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Abstract

This work investigates the predictive performance of 10 Machine learning models on three

medical data including Breast cancer, Heart disease and Prostate cancer. Furthermore we

use the models to identify risk factors that contribute significantly to these diseases.

The models considered include; Logistic regression with L1 and L2 penalties, Principal

component logistic regression(PCR-LR), Partial least squares logistic regression(PLS-LR),

Multivariate adaptive regression splines(MARS), Support vector machine with Radial Basis

Kernel (SVM-RBK), Random Forest(RF), Gradient Boosting Machines(GBM), Elastic Net

(Enet) and Feedforward Neural Network(FFNN). The models were grouped according to

their similarities and learning style; i) Linear regularized models: LR-Lasso, LR-Ridge

and LR-Enet. ii) Linear dimension reduction models: PCR and PLSR. iii) Non-Linear

ensemble models : Random forest and Gradient Boosting. iv) Other Non-Linear models:

FFNN, SVM and MARS. The methodology is not new, however the major contribution

of this work comes in the realm of applications. The methodology was applied to three

medical data set: Breast cancer, Heart disease and Prostate cancer. In all the applications

the methodology provides insight into predictive performance of these model and the risk

factors of these diseases.

The model selection and hyperparameter tuning were done using bias-variance tradeoff

and cross-validation. The model’s performance and generalization were improved for each

method, by applying early stopping, dropout and removed non-significant variables to

avoid overfitting. Different predictive performance measures were used including prediction

accuracy, sensitivity and specificity depending of the nature of the response distribution

whether balanced or imbalanced to compared the models.

The result show that the non-linear models; SVM-RBK, RF and FFNN gave the best

predictive performance for the breast cancer data. The linear models; LR-PLS, LR-PC ,LR-

Ridge and LR-Enet were preferred for heart disease and mixture of linear and non-linear

v



models; LR-Lasso, LR-Enet, RF and GBM best describes the prostate cancer predictions.
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Chapter 1

Introduction

Statistical learning models have been applied to detect and classify many chronic diseases

such as cancer, heart disease, tumor, diabetes, and several others (see [43],[45],[46],[30] ).

These methods aid practitioners and researchers to learn past given observations to detect

trends and patterns in independent data set. Also, some of these models helps to identify

variables that plays significant role in the cause of these diseases.

Prostate cancer (PC) is the second most common cancer among males worldwide that

results in more than 350,000 deaths annually [29]. With more than 1 million new diagnoses

reported every year, the key to decreasing mortality is developing more precise diagnostics.

Diagnosis of PC is based on the grading of prostate tissue biopsies. These tissue samples

are examined by a pathologist and scored according to the Gleason grading system [29].

Stamey et al.(1989) examined the correlation between the level of prostate specific antigen

(PSA) and a number of clinical measures, in 97 men who were about to receive a radical

prostatectomy. Using Bivariate and multivariate analyses they showed cancer volume to be

the primary determinant of serum prostate specific antigen levels[30]. Hastie et al. applied

different predictive models including PCR, PLS, Lasso, Ridge and best subset regression

to assess risk factor of prostate cancer. They concluded that volume of prostate cancer to

be a significant predictor prostate cancer[1].

The mortality rate of breast cancer (BC) has been increasing in the past decades [40]. In

the United States, the risk of a woman having breast cancer at some point in her life is about

12%. It has been shown that, one in eight women has the risk of developing breast cancer

in her life time [40]. Almost (80%) breast cancers are invasive and they break through the

walls of the glands or ducts where they appear and then spread into surrounding breast
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tissue. However, the mortality rate has declined over the past years with the application

of Statistical learning methods. A recent analysis shows that the survival rate is 91% after

5 years of diagnosis and 80% after 15 years of diagnosis [40]. Vikas et.al compares several

supervised learning classifiers, such as Naive Bayes, support Vector Machine with Radial

Basis Function (SVM-RBF) kernel, Radial Basis Function neural networks, and Decision

trees to find the best classifier in breast cancer datasets [41]. Their studies show that

SVM-RBF kernel is more accurate (96.84%) than the other classifiers. Joachims et al.

used neuron-fuzzy model to achieve prediction accuracy of 95.06% [42]. Other researchers

have worked on several data mining algorithms such as SVM, k-nearest neighbor algorithm

(IBK), and Bloom Filter (BF) Tree on breast cancer data [43].

Heart disease has been concern among medical researchers for many years. A recent

analysis has shown that every year about 735,000 Americans have heart attacks. Of these,

525,000 are first heart-attack victims and 210,000 have already had heart attacks [44]. One

of the major challenges in heart disease is its correct detection in body human. Since

a lot of parameters and technicality are involved for accurately predicting this disease,

there is a vast scope of research including Statistical learning models. Dwivedi et al. used

logistic regression, artificial neural network, and support vector machine techniques on heart

disease data and concluded logistic regression as the best model with prediction accuracy

of 85% [45]. Artificial neural network and fuzzy neural network used by Kahramanli et al.

on Cleveland heart disease data and obtained 86.8% prediction accuracy [46]. Thus these

models play a vital role in the diagnosis and prognosis of heart disease in patients.

In this work we investigated the predictive performance of 10 Machine learning models

on three medical data including Breast cancer, Heart disease and Prostate cancer. We

also use the models to identify risk factors that contribute significantly to these diseases.

The models considered include: Logistic regression with L1 and L2 penalties, Principal

component regression, Partial least squares regression, Multivariate adaptive regression

splines, Support vector machine, Random Forest, Gradient Boosting Machines, Elastic Net

and Feedforward Neural Network.
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1.0.1 Problem Statement

With the importance of understanding and diagnosing disease, Statistical learning models

have played a vital role, but due to the availability of many such models it sometimes

difficult to find the right model for a given situation.

In this work, we investigated the predictive performance of 10 Machine learning models

on three medical data including Breast cancer, Heart disease and Prostate cancer. We also

use the models to identify risk factors that contribute significantly to these diseases. The

models considered ranged from simple logistic regression model to complex Feedforward

Neural Network.

1.0.2 Aims and Objectives

This thesis aims to compare the predictive performance of different statistical learning

models on medical data to identify which models best fit the trends and patterns in these

data. We also use the models to identify important risk factors of these diseases. The

methodology is not new however the major contribution of this work comes in the realm of

applications. The methodology is applied to three data set: Breast cancer, Heart disease

and Prostate cancer.

1.0.3 Thesis Overview

The thesis is organized as follows:

1. Chapter 1 gives a preview of the thesis topic under considerations and Statistical

Learning methods. This chapter also review the literature on statistical learning

applications on Breast cancer, heart disease and Prostate cancer.

2. Chapter 2 looks at definition and different classes of statistical learning models.

3. Chapter 3 discusses ways of assessing and selecting a model for a given data.
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4. Chapter 4 is on data analysis and results.

5. Chapter 5 on conclusion and recommendation.
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Chapter 2

Statistical Learning Models

2.1 Logistic Regression Model

2.1.1 Defining the Logistic Regression Model

Logistic Regression is one of the most commonly used classification algorithm for predicting

the probability of the class of a target variable. Consider data that contain n observations

{(yi,xi) : i = 1, . . . , n} , where yi is the binary 0, 1 response for the i -th individual and xi

is its associated feature vector [1]. The response yi follows a bernoulli trial with parameter

pi = E (yi) = P {yi = 1} .

The probability distribution function of yi can be written in the exponential form

fY (yi) = pyii (1− pi)1−yi = (1− pi)
{

pi
1− pi

}yi
= exp

{
yi log

pi
1− pi

+ log (1− pi)
}

= exp

{
yi log {pi/ (1− pi)} − {− log (1− pi)}

1
+ 0

}
If we let θi = log {pi/ (1− pi)} , a(φ) = 1, c (yi, φ) = 0, and

b (θi) = − log (1− pi) = log

(
1

1− pi

)
= log

(
1 +

pi
1− pi

)
= log

(
1 + eθi

)
It follows that E (yi|xi) = pi and var (yi|xi) = pi (1− pi). The logistic regression model

applies the canonical link θi = ηi, which leads to the following formulation:

logit (pi) = log

(
pi

1− pi

)
= xTi β (2.1)
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or, equivalently [1],

pi = logistic
(
xTi β

)
=

exp
(
xTi β

)
1 + exp (xTi β)

(2.2)

2.1.2 Interpreting the Logistic Regression Model

The logistic regression coefficients β is interpreted similarly as in linear regression and has

to do with the odds ratio [1]. The quantity

pi
1− pi

=
P (Y = 1|xi)
P (Y = 0|xi)

is often referred to as the odds of having Y = 1 conditioning on xi, which is a risk measure

in many applications. The logistic model can be expressed in terms of odds

log( odds ) = xTi β (2.3)

With similar arguments in linear regression, model (2.3) implies that every one-unit increase

in Xj, while holding other features fixed, would lead to an amount of βj change in the

logarithm of the odds [1]. That is

βj = log (Oddsxj−x+1)− log (Oddsxj−x) = log
(
OR(x+1)=x

)
In other words, the odds ratio comparing Xj = x + 1 vs. Xj = x, with other predictor

fixed, is OR(x+1)x = exp (βj)

2.1.3 Fitting the Logistic Regression Model

The log likelihood for the logistic model (2.1) can be written as:

L(β) =
n∑
i=1

{
yi log

pi
1− pi

+ log (1− pi)
}

=
n∑
i=1

{
yiβ

Txi − log
(

1 + eβ
T xi
)}

(2.4)
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Here β = {β0, β1} , and we assume that the vector of inputs xi includes the constant term

1 to accommodate the intercept[1].

To maximize the log-likelihood, we set its derivatives to zero. These score equations are

∂L(β)

∂β
=

n∑
i=1

xi (yi − pi) = 0 (2.5)

which are p+ 1 equations nonlinear in β[1].

To solve the score equations(2.5), we use the newton-Raphson algorithm, which requires

the second-derivative or Hessian matrix

∂2L(β)

∂β∂βT
= −

n∑
i=1

xix
T
i pi (1− pi) . (2.6)

Starting with βold , a single newton update is

βnew = βold −
(
∂2L(β)

∂β∂βT

)−1
∂L(β)

∂β
(2.7)

where the derivatives are evaluated at βold . It is convenient to write the score and Hessian

in matrix notation. Let y denote the vector of yi values, X the n × (p + 1) matrix of

xi values, p the vector of fitted probabilities with i th element pi
(
βold

)
and W a n × n

diagonal matrix of weights with i th diagonal element pi
(
βold

)
(1− pi

(
βold

))
[1]. Then we

have

∂L(β)

∂β
= XT (y − p) (2.8)

∂2L(β)

∂β∂βT
= −XTWX. (2.9)

The Newton step is thus

βnew = βold +
(
XTWX

)−1
XT (y − p)

=
(
XTWX

)−1
XTW

(
Xβold + W−1(y − p)

)
=
(
XTWX

)−1
XTWz

(2.10)
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In the second and third line we have re-expressed the Newton step as a weighted least

squares step, with the response

z = Xβold + W−1(y − p) (2.11)

sometimes known as the adjusted response[1]. These equations get solved repeatedly, since

at each iteration p changes, and hence so does W and z. This algorithm is referred to as

iteratively reweighted least squares or IRLS, since each iteration solves the weighted least

squares problem [1]:

βnew ← arg min
β

(z−Xβ)TW(z−Xβ) (2.12)

In practice β = 0 is a good starting value for the iterative procedure, although convergence

is never guaranteed. For the multiclass case (K ≥ 3) the Newton algorithm can also be

expressed as an iteratively reweighted least squares algorithm, but with a vector of K − 1

responses and a nondiagonal weight matrix per observation[1]. Logistic regression models

are used mostly as a data analysis and inference tool, where the goal is to understand the

role of the input variables.

2.2 Regularization

To obtain a parsimonious model and important features from the original model, two

regularization methods was used L1 and L2. The regularization technique penalizes the

magnitude of coefficients of features and possibly lower prediction error and can sometimes

improve prediction accuracy. By retaining a subset of the features and discarding the rest,

regularization produces a model that is interpretable. Common shrinkage methods optimize

the least squares criterion while shrinking the size or length of the regression coefficients.

One motivation for this approach is that E‖β̂‖2 ≥ ‖β‖2 despite LSE β̂ is unbiased for β[1].
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2.2.1 L1 Regularization

In general, a regularized or penalized estimator β̃ in linear regression can be stated as

follows

β̃ = arg min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

g (|βj|) ≤ t (2.13)

where n is the of observation and p the number of features for some convex function g(·)

and constant t. This is called the Lasso penalty. The intercept term β0 can be suppressed

by working with centered data. This is the BRIDGE regression introduced by Frank and

Friedman (1993)[2]. The Lagrangian form of (2.13) is:

β̃ = arg min
β


n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

g (|βj|)

 (2.14)

where λ > 0 is a penalty or regularization parameter that controls the amount of the

shrinkage. The functions g(x) = xq with q ≥ 0 is most often used. β̃ corresponds to LSE

when q = 0, lasso (Tibshirani, 1996)[3] estimator when q = 1; and the ridge estimator

(Hoerl and Kennard,1970)[4] when q = 2.

The lasso estimator β̂L1 does not have an explicit form but its entire solution path for any λ

can be efficiently obtained via the LARS (Efron et al., 2004 )[6] algorithm. The generalized

cross-validation criterion is often used to determine the optimal λ in both ridge regression

and lasso [Craven and Wahba ( 1979)][7].

2.2.2 L2 Regularization

Ridge regression uses L2 regularization to shrinks the regression coefficients by imposing a

penalty on their size. The ridge coefficients minimize a penalized residual sum of squares:

β̂ridge = argmin
β


N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

β2
j

 (2.15)
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where the complexity parameter λ ≥ 0 controls the amount of shrinkage: the larger the

value of λ, the greater the amount of shrinkage[1]. The coefficients are shrunk toward zero.

An equivalent way to write the ridge problem is

β̂ridge = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

(2.16)

subject to

p∑
j=1

β2
j ≤ t

which makes explicit the size constraint on the parameters [1]. There is a one-to-one

correspondence between the parameters λ in (2.15) and t in (2.16). The ridge solutions

are not equivalent under scaling of the inputs, and so the inputs are normally standardizes

before solving (2.15). The matrix form of criterion in (2.15) [1] is:

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ (2.17)

with solution given by:

β̂ridge =
(
XTX + λI

)−1
XTy (2.18)

where I is the p× p identity matrix.

