is, we can calculate any statistic of

the posterior distribution as far as we have N sufficiently simulated samples from that

distribution, i.e:

E
[
h(θ)

]
P ≈

1

N

N∑
i=1

h(θ(i)) (2.1)

where P is the posterior distribution of interest, and h(θ(i)) is the ith simulated sample

from P . For instance, we can estimate the mean by

E
[
θ
]
P =

1

N

N∑
i=1

θ(i) (2.2)

5



Chapter 3

Methodology

This chapter outlines the details of the methodology used in analysis of the work. It out-

lines the formulation of the ordered probit model, how the prior settings is done, posterior

distribution, and how the correspondence between the cutoff points and the Dirichlet dis-

tribution is obtained. It also outlines the Gibbs sampling implementation and the various

prediction procedures used in this work.

3.1 Ordered Probit Model

Let (Zn×1,Xn×p) denote the observed data, where Zn×1 is the vector of ordered categorical

outcomes andXn×p is the matrix of covariates. Each outcome Zi is associated with a vector

(pi,0, ..., pi,J−1), where pi,j = P (Zi = j) is the probability that subject i falls in the ordered

j class. The probabilities pi,j can be related to the linear predictor x′iβ. We assume that

there exists a latent continuous random variable Yi, such that

Yi = x′iβ + εi, εi ∼ N(0, 1) (3.1)

The correspondence between the Zi′s and the latent variable Yi can be defined as

Zi = j if δj−1 < Yi < δj, j = 1, 2, ..., J, and i = 1, 2, ..., n (3.2)

where the boundaries are unknown and −∞ = δ0 < δ1 < ... < δJ =∞.

6



3.2 Prior Settings

We assume that our prior β follows a Multivariate Normal distribution with hyperparam-

eters β0 and Σ0 i.e. β ∼ MVN(β0,Σ0). For our prior distribution π(δ), we establish a

correspondence between the δ and the Dirichlet distribution via a reasonable transforma-

tion as shown in 3.5. To initialize our delta values for the Gibbs sampling, we randomly

generate values from the uniform distribution according to the number of categories and

sort it in ascending order to ensure the ordering in the cut off points of δ. The estimates

are then computed from the Gibbs sampling after a reasonable number of iterations.

3.2.1 The Dirichlet and the Delta Correspondence

The Dirichlet distribution which we denote Dir(α1, ..., αJ), is parameterized by positive

scalars αj > 0 for j = 1, ..., J, where J ≥ 2. The support of the Dirichlet distribution

is the (J − 1) dimensional simplex SJ ; that is, all J dimensional vectors form a valid

probability distribution. The probability density of p = (p1, ..., pJ) with
∑
pj = 1 is given

by

π(p1, ..., pJ ;α1, ..., αJ) =
Γ(
∑J

j=1 αj)∏J
j=1 Γ(αj)

J∏
j=1

p
αj−1

j (3.3)

The Dirichlet distribution is the multivariate generalization of the beta distribution. It is

often used as the prior distribution in Bayesian inference and it is the conjugate prior of the

categorical distribution and multinomial distribution (Tu, 2014). The relationship between

the Dirichlet and the unknown cut off categories δ is obtained as:

P (δ < δ1) = F (δ1) = p1

P (δ1 < δ < δ2) = F (δ2)− F (δ1) = p2
...

...

P (δJ−1 < δ < δJ) = F (δJ)− F (δJ−1) = pJ

7



We now find a distribution for the δ using the transformation above i.e

πδ(δ) = πp(p)× |Jacobian| (3.4)

π(δ) = fP1,··· ,pJ−1
[F (δ1), F (δ2)− F (δ1), · · · , F (δJ−1)− F (δJ−2)]× |Jacobian|

Jacobian =


∂p1
∂δ1

∂p1
∂δ2

∂p1
∂δ3

· · · ∂p1
∂δJ−1

∂p2
∂δ1

∂p2
∂δ2

∂p2
∂δ3

· · · ∂p2
∂δJ−1

...
...

...
. . .

...

∂pJ−1

∂δ1

∂pJ−1

∂δ2

∂pJ−1

∂δ3
· · · ∂pJ−1

∂δJ−1



Jacobian =



f(δ1) 0 0 0 · · · 0

−f(δ1) f(δ2) 0 0 · · · 0

0 −f(δ2) f(δ3) 0 · · · 0
...

...
...

...
. . .

...

0 0 · · · 0 −f(δJ−2) f(δJ−1)


since the Jacobian matrix is a lower triangular matrix, its determinant is the product of

the diagonals i.e.

|Jacobian| =
∏J−1

j=1 f(δj)

By substituting into the Dirichlet distribution with ignoring the normalizing constant, we

obtain the joint pdf of δ as;

π(δ) = F (δ1)
α1−1[F (δ2)− F (δ1)]

α2−1 × [F (δ3)− F (δ2)]
α3−1

× · · · × [F (δJ−1)− F (δJ−2)]
αJ−1−1 × [1− F (δJ−1)]

αJ−1
J−1∏
j=1

f(δj) (3.5)

3.2.2 Hyperparameter Settings

From the assumption that our prior β follows a Multivariate Normal distribution with

hyperparameters β0 and Σ0 i.e. β ∼ MVN(β0,Σ0). We initialize β0 to be a p × 1 zero

8



vector whereas Σ0 = cI. The value c is somewhat set large to increase the variability in the

prior distribution of β. The choice of F (.) for δ can be any cumulative density function

whose domain lies in (−∞,∞). We choose F (.) from the normal distribution with N(0, 10).

For the shape and scale parameters, we fix the α’s such that α = 1, which makes Beta(1,1)

eventually to be Unif(0,1).

3.3 Posterior Distribution

We perform some Bayesian inference, by updating our prior beliefs with information from

the data to obtain the following posterior distribution

π(β, δ |X,Y ,Z) ∝ L(β, δ |X,Y ,Z)π(β)π(δ) (3.6)

where L(β, δ |X,Y ,Z) =
n∏
i=1

fYi(yi)× I(δj−1 < yi < δj) (3.7)

with Yi|xi ∼ N(xi
′β, 1).

