University of Texas at El Paso ScholarWorks@UTEP

Open Access Theses & Dissertations

2020-01-01

A Performance-Based Analysis Of Balanced Mix Designs

Elias Aaron Castillo University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

Part of the Civil Engineering Commons

Recommended Citation

Castillo, Elias Aaron, "A Performance-Based Analysis Of Balanced Mix Designs" (2020). *Open Access Theses & Dissertations*. 3086. https://scholarworks.utep.edu/open_etd/3086

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org administrator of ScholarWorks@UTEP.

A PERFORMANCE-BASED ANALYSIS

OF BALANCED MIX DESIGNS

ELIAS AARON CASTILLO

Master's Program in Civil Engineering

APPROVED:

Soheil Nazarian, PhD., Chair

Imad Abdallah, PhD.

Chintalapalle Ramana, PhD.

Stephen L. Crites, Jr., Ph.D. Dean of the Graduate School

Dedication

I dedicate this thesis work to my parents, Jesus Castillo and Laura Solis. Their teachings and sacrifices have taught me to work hard to achieve everything I aspire.

A PERFORMANCE-BASED ANALYSIS OF

BALANCED MIX DESIGNS

by

ELIAS CASTILLO, BSCE

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Civil Engineering

THE UNIVERSITY OF TEXAS AT EL PASO

May 2020

Acknowledgements

First and above all, I thank God for allowing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people whom I would like to offer my sincere gratitude. I would like to express my gratitude to Dr. Soheil Nazarian and Dr. Imad Abdallah for their vital guidance and mentorship during my graduate course at the Center for Transportation Infrastructure Systems (CTIS). They gave me the opportunity to join the research team at CTIS and acquire research experience and opportunities that cemented my passion for pavement engineering. I greatly appreciate them for allowing me the opportunity to work on TxDOT Project 5-6815-01 upon which this thesis work is founded on. I would like to extend my gratitude to the Texas Department of Transportation (TxDOT) - Flexible Pavement Branch for their support during the research work performed under this project. Further, I would like to express my appreciation to Dr. Soheil Nazarian, Dr. Imad Abdallah, and Dr. Ramana Chintalapalle for serving as committee members for this thesis defense, and for their valuable feedback and support. I am eternally grateful to my supervisor Victor M. Garcia for his support and help, his advice and encouragement helped me develop as an engineer and researcher. His guidance was essential on my formation and his passion for pavement engineering drove me to pursue my master's. My gratitude is also extended to the research assistants from CTIS, Carlos Anguiano, Luis Cordoba, Esteban Fierro, Juan Galvan, Monica Santillana, Jose Luis Lugo, Miguel Perez Elias Valdez, Alexis Ortega, and Denis Vieira who helped to produce the data and conduct the test methods. I warmly thank and profoundly appreciate the unconditional love and continuous encouragement of Maribel Herrera. I would also thank my sister Elisa Castillo for all the support and inspiration throughout this time. This accomplishment would not have been possible without them.

Abstract

The Superpave design procedure was established to provide a more representative design methodology and to minimize typical pavement distresses such as fatigue cracking and permanent deformation. This Superpave design methodology was developed on the premise that the voids in mineral aggregate can evaluate the quality and constructability of asphalt mixture during the design and production phases. With the increased use of recycled materials, recycling agents, modified binders and warm mix asphalt additives, several highway agencies including the Texas Department of Transportation (TxDOT), have investigated whether the Superpave volumetric-based design method is enough to ensure appropriate performance of the final product.

This thesis study presents an investigation of several performance tests that can be used for performance-based laboratory characterization of asphalt mixtures. Performance tests are needed at different stages including the design and field production phases. Three cracking performance tests (Overlay Test, Semi-Circular Bending I-FIT Test, and Indirect Tension Test), and two permanent deformation performance tests (Hamburg Wheel Tracking Test and Flow Number) were evaluated to select the most reliable and practical alternatives. Different performance indices were assessed to select the indices that better characterize the behavior of a mixture. Several asphalt mixtures were tested to investigate the influence of fundamental mix design variables such as the aggregate gradation, performance grade of binder, and influence of recycled material content. It was concluded after investigating several performance test methods, that independently of the different design parameters, a proper mixture behavior characterization can be achieved at different stages such as the design process and field production. This assessment can be accomplished throughout a performance-based analysis methodology which includes parameters from the OT, HWT and IDEAL CT test methods.

Acknowledgementsiv
Abstractv
Table of Contents
List of Tables ix
List of Figures x
Chapter 1 – Introduction
1.1 Literature Review
1.2 Thesis Objectives
Organization of Thesis7
Chapter 2 - Research Methodology and Experiment Design
2.1 Candidate Performance Test Methods for Characterizing Balanced Mix Designs9
2.1.1 Performance Tests for Permanent Deformation
2.1.2 Performance Tests for Cracking Susceptibility
2.2 Performance Test for Quality Control during Production of Asphalt Mixtures
2.2.1 Indirect Tension Test (IDT) - TEX-226-F (Similar to ASTM D6931-17)14
2.2.2 IDEAL Cracking Test (CT Index) 14
2.3 Performance Interaction Diagram for Characterization of Balanced Mix Designs 15
2.4 Description of Mix Designs and Pavement Materials for Laboratory Testing
2.4.1 Mixture Properties

Table of Contents

2.4.	2 Laboratory Molded Specimen Preparation Process	17
Chapter 3	3 - Analysis of Results for Design and Quality Control Processes	19
3.1	Performance Tests for Permanent Deformation Characterization	19
3.2	Performance Tests for Cracking Susceptibility Characterization	24
3.3	Performance Based Analysis of Asphalt Mixtures for Production and Quality Control	32
3.4	Performance Interaction Diagram	38
Chapter 4	4 – Evaluating Superpave Mixtures with Performance-Based Analysis Methodology	41
4.1	Influence of Performance Grade of Binder	41
4.1.	1 Conclusions and Recommendations	44
4.2	Influence of Aggregate Gradation	45
4.2.	1 Mix Design Characteristics	45
4.2.	2 Results and Discussion of Balanced Mix Design Analysis	48
4.2.	3 Conclusions and Recommendations	51
4.3	Influence of Recycled Materials	52
4.3.	1 Evaluation of Asphalt Mixtures Containing Different Recycle Material Contents	53
4.3.	2 Understanding Performance of Asphalt Mixes	55
4.3.	3 Summary and Conclusions	57
Chapter :	5: Conclusions and Recommendations	59
5.1	Conclusions	59
5.2	Recommendations	61

References	64
Appendix A – Literature Review	67
Appendix B - Mix Designs and Pavement Materials for Laboratory Testing	72
Appendix C	84
Hamburg Wheel Tracking Test Results	84
Flow Number Results	90
Indirect Tension Test Results	96
Semi-Circular Bending Test I-FIT Results 10	02
Overlay Test Results	08
Vita12	20

List of Tables

Table 2.1- Hamburg Wheel Tracking (HWT) Test Requirements	11
Table 2.2 – Flow Number Requirements	12
Table 2.3 - Mix Design Information and Volumetric Properties	20
Table 3.1 – Summary of HWT and FN Test Results	25
Table 3.2 - Summary of Value and Rank for Permanent Deformation Tests	26
Table 3.3 - Permanent Deformation Tests Key Observations	27
Table 3.4 – Summary of Statistical Parameters from Cracking Test Results	31
Table 3.5 - Summary of Value and Rank for Cracking Tests	34
Table 3.6 - Cracking Susceptibility Tests Key Observations	
Table 3.7 – Candidate IDT Indices	36
Table 3.8 - Variability of Cracking Indices	40
Table 4.1 – Mix Design Properties	45
Table 4.2 - Summary of Results	48
Table 4.3 - Summary of Mix Design Information and Pavement Material Characteristics	51
Table 4.4 - Summary of Results from Performance Tests	56
Table 4.5 – Characteristics of Asphalt Mixtures	57
Table 4.6 – Summary of Test Results for Asphalt Mixtures	60

List of Figures

Figure 1.1 - Stages for Performance Test Methods	14
Figure 2.1 – Analysis Methodology and Parameters for Overlay Test (Garcia, 2016)	19
Figure 2.2 – Main Parameters for Calculation of Flexibility Index (Al-Qadi, 2016)	20
Figure 2.3 - Performance Interaction Diagram for Asphalt Mixtures	23
Figure 3.1 – Comparison of Permanent Deformation Results	28
Figure 3.2 – Permanent Deformation Performance	29
Figure 3.3 – Correlation of Value and Rank of Permanent Deformation Tests	32
Figure 3.4 - Mixture Comparison of Cracking Tests Main Parameters	34
Figure 3.5 – Cracking Resistance Performance	36
Figure 3.6 – Value Correlation of Cracking Tests	38
Figure 3.7 - Rank Correlation of Cracking Tests	39
Figure 3.8 – Indices Derived from IDT Test	43
Figure 3.9 - Normalized Value of Candidate Indices	44
Figure 3.10 – Correlation of IDT Parameters and CPR	45
Figure 3.11 - BMD Performance Interaction Diagram	48
Figure 4.1 - Aggregate Gradation of BMD	51
Figure 4.2 – Performance Tests Results from Influence of Binder PG	52
Figure 4.3 - Performance Interaction Diagram	53
Figure 4.4 - Aggregate gradation for SP C and DG C mix designs	56
Figure 4.5 - Comparison DG vs SP Results	58
Figure 4.6 - Performance Interaction Diagram Influence of Aggregate Gradation	59
Figure 4.7 - Aggregate Gradation for Influence of Recycled Materials	63
Figure 4.8 - Influence of Recycled Material Results	65
Figure 4.9 - Performance Diagram for Balanced Asphalt Mixtures	66

Chapter 1 – Introduction

One of the popular products of the Strategic Highway Research Program (SHRP) is the Superior Performing Asphalt Pavements (Superpave) design system. Superpave design system aims at producing an economical asphalt mixture consisting of adequate voids content in the mineral aggregate skeleton, enough asphalt binder for durability, acceptable workability, and suitable performance characteristics over the service life of the pavement. Superpave was developed to provide a more consistent and representative design methodology and ultimately minimize typical pavement distresses such as permanent deformation, fatigue cracking and low temperature cracking as well as the effects of aging and moisture damage on the long-term performance of the asphalt concrete layer (*Kennedy*, 1994).

The Superpave approach consists of 1) asphalt binder and aggregate selection, 2) blending of the aggregates, and 3) volumetric analysis of specimens compacted using a Superpave gyratory compactor (SGC) (*Witczak, 2002*). To produce consistently lab-molded specimens and analyze their volumetric properties, SGC requires consistent rate of gyration, compaction pressure, and angle of gyration (*Mallik, 1999*). The design of asphalt mixtures is carried out by estimating the voids in mineral aggregates (VMA) among other volumetric parameters (*Kandhal, 1997*).

Superpave was developed for simple mix designs consisting of new mineral aggregates and neat asphalt binders. With the increasing use of more complex asphalt mixtures, which contain recycled materials, recycling agents, modified binders and warm mix asphalt additives, several highway agencies have questioned whether Superpave volumetric-based design method is enough to ensure appropriate performance of the final product (e.g. *Witczak et al., 2002; Valdez et al. 2011*). With the widespread challenge of overcoming major pavement distresses such as fatigue cracking and permanent deformation, Superpave must be complemented with standardized performance-based tests to characterize the laboratory engineering properties of asphalt mixtures. Considering the major pavement distresses, which are permanent deformation and fatigue cracking based on a survey from West et al. (2018), Superpave must consider performance tests to minimize the impact of these pavement distresses. The behavior of asphalt mixtures is dependent on the loading rate, temperature, aging of the binder, and air void content of the asphalt mixture (*Kaloush, 2003*). According to Zhou et al. (2001), fatigue cracking is not only a material problem; it is also associated with the pavement structure and environmental and traffic conditions. While permanent deformation of asphalt mixtures is a critical pavement distress mechanism that typically occurs at elevated temperatures and slow loading rates under the action of heavy traffic (*Weismann et al.*, 1998).

Enhancing the current Superpave method with a performance-based analysis methodology is critical to produce asphalt mixtures that meet the structural requirements for the asphalt concrete layer of a flexible pavement. To complement the research efforts done by many State Highway Agencies (SHA) and research institutions on enhancing the design and production processes for asphalt mixtures, an experimental study with readily available performance test methods was carried out to assess the performance of typical Superpave mixtures. This thesis documents the effectiveness of performance test methods that can be implemented along with Superpave mix design.

1.1 Literature Review

The Superpave was developed to produce more stable and durable asphalt mixtures. Although the Superpave established thorough specifications and guidelines to select the mix design components (e.g. mineral aggregates and asphalt binders) and formulate a mix design, the implementation of performance tests to ensure acceptable mechanical performance was limited due to practical and economic reasons. Incorporating reliable and fundamentally sound performance tests into the current mix design process effectively is a critical step to produce asphalt mixtures with acceptable volumetric and mechanical properties.

Currently, asphalt mixtures are essentially designed through a trial-and-error process until established minimum volumetric requirements have been satisfied. Superpave was developed on the premise that the quality of a mixture is ensured if certain volumetric properties and target laboratory-molded densities are met during the design and production processes (*McDaniel and Levenberg, 2013*). Several studies (*e.g. Witczak et al., 2002; Bhasin, Button and Chowdhury, 2004; Valdes et al., 2011*) have discussed the necessity of implementing performance tests to determine the mechanical properties of asphalt mixtures.

From a mechanical performance perspective, an asphalt mixture must have satisfactory rutting and cracking resistance to perform well in the field (*Zhou et al., 2006*). The permanent deformation of asphalt mixtures was a major issue before the implementation of the Superpave. A recurring problem is the premature cracking of asphalt mixtures, particularly with the wide application of recycled materials, stiff binders and a combination of different additives. The evaluation and implementation of performance tests have been gaining more attention due to the introduction of the balanced mix design (BMD) concept for asphalt mixtures. The main objective of the BMD concept is to achieve the optimum blend of asphalt binder and mineral aggregates, and other components such as recycled materials, modified binders and additives while meeting the acceptance requirements for performance tests for a given level of traffic, climate, and pavement structure (Newcomb, *2018*). Performance testing is fundamental to the practice of a BMD procedure.

Zhou et al. (2007) defined cracking as a two-stage process including crack initiation and crack propagation. Even though many crack performance tests are available, none has been

universally accepted. Zhou et al. (2016) investigated several performance tests to assess their effectiveness, variability of results, simplicity, and correlation to field results. For assessing the cracking resistance a number of tests including the indirect tensile (IDT), overlay (OT), semicircular bending (SCB), disk-shape compact tension (DCT), and four-point bending tests can be used. Only the OT and the four-point bending are considered fatigue cracking tests since they apply repeated loading to the specimens.

Garcia et al. (2016) proposed the use of the OT test for evaluation cracking of mixtures using two parameters: the critical fracture energy to assess the crack initiation, and crack progression rate to assess the propagation of a crack. Several performance tests have been developed to evaluate the brittleness potential of the asphalt mixtures by applying a monotonic load to fracture the asphalt specimen. Huang (2005) studied the semi-circular bending (SCB) test and found that the stress in the center of the specimen corresponded to stress at the bottom of an asphalt layer. Al-Qadi et al. (2016) proposed the flexibility index (FI) derived from the SCB test to characterize the cracking potential of asphalt mixtures.

Kaloush (2003) stated that rutting distress in the field was developed in two phases for an asphalt mixture. The first phase was due to the accumulation of the permanent vertical deformation within the asphalt layer under traffic loads, while the second phase was more critical to the stability of the mixture. Performance test methods for permanent deformation include the flow number (FN) test, asphalt pavement analyzer (APA), and Hamburg wheel-tracking test (HWT). The HWT test is extensively used by many agencies, which records permanent deformation of asphalt mixture specimens with reference to the number of passes of a loaded wheel (Bhasin, 2004). HWT also accounts for moisture damage and measures moisture susceptibility of the asphalt mixture. Please refer to Appendix A for more literature review information.

1.2 Thesis Objectives

This study was carried out to investigate several performance test methods that can be used for laboratory characterization of asphalt mixtures. The main objectives of this study are the following:

- 1. Identify promising performance test methods for the following purposes:
 - a. Lab design process
 - b. Plant production and construction
- 2. Formulate and propose a performance-based analysis methodology
- 3. Evaluate several mixture types to document the effectiveness of the proposed performance-based analysis methodology

Figure 1.1 provides a flow chart of the main stages at which performance test methods were implemented for enhancing the current volumetric based design method. Stage 1 consists of the design of asphalt mixtures based on the performance of the two main distresses assed for a BMD, cracking and permanent deformation. Two different performance tests are investigated in this study. Once the performance of the mixture is deemed acceptable, the second stage of the study was implemented. The first objective of the second stage is to meet the job mix formula (JMF) during the production of the asphalt mixture.

Figure 1.1 – Main Stages for Performance Test Methods

During production a quality control test is used to evaluate the mixture with the actual mixture that is being placed in the field. Different indices are examined in order to discriminate between a well and a poor performing mixture.

With the implementation of reliable and consistent performance test methods, the current volumetric-based design method can be further enhanced to produce asphalt mixtures with acceptable volumetric and mechanical properties.

Organization of Thesis

Chapter 1 consists of a comprehensive review of salient literature on Superpave, introduction of a performance based analysis methodology, and background information on testing protocols used for laboratory evaluation of the performance of asphalt mixtures.

Chapter 2 presents the research methodology and experiment design plan formulated for the selection of performance test methods; assessment of a quality control test used during production of asphalt mixtures and introduces the performance interaction diagram for performance evaluation.

Chapter 3 reports the results from evaluating performance test methods for a performancebased analysis methodology for design and quality control processes. Different alternative test methods for permanent deformation, which includes Hamburg wheel tracking test and flow number test; and cracking potential test methods such as overlay test, and semi-circular bend (SCB) I-FIT test were included in this section. Similarly, an evaluation of different performance indices derived from the IDT test such as CT index, fatigue index, toughness index, cracking resistance index, N_{flex} factor, and fragility index to identify a potential performance index for characterization of an asphalt mixture during production. Chapter 4 documents the application of the performance based analysis methodology on three case studies that focus on the influence of aggregate gradation, influence of performance grade of binder, and influence of recycled materials.

Chapter 5 summarizes key findings and conclusions of the study and enlightens the thesis contribution and importance of implementing a performance-based analysis methodology to meet structural requirements for balanced mix designs.

Chapter 2 - Research Methodology and Experiment Design

2.1 Candidate Performance Test Methods for Characterizing Balanced Mix Designs

With the rapid development of BMD concept for asphalt mixtures, the use of fundamental cracking and rutting performance tests is essential. A comprehensive evaluation and understanding of available promising performance test methods, specifically a cracking and rutting test, is paramount to formulate properly and implement robustly a performance-based process into the current volumetric-based design process.

2.1.1 Performance Tests for Permanent Deformation

The permanent deformation characteristics of the asphalt mixtures were estimated using the HWT and FN tests. A brief description of the test procedures is presented next.

Hamburg Wheel Tracking Test - *TEX-242-F* (Similar to ASTM WK64299). This test determines the rutting resistance of asphalt mixtures due to weakness in the aggregate structure, inadequate binder stiffness, and moisture susceptibility. The HWT test requires a steel wheel with a diameter of 8 in. to apply a load of 158 ± 5 lb. The equipment must be capable of doing 52 ± 2 passes/min across the test specimen. Two sets of cylindrical lab-molded specimens or filed cores are required to perform the test. The HWT test is terminated when a rut depth of 12.5 mm is reached or until a a maximum of 20,000 passes are completed. Table 2.1 summarizes the TxDOT rutting requirements from the HWT tests. In addition to the traditional data analysis, the rutting resistance index (RRI) proposed by Wu et al. (2017) was included in this evaluation. RRI is calculated from

$$RRI=N \times (1 - RD) \tag{1}$$

where N is the number of passes and RD is the rut depth (in.).

The minimum RRI value corresponding to the minimum number of passes for a given performance grade (PG) asphalt binder is also shown in Table 2.1. For convenience in comparing the rutting performance of mix designs with different binder PGs, RRI is normalized with respect to the minimum RRI. Equation 2 was followed to calculate the normalized RRI (NRRI). A NRRI of unity or greater signifies an acceptable mix in terms of rutting, which simplifies the analysis of the HWT test data.

$$NRRI = \frac{Actual \, RRI}{Minimum \, RRI \, for \, Specified \, PG}$$
(2)

High-Temperature Binder Performance Grade	Minimum Number of Passes	Minimum RRI
PG 64 or Lower	10,000	5,100
PG 70	15,000	7,600
PG 76 or Higher	20,000	10,100

Table 2.1- Hamburg Wheel Tracking (HWT) Test Requirements

Flow Number Test - AASHTO T 378. The flow number (FN) test is conducted in a load-controlled mode at a temperature of 130 °F (54.4 °C), in which the specimen is subjected to a repeated compressive load pulse of 0.1 s every 1.0 s. While the FN test provides parameters such as total number of cycles, resilient strain and resilient deformation, the flow number is the main output parameter. The FN parameter is defined as the cycle corresponding to the minimum rate of change of permanent axial strain during a repeated-load test. In other words, the FN represents the cycle number at which the asphalt specimen loses its stability and deforms abruptly due to a single load application. The resulting permanent axial strains are measured as a function of cycles. Table 2 summarizes the FN test requirements for asphalt mixtures. From AASHTO T 378-17 standards, three thresholds based on the design traffic level are used to characterize the FN test.