2.2.3 Logistic Regression with L1 Regularization

The L1 penalty used in the lasso (2.13) can be used for variable selection and shrinkage

with any linear regression model. For logistic regression, we would maximize a penalized

version of (2.4):

β̂lasso = max
β

{
N∑
i=1

[
yi
(
βTxi

)
− log

(
1 + eβ

T xi
)]
− λ

p∑
j=1

|βj|

}
(2.19)

As with the lasso, we typically do not penalize the intercept term, and standardize the fea-

tures for the penalty to be meaningful. The solution is found using nonlinear programming
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methods (Koh et al., 2007)[8]. Alternatively, using the same quadratic approximations that

were used in the Newton algorithm in (2.12), we can solve (2.19) by repeated application

of a weighted lasso algorithm. The score equations (2.8) for the variables with non-zero

coefficients have the form

xTj (y − p) = λ · sign (βj) (2.20)

Path algorithms for lasso are more difficult, because the coefficient profiles are piecewise

smooth rather than linear. The solution is obtained by using quadratic approximations [1].

2.2.4 Logistic Regression with L2 Regularization

The ridge-regression with L2 penalty technique can be used to overcomes the multicollinear-

ity problem. Here we maximized the L2 penalized versions (2.4) as follows:

β̂ridge = max
β

{
N∑
i=1

[
yi
(
βTxi

)
− log

(
1 + eβ

T xi
)]
− λ

p∑
j=1

β2
j

}
(2.21)

where λ controls the amount of regularization [1].

From the perspective of predictive modeling, variable selection is not necessary with

regularization, except for the determination of the penalty parameter λ. In applications

where the effects of features are under study, inclusion of irrelevant variables complicate

model interpretability, although their effects are shrunk. Both ridge regression and lasso

usually provide competitive predictive performance. The difference between the ridge and

the lasso estimators is that as λ increases, Lasso effectively does variable selection by setting

some coefficients to be exactly zero [1].

2.3 Principal Component Analysis

PCA can be motivated and understood in several different yet related ways: 1 ) The

first is to (linearly) transform correlated variables into a set of uncorrelated ones. Having
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uncorrelated predictors is useful in dealing with multicollinearity in regression. 2 ) The

second is to seek mutually orthogonal directions (linear combinations) along which data

show most variation.

2.3.1 Explaining Variations in Data

Why do we want to seek mutually orthogonal directions along which data show most

variation? This question was explained in Gentle ( 2009 [9]. First of all, the information

in data is presented as variation. That is why many statistical methods such as analysis

of variance (ANOVA) are design to analyze the variation. Secondly, correlation among

variables reduces the amount of information that the variables contain. Thus, PCA is

aimed to seek transforms of variables that are uncorrelated to each other and at the same

time explain the maximum variation in the original variables.

Figure 2.1: Illustration of PCA in the 2-D scenario.

Note that the straight line that the first PC form corresponds to the total LS line that

minimized the total perpendicular distances from each point to the straight line, which can

be contrasted with the LS fitted line.
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2.4 Principal Component Regression

Principal Component (PC) regression, starts by using the Principal Components of the

feature variables Z in place of the original variables X . An important feature of principal

components is that they reduce the dimension of data set to linear combination of the

feature variable that explain most of the variability of the original data [Jolliffe,2002][10].

The regression equation can be expressed as:

y = Xβ + ε (2.22)

where y is the response variable, a vector of n standardized observations, X is an (n× p)

matrix of standardized features variables, β is a vector of p regression coefficients to be

estimated and ε is a vector of error terms that are independent of each other with the

constant variance σ2 [10]. The values of the PCs for each observation are given by

Z = XA (2.23)

where the (i, k)th element of Z is the score-value of the kth PC for the ith observation,

and A is a (p× p) matrix whose kth column is the kth eigenvector of X′X. Because A is

orthogonal, Xβ can be rewritten as[10]:

Xβ = XAA′β = Zγ, (2.24)

where γ = A′β. Equation (2.22) can therefore be written as

y = Zγ + ε (2.25)

which has simply replaced the predictor variables by their PCs in the regression model.

Principal component regression can be defined as the use of the model (2.25) or of the

reduced model

y = Zmγm + εm (2.26)
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where γm is a vector of m elements that are a subset of elements of γ Zm is an (n×m) matrix

whose columns are the corresponding subset of columns of Z, and εm is the appropriate

error term. Since the columns of Z are orthogonal. The least square estimate of γ is

obtained by regressing y on Z in equation (2.25)[10]. The vector γ̂ is given by:

γ̂ = (Z′Z)
−1

Z′y (2.27)

= L−2Z′y

where L is the diagonal matrix whose k th diagonal element is l
1/2
k , and lk, k = 1, 2, . . . , p

is the eigenvalues of X′X with k being the largest eigenvalue.

The main advantage of PC regression occurs when multicollinearities are present. In this

case, by deleting a subset of the PCs, especially those with small variances, much more

stable estimates of β can be obtained[10]. Furthermore, if the regression equation is calcu-

lated for PCs instead of the predictor variables, then the contributions of each transformed

variable (PC) to the equation can be more easily interpreted than the contributions of the

original variables. Because of uncorrelatedness, the contribution and estimated coefficient

of a PC are unaffected by which other PCs are also included in the regression, whereas

for the original variables both contributions and coefficients can change dramatically when

another variable is added to, or deleted from, the equation. This is especially true when

multicollinearity is present, but even when multicollinearity is not a problem, regression on

the PCs, rather than the original predictor variables, may have advantages for computation

and interpretation[10].

2.5 Random Forests

Random forest is a popular ensemble algorithm which is used for the classification and

regression in machine learning. The method was developed by Leo Breiman in 2001[13]. It

combines Breiman’s bagging sampling approach ((1996)[14], and the random selection of
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features, introduced independently by Ho (1998)[15]. it is based on averaging a collection

of decorrelated decision trees. This is done by a collection of of trees constructed from a

training data set and internally validated to yield a prediction of the response given the

predictors for future observations. For each tree grown on a bootstrap sample, the error

rate for observations left out of the bootstrap sample is monitored. This is called the ”out-

of-bag” error rate. A few random samples of m out of the p features are considered for

splitting. Typically m =
√
p where p is the number of features[1].

Random forest overcome the overfitting problem by averaging high number of decision

trees built out of randomly selected sets of features. This increase it prediction accuracy

and generally popular algorithm but lacks intractability .

Algorithm

Below is the algorithm for random forest regression or classification [1]

1. For b = 1 to B :

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating

the following steps for each terminal node of the tree, until the minimum node

size nmin is reached.

i Select m variables at random from the p variables

ii Pick the best variable/split-point among the m.

iii Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x :

Regression: f̂Brf (x) = 1
B

∑B
b=1 Tb(x)

Classification: Let Ĉb(x) be the class prediction of the b th random-forest tree. Then

ĈB
rf (x) = majority vote

{
Ĉb(x)

}B
1

15



Figure 2.2: The Flow Chart of Random Forests.

Figure 2.2 is visual representation of the random forest algorithm [11].

Variable Importance

Variable importance measure is an attractive feature offered by random forest. Variable im-

portance measure helps answer questions such as which features are important predictors of

the target variable. The variable importance technique in random forests has been increas-

ingly studied in its own right and applied as a tool for variable selection in various fields.

This method generally belongs to the ”cost-of-exclusion” (Kononenko and Hong,1997)[12]

feature selection category, in which the importance or relevance of a feature is determined

by the difference in some model performance measure with and without the given feature

included in the modeling process.

The standard random forest offers two different variable importance measures for each

feature. The first measure is computed from permuting OOB data: For each tree, the pre-

diction error on the out-of-bag portion of the data is recorded (error rate for classification,

MSE for regression). Then the same is done after permuting each predictor variable. The

difference between the two are then averaged over all trees, and normalized by the standard

deviation of the differences. If the standard deviation of the differences is equal to 0 for
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a variable, the division is not done (but the average is almost always equal to 0 in that

case)[1].

The second measure is the total decrease in node impurities from splitting on the vari-

able, averaged over all trees. For classification, the node impurity is measured by the Gini

index. For regression, it is measured by residual sum of squares. The Gini measure of a

feature of interest is the sum of the decrease of Gini impurity criteria of the splits that are

based on this feature, scaled by the total number of trees in the forest. An ’important’

feature is often selected for splitting and yields a high decrease of Gini impurity when

selected, leading to a high Gini measure [1] .

Partial Dependence Plot

The partial dependence plot provides a way to explore the overall effects of a feature on the

response and extract interpretation from random forest. We briefly describe the idea in the

regression setting. Given a prediction function, denoted by f(x) = f (x1, x2) by partitioning

x into (x1,x2) want to know the relative importance of feature x1 on the target. The partial

dependence is defined as f1 (x1) = Ex1f (x1,x2). In Regression, the estimation is given by

f̂ (x1) =
1

n

n∑
i=1

f (x1,xi2) (2.28)

In classification where the response y is categorical with levels {1, . . . , C}, the logits (i.e.,

the log of the fraction of votes) are used so that

f̂(x) = log Pr(y = 1)− 1

C

C∑
c=1

log Pr(y = c) (2.29)

2.6 Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines was developed by Friedman [1991][16] as a non-

parametric approach to regression and model-building. As such, it makes no assumptions

about the relationship between the predictors and the response variable. MARS is an addi-
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tive approach for regression, and is well suited for high dimensional problems, that is large

number of inputs[16].

MARS uses piecewise linear basis functions of the form (x− t)+ and (t− x)+ known as

hinge fuction shown in Figure 2.3. The hing fuction is defined as:

(x− t)+ =

 x− t, if x > t

0, otherwise
and (t− x)+ =

 t− x, if x < t

0, otherwise

Figure 2.3: The basis functions (x− t)+ (solid orange) and (t− x)+ (broken blue used by

MARS.

The key property of the functions of Figure 2.3 is their ability to operate locally; they

are zero over part of their range. When they are multiplied together, the result is nonzero

only over the small part of the feature space where both component functions are nonzero.

As a result, the regression surface is built up parsimoniously, using nonzero components

locally only where they are needed. The use of other basis functions such as polynomials,

would produce a nonzero product everywhere, and would not work as well[1].

Each function is piecewise linear, with a knot at the value t. The idea is to form reflected

pairs for each input Xj with knots at each observed value xij of that input. The result is

a collection of basis functions given by:

C =
{

(Xj − t)+ , (t−Xj) +
}
, t ∈ {x1j, x2j, . . . , xNj} (2.30)
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and j = 1, 2, . . . , p,

The model-building strategy is a forward stepwise linear regression, but uses functions

from the set C and their products instead of using the original observations. Thus the

model has the form

f(X) = β0 +
M∑
m=1

βmhm(X) (2.31)

where each hm(X) is a function in C, or a product of two or more such functions.

In the model building process of (2.31) the model typically overfits the data, and so

a backward deletion procedure is applied. The term whose removal causes the smallest

increase in residual squared error is deleted from the model at each stage, producing an

estimated best model f̂λ of each size (number of terms) λ. Generalized cross-validation [1]

is used to estimate the optimal value of λ, the criterion is given by:

GCV(λ) =

∑N
i=1

(
yi − f̂λ (xi)

)2

(1−M(λ)/N)2
(2.32)

The value M(λ) is the effective number of parameters in the model: this accounts both for

the number of terms in the models, plus the number of parameters used in selecting the

optimal positions of the knots [1].

Algorithm for MARS

Below is the algorithm for MARS [1]

Data: Training data D = {(xi, yi) : i = 1, . . . , n} for regression

1. begin

(a) set Mmax, the maximum number of terms;

(b) initialize M = 0, b0 (xi) = 1, and model h (xi) = β0b0 (xi)

(c) repeat
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i Find all allowable candidate terms:{
(xij − t)+ , xij

}
for continuous xij and I (xij ∈ A) for categorical xj

ii Perform greedy search for the best term associated with model

h (xi) +
M∑
m=0

αmbm (xi) · xij +
M∑
m=0

γmbm (xi) · (xij − t)+ for continuous Xj

h (xi) +
M∑
m=0

αmbm (xi) · I (xij ∈ A) for categorical Xj

which may be further modified to conform to the constraints;

iii Let M ′ denote the number of added terms associated the ”best’ basis pair;

iv Update M := M +M ′

v Update model h (xi) :=
∑M

m=0 βmbm (xi)

(d) Until M > Mmax or no more permissible candidate terms;

2. end.

Result: A large initial MARS model yi =
∑Mmax

m=0 βmbm (xi) + εi

2.7 Support Vector Machine (SVM)

SVM is a supervised machine learning method that is used for both classification and

regression problems. It finds a hyperplane that separates the classes in feature space and

predicts the class of test observations using the separation boundary[17].

Hyperplane

A hyperplane in p dimensions is a flat affine subspace of dimension p − 1. In general, the

equation for a hyperplane has the form x>β + β0 = 0. The vector β is called the normal
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vector and it points in a direction orthogonal to the surface of a hyperplane. If β0 = 0, the

hyperplane goes through the origin. Example of a hyperplane in two dimension (line) is in

Figure 2.4 [1] .

Figure 2.4: The linear algebra of a hyperplane:Hyperplane in 2 Dimensions.[17]

Separating Hyperplane

A separating hyperplane for two sets is a hyperplane for which one set lies on one side of

the hyperplane, and the other set lies on the other side. Given training data consists of

N pairs of observations (x1, y1) , (x2, y2) , . . . , (xN , yN) , with xi ∈ Rp and yi ∈ {−1, 1}. If

f(x) = x>β + β0, then f(X) > 0 for points on one side of the hyperplane, and f(X) < 0

for points on the other. If observations are coded such that for point on one side of

the hyperplane yi = +1 and yi = −1 for the other side, then if yif (xi) > 0 for all i

f(x) = x>β + β0 = 0 defines a separating hyperplane [1].

Maximal margin classifier

Since there may be infinitely many possible separating hyperplanes for a given data, the

maximal margin classifier find the separating hyperplane that makes the biggest margin

(gap) M between the two classes. The resulting optimization problem is given by [1]:

max
β,β0,‖β‖=1

M : subject to yi
(
xTi β + β0

)
≥M, i = 1, . . . , N (2.33)
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Figure 2.5: Maximal Margin Classifier.[17]

The band in the figure is M units away from the hyperplane on either side, and hence 2M

units wide. The set of conditions in (2.33) ensure that all the points are at least a signed

distance M from the decision boundary defined by β and β0, and we seek the largest M

and associated parameters.