The conditional posterior for β is:

π(β |X,Y ,Z) ∝ L(β, δ |X,Y ,Z)π(β) (3.8)

i.e (β |X,Y ),Z) ∼ N(β̃, Σ̃)

It can be shown that the posterior mean and the posterior variance of β are respectively

β̃ = (X ′X +Σ−1
0 )−1(X ′Y +Σ−1

0 β0) (3.9)

Σ̃ = (X ′X +Σ−1
0 )−1 (3.10)

The conditional posterior for δ is:

π(δ |X,Y ,Z,β) ∝ π(δ)×
n∏
i=1

J∏
j=1

I(δj−1 < yi < δj) (3.11)

Since the distribution has no close form, as a result we compute the conditional distribution

for each of the deltas (δj) so that we can easily sample from it. If we let δ(−j) be the vector

δ without the j′th element, that is

δ(−j) = (δ1, ..., δj−1, δj+1, ..., δJ−1). Then the conditional posterior is:

9



π(δj |X,Y ,Z, δ(−j)) ∝ [F (δj)−F (δj−1)]
αj−1[F (δj+1)−F (δj)]

αj+1−1f(δj)

× I(cj,1 < δj < cj,2), j = 1, 2, ..., J − 1 (3.12)

where cj,1 = max{yi, i = 1, 2, ..., n : zi = j}, cj,2 = min{yi, i = 1, 2, ..., n : zi = j +

1}, withj = 1, 2, ..., J − 1 and notice that F (δ0) = 0 and F (δJ) = 1 i.e F (−∞) =

0 and F (∞) = 1.

It can be shown that conditionally, δj is a random variable whose transformed F (δj) is

distributed as a scaled [F (δj+1)−F (δj−1)] and shifted F (δj−1) Beta(αj, αj+1) truncated at

the interval [F (cj,1), F (cj,2)], i.e

F (δj) ∼ [F (δj+1)− F (δj−1)] Beta(αj, αj+1) + F (δj−1) (3.13)

3.4 Gibbs Sampling Implementation

The logic in Gibbs sampling is to generate posterior samples by sweeping through each

variable to sample from its conditional distribution with the rest of the variables fixed to

their current values.

Given the (k − 1)th step, the Gibbs sampling for the next kth iteration in our case is

implemented as follows:

(Y
(k)
i |β(k−1), δ(k−1)) ∼ N(xi

′β(k−1), 1) with δ
(k−1)
j−1 < Y

(k)
i < δ

(k−1)
j if Zi = j

(β(k)|Y (k), δ(k−1)) ∼ N(β̃(k), Σ̃)

(F (δ
(k)
j )|δ(k)(−j),Y

(k),β(k)) ∼ [F (δ
(k−1)
j+1 )− F (δ

(k)
j−1)] Beta(αj, αj+1) + F (δ

(k)
j−1)

with F (δ
(k)
j ) ∈ [F (cj,1), F (cj,2)]

(3.14)

Where i = 1, 2, ..., N , k = 1, 2, ...,M , and j = 1, 2, ..., J − 1. This process continues

until convergence (i.e. the distribution of the sample values behave as if they were actually

sampled from the true posterior joint distribution). With discarding the immediate samples,

we may compute several parameter estimates from the posterior distribution such as the

10



posterior mean, variance, median and mode may be computed. For instance, we compute

the estimates of the posterior means Ŷ , β̂ and δ̂ for the purpose of our analysis.

3.5 Data Ellipsoid Plots

We visualize the data sets to examine the structural differences existing between the vari-

ables across the various groups. The main idea as in (Dempster, 1969) is that for a

p-dimensional sample, Xn×p, the p × p covariance matrix S can be represented by the

p-dimensional concentration or data ellipsoid, Dc of size (radius) c. This is defined as the

set of all points X satisfying

Dc(X̄,S) = {X : (X − X̄)TS−1(X − X̄) ≤ c2} (3.15)

Clearly, we see from the quadratic form in 3.15 that it corresponds to the set of points

whose squared Mahalanobis distances D2(X) = (X−X̄)TS−1(X−X̄), from the centroid

of the sample, X̄ = (X̄1, X̄2, ..., X̄p), are less or equal to c2. For a multivariate normal

variable, the data ellipsoid approximates a contour with constant density in their joint

distribution. (Friendly et al., 2013) elaborates more on the properties of data ellipsoids

and their use to interpret a wide variety of problems and applications in multivariate linear

models.

The Skull data set provides an example where there exist substantial differences among

the means of groups, but little evidence for heterogeneity of their covariance matrices. Since

the location and variability within groups may be an essential measure for prediction, we

explore to visualize and understand the heterogeneity and the variations in means within

groups of the data.

The covEllipses function in r is used to plot the data set to have a visual display of the

data. This method is useful when looking at the data ellipses for all pairs of variables in a

scatter plot matrix format (Friendly and Sigal, 2018). The data ellipsoid plot for each of

the data set in shown in chapter four.
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3.6 Model Prediction

We now outline different methods to make predictions based on our estimates from the

Bayesian approach. In each case of our prediction, the data set is partitioned into train

and test set, and with the test set, we make predictions for the new X to identify which

category Z it falls through the latent variable Y. In section 3.7, a detailed explanation of

the data partitioning for cross validation is given.

3.6.1 Point Estimate Through the Latent Variable

Various techniques are used in making prediction which yields almost the same result.

Predictions are made by the point estimates of the latent variable using the relation Ŷnew =

x′newβ̂. We determine Ẑnew using:

Ẑnew = j if δ̂j−1 < Ŷnew < δ̂j (3.16)

The Ẑnew is compared to the true Z to calculate the misclassification error rate.

3.6.2 Prediction Via Probabilities

Another method of prediction based on probability is performed. In this scenario, we find

the probability of each Y falling in the estimated intervals based on (δ̂) and obtain the

category which has the maximum probability, i.e.

P (Ẑnew = j) = P (δ̂j−1 < Ŷnew < δ̂j) (3.17)

∴ Ẑnew = argmax
j

P (Ẑnew = j), j = 1, 2, ..., J (3.18)

Using this prediction approach, we compare the predicted Ẑ to the true Z and then report

the misclassification error rate.
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3.6.3 Prediction by Weighted Average

Another form of prediction used very similar to the later i.e (prediction via probabilities)

is by computing the weighted average of Ẑ, where the weights in this case are the indices

of the individual categorical probabilities. This is computed as:

E{Ẑnew} =
J∑
j=1

jpj (3.19)

where P (Ẑnew = j) = P (δ̂j−1 < Ŷnew < δ̂j) = pJ

After which we choose an integer which is most close to E{Ẑ} as our predicted category.

3.7 Data Partitioning for Cross-Validation

To ensure that at least all the samples from within each category has a chance of being used

in training and testing the model; a systematic approach is used to partition the data to

cross-validate the model. For any given data with some number of categories, we randomly

and equally select subsamples from each category and combine it to form the testing set,

and the rest is used as the training set. We choose the next subsamples again from each

group which has not been previously selected and combine it to form the testing set with

the remaining samples forming the training set.