Table 2.2 –	Flow	Number	Rec	luirem	ents
--------------------	------	--------	-----	--------	------

Traffic level, million ESALs	HMA Minimum Flow Number
< 3	_
3 to < 10	50
10 to < 30	190

2.1.2 Performance Tests for Cracking Susceptibility

<u>Overlay Tester Test - TEX-248-F (Similar to ASTM WK26816).</u> The OT test is used to determine the susceptibility of asphalt mixtures to fatigue or reflective cracking. The OT test is conducted in a displacement control mode at 77°F (25°C) with a triangular waveform at loading rate of one cycle per 10 sec. The OT specimens are prepared in accordance with test procedure Tex-241-F (ASTM D6925-15) to a target air void content of $7\pm 1.0\%$. (Garcia et al., 2016) proposed a twoparameter approach, using the critical fracture energy (CFE) and crack progression rate (CPR), to interpret the OT test data. Figure 2.1 displays the calculations of the CFE and CPR parameters obtained from the OT test. Figure 2.1a shows the load-displacement behavior of an OT test, the calculation of the maximum load and work of fracture of the specimen tested. Figure 2.1b represents the calculation of CPR parameter with a power equation fitted into the load reduction curve. Generally, a CPR of 0.45 is recommended and was used in this evaluation to assess the cracking performance of the asphalt mixtures.

Figure 2.1 – Analysis Methodology and Parameters for Overlay Test (Garcia, 2016) <u>Semi-Circular Bend Test – (AASHTO TP 124).</u> The SCB I-FIT test is performed to estimate the resistance of an asphalt mixture to cracking with an assessment of the flexibility index (FI) proposed by Al-Qadi et. al. (2016). A semi-circular specimen is loaded monotonically under a constant rate of deformation at of 2 in./min (50 mm/min) in a three-point bending load configuration until fracture failure occur at a testing temperature of 77°F (25°C). The SCB I-FIT specimen contains a 0.59 in. (15 mm) notch at the center of the specimen.

The applied displacement and acquired load time histories are measured during the test to plot the load versus displacement response curve, similar to Figure 2.2. That figure also presents the typical parameters computed from the SCB I-FIT test. The FI from the SCB I-FIT test can be calculated from

$$FI = A x \frac{G_f}{abs(m)}$$
(3)

where, A is a unit conversion factor and scaling coefficient taken as 0.01, G_f represents the fracture energy in J/m² (N/m), and m is the slope after peak load in kN/mm (lbs./in.).

Figure 2.2 – Main Parameters for Calculation of Flexibility Index (Al-Qadi, 2016)

2.2 Performance Test for Quality Control during Production of Asphalt Mixtures

During the production of asphalt mixtures, a quality control test must be performed to assess the mixture, and make sure the JMF is met. The idea of having a quality control test to assess an asphalt mixture is to rapidly identify if a mixture is adequately performing as expected in the design stage. A simple test such as the IDT is a good candidate test to be performed at this stage. Several variations of this test, such as the IDEAL CT test, are available and are examined as options for the quality control parameter. Similarly, different indices have been proposed to evaluate a mixture after being tested in the IDT.

2.2.1 Indirect Tension Test (IDT) - TEX-226-F (Similar to ASTM D6931-17)

The IDT test is performed on specimens with a 5.9-in. (150-mm) diameter, and a 2.4 \pm 0.1 in. (75 \pm 2 mm) height. The specimens are produced with a target density of 93 \pm 1%. The specimens are tested under a monotonic load of 2 in./min (50 mm/min) at a temperature of 77 \pm 2°F (25 \pm 1°C). The primary outcome of the IDT test is the indirect tensile strength (ITS) of the mixtures, with a minimum acceptance limit of 85 psi (600 kPa) and a maximum allowable strength of 200 psi (1400 kPa), which can be calculated following:

$$S_t = \frac{2P}{\pi(HD)} \tag{4}$$

where, S_t represents the indirect tensile strength in psi (kPa), P is the maximum load at failure in lb (kN), and H and D are the height and diameter of the specimen in in. (mm.), respectively.

2.2.2 IDEAL Cracking Test (CT Index)

Recent development of the IDEAL-CT Index was proposed in which the test similar to the typical indirect tensile strength test at a loading rate of 2 in./min. (50 mm/min; Zhou et al. 2017). The parameters used for the calculation of this index are fracture energy, and post-peak slope:

$$CT_{Index} = \frac{t}{2.4} \times \frac{l_{75}}{D} \times \frac{G_f}{|m_{75}|} \times 10^6$$
(5)

where CT Index = Cracking tolerance index normalized to 2.4 in. thick specimen, G_f = Failure energy, lb./in., $|m_{75}|$ = Absolute value of the post-peak slope m_{75} , lb./in., l_{75} = Displacement at 75% the peak load after the peak, in., h = Thickness of specimen, in., D = Diameter of specimen, in.

2.3 Performance Interaction Diagram for Characterization of Balanced Mix Designs

Since the BMD concept should consider multiple mechanical properties for designing an asphalt mixture, a performance interaction diagram that considers the main parameters from the selected performance tests (e.g. cracking and rutting parameters) should be formulated. A three-dimensional performance interaction diagram is used in this study to analyze the cracking susceptibility and rutting potentials during the design process, and brittleness during the production process. The concept of the performance interaction diagram for design and production of asphalt mixtures is shown in Figure 2.3. The acceptance limits associated with the selected performance parameters for the design process are also shown in the graph.

Figure 2.3 - Performance Interaction Diagram for Asphalt Mixtures

From the performance interaction diagram, the asphalt mixtures at OAC can be preliminarily divided into the following four general categories:

- Quadrant 1: passes both rutting and cracking requirements, as expected from a BMD.
- Quadrant 2: passes only the rutting requirements.
- Quadrant 3: passes the cracking requirements.

• Quadrant 4: fails both cracking and rutting requirements.

In addition, the minimum quality control (QC) acceptance limit for the asphalt mixtures during production is shown as a data label for each mix design evaluated on the performance interaction diagram. During the production process, the minimum QC acceptance limit reported from the evaluation of the asphalt mixture during the design process must be met.

2.4 Description of Mix Designs and Pavement Materials for Laboratory Testing

Twelve Superpave mixes, designed according to TxDOT Item 344 "Superpave Mixtures," were sampled from ongoing pavement construction projects. All sampled asphalt mixtures were designed at 50 gyrations and using a target density of 96%. The asphalt mixtures were designed with either a 12.5 mm (called SP C hereafter) or a 9.5 mm (called SP D hereafter) nominal maximum aggregate size (NMAS). SP C and SP D mixtures met a minimum VMA of 15% and 16%, respectively.

2.4.1 Mixture Properties

Mix ID	Mix Type	Original Binder	VMA %	OAC %	Gmm	RAP %	RAS %	ABR Ratio	Aggregate Type	
1	SP-C	70-28	14.8	4.6	2.490	N/A	4.0	15.2	Limestone/Dolomite	
2	SP-C	76-22	16.9	5.5	2.524	19.7	N/A	16.2	Limestone/Dolomite	
3	SP-C	70-28	15.0	4.6	2.490	N/A	4.0	15.2	Limestone/Dolomite	
4	SP-C	76-22	15.2	5.0	2.435	10	N/A	17.0	Sandstone	
5	SP-D	76-22	15.7	5.2	2.424	10	N/A	10.0	Limestone/Dolomite	
6	SP D	76-22	16.5	5.5	2.397	N/A	N/A	N/A	Igneous	
7	SP-D	70-22	16.0	5.3	2.423	14	N/A	13.2	Limestone/Dolomite	
8	SP D	64-22	16.1	6.5	2.697	16	N/A	16.0	Igneous	
9	SP-D	64-22	16.1	6.5	2.697	16	N/A	16.0	Igneous	

10	SP-D	70-22	16.4	5.3	2.470	10	3.0	19.6	Limestone/Dolomite
11	SP-D	64-22	16.2	5.4	2.440	15	3.0	24.4	Limestone/Dolomite
12	SP-D	70-22	16.5	5.4	2.480	N/A	5.0	16.7	Limestone/Dolomite

Table 2.3 reports the relevant mix design information of the sampled asphalt mixtures. Information such as the aggregate type and source, optimum asphalt content (OAC), VMA, maximum specific gravity (G_{mm}), recycled asphalt pavement (RAP) and/or recycled asphalt shingles (RAS), and recycled binder replacement (RBR) ratio are presented for each mix. The asphalt mixtures were designed to meet the requirements for asphalt binders with PGs of 64-22, 70-22, 76-22, and 76-28. The OAC varied from 4.6% to 6.5%. The RAP and RAS contents ranged from 0% to 20% and from 0% to 4%, respectively. Please refer to appendix B for more information on mixture design and material properties.

Mix ID	Mix Type	Original Binder	VMA %	OAC %	Gmm	RAP %	RAS %	ABR Ratio	Aggregate Type	
1	SP-C	70-28	14.8	4.6	2.490	N/A	4.0	15.2	Limestone/Dolomite	
2	SP-C	76-22	16.9	5.5	2.524	19.7	N/A	16.2	Limestone/Dolomite	
3	SP-C	70-28	15.0	4.6	2.490	N/A	4.0	15.2	Limestone/Dolomite	
4	SP-C	76-22	15.2	5.0	2.435	10	N/A	17.0	Sandstone	
5	SP-D	76-22	15.7	5.2	2.424	10	N/A	10.0	Limestone/Dolomite	
6	SP D	76-22	16.5	5.5	2.397	N/A	N/A	N/A	Igneous	
7	SP-D	70-22	16.0	5.3	2.423	14	N/A	13.2	Limestone/Dolomite	
8	SP D	64-22	16.1	6.5	2.697	16	N/A	16.0	Igneous	
9	SP-D	64-22	16.1	6.5	2.697	16	N/A	16.0	Igneous	
10	SP-D	70-22	16.4	5.3	2.470	10	3.0	19.6	Limestone/Dolomite	
11	SP-D	64-22	16.2	5.4	2.440	15	3.0	24.4	Limestone/Dolomite	
12	SP-D	70-22	16.5	5.4	2.480	N/A	5.0	16.7	Limestone/Dolomite	

 Table 2.3 - Mix Design Information and Volumetric Properties

2.4.2 Laboratory Molded Specimen Preparation Process

Plant-mixed lab-compacted (PMLC) specimens were utilized for the performance characterization. Each material was reheated in the laboratory for two hours at compaction

temperature in accordance to TxDOT specifications (Tex-206-F) for short-term oven aging. Laboratory molded specimens were then compacted, and prepared for the selected test methods after the compaction temperature is reached.

Chapter 3 - Analysis of Results for Design and Quality Control Processes

3.1 Performance Tests for Permanent Deformation Characterization

A comparative evaluation of the Hamburg wheel tracking (HWT) and flow number (FN) tests was carried out to evaluate their effectiveness and consistency on assessing the rutting resistance of Superpave mixtures. While the HWT test has been widely used to assess the rutting resistance of Superpave mixtures, the FN test is a relatively easy test that can be also employed to measure the resistance of asphalt mixtures to permanent deformation. Figure 3.1a compares the typical HWT test results from a well and poor performing mixture. The well performing mixture was able to resist the maximum number of passes (e.g. 20,000 passes) but the poor performing mixture **3.13**.1b displays two typical FN test response curves for a well and poor performing mixture. The axial strain (deformation) is plotted along the y-axis, and the time along the x-axis. Considering that a loading cycle is applied every one second, the well performing mixture resisted over 1200 cycles with a flow number of 133.

Figure 3.2a displays the HWT test results for the twelve Superpave mixtures. The data labels represent the NRRI values. Mixtures displaying an NRRI greater than one are passing the HWT test, while mixtures with NRRI values of less than one do not meet the rutting requirements. Eleven out of the twelve mixtures satisfactorily passed the HWT test requirements.

For the FN test results presented in Figure 3.2b, the acceptance limits of 50 and 190 cycles are used for two traffic levels of 3 to 10 million ESALs and 10 to 30 million ESALs, respectively. Five out of the twelve Superpave mixtures demonstrate FN values ranging between 50 and 190,

Figure 3.1 – Comparison of Permanent Deformation Results

a) Normalized RRI

Figure 3.2 – Permanent Deformation Performance Parameters

which means they pass the minimum requirement for a traffic level of 3 to 10 million ESALs. Five mixtures satisfactorily met the minimum flow number of 190 for a highway with a 10 to 30 million ESALs. Two mixtures did not meet the minimum FN limit for 3 million to 10 million ESALs. For both HWT and FN tests, Mixture 1 is not acceptable regardless of the binder PG related or traffic level requirements established from the HWT and FN tests. Please refer to appendix B for more information on permanent deformation test results.

Duplicate tests were carried out for the HWT and FN tests to account for consistency in the results. Table 3.1 summarizes the test results for HWT and FN tests. The HWT test showed consistent results among duplicate specimens, except for three mixtures that yielded a difference of around 2500 units for the RRI parameter. The maximum difference on FN values for the duplicate specimens from the same mixture was 175 units. Regardless of the differences the results from duplicate specimens did not contradict each other. This means the well and poor performing mixtures can be delineated with both performance test methods.

A correlation analysis was performed among the RRI and FN parameters from the HWT and FN tests as shown in Figure 3.3. Figure 3.3a shows that an exponential relationship can describe the correlation between the RRI and FN values with a coefficient of determination (R^2) of 0.64. Therefore, asphalt mixtures with high RRI values will also exhibit high FN values.

Figure 3.3b shows a comparison of a numerical ranking of the RRI and FN values. The ranking was performed by assigning larger numbers to the lower performing mixes (RRI or FN values). Table 3.2 summarizes the values used for the correlation analyses shown in this section. The best performing mixture is assigned a rank of 1, while the worst performing mixture is assigned a rank of 12. The HWT and FN tests showed good agreement on the three best and the worst asphalt mixtures, while for the other asphalt mixtures the rankings changed considerably.

Table 3.3summarizes the key observations from evaluating alternative promising permanent deformation tests in terms of acceptance potential, variablity of the tested specimens, correlation to RRI, and the experience with field perfromance. Information such as the main perfromance index for analyzing the behavior of the mixture is presented, testing requirements in terms of speciemen preparation and testing time of each is presented. Table 3.3 is used to analyze the advanatges and limitations of each test method, and helps to select the best perfromance test.

		Han	nburg Wheel Te	est	Flow Number		
Mixture	Specimen	Rut Depth, mm	Number of Passes	RRI	Flow Number	Cycles	
1	1	13.0	5,580	2,722	32	89	
1	2	12.6	6,830	3,434	26	70	
2	1	5.8	20,000	15,449	395	1,183	
Z	2	6.9	20,000	14,598	315	986	
2	1	7.2	20,000	14,323	100	344	
3	2	12.3	20,000	10,346	92	270	
4	1	5.1	20,000	16,000	301	1,060	
4	2	8.1	20,000	13,661	475	1,397	
5	1	4.6	20,000	16,417	507	1,623	
5	2	4.8	20,000	16,260	415	1,238	
6	1	1.3	20,000	18,976	765	2,213	
	2	1.0	20,000	19,181	516	1,454	
7	1	13.4	18,380	8,705	159	472	
	2	12.8	14,900	7,403	122	359	
Q	1	12.7	11,100	5,572	41	128	
0	2	12.7	14,850	7,443	44	141	
0	1	6.6	20,000	14,811	147	473	
9	2	7.2	20,000	14,362	140	411	
10	1	12.6	18,120	9,167	320	516	
10	2	12.6	18,320	9,254	201	512	
11	1	13.1	13,079	6,313	152	436	
11	2	12.6	9,530	4,810	108	318	
12	1	10.2	20,000	11,969	144	356	
12	2	9.2	20,000	12,740	122	305	

Table 3.1 – Summary of HWT and FN Test Results

a) Value Correlation

b) Ranking Correlation

Figure 3.3 – Correlation of Value and Rank of Permanent Deformation Tests

Mixture	Rutting Performance Tests				
	FN		RRI		
	Value	Rank	Value	Rank	
1	32	12	3078	12	
2	395	3	15024	3	
3	100	10	12335	7	
4	301	5	14831	4	
5	507	2	16339	2	
6	765	1	19079	1	
7	159	6	8054	9	
8	41	11	6507	10	
9	147	8	14587	5	
10	320	4	9210	8	
11	152	7	5561	11	
12	144	9	12354	6	

Test	Index	Variability	Testing Requirements	Correlation to RRI
HWT	Rutting Resistance Index	Low	One cut Long Testing time	-
FN	Flow Number	Low	Drilling specimen Long Testing time	Medium

Table 3.3 - Permanent Deformation Tests Key Observations

3.2 Performance Tests for Cracking Susceptibility Characterization

The OT test has been widely used in Texas as the main cracking performance test for the last decade. More simple tests, such as the SCB I-FIT (AASHTO TP 124) and IDEAL CT (Tex-250-F), have also been considered by TxDOT and other highway agencies. This section documents typical results from the OT, IDEAL CT and SCB I-FIT tests.

Figure 3.4 shows typical test results for a well and a poor performing mixture from the selected cracking performance tests. As shown in Figure 3.4a, the OT test results are shown as the normalized load reduction curves, which consists of cross plotting the normalized cyclic peak load versus the number of cycles to failure. The well performing mixture reached 1,000 cycles while the poor performing mixture failed in less than 50 cycles. Figure 3.4b and 3.4c present the load versus displacement curves for the SCB I-FIT and IDEAL CT tests, respectively. In both cases, the poor performing mixture yielded a higher peak, but exhibited a steeper slope post peak, which negatively affects the proposed cracking indices used for assessing cracking resistance.

Figure 3.5 displays the cracking performance of each mixture for all three cracking tests. The main parameters used to asses to performance of a mixture in each test are the CPR for OT test, FI for SCB I FIT test, and the CT Index for IDEAL CT test. Acceptance limits are presented for all parameters, 0.45 is used for CPR, 8 for FI (Al-Qadi, 2016), and 80 for CT (Newcomb, 2018).

Figure 3.4 - Mixture Comparison of Cracking Tests Main Parameters
a) Crack Progression Rate

Figure 3.5 – Cracking Resistance Performance

Figure **3.5**3.5a shows the CPR of each mixture. The error bars on the graph represent the variability of the tested specimens based on their respective standard deviation. Eight of the twelve mixtures yielded CPR values less than the maximum acceptance limit of 0.45, which are considered mixtures with acceptable cracking resistance. Figure 3.5b displays the FI values from the SCB I-FIT. Only five asphalt mixtures exhibited a FI value greater than the minimum requirement of 8. Similarly, Figure 3.5c shows the test results for CT Index obtained from the IDEAL CT test. Four asphalt mixtures yielded acceptable CT Index values. (Refer to appendix B for more information.)

The repeatability of the test results should be taken into consideration when evaluating performance tests.

c) FI Index vs CT Index

Figure **3.6a** and 3.6b show the correlation of CPR with CT and FI indices, respectively. As CPR decreased, FI and CT indices increased. However, the trend was not clearly defined resulting on a significantly low correlation. Figure 3.6c shows the correlation between CT Index and FI Index in which a 95% is found, mainly because both parameters are calculated similarly. As shown in Figure 3.7, the rankings were not favorably correlated when comparing CPR to CT Index and FI Index. The rank correlation between FI and CT is stronger, meaning they rank the mixture in a similar way.

Table 3.4 summarizes the average and COV values for the test results of all asphalt mixtures. The COVs for the CPR ranged between 3% and 26%, except for Mixture 4 that yielded a COV of 44% due to an outlier data point on the results. For the FI index, the COVs varied from 5% to 34%. The COVs for the CT Index from the IDEAL CT tests ranged from 6% to 30%. In addition, an evaluation of the rankings from each parameter was carried out, as summarized in Table 3.4. A rank of "1" was assigned to the highest flexibility index and CT index, similarly to the lowest CPR. A rank of "12" was assigned to the lowest flexibility index and CT index as well as to the highest CPR.

Figure **3.6**a and 3.6b show the correlation of CPR with CT and FI indices, respectively. As CPR decreased, FI and CT indices increased. However, the trend was not clearly defined resulting on a significantly low correlation. Figure 3.6c shows the correlation between CT Index and FI Index in which a 95% is found, mainly because both parameters are calculated similarly.

As shown in Figure 3.7, the rankings were not favorably correlated when comparing CPR to CT Index and FI Index. The rank correlation between FI and CT is stronger, meaning they rank the mixture in a similar way.

Mixture	CPR			FI Index			CT Index			
wiixtui e	AVG	COV	Rank	AVG	COV	Rank	AVG	COV	Rank	
1	0.32	16%	3	6.5	14%	6	58.2	20%	7	
2	0.22	10%	1	21.6	16%	1	264.2	14%	1	
3	0.87	26%	12	6.4	5%	7	61.9	13%	6	
4	0.81	44%	11	4.4	33%	11	41.8	6%	11	
5	0.30	15%	2	2.3	20%	12	38.8	27%	12	
6	0.37	7%	7	5.9	29%	9	51.1	13%	8	
7	0.36	10%	6	4.8	18%	10	48.9	24%	9	
8	0.33	9%	4	11.9	14%	3	114.6	4%	4	
9	0.52	24%	9	6.1	34%	8	48.5	30%	10	
10	0.72	26%	10	7.9	13%	5	72.4	20%	5	
11	0.41	4%	8	8.3	24%	4	122.2	22%	3	
12	0.35	3%	5	21	5%	2	221.9	6%	2	

Table 3.4 – Summary of Statistical Parameters from Cracking Test Results

Figure 3.6 – Value Correlation of Cracking Tests

Figure 3.7 - Rank Correlation of Cracking Tests

Table 3.6 summarizes the key observations from evaluating alternative promising cracking resistance tests in terms of acceptance potential, variablity of the tested specimens, experience with field performance, and the test requirements and limitations each one presents.

	Candidate Cracking Performance Tests										
Cracking Test	Performance Index	Variability	Relationship with Field Performance	Test Requirements							
ОТ	Crack Progression Rate	< 40%	High	Cutting Gluing specimens to steel plates Testing time up to 3 hrs.							
SCB	Flexibility Index	< 30%	Low	Cutting Notch Testing time < 10 min.							
IDT	CT Index	< 30%	Low	No cutting No notch Testing time <10 min.							