The problem can be rephrases by replacing the conditions in (2.33) with

1

‖β‖
yi
(
xTi β + β0

)
≥M (2.34)

or equivalently:

yi
(
xTi β + β0

)
≥M‖β‖ (2.35)

where ‖β‖ = 1/M . Equation (2.33) is equivalent to:

min
β,β0

1

2
‖β‖2 : subject to yi

(
xTi β + β0

)
≥ 1, i = 1, . . . , N (2.36)
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Figure 2.6: Maximal Margin Classifier.[1]

This is a convex optimization problem with quadratic criterion, linear inequality con-

straints. The Lagrange (primal) function, to be minimized w.r.t. β and β0, is

LP =
1

2
‖β‖2 −

N∑
i=1

αi
[
yi
(
xTi β + β0

)
− 1
]

(2.37)

Setting the partial derivatives to zero w.r.t β and β0, we obtain:

β =
M∑
i=1

αiyixi (2.38)

0 =
N∑
i=1

αiyi (2.39)

and substituting (2.38) and (2.39) into (2.37) gives the dual representation of the La-

grangian (primal) function:
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LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk (2.40)

To obtain optimal solution Kraus-Kuhn-Tucker (KKT) condition [19] must be satisfied for

all i = 1, .., N :

αi ≥ 0

N∑
i=1

αiyi = 0

αi
[
yi
(
xTi β + β0

)
− 1
]

= 0∀i

Using quadratic programming, we can find αis that minimize LD and also satisfying KKT

condition. The KKT condition then becomes

α̂i

{
yi(β̂

T
xi + β̂0)− 1

}
= 0 (2.41)

for i = 1, . . . , n. This leads to two scenarios

 if α̂i = 0 yi(β̂
T
xi + β̂0) > 1

if α̂i > 0 yi(β̂
T
xi + β̂0) = 1

(2.42)

In the latter case of α̂i > 0, the condition yi(β̂
T
xi + β̂0) = 1 implies that the points xi,

associated with yi, must lie right on the margin. These points are called ’support vectors’.

Thus the β is estimated by:

β̂ =
n∑
i=1

α̂i · yixi =
∑
i:α̂i 6=0

α̂i · yixi (2.43)

To estimate β0 the support vectors with α̂i > 0 is used from KKT condition .

{
yi

(
β̂
T
xi + β̂0

)
− 1
}

= 0

It follows that
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β̂0 = yi − β̂
T
xi

Given a new observation with x, we predict its outcome as sign
{
β̂
T
x + β̂0

}
[1].

Soft-Margin SVM

The Soft Margin Classifier or the Support Vector Classifier is a generalization of the maxi-

mal margin classifier to the non-linearly separable classes or classes that overlap in feature

space. It allow some observation to be miss-classified hence result in a more robust hyper-

plane. The Soft Margin SVM method choose a hyperplane that maximize M , but allow for

some points to be on the wrong side of the margin. The method introduces slack variables,

ξi, which measure the degree of misclassification of the i-th individual[1].

Figure 2.7: Illustration of Soft-Margin SVM.[1]

There are two ways to modify the constraint in (2.33):

yi
(
xTi β + β0

)
≥M − ξi

or

yi
(
xTi β + β0

)
≥M (1− ξi)

(2.44)

for all ξi ≥ 0,
∑N

i=1 ξi ≤ constant.

25



The first option is more natural in the sense that ξi directly measures the distance from

a wrongly classified observation xi to its corresponding margin. However, it results in a

non-convex programming program. Thus the second option is preferred. Thus the resulting

optimization problem is given by:

max
β,β0,M

M, subject to ‖β‖ = 1, and yi
(
βTxi + β0

)
≥M (1− ξi) (2.45)

with ξi ≥ 0 and
∑n

i=1 ξi ≤ C for i = 1, . . . , n. Dropping the constraint ‖β‖ = 1 and then

setting M = 1/‖β‖, we re-express the problem as

min
β,β0

1

2
‖β‖2, s.t. yi

(
βTxi + β0

)
≥ 1− ξi, ξi ≥ 0, and

n∑
i=1

ξi ≤ C (2.46)

Using the penalization method, the above problem can be equivalently rewritten as

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi
(
xTi β + β0

)
≥ 1− ξi∀i

(2.47)

where C is the ”cost” parameter which regulate the level of miss classifications allowed[1].

The separable case corresponds to C =∞.

This is also a convex optimization problem with quadratic criterion and linear inequality

constraints. The Lagrange (primal) function, to be minimized w.r.t. β and β0, and ξi is

LP =
1

2
‖β‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi
[
yi
(
xTi β + β0

)
− (1− ξi)

]
−

N∑
i=1

µiξi (2.48)

Setting the respective derivatives to zero, we gives:

β =
N∑
i=1

αiyixi (2.49)

0 =
N∑
i=1

αiyi (2.50)
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αi = C − µi,∀i (2.51)

as well as the constraints αi, µi, ξi ≥ 0 Vi. By substituting (2.50)- (2.52) into (2.49), we

obtain the Lagrangian (Wolfe) dual objective function

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′ (2.52)

which gives a lower bound on the objective function (2.48) for any feasible point. We

maximize LD subject to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0. In addition to (2.50)− (2.52), the

Karush-Kuhn-Tucker conditions [19] include the constraints

αi
[
yi
(
xTi β + β0

)
− (1− ξi)

]
= 0

µiξi = 0

yi
(
xTi β + β0

)
− (1− ξi) ≥ 0

(2.53)

for i = 1, . . . , N. Together these equations (2.50)−(2.54) uniquely characterize the solution

to the primal and dual problem.

From (2.50) we see that the solution for β has the form

β̂ =
N∑
i=1

α̂iyixi (2.54)

Maximizing the dual (2.53) is a simpler convex quadratic programming problem than the

primal (2.49), and can be solved with standard techniques [Murray et al., 1981] [20].

Given the solutions β̂0 and β̂, the decision function can be written as

Ĝ(x) = sign[f̂(x)]

= sign
[
xT β̂ + β̂0

]
The tuning parameter of this procedure is the cost parameter C[1].
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Support Vector Machines (Kernels)

The support vector machine(SVM) is an extension of the support vector classifier. They are

use when the decision boundary is non-linear and assuming linear boundary in the input

space is not reasonable. The non-linearity is introduced through the use of kernels. The

idea is to enlarge the feature space such that the data is linearly separable in the enlarged

space [17].

SVM works by mapping data to a high-dimensional feature space so that data points

can be categorized, even when the data are not otherwise linearly separable. A separator

between the categories is found, then the data are transformed in such a way that the

separator could be drawn as a hyperplane. Following this, characteristics of new data can

be used to predict the group to which a new record should belong [18].

The optimization problem (2.45) and its solution for SVM are rephrased in a way that

involves the input features through inner products. The Lagrange dual function (2.53) has

the form

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′ 〈h (xi) , h (xi′)〉 (2.55)

where h (xi) is a transformed feature vectors. From (2.50) the solution f(x) can be written

as

f(x) = h(x)Tβ + β0

=
N∑
i=1

αiyi 〈h(x), h (xi)〉+ β0 (2.56)

where αi, β0 can be determined by solving yif (xi) = 1 in (2.57) for any xi for which

0 < αi < C. Both (2.56) and (2.57) involve h(x) only through inner products therefore the

transformation h(x) is not needed only knowledge of the kernel function [1]:

K (x, x′) = 〈h(x), h (x′)〉 (2.57)
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that computes inner products in the transformed space. K should be a symmetric positive

(semi-) definite function. Three popular choices for K in the SVM literature are [1]:

d th-Degree polynomial: K (x, x′) = (1 + 〈x, x′〉)d

Radial basis: K (x, x′) = exp
(
−γ ‖x− x′‖2

)

Neural network: K (x, x′) = tanh (κ1 〈x, x′〉+ κ2)

Example: suppose a feature space with two inputs X1 and X2, and a polynomial kernel of

degree 2. Then

K (X,X ′) = (1 + 〈X,X ′〉)2

= (1 +X1X
′
1 +X2X

′
2)

2

= 1 + 2X1X
′
1 + 2X2X

′
2 + (X1X

′
1)

2
+ (X2X

′
2)

2
+ 2X1X

′
1X2X

′
2

(2.58)

Then M = 6, and if we choose h1(X) = 1, h2(X) =
√

2X1, h3(X) =
√

2X2, h4(X) =

X2
1 , h5(X) = X2

2 , and h6(X) =
√

2X1X2, then K (X,X ′) = 〈h(X), h (X ′)〉 . From (2.57)

the solution can be written as

f̂(x) =
N∑
i=1

α̂iyiK (x, xi) + β̂0 (2.59)

The regularization parameter C is clearer in an enlarged feature space, since perfect sep-

aration is often achievable there. A large value of C will discourage any positive ξi, and

lead to an overfit wiggly boundary in the original feature space; a small value of C will

encourage a small value of ‖β‖, which in turn causes f(x) and hence the boundary to be

smoother [1].
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2.8 Gradient boosting

Gradient Boosting is one of many boosting methods. The motivation for boosting procedure

is to combines the outputs of many weak classifiers to produce a powerful committee. The

algorithm can be applied to both classification and regression settings. Boosting work by

fitting a tree to the entire training set, but adaptively weight the observations to encourage

better predictions for points that were previously misclassified. In boosting, trees are grown

sequentially with each tree is grown using information from previously grown trees[1].

The basic principles of gradient boosting are as follows: given a loss function (e.g.,

squared error for regression) and a weak learner (e.g., regression trees), the algorithm seeks

to find an additive model that minimizes the loss function. The algorithm is typically

initialized with the best guess of the response (e.g., the mean of the response in regres-

sion). The gradient (e.g., residual) is calculated, and a model is then fit to the residuals

to minimize the loss function. The current model is added to the previous model, and

the procedure continues for a user specified number of iterations [21]. The different loss

functions used for both numerical or categorical response are displayed in the table below.

Setting Loss Function −∂L (yi, f (xi)) /∂f (xi)

Regression 1
2

[yi − f (xi)]
2 yi − f (xi)

Regression |yi − f (xi)| sign [yi − f (xi)]

Regression Huber yi − f (xi) for |yi − f (xi)| ≤ δm

δm sign [yi − f (xi)] for |yi − f (xi)| > δm

where δm = α th-quantile {|yi − f (xi)|}

Classification Deviance k th component: I (yi = Gk)− pk (xi)
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A detailed description of the gradient boosting is as follows: a given tree can be represented

as:

T (x; Θ) =
J∑
j=1

γjI (x ∈ Rj) (2.60)

the tree parameters Θ = {Rj, γj} , where j is an index of the terminal node, j, . . . , J, Rj a

predictor-space region defined by the j th terminal node, and γj is the value assigned to

each observation in the j th terminal node. The goal is to construct values for the unknown

parameters Θ so that the loss function is minimized [22]. At this point, no particular loss

L is specified, and we seek

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L (yi, γj) (2.61)

Using stagewise algorithm [23] we can approximate (2.61) with

Θ̂m = arg min
Θm

N∑
i=1

L (yi, fm−1 (xi) + T (xi; Θm)) (2.62)

where fm−1 (xi) are the results as of the previous tree. Given the results from the previous

tree, the intent is to reduce the loss as much as possible using the fitted values from the

next tree.

Equation (2.61) can be reformulated as a numerical optimization task, where:

gim = −
[
∂L (yi, f (xi))

∂f (xi)

]
f(xi)=fm−1(xi)

(2.63)

is the gradient for the i th observation on iteration m, defined as the partial derivative

of the loss with respect to the fitting function. One approach to obtain solution is to use

”steepest descent,” algorithm [1] in which a ”step length” ρm is the solution to

ρm = arg min
ρ
L (fm−1 − ρgm) (2.64)

31



The current solution is then updated as: fm = fm−1 − ρmgm and the process repeated at

the next iteration.

The gradient boosting has two tuning parameters: tree depth and number of iterations.

Tree depth in this context is also known as interaction depth, since each subsequential

split can be thought of as a higherlevel interaction term with all of the other previous split

predictors. Given the loss function, the gradient boosting algorithm is given below:.

2.8.1 Algorithm for Gradient Boosting

Below is the algorithm for random forest regression or classification [1]

1. Initialize f0(x) = arg minγ
∑N

i=1 L (yi, γ).

2. For m = 1 to M :

(a) For i = 1, 21..., N compute

rim = −
[
∂L (yi, f (xi))

∂f (xi)

]
f=fm−1

(b) Fit a regression tree to the targets rim giving terminal regionsRjm, j = 1, 2, . . . , Jm

(c) For j = 1, 2, . . . , Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3. Output f̂(x) = fM(x).
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2.9 Neural networks

Neural networks are powerful nonlinear regression techniques inspired by theories about

how the brain works(Bishop 1995 [24]; Ripley 1996[25]; Titterington 2010 [26]). A neural

network is a two stage regression or classification model, typically represented by a network

diagram as in Figure 2.8. This network applies both to regression or classification [1].

2.9.1 Model definition and description

Figure 2.8: Diagram of a single hidden layer, feed-forward neural network [27].

For regression K = 1 and there is only one output unit Y1. In classification setting with

K−class, there are K output units, with the kth unit modeling the probability of class k.

The units in the middle of the network compute the derived features Zm, called hidden

units because the values Zm are not directly observed. In general there can be more than

one hidden layer than illustrated in Figure 2.8 [1].

The derived features Zm are created from linear combinations of the inputs, and then the

target Yk is modeled as a function of linear combinations of the Zm as follows [1]:
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Zm = σ
(
α0m + αTmX

)
,m = 1, . . . ,M (2.65)

Tk = β0k + βTk Z, k = 1, . . . , K (2.66)

fk(X) = gk(T ), k = 1, . . . , K (2.67)

where Z = (Z1, Z2, . . . , ZM) , and T = (T1, T2, . . . , TK). The nonlinear function σ() in (2.65)

is called the activation function. In practice different activation functions are used for dif-

ferent problems, Figure 2.9 shows some of the most commonly used activation functions[27].