We repeat this partitioning approach until all the samples from each category are ex-

hausted. At each stage of partition, we record the error rate from the prediction. The

average of the error rates is then computed. For instance, in our simulation, we generate

ninety observations which have three categories with thirty samples in each category, five

samples from each category is selected and concatenated to form the testing set and the

rest forms the training set. The partitioning is repeated for the next five samples from each

category and continues until all the samples from each category are exhausted. Similar

partitioning approach is used for the real data. The summary of the results for each of the

data set is shown in chapter four.
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3.8 MCMC Diagnostics

We perform some diagnostics that would help determine how well the Gibbs sampler mixes

and how efficient or reliable our estimates are. There are many ways of which these diag-

nostics may be done. We stick to the use of the trace plots. The trace plot is the simplest

tool for visualizing the convergence of a Markov chain. It gives the plot of the values gen-

erated from the Markov chain versus the iteration number. It also helps to give a visual

idea about the number of samples that must be discarded as burn-in periods in the chain.

It is sometimes said that we are aiming for the trace to look like a hairy caterpillar which

would mean that the parameters of the model explore well in the parameter space.

The autocorrelation is another way to check for convergence between the samples re-

turned by our MCMC. The lag-k autocorrelation is the correlation between every sample

and the sample k steps before. This autocorrelation should become smaller as k increases,

i.e., the samples are considered to be independent. If, on the other hand, autocorrelation

remains high for higher values of k, this indicates a high degree of correlation between our

samples and slow mixing.

14



Chapter 4

Simulation and Real Data

Application

4.1 Introduction

This chapter outlines the procedure adopted in the simulation of the data set. It shows

the MCMC diagnostics of the Gibbs sampler implementation to see how well the model

mixes in the parameter space. It outlines the comparison of the Bayesian method with the

POLR method. The section as well talks about the misclassification error rates from the

cross-validations of each data set.

4.2 Data Simulation

Our simulation is done from the multivariate normal distribution. We simulate two different

data sets. Since we are dealing with ordinal data analysis, we use a different vector of means

to ensure that the simulated data within each category are well separated. The variance-

covariance matrices are set differently from each group using distinct correlation matrices.

The vector of means for the three categories are shown below:

µ1 = [3, 2, 4, 1]′, µ2 = [3,−2, 4,−1]′, µ3 = [−3,−2,−4,−1]′

The variance-covariance matrix used for the simulation is:

Σ = σ2[(1− ρ)I + ρ× 1× 1′]
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where σ = 2, and ρ is the correlation with ρ = (0.1, 0.5, 0.9), I is the identity matrix and 1

is vector of ones. This is basically done to control the variability within each group. For the

purpose of our analysis, we simulate data that consists of four independent variables and a

target or dependent variable which has three categories. Each category has a sub-sample

size of thirty making a total sample size of ninety.

4.2.1 Data Ellipsoid Plot for First Simulated Data

The data ellipsoid plot for the first simulated data is shown below to visualize the structural

differences existing between the variables across the various groups.

X1

1

23

12

3

1
23

12

3

X2

12

3

1
23

12

3

1

23

X3

1
23

12

3

1

23

12

3

X4

Figure 4.1: Data Ellipsoid Plot for First Simulated Data

From the above, we see that the variables are relatively separated from each other with
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the first and second category overlapping each other in all pairs. Thus we should expect

to see a quite low misclassification error rate after prediction with the misclassifications

coming from the first and second categories.

4.2.2 Trace Plots of Parameters from First Simulated Data

The trace plots of the parameters from the posterior distribution of the simulated data are

shown below. It could be seen that the β′s have a quiet good mixing rate as compared to

the δ′s.
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Figure 4.2: Trace Plot of β′s from First Simulated Data
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Figure 4.3: Trace Plot of δ′s from First Simulated Data

4.2.3 Parameter Estimates for First Simulated Data

From our posterior distribution 3.6, we estimate the parameters of the conditional posteriors

i.e. β̂, δ̂, via Gibbs sampling, starting from a set of arbitrary values of parameters and the

estimates of their mean and standard deviations are obtained after a reasonable number of

iterations. The parameter estimates of the simulated data from the last CV iterations of

the Gibbs sampling are shown below.

Parameters β0 β1 β2 β3 β4 δ1 δ2

Estimate -1.0 -0.20 -0.5 -0.14 0.29 -2.32 -0.25

SD 1.42 0.09 0.11 0.07 0.1 1.43 1.41

Table 4.1: Parameter Estimates of First Simulated Data
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4.2.4 Cross Validated Error Rates for First Simulated Data

The cross-validated misclassification error rates for the simulated data is tabulated below.

The reported error rates based on the type of the prediction method adopted, and this

compared to the results from the POLR method.

Prediction Type Error Rate

Point Estimates 0.3

By Probabilities 0.3

By Weighted Average 0.3

POLR Method 0.3

Table 4.2: Cross Validated Misclassifiaction Error Rates for First Simulated Data

The confusion matrix table for the first simulated data of both the Bayesian and the

POLR method is shown below.

Actual 1 2 3

1 19 10 0

Predicted 2 9 18 4

3 2 2 26

Table 4.3: Bayesian Confusion Matrix for

1st Simulated Data

Actual 1 2 3

1 19 10 0

Predicted 2 9 18 4

3 2 2 26

Table 4.4: POLR Confusion Matrix for

1st Simulated Data

4.3 Application to Second Simulated Data

We perform another simulation where we to try make the separation among the variables

within the groups as wide as possible as compared to the first simulation to see how consis-

tent our method compares to the POLR model with respect to the error rates. The vector

of means used this time around is shown below:
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µ1 = [5, 1, 4, 6]′, µ2 = [3,−2,−4,−1]′, µ3 = [−5, 7, 4,−10]′

The variance-covariance matrix is the same as used in the first simulation above. Since our

concern is much of the location and how it affects the error rates for prediction.

4.3.1 Data Ellipsoid Plot for Second Simulated Data

The data ellipsoid plot for the second simulated data is shown below to visualize the

structural differences existing between the variables across the various groups.
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Figure 4.4: Data Ellipsoid Plot for Second Simulated Data

From the above ellipsoid plot, we see that the variables are well separated from each

other as compared to the first simulated data, with a small portion of the first category

overlapping the second category. The third category is much separated from the other two
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groups. As such, we should expect less misclassification error rate as compared to the first

simulated data.

4.3.2 Parameter Estimates for Second Simulated Data

The parameter estimates of the second simulated data from the last CV iterations of the

Gibbs sampling are shown below.

Parameters β0 β1 β2 β3 β4 δ1 δ2

Estimate -2.14 0.17 1.97 -1.35 -2.53 -8.29 15.26

SD 2.31 0.47 0.61 0.48 0.53 2.87 4.11

Table 4.5: Parameter Estimates of Second Simulated Data

4.3.3 Cross-Validated Error Rates for Second Simulated Data

The cross-validated misclassification error rates for the other simulated data is tabulated

below. The reported error rates are based on the type of prediction using the Bayesian

approach and compared to the output from the POLR method. As we expected, the

reported error rates here are less as compared to the first simulated data. This is evidenced

by the data ellipsoid plot in figure (4.4) above which has much separation within groups of

the variables as compared to the first simulated data. The error rate using the Bayesian

method here outperforms the POLR method.