 Table 3.6 - Cracking Susceptibility Tests Key Observations

3.3 Performance Based Analysis of Asphalt Mixtures for Production and Quality Control

Given the practicality and ease of use, TxDOT currently uses IDT to assess the brittleness of asphalt mixtures in order to minimize crack-susceptible asphalt mixtures that contained stiff binders and high recycled material contents. Several parameters have been developed and proposed by several researchers (*Zhou et al., 2016; Omranian, 2018; Yin, 2018; Kaseer, 2018; Perez-Jimenes, 2013*) as indicators of the brittleness of asphalt mixtures. These parameters are summarized in Table 3.7. Figure 3.8 presents a visual representation of the parameter computation and required parameters from the load versus displacement curve.

Cracking Parameter	Reference	Formula	Description of Parameters
ITS	TEX-226- F	$S_t = \frac{2P}{\pi(HD)}$	S_t = Indirect Tensile strength, psi P = Total applied vertical load at failure, lb. H = Height of specimen, in. D = Diameter of specimen, in
FI _{Fragility}	Omranian, 2018	$FrI = rac{G_{fpeak}}{G_{f}}$	$G_f =$ Fracture energy, lb./in. $G_{f peak} =$ Fracture energy at peak
СТ	Zhou, 2016	$CT_{Index} = \frac{t}{2.4} \times \frac{l_{75}}{D} \times \frac{G_f}{ m_{75} } \times 10^6$	CT Index = Cracking tolerance index normalized to 2.4 in. thick specimen $G_f = Failure energy, lb./in.$ $ m_{75} = Absolute value of thepost-peak slope m_{75}, lb./in.$ $l_{75} = Displacement at 75\%$ the peak load after the peak, in. h = Thickness of specimen, in. D = Diameter of specimen, in.
TI	Perez- Jimenes, 2013	$TI = (G_F - G_{Fmax}) \cdot (\Delta_{mdp} - \Delta_{Fmax}) \cdot 10^3$	IT = Toughness Index, J/m; G_{Fmax} = Fracture Energy until Δ_{Fmax} , J/m ² Δ_{mpd} = Displacement at 50% of post-peak load, mm Δ_{Fmax} is the displacement at maximum load, mm
CRI	Kaseer, 2018	$CRI = \frac{G_f}{ P_{max} }$	$G_f =$ Failure energy, lb./in $P_{max} =$ Peak Load
FI _{Fatigue}	Barman, 2018	$FI = \frac{-U_f}{(\frac{dTI}{d\varepsilon})}$	U _f =Fracture Energy Derivation of TI, based on slope
N _{flex}	Yin, 2018	$N_{flex} Factor = rac{T_{inf}}{ m }$	

Table 3.7 – Candidate IDT Indices

Figure 3.8 – Performance Indices Derived from IDT Test Data

Zhou et al. (2016) recently proposed the CT index extracted from the IDT test (renamed to IDEAL CT test) results. Figure 3.8a depicts the parameters required to compute the CT Index. As shown on Figure 3.8b, the Fragility Index can be computed considering the critical and total fracture energies (Omranian, 2018). Similarly to the CT, the Nflex factor considers the post-peak slope but the work of fracture under the load versus displacement curves is slightly refined as shown on Figure 3.8c (Yin, 2018). The crack resistance index (CRI) is a simpler parameter that can be computed as shown in Figure 3.8d (Kaseer, 2018). The toughness index (TI) proposed by Perez-Jimenes (2013) considers a few areas under the load-displacement curve, see Figure 3.8e. Figure 3.8f shows the information required to compute the Fatigue Index (Barman, 2018). Although some parameters have been proposed for either IDT or SCB test methods, all parameters were derived from the IDT test configuration.

The selected parameters were computed from four replicate IDT tests performed for each of the twelve asphalt mixtures. Figure 3.9 displays the variability, distribution and consistency of these parameters were investigated in this section. Since different parameters have different magnitudes, box plots were created with the normalized values. The normalized values is defined as the measured parameter from a given mix divided by the corresponding median value from the twelve asphalt mixtures. The data label shows the range of normalized values. The greater the range of normalized values is, the greater the ability for the index to discriminate asphalt mixtures will be.

Figure 3.9 - Normalized Value of Candidate Indices

Table 3.8 reports the average and COV values for all parameters and mixtures. The most repeatable parameter is ITS, with a maximum COV of 8%. The second most consistent parameter is CRI with COVs between 2% and 12%. Fragility Index also demonstrates a low variability of results with COVs between 3% and 12%. TI and N_{flex} indices yielded a maximum COV value of 22%. Fatigue Index yielded COV between 3% and 18%, but one mixture exhibited a COV of 55%. CT Index yielded COVs ranging from 5% to 34%. The investigated cracking indices consider different parameters from the load versus displacement curve, which can introduce a higher or lower variability (ex. ITS only considers the acquired maximum load and showed lowest variability).

¡Error! No se encuentra el origen de la referencia. summarizes the results of correlation analyses between CPR from the OT test and the investigated cracking indices from the IDT tests. The maximum coefficient of correlation was found between the CT Index and CPR parameter. Although N_{flex} Factor also yielded a similar R, CT Index was selected as the best parameter to characterize an asphalt mixture because of the greater range of values. In terms of variability both indices are similar, with COV's of less than 35%.

Mix	П	TS	C	T	ר	ľ	CR	I	Nf	lex	Frac	ture	Frag	gility
	AVG	COV	AVG	COV	AVG	COV	AVG	COV	AVG	COV	AVG	COV	AVG	COV
1	39	2%	58	23%	3.8	16%	5800	7%	13.8	14%	50	17%	33.8	7%
2	80	3%	276	17%	5.1	16%	9974	5%	41.3	13%	302	10%	34.5	8%
3	71	5%	62	15%	7.2	9%	6338	2%	14.3	14%	116	14%	36.4	6%
4	157	2%	42	7%	11.8	14%	5860	4%	10.5	8%	195	9%	41.3	12%
5	179	4%	39	31%	11.2	20%	5515	10%	10.1	22%	185	55%	43.7	5%
6	113	3%	51	15%	8.4	15%	5772	5%	12.3	11%	145	11%	41.4	3%
7	122	3%	49	28%	9.5	10%	5954	8%	11.5	15%	165	18%	40.8	4%
8	72	2%	115	5%	11.0	7%	7621	2%	22.5	4%	184	12%	35.8	4%
9	130	8%	49	34%	11.1	19%	6214	12%	11.2	21%	200	16%	39.4	9%
10	111	4%	72	23%	11.4	22%	6776	6%	15.7	17%	195	10%	41.8	7%
11	95	3%	122	25%	15.3	12%	7981	7%	23.0	18%	220	16%	37.6	7%
12	124	2%	227	7%	28.4	5%	9869	1%	35.0	6%	445	3%	40.4	3%

 Table 3.8 - Variability of Cracking Indices

Figure 3.10 – Correlation of IDT Parameters and CPR

A simple performance parameter must be selected and implemented for quality control during the production of asphalt mixtures. A quick test such the IDT test is convenient because of the short period of time the test takes, which enables its application during production process. Further research must be carried out to properly introduce the use of a quality control parameter for performance acceptance of asphalt mixtures during production.

3.4 Performance Interaction Diagram

The performance-based analysis formulated in this study consists of three performance parameters to measure the cracking susceptibility, rutting resistance and brittleness of the asphalt mixtures on a performance interaction diagram. The cracking susceptibility of asphalt mixtures is assessed using the CPR from the OT test with an acceptance limit of 0.45. The NRRI parameter from the HWT test is proposed to simplify the rutting resistance evaluation of asphalt mixtures with a minimum requirement of 1. The third performance parameter, CT Index, is shown as a data label and intended to be a reference during the quality control process during the production of the asphalt mixture. Figure 3.11 displays all twelve mixtures in the performance interaction diagram.

Figure 3.11 - BMD Performance Interaction Diagram

In general, seven mixtures yielded acceptable mechanical performance in terms of cracking susceptibility and rutting resistance. Four mixtures showed satisfactory permanent deformation performance but failed to meet the cracking acceptance criterion. Only one mixture exhibited a satisfactory cracking performance but did not meet the minimum requirements for permanent deformation. Asphalt mixtures located within the green shaded area are considered BMD.

The use of performance tests, especially the OT, HWT and IDT tests showed potential in characterizing the mechanical properties of asphalt mixtures consistently. The following comments can be made about the underperforming asphalt mixtures:

Mixture 1 yielded a low NRRI. This asphalt mixture is recommended to conduct a parametric study on the mix design variables that can potentially improve its rutting and tensile strength such as aggregate gradation, binder PG and recycled material content.

- Mixture 3 exhibited poor cracking performance with a CPR value of 0.87. Mix design variables such as binder PG, aggregate gradation and asphalt content may be investigated to improve the mechanical performance of this mix design.
- Mixture 4 presented poor cracking performance with a CPR value of 0.81 but acceptable rutting resistance. Mix design variables such as asphalt content, aggregate gradation, recycled material content and binder PG can be adjusted to improve the mechanical performance of this mix design.
- Mixture 9 exhibited marginal cracking performance with a CPR value of 0.52, while the an NRRI of 2.9 was obtained. Mix design variables such as binder PG substitution and recycled material content should be considered to improve the mechanical performance of this mix design.
- Mixture 10 showed poor cracking performance with a CPR value of 0.72, but an acceptable NRRI. Mix design variables such as binder PG, aggregate gradation and asphalt content may be investigated to improve the mechanical performance of this mix design.

Chapter 4 – Evaluating Superpave Mixtures with Performance-Based Analysis Methodology

The objective of this section is to evaluate a few mix designs from the previous section and reformulate the mix design to meet the BMD performance requirements. This activity was performed to investigate the influence of key mix design variables such as aggregate gradation, performance grade of binder, and influence of recycled material content.

4.1 Influence of Performance Grade of Binder

An experiment design plan that consists of substituting the binder PG, in the same mixture was performed. Five different binders from the same source but different PG (including PGs 58-28, 64-22, 70-22, 70-28, and 76-22) were used in this evaluation. Table 4.1 provides the mix design information and properties for the original SP C, which yielded an OAC of 5.2% and a VMA of 15.1%. The mix, which contained 10% RAP, and 3% RAS, was originally designed with a PG 70-22.

The aggregate gradation is shown in Figure 4.1.A gradation with a nominal maximum aggregate size (NMAS) 12.5 mm was selected for the mix design. The aggregates sources were limestone-dolomite aggregate. This Superpave mixture was design with a target density of 96% at 50 gyrations.

The results of the performance tests for all different PGs are shown in Figure 4.2. The only modification done to the design was the change of binder PG. Figure 4.2a shows the results of the OT tests, in which all five binders yielded CPRs below the maximum allowable limit of 0.45. The cracking susceptibility of this mixture was not affected by the change in the binder PG. Figure 4.2b represents the NRRI of the asphalt mixtures. Only PG 58-28 did not perform satisfactorily.

Figure 4.2c represents the CT Index obtained from the IDEAL CT Test, mixes with PG 58-28 and 70-28 binders exhibited CT indecies below the acceptance limit of 80.

	SP C			
	Nominal Maximum Aggregate Size	12.5 mm (1/2")		
Design	Number of Gyrations	50		
Parameters	Target Density, %	96		
	Aggregate Type	Limestone-Dolomite		
Volumetrie	Optimum Asphalt Content, %	5.2		
Properties	Voids in Mineral Aggregates, %	15.1		
_	Maximum Specific Gravity	2.468		

To analyze the performance of the asphalt mixtures and identify BMDs, the CPR, NRRI and CT Index values are shown in the performance interaction diagram displayed in Figure 4.3. Five mixes are plotted in the green shaded area, demonstrating good cracking resistance and acceptable performance against rutting. The change in the binder PG significantly influenced the rutting properties and CT Index of the mixtures while the cracking performance was similar among the mixtures with different binder PGs. This means the binder PG controls the brittleness and stability properties of the asphalt mixtures.

Figure 4.2 – Performance Tests Results from Influence of Binder PG

Figure 4.3 - Performance Interaction Diagram: Influence of Binder PG

Table 4.2 summarizes the averages and COV's obtained from the OT, HWT and IDT test results. The variability of the results from the selected performance tests is acceptable with COV values ranging from 11% to 25% for OT test. The variability of the CT Index obtained for these mixtures is between 20% and 54%. For HWT, the number of passes (NP), rut depth (RD), RRI, and NRRI are presented.

4.1.1 Conclusions and Recommendations

- All mixtures presented acceptable cracking properties with CPR values of no more than 0.41 regardless of the binder's PG.
- The rutting resistance of the SP C mixtures was improved with a different binder PG from the same source.
- 3. Changing the PG grade of the asphalt binder might be a solution to improve the rutting and strength properties of mixtures without significantly influencing their cracking potential.

Table 4.2 - Summary of Results

Mix	Test	Parameters		Mix Reference					
Design	Methods			58-28	64-22	70-22	70-28	76-22	
	IDEAL	CT Index	Average	58	117	137	66	114	
	СТ	C1 muex	COV	20%	54%	39%	24%	40%	
	ОТ	CDD	Average	0.32	0.37	0.25	0.40	0.41	
SD C		UIN	COV	16%	11%	16%	25%	17%	
SPC		NP		6205	20000	20000	20000	20000	
	нwт	RD, mm		12.8	7.4	7.7	5	4.8	
		RRI		3078	14197	13976	16102	16244	
		NRRI		0.3	2.8	1.8	2.1	1.6	

4.2 Influence of Aggregate Gradation

Although the Superpave specifications provide a wider range of permissible gradations, the current SP mixes yield volumetric and mechanical properties such as dense-graded (DG) mixes. This may occur because selecting the aggregate gradation has been mainly driven by the optimization of the asphalt content to meet a minimum VMA requirement. A study was carried out to investigate the influence that aggregate gradation and binder type might have on the engineering performance of SP and DG mix designs. This information was used to recommend mixtures that conformed to the BMD concept.

4.2.1 Mix Design Characteristics

Utilizing the same mix design information, two different aggregate gradations with a 12.5 mm nominal maximum aggregate size (NMAS) were formulated for a DG C and SP C mix as shown in Figure 4.4. Both mixtures were produced from the same source of a dolomitic-limestone aggregate. The DG C gradation has an aggregate distribution restricted by the narrow lower and

Figure 4.4 - Aggregate gradation for SP C and DG C mix designs

upper bounds, which typically result in a dense combination of aggregates. Using the wider permissible band for the SP C gradation, a coarser skeleton was selected. The distributions of the DG C and SP C aggregate sizes are compared in Figure 4.4c. Typically, the gradation for DG mix contains a small portion of coarse aggregates and large amount of intermediate aggregates and fines. The coarse aggregate content may not be enough to create adequate space to accommodate the intermediate aggregates and fines, and to provide adequate space for the asphalt binder. Instead, the coarse aggregate skeleton may float in the excessive presence of intermediate aggregates and fines. The aggregate gradation for the SP C mix was formulated to maximize the use of coarse (from $\frac{1}{2}$ in. to #4) aggregates and minimize the content of intermediate (from #8 to #50) aggregates. Increasing the content of coarse aggregates may produce a more stable aggregate skeleton, while adjusting the content of intermediate aggregates may provide adequate space for asphalt binder. The content of fines was kept as similar as possible for consistency.

Asphalt binders from the same source but with three different PGs were also used in this evaluation. The original SP C and DG C mixes were designed with PG70-22 binder. To minimize the influence of compaction method, a Superpave gyratory compactor was utilized to produce the SP C and DG C mixes. The asphalt mixtures were designed to meet a 96% target density at their OAC with 50 gyrations. The other mixtures were produced replacing the binder at the same OAC.

Table 4.3 provides the mix information and properties for the original SP C and DG C mixtures. The DG C mix yielded an OAC of 5.0%, while the SP C mix resulted in an OAC of 5.2%. Both SP C and DG C mixes passed the minimum VMA requirement of 15%.

	Parameters	SP C	DG C		
	Nominal Maximum Aggregate Size	12.5 mm (1/2")	12.5 mm (1/2")		
Design	Number of Gyrations	50	50		
Parameters Target Density, %		96	96		
	Aggregate Type	Limestone-Dolomite			
X7 1 	Optimum Asphalt Content, %	5.2	5.0		
Volumetric Properties	Voids in Mineral Aggregates, %	15.9	15.4		
-	Maximum Specific Gravity	2.454	2.467		

 Table 4.3 - Summary of Mix Design Information and Pavement Material Characteristics

4.2.2 Results and Discussion of Balanced Mix Design Analysis

As shown in Figure 4.5, the CPR values for all mixtures, which varied from 0.28 to 0.47, met the acceptance limit of 0.45. The DG C mixtures yielded greater CPR values than the SP C mixtures, indicating that the SP C mixtures are less crack susceptible. The rutting resistance indices (RRIs) from the HWT test results are depicted in Figure 4.5b. The DG C mixture with the PG 64-22 binder did not meet the rutting requirements, while the SP C mixture with the same binder met the rutting requirements. The DG C mixture with PG 70-22 binder did not meet the corresponding rutting requirements, while the SP C mixture with the same binder met the rutting requirements. The DG C mixture with the same binder satisfactorily met the minimum rutting requirements. The mixtures with PG 76-22 binder exhibited satisfactory rutting resistance regardless of the mix type. **;Error! No se encuentra el origen de la referencia.**c summarizes the CT Index of the mixtures. All DG C mixtures failed to obtain an acceptable CT Index, while all SP C mixtures yielded good CT Index for all PGs.

To identify mixtures with balanced performance, the CPR, NRRI and CT Index values are presented in the performance diagram shown in Figure 4.6. In general, the SPC mixtures exhibited better performance than the DG C mixtures. The CT Index is shown as a data label for a more informed analysis. From Figure 4.6a, only the DG C mixture with PG 76-22 binder can be considered balanced. The DG C mixtures mainly yielded acceptable CPR values but lower than required NRRI values. All three SP C mixtures can be considered balanced as seen in Figure 4.6b. The change in the binder PG significantly impacted the rutting properties and the CT Index of the mixtures while the cracking performance was not as significantly different among the mixtures with different binder PGs.

Figure 4.5 - Comparison DG vs SP Results

Figure 4.6 - Performance Interaction Diagram: Influence of Aggregate Gradation

Table 4.4 summarizes the averages and coefficients of variation (COV) obtained from the OT, HWT and IDT test results. The variability of the results from the selected performance tests is acceptable with COV values ranging from 1% to 22% for OT test. However, CT Index yields higher variability for the tested samples.

Mix	Test	Parameters		Mix Reference				
Design	Methods			64-22	70-22	76-22		
	IDEAL CT	CT Index	AVG	64	40	23		
	IDEAL CI	CT muex	COV	20%	40%	20%		
	ОТ	CDD	AVG	0.42	0.47	0.41		
DCC	01	CFK	COV	4%	2%	10%		
DG C		NP		7,060	10,350	20,000		
	HWT	RD, mm		12.54	12.56	9.12		
		RRI		3574	5232	12819		
		NRRI		0.7	0.69	1.27		
	IDEAL CT	CT Index	AVG	171	335	274		
		C1 Index	COV	17%	38%	29%		
	ОТ	CDD	AVG	0.37	0.33	0.28		
	01	CPK	COV	5%	8%	7%		
SPC		NP		11,250	20,000	20,000		
		RD, mm		12.5	9.8	7		
	HWT	RRI		5696	12283	14472		
		NRRI		1.12	1.62	1.43		

Table 4.4 - Summary of Results from Performance Tests

4.2.3 Conclusions and Recommendations

Producing mixtures that can potentially exhibit balanced performance can be achieved by properly formulating the mix design and assessing the engineering properties of the mix with performance tests. The crack progression rate from OT tests, rutting resistance index from HWT tests, and CT Index from IDT tests were utilized to characterize the engineering properties of several DG and SP mixtures produced with binders with different PGs. SP mixes can potentially yield balanced volumetric and mechanical properties if a proper aggregate gradation is selected.

From this study, the following conclusions can be drawn:

- 1. While all mixtures presented acceptable cracking properties, the SP C mixtures showed better resistance to cracking than the DG mixtures.
- 2. With the same binder, the rutting resistance of the SP C mixtures was consistently better than those of the DG C mixtures.
- The SP C mixtures seemed to yield higher CT Index values than the DG C mixtures. However, a definite trend was not observed.

The following specific observations can be drawn from the results of this study:

- a. Comparing SP and DG mixes, the aggregate gradation plays a key role in producing mixtures with acceptable volumetric and mechanical properties. Design specifications for SP mix designs allow to formulate an aggregate gradation that can result on more durable and stable mixtures regardless of the binder type.
- b. Changing the PG grade of the asphalt binder might be a solution to improve the rutting and strength properties of mixtures without significantly impacting their cracking potential.
- c. Regardless of the mixture type (SP or DG), mixtures designed with PG 76-22 binder satisfactorily met all the performance tests requirements.

4.3 Influence of Recycled Materials

To reduce the use of new mineral aggregates and asphalt binder, the implementation of sustainable measures such as recycling previously-used materials, reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) has been the main alternative. In the current mix-design processes, the recycled materials are being added at percentages that are essentially

educated guesses. The main goal of this study is to determine the optimum RAP, and RAS contents in balanced mixes without significantly compromising the quality and performance of the final product. **¡Error! No se encuentra el origen de la referencia.** shows the aggregate gradation used in the study, it was the same for all mixtures. The only parameter affected was the amount of recycled material in the mixture.

4.3.1 Evaluation of Asphalt Mixtures Containing Different Recycle Material Contents

An experiment design that covered a wide range of mixes with different RAP and RAS contents was formulated for this evaluation as sown in

Table **4.5**. Mixes were designed without recycled materials, with only RAP, with only RAS and with a combination of RAP and RAS. Up to 20% RAP and 2% RAS were used. The aggregate gradation was similar for all mixes. The OAC values ranged from 5.1% to 6.0%. One mix with recycled material presented an asphalt binder replacement (ABR) ratio that was greater than the maximum limit of 20%.