Figure 2.9: Common Activation Functions [27].

The output function gk(T ) allows a final transformation of the vector of outputs T. For

regression we used the identity function gk(T ) = Tk and for K − class classification the

softmax function defined in (2.68) is used.

gk(T ) =
eTk∑K
`=1 e

T`
(2.68)
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2.9.2 Model fitting

The unknown parameters in a neural network model are called weights, and we seek values

for them that make the model fit the training data well. We denote the complete set of

weights by θ, which consists of [1]:

{α0m, αm;m = 1, 2, . . . ,M}M(p+ 1) weights,

{β0k, βk; k = 1, 2, . . . , K}K(M + 1) weights.
(2.69)

For regression, we use sum-of-squared errors as our measure of fit (error function):

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk (xi))
2 (2.70)

For classification we use either squared error or cross-entropy (deviance):

R(θ) = −
N∑
i=1

K∑
k=1

yik log fk (xi) (2.71)

The solution is usually obtained by minimizing R(θ), this may usually overfit the data.

Instead some regularization is applied directly through a penalty term, or indirectly by

early stopping[1].

The generic approach to minimizingR(θ) is by gradient descent, called back-propagation

in this setting (Rumelhartet al. 1986)[28]. Because of the compositional form of the

model, the gradient can be easily derived using the chain rule for differentiation. This can

be computed by a forward and backward sweep over the network, keeping track only of

quantities local to each unit [1].

Below is the detail of the back-propagation method for squared error loss [1]. Let zmi =

σ
(
α0m + αTmxi

)
, from (2.66)-(2.68) and let zi = (z1i, z2i, . . . , zMi) . Then we have

R(θ) ≡
N∑
i=1

Ri

=
N∑
i=1

K∑
k=1

(yik − fk (xi))
2

(2.72)
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with derivatives

∂Ri

∂βkm
= −2 (yik − fk (xi)) g

′
k

(
βTk zi

)
zmi

∂Ri

∂αm`
= −

∑K
k=1 2 (yik − fk (xi)) g

′
k

(
βTk zi

)
βkmσ

′ (αTmxi)xi` (2.73)

Given these derivatives, a gradient descent update at the (r + 1) st iteration has the form

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

α
(r+1)
m` = α

(r)
m` − γr

N∑
i=1

∂Ri

∂α
(r)
m`

(2.74)

where γr is the learning rate, discussed below. Now write (2.74) as

∂Ri

∂βkm
= δkizmi

∂Ri

∂αm`
= smixi`

(2.75)

The quantities δki and smi are ”errors” from the current model at the output and hidden

layer units, respectively. From their definitions, these errors satisfy

smi = σ′
(
αTmxi

) K∑
k=1

βkmδki (2.76)

known as the back-propagation equations. Using this, the updates in (2.75) can be imple-

mented with a two-pass algorithm. In the forward pass, the current weights are fixed and

the predicted values f̂k (xi) are computed from formula (2.66) − (2.68). In the backward

pass, the errors δki are computed, and then back-propagated via (2.77) to give the errors

smi. Both sets of errors are then used to compute the gradients for the updates in (2.75)

via (2.76). This two-pass procedure is what is known as back − propagation[1].

2.9.3 Issues in Training Nueral networks

The Neural Network model is generally over parametrized, and the optimization problem

is nonconvex and unstable [1]. Also the backpropagation approach comes with several

complications[22].
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First, the start values can be a problem because the loss functions are not convex

hence the search can get stuck in a local minimum. A common approach is to repeat

the estimation several times with different sets of start values and then choose the result

with the smallest value of the loss. Also, there is some reason to think that for very

high dimensional data, the local minimums will not be all that different from the global

minimum[22].

Second, with so many weights, overfitting can be a serious problem. Some form a

regularization can help. Penalizing the fit using ridge regression is one option[22].

Third, the different units in which the inputs are measured can make a big difference.

Standardizing the inputs is usually helpful[22].

Fourth, in Figure 2.8 each input is connected to each hidden variable, and each hidden

variable is connected to the target. This makes the network saturated. No inputs are

directly linked to the target. In short, there can be a large number of different network

structures, which implies that some weights can be set to 0.0.[22]. Finally, the number of

latent variables and hidden layers are tuning parameters typically arrived at through some

combination of subject-matter knowledge and performance in cross-validation[22].
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Chapter 3

Model Assessment and Selection

The generalization performance of a learning method relates to its prediction capability on

independent test data. Assessment of this performance is extremely important in practice,

since it guides the choice of learning method, and gives us a measure of the quality of the

final chosen model [1]. The two objective for assessing the performance of a model, are:

1. Model selection which involves estimating the performance of different models in order

to choose the best one and 2. Model assessment which involves estimating the prediction

error (generalization error) of the best model on new data [1].

In this chapter we describe the key concepts and methods for performance assessment

and how they are used to select models.

3.1 Model Assessment

3.1.1 Loss Function

For regression problem, with quantitative response variable Y , a vector of inputs X, and

a prediction model f̂(X) that has been estimated from a training set T . The loss function

for measuring errors between Y and f̂(X) is denoted by L(Y, f̂(X))[1]. Typical choices are

L(Y, f̂(X)) =

 (Y − f̂(X))2 squared error

|Y − f̂(X)| absolute error
(3.1)
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3.2 Test Error

Model accuracy is measured using test error. Test error (also called generalized error)

measures how well a model trained on a set T generalize to data that we have not seen

before (test set). The test error is defined by

ErrT = E[L(Y, f̂(X))|T ] (3.2)

where both X and Y are drawn randomly from their joint distribution (population). Ex-

pected prediction error is an average test error over all training data defined as.

Err = E[L(Y, f̂(X))] = E [ErrT ] (3.3)

The goal is to estimate Err T but most methods effectively estimate the expected error Err

as a measure of model accuracy or a measure of fit quality[1].

3.3 Estimating Test Error

3.3.1 Train Error

Train error is based on data points that have been used for training a model or estimate

its parameters, that is the average loss over the training sample given by

err =
1

N

N∑
i=1

L
(
yi, f̂ (xi)

)
(3.4)

The train error generally is not a good estimate of the test error because many statistical

methods specifically estimate coefficients so as to minimize the train error. For these meth-

ods, the train error can be quite small, but the test error is often much larger. Therefore

there is no guarantee that the method with the lowest training error will also have the

lowest test error [17].
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Also as a model becomes more and more complex, it is able to adapt to more complicated

underlying structures in the train set. Hence there is a decrease in bias but an increase in

variance which will result in overfitting the train set (low bias =low train error) and poor

generalization/prediction accuracy (high variance in prediction = high test error)[1]. This

is illustrated in Figure 1.1.

Figure 3.1: Expected training error vs expected test error [1]

Figure 1.1 explains the behavior of test sample and training sample error as the model

complexity is varied. The solid curves show the expected test error Err and the expected

training error E[err].

For classification setting a typical loss functions is given by:
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L(G, Ĝ(X)) = I(G 6= Ĝ(X)) (0− 1 loss )

L(G, p̂(X)) = −2
K∑
k=1

I(G = k) log p̂k(X)

= −2 log p̂G(X) (−2× log− likelihood )

(3.5)

where G, is a categorical response with K classes. The estimated class of X, Ĝ(X) =

arg maxk p̂k(X) if we model the probabilities pk(X) = Pr(G = k|X), that is the probability

that the predicted class of G is k for a given x value. The quantity −2× the log-likelihood

is sometimes referred to as the deviance [1]. The test error here is define as:

ErrT = E[L(G, Ĝ(X))|T ] (3.6)

which is the population misclassification error of the classifier trained on T , and Err is the

expected misclassification error. Training error is given by:

err = − 2

N

N∑
i=1

log p̂gi (xi) (3.7)

The training error has been shown to be a poor estimate of the test error in Figure 1.1,

in next section we discus two common approaches for estimating the test error. We begin

with an indirectly estimate of test error which makes an adjustment to the training error

to account for the bias due to overfitting and continue with a direct estimate of the test

error, using either a validation set approach or a cross-validation approach [1].

3.4 Adjusted Train Error

The most common adjusted train error estimates of the test error are Cp, AIC, BIC, and

Adjusted R2 are briefly discussed below.
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3.4.1 Mellow’s Cp

Mallow (1973)[33] derived a Cp criterion by examining the expected model error. Suppose

d parameters are fit under squared error loss, then Cp statistic is:

Cp = err + 2 · d
N
σ̂2
ε (3.8)

where σ̂2
ε is an estimate of the noise variance, obtained from the mean squared error of a

low-bias model. For a fitted least squares model containing d predictors, the Cp estimate

of test MSE is computed using the equation

Cp =
1

N

(
RSS + 2dσ̂2

ε

)
(3.9)

where RSS is an regression sum of square associated with the fitted model. Essentially,

the Cp statistic adds a penalty of 2dσ̂2 to the training RSS in order to adjust for the fact

that the training error tends to underestimate the test error [17].

Clearly, the penalty increases as the number of predictors in the model increases; this

is intended to adjust for the corresponding decrease in training RSS. As a consequence,

the Cp statistic tends to take on a small value for models with a low test error, so when

determining which of a set of models is best, we choose the model with the lowest Cp value

[17].

3.4.2 Akaike information criterion

Akaike (1974)[34] derived a criterion from information theories, known as Akaike informa-

tion criterion (AIC). The AIC is a similar but more generally applicable estimate of Err

when a log-likelihood loss function is used. In the regression setting, the standard linear

model

Y = β0 + β1X1 + · · ·+ βpXp + ε (3.10)
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with Gaussian errors, maximum likelihood and least squares are the same thing. In this

case AIC is given by [17]

AIC =
1

nσ̂2

(
RSS + 2dσ̂2

)
(3.11)

For the logistic regression model, using the binomial log-likelihood, we have

AIC = − 2

N
· log lik +2 · d

N
(3.12)

For the Gaussian model (with variance σ2
ε = σ̂2

ε assumed known), the AIC statistic is

equivalent to Cp, and so we refer to them collectively as AIC. To use AIC for model

selection, we simply choose the model giving smallest AIC over the set of models considered.

For nonlinear and other complex models, we need to replace d by some measure of model

complexity. Given a set of models fα(x) indexed by a tuning parameter α, denote by err(α)

and d(α) the training error and number of parameters for each

AIC(α) = err(α) + 2 · d(α)

N
σ̂2
ε (3.13)

The function AIC (α) provides an estimate of the test error curve, and we find the tuning

parameter α̂ that minimizes it. Our final chosen model is fα̂(x)[1].

3.4.3 Bayesian information criterion (BIC)

BIC is derived from a Bayesian point of view by Schwarz (1978) [35] , but looks similar

to Cp (and AIC) as well. For the least squares model with d predictors, the BIC is, up to

irrelevant constants, given by

BIC =
1

n

(
RSS + log(n)dσ̂2

)
(3.14)

Like Cp, the BIC will tend to take on a small value for a model with a low test error, and

so generally we select the model that has the lowest BIC value. Notice that BIC replaces

the 2dσ̂2 used by Cp with a log(n)dσ̂2 term, where n is the number of observations. since
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log n > 2 for any n > 7 the BIC statistic generally places a heavier penalty on models with

many variables, and hence results in the selection of smaller models than Cp [?].

The Bayesian information criterion (BIC), like AIC, is applicable in settings where the

fitting is carried out by maximization of a log-likelihood. The generic form of BIC is [1]

BIC = −2 · log lik +(logN) · d (3.15)

3.4.4 Adjusted R2

The adjusted R2 statistic is another popular approach for selecting among a set of models

that contain different numbers of variables. The coefficient of determination R2 is defined

as 1−RSS/TSS, where TSS =
∑

(yi − ȳ)2 is the total sum of squares for the response. since

RSS always decreases as more variables are added to the model, the R2 always increases

as more variables are added. For a least squares model with d variables, the adjusted R2

statistic is calculated as [17]:

Adjusted R2 = 1− RSS /(n− d− 1)

TSS /(n− 1)
(3.16)

Unlike Cp, AIC, and BIC, for which a small value indicates a model with a low test error,

a large value of adjusted R2 indicates a model with a small test error. Maximizing the

adjusted R2 is equivalent to minimizing RSS
n−d−1

. While RSS always decreases as the number

of variables in the model increases, RSS
n−d−1

may increase or decrease, due to the presence of

d in the denominator [17].

3.5 Cross Validation

Cross Validation is an alternative to the approaches discussed above, it is the simplest and

most widely used method for estimating prediction error. This method directly estimates

the expected prediction error (average test error) over all training data [1].
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Err = E[L(Y, f̂(X))] (3.17)

This is the average generalization error when the method f̂(X) is applied to an independent

test sample from the joint distribution of X and Y.

This approach involves randomly dividing the set of observations into k groups, or folds,

of approximately equal size; for example, when K = 5, the scenario looks like Figure 1.2.

Figure 3.2: 5 fold cross validation partition.

The model is trained using K−1 parts of the K folds and calculate the prediction error

of the fitted model with kth part of the data. This is done for k = 1, 2, . . . , K and average

the K estimates of prediction error. The k-fold CV estimate of the prediction error is [1]:

CV(f̂) =
1

K

K∑
i=1

L
(
yi, f̂

−k(i) (xi)
)

(3.18)

where f̂−k(x) is the model fitted with the kth part of the data removed. In practice k = 5

or k = 10 often gives lower variance and lower bias that is (provides a good compromise

for) balance bias-variance tradeoff [1].

This procedure has an advantage relative to AIC, BIC, Cp, and adjusted R2, in that it

provides a direct estimate of the test error, and makes fewer assumptions about the true

underlying model. It can also be used in a wider range of model selection tasks, even

in cases where it is hard to pinpoint the model degrees of freedom (e.g. the number of

predictors in the model) or hard to estimate the error variance σ2[17].
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3.6 Model Selection

Again the two objective for assessing the performance of a model, are Model selection which

involves estimating the performance of different models in order to choose the best one and

2. Model assessment which involves estimating prediction error of the best model on new

data [1].

In a data-rich situation, the best approach for both problems is to randomly divide the

dataset into three parts: a training set, a validation set, and a test set. The training set

is used to fit the models; the validation set is used to estimate prediction error for model

selection; the test set is used for assessment of the generalization error of the final chosen

model. Generally the split might be 50% for training, and 25% each for validation and

testing [1].

Figure 3.3: Train, validation and Test set.