Prediction Type Error Rate

Point Estimates 0.01

By Probabilities 0.01

By Weighted Average 0.01

POLR Method 0.08

Table 4.6: Cross-Validated Misclassifiaction Error Rates for Second Simulated Data
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The confusion matrix table for the second simulated data is shown below

Actual 1 2 3

1 30 1 0

Predicted 2 0 29 0

3 0 0 30

Table 4.7: Bayesian Confusion Matrix for

2nd Simulated Data

Actual 1 2 3

1 28 1 0

Predicted 2 2 27 2

3 0 2 28

Table 4.8: POLR Confusion Matrix for

2nd Simulated Data

4.4 Real Data Application

For the purpose of this work, we apply the analysis to the well-known Iris flower data set

and the measurements of male Egyptian skull data set. These two different data sets are

used due to their differences in their mean and variation structure within their groups.

We shall explore further to see the details of these variations and how it affects the model

prediction.

4.4.1 Iris Data Description

We use the well known Iris flower data set as our benchmark for the analysis. The Iris

flower data is a multivariate data set that was introduced by the British statistician Ronald

Fisher in his work (Fisher, 1936). It is sometimes called Anderson’s Iris data set because

Edgar Anderson collected the data to quantify the morphological variation of Iris flowers

of three related species. Two of which were collected in the Gasp Peninsula ”all from the

same pasture, picked and measured at the same time by the same person with the same

apparatus”(Anderson, 1935). The data set consists of fifty samples from each of three

species of Iris (Iris Setosa, Iris Versicolor and Iris Versicolor). Four features were measured

from each sample: the length and the width of the sepals and petals, in centimeters.
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Figure 4.5: The Three Different Species of Iris Flower

4.4.2 Data Ellipsoid Plot for Iris Data

The data ellipsoid plot for the Iris data is also shown below to visualize the structural

differences existing between the measurements of the parts of the flowers across the various

group of species.
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Figure 4.6: Data Ellipsoid Plot for Iris Data

From the above, we see that the measurements are well separated across the various

species with only a few of the Versicolor and Virginica overlapping in some cases. The

Setosa species is far separated from the other two species. Thus we should expect to see

less misclassification error rate after prediction, with most of the misclassified categories

coming from the Virginica and the Versicolor species.

4.4.3 MCMC Diagnostics for Iris Data

We again make some MCMC diagnostics for the Gibbs sampler on the real (Iris) data using

the trace plot as it was done for the simulated data. We see from the trace plots that the

β′s mix well whereas the δ′s have a slow mixing effect, as the samples from the iterations
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exhibit some serial dependencies.
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Figure 4.7: Trace Plot of β′s from Iris Data
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Figure 4.8: Trace Plot of δ′s from Iris Data

4.4.4 Parameter Estimates of Iris Data

The parameter estimates of the Iris data from the last CV iterations of the Gibbs sampling

are shown below.

Parameters β0 β1 β2 β3 β4 δ1 δ2

Mean -2.0 -1.65 -2.04 -3.78 4.55 -3.24 8.10

SD 2.84 0.86 1.07 1.17 1.70 4.38 4.92

Table 4.9: Parameter Estimates of Iris Data

4.4.5 Cross Validated Error Rates For Iris Data

The cross-validated misclassification error rates for the Iris data is tabulated below. The

reported error rates based on the three types of the predictions from the Bayesian approach
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as well as the POLR method is displayed in the table below.

Prediction Type Error Rate

Point Estimates 0.013

By Probabilities 0.013

By Weighted Average 0.013

POLR Method 0.03

Table 4.10: Cross-Validated Misclassifiaction Error Rates For Iris Data

The summary of the table of confusion matrices for both the Bayesian and the POLR

methods of the Iris data set is shown below, where 1, 2, and 3 represent the Setosa,

Versicolor, and Virginica species respectively.

Actual Species 1 2 3

1 50 0 0

Predicted Species 2 0 48 0

3 0 2 50

Table 4.11: Bayesian Confusion Matrix

for Iris Data

Actual Species 1 2 3

1 50 0 0

Predicted Species 2 0 47 1

3 0 3 49

Table 4.12: POLR Confusion Matrix for

Iris Data

4.5 Skull Data Description

The skull data set was obtained from R embedded in the package ”HSAUR.” The data

consists of four physical measurements in millimeters of 150 male Egyptian skulls from five

epochs (periods) (Thomson and Randall-MacIver, 1905). Period 1 (4000 BC), period 2

(3300 BC), Period 3 (1850 BC), Period 4 (c200BC), and Period 5 (cAD150). The measures

are maximal breadth (mb), basibregmatic height (bh), basialveolar length (bl), and nasal

height (nh) of each skull. Researchers claim that a change in skull measurement is as
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a result of the time duration. Systematic changes over time could indicate interbreeding

among migrant populations (or the influence of other factors). The interest in this analysis,

however, lies in the ability to predict well which period these measurements fall within. The

figure below gives a label for these measurements of a typical skull.

Figure 4.9: A Labelled Male Egyptian Skull

4.5.1 Data Ellipsoid Plot for Skull Data

The data ellipsoid plot for the skull data is also shown below to visualize the structural

differences existing between the measurements of the parts of the skull across the various

group of periods.
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Figure 4.10: Data Ellipsoid Plot for Skull Data

As seen by the data ellipsoid plot above, the measurements of the skull overlap each

other across the various periods with no evidence of separations of their means. The

measurements tend to cluster around a common centroid. In this case, we should expect

to see higher misclassification error rate.

4.5.2 MCMC Diagnostics for Skull Data

As evidenced from the trace plots, the β′s and δ′s mix or explore well in the parameter

space.
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Figure 4.11: Trace Plot of β′s for Skull Data
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Figure 4.12: Trace Plot of δ′s for Skull Data
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Below is the cross-validation misclassification error rates obtained from the skull data.

Prediction Type Error Rate

Point Estimates 0.68

By Probabilities 0.69

By Weighted Average 0.68

POLR Method 0.71

Table 4.13: Cross-Validated Misclassifiaction Error Rates for Skull Data

The confusion matrix table for the skull data set is shown below.