Figure 4.7 - Aggregate Gradation for Influence of Recycled Materials

Designation	PG of Binder	OAC, %	RAP, %	RAS, %	ABR, %	VMA, %
CONTROL	64-22	5.1%	0	0	0.0	15.9
14 RAP 2 RAS	64-22	5.3%	14	2	20.8	16.4
14 RAP 0 RAS	64-22	5.7%	14	0	12.3	17.3
0 RAP 2 RAS	64-22	6.0%	0	2	6.7	17.8
20 RAP 0 RAS	64-22	5.4%	20	0	18.5	16.5

 Table 4.5 – Characteristics of Asphalt Mixtures

4.3.2 Understanding Performance of Asphalt Mixes

Figure 4.8 displays the results from all three tests performed to asses a mixture performance. The control mixture (0 RAP and 0 RAS) is compared to four other mixtures with different quantities of recycled material. Figure 4.8a displays the results of the overlay test, in which the control mix yields an acceptable CPR less than 0.45, while two other mixtures that included the most recycled materials (14 RAP 2 RAS, and 20 RAP 0 RAS) do not perform adequately in cracking. Figure 4.8b shows the results of HWT, in which all mixtures yield a NRRI greater than the minimum required. For permanent deformation, the mixtures with the best performance are the ones with the most recycled material (14 RAP 2 RAS, and 20 RAP 0 RAS). Figure 4.8c exhibits the results for the IDEAL CT Test, in which two mixtures yielded a CT Index higher than 80, while the others did not meet the minimum required.

The results from the HWT, OT and IDT tests are superimposed on the performance interaction diagram shown in Figure 4.9. A summary of the test results is presented in Table 4.6. In general, the mixes performed well in rutting, but failed cracking criterion because the CPR values were too high (mixtures 20 RAP 0 RAS and 14 RAP 2 RAS). The control mix can be classified as balanced mixture although it has a low CT Index. The two mixtures that are not considered BMDs contained the higher amounts of recycled materials.

Figure 4.8 - Influence of Recycled Material Results

Figure 4.9 - Performance Interaction Diagram for Balanced Asphalt Mixtures Table 4.6 – Summary of Test Results for Asphalt Mixtures

Performance Parameters			Control	14 RAP 2 RAS	14 RAP 0 RAS	0 RAP 2 RAS	20 RAP 0 RAS
ОТ		AVG	0.4	1.1	0.4	0.3	0.5
	CPR	COV	4%	15%	7%	2%	5%
	CT Index	AVG	33	22	121	187	48
IDEAL CT		COV	88%	27%	11%	14%	38%
	Number of	Passes	17230	20000	20000	20000	20000
	Ruth Depth, mm		12.5	4.2	8.2	11.8	6.4
HW1	RRI		8737	16709	13567	10732	14961
	NRRI		1.7	3.3	2.7	2.1	2.9

4.3.3 Summary and Conclusions

Mixes designed with different amounts of recycled materials, RAP and RAS, were evaluated as an illustrative example. From this evaluation, the following conclusions can be drawn:

- The selected cracking performance test method showed acceptable repeatability. The OT test results, based on CPR parameters, presented COV values between 3% and 15%. For HWT four mixtures reached 20,000 passes, with different rut depths. The CT Index exhibited variability between 11% and 88%.
- A high percentage of recycled materials negatively affected the cracking properties of the mix. The use of an optimal recycled material content seems to help the rutting and stiffness resistance of mixes.
- 3. Changing the PG grade of the asphalt binder might be a solution to improve the rutting and stiffness properties of AC mixes without significantly impacting their cracking potential.

Chapter 5: Conclusions and Recommendations

Different laboratory testing procedures were evaluated to assess the cracking and permanent deformation of asphalt mixtures. Environmental characterization of asphalt mixtures was investigated through several performance-based test methods. To properly characterize a mixture behavior, the implementation of a performance-based analysis methodology is needed at different stages including the design process, field production and environmental-related characterization. The main objective of this thesis study was to investigate several performance test methods that can be readily used for laboratory characterization of asphalt mixtures throughout a performance-based analysis methodology.

Using the parameters from the OT, HWT and IDEAL CT test methods, the mechanical performance of asphalt mixtures was investigated with a performance-based analysis methodology that accounts for the cracking susceptibility and rutting resistance of asphalt mixtures.

5.1 Conclusions

From this study, the following conclusions were drawn:

- 1. For this study, the OT is selected as a more rigorous performance test method for the characterization of cracking susceptibility. Offering CPR with an acceptance limit of 0.45 as the best parameter to discriminate between well and bad mixtures.
- The CPR parameter of the OT is better for characterization of cracking resistance of Superpave mixtures used in Texas, than the Flexibility Index obtained from the SCB I-FIT because of repeatability in tested specimens, and requirements to pass the test.

- HWT Test is selected over the Flow Number Test as the best performance test method for characterization of rutting resistance because it takes into consideration binder PG used in the asphalt mixture, while being simpler to conduct.
- 4. Using the CPR parameter from the OT with an acceptance limit of 0.45, NRRI parameter from the HWT with acceptance limit of 1.0, and CT Index from the IDEAL CT tests, an interaction diagram can be developed to assess the cracking susceptibility, rutting resistance, and quality control information of asphalt mixtures, helping to predict a mixture behavior in the field.
- 5. Although several DOTs use the ITS parameter to characterize a mixture performance, it may not be the best parameter available to delineate between well and poor mixtures because it does not consider the post-peak behavior of the mixture. CT Index was selected in this study as a quality control index to delineate mixtures with a well and poor performance during the production phase.
- 6. Several cracking indices are available to characterize a mixture quality with the IDT test. The CT Index seems to be the best available index because of repeatability and correlation to the CPR parameter from the OT test. Several other indices such Nflex also present a promising alternative parameter to characterize a mixture's performance.
- 7. Superpave mixtures seemed to yield better CT Index properties than the Dense-graded mixtures. The quality control parameter of the balanced mix design was met easier following the guidelines of the Superpave rather than a typical mixture design procedure.
- 8. Aggregate gradation of asphalt mixture was modified to analyze the influence in the behavior through a performance-based analysis methodology. The Superpave mixture design can effectively be modified into a balance mix design, meeting the minimum

performance requirements for cracking and permanent deformation, in comparison to the Dense-graded mixtures.

- 9. The rutting resistance of the Superpave mixtures was improved with a different binder PG from the same source. Changing the PG grade of the asphalt binder might be a solution to improve the rutting and strength properties of mixtures without significantly impacting their cracking potential.
- 10. The amount of recycled materials in the mixture such as RAP and RAS was changed, and performance testing showed a high percentage of recycled materials negatively affected the cracking properties of the asphalt mixture, but the use of an optimal recycled material content seems to help the rutting and stiffness resistance of mixes.

5.2 **Recommendations**

The following recommendations are provided to continue evaluating and implementing the proposed test protocols for balanced mixes:

- Different conditioning environments should be considered to evaluate a mixture performance under a minor and larger environmental impact, such as different curing times and testing temperatures. To properly characterize a mixture, it should be taken into critical behavior to analyze the performance under negative environments.
- One of the challenges of this study is to establish reliably the acceptance limits and boundaries for the four quadrants from the balanced performance interaction diagram.
 A larger testing matrix should be executed to gather more performance data and delineate potential OT, IDT and HWT test results' thresholds.

61
- 3. Guidelines should be established so that the pavement engineer and designer can improve the performance of poor performing mixes. The research team will evaluate different mixes following the selected testing protocol to document the most feasible approaches to improve the performance of mixes.
- 4. Inclusion of the environmental parameters such as the long-term aging into the performance interaction diagram to understand the mixture's performance in future exposure to different environmental conditions. Guidelines and limits should be investigated under the long-term aging testing procedure of the asphalt mixture, to properly predict to behavior in future years.
- 5. Investigation and development of different performance indices derived from the loaddisplacement curves from the IDT to properly characterize a mixture performance with a simple test. To adequately describe the quality of an asphalt mixtures all parameters obtained from the load-displacement curve should be taken into consideration.
- 6. Substitute different parameters and properties in the mixture design to evaluate the impact on their performance such binder source, and type of aggregate. In order to legitimately identify which parameters should be more consistent and what is limiting the performance of the asphalt mixture in the field.
- 7. Ranking system should be further developed to characterize a mixture's behavior based on the performance and ranking attained in comparison to other mixtures, to truly understand the characteristics and performance of the asphalt mixture.
- 8. Implementation of the balanced mix design concept should be established into all types of mixtures, such as Dense-graded mixture to prolong the life span of an asphalt

mixture in the field. Using performance testing to identify possible failure mechanisms and address them before the production phase.

9. The Superpave mixture design guidelines should be implemented more consistently to future mixtures in Texas, since it has proven to be adaptable to the balanced mix design performance testing requirements, while including different quantities of recycled materials.

References

- 1. Airey, G. D., & Choi, Y. K. (2002). State of the art report on moisture sensitivity test methods for bituminous pavement materials. Road Materials and Pavement Design, 3(4), 355-372.
- 2. Aschenbrener, T. (1995). Evaluation of Hamburg wheel-tracking device to predict moisture damage in hot-mix asphalt. *Transportation Research Record*, 1492, 193.
- 3. Barman, M., Ghabchi, R., Singh, D., Zaman, M., & Commuri, S. (2018). An alternative analysis of indirect tensile test results for evaluating fatigue characteristics of asphalt mixes. *Construction and Building Materials*, *166*, 204-213.
- 4. Bhasin, A., Button, J. W., & Chowdhury, A. (2004). Evaluation of simple performance tests on hot-mix asphalt mixtures from south central United States. Transportation Research Record, 1891(1), 174-181.
- 5. Brown, E. R., Decker, D., Mallick, R. B., & Bukowski, J. (1999). Superpave construction issues and early performance evaluations. Journal of the Association of Asphalt Paving Technologists, 68, 613-660.
- Brown, E. R., Kandhal, P. S., & Zhang, J. (2001). Performance testing for hot mix asphalt. National Center for Asphalt Technology Report, (01-05).
- 7. Bonaquist, R. (2013). Impact of mix design on asphalt pavement durability. Enhancing the Durability of Asphalt Pavements, 1.
- 8. Chen, X., & Huang, B. (2008). Evaluation of moisture damage in hot mix asphalt using simple performance and superpave indirect tensile tests. *Construction and Building Materials*, 22(9), 1950-1962.
- Elseifi, M. A., Mohammad, L. N., Ying, H., & Cooper III, S. (2012). Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures. Road Materials and Pavement Design, 13(sup1), 124-139.
- 10. Epps, A., Harvey, J. T., Kim, Y. R., & Roque, R. E. Y. N. A. L. D. O. (2000). Structural requirements of bituminous paving mixtures. Transportation in the New Millennium.
- 11. Hamzah, M. O., Kakar, M. R., & Hainin, M. R. (2015). An overview of moisture damage in asphalt mixtures. Jurnal Teknologi (Sciences & Engineering), 73(4), 125-131.
- 12. Harvey, J., & Tsai, B. W. (1997). Long-term oven-aging effects on fatigue and initial stiffness of asphalt concrete. Transportation Research Record, 1590(1), 89-98.
- 13. Huang, B., Shu, X., & Tang, Y. (2005). Comparison of semi-circular bending and indirect tensile strength tests for HMA mixtures. In *Advances in Pavement Engineering* (pp. 1-12).
- Izadi, A., Motamedi, M., Alimi, R., & Nafar, M. (2018). Effect of aging conditions on the fatigue behavior of hot and warm mix asphalt. *Construction and Building Materials*, 188, 119-129.
- 15. Kaloush, K. E., Witczak, M. W., & Sullivan, B. W. (2003, April). Simple performance test for permanent deformation evaluation of asphalt mixtures. In 6th RILEM Symposium.

- Kandhal, P. S., & Chakraborty, S. (1996). Effect of asphalt film thickness on short-and long-term aging of asphalt paving mixtures. *Transportation Research Record*, 1535(1), 83-90.
- 17. Kennedy, T. W., Huber, G. A., Harrigan, E. T., Cominsky, R. J., Hughes, C. S., Von Quintus, H., & Moulthrop, J. S. (1994). Superior performing asphalt pavements (Superpave): The product of the SHRP asphalt research program.
- Li, X. J., & Marasteanu, M. O. (2010). Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete. Experimental mechanics, 50(7), 867-876.
- Mallick, R. B. (1999). Use of Superpave Gyratory Compactor To Characterize Hot-Mix Asphalt. Transportation Research Record, 1681(1), 86–96. https://doi.org/10.3141/1681-11
- Marasteanu, M. O., Dai, S., Labuz, J. F., & Li, X. (2002). Determining the low-temperature fracture toughness of asphalt mixtures. *Transportation Research Record*, 1789(1), 191-199.
- McDaniel, R. S., and E. Levenberg. Risk Management of Low Air Void Asphalt Concrete Mixtures. Publication FHWA/IN/JTRP-2013/15. Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana. https://doi.org/10.5703/1288284315217, 2013.
- Nazarian, S., Abdallah, I., Garibay, J., Miramontes, A., & Garcia, V. M. (2018). Assessing Crack Susceptibility of Asphalt Concrete Mixtures with Overlay Tester. *Journal of Testing and Evaluation*, 46(3), 924-933.
- 23. Newcomb, D., & Zhou, F. (2018). *Balanced Design of Asphalt Mixtures* (No. MN/RC 2018-22). Minnesota. Dept. of Transportation. Research Services & Library.
- 24. Roque, R., Sankar, B., & Technologists, A. P. (1999). Determination of crack growth rate parameters of asphalt mixtures using the superpave IOT. In *Proc., Annual Meeting of the Association of Asphalt Paving Technologists. Washington, DC: Transportion Research Board.*
- 25. Soltani, A., & Anderson, D. A. (2005). New test protocol to measure fatigue damage in asphalt mixtures. Road materials and pavement design, 6(4), 485-514.
- Sousa, J., J. Deacon, S. Weissman, J. Harvey, C. Monismith, R. Leahy, G. Paulsen, and J. Coplantz. Permanent Deformation Response of Asphalt–Aggregate Mixes. Report No. A-414. SHRP, National Research Council, Washington, D. C., 1994.
- 27. Valdés, G., Pérez-Jiménez, F., Miró, R., Martínez, A., and Botella, R. Experimental study of recycled asphalt mixtures with high percentages of reclaimed asphalt pavement (RAP). Construction and Building Materials, 2011, 25(3), 1289-1297.
- Walubita, L. F., Faruk, A. N., Das, G., Tanvir, H. A., Zhang, J., & Scullion, T. (2012). The overlay tester: a sensitivity study to improve repeatability and minimize variability in the test results (No. FHWA/TX-12/0-6607-1). Texas Transportation Institute.

- Weissman, S. L., J. Harvey, and F. Long. 1998. Asphalt Concrete Laboratory Test and Specimen Dimensions Selection Based on Mechanical Constraints. Proceedings of the 12th Engineering Mechanics Conference ASCE. (LaJolla, California.) May.
- 30. West, R., Rodezno, C., Leiva, F., & Yin, F. (2018). Development of a framework for balanced mix design. *Project NCHRP*, 20-07.
- 31. Witczak, M. W., Kaloush, K., Pellinen, T., El-Basyouny, M., and Von Quintus, H. Simple Performance Test for Superpave Mix Design. NCHRP Report 465. Washington, DC. 2002.
- 32. Wu, Z., Mohammad, L. N., Wang, L. B., & Mull, M. A. (2005). Fracture resistance characterization of superpave mixtures using the semi-circular bending test. Journal of ASTM International, 2(3), 1-15.
- 33. Wu, S., Zhang, W., Shen, S., Muhuanthan, B., and Mohammad, L. N., (2017), Short-term Performance and Evolution of Materials Properties of Warm- and Hot-Mix Asphalt Pavements: Case Studies, Transportation Research Record: Journal of the Transportation Research Board, 2631(1), 39-54. <u>https://doi.org/10.3141/2631-05</u>.
- 34. Zhou, F., Scullion, T., Walubita, L. U. B. I. N. D. A., & Wilson, B. R. Y. A. N. (2014). Implementation of a performance-based mix design system in Texas. Application of Asphalt Mix Performance-Based Specifications, 32.
- 35. Zhou, F., Hu, S., & Scullion, T. (2006). Integrated asphalt (overlay) mixture design, balancing rutting and cracking requirements (No. FHWA/TX-06/0-5123-1). Texas Transportation Institute, Texas A & M University System.
- 36. Zhou, F., & Scullion, T. (2005). Overlay tester: A rapid performance related crack resistance test (Vol. 7). Texas Transportation Institute, Texas A & M University System.
- 37. Zhou, F., Hu, S., Chen, D. H., & Scullion, T. (2007). Overlay tester: simple performance test for fatigue cracking. Transportation Research Record, 2001(1), 1-8.
- Zhou, F., Scullion, T., & Sun, L. (2004). Verification and modeling of three-stage permanent deformation behavior of asphalt mixes. *Journal of Transportation Engineering*, 130(4), 486-494.

Author	Objective and Scope	Key Points
Barman	This study proposes new	The Superpave volumetric mix design does
et al.	procedure to characterize fatigue	not consider the inspection of asphalt
(2018)	resistance of asphalt mixtures	mixtures based on fatigue resistance.
	using the IDT test.	Testing asphalt mixtures based on their
	A new parameter called Fatigue	rutting and cracking performance is critical.
	Index is obtained from the	IDT test can be used to describe the fatigue
	existing testing methodology.	resistance of asphalt mixtures. This paper
		proposes a parameter known as Fatigue
Homzoh	The percentration resisture	Index
Hamzan	demage in earbeit mixtures. To	A usual cause of pavement distress causing
(2015)	anage in asphalt mixtures. To	normanant deformation is maisture damage
(2013)	impact and moisture damage a	the study recommends a single test cannot
	lab testing procedure and	be applied to assess moisture damage
	analysis protocol is proposed	Investigation must be conducted on
		pavement surface and subsurface drainage
		system for mitigation of moisture damage.
Garcia et	This paper reports on the	OT test results were assessed with the CPR
al. (2018)	methodology for characterizing	index to foresee the cracking potential of
	asphalt mixtures with the OT	asphalt mixtures.
	identifying crack propagation	Utilizing data from more than 350 tests of
	represented by the CPR	various mixtures the effectiveness of the
	parameter, using more than 250	proposed cracking methodology was
	OT results from ten different	evaluated
	mix types	
Newcomb	This study included a literature	A BMD mixture establishes a maximum
(2018)	review to review the states of	asphalt content based on the rutting
	the art practices for asphalt	resistance and a minimum asphalt content
	mixture performance testing and	based on cracking susceptibility.
	DIVID.	The performance tests and the BMD method
	for BMD mixtures for the	influence of asphalt content on cracking
	Minnesota Department of	suscentibility and rutting resistance
	Transportation	susceptionity and rutting resistance
Huang et	This paper presents a	The results from this study revealed that
al. (2005)	comparison between SCB test	SCB and IDT test results were equivalent
	results and the IDT test results	for certain parameters indicating the
	in characterizing the tensile	properties of each mixture.
	strength of HMA.	SCB test considerably reduces the loading
		strip induced permanent deformation thus
		the IDT is more suitable for evaluating
		tensile strength properties of HMA.

Appendix A – Literature Review

Author	Objective and Scope	Key Points
Izadi et al.	The objective was to	By identify the fracture energy parameter form
(2018)	examine mixtures in aged	the IDT one can predict the aging effects
	and unaged conditions to	changes in the mechanical properties of the
	more accurately predict	asphalt mixtures.
	the fatigue life of asphalt	When evaluating aged and unaged results, warm
	mixtures	mixtures have a higher fatigue life than hot
A 1 1		mixtures.
Aschenbrener (1005)	This paper assesses the	An outstanding correlation between the HW I
(1995)	most influencing	test and asphalt mixtures of known field
	Hamburg wheel tracking	the capacity to discriminate between payements
	tool results	with known field stripping performance
		When employing only one testing temperature
		and increasing the asphalt hinder stiffness the
		stripping inflection point occurred at a larger
		number of passes.
Chen and	The purpose of this study	Combining IDT and MIST is an effective way to
Huang (2007)	is the evaluation of	characterize lab measured moisture susceptibility
	moisture damage in a	for HMA.
	dense graded Superpave	Results from IDT indicate change in multiple
	mixture using IDT test.	parameters of the mixtures.
		Using a combination of freeze thaw cycles and
		dynamic modulus can also be an efficient to
		classify the performance of a mixture.
Wu et al.	Tthis paper reports the	SCB tests with a single notch depth, the fracture
(2005)	examination of the SCB	resistance is observed to be consistent with
	fracture registered	the peak load measurements
	characterization of asphalt	une peak toau measurements.
	mixtures	could be more brittle and less fracture resistant
	Performing the testing at	than those with lower tensile strengths
	25° C in a three-point	
	bending fixture in a MTS	
	system and evaluating the	
	fracture resistance.	
Roque et al.	The objective was to	The procedure developed provided reliable
(1999)	develop a complete testing	fracture test results that successfully compared
	and analysis method to	with other fracture parameters.
	determine fracture	Fracture tests performed on Superpave mixtures
	parameters using the IDT.	suggested that the mixture graded on the coarse
	The testing system	side of the restricted zone had significantly
	presented the parameters	Investigation of the second se
	that correspond to a	on the fine side of the restricted zone.
	mixture's resistance to	
	cracking.	