In situations where there is insufficient data to split it into three parts an approximation

of the validation (model selection) step can either be obtained analytically using AIC,

BIC,Adjusted R2 or cross validation as explained in sections 1.4 and 1.5. Next we discuss

concept that are use in model complexity selection.

3.7 Bias, Variance and Model Complexity

3.7.1 The Bias–Variance Tradeoff

Here we explore the relation between test error and the bias-variance tradeoff. Bias and

variance are statistical properties of predictive models. Bias refers to the error that is
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introduced by approximating a real-life problem, which may be extremely complicated, by

a much simpler model. This may result in poor generalization of the model on unseen

data (ie a low prediction accuracy or high test error). An example is assuming simple

linear relationship, when the true relation is non-linear, so no matter how many training

observations we are given, it will not be possible to produce an accurate estimate using

linear regression [17].

Variance refers to the amount by which f̂ would change if we estimated it using a

different training data set. Since the training data are used to fit the statistical learning

method, different training data sets will result in a different f̂ . But ideally the estimate for

f should not vary too much between training sets. However, if a method has high variance

then small changes in the training data can result in large changes in f̂ . In general, more

flexible statistical methods have higher variance [17].

3.7.2 illustration of Overfitting and Underfitting

Figure 3.4: Problem of Overfitting and Underfitting Train set [27]

From Figure 1.4 least squares line on the left is too simple to capture trend in data, it has

high bias and low variance, because moving any single observation will likely cause only a

small shift in the position of the line. Thus underfitting the data which may not generalize

well on unseen data. In contrast too flexible curve on the right follow the observations very
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closely. It has high variance and low bias because changing any one of these data points

may cause the estimate f̂ to change. Thus overfitting the data which may also not also

generalize well. The middle figure has the right level of complexity, hence will provide a

good generalization to unseen data. Thus finding the right/good level of complexity without

overfitting or underfitting involves a trade off between bias and variance of a model. The

fact overfitted model tends to provide prediction with a larger variance in spite of a smaller

bias while an underfitted model tends to provide prediction with a smaller variance yet

with a larger bias, is called the ”bias-variance tradeoff” [17].

3.7.3 Empirical illustration of Bias-Variance Tradeoff

The Figure 1.1 explains the relation between bias ,variance and model complexity. Its

shows the prediction error (light red curves) for 100 simulated training sets each of size

50. The lasso was used to produce the sequence of fits by increasing the model complexity

from left to right. The solid red curve is the average prediction error [1].

From Figure 1.1 as the model becomes more and more complex, it uses the training

data more and is able to adapt to more complicated underlying structures. Hence there is

a decrease in bias but an increase in variance. The Training error consistently decreases

with model complexity, typically dropping to zero if model complexity is increased enough.

However, a model with zero training error is overfit to the training data and will typically

generalize poorly. However, prediction error decreases as important variables are gradually

added in, hits its minimum around the best model, and then starts to increase when

irrelevant variables are included [1].

The graph also suggests that underfitting causes more concerns than overfitting if pre-

diction is the primary goal. This is because the inflation amount in prediction error caused

by slightly overfitting is relatively smaller than that caused by underfitting. Nevertheless, a

simpler model is much easier to interpret. The goal of model selection is to find a parsimo-

nious model that does reasonably well in prediction[1]. There are three groups of methods

for this task, which are discussed in order.
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3.7.4 The Bias-Variance Decomposition

Suppose we assume that Y = f(X)+ε where E(ε) = 0 and Var(ε) = σ2
ε , we can decomposed

the expected prediction error of a regression fit f̂(X) at an input point X = x0, into the

sum of three fundamental quantities using squared-error loss [1]:

Err (x0) = E

[(
Y − f̂ (x0)

)2

|X = x0

]
= σ2

ε +
[
Ef̂ (x0)− f (x0)

]2

+ E
[
f̂ (x0)− Ef̂ (x0)

]2

= σ2
ε + Bias2

(
f̂ (x0)

)
+ Var

(
f̂ (x0)

)
= Irreducible Error + Bias2 + Variance.

(3.19)

The first term is the variance of the target around its true mean f (x0) , and cannot be

avoided no matter how well we estimate f (x0) , unless σ2
ε = 0. The second term is the

squared bias, the amount by which the average of our estimate differs from the true mean;

the last term is the variance; the expected squared deviation of f̂ (x0) around its mean.

Typically the more complex we make the model f̂ , the lower the (squared) bias but the

higher the variance [1].

Equation 3.19 tells us that in order to minimize the expected test error we need to select

a statistical learning method that simultaneously achieves low variance and low bias.

3.8 Model Selection Methods

3.8.1 Cross-validation for model selection

Given a set of models f(x, α) indexed by a tuning parameter α, that determines the model

complexity denote by f̂−k(x, α) the αth model fit with the kth part of the data removed.

Then for this set of models we define

CV(f̂ , α) =
1

K

K∑
i=1

L
(
yi, f̂

−κ(i) (xi, α)
)

(3.20)
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The function CV(f̂ , α) provides an estimate of the test error curve, and we find the tuning

parameter α̂ that minimizes it. The selected model is f(x, α̂), which is then fitted to all

the data [1].

Figure 3.5: Prediction error (orange) and tenfold cross-validation curve(blue) estimated

from a single training set.

One standard error rule is used in practice choose the most parsimonious model whose

error is no more than one standard error above the error of the best model[1].
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Cross-Validation for Classification Problems

In the classification setting, cross-validation works just as described above, except that

misclassification error is used to quantify test error, instead mean squared error. The data

is divided into K roughly equal-sized parts C1, C2, . . . CK . Where Ck denotes the indices of

the observations in part k. There are nk observations in part k : if n is a multiple of K,

then nk = n/K. The k-fold CV estimate of the prediction error rate is given by[17]:

CVK =
K∑
k=1

nk
n

Errk (3.21)

where Errk =
∑

i∈Ck
I (yi 6= ŷi) /nk the missclassification rate of the kth fold.

3.8.2 Subset Selection

In this section we consider some methods for selecting subsets of predictors. These include

best subset and stepwise model selection procedure.

Best subset selection

The best subset selection is performed by fitting a separate least squares regression for

each possible combination of the p predictors. That is all p models are fitted that contain

exactly one predictor, all

 p

2

 = p(p− 1)/2 models that contain exactly two predictors,

and so forth. Then the best model is identify from all the resulting models. The algorithm

for the best subset selection is described below [1].

Algorithm for best subset selection

Below is the algorithm for the best subset selection :

1. For k = 0, 1, . . . p
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(a) Fit all pCk models that contain exactly k predictors (Mo denote the null model,

which contains no predictors)

(b) Pick the best among these PCk models, and call it Mk. The best model is defined

as having the largest R2

2. Select a single best model from among M0, . . . ,Mp using cross-validated prediction

error, Cp(AlC) BIC, or adjusted R2

3.8.3 Stepwise selection

For computational reasons, best subset selection cannot be applied with very large p. An

enormous search space can lead to overfitting and high variance of the coefficient estimates.

For these reasons, stepwise methods, which explore a far more restricted set of models, are

attractive alternatives to best subset selection [1].

Forward stepwise selection

Forward stepwise selection begins with the null model, and then adds prediotors to the

model, one-at-a-time, until all the predictors are in the model. In particular, at each step

the variable that gives the greatest additional improvement to the fit is added to the model.

The algorithm for the forward stepwise selection is described below [1].

Algorithm for the forward stepwise selection:

1. M0 denote the null model

2. For k = 0, . . . , p− 1

(a) Consider all p−k models that augment the predictors in Mk with one additional

predictor.

(b) Choose the best among these p−k models, and call it Mk+1. Here best is defined

as having highest R2
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3. Select a single best model from among M0, . . . ,Mp using cross-validated prediction

error, Cp(AlC),BIC, or adjusted R2

Backward stepwise selection

Backward stepwise selection begins with the full least squares model containing all p predic-

tors, and then iteratively removes the least useful predictor, one-at-a-time. The algorithm

for the backward stepwise selection is described below [1].

Algorithm for the Backward stepwise selection

1. Let Mp denote the full model, which contains all p predictors.

2. For k = p, p− 1, . . . , 1

(a) Consider all k models that contain all but one of the predictors in Mk, for a

total of k − 1 predictors.

(b) Choose the best among these k models, and call it Mk−1 Here best is defined

as having smallest RSS or highest R2

3. Select a single best model from among M0, . . . ,Mp using cross-validated predic-

tion error, Cp(AIC),BIC, or adjusted R2

Comparing Forward and Backward selection

Backward stepwise selection requires that the number of samples n is larger than the

number of variables p (so that the full model can be fit). In contrast, forward stepwise can

be used even when n < p, and so is the only viable subset method when p is very large [1].

The subset selection methods described above involve using least squares to fit a linear

model that contains a subset of the predictors. By retaining a subset of the predictors and

discarding the rest, subset selection produces a model that is interpretable and has possibly

lower prediction error than the full model from a regular least squares fit [17].
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3.8.4 Regularization or Shrinkage Methods

The subset selection methods describe above, because of their discrete process (variables

are either retained or discarded), it often exhibits high variance, and so doesn’t reduce

the prediction error of the full model. As an alternative, we can fit a model containing

all p predictors using a technique that constrains or regularizes the coefficient estimates,

or equivalently, that shrinks the coefficient estimates towards zero. Shrinkage methods

are more continuous, and don’t suffer as much from high variability. The two best-known

techniques for shrinking the regression coefficients towards zero are ridge regression and

the lasso[1].

Ridge regression

Ridge regression uses L2 regularization to shrinks the regression coefficients by imposing a

penalty on their size. The ridge coefficients minimize a penalized residual sum of squares[1]:

β̂ridge = argmin
β


N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

β2
j

 (3.22)

where the complexity parameter λ ≥ 0 controls the amount of shrinkage, the larger the

value of λ, the greater the amount of shrinkage. The coefficients are shrunk toward zero.

An equivalent way to write the ridge problem is[1]:

β̂ridge = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

(3.23)

subject to

p∑
j=1

β2
j ≤ t

which makes explicit the size constraint on the parameters. The ridge solutions are not

equivariant under scaling of the inputs, and so the features are standardizes before solving

(3.22). In addition, no penalty for β0, it is estimated by the mean of y. The matrix form

of criterion in (3.22)is [1]:,

54



RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ (3.24)

with solution solutions given by:

β̂ridge =
(
XTX + λI

)−1
XTy (3.25)

where I is the p × p identity matrix. The larger λ ≥ 0 is, the more penalty on the size of

β. For λ > 0, the ridge estimate of β is shrunk towards zero. If λ ≈ ∞, all coefficients

except β0 are zero. No penalty on β if λ = 0. In the case, the ridge estimate equivalent to

the least square estimate[1].

Choosing a Tuning parameter λ

The turning or complexity parameter λ is determined in practice using bias-variance trade-

off of the model and cross-validation in the case of no validation set. The bias increases as

λ (amount of shrinkage) increases. The variance decreases as λ increases.

Figure 3.6: Simulated data: n = 50 , p = 45 , all having nonzero coefficients.The bias

increases as λ increases and variance decreases as λ increases
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Figure 3.6 is a simulated data with n = 50 observations, p = 45 predictors, all having

nonzero coefficients. Squared bias (black), variance (green), and test mean squared error

(purple) for the ridge regression predictions on a simulated data set, as a function of λ. The

horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate

the ridge regression models for which the MSE is smallest[17].

As λ increases, the complexity of the ridge regression fit decreases, leading to decreased

variance but increased bias. This is illustrated in Figure 3.6. The test mean squared error

(MSE), plotted in purple, is a function of the variance plus the squared bias. From Figure

3.6, for values of λ up to about 10, the variance decreases rapidly, with very little increase

in bias, plotted in black. Consequently, the MSE drops considerably as λ increases from

0 to 10. Beyond this point, the decrease in variance due to increasing λ slows, and the

shrinkage on the coefficients causes them to be significantly underestimated, resulting in a

large increase in the bias. The minimum MSE is achieved at approximately λ = 30.[17].

Lasso Regression

The lasso is a shrinkage method like ridge, but uses uses L1 regularization to penalize

regression coefficients size. As with ridge regression, the lasso shrinks the coefficient es-

timates towards zero. However, in the case of the lasso, the L1 penalty has the effect of

forcing some of the coefficient estimates to be exactly zero when the tuning parameter λ is

sufficiently 1arge. The lasso estimate is defined by [1]:

β̂lasso = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

subject to
n∑
n=1

|βj| ≤ t

(3.26)

The Lagrangian form of the lasso problem is:

β̂lasso = argmin
β

1

2

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|

 (3.27)
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Compared to the ridge regression problem (3.24) or (3.25). The L2 ridge penalty
∑p

1 β
2
j

is replaced by the L1 lasso penalty
∑p

1 |βj| . This latter constraint makes the solutions

nonlinear in the yi, and there is no closed form expression as in ridge regression. The lasso

solution is a quadratic programming problem, although efficient algorithms are available

for computing the entire path of solutions as λ is varied, with the same computational cost

as for ridge regression[1].

Figure 3.7: Lasso (left) and Ridge regression (right) contours of the error and constraint

functions.

Figure 1.7 shows the lasso (left) and ridge regression (right) for two parameters. The

residual sum of squares has elliptical contours, centered at the full least squares estimate.

The constraint region for ridge regression is the disk β2
1 +β2

2 ≤ t, while that for lasso is the

diamond |β1|+ |β2| ≤ t. Both methods find the first point where the elliptical contours hit

the constraint region[1].

The turning or complexity parameter λ is determined in practice using bias-variance

tradeoff of the model and cross-validation in the case of no validation set[1].
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Comparing Ridge and Lasso Regression

Lasso has a big advantage with respect to interpretation. It performs variable selection in

the linear model. But neither the ridge regression nor the lasso universally dominate the

other in terms of the prediction error. In general, one might expect the lasso to perform

better when the response is a function of only a relatively small number of predictors[1].