Actual 1 2 3 4 5

1 16 12 3 3 2

2 5 7 5 3 3

Predicted 3 4 6 7 7 5

4 3 3 11 7 9

5 2 2 4 10 11

Table 4.14: Bayesian Confusion Matrix

for Skull Data

Actual 1 2 3 4 5

1 14 13 3 2 2

2 5 6 5 4 3

Predicted 3 5 6 7 8 5

4 3 3 11 6 9

5 2 2 4 10 11

Table 4.15: POLR Confusion Matrix for

Skull Data

The skull data which has less separability in the means of the variables as compared to

the Iris data, yielded a misclassification error rate of 0.68 using the Bayesian approach and

0.71 using the POLR model. The higher error rates for the skull data in both prediction

approach is not surprising as we see from how the measurements overlap each other across

the groups. This justifies the reliability of the model to classify or predict correctly if

the variables are well separated across the given categories. In the skull data set, we

could logically infer that the measurements of these male Egyptian skulls do not change

significantly across the given periods.
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Chapter 5

Summary and Conclusions

5.1 Conclusions

The study aims to use the Bayesian approach to predict ordinal outcomes through some

latent variable, and comparison of the results is made to the well-known Polytomous Ordinal

Logistic Regression model (POLR). As already discussed, the challenge that arises in the

modeling of ordinal data is the estimation of the cutoff point parameters, which links a

continuous latent variable to the ordinal outcomes. The method proposed by (Albert and

Chib, 1993) where they in-cooperated a vague prior on the cutoff parameters has a slow

convergence rate for a large sample size.

The procedure adopted in this work is very similar to that of (Albert and Chib, 1993)

and (Kwon et al., 2007), however, in our case we used an informative prior, and we es-

tablished a correspondence between these cutoff parameters and the ordinal outcomes via

the Dirichlet distribution. We implement the Gibbs sampling to estimate the parameters

from their full conditional posteriors. We then compare the results from our method to the

POLR model. In terms of predictability in this work, our method overall outperforms the

traditional well known POLR model as seen in the various reported misclassification error

rates.
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Appendix A

Derivation of Posterior Mean and Variance of β

From Yi = x′iβ + εi, εi ∼ N(0, 1), Y |X ∼ N(x′iβ, 1) (5.1)

assuming that β ∼MVN(β0,Σ0) and also

β has a normal prior then the posterior is:

π(β |X,Y ,Z) ∝ L(β, δ |X,Y ,Z)π(β) (5.2)

but L(β, δ |X,Y ,Z)π(β) =
n∏
i=1

f(Yi|β) ∝ exp
[
− 1

2

n∑
i=1

(Yi −Xβ)2
]

and our prior

π(β) ∝ exp
[
− 1

2
(β − β0)

′Σ−10 (β− β0)
]

π(β |X,Y ,Z) ∝ exp
[
− 1

2

n∑
i=1

(Yi −X ′β)2
]
× exp

[
− 1

2
(β − β0)

′Σ−10 (β− β0)
]

π(β |X,Y ,Z) ∝ exp
[
− 1

2

n∑
i=1

(yi −X ′β)2 + (β− β0)′Σ−1
0 (β− β0)

]
(A)

using the fact that

n∑
i=1

(Yi −X ′β)2 = (Y −Xβ)′(Y −Xβ) = (Y ′ − β′X ′)(Y −Xβ)

n∑
i=1

(Yi −X ′β)2 = Y ′Y − 2Y ′Xβ + β′X ′Xβ

we pick terms depending on β

n∑
i=1

(Yi −X ′β)2 = −2Y ′Xβ + β′X ′Xβ + constant (B)

(β− β0)′Σ−1
0 (β− β0) = β′Σ−1

0 β − 2β′0Σ
−1
0 β + constant (C)
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substituting (B) and (C) into (A)

π(β |X,Y ,Z) ∝ exp
[
− 1

2

(
− 2Y ′Xβ + β′X ′Xβ + β′Σ−1

0 β − 2β′0Σ
−1
0 β

)]
but β′X ′Xβ + β′Σ−1

0 β = β′(X ′X +Σ−1
0 )β

and − 2Y ′Xβ +−2β′0Σ
−1
0 β = −2(Y ′X + β′0Σ

−1
0 )β

π(β |X,Y ,Z) ∝ exp
[
− 1

2

(
β′(X ′X +Σ−1

0 )β − 2(Y ′X + β′0Σ
−1
0 )β

)]
Comparing the above to the kernel form of the Multivariate Gaussian distribution i.e

(β − β̃)′Σ̃−1(β − β̃)

to get our posterior mean for β i.e. β̃

(β − β̃)′Σ̃−1(β − β̃) = β′Σ̃−1β − 2β̃′Σ̃−1β + constant

Comparing the above Kernel to the that of the posterior of β, we see that:

β′(X ′X +Σ−1
0 )β = β′Σ̃−1β

⇒ Σ̃ = (X ′X +Σ−1
0 )−1

Thus the posterior variance is:

Σ̃ = (X ′X +Σ−1
0 )−1 (5.3)

And also by little algebra we obtain our posterior mean as:

−2(Y ′X + β′0Σ
−1
0 )β = −2β̃′Σ̃−1β

β̃ = [(Y ′X + β′0Σ
−1
0 )Σ̃]′β̃ = [Σ′(Y ′X + β′0Σ

−1
0 )′]

β̃ = [(X ′X +Σ−1
0 )−1(X ′Y +Σ−1

0 β0)]

Since the posterior variance i.e.

Σ̃ = (X ′X +Σ−1
0 )−1
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Then by substitution, the posterior mean is thus:

β̃ = [Σ̃(X ′Y +Σ−1
0 β0)] (5.4)

Proof of (3.13)

Let w be the random variable and we want to show that:

w =
F (δj)− F (δj−1)

F (δj+1)− F (δj−1)
∼ Beta(αj, αj+1), truncated at w1 < w < w2 (5.5)

let F (δj−1) = a, and F (δj+1) = b,

then w =
F (δj)− a
b− a

∼ Beta(αj, αj+1)

F (δj) = (b− a)w + a, =⇒ δj = F−1[(b− a)w + a] (5.6)

we want a distribution in terms of w , by transformation

fW (w) = πδ(δj)×
∂δj
∂w

= πδ(F
−1((b− a)w + a))× ∂δj

∂w
(5.7)

but from (3.12),

πδ(F
−1((b− a)w + a)) = [F (δj)− a]αj−1[b− F (δj)]

αj+1−1f(δj)

substituting F (δj) = (b− a)w + a into the above,

πδ(F
−1((b− a)w + a)) = [(b− a)w + a− a]αj−1 × [b− (b− a)w − a]αj+1−1f(δj)

πδ(F
−1((b− a)w + a)) = (b− a)αj−1wαj−1(b− a)αj+1−1(1− w)αj+1−1f(δj).

ignoring terms that does not depend on w;

πδ(δj) = πδ(F
−1((b− a)w + a)) ∝ wαj−1(1− w)αj+1−1f(δj) (5.8)
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we now proceed to find
∂δj
∂w

. But since δj = F−1[(b − a)w + a], to avoid the complexity in

computing
∂δj
∂w

, we rather find:

∂δj
∂w

=
1
∂w
∂j

, w =
F (δj)− a
b− a

but
∂w

∂j
=
f(δj)

b− a
, which =⇒ ∂δj

∂w
=
b− a
f(δj)

now substituting (5.8) i.e πδ(δj) and
∂δj
∂w

into (5.7), we have:

fW (w) ∝ wαj−1(1− w)αj+1−1f(δj)×
b− a
f(δj)