Author	Objective and Scope	Key points
Zhou et al.	This paper depicts the	The OT is sensitive to asphalt mixture
(2014)	development and	composition and volumetric properties.
	implementation of the OT as a	A balanced HMA mixture design system
	possible cracking test. Cases	integrating both rutting and cracking
	studies are also presented to	conditions is proposed.
	compare lab and field results.	Implementing the performance tests at
		different asphalt contents around the OAC
		determined based on volumetric design is
		proposed.
Zhou et al.	The goal of this project is to	A methodology of incorporating the OT into
(2006)	develop a HMA mixture	the TxDOT mixture design process was
	design methodology to balance	developed, and a balanced HMA mixture
	the rutting and cracking	design protocol considering rutting and
	requirements HWT and OT	cracking resistance requirements was
	devices were employed to	proposed.
	evaluate the rutting and	Several mixtures including Superpave and
	cracking resistance of HMA	dense-graded mixtures were utilized to
	mixtures, respectively.	authenticate and validate the balanced HMA
		mixture design procedure. It was found that
		aggregate absorption had a considerable
		influence on cracking and rutting resistance
TT- market		of HMA mixtures.
Harvey	An analysis of the effects of	Along with more days of LTOA initial
and 1 sal	initial stiffnass and fations	summess increased. The combination of
(1997)	of apphalt mixtures was	night all-void contents and LTOA
	or asphalt mixtures was	The effect of long term aging on payament
	California asphalt mixtures	fatigue life depends on asphalt type
	which were known to have	aggregate type, payement, and air void
	distinct aging characteristics	content. Findings of the study show that
	distinct aging characteristics.	increases in stiffness caused by long-term
		aging are not always disadvantageous to
		navement fatigue performance
Elseifi et	The objective of this study was	Results of the testing procedure showed that
al (2012)	to perform a complete	the SCB test results effectively calculated the
ul. (2012)	assessment of the SCB test to	fracture performance of the evaluated mixes
	later utilize this test to evaluate	and was able to discriminate between them
	a number of asphalt mixtures	in terms of cracking resistance.
	for cracking failure.	Damage that propagates near the notch is
		mainly caused by a combination of vertical
		and horizontal stresses in the specimen. The
		shear effect was insignificant in the
		progressing damage in the specimen.

Author	Objective and Scope	Key Points
Brown	The purpose of this project is to	Permanent deformation problems typically
et al.	evaluate information on permanent	appear early in life of a mixture and
(2001)	deformation, fatigue cracking,	normally result in the need for major repair
	low-temperature cracking,	while other distresses take much longer to
	moisture susceptibility, and	develop.
	friction properties, and if	Since the bottom-up fatigue is dominated
	applicable recommend	mainly by the pavement structure there is
	performance test(s) that can be	no way that a mixture test can be used
	implemented to ensure a better	alone to precisely predict fatigue.
	performance. Emphasis is placed	Moisture susceptibility is a problem
	on permanent deformation	causing asphalt binder to strip from the
		aggregate leading to raveling and
		disintegration of the mixture. The
		Hamburg test has also shown to identify
		mixes that tend to strip
Kaloush	This paper focuses on	The FN sensitivity results showed good
et al.	recommending a laboratory based	consistent indication of the stability of mix
(2003)	simple performance test for	as a function of binder content; yet, both
	permanent deformation evaluation	confined and unconfined testing showed
	of asphalt mixtures.	that relatively larger FN values occurred
		(higher resistance to rutting) at air voids
		less than the critical threshold normally
A :		accepted in typical mix design.
Airey	This paper includes a review of	Most water damage test procedures on
and	existing testing methods, protocols	compacted mixtures calculate the loss of
(2002)	and techniques for evaluating the	strength and stillness of an asphalt mixture
(2002)	moisture sensitivity of asphalt	due to moisture. The conditioning
	mixture materials. Loose	ettempt to simulate field conditions by
	mixture tests have been reviewed	attempt to simulate field conditions by
	and correlated test results with	accelerating the rate of strength loss. All
	observed field performance	conditioning procedure that does not
	observed held performance.	necessarily replicate field conditions
Zhou et	In this paper, information on the	Fatigue cracking is a two_stage process:
al	OT reflective cracking is presented	crack initiation and crack propagation the
(2007)	first Then a theoretical assessment	OT mainly characterizes crack propagation
(2007)	was conducted to determine the	therefore it can be used for fatigue
	relationship between crack	cracking
	initiation and crack propagation	The OT is used to ensure satisfactory crack
	interest and cruck propugation.	resistance of the designed mixtures. The
		existing good relationship between crack
		initiation and crack propagation
		theoretically, indicates the feasibility of
		using the OT for fatigue cracking

Author	Objective and Scope	Key Points
Epps et al. (2000)	This study focuses on the cracking performance of asphalt mixtures. The asphalt mixture must endure the effects of air and water, resist permanent deformation, and resist cracking caused by loading and the environment.,	The study indicated that fatigue cracking starts at the bottom or at the top of the asphalt layer, depending on the characteristics of the pavement. The study shows that fatigue cracks start as microcracks (crack initiation phase) that later propagates to form macrocracks (crack propagation phase) as the mixture is subjected to a stress. Changes in properties resulting from the effects of aging and moisture sensitivity further complicate mixture behavior and its evaluation.
Brown et al. (1999)	This study outlines the construction issues that have been detected by contractors working with Superpave mixes. The report provides results of a national performance survey of Superpave mixes.	Superpave mixes inspected provided good performance. Rutting was not observed to be a problem. Cracking seemed to be a major problem in the performance survey. Superpave mixtures segregate. This problem is no bigger nor smaller than conventional mixes. Segregated areas are more difficult to identify due to the amount of coarse aggregate in the mix
Walubita et al. (2012)	The objective of this study is to evaluate the repeatability between laboratories for the OT in a production environment by running duplicate tests, and validate the potential for having alternative tests to identify crack-susceptible mixes.	The OT specimen sitting time between molding and testing should not exceed 5 days. OT specimens having air-void values between 6.5 percent and 7.5 percent gave the most repeatable results. The OT result variability showed improvement in repeatability with decreasing opening displacement, the current practice of 0.025 in. opening displacement was recommended.
Zhou et al. (2005)	The objective of this study is to develop and validate the upgraded overlay tester and related test protocol and to characterize reflective cracking resistance	The test is rapid, and poor samples fail in minutes. It characterizes both crack initiation and crack propagation properties of asphalt mixtures. The overlay tester is repeatable, based on repeatability study results, three replicates are recommended for the overlay tester. Sensitivity studies indicate that the overlay tester provides reasonable test results.

Appendix B - Mix Designs and Pavement Materials for Laboratory Testing

labels Worksonk		IMACI	MIXI	UHE	DESIG	N : CO	DMBIN	ED G	RADA	TION													Maximum	Allowal
SAN	IPLE ID	: 341-S	P-CRAS	55828L	-	-		SAMPL	E DATE	104/28	2018	0.00257	5.97.57.3	1										Ka .
LOT N	JMBER	:		-	-		1	ETTIN	G DATE					1									Frac HAP:	20.1
SAMPLE S	TATUS	: Comp	lete				CON	ROLLI	NG CS.	1: 1309-	01-033		-										Unifrac HAP	- 10,
C	DUNTY	Jack						SPE	C YEAR	2014			-	1									BB Batio	20.
SAMP	ED BY	: Derek	Bryson	#1016	5			SPE	CITEN	1: 341		-		1									PID Hallo.	20.
SAMPLE LOC	ATION		221.2				SPECI	AL PRO	VISION	E.				1									Recycled	Bind
MATERIAL	CODE	1						M	X TYPE	341-D	G-C			1	WMA Ad	ditive in	Design'	No	_		1			6
MATERIAL	NAME	CRAS	5828L			_								Tar	get Discl	harge Tr	emp., °F	330			1		Bin No.8	0.7
PHO	DUCER	Lane						_							WMA.	11.05-0	OLGGN	Evothe	sim (Mee	rdWestv			Bin No.9 :	0.0
AHEA ENG	INEER	Edrea	n Cheng	1			PROJE	CT MA	NAGER	t				W/687	HATE	0.3	UNITS	to by v	relight of	asphat	Qsar thi	a natitier ø	Bin No.10 :	0.0
COURSEVLIFT		Surfac	e	S	ATION				0	DIST, FR	ROM CL			CO	NTRACT	OR DE	SIGN #	C	RAS58	28L		e conque molateiros	Total	0.70
						AGGRE	GATE	BIN FR	ACTION	IS			-		1	*REC	YCLED	MATER	IAI S*		1		[
Aggregate	Bin	No.1	Bin	No.2	Bin	No.3	Bin	No.4	Bin	No.5	Bin	No.6	Bin	No.7	Bin	No.8	Bin	No.9	Bin	No.10	1		Total Bi	ecycled nder, %
Source:	meston	t_Dolomit	imestone	e_Dolomi	imestory	Dolomi	meston	e_Dolomi	N						R	AS			-		Material	1	(have a b)	
Pir-	Pou	0.6401	Date	es Latel	Dee				1		-				ouse	maue	-		-	_	Type		(%) entered	below in t
- 14.		19-1181	Poic	an-really	Perc	n-Hill	Pen	ch-Hill	Par	adse					Pave	mant					Source		HORS	heet)
Number:	022	4901	022	4901	022	4901	022	1069							Tee	ir-att	1.8.00		11000		RAS Type	1	15	2
Producer:	Hai Aggn	igates	Har Appro	rson igates	Har Aggre	ison igates	Har Aggr	neon egates	T	inity											RAP/RAS			
Sample ID:	TX-1	51 (C)	TX-16	67 (D)	TX- (3/8)	166 Bin 6)	TX (Man	-178 sand)	Field	5end					R	AS					Sample ID			
						-			1	_	-		-		-	Recycle	ed Asph	alt Bin	der (%)					
	_														18	1.7				dine di			Combr	hed Grade
Hydrated Lime?:	-														4.0	% of Tat.		% of Tot.		% of Tet.	Total Bin			10.007
Individual Bin (%):	15.0	Percent	17.0	Percent	23.0	Percent	37.6	Percent	4.0	Percent		Percent		Percent	3.4	% of Aggreg		Access		% of Aggreg	100.0%	Lower &	Upper Specific	ation Lim
eve Size:	Curr.% Passing	Wtd Cum, %	Cum.% Passing	Wild Cum, %	Cum % Passing	Wild Cum %	Cum.% Passing	Wid Curr, %	Cum.% Passing	Wtd Cum, %	Dum.% Passing	WW Cum. %	Cum.% Passing	Wtd Cum, %	Cum.% Passing	WW Cum. %	Cum.15 Passing	Wtd Cum. %	Cum.% Passing	WM Cum. %	Cum. % Passing	Lower	Upper	With Spec
1.	100.0	15.0	100.0	17.0	100.0	23.0	100.0	37.6	100.0	4.0					100.0	3.4					100.0	100.0	100.0	Yes
3/4	97.8	14.7	100.0	17.0	100.0	23.0	100.0	37.6	100.0	4.0					100.0	3.4					99.7	95.0	100.0	Yes
No.4	30.8	4.6	85.1	14.5	58.0	13.3	100.0	37.6	100.0	4.0					100.0	3.4					77.4	70.0	85.0	Yes
No.8	4.5	0.7	36.9	6.3	3.6	0.8	99.4	37.4	100.0	4.0	-				99.6	3.4		-			52.5	43.0	63.0	Yes
No. 30	1.4	0.3	1.3	0.9	1,1	0.3	78.1	29.4	100.0	4.0					98.8	3.4					38.1	32.0	44.0	Yes
No. 50	1.3	0.2	0.8	0.2	0.8	0.2	12.0	10.3	96.5	3.9	-		-	_	60.7	2.1					16.9	14.0	28.0	Yes
No. 200	1.0	0.2	0.4	0.1	0.7	0.1	5.2	2.0	90.9	3.6	-		-	-	53.0	1.8		-		_	10.9	7.0	21.0	Yes
					0.0	w.1	0.0	2.0	0.3	0.3					25.0	0.9				4	3.4	2.0	7.0	Yes
Id Italic) Not within	specifical	ions (E	Bold Ital	lic) Not	within spec	fications	Restrict	ed Zone	(Italic)	Not cum	lative													
Lift Thickn	ass, in:	2.00			Binde	r Subst	itution?	Yes	Bind	ler Origi	nally Sp	ecified:	PG 7	0-28	Su	ibstitute	Binder:	PG 5	8-28					
	and a local data of		1	Issone i	Comina			Binde	r Parce	at /B/1.	40	Acaba	11 12	-										

Figure 3	- Mix	Design	1
----------	-------	--------	---

Batash Washingto	201	4 HMA	СР М	IXTUR	EDES	IGN : (сомв	INED (GRADA	TION			. 44.53.57										Mazir Allova	num ble %
SAMI	PLE ID:	FLCS	- 1001 -	76-22			SA		DATE:	7-30-2	018	CONFIGE	011:06:01										Frac BAP:	20.0
LOT NU	MBER:					<u> </u>	LE	TTING	DATE:														Unfrac RAP:	10.0
SAMPLE ST	TATUS:						CONT	ROLLIN	G CSJ:														RAS:	5.0
CC	DUNTY:							SPEC	YEAR:	2014													RB Ratio: 🔻	20.0
SAMPL	ED BY:	Stuart	Terwillig	jer # 11:	35			SPEC	ITEM:	344														
SAMPLE LOC:	ATION:	Floren	ice Plan	t		s	PECIA	L PRO	/ISION:														Recy	cled
MATERIAL	CODE:							MIX	TYPE:	344-SI	P-C			VI	MA Addi	itive in D	Design?	Yes			Alixture	not.	Binde	н. х. 📗
MATERIALI	NAME:	FLCS	P - 1001 -	76-22										Targ	et Disch	arge Te	mp., •F:	325			codefined a	s leater	Bin No.8 :	0.8
PROD	UCER:	Aspha	ilt Inc. Ll	.C											VMA T	ECHNO	DLOGY:	Evothe	rm (Mea	dWestv:			Bin No.9 :	0.0
AREA ENG	INEER:					PI	ROJEC	T MAN	AGER:					VMA	RATE:	0.3	UNITS:	% by w	eight of	asphalt	Use this	nalve in ocyay	Bin No.10 :	0.0
COURSE/LIFT:		Surface	•	ST/	ATION:				DIS	ST. FRO	DM CL:			CON	TRACTO	OR DES	SIGN # :	FLCS	P - 1001	-76-22	ten	white://	Total	0.8
					AG	GREG	ATE E	IN FR	ACTIC	INS					-F	RECYC	LED	AATE	RIALS	-			Ratio of F	Recycled
Aggregate	Bin	No.1	Bin I	No.2	Bin	No.3	Bin	No.4	Bin I	No.5	Bin M	lo.6	Bin P	lo.7	Bin M	lo.8	Bin M	lo.9	Bin M	lo.10			to Total B	Sinder, 2
Source:	imertane	Delemi	imortano	Dalamit	imertane	Delemi	imertone	Delamit							Fractions	ato d RAP					Material		(harsdon hind	her par cant
	Mark	- Falls	Markl	Falls	Marki	- Falls	Mark	- Falls													Type Material		(X) contered h	Abu in this
Pit:	Qu	arry	Qua	rry	Que	arry	Qu	arry													Source		Darket	net)
Number:	140	2702	1402	702	140	2702	140	2702													Tupo		16.3	2
Deaduras	Olda	artio	Olde-	artio	Olda	artle	Olda	artio													RAPIRA			
Producer:	Matorio	alr Toxar	Matoria	lr Toxar	Matoria	lr Toxar	Matorio	ılır Toxar							Arpha	itine.					S Producer			
Sample ID:	C-F	Back	D-B	nck	F-F	lock	Man	rand													Sample			
																					ID			
															Re	cycleo	i Asph	alt Bi	nder (:	X)				
															4.	2		14-6		1.1.4			Cambin	ed Gradation
Hydrated Lime?:															19.7	Mix		Tat. Mix		Tat. Mix	Total Bin	Lauses	Unner Snecific	ating Limite
Individual Bin (%):	25.0	Porcont	25.0	Porcont	16.0	Porcont	14.0	Porcont		Porcont		Porcont		Porcon	20.0	Xat Aggreg		Xat Aggrog		Xat Aggreg	100.0%			
Sieue Size	Cum.%	1110	Cum.X	1110	Cum.Z	1110	Cum.2	1110	Cum.X	1110	Cum.X	11 d	Cum.Z	wh0	Cum.2	1110	Cum.X	1110	Cum.×	1110	Cum.×	1		Within
oleve olze.	Parring	Cum. X	Parring	Cum.×	Parring	Cum. X	Parring	Cum. X	Parring	Cum. X	Parring	Cum. X	Parring	Cum.×	Parring	Cum. X	Parring	Cum. Z	Parring	Cum. %	Parring	Latter	opper	Spec's
1"	100.0	25.0	100.0	25.0	100.0	16.0	100.0	14.0							100.0	20.0					100.0	100.0	100.0	Yes
3/4"	99.2	24.8	100.0	25.0	100.0	16.0	100.0	14.0							100.0	20.0					99.8	98.0	100.0	Yes
1/2"	68.0	17.0	99.2	24.8	100.0	16.0	100.0	14.0							99.8	20.0					91.8	90.0	100.0	Yes
3/8"	37.6	9.4	87.5	21.9	100.0	16.0	100.0	14.0							97.5	19.5					80.8	58.0	90.0	Yes
No. 4	4.7	1.2	19.9	5.0	66.6	10.7	99.9	14.0							77.7	15.5					46.3	28.0	90.0	Yes
No. 8	2.8	0.7	4.2	1.1	8.6	1.4	89.2	12.5							58.1	11.6					27.2	28.0	58.0	No
No. 16	2.6	0.7	3.1	0.8	2.8	0.4	57.9	8.1							45.2	9.0					19.0	2.0	58.0	Yes
No. 30	2.5	0.6	2.7	0.7	2.3	0.4	37.8	5.3							36.4	7.3					14.2	2.0	58.0	Yes
No. 50	2.4	0.6	2.6	0.7	2.1	0.3	24.1	3.4							26.4	5.3					10.2	2.0	58.0	Yes
No. 200	2.1	0.5	2.1	0.5	1.8	0.3	5.8	0.8							8.0	1.6					3.8	2.0	10.0	Yes
(Bold Ralic) Nat	uithinzpe	cificatio	w (Bo	io Ital	IC/ Not	uithinsp	ocificaite	ins-Rostr	ictod Zana	, (Italii	🏏 Not cu	mulativo										_		
Life Thick -					Distant	0.4	and a set of the set o		m	and Chailed	Her Orall	Mi		0.00	0.11		min days			,				
Lift Thickn	ness, in:				Binder	r Substi	itution?	D : 1	Bind	er Origi	nally Sp	ecified:	PG7	6-22	Sul	bstitute r	Binder:							
Lift Thickn Asphalt S	ness, in: Source:			Valero	Binder 76-22	r Substi	itution?	Binde	Bind Perce	er Origi nt, (%):	nally Sp 5.1	ecified: Aspha	PG 7 alt Spec	6-22 . Grav.:	Sul 1.033	bstitute	Binder:							

Figure 4 - Mix Design 2

Rollach Wrokhung	۲	MACE	MIXT	URE	DESIG	N : CC	MBIN	ED GF	ADAT	ION	In Manual I	Contractor											Maximum	Allowabl
SAM	PLE ID	341-S	P-CRAS	6422L	_	1		SAMPLE	E DATE	07/10/	2018		a dribriði	1									Erec RAD.	20.0
LOT N	JMBER	1				-	1	ETTINO	DATE				_	1									Lindrag DAD	20.0
SAMPLE S	TATUS	Comp	lete				CONT	ROLLIN	NG CSJ	1309-0	1-033		-	1									DAC-	E.0.
CI	OUNTY	Jack				-		SPEC	YEAR	2014				1									RB Batin	3.0
SAMPL	LED BY	Derek	Bryson	#1016			-	SPE	C ITEM	341				1									no navy.	
SAMPLE LOC	ATION	12				1.1.2	SPECIA	AL PRO	VISION					1									Recycled	Binde
MATERIAL	CODE	1					-	MC	X TYPE	341-D	G-C			V	NMA Ad	ditive in	Design?	No			1		3	billio
MATERIAL	NAME	CRAS	6422L											Tar	get Disch	narge Te	mp., °F	330		1			Bin Np.8 :	0.7
PROD	DUCER	: Lane													COLUMN.		0.0	Evothe	vm (Mea	Wastva			Bin No.9 :	0.0
AREA ENG	INEER	: Edrear	n Cheng			1.1	PROJE	CT MAR	NAGER:					COLUMN A	1.57	0.3	3	% by n	reight of	asphalt	Use this	s value in	Bin No.10 ;	0.0
COURSE/LIFT:		Surface	8	ST	ATION				D	IST. FR	OM CL:			CO	NTRACT	OR DE	SIGN #	C	RAS64	22L	the ter	e QC/QA nplate>>	Total	0.700
						AGGRE	GATE	BIN FR	ACTION	s		-				"REC	CLED	MATER	IALS"	1	1		Batic of Re	neurolad t
Aggregate	Bin	No.1	Bin	No.2	Bin	No.3	Bin	No.4	Bin	No.5	Bin	No.6	Bin	No.7	Bin	No.8	Bin	No.9	Bin	No.10			Total Bir	nder, %
Source:	imeston	e_Dolomit	Intestone	Dolomit	mestory	a_Dolomit	imeston	e_Dolomit			1-1-1				R	45				180	Material]	(based on bin	ider percer
Pit:	Pen	ch-Hill	Perc	n-Hit	Perc	27-HI	Perc	ah-Hill	n-Hill Paradise Molectial Paradise Payment Sources Sources L.C. Sources				(%) entered b workst	naiow in thé heat)										
Number:	025	14901	.022	4901	022	4901	022	4901							Tea	roll			1.000	10000	RAS Type		15.	2
Producer:	Ha Aggr	neon egates	Har Aggre	nson Ingates	Har	nson egates	Har Aggn	nson egates	TR	nity								10.1		-	RAP/RAS Producer			
Sample ID:	TX-1	61 (C)	TX-16	57 (D)	TX (3/8	-166 Bin 6)	TX (Mar	178 sand)	Field	Sand					R	us		1			Sample ID			
					-			-					-			Recycle	ed Asph	alt Bin	der (%)	1				
			_												18	17	2.25			-1.50			Combin	ed Gradati
Hydrated Lime?:															4.0	% of Tet.		% of Tal.		% of Tot.	Total Bin			
Individual Bin (%):	15.0	Percent	17.0	Percent	23.0	Parcent	37.6	Percent	4.0	Percent		Percent	1	Percent	3.4	Si of Appres		No of Aggrega		Next No.01 Aggreg	100.0%	Lower &	Upper Specific	ation Limit
ieve Size:	Cum % Passing	Wild Cum. %	Cum % Passing	Witt Curn. %	Cum % Passing	Wtd Cum. %	Cum % Passing	What Cum, %	Cum.% Passing	With Curr. %	Cum % Passing	Wtd Cum, %	Cum.% Passing	Wtd Cum. %	Curt.% Passing	WM Cum. %	Oum.% Passing	Wild Cum, %	Dum.% Passing	Wtd Cum. %	Cum, % Passing	Lower	Upper	Within Spec's
1*	100.0	15.0	100.0	17.0	100.0	23.0	100.0	37.6	100.0	4.0					100.0	3.4					100.0	100.0	100.0	Yes
3/4"	97.8	14.7	100.0	17.0	100.0	23.0	100.0	37.6	100.0	4.0					100.0	3.4					99.7	95.0	100.0	Yes
3/8*	30.8	4.6	85.1	14.5	58.0	13.3	100.0	37.6	100.0	4.0					100.0	3.4					77.4	70.0	85.0	Yes
No. 4	4.5	0.7	36.9	6.3	3.6	0.8	99.4	37.4	100.0	4.0			9. B		99.6	3.4			8 8		52.5	43.0	63.0	Yes
No. 8	1.8	0,3	5.3	0.9	1.1	0.3	78.1	29.4	100.0	4.0					98.8	3.4	1.2				38.1	32.0	44.0	Yes
No. 30	1.4	0.2	1.3	0.2	0.8	0.2	27.5	10.3	96.5	3.9					60.7	2.1					16.9	14.0	28.0	Yes
No. 50	1.3	0.2	0.8	0,1	0.7	0.2	13.2	5.0	90.9	3.6					53.0	1,8					10.9	7.0	21.0	Yes
No. 200	1.0	0.2	0.4	0.1	0.5	0.1	5.3	2.0	6.3	0.3					25.0	0.9					3.4	2.0	7.0	Yes
old Italic) Not within	statics	tions //	Rold Ita	fiel that	within some	ellesten	Bestore	nd Torra	(Halle)	Net and	dather													
101 110 21		2.00	a hur	and the state	Binde	- Dubat	itution?	Vee	Bind	er Origi	nally So	ecified.	PG 7	0.28	C.	helihde	Binder	PC 4	20.13	1				
Lift Thickn	ess, in:	12.00			1 Dillor	1 20050					COMPANY & SAMPLE	the second s		And the second sec	31	ALCORED IN C.	LOU HARD	F133 6	100-07					
Lift Thickn Asphalt 3	source	2.00		Owens	Comina	ar aubst	nu un un	Binde	Paren	H (96)-	10	Apple	il Cooo	Camer	0.000			1	r t hote					