Elastic net = lasso + ridge

For data with high degree of collinearity in the features, the lasso penalty is indifferent

to the choice among a set of strong but correlated variables and the ridge penalty, on the

other hand, tends to shrink the coefficients of correlated variables toward each other. Also,

if there is a group of highly correlated variables, then the lasso tends to select one variable

from a group and ignore the others. The elastic net regression includes lasso (L1) and ridge

(L2) penalties (Zou and Hastie,2005)[36], and has the form

p∑
j=1

(
α |βj|+ (1− α)β2

j

)
(3.28)

The second term encourages highly correlated features to be averaged, while the first term

encourages a sparse solution in the coefficients of these averaged features. The elastic net

penalty can be used with any linear model, in particular for regression or classification.

The optimization problem for linear regression is given by [1]:

β̂e-net = min
β
‖y −Xβ‖2 + λ

[
α‖β‖2

2 + (1− α)‖β‖1

]
(3.29)

= argminβ(y − Xβ)′(y − Xβ) + λ
[
(1− α)‖β‖1 + α‖β‖2

2

]
(3.30)

= argmin
β

1

2

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

(
α |βj|+ (1− α)β2

j

) (3.31)

58



where λ ≥ 0, 0 ≤ α ≤ 1

In classification, a multinomial logistic regression with elastic-net penalty becomes:

max
{β0k,βk∈Rp}K1

[
N∑
i=1

log Pr (gi|xi)− λ
K∑
k=1

p∑
j=1

(
α |βkj|+ (1− α)β2

kj

)]
(3.32)

The parameter α determines the mix of the penalties and both α and λ chosen by cross-

validation.

3.8.5 Dimension Reduction Methods

The methods that we have discussed so far in this section have involved fitting linear

regression models, using least squares or a shrunken approach, with the original predictors,

X1, X2, . . . , Xp. Next we explore a class of approaches that transform the predictors and

then fit a least squares model using the transformed variables. The idea behind the method

is that in many situations large number of inputs are correlated. These methods find a

small number of linear combinations Zm,m = 1, . . . ,M of the original inputs Xj, and the

Zm are then used in place of the Xj as inputs in the regression. The methods differ in how

the linear combinations Zm are constructed[1].

The Z1, Z2, . . . , ZM represent M < p linear combinations of our original p predictors.

That is

Zm =

p∑
j=1

φjmXj (3.33)

for some constants φ1m, φ2m . . . , φpm,m = 1, . . . ,M. We can then fit the linear regression

model,

yi = θ0 +
M∑
m=1

θmzim + εi, i = 1, . . . , n (3.34)

using least squares. The regression coefficients are given by θ0, θ1, . . . , θM in (1.34). If the

constants φm1, . . . , φmp are chosen wisely, then such dimension reduction approaches can

often outperform least squares regression [1].
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Principal components regression (PCR)

The linear combinations Zm used are obtained using principal components analysis dis-

cussed under section 2.3 . Principal component regression forms the derived input columns

Zm = Xvm, using SVD on X = UDV′ where vm is mth column of V (principal component

direction), and um is mth column of U (normalized principal component). The response

y is then regressed on Z1,Z2, . . . ,ZM for some M ≤ p. Since the Zm are orthogonal, this

regression is just a sum of univariate regressions[1]:

ŷpcr
(M) = ȳ1 +

M∑
m=1

θ̂mzm (3.35)

where θ̂m is PCR regression coefficient. Since Zm are each linear combinations of the

original xj, we can express the solution (3.35) in terms of coefficients of the xj [1]:

β̂pcr(M) =
M∑
m=1

θ̂mvm (3.36)

The first principal component is a normalized linear combination of the variables with the

largest variance. The second principal component has largest variance, subject to being

uncorrelated with the first component. Hence with many correlated original variables, we

replace them with a small set of principal components that capture their joint variation.

The first few principal components can be thought as the low-dimensional approximation

of the feature matrix[1].

Draw back of PCR

PCR identifies linear combinations, or directions, that best represent the predictorsX1, . . . , Xp.

These directions are identified in an unsupervised way, since the response Y is not used

to help determine the principal component directions. That is, the response does not su-

pervise the identification of the principal components. Consequently, PCR suffers from a

potentially serious drawback, there is no guarantee that the directions that best explain

the predictors will also be the best directions to use for predicting the response[1].
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Partial least squares (PLS)

This method also constructs a set of linear combinations of the inputs for regression, but

unlike principal components regression it uses Y in addition to X for this construction.

That is, it makes use of the response Y in order to identify new features that not only

approximate the old features well, but also that are related to the response. The PLS

approach attempts to find directions that help explain both the response and the predictors

[1]. The algorithm for the PLS is described below:

Algorithm for Partial least squares

1. Standardize each xj to have mean zero and variance one. Set ŷ(0) = ȳ1, and x
(0)
j =

xj, j = 1, . . . , p

2. For m = 1, 2, . . . , p

(a) zm =
∑p

j=1 ϕ̂mjx
(m−1)
j , where ϕ̂mj =

〈
x

(m−1)
j ,y

〉
(b) θ̂m = 〈zm,y〉 / 〈zm, zm〉

(c) ŷ(m) = ŷ(m−1) + θ̂mzm

(d) Orthogonalize each x
(m−1)
j with respect to

zm : x
(m)
j = x

(m−1)
j −

[〈
zm,x

(m−1)
i

〉
/ 〈zm, zm〉

]
zm, j = 1, 2, . . . , p

3. Output the sequence of fitted vectors
{
ŷ(m)

}p
1
. since the {z`}m1 are linear in the

original xj, so is ŷ(m) = Xβ̂pls(m).
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Chapter 4

Data Analysis and Result.

4.1 Analysis on Breast Cancer Data

4.1.1 Data background

The analysis that follows is focused on the breast cancer [49] data sets, that are available

in UCI machine learning repository. The breast cancer data sets has 699 observations with

11 variables. Table 4.1 gives a description of the breast cancer data set.

Table 4.1: Name of variables and description

Variable Description

Id Sample code number

Cl.thickness Clump Thickness

Cell.size Uniformity of Cell Size

Cell.shape Uniformity of Cell Shape

Marg.adhesion Marginal Adhesion

Epith.c.size Single Epithelial Cell Size

Bare.nuclei Bare Nuclei

Bl.cromatin Bland Chromatin

Normal.nucleoli Normal Nucleoli

Mitoses Mitoses

Class Class
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The ’Class’ column is the response variable that includes the status of a tumor as

malignant (breast cancer) or benign (not breast cancer). Our objective is to predict the

”Class” variable and to conclude whether a patient’s tumor is malignant or benign.

In the next section, we performed some exploratory data analysis by studying the cor-

relation, association and cluster of all variables in the data sets. This aids in understanding

the relation between variables, gain insight in the underlying structure of the data and find

patterns before modeling. It also help to uncover a parsimonious model, one which explains

the data with a minimum number of predictor variables.

4.1.2 Association of Data
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Figure 4.1: Scatter plot and Correlation for Breast Cancer Variables
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Figure 4.1, shows the individual variables distribution, scatter plot and correlation between

the variables. All the variable are right skewed (the diagonal) with Mitoses showing some

potential outliers (left margin). Most of the variable shows strong positive association

from the scatter plot with correlation greater the 0.5 except Mitoses. This may result

in multicollinearity. The correlation between cells size and cell shape,cells size and marg

adversion and cells size and normal nuclei are 0.907, 0.707 and 0.719 respectively.
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Figure 4.2: Scatter plot and Correlation between Variables by response

Figure 4.2 shows the group distribution, scatter plot and correlation between the variables.

The density curve (diagomal) shows that the variables distribution of the Benign group

turn to be right skewed compared to the Malignant group which is mostly symmetric. The
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boxplot (left margin) shows that the Benign group variable has a lot of outliers compared to

the Malignant group which show outlier only in the Mitoses variable. Generally the scatter

plot shows that the malign group turn to have high values in both coordinates (above 5

unit) while Benign has low values (below 5 unit) both coordinates except few outliers. That

is tumor with large Clump thickness, cell size,and cell shape turned to be Malignant.

4.1.3 Principal Component Analysis (PCA)

In this section we use Principal Component analysis to investigate the relationship between

variable and observations to get insight of the data. Also PCA is used to reduce the

nine correlate feature to three decorrelated feature which will later be used for Principal

component regression (PCR).

PCA Summary

Figure 4.3 is the scree plot which explain the the percentage on information explained

(retained) by the each of the principal components. From the figure 66% , 8.6% and

6%of the information are retained in the first, second and third component respectively.

The cumulative percentage of the first three component is 80.1%; meaning 80.1% of the

information is retained this is shown is Table 4.2. This is an acceptably large percentage

[1] hence we used these three component for our PCR.

Table 4.2: % of variation explained by each Component

STATISTICS PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Std deviation 2.43 0.88 0.73 0.68 0.62 0.55 0.54 0.51 0.30

Prop of Variance 0.66 0.09 0.06 0.05 0.04 0.03 0.03 0.03 0.01

Cum Proportion 0.66 0.74 0.80 0.85 0.89 0.93 0.96 0.99 1.00
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Figure 4.3: % of variation explained by each Component

Figure 4.4 shows the correlation or contribution of each feature to the dimensions of the

principal component. It highlight the most contributing variables for each components. It

can be seen that most of the features contribute highly to the first component and only

Mitoses and CI.thickness contribute to the second and third components. An alternative

variable contribution plot is shown in Figure 4.5.
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Figure 4.4: Correlation between variables and PCA.

Figure 4.5: Contributions of variables to PCA
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Figure 4.6 is the variable PCA plot which shows correlation between variables and the

general meaning of the dimension of the components. Positive correlated variables point to

the same side of the plot while negative correlated variables point to opposite sides of the

graph. From the figure 4.6 we can see that all the variable are positively correlated and in

the same but negative direction on PC1. About half of the variable are on the positive and

half on the negative side of PC2 except Mitoses which appear very different. This figure

consistent with correlation matrix plot in Figure 4.1. The interpretation we assign to PC1

is the average cell size and PC2 the rate of cell growth or division.

Figure 4.6: Breast cancer variables PC
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Figure 4.7: Breast Cancer PCA Bipot

Figure 4.7 is a biplot which combines both the features and the individual on the PC1

and PC2 plot with response of each individual in blue (bengin) or yellow (malignant)

colored. The plot shows individuals with similar profile group together. From the figure

4.7 we can conclude that individuals with large (average) cell size and fast cell growth turn

to be more cancerous( left in yellow) than those with relatively small cell size and slow

growth rate.

4.2 Application of Statistical learning methods

In this section we apply 10 Machine Learning models to the breast cancer data sets, compare

the predictive performance and interpretability with each other and chose best fits. We

randomly divided the data into two part, 70% for building or training the model(train

set) and 30% for evaluating the performance of the models(test set). We then compute the
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prediction accuracy and missclassification rate (MCR) to evaluate the models performance.

R statistical programs was used for the data analyses.

4.2.1 Logistic regression (LR):

The logistic regression with L1 (lasso) and L2 (ridge) regularization are the first models we

applied to build a predictive model. The model is given by:

P (X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
(4.1)

where the coefficient β′s are estimate by :

β̂lasso = max
β

{
N∑
i=1

[
yi
(
βTxi

)
− log

(
1 + eβ

T xi
)]
− λ

p∑
j=1

|βj|

}
(4.2)

for the Lasso Logistic regression and

β̂ridge = max
β

{
N∑
i=1

[
yi
(
βTxi

)
− log

(
1 + eβ

T xi
)]
− λ

p∑
j=1

β2
j

}
(4.3)

for the Ridge Logistic regression. The complexity parameter λ is obtained with cross-

validation. The L1 penalty is also used for variable selection. Given the estimated param-

eter and the feature vector we predict class probability using (4.1).

Figure 4.8 shows all the coefficients of the lasso model, with each curve corresponds to

a variable. It shows the path of the whole coefficient vector at as λ varies. The axis above

indicates the number of nonzero coefficients at the current λ, which is the effective degrees

of freedom (df) for the lasso.
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Figure 4.8: Relation between, Coeff.size, number of features and log(λ)

Figure 4.9: Relation b/n, Coeff.size, number of features and % Dev Explained

Figure 4.9 shows the fraction deviance explained by different model and their coefficient.
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From figure 4.9 about 80% of the information in the data is explained by including seven

features in the model. We choose λ to be 0.04170697 and 0.08187249 for lasso and ridge

respectively using the crossvalidation and the 1-SE rule which are shown in Figures 4.10

and 4.11. The corresponding a selected model are in Figures 4.12 and 4.13 for lasso and

ridge receptively. The selected seven features and their coefficients are shown in Table 4.3

column 2 for the Lasso Logistic regression model. Column 1 of Table 4.3 also shows the

coefficients of Ridge Logistic regression model. Table 4.3 shows important predictors using

the best predictive model with L1 penalty. The features Epith.c.size and Mitoses were

removed from the final model. The prediction accuracy of each model using the test data

was 0.9659 for lasso and 0.9756 for Ridge.

Figure 4.10: selecting λ using 10 fold cross validation
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Figure 4.11: selecting λ using 10 fold cross validation

Table 4.3: Cofficient,Pred. Accuracy of Lasso and Ridge LR model

Features LR-Ridge Coefficient LR-Lasso Coefficient

Cl.thickness 0.1712177 0.23606

Cell.size 0.1253754 0.07934

Cell.shape 0.1434834 0.18897

Marg.adhesion 0.1140987 0.05437

Epith.c.size 0.1267267 *

Bare.nuclei 0.1421901 0.20966

Bl.cromatin 0.1804671 0.2299

Normal.nucleoli 0.1115392 0.08242

Mitoses 0.1274586 *

Pred. Accuracy 0.9756 0.9659
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Figure 4.12: Best λ by 10 fold cross validation and coefficient of LR ridge

Figure 4.13: Best λ by 10 fold cross validation and coefficient of LR ridge
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Figure 4.14: Variables importance plot for Lasso and Ridge regression

Figure 4.14 show the variables importance plot for both lasso and ridge regularized re-

gression. The top three predictor for cancer predictions were Bare.nuclei, CI.thickness and

BI.cromatin. The features Mitoses and Epith.c.size were dropped by the lasso model.

4.2.2 Logistic Principal Component Regression(LR-PC):

The second analysis is the principal component regression a dimension reduction method.