∴ fW (w) ∝ wαj−1(1− w)αj+1−1 (5.9)

which looks exactly as the kernel of the beta distribution, hence:

w ∼ Beta(αj, αj+1) (5.10)

with w truncated in the interval

F (δj,1)− F (δj−1)

F (δj+1)− F (δj−1)
≤ w ≤ F (δj,2)− F (δj−1)

F (δj+1)− F (δj−1)
(5.11)
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Appendix B

## Read in the simulated data ##

library(plyr); #library(dplyr)

library(mcmc); library(psycho );#library(tidyverse)

library(mvtnorm)

## Simulating data ###

p=4;J=3; nsub=c(30 ,30 ,30) # Sub sample size for each category

rhovec=c(0.1 ,0.5 ,0.9)

mu=c(3,2,4,1,3,-2,4,-1,-3,-2,-4,-1) # First Simulated data

#mu=c(5,1,4,6,3,-2,-4,-1,-5,7,4,-10) # Second Simulated data

mu=matrix(mu , nrow = J, byrow = T)

Idmat=diag(1,p); onevec=rep(1,p)

sigma = 2

Xmat=vector(mode="numeric",length =0)

set.seed (111)

for (i in 1:J){

cormat = (1-rhovec[i])*Idmat + rhovec[i]*onevec%*%t(onevec)

covmat = sigma ^(2)*cormat

x=rmvnorm(nsub[i],mu[i,],covmat)

u=cbind(x,rep(i,nsub[i]))

Xmat=rbind(Xmat ,u)

}

N=nrow(Xmat)

onescol=as.matrix(rep(1,N)) ## Add a column of ones to the data

Xmat=cbind(onescol ,Xmat)

write.table(Xmat ,"simdata.csv",sep=",",row.names=FALSE)# Save sim data
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Dmat=read.table("C:\\ Users\\ Benard \\ Desktop \\My Proj\\ simdata.csv",

header= T, sep = ",") ## Read in the sim data

########################################################

### Skull Data set implementation

## Read and prepare the Skull data ##

# data(" skulls", package = "HSAUR2 "); skull=skulls

# skull$epoch <- gsub(’c4000BC ’, ’1’, skull$epoch)

# skull$epoch <- gsub(’c3300BC ’, ’2’, skull$epoch)

# skull$epoch <- gsub(’c1850BC ’, ’3’, skull$epoch)

# skull$epoch <- gsub(’c200BC ’, ’4’, skull$epoch)

# skull$epoch <- gsub(’cAD150 ’, ’5’, skull$epoch)

# N=nrow(skull)

# onescol=as.matrix(rep(1,N)) ## Add a column of ones to the data

# skull=cbind(onescol ,skull)

# skull <- skull[,c(" onescol", "mb", "bh", "bl", "nh", "epoch ")]

# attach(skull ); library(plyr)

## Rename the columns

#Dmat=rename(skull ,c(" onescol "="V1","mb"="V2","bh"="V3",

"bl"="V4","nh"="V5","epoch"="V6"))

#Dmat$V6=as.numeric(Dmat$V6)

#J=length(unique(Dmat$V6))

##########################################################

#Use the codes below as begining loop for CV for each data type

### For Simulated Data

#Nrow=5 # Number of rows to pick from each category of sim data

#for (h in 1:6){

# nr=Nrow*(h-1)+1
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#rownum=c(nr:(nr+4),(nr +30):( nr+34),(nr +60):( nr+64))

##=======================================================#

# For Skull Data

#Nrow=5 # Number of rows to pick from each category

#for (h in 1:6){

#nr=Nrow*(h-1)+1

#rownum=c(nr:(nr+4),(nr +30):( nr+34),(nr +60):( nr+64),(nr +90):( nr+94),

#(nr +120):( nr +124))

##===================================================##

################################################################

# Posterior sampling and Prediction

# Start the clock!

ptm <- proc.time()

# Empty vectors to store the Error rates from Cross Validation

point.est.errorvec=vector(mode="numeric",length =0)

prob.pred.errorvec=vector(mode="numeric",length =0)

weight.pred.errorvec=vector(mode="numeric",length =0)

Smat.point = matrix(0,J,J)

Smat.prob = matrix(0,J,J)

Smat.Weight.Average = matrix(0,J,J)

# For Simulated Data

Nrow=5 # Number of rows to pick from each category of sim data

for (h in 1:6){

nr=Nrow*(h -1)+1

rownum=c(nr:(nr+4),(nr +30):( nr+34) ,(nr +60):( nr +64))

test=Dmat[rownum ,]
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train=Dmat[-rownum ,]

# Gibbs Sampling/Sampling from the Posterior #

library(tmvtnorm ); library(sandwich ); library(gmm); library(Matrix)

library(evd); library(truncdist ); library(stats4)

library(truncnorm ); library(MASS)

N=nrow(Dmat);P=ncol(Dmat)-1; #number of covariates

including ones in the first column.

Z=train[,P+1] # Response variable of training data

X = train[,-(P+1)]; X=as.matrix(X)

truez=test[,(P+1)]

xnew=test[,-(P+1)];# removing Z cloumn from the test data

xnew=as.matrix(xnew) # New data to be used for testing.

N1=nrow(X) # total sample size of training data

J=length(unique(Z)) #number of categories

# Initial value settings for Y i.e. Y|X ~ N(X’B,1) #

set.seed (12111)

betasd =1

Beta=rnorm(P, mean = 0, sd = betasd) # Initial values for Beta (B)

#Initial values of delta#

set.seed (1211)

deltavec=runif(J-1,-20,20); deltavec=sort(deltavec)

deltavec=c(-Inf ,deltavec ,Inf)

alphavec=rep(1,J) # shape and scale parameters of trunc Beta.

stdnorm= 10 # SD value for finding CDF of the delta posterior.