Figure 5 - Mix Design 3

	2014	HMAC	CP MD	TURE	DESI	GN : (сомв	INED	GRAD	ATION	1												Maxin	num
Refresh Workbook									TX2MIXE	DE14 - Fil	e Version	n: 08/16/18	15:58:53	1									Allowa	ble, %
SAM	PLE ID:	155102	2001805	124				SAMPLE	DATE:	10/2/2	018												Frac RAP:	20.0
LOT NU	MBER:	MIX De	sign					LETTING	DATE:														Unfrac RAP	10.0
SAMPLE S	ATUS:	PENA					CON	ROLLIN	IG CSJ:														RAS:	5.0
CC	DUNIY:							SPEC	YEAR:	2014													RB Ratio:	20.0
SAMPL	ED BY:	CLINT	Е НАМР	SON				SPE	C ITEM:														1	1
SAMPLE LOC	ATION:						SPECI	AL PRO	VISION:												Misturer	vo/	Recycled	Binder,
MATERIAL	CODE:	0344C	M0000					MD	CTYPE:	344-SI	P-C			N	VMA Add	litive in l	Design?	Yes			Codelined	as	%	
MATERIAL	NAME:	ITEM 34	44 COM	PLETE I		2A ALL	MIX TY	PES						Targ	et Disch	arge Te	mp., °F:	325			WM4		Bin No.8 :	0.5
PROL	DUCER:	M1504	600704	607:DE/	AN WOP	RD CON	IPANY,	LONE S	TAR						WMA	TECHNO	LOGY:	Evothe	rm (Mea	idwestv	1 lan shia		Bin No.9:	0.4
AREA ENG	SINEER:						PROJE	CT MAR	AGER:					WMA	RATE:	0.5	UNITS:	% Бу м	eight of	asphalt	Use mis the	aciae in acia4	Bin No.10 :	0.0
COURSE\LIFT:		Surface	•	ST	ATION:				D	IST. FR	OM CL:			CC	ONTRACT	FOR DES	SIGN # :		3229		tem,	olate>>	Total	0.9
						AGGRE	GATE	BIN FRA	CTIONS	6						"RECY	CLED N	IATERI	ALS"				Ratio of R	ecycled
Aggregate	Bin I	lo.1	Bin	No.2	Bin	No.3	Bin	No.4	Bin I	No.5	Bin I	No.6	Bin I	No.7	Bin N	lo.8	Bin N	lo.9	Bin N	lo.10			to Total B	inder, %
Source:	Sands	stone	Sand	stone	nestone	Dolom	mestone	e Dolom	mestone	Dolom					Fractio	nated	Fractio	nated			Material		(based o	n binder
															RA	Ψ	RA	P			Type Material		percent (%	() entered
Pit:	Brow	nlee	Brov	nlee	Lone	Star	Lon	e Star	Lone	Star					1504	607	1504	607			Source		below in this	wcsksheet)
Number:	1402	704	1402	2704	1504	607	150	4607	1504	607											RAS Type		17.	0
Producer:	Cap Aggre	itol nates	Cap Aggre	oitol mates	Dean V	ord Co.	Dean \	/ord Co.	Dean V	ord Co.											RAP/RAS			
																					11000001			
Sample ID:	CR	ock	GF	R-4	DR	ock	FF	lock	Dry Scr	eenings					Fine	1/2"	Fine	1/2"			Sample ID			
															R	lecycle	d Asph	alt Bin	der (%)					
															4.	5	4.	0				_	Combine	d Gradation
Hydrated Lime?:															10.0	% of Tot Mix	10.0	% of Tot		% of Tot	Total Bin			
Individual Bin (%):	13.0	Percent	16.0	Percent	11.0	Percent	13.0	Percent	26.8	Percen		Percent		Percent	10.1	2 of Aggreg	10.1	% of Aggreg		2 of Aggreg	100.0%	Lower &	Upper Specific	ation Limits
	Cum.%	Wid	Cum.%	wid.	Cum.%	Wid.	Cum.%	lund.	Cum.%	₩7d	Cum.%	1.00	Cum.%	11d	Cum V	Land.	Cum V	wid.	Cum.%	110	Cum V			Mithin
Sieve Size:	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum. %	Passin	Cum.	Passin	Cum. %	Passin	Cum.	Passing	Cum. %	Passing	Cum.	Passin	Cum.	Passing	Lower	Upper	Spec's
1"	100.0	13.0	100.0	16.0	100.0	11.0	100.0	13.0	100.0	26.8	- 0			~	100.0	10.1	100.0	10.1	-	~	100.0	100.0	100.0	Yes
3/4"	100.0	13.0	100.0	16.0	100.0	11.0	100.0	13.0	100.0	26.8					100.0	10.1	100.0	10.1			100.0	98.0	100.0	Yes
1/2"	37.0	4.8	98.0	15.7	99.0	10.9	100.0	13.0	100.0	26.8					100.0	10.1	96.3	9.7			91.0	90.0	100.0	Yes
3/8"	5.0	0.7	70.2	11.2	70.0	7.7	100.0	13.0	100.0	26.8					98.4	9.9	90.0	9.1			78.4	58.0	90.0	Yes
No. 4	3.0	0.4	5.5	0.9	1.0	0.1	48.0	6.2	96.0	25.7					70.9	7.2	66.8	6.7			47.3	28.0	90.0	Yes
No. 8	2.0	0.3	1.0	0.2	1.0	0.1	2.0	0.3	75.0	20.1					48.1	4.9	49.0	4.9			30.7	28.0	58.0	Yes
No. 16	0.5	0.1	1.0	0.2	1.0	0.1	1.0	0.1	48.0	12.9					35.0	3.5	38.0	3.8			20.7	2.0	58.0	Yes
No. 30	0.4	0.1	1.0	0.2	1.0	0.1	1.0	0.1	35.0	9.4					28.2	2.8	29.3	3.0			15.6	2.0	58.0	Yes
No. 50	0.3	0.0	1.0	0.2	1.0	0.1	1.0	0.1	26.0	7.0					21.2	2.1	22.1	2.2			11.8	2.0	58.0	Yes
No. 200	0.2	0.0	0.5	0.1	1.0	0.1	1.0	0.1	15.0	4.0					7.2	0.7	5.7	0.6			5.7	2.0	10.0	Yes
(Bold Italic) Not with	hin specif	ications	(Bold	l Italic)	Not with	nin speci	ficaitons	- Restric	ed Zone	(Italic) Not cu	mulative								• • •		,		· · · · · ·
Lift Thickn	ess, in:				Binde	r Subst	titution?	Yes	Binde	er Origi	nally Sp	ecified:	PG 7	6-22	Su	Ibstitute	Binder:	PG 7	70-22]				
Asphalt S	Source:		١	/alero P	G 70-2	2		Binde	r Percer	nt, (%):	5.0	Aspha	It Spec.	Grav.:	1.038									
				_				1	Denne	4 /0/ \-														

Figure 6 - Mix Design 4

Refresh Workbook	201	4 HMA	CP MI	XTUR	E DES	IGN :	COME	BINED	GRAD	ATIO	N Te Version	1: 01/19/1	7 15:32:54										Maximum /	Allowable
SAN	IPLE ID	:						SAMPLI	E DATE	9-27-2	2017 Sul	omitted		1									Frac BAP	20.0
LOT NU	JMBER	:					1	ETTING	G DATE	: 03/07/	17			1									Unfrac RAP:	10.0
SAMPLE S	TATUS	:					CONT	ROLLI	NG CSJ	: 0535-	04-030			1									RAS:	5.0
C	DUNTY	GONZ	ALES I	H 10				SPEC	YEAR	: 2014				1									RB Ratio:	20.0
SAMPL	ED BY	-	_					SPE	C ITEM	: 341]										
SAMPLE LOC	ATION	:					SPECI	AL PRO	VISION	:													Recycled	Binder
MATERIAL	CODE	:						MD	X TYPE:	341-D	G-D			1	WMA Ad	ditive in	Design?	No (W	MA durir	ng prod.)	Mixture	not	%	
MATERIAL	NAME	: Type [D SAC-E	3 Ergon	PG 76-	22								Tar	get Disch	harge Te	mp., °F:	325			< <defined a<="" td=""><td>s WMA</td><td>Bin No.8 :</td><td>0.5</td></defined>	s WMA	Bin No.8 :	0.5
PHOL	DUCER	COLO	RADO	MATER	IALS, H	UNTER	PLANT								WMA	TECHN	OLOGY	Evothe	rm (Mea	dWestva			Bin No.9 :	0.0
AHEA ENG	INEER						PROJE	CT MA	NAGER:					WMA	RATE:	0.3	UNITS	% by w	eight of	asphalt	Use this	s value in	Bin No.10 :	0.0
COURSE\LIFT:		Surfac	e	ST	ATION				D	IST. FR	IOM CL:			CO	NTRACT	OR DE	SIGN # :	DR40	-E76-H	UNTER] ter	mplate>>	Total	0.5
						AGGRE	GATE	BIN FR	ACTION	S						"REC	CLED	MATER	IALS"		1		Ratio of Po	avalad to
Aggregate	Bin	No.1	Bin	No.2	Bin	No.3	Bin	No.4	Bin	No.5	Bin	No.6	Bin	No.7	Bin	No.8	Bin	No.9	Bin	No.10	1		Total Bin	der, %
Source:	imeston	e_Dolomit	imeston	-Dolomit	imeston	e_Dolomit									Fraction	ated RAP					Material	1	(based on hin	der nerrent
Pit:	Hu	nter	Hu	nter	Hu	nter	Stoc	ckdale											-		Material		(%) entered b worksh	elow in this eet)
Number:	150	4605	150	4605	150	4605		_								1.4.4		122	CHT.	-	RAS Type		10.	0
Producer:	Cold Mat	orado erials	Cold Mate	arado arials	Cold	orado erials	Coli Mat	orado erials							FINE	RAP					RAP/RAS			
Sample ID:	D-R	оск	F-B	оск	MAN	SAND	SILICA	SAND													Sample ID			
																Recycle	d Asph	alt Bin	der (%)			1		
11 - 1 - 1 - 2	_	_				_									5	2							Combine	ed Gradatio
Hydrated Lime?:															10.0	% of Tot. Mix		S of Tot. Mix		% of Tot. Mix	Total Bin		atan kanana ku	
Individual Bin (%):	22.0	Percent	33.0	Percent	25.0	Percent	10.0	Percent		Percent		Percent		Percent	10.0	% of Aggreg		% of Aggreg		% of Aggreg	100.0%	Lower &	Upper Specifica	tion Limits
Sieve Size:	Cum.% Passing	Wtd Cum, %	Cum.% Passing	Wtd Cum. %	Cum.% Passing	Wtd Cum. %	Cum.% Passing	Wtd Cum, %	Cum.% Passing	Wid Cum. %	Cum.% Passing	Wtd Cum. %	Cum.% Passing	Wtd Cum. %	Cum.% Passing	Wtd Cum. %	Cum.% Passing	Wtd Cum. %	Cum.% Passing	Wtd Cum. %	Cum. % Passing	Lower	Upper	Within Spec's
3/4"	100.0	22.0	100.0	33.0	100.0	25.0	100.0	10.0							100.0	10.0					100.0	100.0	100.0	Yes
1/2*	100.0	22.0	100.0	33.0	100.0	25.0	100.0	10.0							98.0	9.8					99.8	98.0	100.0	Yes
3/8"	72.0	15.8	100.0	33.0	100.0	25.0	100.0	10.0							90.0	9.0					92.8	85.0	100.0	Yes
No. 4	5.0	1.1	72.0	23.8	99.0	24.8	100.0	10.0							65.0	6.5					66.1	50.0	70.0	Yes
No. 8	2.3	0.5	6.0	2.0	80.0	20.0	99.5	10.0							48.0	4.8					37.2	35.0	46.0	Yes
No. 30	1.8	0.4	2.8	0.9	29.0	7.3	92.0	9.2							32.0	3.2					21.0	15.0	29.0	Yes
No. 50	1.7	0.4	2.4	0.8	18.0	4.5	59.0	5.9							25.0	2.5					14.1	7.0	20.0	Yes
No. 200	1.5	0.3	2.0	0.7	9.0	2.3	12.0	1.2		_					13.0	1.3					5.7	2.0	7.0	Yes
lold Italic) Not within	specifica	tions (1	Bold Ita	lic) Not	within soe	cificaitons	- Restrict	ed Zone	(Italic)	Not cum	lative													
Lift Thickn	ess, in:				Binde	r Subst	itution?	Yes	Bind	er Oriai	nally So	ecified:	PG 7	6-22	S	bstitute	Binder							
Asphalt S	Source:			ERC	ON			Binde	r Percer	nt. (%):	5.2	Aspha	It Spec	Gray ·	1.037		_ nash.	-	-					
Antistripping	Agent:								Percer	nt (%).		, april			1.007									

Figure 7 - Mix Design 5

ASPHALT CEME	INT
Binder originally specified:	PG 76-22
Substitute binder:	PG 70-22
. AC Producer:	Lion Oil
JMF2 asphalt content (AC), %:	5.5
Current JMF AC, %:	5.4
Recycled binder from mix design, %:	1.0
Maximum recycled binder ratio:	20
Ignition oven correction factor, TxDOT:	-0.1
Ignition oven correction factor, Contractor:	-0.1

Design number of gyrations:	50
Mix specific gravity (Ga):	2.300
Asphalt specific gravity (G1):	1.017
Rice gravity (Gr):	2.397
Target laboratory molded density, %:	96.0
Tex-206-F: Press cor	relations
TxDOT Press correlation factor:	
TxDOT Press ID & serial number:	
Contractor Press correlation factor:	Contraction of the second
Contractor Press ID & serial number:	

2	PERFORMANCE PROPERTIES OF BITUMINOUS MIXTURES	
	Design VMA, %: 16.5	1
	Tex-530-C Boil test percent stripping, %: 0	

Figure 8 - Mix Design 6

Patrock Maddacek	2014 I	HMAC	P MIX	TURE	DES	GN : (COME	BINED	GRAE	OITA	N	010007	15.00.54										Maxin	num
SAM		115 59				<u> </u>	9			: 14 - File	version	Unann	10:32:04										Erac BAP	20.0
LOT N	IMBER-	0000						FTTING	DATE:														Linfrac BAE	10.0
SAMPLE ST	ATUS	Design					CONT	ROLLIN	G CSJ:	0447-0	01-063												BAS:	5.0
CC	UNTY:	Live O	ak					SPEC	YEAR:	2014													BB Batio:	20.0
SAMPL	ED BY:	Emilio E	Banda #	966				SPE	CITEM:	344														
SAMPLE LOC	ATION:	Three	Rivers				SPECIA	L PROV	/ISION:														Recv	led
MATERIAL	CODE:							MIX	TYPE:	344-SF	P-D			w	MA Addi	tive in D	esian?	No			1		Binde	r, %
MATERIAL	NAME:	SP_D (B) RAP	70-22	Sub 64	-22								Targe	t Discha	rge Te	mp., °F:	325			1		Bin No.8:	0.7
PROD	UCER:	Centur	y Asph	alt LTD	Thre	e River	s Plant								WMA T	ECHNO	LOGY:				1		Bin No.9:	0.0
AREA ENG	INEER:						PROJEC	CT MAN	AGER:					WMA	RATE:		UNITS:				Use this	ualue in ocion	Bin No. 10 :	0.0
COURSE\LIFT:		Surface	e	ST/	ATION:				DI	ST. FR	OM CL:			CO	NTRACT	OR DES	SIGN # :	5	40025-	51	i ine hem	alana) S	Total	0.7
																					1			
					A	GGRE	GATE B	BIN FRA	CTION	s						"RECY	CLEDN	ATER	IALS"				Ratio of R	ecycled
Aggregate	Bin	No.1	Bin I	lo.2	Bin	No.3	Bin	No.4	Bin	No.5	Bin N	lo.6	Bin I	lo.7	Bin N	lo.8	Bin N	lo.9	Bin N	lo.10			to Total B	inder, %
Source:	nestone	Dolom	nestone	Dolom	nestone	Dolor									Fractio	nated					Material		(based ci	n binder Vontored
	Balo	ones	Balco	nes	Balo	ones									Centuru	Asnhalt					I ype Material	1	below i	n this
Pit:	Qu	arry	Qua	arry	Qu	arry	Pol	teet							TRF	Plant					Source		works:	hee()
Number:	150-	4602	1504	602	1504	\$602															Type		13.	2
Producer	Cer	mev	Cen	nev	L Ce	mev									Century.	Asphalt					RAP/RAS			
Troducer.			001												TRF	Plant					Producer			
Sample ID:	G	r 4	D/E E	Riend	Man	sand	Sa	nd							Fine	1/2"					Sample			
oumpie ib.			2.1 2		1-141	- ana															D			
															R	ecycle	d Asph	alt Bin	der (%)				
															5.	0							Combine	Gradation
Hydrated Lime?:															14.0	X of Tot. Mix		X of Tot. Mix		X of Tot. Mix	Total Bin	Lowe	r & Upper Spec	ification
Individual Bin (%):	28.0	Percent	31.4	Percent	20.0	Percent	6.6	Percent		Percent		Percent		Percen	14.0	X of Acerca		X of Baaroa		X of Acerca	100.0%		Limits	
a: a:	Cum.%	wid	Cum.%	wid .	Cum.%	wid	Cum.%	1010	Cum.%	1010	Cum.X	1010	Cum.%	1010	Cum.%	1010	Cum./	110	Cum.%	110	Cum.%			Vithin
Sieve Size:	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passing	Cum.	Passin	Cum.	Passin	Cum.	Passing	Lower	Upper	Spec's
3/4"	100.0	28.0	100.0	31.4	100.0	20.0	100.0	6.6						- 4	100.0	14.0		- 4		<u> </u>	100.0	100.0	100.0	Yes
1/2"	96.0	26.9	100.0	31.4	100.0	20.0	100.0	6.6							100.0	14.0					98.9	98.0	100.0	Yes
3/8"	73.0	20.4	100.0	31.4	100.0	20.0	100.0	6.6							83.0	11.6					90.1	90.0	100.0	Yes
No. 4	3.0	0.8	44.0	13.8	100.0	20.0	100.0	6.6							55.0	7.7					49.0	32.0	90.0	Yes
No. 8	3.0	0.8	8.0	2.5	90.0	18.0	100.0	6.6							40.0	5.6					33.6	32.0	67.0	Yes
No. 16	3.0	0.8	5.0	1.6	62.0	12.4	98.0	6.5							33.0	4.6					25.9	2.0	67.0	Yes
No. 30	2.0	0.6	2.0	0.6	31.0	6.2	96.0	6.3							27.0	3.8					17.5	2.0	67.0	Yes
No. 50	2.0	0.6	1.0	0.3	17.0	3.4	76.0	5.0							22.0	3.1					12.4	2.0	67.0	Yes
No. 200	2.0	0.6	1.0	0.3	2.0	0.4	3.0	0.2							11.0	1.5					3.0	2.0	10.0	Yes
(Bold Italic) Not w	ithin spe	cification	ns <mark>(Bo</mark>	ld Ital	ic) Not	within sp	ecificait	ons-Re	stricted Z	one (I	<i>Italic)</i> N	lot cum	ulative							,				
Lift Thickne	ess, in:				Binde	r Subst	itution?	Yes	Binde	Origin	ally Spe	ecified:	PG 7	0-22	Sub	ostitute	Binder:	PG 6	64-22					
Asphalt S	Source:		Cent	tury Te	rminals	LLC		Binder	Percen	t. (%):	5.3		Aspnai	spec.	1.027									