We reduce the dimension of the original correlated data from nine to three uncorrelated as

explain in Figure 4.3. This transformation help overcomes the multicollinearity problem of

the cancer and heart disease datasets. The response data and cross validation were used

to confirm the observed components in Figure 4.15. The transformed data was used to

build predictive model for cancer and heart disease datasets. We compared the predictive

performance of PCR to the other models in Table 4.6.
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Figure 4.15: selecting λ and number of components using 10 fold cross validation

Table 4.4: Coefficient of Principal Components

Estimate Std. Error z value P-value

(Intercept) -1.263 0.3278 -3.853 0.00011

PC1 -2.2708 0.2597 -8.746 0.00000

PC2 0.1489 0.387 0.385 0.07302

PC3 0.7754 0.3923 1.977 0.04809

Null deviance = 617.334 on 477 df and Residual deviance = 85.926 on 474 df

AIC: 93.926 and Pred. Accuracy: 0.9707

Table 4.4 column two show the parameter estimates of the principal components, all were

significant at α = 0.05 except PC2. The prediction accuracy on the test data was 0.9707.
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4.2.3 Logistic Partial Least squares Regression(LR-PLS):

Next we fitted Logistic partial least square regression to the cancer data. Unlike the princi-

pal component regression were component are determine independent of the response, PLS

uses the response variable to aid the construction of the principal components. Thus PLS

ia a supervised dimension reduction method that finds new features that not only captures

most of the information in the original features, but also are related to the response. The

new features were used as predictor in the predictive model.

Similar to PCR, we fittted PLS model on the train set and used cross validation to select

the number of principal components that maximizes predictive accuracy. Five component

were used as shown in Figure 4.16. The prediction error of the final model on the test

set was 0.961. We compared the predictive performance of LR-PLS to the other models in

Table 4.6.

Figure 4.16: Selecting the number of component by CV
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4.2.4 Multivariate Adaptive Regression Splines(MARS):

The multivariate adaptive regression splines (MARS) model was the next model we fitted

to the Cancer data. This model search for, and discover, nonlinearities and interactions

in the data that help maximize predictive accuracy. The two parameter: the degree of

interactions and the number of terms retained in the final model were selected using 10-fold

cross-validation. We perform a CV grid search to identify the optimal combination of these

hyperparameters that minimize prediction error. The model that provides the optimal

combination includes second degree interaction effects and retains 26 terms. The cross-

validated prediction accuracy for these models is displayed in Figure 4.17. The optimal

model’s cross-validated prediction accuracy was 0.96 on the train set . The final model

gave prediction accuracy of 0.9659 on the test data.

Figure 4.17: Selecting the number of component by CV

We ranked the predictors in terms of importance using the Generalized Cross-Validation

(GCV) show in Figure 4.18. The GCV is a type of regularization technique that trades-

off goodness-of-fit against the model complexity. From Figures 4.18, the Cell.size is most

important predictor of cancer cancer. We compared the predictive performance of MARS

to the other models in Table 4.6.
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Figure 4.18: MARS Variables important plot

4.2.5 Random Forest( RF):

For random forests, we first train models with 1000 trees using the randomForest function

in R. We search for the number of feature m randomly sampled as candidates at each split

that gives the smallest OOB error to be 3 as shown in Figure 4.19. The OOB error of the

random forest are stablized at B = 500 trees as shown in Figure 4.20.

Figure 4.19: Selecting the split size
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Figure 4.20: Selecting the Tree size

The random forest model with m = 3 and B = 500 on the Cancer test data gave a

prediction accuracy of 0.9756.

Figure 4.21: RF important variables in Predicting Cancer
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Figure 4.21 shows variable importance ranked using the Mean Decrease Gini indices. The

figure shows that Cell.size, CI.thickness and Cell.shape to be top three most important

variable in predicting breast cancer. We compared the predictive performance of RF to the

other models in Table 4.6.

4.2.6 Gradient Boosting

The gradient boosting algorithm with 1000 tree was fitted to to the cancer data. The

optimal tree size by 10 fold cross validation was 120 as show in Figure 4.22. The blue

dotted line indicates the best iteration, and the black and green curves indicate the training

and cross validation error respectively.

Figure 4.22: Selecting the Tree size
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Figure 4.23: GBM important Variable

Again for the interpretation, we display the relative importance of variables in boosted trees.

From the variable importance plot in Figure 4.23, Cell.size, Cell.shape and Bi.cromatin are

the top three most important predictors of breast cancer. This is consistent with the

result of RF. The prediction accuracy form test data and the selected model is 0.9707. We

compared the predictive performance of GBM to the other models in Table 4.6.

4.2.7 Support Vector Machine

We applied the Gaussian/Radial basis kernel (SVM-GK) to the Cancer data and used 10-

fold cross validation to tune two parameters γ and C over the search gird γ ∈ 10%, 50%, 90%

quantiles of ‖x− x′‖ and C ∈ 2∧(−2 : 7). The best tuning parameters on our search grid

gave gamma = 0.02257 and cost = 0.5. shown in Figure 4.24.

82



Figure 4.24: Selecting the Cost parameter

The resulting model on the test set gave a prediction accuracy of 0.9756. Figure 4.25

shows the variable importance plot from the SVM. Bare .nuclei is most important and Mi-

toses the lease important predictor of Cancer which is shown in Figure 4.25. We compared

the predictive performance of SVM to the other models in Table 4.6.

Figure 4.25: SVM important variables
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4.2.8 Deep Learning: Feed froward Network (FFNN)

The final model applied to the Cancer data was Feed Forward Neural Network. To avid

over-fitting due to the data size we used random-hyperparameter search and cross validation

to determine the optimal network configuration because of the large parameter space. The

parameter we optimized were the activation function, the number of hidden layers, the

number of neurons(units) in each hidden layer, epochs,Learning rate and regularization λ

for L1 and L2 penalties. Hundred models were bulid from the serach. Below are top five

model ordered by miss classifications error in table 4.5.

Table 4.5: Selecting the optimal model for FFNN using miss classification error

Actva. Epochs Hidden IDR L1 L2 L.Rate Miss.Err

Maxout 100 [9,3,2] 0.050 8E-05 4E-05 0.020 0.006

Maxout 100 [5,5,2] 0.000 9E-05 8E-05 0.010 0.015

Maxout 100 [9,2] 0.000 2E-05 1E-02 0.010 0.015

Maxout 50 [9,3,2] 0.000 3E-05 5E-05 0.020 0.015

Maxout 100 [9,2] 0.000 9E-05 2E-02 0.020 0.015

The best model in table 4.5 row 1, fitted to the test data gave prediction accuracy of

0.9707317. Figure 4.26 show the important predictors. We compared the predictive perfor-

mance of FFNN to the other models in Table 4.6.

Figure 4.26: FFNN important variables
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4.2.9 Models Summary for Breast Cancer Data

Table 4.6: All model applied to the Breast Cancer Data

Model Sensitivity Specificity Accuracy 95% CI

LR-Ridge 0.9724 0.9452 0.9656 (0.9440, 0.9920)

LR-Lasso 0.9848 0.9315 0.9659 (0.9309, 0.9862)

LR-Enet 0.9848 0.9452 0.9707 (0.9374, 0.9892)

LR-PC 0.9848 0.9452 0.9707 (0.9374, 0.9892)

LR-PLS 0.9773 0.9315 0.9610 (0.9246, 0.9830)

MARS 0.9589 0.9621 0.9610 (0.9246, 0.9830)

SVM 0.9848 0.9589 0.9756 (0.9440, 0.9920)

RF 0.9773 0.9726 0.9756 (0.9440, 0.9920)

GBM 0.9773 0.9589 0.9707 (0.9374, 0.9892)

FFNN 0.9473 0.9920 0.97561

Table 4.6 compares the result of 10 model applied to the breast cancer data. The models

are grouped according to their similarities and learning style. i) Linear regularized models:

LR-Lasso, LR-Ridge and LR-Enet. ii) Linear dimension reduction models: PCR and PLSR.

iii) Non-Linear ensemble models : Random forest and Gradient Boosting. iv) Other Non-

Linear models: FFNN, SVM and MARS. From Table 4.6, the non linear models: SVM,

RF and FFNN gave the best prediction accuracy of 0.9756. From the variable importance

plots in Figures 4.21, 4.25, 4.26 the top risk factors of breast cancer are uniformity of

cellsize (Cell.size), uniformity of cell shape (Cell.shape), bare nuclei (Bare.nuclei) and bland

chromatin (Bl.cromatin).
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4.3 Analysis on Heart Disease Data

The heart disease data used in this analysis was also obtained from UCI machine learning

repository[49], it has 14 features that play a role in explaining the cause of heart disease.

The features include age of patients, sex, chest pain, resting blood pressure, fasting blood

sugar, number of major vessel, and several others.

Table 4.7: Features name and short Description

Variables Description

Age Age of patientin years

sex Sex, 1 for male

cp Chest pain

trestbps Resting blood pressure

chol Serum cholesterol

fbs Fasting blood sugar larger 120mg/dl (1true)

restec Gresting electroc. result (1 anomality)

thalach Maximum heart rate achieved

Exang Exercise induced angina

Oldpeak ST depression induced by exercise relative to rest

Slopethe Slope of the peak exercise ST segment

ca Number of major vessel

Thal Thalassamia

num Angiographic disease status

Table 4.7 is the summary and description of heart disease dataset. The target variable

is num that contains the rate of diameter narrowing of coronary artery. It takes value 0

when the rate < 50%, and value 1 when the rate > 50%. We assume that the patient has

no heart disease when num is 0 and the patient has heart disease when num is 1. The goal
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is to predict the response variable num using ML method to determine whether a patient

has heart disease.

4.3.1 Association of Data
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Scatter plot and Correlation for  Heart Disease Variables

Figure 4.27: Scatter plot and Correlation for Heart Disease variables

Figure 4.27, shows the individual variables distribution, scatter plot and correlation be-

tween the Heart disease variables. Age, trestbps, chol and thalach appears approximately

normal while fbs, restecg and esang appears bi-modal. Almost all the variable show weak

association from the correlation value ranging from −0.395 to 0.378.
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Figure 4.28: Scatter plot and Correlation between Variables by response

Figure 4.28 shows the group distribution, scatter plot and correlation between the variables

and response. The density curve (diagonal) shows that the variables distribution of both

heart disease and non-heart disease groups to be very similar. In both groups age,trestbps,

chol and thalach appears approximately normal while fbs, restecg and esang appears bi-

modal.

The boxplot (left margin) shows that the heart disease group variable has a lot of

outliers compared to the non-heart disease group which show outlier only in the trestbps

and chol variables. Generally the scatter plots show no significant trends between both

groups.
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4.3.2 Principal Component Analysis (PCA):

In this section we use Principal Component analysis to investigate the relationship between

variable and observations to get insight of the data. Table 4.8 shows the percentage on

information explained (retained) by the each of the principal components. From the table

about 81% of the information are retained by PC1− PC8, out of the 14 components.

PCA Summary

Table 4.8: % variation explained by each component

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Std Dev 1.76 1.27 1.12 1.05 1.00 0.93 0.92 0.88 0.83

Prop. var 0.24 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.05

Cum. Prop. 0.24 0.36 0.46 0.54 0.62 0.69 0.75 0.81 0.86

Figure 4.29 shows the contribution of each feature to the dimensions of the principal com-

ponent. It can be seen that eight of the features contribute to the first component and four

to the second component.
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Figure 4.29: All Variables-PC.

Figure 4.30: Variables-PCA correlation.

Figure 4.30 is the variable PCA plot which shows correlation between variables and the

general meaning of the dimension of the components. Positive correlated variables point to

the same side of the plot while negative correlated variables point to opposite sides of the

graph. From figure 4.30 we can see that all the variable are positively correlated and in the

same but negative direction on PC1 except thalach. About half of the variables are on the

positive and half on the negative side of PC2 except thalach which appear very different.

This figure consistent with correlation Matrix plot in Figure 4.27. The interpretation we

assign to PC1 is the level of endurance from exercise before chest pain and PC2 is the

cholesterol level given age and gender.
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Figure 4.31: Heart disease PCA Biplot

Figure 4.31 is a biplot which combines both the features and individual on the PC1 and

PC2 with response of each individual in blue (no heart disease) or yellow (heart disease)

colored. The plot shows individuals with similar profile group together. From the figure

we conclude that subject who tend to endure more exercise before chest pain and have low

cholesterol turn to be at low risk of heart disease. Contrary subject who tend to endure

less exercise before chest pain and have high cholesterol turn to be at high risk of heart

disease.
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4.4 Application of Statistical learning methods

4.4.1 Logistic regression

Figure 4.32: Selecting λ using 10 fold cross validation

Figure 4.32 shows the tuning parameter λ and the number of features selected by LR-ridge

(left) and LR-lasso(right). We choose λ to be 0.05035599 and 0.363611 for lasso and ridge

respectively using the crossvalidation and the 1-SE rule. The selected eight features and

their coefficients are shown in Table 4.9 column 2 for the Lasso Logistic regression model.

Column 1 of Table 4.9 show the coefficients of Ridge Logistic regression model.
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Table 4.9: Estimate Coefficient of Lasso and Ridge LR

Features LR-Ridge LR-Lasso

age 0.001162064

sex 0.073681097 0.037073089

cp 0.042463517 0.044754279

trestbps 0.000916134

chol 0.00024749

fbs -0.015930603

restecg 0.025136613 0.013670152

thalach -0.001578803 -0.001014997

exang 0.096665553 0.135966412

oldpeak 0.036505923 0.050496442

slope 0.034953927

ca 0.05829244 0.112452634

thal 0.025019609 0.040342951

Pred. Accuracy 0.7576 0.8182

Figure 4.33: Important variable plot using Lasso and Ridge regression
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Figure 4.33 shows important predictors using the best predictive model with L1 and L2

penalties. The features exang, ca, oldpeak and exang, sex, ca were the top three predictors

for Lasso and Ridge LR respectively . The prediction accuracy of each model using the

test data was 0.8182 for lasso and 0.8384 for Ridge.