### Set empty vectors to store results ##

ymat=vector(mode="numeric",length =0)

betamat=vector(mode="numeric",length =0)

deltamat=vector(mode="numeric",length =0)

#### Prior information for beta ###

c=10
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sigma_not = c*diag(P); beta_not = rep(0, P)

beta_not = as.matrix(beta_not)

Inv_sigma_not = solve(sigma_not)

###Gibbs Sampling #######

#=======================================================#

set.seed (1111); niter =10000; burning =2000

for (i in 1: niter){

L1=deltavec[Z];L2=deltavec[Z+1] #lower/upper truncation intervals.

ymean=X%*%Beta ## Mean of Y|X

y=rtruncnorm(N1, a=L1, b= L2, mean = ymean , sd = 1)

y=as.matrix(y)

ymat=cbind(ymat ,y)

# Generating samples from posterior dist. of Beta|data

post_var = solve(t(X)%*%X + Inv_sigma_not)

post_mean = post_var%*%(t(X)%*%y +Inv_sigma_not%*%beta_not)

Beta=rmvnorm(1,post_mean , post_var)

Beta=t(Beta)

betamat = cbind(betamat ,Beta)

###### Sampling for the delta ’s#######

for (j in 1: (J -1)){

ycat1=y[Z==j];c1=max(ycat1 );ycat2=y[Z==j+1];c2=min(ycat2)

a=pnorm(deltavec[j],mean=0,stdnorm)

b=pnorm(deltavec[j+2],mean=0,stdnorm)

w1=( pnorm(c1 ,0,stdnorm)-a)/(b-a)

w2=( pnorm(c2 ,0,stdnorm)-a)/(b-a)

w=rtrunc(1,spec="beta",shape1=alphavec[j],

shape2=alphavec[j+1],a=w1 ,b=w2)

deltavec[j+1]= qnorm ((b-a)*w+a, mean=0,stdnorm)

}
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deltamat=cbind(deltamat ,deltavec)

}

#Diagnostic Plots for determinning Burn -in periods of Beta#

#===========================================================#

par(mfrow=c(3,2))

for (k in 1:P){

plot(betamat[k,],type="l", xlab="Iterations",

col="blue",main = paste("Beta", k-1))

}

#Diagnostic Plots for determinning Burn -in periods of delta#

#============================================================#

par(mfrow=c(2,2))

for (j in 1:(J -1)){

plot(deltamat[j+1,],type="l",

xlab="Iterations",col="blue",main = paste("Delta", j))

}

###### Estimates for simulated Y ######

##Estimation of Parameters ##

##========================================##

### Y estimates after discarding first burn -in periods

yhat.mean = apply(ymat[,-c(1: burning)], 1, mean)

yhat.sd = apply(ymat[,-c(1: burning)], 1, sd)

### Beta estimates after discarding first burn -in periods ##

betahat.mean=apply(betamat[,-c(1: burning)], 1, mean)

betahat.sd=apply(betamat[,-c(1: burning)], 1, sd)

### Delta estimates after discarding first burn -in periods ##

deltamat=deltamat[c(2:J),]

deltahat.mean=apply(deltamat[,-c(1: burning)], 1, mean)

deltahat.sd=apply(deltamat[,-c(1: burning)], 1, sd)
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#### ACF plots to determine model mixing and convergence

#======================================================#

# ACF plots of Beta

#betamat.burn=betamat[,-c(1: burning )]

par(mfrow=c(3,2))

for (k in 1:P){

acf(betamat[k,], xlab="Lag",col="blue",

main = paste("acf of Beta", k-1))

}

# ACF plots of Delta

#deltamat.burn=deltamat[,-c(1: burning )]

par(mfrow=c(2,2))

for (j in 1:(J -1)){

acf(deltamat[j,], xlab="Lag",col="blue",

main = paste("ACF of Delta", j))

}

################### Predictions ########################

# (1) Prediction using the latent variable Y=XB #####

# i. Prediction Method 1, using Beta as estimates from gibbs.

yhatvec=xnew%*%betahat.mean

yhatvec=as.vector(yhatvec) # Point Estimates of Y based on Xnew

### This code will identify which category y falls in.

zhatpred=vector(mode="numeric",length =0)

deltahatvec=c(-Inf ,deltahat.mean ,Inf)

for (k in 1: length(yhatvec )){

yhat=yhatvec[k];

zhat=which(yhat <= deltahatvec )[1] -1;

zhatpred=cbind(zhatpred ,zhat)
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}

length(zhatpred)

# Confusion matrix for finding missclassification error rate

confmat=table(zhatpred ,truez);

Smat.point=Smat.point+confmat

point.est.error =1-sum(diag(confmat ))/sum(confmat)

point.est.errorvec=cbind(point.est.errorvec ,point.est.error)

#### Prediction Via Probability .###

ynew=xnew%*%betahat.mean ;ynew=as.vector(ynew) ## Y|X ~ N(X’B,1)

## The code below gives the prob of each y_{i} falling in each of

#the category and obtain the category with the maximum probability.

deltahatvec=c(-Inf ,deltahat.mean ,Inf)

yprobvec=vector(mode="numeric",length =0)

for (k in 1: length(ynew)) {

yprob=pnorm(deltahatvec ,mean=ynew[k],sd=1)

yprob=diff(yprob)

yprobvec=rbind(yprobvec ,yprob)

}

library(ramify)

zpred=argmax(yprobvec ,rows=TRUE)

confmatrix=table(zpred ,truez );

Smat.prob = Smat.prob+confmatrix

prob.error =1-sum(diag(confmatrix ))/sum(confmatrix)

prob.pred.errorvec = cbind(prob.pred.errorvec ,prob.error)

### Prediction by finding the weighted average of the predicted Z

catvec=seq (1:J) ## Vector of categorical values

zbarpred=round(yprobvec%*%catvec)

confmat1= table(zbarpred , truez ); #confmat1 ## Confusion matrix

Smat.Weight.Average = Smat.Weight.Average + confmat1
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pred.weight.err= 1-sum(diag(confmat1 ))/sum(confmat1)

weight.pred.errorvec = cbind(weight.pred.errorvec ,pred.weight.err)

}

# Stop the clock

proc.time() - ptm ## Calculate time for Gibbs sampling

point.est.errorvec;prob.pred.errorvec;weight.pred.errorvec

## Overall average error rates from the predictions

Error.Point=mean(point.est.errorvec)

Error.Prob=mean(prob.pred.errorvec)

Error.weighted=mean(weight.pred.errorvec)

Predicted_Error_rates=cbind(Error.Point ,Error.Prob ,Error.weighted)

Predicted_Error_rates

## Misclassification Tables

Smat.point; Smat.prob; Smat.Weight.Average

#========================================================#

### R Codes For Implementing the POLR Model #####

## Simulating Data ###

p=4;J=3; nsub=c(30 ,30 ,30) # Sub sample size for each category

rhovec=c(0.1 ,0.5 ,0.9 ,0.2)

mu=c(3,2,4,1,3,-2,4,-1,-3,-2,-4,-1) # First sim data

#mu=c(5,1,4,6,3,-2,-4,-1,-5,7,4,-10) # Second sim data

mu=matrix(mu , nrow = J, byrow = T)

Idmat=diag(1,p); onevec=rep(1,p)

sigma = 2

Xmat=vector(mode="numeric",length =0)

set.seed (111)

for (i in 1:J){

cormat = (1-rhovec[i])*Idmat + rhovec[i]*onevec%*%t(onevec)

covmat = sigma ^(2)*cormat
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x=rmvnorm(nsub[i],mu[i,],covmat)

u=cbind(x,rep(i,nsub[i]))

Xmat=rbind(Xmat ,u)