Figure 9 - Mix Design 7

Refresh Workbook	2014	НМА		XTURI	EDES	IGN :	соме		GRAD	ATION 14 - File	l Version: I	01/19/17	15:32:54										Maxin Allowa	num ble, %
SAME	PLE ID:	Approv	/ed				S	AMPLE	DATE:														Frac RAP:	20.0
LOT NU	MBER:						LE	ETTING	DATE:														Unfrac RAP:	10.0
SAMPLE ST	TATUS:						CONTR	ROLLIN	G CSJ:	0108-	11-019												RAS:	5.0
CC	UNTY:	Rains						SPEC	YEAR:	2014													RB Ratio:	20.0
SAMPL	ED BY:	Danie	Billings	sley				SPEC	CITEM:	341														
SAMPLE LOC	ATION:	Terrel					SPECIA	L PRO\	ISION:	341													Recycled	Binder,
MATERIAL	CODE:	1892						MIX	TYPE:	341-D	G-D			W	MA Addit	tive in D	esign?	No					%	
MATERIAL	NAME:	Type D) Class	A RAP										Targe	t Discha	arge Tei	np., °F:	300					Bin No.8 :	0.8
PROD	UCER:	TXBIT													WMA T	ECHNO	LOGY:						Bin No.9 :	0.0
AREA ENGI	NEER:						PROJE	CT MAN	AGER:					WMA	RATE:		UNITS:				Use this the	OC/QA	Bin No.10 :	0.0
COURSE\LIFT:	1	Surface	9	ST	ATION:				DI	ST. FR	OM CL:			CON	TRACTO	OR DES	IGN # :	70-	214054	4-18	tem	plate>>	Total	0.8
						AGGRE	GATE B	IN FRA	CTIONS							"REC)	CLED N	ATER	ALS"]		Ratio of Re	cycled to
Aggregate	Bin I	No.1	Bin N	lo.2	Bin I	No.3	Bin	No.4	Bin I	No.5	Bin N	No.6	Bin N	lo.7	Bin N	lo.8	Bin M	lo.9	Bin N	lo.10			Total Bin	der, %
Source:	Igne	ous	mestone,	_Dolomi	mestone	_Dolom									Fractio	inated					Material		(based or	binder
	_														R4	۹P.					Type Material		percent (%)	Tentered
Pit	Davis	5, OK	Perch	n-Hill	Perci	h-Hill															Source		below in this i	vorksheet/
Number:	0050	0439	0224	1901	0224	4901															RAS Type		16.	0
Producer:	Han Aggre	son gates	Han Aggre	son gates	Han Aggre	son gates	Red	i Mis													RAP/RAS Producer			
Sample ID:	Type D	Class A	Тур	еD	Mans	and	Field	Sand							Fine	1/2"					Sample ID			
																Recycle	d Asph	alt Bin	der (%)					
															5.	2	· ·						Combined	Gradation
Hydrated Lime?:															16.0	% of Tot.		% of Tot.		% of Tot.	Total Bin	1		- 161 14
Individual Bin (%):	26.0	Percen	21.0	Percent	33.0	Percent	4.0	Percent		Percent		Percent		Percen	16.0	Mix 2 of		Mix 2 of		Mix % of	100.0%	Lowe	Limits	ancation
	Lum.Z	h/b/	Lum Z	602	Cum.Z	i elceni iv@z	Lum Z	602	Cum Z	N/07	Lum Z	1 ercern	L Cum Z	N/07	10.0	Aggreg	Cum Z	Aggreg 6/07	Cum Z	Aggreg M/07	100.070			
Sieve Size:	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Cum.% Passing	Cum.	Passin	Cum.	Passin	Cum.	Cum. % Passing	Lower	Upper	Within Spec's
3/4"	100.0	26.0	100.0	21.0	100.0	33.0	100.0	4.0		<i>.</i>					100.0	16.0					100.0	100.0	100.0	Yes
1/2"	100.0	26.0	98.7	20.7	100.0	33.0	100.0	4.0							100.0	16.0					99.7	98.0	100.0	Yes
3/8"	85.9	22.3	90.7	19.0	100.0	33.0	100.0	4.0							94.2	15.1					93.5	85.0	100.0	Yes
No. 4	21.3	5.5	42.3	8.9	99.2	32.7	100.0	4.0							68.9	11.0					62.2	50.0	70.0	Yes
No. 8	2.9	0.8	8.4	1.8	79.8	26.3	100.0	4.0							49.8	8.0					40.8	35.0	46.0	Yes
No. 30	1.4	0.4	2.0	0.4	29.7	9.8	96.0	3.8							32.0	5.1					19.5	15.0	29.0	Yes
No. 50	1.3	0.3	1.7	0.4	16.6	5.5	71.3	2.9							24.9	4.0					13.0	7.0	20.0	Yes
No. 200	0.9	0.2	1.5	0.3	5.1	1.7	1.5	0.1							5.6	0.9					3.2	2.0	7.0	Yes
(Bold Italic) Not withi	n specifi	cations	(Bold h	t alic) N	ot within	specific	aitons-R	estricted	Zone (Italic) I	Vot cumu	lative												
Lift Thickne	ess, in:	2.00			Binder	Subst	itution?	No	Binde	r Origir	ally Spe	ecified:	PG 6	4-22	Sul	ostitute	Binder:							
Asphalt S	Source:		V	alero F	G 64-2	2		Binde	r Percer	nt, (%):	5.2	Aspha	alt Spec	Grav.:	1.021	1								
Antistripping	Agent	Evothe	erm M14						Percer	nt, (%):	0.5													

Figure 10 - Mix Design 8

Refresh Workbook	2014	НМА		KTURI	EDES	IGN :	сомв			ATION	l Version:	01/19/17	15:32:54										Maxir Allowa	num ble, %
SAME	PLE ID:	Approv	/ed				S	AMPLE	DATE:														Frac RAP:	20.0
LOT NU	MBER:						LE	TTING	DATE:														Unfrac RAP	10.0
SAMPLE ST	FATUS:						CONTR	ROLLIN	G CSJ:	0108-	11-019												RAS:	5.0
CC	OUNTY:	Rains						SPEC	YEAR:	2014													RB Ratio:	20.0
SAMPL	ED BY:	Daniel	Billings	sley				SPEC	CITEM:	341														,
SAMPLE LOC	ATION:	Terrell				\$	SPECIA	L PRO\	/ISION:	341													Recycled	Binder,
MATERIAL	CODE:	1892						MIX	(TYPE:	341-D	G-D			W	MA Addit	ive in D	esign?	No]		%	
MATERIAL	NAME:	Type D	Class	A RAP										Targe	t Discha	irge Te	mp., °F:	300			1		Bin No.8 :	0.8
PROD	UCER:	TXBIT													WMA TI	ECHNO	DLOGY:]		Bin No.9 :	0.0
AREA ENG	NEER:					1	PROJE	CT MAN	IAGER:					WMA	RATE:		UNITS:				Use this	value in	Bin No.10 :	0.0
COURSE\LIFT:		Surface)	ST	ATION:				DI	ST. FR	OM CL:			CON	TRACTO	DR DES	GN # :	70-	214054	1-18	ten	nplate>>	Total	0.8
						AGGRE	GATE B	IN FRA	CTIONS							"REC	CLED N	ATER	ALS"		1		Ratio of Re	cycled to
Aggregate	Bin I	No.1	Bin N	lo.2	Bin I	No.3	Bin I	No.4	Bin I	No.5	Bin I	No.6	Bin N	lo.7	Bin N	10.8	Bin N	lo.9	Bin N	lo.10			Total Bir	nder, %
Source:	lgne	ous	mestone,	_Dolomi	mestone	_Dolomi									Fractio	nated D					Material		(based o	n binder
Dit	Deute	. OK	Devel	. பள	Deve																Material		percent (%) holow in this	(Tentered workshoot)
PIC	Davis	5, UK	Perch	n- ⊡ III	Pero	n-mill															Source		Delowinnis	IPO/KS7/BBC/
Number:	0050	0439	0224	1901	0224	4901															RAS Type		16	.0
Producer:	Han Aggre	son gates	Han Aggre	son gates	Han Aggre	ison igates	Red	i Mis													RAP/RAS Producer			
Sample ID:	Type D	Class A	Тур	e D	Man	sand	Field	Sand							Fine	1/2"					Sample			
															F	Recycle	ed Asph	alt Bin	 der (%)		ID.	J		
															5.	2							Combine	d Gradation
Hydrated Lime?:															16.0	% of Tot.		% of Tot.		% of Tot.	Total Bin	Lawa	8. Heney See	oification
Individual Bin (%):	26.0	Percent	21.0	Percent	33.0	Parcani	40	Percent		Percent		Percent		Percent	16.0	Viix X of		Vitx % of		Vitx X of	100.0%	Lowe	Limits	cincation
	Cum.Z	6:07	Cum.Z	607	Cum.Z	607	Cum.Z	<u> </u>	L Cum X	6.67	Cum.Z	6.07	1 Cum.X	607		Aggreg 6/07	Cum.7	Aggreg 6/07	l ICum.Z	Aggreg 6/07	-			
Sieve Size:	Passin	Cum.	Passin	Cum. %	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	Cum.	Cum.% Passing	Cum. %	Passin	Cum.	Passin	Cum.	Cum. % Passing	Lower	Upper	Within Spec's
3/4"	100.0	26.0	100.0	21.0	100.0	33.0	100.0	4.0							100.0	16.0					100.0	100.0	100.0	Yes
1/2"	100.0	26.0	98.7	20.7	100.0	33.0	100.0	4.0							100.0	16.0					99.7	98.0	100.0	Yes
3/8"	85.9	22.3	90.7	19.0	100.0	33.0	100.0	4.0							94.2	15.1					93.5	85.0	100.0	Yes
No. 4	21.3	5.5	42.3	8.9	99.2	32.7	100.0	4.0							68.9	11.0					62.2	50.0	70.0	Yes
No. 8	2.9	0.8	8.4	1.8	79.8	26.3	100.0	4.0							49.8	8.0					40.8	35.0	46.0	Yes
No. 30	1.4	0.4	2.0	0.4	29.7	9.8	96.0	3.8							32.0	5.1					19.5	15.0	29.0	Yes
No. 50	1.3	0.3	1.7	0.4	16.6	5.5	71.3	2.9							24.9	4.0					13.0	7.0	20.0	Yes
No. 200	0.9	0.2	1.5	0.3	5.1	1.7	1.5	0.1							5.6	0.9					3.2	2.0	7.0	Yes
(Bold Italic) Not within	n specific	cations	(Bold h	t <mark>alic)</mark> N	ot within	specific	aitons-R	estricted	Zone (Italic)	lot cumu	lative												
Lift Thickn	ess, in:	2.00			Binder	Subst	itution?	No	Binde	r Origin	ally Sp	ecified:	PG 6	4-22	Sub	ostitute	Binder:							
Asphalt S	Source:		V	alero P	G 64-2	2		Binde	r Percer	nt, (%):	5.2	Aspha	alt Spec	Grav.:	1.021									

Figure 11 - Mix Design 9

Texas Department of Transp Refresh Workbook	2014	HMA	CP MI)	TURE	DESI	GN : (COMB	INED (GRAD		le Version	08/16/19	15-58-53										Maxir Allowa	num ble, %
SAN	IPLE ID:	HSD18	STXBIT18	387				SAMPLE	DATE:	11/8/2	017	. oon on it	10.00.00										Frac BAP:	20.0
LOT N	JMBER:	SP621	27461					LETTING	DATE:	03/06/	2018												Unfrac BAP	10.0
SAMPLE S	TATUS:	COMP	LETE	1	7777	1/1	CON	TROLLIN	IG CSJ:	6327-	54-001	177	7/-										BAS	5.0
Cond Co	DUNTY:	DALLA	AS	ander	hade		17	SPEC	YEAR:	2014	11.75.2												BB Batio:	20.0
SAMPL	ED BY:	DANIE	L S. BILL	INGSL	EY		Department	SPE	C ITEM:	03446	106													
SAMPLE LOC	ATION:	TERRE	LL PLAN	T			SPECI	AL PRO	VISION:	344													Recycled	Binder
MATERIAL	CODE:	0344C	M0000					MD	TYPE:	344-S	P-D			N	MA Add	litive in I	Design?	No			1		%	Dinaon
MATERIAL	NAME:	ITEM 3	44 COM	PLETE I	MIX QCO	A ALL	MIX TY	PES	N/7	- 1-		10	NIT	Targ	et Disch	arge Te	mp., °F:	300			- N/1		Bin No.8 :	0.5
PRO	DUCER:	D18AF	ACTXD	AL06:A	PAC-TE	XAS TE	ERRELL	PLANT	had		∇	Fent	undar	e.,	WMA	TECHNO	DLOGY:				andrada.		Bin No.9:	0.5
AREA ENG	SINEER:	I.E.	as Departro	ent of A real	spétisben (Le	PROJE	CT MAN	AGER:	TERR	L BLO	CKER	i an spérioù	WMA	RATE:		UNITS:				Use this	value in	Bin No. 10 :	0.0
COURSE/LIET:		Surface	e	ST	ATION					IST FR	OM CL			00	NTRAC	TOR DE	SIGN # ·	SP6	-21274	6-18	the	QCIQA	Total	10
		oundo	-						-			1									j <i>nevn</i> j	olare///	Total	1.0
						AGGRE	GATE	BIN FRA	CTION	5						"RECY	CLED	MATERI	ALS"				Ratio of F	ecycled
Aggregate	Bin	No.1	Bin	No.2	Bin	No.3	Bin	No.4	Bin	No.5	Bin M	No.6	Bin I	lo.7	Bin N	8.ol	Bin I	No.9	Bin M	lo.10			to Total B	inder, %
Source:	mestone	Dolom	mestone	Dolom	nestone	Dolom									Fractio	onated	R/	AS			Material	TE	(based o	n binder
															RA HA	ιP					Type Material		percent (%	7 entered
Pit:	Pero	h-Hill	Perci	h-Hill	Perc	h-Hill															Source		below in this	workshee()
Number:	224	\$901	224	901	224	901															RAS Type		19	6
Producer:	Har Aggre	ison igates	Han Aggre	son gates	Har Aggre	ison igates	Rec	li Mis													RAP/RAS Producer	1 Ţ	Viten	age
Sample ID:	Тур	e D	Тур	e F	Man	sand	Field	Sand							Fine	1/2"	R/	AS			Sample ID			
•			-					_							6	ecvcle	d Asph	alt Bin	der (%))				
															5	0	18	.0		, 	0/77	101	Combine	d Gradation
Hydrated Lime?								100001000				4			10.0	% of	3.0	% of		% of	Total Bin		Notem.	Indad
Individual Bin (*/):	21.0	Baraan	26.4	Paraap	26.0	Percent	4.0	Percent		Paraan		Percent		Paraap	10.0	Tot. Mix % of	2.6	Tot. % of		Tot. % of	100.0%	Lower &	Upper Specific	ation Limits
individual Diri(2.).	21.0	Law	0.4	Like	20.0	Like .	4.0 Cum 1/	r ercent	Cum M	Like	Curr M	r ercent	Cum M	Like	10.0	Aggreg	2.0	Aggreg	Cum 1/	Aggreg	100.076			
Sieve Size:	Passin	Cum.	Passin	Cum.	Passin	Cum.	Passin	₩łơ Cum.%	Passin	Cum.	Passin	<i>₩id</i> Cum.%	Passin	Cum.	Cum.% Passing	<i>⊮td</i> Cum.%	Cum.% Passing	Cum.	Passin	Cum.	Cum. % Passing	Lower	Upper	Vithin Spec's
3/4"	100.0	21.0	100.0	36.4	100.0	26.0	100.0	4.0				0		7.0	100.0	10.0	100.0	2.6			100.0	100.0	100.0	Yes
1/2"	98.7	20.7	100.0	36.4	100.0	26.0	100.0	4.0				(cend		2	100.0	10.0	100.0	2.6		11 cen	99.7	98.0	100.0	Yes
3/8"	88.9	18.7	99.7	36.3	100.0	26.0	100.0	4.0							96.9	9.7	100.0	2.6			97.2	90.0	100.0	Yes
No. 4	36.9	7.7	66.3	24.1	99.2	25.8	100.0	4.0							78.8	7.9	100.0	2.6			72.2	32.0	90.0	Yes
No. 8	5.4	1.1	14.8	5.4	76.9	20.0	100.0	4.0							56.4	5.6	91.8	2.4			38.5	32.0	67.0	Yes
No. 16	1.5	0.3	5.7	2.1	39.4	10.2	100.0	4.0		7		17		7 10	42.2	4.2	77.2	2.0		17	22.9	2.0	67.0	Yes
No. 30	1.3	0.3	4.4	1.6	23.0	6.0	97.2	3.9				Tend		21	34.5	3.5	56.7	1.5		Ten	16.7	2.0	67.0	Yes
No. 50	1.2	0.3	4.0	1.5	12.9	3.4	89.9	3.6				eneul of 1		0	26.2	2.6	41.1	1.1		eleneut el	12.3	2.0	67.0	Yes
No. 200	1.1	0.2	3.6	1.3	4.7	1.2	5.3	0.2			[]				9.4	0.9	13.7	0.4	l		4.3	2.0	10.0	Yes
(Deld Helie)			(Data							(Hall)														
Lift Thicks	nın speci	rications	(Rold	itaric,	Not with Rindo	nin speci	ricaltons	- Hestrict	ed Zone	(Italic	7 Not cu	mulative	DO 7	0.22	0	hotituto	Diadar		1 22	1				
Lift Thickn	css, In:	2.00			Binde	n odbsi	utuu011?	res	Bind	er Origi	nany Sp	ecined.	PG /	0-22	50	T	binder.	PGC	04-22	illeen				
Asphalt S	source:		1	alero F	-G 64-2	2		Binde	r Percei	nt, (%):	5.3	Aspha	it Spec.	Grav.:	1.021									
Antistripping	Agent:	Evothe	erm M14						Percer	nt. (%):	0.5													

Figure 12 - Mix Design 10

Texas Department of Trainsp Refresh Workbook	2014	HMAG	CP MIX	TURE	E DE SI	IGN :	COME	BINED (e Version	08/16/19	15-58-53										Maxin Allowal	num ble, %
SAM	PLE ID:	185101	19CCRA	NE2*02	21			SAMPLE	DATE:	8/1/20	16												Frac RAP:	20.0
LOT NU	MBER:	P26D1	98960					LETTING	DATE:	12/05/2	2018												Unfrac RAP	10.0
SAMPLE ST	ATUS:	COMPL	ETE	77	1/1	5 / T	CON	TROLLIN	G CSJ:	6333-7	7-001	177	17	7 10									RAS:	5.0
1 Adenta cc	UNTY:	DALLA	S	iehde	hade		X	SPEC	YEAR:	2014				2									RB Ratio:	30.0
SAMPL	ED BY:	DANN	/ W. ME	EK				SPE	C ITEM:	03446	106													
SAMPLE LOC	ATION:	SOUTH	DALLA	S PLA	NT		SPECI	AL PRO	VISION:														Recycled	Binder,
MATERIAL	CODE:	0344CI	00000					MD	(TYPE:	344-SF	P-D			W	MA Add	litive in I	Design?	Yes					%	
MATERIAL	NAME:	ITEM 34	44 COM	PLETE I	MIX QCO	A ALL	MIX TY	PES				17	NIT	Targ	et Disch	arge Te	mp., °F:	250					Bin No.8:	0.8
PRO	UCER:	D18AU	STINDA	L02:AU	JSTIN A	SPHAL	T SOUT	H DALL	AS PLA	NT	X	Tend	indage	20	WMA	TECHNO	DLOGY:	Evothe	erm (Mea	dWestv	anagos		Bin No.9:	0.6
AREA ENG	INEER:	CITY DESI	s Depaitre	EDE DE TIEN	apélisten	1.1	PROJE	ECT MAN	IAGER:	JASON	MASH	ELL	isiebijisp	WMA	RATE:	0.5	UNITS:	% Бу м	eight of	asphalt	Use this	value in	Bin No. 10 :	0.0
COURSE\LIFT:		Surface)	ST	ATION:				D	IST. FR	OM CL:			CC	ONTRAC	TOR DE	SIGN # :	P2	6D1989	60	tem)	olate>>	Total	1.3
						AGGRE	GATE	BIN FRA	CTIONS							"REC)	CLED	ATER	ALS"				Ratio of R	lecycled
Aggregate	Bin	No.1	Bin	No.2	Bin	No.3	Bin	No.4	Bin I	lo.5	Bin I	No.6	Bin	No.7	Bin I	No.8	Bin M	lo.9	Bin N	lo.10			to Total B	inder, %
Source:	mestone	Dolom	mestone	_Dolom											Fractic	onated	RA	s			Material Type		(based or	n binder
Pit:	Bridg	eport	Bridg	eport	Martin I Weath	Marietta herford.									Austin B	Br. & Rd.	Sustai Pave	inable ment			Material		percent (%) below in this	(enterea worksheet)
Number:	224	904	224	904	Field	Sand											Tear	-off			RAS Type		24.	4
Producer:	Martin P	Marietta	Martin N	vlarietta	Martin I Weath	Marietta herford,									Austin E	Br. & Rd.	Susta Pave	inable ment			RAP/RAS		Nitesh	Judges
Sample ID:	T			0	T	<u>×</u>									Ein e	1107	Techno	logies,			Consta ID			
Sample ID.	туре	. D	ivian.	Sand	Field	Sand									Fine	172	- FA	13			Sample ID			
															1	ecycle	d Aspn		aer (%)				0.00	100.000
Hudented Lime?				144			-	1.37	1.1			1	1		0	.0 Xof	13	.0 % of		X of	Tatal Dia	<u> </u>	Combine	d Gradation
nydrated Line?.		-		-		-		-		_		-		-	15.0	Tot. Mix	3.0	Tot.		Tot.	Total Bin	Lower &	Upper Specific	ation Limits
Individual Bin (%):	51.3	Percent	26.0	Percent	5.0	Percen	1	Percent		Percent		Percent		Percen	15.1	Aggreg	2.6	Aggreg		Aggreg	100.0%			
Sieve Size:	Cum.% Passin	₩1d Cum.	Cum.% Passin	Und Cum.	Cum.% Passin	Uld Cum.	Cum.% Passin	Wid Cum. %	Cum.% Passin	₩1d Cum.	Cum.% Passin	<i>⊮td</i> Cum.%	Cum.% Passin	₩1d Cum.	Cum.% Passing	₩7d Cum. %	Cum.% Passing	Und Curn.	Cum.% Passin	₩1d Cum.	Cum. % Passing	Lower	Upper	Vithin Spec's
3/4"	100.0	51.3	100.0	26.0	100.0	5.0	-	N		1	- 0		- 1	~	100.0	15.1	100.0	2.6	- 0	-	100.0	100.0	100.0	Yes
1/2"	100.0	51.3	100.0	26.0	100.0	5.0		<i>eende</i>				Teend		2	100.0	15.1	100.0	2.6		V Eggh	100.0	98.0	100.0	Yes
3/8"	98.0	50.3	100.0	26.0	100.0	5.0									96.5	14.6	100.0	2.6			98.4	90.0	100.0	Yes
No. 4	43.0	22.1	99.3	25.8	100.0	5.0									66.3	10.0	100.0	2.6			65.5	32.0	90.0	Yes
No. 8	5.0	2.6	77.8	20.2	99.0	5.0									43.6	6.6	98.7	2.6			36.9	32.0	67.0	Yes
No. 16	3.8	1.9	46.2	12.0	98.1	4.9		2		1		17		7 1	34.2	5.2	78.3	2.0		17	26.1	2.0	67.0	Yes
No. 30	3.0	1.5	25.8	6.7	96.0	4.8		Techar				Tenha			27.7	4.2	62.0	1.6		Tenh	18.8	2.0	67.0	Yes
No. 50	2.0	1.0	12.0	3.1	71.0	3.6		TIEUL DL'A IG				eneut of A		1	22.8	3.4	53.5	1.4		uknent et	12.5	2.0	67.0	Yes
No. 200	1.5	0.8	5.0	1.3	3.0	0.2		ļ							7.0	1.1	21.7	0.6			3.8	2.0	10.0	Yes
(Bold Italic) Not with	nin speci	fications	(Bola	I Italic,	Not wit	: hin speci	ificaitons	- Restrict	ed Zone	(Italic) Not cu	mulative												
Lift Thickne	ess, in:	2.00			Binde	er Subs	titution?	No	Binde	er Origi	nally Sp	ecified:	PG 6	4-22	SI	Ibstitute	Binder:							
	24			lahra	Maga			Rinda	Dercer	+ (96)+	5.4	Anaba		-	4.000	1								
Asphalt S	ource:			Jepio	- waco			Dillue	Fercer	n, (70).	5.4	Aspna	it Spec.	Grav.:	1.032									