}

#N=nrow(Xmat) ## Ones column not needed for POLR

write.table(Xmat ,"simdata_POLR.csv",sep=",",row.names=FALSE)

Dmat=read.table("C:\\ Users\\ Benard \\ Desktop \\My Proj

\\ simdata_POLR.csv", header= T, sep = ",") ## Read in the sim data

###########################################################

### Skull Data set implementation

## Read in the Skull data ##

data("skulls", package = "HSAUR2"); skull=skulls

skull$epoch <- gsub(’c4000BC ’, ’1’, skull$epoch)

skull$epoch <- gsub(’c3300BC ’, ’2’, skull$epoch)

skull$epoch <- gsub(’c1850BC ’, ’3’, skull$epoch)

skull$epoch <- gsub(’c200BC ’, ’4’, skull$epoch)

skull$epoch <- gsub(’cAD150 ’, ’5’, skull$epoch)

skull <- skull[,c("mb", "bh", "bl", "nh", "epoch")]

attach(skull); library(plyr)

## Rename the columns

Dmat=rename(skull ,c("mb"="V1","bh"="V2","bl"="V3",

"nh"="V4","epoch"="V5"))

## POLR R code For Simulated

Dmat$V5<-as.ordered(Dmat$V5)

logistic.errvec=vector(mode="numeric",length =0)

Smat1 = matrix(0,J,J)

set.seed (111)

START=runif (6,1,2)

Nrow=5 # Number of rows to pick from each category at a time

for (h in 1:6){
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nr=Nrow*(h -1)+1

rownum=c(nr:(nr+4),(nr +30):( nr+34) ,(nr +60):( nr +64))

test=Dmat[rownum ,]

train=Dmat[-rownum ,]

model <- polr(V5~ V1+V2+V3+V4,start=START ,train , Hess = T)

#summary(model)

# Prediction with test data

pred <- predict(model , test)

## Confusion Matrix for Test Data

Conf_Mat <- table(Predicted=pred , Actual= test$V5); #Conf_Mat

Smat1 = Smat1 + Conf_Mat

## Misclassification Error for the Test Data

APER <- 1-sum(diag(Conf_Mat))/sum(Conf_Mat)

logistic.errvec=cbind(logistic.errvec ,APER)

}

Smat1

mean(logistic.errvec)

# POLR R code For Skull

##############################################################

Dmat$V5<-as.ordered(Dmat$V5)

logistic.errvec=vector(mode="numeric",length =0)

Smat2 = matrix (0,5,5)

Nrow=5 # Number of rows to pick from each category

for (h in 1:6){nr=Nrow*(h -1)+1

rownum=c(nr:(nr+4),(nr +30):( nr+34),

(nr +60):( nr+64) ,(nr +90):( nr+94),(nr +120):( nr +124))

test=Dmat[rownum ,]

train=Dmat[-rownum ,]
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model <- polr(V5~ V1+V2+V3+V4,train , Hess = T)

#summary(model)

# Prediction with test data

pred <- predict(model , test)

## Confusion Matrix for Test Data

Conf_Mat1 <- table(Predicted=pred , Actual= test$V5)

Smat2 = Smat2 + Conf_Mat1

## Misclassification Error for the Test Data

APER <- 1-sum(diag(Conf_Mat1))/sum(Conf_Mat1)

logistic.errvec=cbind(logistic.errvec ,APER)

}

Smat2

mean(logistic.errvec)

#########################################################

### Iris data set implementation

data("iris") ### Pull in the iris dataset

iris$Species <- gsub(’setosa ’, ’1’, iris$Species)

iris$Species <- gsub(’versicolor ’, ’2’, iris$Species)

iris$Species <- gsub(’virginica ’, ’3’, iris$Species)

iris$Species = as.numeric(iris$Species)

## Rename the columns

Dmat=rename(iris ,c("Sepal.Length"="V1","Sepal.Width"="V2",

"Petal.Length"="V3", "Petal.Width"="V4","Species" ="V5"))

Dmat$V5<-as.ordered(Dmat$V5)

logistic.errvec=vector(mode="numeric",length =0)

Smat3 = matrix(0,J,J)

set.seed (111)

START=runif (6,1,2)

Nrow =10 # Number of rows to pick from each category at a time

for (h in 1:5){
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nr=Nrow*(h -1)+1

rownum=c(nr:(nr+9),(nr +50):( nr+59) ,(nr +100):( nr +109))

test=Dmat[rownum ,]

train=Dmat[-rownum ,]

library(MASS)

model <- polr(V5~ V1+V2+V3+V4,train ,start=START ,Hess = T)

#summary(model)

# Prediction with test data

pred <- predict(model , test)

## Confusion Matrix for Test Data

Conf_Mat3 <- table(Predicted=pred , Actual= test$V5)

Smat3 = Smat3 + Conf_Mat3

## Misclassification Error for the Test Data

APER <- 1-sum(diag(Conf_Mat3))/sum(Conf_Mat3)

logistic.errvec=cbind(logistic.errvec ,APER)

}

Smat3

mean(logistic.errvec)

#########################################################

### Data Ellipsoid Plots #####

library(biotools ); library(heplots)

## Simulated Data

sim_data=read.table("C:\\ Users\\ Benard \\ Desktop

\\ MyProj \\ simdata.csv",header=T,sep = ",")

sim_data$V1 = NULL ## Remove col of ones

colnames(sim_data)<-c("X1","X2","X3","X4","Z")

simdata.boxm <- boxM(sim_data[, 1:4], sim_data[, "Z"])

## Skull Data

data("skulls", package = "HSAUR2"); skull=skulls
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skull$epoch <- gsub(’c4000BC ’, ’1’, skull$epoch)

skull$epoch <- gsub(’c3300BC ’, ’2’, skull$epoch)

skull$epoch <- gsub(’c1850BC ’, ’3’, skull$epoch)

skull$epoch <- gsub(’c200BC ’, ’4’, skull$epoch)

skull$epoch <- gsub(’cAD150 ’, ’5’, skull$epoch)

attach(skull); library(plyr)

## Rename the columns

colnames(skull)<-c("period","mb","bh","bl","nh")

## Iris Data

data(iris)

colnames(iris)<-c("Sep.L","Sep.W","Pet.L","Pet.W","Species")

#### CovEllipse Plot

covEllipses(sim_data[,1:4],sim_data$Z,fill=c(rep(FALSE ,3), TRUE),

center.cex=0,pooled = F, variables =1:4, fill.alpha =.1)

covEllipses(skull[, 2:5], skull$period ,pooled=FALSE ,

center.cex=0, variables =1:4, fill.alpha=.1,

heplot.colors =c("red", "blue", "black", "green", "magenta"))

covEllipses(iris[,1:4], iris$Species ,fill=c(rep(FALSE ,3),TRUE),

center.cex=0,pooled = F,variables =1:4, fill.alpha =.1)
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