Figure 13 - Mix Design 11

Refresh Workbook	2014	HMA	CP MI)	TUR	E DESI	GN : (СОМЕ		GRAD	ATION 14 - File	l Version: (01/19/17 -	15:32:54										Maxin Allowal	ium ble, %
SAMF	PLE ID:						9	AMPLE	DATE:														Frac RAP:	20.0
LOT NU	MBER:						L	ETTING	DATE:														Unfrac RAP:	10.0
SAMPLE ST	FATUS:						CONTR	ROLLIN	G CSJ:	0008-0	05-027												RAS:	5.0
CC	OUNTY:	Tarran	t					SPEC	YEAR:	2014													RB Ratio:	20.0
SAMPL	ED BY:	Daiel B	Billingsle	ву				SPEC	CITEM:	344													,	
SAMPLE LOC	ATION:	Cold S	prings			5	SPECIA	L PRO\	ISION:	344													Recycled	Binder,
MATERIAL	CODE:	3866						MIX	TYPE:	344-SI	P-D			W	MA Addi	tive in D	esign?	No					%	
MATERIAL	NAME:	Super	bave D F	PG 70-2	22									Targe	et Discha	arge Te	mp., °F:	300					Bin No.8 :	0.9
PROD	UCER:	IXBII						OTHAN							WMA I	ECHNO	DLOGY:				Use this	value in	Bin No.9 :	0.0
AREA ENG	NEER:					-	ROJE	UT MAN	AGER:					WMA	RATE:		UNITS:				the	QC/QA	Bin No.10 :	0.0
COURSE\LIFT:		Surface		ST	ATION:				DI	ST. FR	OM CL:			CON	TRACTO	OR DES	GN#:	56-	216010)-18	ten	plate>>	Total	0.9
						AGGRE	GATE E	IN FRA	CTIONS							"REC)	CLED	MATER	IALS"				Ratio of Re	cycled to
Aggregate	Bin	No.1	Bin N	lo.2	Bin N	10.3	Bin	No.4	Bin	No.5	Bin N	0.6	Bin	10.7	Bin	No.8	Bin M	10.9	Bin N	lo.10			I otal Bin	der, %
Source:	mestone	_Dolomi	mestone,	Dolomi											RA	4S					Material		(based on	binder
Dit	Devel	LEI	Devel	LHI											APAC-	Texas					Material		percent (%) history in duise	entered
Pil.	Perci	n-mili	Perch)											(Cold S	òprings	2000000000	000000000	.000000000	0000000000	Source		Deloir Interis	onkshee()
Number:	022	4901	0224	901											Pre-co	nsumer					RAS Type		16.	7
Producer:	Han Aggre	son gates	Han: Aggrey	son gates	Dickie	Carr															RAP/RAS Producer			
Sample ID:	Тур	eD	Mans	and	Field	Band									RA	AS					Sample ID			
															I	Recycle	ed Asph	alt Bin	der (%)					
															18	.0						-	Combined	Gradation
Hydrated Lime?:															5.0	≈ of Tot. Mix		% of Tot. Mix		% of Tot. Mix	Total Bin	Lower	r & Upper Spec	ification
Individual Bin (%):	50.0	Percent	39.7	Percent	6.0	Percent		Percent		Percent		Percent		Percen	4.3	% of Aggreg		% of Aggreg		% of Aggreg	100.0%		Limits	
Sieve Size:	Cum.7 Passin	∿⁄o/ Cum.	Cum.7 Passin	₩&# Cum.</td><td>Cum.% Passin</td><td>iv⁄to/ Cum.</td><td>Cum.% Passin</td><td>6/85/ Cum.</td><td>Cum.7 Passin</td><td>îv@z/ Cum.</td><td>Cum.% Passin</td><td>i⊮tof Cum.</td><td>Cum.% Passin</td><td>ir⁄to/ Cum.</td><td>Cum.%</td><td>∿⁄8⊿ Cum.</td><td>Cum.7 Passin</td><td>₩&# Cum.</td><td>Cum.% Passin</td><td>i⊮⁄o/ Cum.</td><td>Cum. %</td><td>Lower</td><td>Upper</td><td>Within Specie</td></tr><tr><td>2/4"</td><td>100.0</td><td>50.0</td><td>100.0</td><td>20.7</td><td>100.0</td><td><u> </u></td><td>_ a</td><td>7.</td><td>a</td><td>- 7.</td><td>a</td><td>- 7.</td><td></td><td><i>.</i> .</td><td>100.0</td><td>7.</td><td>a</td><td>- 7.</td><td></td><td><u> </u></td><td>100.0</td><td>100.0</td><td>100.0</td><td>Vac</td></tr><tr><td>1/2"</td><td>06.4</td><td>10.0</td><td>100.0</td><td>20.7</td><td>100.0</td><td>6.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0</td><td>4.5</td><td></td><td></td><td></td><td></td><td>98.2</td><td>00.0</td><td>100.0</td><td>Vec</td></tr><tr><td>3/8"</td><td>83.0</td><td>40.2</td><td>100.0</td><td>30.7</td><td>100.0</td><td>6.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0</td><td>4.3</td><td></td><td></td><td></td><td></td><td>91.5</td><td>90.0</td><td>100.0</td><td>Vec</td></tr><tr><td>No. 4</td><td>35.7</td><td>17.9</td><td>98.8</td><td>39.2</td><td>100.0</td><td>6.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0</td><td>4.3</td><td></td><td></td><td></td><td></td><td>67.4</td><td>32.0</td><td>90.0</td><td>Yes</td></tr><tr><td>No. 8</td><td>4.7</td><td>2.4</td><td>73.4</td><td>29.1</td><td>98.9</td><td>5.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0</td><td>4.3</td><td></td><td></td><td></td><td></td><td>41.7</td><td>32.0</td><td>67.0</td><td>Yes</td></tr><tr><td>No. 16</td><td>3.0</td><td>1.5</td><td>43.6</td><td>17.3</td><td>97.1</td><td>5.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0</td><td>4.3</td><td></td><td></td><td></td><td></td><td>28.9</td><td>2.0</td><td>67.0</td><td>Yes</td></tr><tr><td>No. 30</td><td>2.2</td><td>1.1</td><td>25.0</td><td>9.9</td><td>95.8</td><td>5.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>63.2</td><td>2.7</td><td></td><td></td><td></td><td></td><td>19.5</td><td>2.0</td><td>67.0</td><td>Yes</td></tr><tr><td>No. 50</td><td>1.8</td><td>0.9</td><td>11.9</td><td>4.7</td><td>54.6</td><td>3.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>55.4</td><td>2.4</td><td></td><td></td><td></td><td></td><td>11.3</td><td>2.0</td><td>67.0</td><td>Yes</td></tr><tr><td>No. 200</td><td>1.1</td><td>0.6</td><td>4.9</td><td>1.9</td><td>7.4</td><td>0.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>18.5</td><td>0.8</td><td></td><td></td><td></td><td></td><td>3.7</td><td>2.0</td><td>10.0</td><td>Yes</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>(Bold Italic) Not withi</td><td>n specifi</td><td>cations</td><td>(Bold It</td><td>alic) N</td><td>ot within s</td><td>specifica</td><td>aitons-F</td><td>estricted</td><td>Zone (</td><td>Italic) I</td><td>Vot cumul</td><td>lative</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Lift Thickne</td><td>ess, in:</td><td>2.00</td><td></td><td></td><td>Binder</td><td>Substi</td><td>itution?</td><td>No</td><td>Binde</td><td>r Origin</td><td>nally Spe</td><td>ecified:</td><td>PG 7</td><td>0-22</td><td>Sul</td><td>bstitute</td><td>Binder:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Asphalt S</td><td>Source:</td><td></td><td>W</td><td>/right P</td><td>G 70-2</td><td>2</td><td></td><td>Binde</td><td>r Percei</td><td>nt, (%):</td><td>5.4</td><td>Aspha</td><td>alt Spec</td><td>Grav.:</td><td>1.031</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Antistripping</td><td>Agent:</td><td>Evothe</td><td>rm M14</td><td></td><td></td><td></td><td></td><td></td><td>Percer</td><td>nt, (%):</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>																				

Figure 14 - Mix Design 12

Appendix C- Laboratory Results

Hamburg Wheel Tracking Test Results

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	13.0	12.6	12.8
Number of Cycles	5580	6830	6205
RRI	2722	3434	3078
Normalized RRI	0.4	0.5	0.4

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	5.8	6.9	6.3
Number of Cycles	20000	20000	20000
RRI	15449	14598	15024
Normalized RRI	1.5	1.4	1.5

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	7.2	12.3	9.7
Number of Cycles	20000	20000	20000
RRI	14323	10346	12335
Normalized RRI	1.9	1.4	1.6

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	5.1	8.1	6.6
Number of Cycles	20000	20000	20000
RRI	16000	13661	14831
Normalized RRI	1.6	1.3	1.5

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	4.6	4.8	4.7
Number of Cycles	20000	20000	20000
RRI	16417	16260	16339
Normalized RRI	1.6	1.6	1.6

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	1.3	1.0	1.2
Number of Cycles	20000	20000	20000
RRI	18976	19181	19079
Normalized RRI	1.9	1.9	1.9

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	12.7	12.7	12.7
Number of Cycles	11100	14850	12975
RRI	5572	7443	6507
Normalized RRI	1.1	1.5	1.3

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	6.6	7.2	6.9
Number of Cycles	20000	20000	20000
RRI	14811	14362	14587
Normalized RRI	2.9	2.8	2.9

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	12.6	12.6	12.6
Number of Cycles	18120	18320	18220
RRI	9167	9254	9210
Normalized RRI	1.2	1.2	1.2

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	13.1	12.6	12.9
Number of Cycles	13079	9530	11305
RRI	6313	4810	5561
Normalized RRI	1.2	0.9	1.1

Rutting Properties	Left	Right	Average
Rut Depth (Mid Point), mm	10.2	9.2	9.7
Number of Cycles	20000	20000	20000
RRI	11969	12740	12354
Normalized RRI	1.6	1.7	1.6

Flow Number Results

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	89	314	0.047	32	16437
Specimen 2	70	2	0	26	16963
Average	79.5	158	0.0235	29	16700

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	1183	1679	0.252	395	29968
Specimen 2	986	1671	0.251	315	26885
Average	1084.5	1675	0.2515	355	28427

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	344	1034	0.155	100	16854
Specimen 2	270	1149	0.172	92	17763
Average	307	1091.5	0.1635	96	17308.5

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	1060	1683	0.252	301	22401
Specimen 2	1397	1607	0.241	475	24798
Average	1228.5	1645	0.2465	388	23599.5

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	1623	1903	0.285	507	24579
Specimen 2	1238	2059	0.309	415	26622
Average	1430.5	1981	0.297	461	25601

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	2213	2392	0.359	765	19868
Specimen 2	1454	2403	0.36	516	21803
Average	1833.5	2397.5	0.3595	640.5	20836

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	472	1642	0.246	159	23663
Specimen 2	359	1616	0.242	122	24583
Average	415.5	1629	0.244	140.5	24123

	Cycles	Resilient	Resilient	Flow	Microstrain at
		Microstrain	Deformation	Point	Flow Point
Specimen 1	128	1263	0.19	41	16605
Specimen 2	141	1458	0.219	44	17046
Average	134.5	1360.5	0.2045	42.5	16825.5

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	473	1795	0.269	147	22617
Specimen 2	411	1736	0.26	140	24111
Average	442	1765.5	0.2645	143.5	23364

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	516	1703	0.256	320	29009
Specimen 2	512	1859	0.279	201	33216
Average	514	1781	0.2675	260.5	31112.5

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	436	1794	0.269	152	32409
Specimen 2	318	1667	0.25	108	30116
Average	377	1730.5	0.2595	130	31262.5

	Cycles	Resilient Microstrain	Resilient Deformation	Flow Point	Microstrain at Flow Point
Specimen 1	356	1790	0.268	144	41084
Specimen 2	305	1713	0.257	122	43572
Average	330.5	1751.5	0.2625	133	42328

Indirect Tension Test Results

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, inlbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	927	39	3.8	11.4	0.005	58.2
Std Dev	20	1	0.4	0.9	0.001	11.6
COV	2%	2%	10%	8%	11%	20%

Mixture 2

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	1885	80	13.7	38.1	0.006	264.2
Std Dev	55	2	0.6	1.3	0.001	36.2
COV	0	0	0.0	0.0	0.097	0.1

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	1670	71	8.2	22.4	0.010	61.9
Std Dev	69	3	0.8	1.1	0.001	8.0
COV	4%	4%	9%	5%	14%	13%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	3709	157	19.0	46.0	0.031	41.8
Std Dev	78	3	2.3	0.8	0.002	2.6
COV	2%	2%	12%	2%	6%	6%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	4228	179	21.5	49.3	0.036	38.8
Std Dev	151	6	1.8	3.8	0.004	10.4
COV	4%	4%	8%	8%	12%	27%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in Ibs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	2651	113	13.4	32.4	0.018	51.1
Std Dev	66	3	0.7	2.2	0.001	6.5
COV	3%	3%	5%	7%	5%	13%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	2882	122	14.8	36.3	0.022	48.9
Std Dev	79	3	1.5	2.3	0.002	11.7
COV	3%	3%	10%	6%	8%	24%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	1692	72	9.8	27.2	0.008	114.6
Std Dev	31	1	0.3	0.5	0.000	4.5
COV	2%	2%	3%	2%	3%	4%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	3066	130	15.8	40.0	0.025	48.5
Std Dev	217	9	1.3	1.4	0.004	14.4
COV	7%	7%	8%	3%	15%	30%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in Ibs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	2606	111	15.6	37.3	0.017	72.4
Std Dev	92	4	0.5	1.4	0.002	14.4
COV	4%	4%	3%	4%	13%	20%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	2249	95	14.3	37.9	0.012	122.2
Std Dev	59	2	1.2	1.6	0.001	26.3
COV	3%	3%	8%	4%	11%	22%

Parameter	Max Load, lbs	Tensile Strength, psi	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	CT Index
Average	2927	124	24.7	59.8	0.013	221.9
Std Dev	43	2	0.7	1.1	0.000	12.7
COV	1%	1%	3%	2%	4%	6%

Parameter	Max Load, lbs	Critical Fracture Energy, in Ibs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	474	2.9	6.5	0.010	6.4
Std Dev	31	0.4	0.5	0.001	0.3
COV	7%	13%	8%	13%	5%

Parameter	Max Load, lbs	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	1119	7.1	13.4	0.035	4.4
Std Dev	103	1.1	1.0	0.013	1.4
COV	19%	15%	7%	38%	33%

Parameter	Max Load, lbs	Critical Fracture Energy, in Ibs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	1355	7.7	13.3	0.060	2.3
Std Dev	211	1.5	2.0	0.20	0.5
COV	16%	19%	15%	33%	20%

Parameter	Max Load, lbs	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	826	5.3	11.3	0.020	5.9
Std Dev	48	0.5	1.4	0.005	1.7
COV	6%	10%	13%	24%	29%

Parameter	Max Load, lbs	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	877	5.9	11.0	0.024	4.8
Std Dev	76	0.7	0.9	0.005	0.9
COV	9%	11%	8%	21%	18%

Parameter	Max Load, lbs	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	525	4.6	9.6	0.008	11.9
Std Dev	51	1.3	1.7	0.001	1.7
COV	10%	18%	18%	16%	14%

Parameter	Max Load, lbs	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	942	6.0	12.9	0.023	6.1
Std Dev	47	1.1	2.1	0.004	2.1
COV	5%	18%	16%	18%	34%

Parameter	Max Load, lbs	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	800	5.9	12.3	0.016	7.9
Std Dev	74	1.1	2.2	0.002	1.1
COV	9%	18%	18%	15%	13%

Parameter	Max Load, lbs	Critical Fracture Energy, in lbs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	769	5.9	12.2	0.016	8.3
Std Dev	10	0.4	0.8	0.003	2.0
COV	1%	6%	65	22%	24%

Parameter	Max Load, lbs	Critical Fracture Energy, in Ibs/in.2	Total Energy	Slope After Peak, lbs/in.	FI 2
Average	944	10.3	22.3	0.011	21.0
Std Dev	74	2.	3.5	0.002	1.0
COV	8%	20%	16%	18%	5%

Overlay Test Results

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	175.3	0.43	0.32	849.33
Std Dev	11.1	0.07	0.05	213.07
COV	6%	15%	16%	25%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	497.5	2.18	0.22	1000.00
Std Dev	45.5	0.14	0.02	0.00
COV	9%	6%	10%	0%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	445.1	0.83	0.87	40.50
Std Dev	33.5	0.09	0.22	22.61
COV	8%	11%	26%	56%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	982.4	2.38	0.61	114.00
Std Dev	64.5	0.36	0.11	86.74
COV	7%	15%	18%	76%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	661.4	2.61	0.30	725.00
Std Dev	44.2	0.31	0.05	283.77
COV	7%	12%	15%	39%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	678.1	2.13	0.37	512.75
Std Dev	73.8	0.35	0.03	226.49
COV	11%	17%	7%	44%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	739.6	2.12	0.36	842.33
Std Dev	19.5	0.16	0.04	222.97
COV	3%	8%	10%	26%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	413.4	1.34	0.33	912.25
Std Dev	37.9	0.15	0.03	151.99
COV	9%	11%	9%	17%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	770.6	1.95	0.45	228.00
Std Dev	60.3	0.09	0.03	74.74
COV	8%	5%	6%	33%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	789.9	1.78	0.72	58.33
Std Dev	23.0	0.16	0.19	38.96
COV	3%	9%	26%	67%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	652.3	2.00	0.41	376.50
Std Dev	137.7	0.52	0.02	134.09
COV	21%	26%	4%	36%

Parameter	Max Load, lbs	Critical Fracture Energy, inlbs/in. ²	Crack Progression Rate	Number of Cycles to Failure
Average	729.0	3.04	0.35	886.00
Std Dev	69.8	0.20	0.01	197.45
COV	10%	7%	3%	22%

Vita

Elias Castillo is a native of El Paso, Texas, was born and raised in the border community. The first son of Jesus Castillo and Laura Solis, he graduated from Cathedral High School in 2014. He then followed to enroll in the Civil Engineering program at The University of Texas at El Paso (UTEP) where he received his Bachelor's in Civil Engineering in 2018, and enrolled into the Civil Engineering Master's program thereafter.

Elias Castillo was involved in flexible pavement performance research at UTEP during his undergraduate studies, later expanding his research in the Balance Mix Design of asphalt mixtures. He worked at the Center for Transportation Infrastructure Systems (CTIS) under the mentorship of Dr. Soheil Nazarian and Dr. Imad Abdallah. His professional aspirations are to improve and contribute to innovation of our transportation infrastructure and pavement engineering.