4.4.2 Logistic Principal Component Regression(LR-PC):

The eight PC components obtained in section (4.3.2) were used as predictor to fit a logistic

regression to the heart disease data. The coefficients of the resulting model are in Table

4.10. We compared the predictive performance of PCR to the other models in Table 4.12.

Table 4.10: LR-PC coefficient

Estimate Std. Error z value P-value

(Intercept) -0.4469 0.2103 -2.125 0.0336

PC1 1.24853 0.16947 7.367 1.7E-13 ***

PC2 0.19191 0.153 1.254 0.2097

PC3 -0.0129 0.16888 -0.076 0.939

PC4 -0.438 0.18799 -2.33 0.0198 *

PC5 -0.4096 0.19367 -2.115 0.0344 *

PC7 0.27663 0.22134 1.25 0.2114

PC8 -0.0978 0.22904 -0.427 0.6694

Null deviance = 269.92 on 197 df and Residual deviance = 148.97 on 190 df

AIC: 164.97 and Pred. Accuracy: 0.8384

4.4.3 Logistic Partial Least squares Regression(LR-PLS)

The Logistic partial least square regression to the Heart disease data. The PLS model

was fitted to the train set and used cross validation to select the number of principal

components that maximizes predictive accuracy. One component were used as shown in
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Figure 4.34(left).The The prediction error of the final model on the test set was 0.8384. We

compared the predictive performance of LR-PLS to the other models in Table 4.12.

Figure 4.34: Selecting the number of components by CV (left) and variables importance

plot (right).

4.4.4 Multivariate Adaptive Regression Splines: MARS

We perform a 10-fold cross-validation grid search to identify the optimal combination of

these hyperparameters that minimize prediction error. The model that provides the opti-

mal combination includes first degree interaction effects and retains 12 terms. The cross-

validated prediction accuracy for these models is displayed in Figure 4.35.

Figure 4.35: Selecting the number of component by CV
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The optimal model’s cross-validated prediction accuracy was 0.85 on the train set . The

final model gave prediction error of 0.7374 on the test data.

We ranked the predictors in terms of importance using the generalized cross-validation

(GCV) show in Figure 4.36. From Figures 4.36, the ca, cp and slope are the top three

important predictor of Heart disease. We compared the predictive performance of MARS

to the other models in Table 4.12.

Figure 4.36: MARS variables importance plot

4.4.5 Random Forest(RF):

We train models with 1000 trees and search for the number of feature m to randomly

sampled as candidates at each split. We obtained m with the smallest OOB error to be 6

as shown in Figure 4.37. The OOB error of the random forest are stablized at B = 500

trees as shown in Figure 4.38. The random forest model with m = 3 and B = 500 on the

heart disease test data gave a prediction accuracy of 0.9756.

96



Figure 4.37: Selecting the split size

Figure 4.39 shows variable importance ranked using the Mean Decrease Gini indices. The

figure shows that ca, oldpeak and cp to be top three most important predictors of Heart

disease. We compared the predictive performance of RF to the other models in Table 4.12.

Figure 4.38: Selecting the Tree size
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Figure 4.39: RF variables importance plot

4.4.6 Gradient Boosting(GBM):

The gradient boosting algorithm with 10000 tree was fitted to to the Heart disease data.

The optimal tree size by 10 fold cross validation was 915 as show in Figure 4.40. The blue

dotted line indicates the best iteration, and the black and green curves indicate the training

and cross validation error respectively.

Figure 4.40: Selecting the Tree size
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For the interpretation, we display the relative importance of variables in boosted trees.

From the variable importance plot in Figure 4.41, chol, cp and ca are the top three most

important predictors of Heart disease. The prediction accuracy form test data and the

selected model is 0.8283. We compared the predictive performance of GBM to the other

models in Table 4.12.

Figure 4.41: GBM important Variable

4.4.7 Support Vector Machine(SVM):

We applied the Gaussian kernel SVM to the Heart disease data and used 10-fold cross

validation to tune two parameters γ and C over the search gird γ ∈ 10%, 50%, 90% quantiles

of ‖x− x′‖ and C ∈ 2∧(−2 : 7). The best tuning parameters on our search grid gave gamma

= 0.04194202 and cost = 0.25. shown in Figure 4.43.

The resulting model on the test set gave a prediction accuracy of 0.8384. Figure ??

shows the variable importance plot for the SVM. ca, thal and oldpeak are the top three

most important predictor of Heart disease. We compared the predictive performance of

SVM to the other models in Table 4.12.

99



Figure 4.42: Selecting the Cost parameter

Figure 4.43: SVM variables importance plot

4.4.8 Deep Learning: Feed froward Network(FFNN):

The top five FFN model ordered by miss classifications error form the random hyper-

parameter search using cross validation is shown in Table 4.11.
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Table 4.11: Selecting the optimal model for FFNN using miss classification error

Actv. Epochs Hidden IDR L1 L2 L.Rate Miss. Err

Maxout 100 [14,3,2] 0.000 9.4E-05 8E-05 0.010 0.015

Maxout 100 [14,3,2] 0.000 3.5E-05 9E-05 0.020 0.020

Maxout 100 [14,3,2] 0.050 1.2E-05 9E-05 0.020 0.025

Maxout 100 [14,2] 0.050 1.5E-05 0.01 0.010 0.030

Rectifier 100 [14,3,2] 0.000 3.1E-05 8E-05 0.010 0.045

The best model from Table 4.11 row 1, fitted to the test data gave prediction accuracy

of 0.8383. Figure 4.44 show the important predictors. We compared the predictive perfor-

mance of FFNN to the other models in Table 4.12.

Figure 4.44: NN important variables
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4.4.9 Models Summary

Table 4.12: All model applied to the Heart Disease data

Model Sensitivity Specificity Accuracy 95% CI

LR-Ridge 0.9565 0.7358 0.8384 (0.7509, 0.9047)

LR-Lasso 0.9783 0.6792 0.8182 (0.7280, 0.8885)

LR-Enet 0.9565 0.7358 0.8384 (0.7509, 0.9047)

LR-PC 0.9565 0.7358 0.8384 (0.7509, 0.9047)

LR-PLS 0.9565 0.7358 0.8384 (0.7509, 0.9047)

MARS 0.6038 0.8913 0.7374 (0.6393, 0.8207)

SVM 0.9565 0.7358 0.8384 (0.7509, 0.9047)

RF 0.9130 0.6981 0.7980 (0.7054, 0.872)

GBM 0.9348 0.7358 0.8283 (0.7394, 0.8967)

FFNN 0.8000 0.8700 0.8383

Table 4.12 compares the result of 10 model applied to the heart disease data. The models

are grouped according to their similarities and learning style. i) Linear regularized models:

LR-Lasso, LR-Ridge and LR-Enet. ii) Linear dimension reduction models: PCR and PLSR.

iii) Non-Linear ensemble models : Random forest and Gradient Boosting. iv) Other Non-

Linear models: FFNN, SVM and MARS. From Table 4.12, the linear models: LR-PLS,

LR-PC ,LR-Ridge and LR-Enet gave the best prediction accuracy of 0.8384. From the

variable important plots in Figures 4.33, 4.34, 4.65 the top risk factors of heart disease are

number of major vessels (ca), Thalassamia (Thal) and exercise induced angina (Exang).
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4.5 Analysis on Prostate Cancer Data

The final analysis is on the prostate cancer (PC), which is the second most common cancer

among males worldwide that results in more than 350,000 deaths annually [29]. With more

than 1 million (PC) new diagnoses reported every year, the key to decreasing mortality is

developing more precise diagnostics. Diagnosis of PC is based on the grading of prostate

tissue biopsies. These tissue samples are examined by a pathologist and scored according

to the Gleason grading system [29]. In this analysis, we will develop models for predicting

severity (or Gleason score) of prostate cancer using eight predictors.

The studied prostate cancer data came from a study by Stamey et al. (1989)[30].

The data consist of log cancer volume (lcavol), log prostate weight (lweight), age, log of

the amount of benign prostatic hyperplasia ( lbph ), seminal vesicle invasion (svi), log of

capsular penetration (lcp) Gleason score (gleason), and percent of Gleason scores 4 or

5(pgg45). The response we are predicting is the Gleason score (gleason). Table 4.13 has a

brief description of the variable.

Table 4.13: Variables name and brief description.

Variable Description

lcavol log cancer volume

lweight log prostate weight

age Age

lbph log of benign prostatic hyperplasia amount

svi seminal vesicle invasion

lcp log of capsular penetration

lpsa log prostate specific antigen

pgg45 percent of Gleason scores 4 or 5

gleason Gleason score
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The grading process consists of finding and classifying cancer tissue into Gleason patterns

(3, 4, or 5) based on the growth patterns of the tumor Figure 4.45 [29]. After the biopsy is

assigned a Gleason score, it is converted into an ISUP grade on a 1-5 scale [31]. The Gleason

grading system is the most important prognostic marker for PC, and the ISUP grade has a

crucial role when deciding how a patient should be treated. There is both a risk of missing

cancers and a large risk of over grading resulting in unnecessary treatment. However, the

system suffers from significant inter-observer variability between pathologists, limiting its

usefulness for individual patients. This variability in ratings could lead to unnecessary

treatment, or worse, missing a severe diagnosis [29].

Figure 4.45: An illustration of the Gleason grading process.[29]

Figure 4.45 is an illustration of the Gleason grading process for a biopsy containing prostate

cancer. The most common (blue outline, Gleason pattern 3) and second most common (red

outline, Gleason pattern 4) cancer growth patterns present in the biopsy dictate the Gleason

score (3+4 for this biopsy), which in turn is converted into an ISUP grade (2 for this biopsy)

following guidelines of the International Society of Urological Pathology. A Gleason score

of 6 or less is considered low risk, 7 is intermediate risk, and a score of 8 to 10 is high risk

cancer [32]. In our study we consider gleason score of 6 as low risk(LRPC) and score of 7

to 10 as high risk of prostate cancer(HRPC).
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4.5.1 Association of Data

Corr:

0.281**

Corr:

0.225*

Corr:

0.348***

Corr:

0.027

Corr:

0.442***

Corr:

0.350***

Corr:

0.539***

Corr:

0.155

Corr:

0.118

Corr:

−0.086

Corr:

0.675***

Corr:

0.165

Corr:

0.128

Corr:

−0.007

Corr:

0.673***

Corr:

0.734***

Corr:

0.433***

Corr:

0.170.

Corr:

0.180.

Corr:

0.566***

Corr:

0.549***

Corr:

0.434***

Corr:

0.107

Corr:

0.276**

Corr:

0.078

Corr:

0.458***

Corr:

0.632***

Corr:

0.422***

lcavol lweight age lbph svi lcp lpsa pgg45

lcavol
lw

eight
age

lbph
svi

lcp
lpsa

pgg45

0 2 4 3 4 40 50 60 70 80 −1 0 1 2 0.00 0.25 0.50 0.75 1.00 −1 0 1 2 3 0 2 4 0 25 50 75 100

0.0

0.1

0.2

0.3

3

4

40

50

60

70

80

−1

0

1

2

0.00

0.25

0.50

0.75

1.00

−1

0

1

2

3

0

2

4

0

25

50

75

100

Scatter plot and Correlation for  Prostate Cancer Variables

Figure 4.46: Scatter plot and Correlation for Prostate Cancer variables

The variables distribution and correlation matrix of the predictors given in Figure 4.46. The

figure shows many strong correlations, example lcavol shows strong positive relationship

with svi, lcp, and lpsa. The distribution of four of the variables are approximately normal

with the remaining three either right-skewed or bi-modal.
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Grouped Scatter plot and the Correlation for Prostate Cancer Variables

Figure 4.47: Scatter plot and Correlation between Variables by response.

Figure 4.47 shows the group distribution, scatter plot and correlation between the variables

and response. The density curve (diagonal) shows the variables distribution for both high

risk prostate cancer (green) and low risk prostate (red) cancer groups. From the density

curves in Figure 4.47, the average lcavol, lweight, age and lpsa are higher in the high risk

prostate cancer group compared to the low risk prostate cancer group. The boxplot (left

margin) shows that the HRPC have higher median gleason score for all the variable except

svi. Generally the scatter plots show positive linear trend in the HRPC compared to LRPC

group which shows no specific trend between the variables.
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4.5.2 Principal Component Analysis (PCA):

In this section we use Principal Component analysis to investigate the relationship between

variable and observations to get insight of the data. Table 4.14 shows the percentage on

information explained (retained) by the each of the principal components. From the table

about 83% of the information are retained by PC1− PC4, out of the 8 components.

PCA Summary

Table 4.14: % variation explained by each components

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Std. Dev. 1.87 1.28 0.93 0.78 0.68 0.65 0.57 0.40

Prop. Var. 0.44 0.21 0.11 0.08 0.06 0.05 0.04 0.02

Cum. Prop. 0.44 0.64 0.75 0.83 0.89 0.94 0.98 1.00

Figure 4.48 shows the contribution of each feature to the dimensions of the principal com-

ponent. It can be seen that five of the features contribute to the first component and three

to the second component.

Figure 4.49 is the variable PCA plot which shows correlation between variables and the

interpretation of the dimension of the components. From the figure we can see that all

the variable are positively correlated and in the same direction on PC1. About half of the

variables are on the positive and half on the negative side of PC2. The interpretation we

assign to PC1 is the volume of cancer (lcavol) given the amount of prostate specific antigen

(lpsa) and PC2 is the level of prostate enlargement(lbph) and weight(lweight) given the

patient age.
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Figure 4.48: Correlation between variables and PCA.

Figure 4.49: Prostate Cancer all Variances PC
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Figure 4.50: Prostate Cancer PCA Biplot

Figure 4.50 is a biplot which combines both the features and individual on the PC1 and PC2

with response of each individual in blue (low risk of prostate cancer) or yellow (high risk

of prostate cancer) colored. The plot shows individuals with similar profile group together.

From the figure we conclude that subject who have large cancer volume and large amount

of prostate specific antigen turn to be at high risk of prostate cancer. Also old subject who

have enlargement and heavy prostate turn to be at high risk of prostate cancer.

4.6 Application of Statistical learning methods

4.6.1 Logistic regression(LR):

Figure 4.51 shows the tuning parameter λ and the number of features selected by LR-ridge

(left) and LR-lasso(right). We choose λ to be 0.0001020873 and 0.235835 for lasso and

ridge respectively using the crossvalidation and the 1-SE rule. The selected six features

and their coefficients are shown in Table 4.15 column 2 for the Lasso Logistic regression

model. Column 1 of Table 4.15 show the coefficients of Ridge Logistic regression model.
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Figure 4.51: Selecting λ using 10 fold cross validation

Table 4.15: Estimate Coefficient of LR-Lasso and Ridge

Features LR-Ridge LR-Lasso

lcavol 0.239458698 0.37135653

lweight 0.115073840 -0.08676346

age 0.023167586 -0.01772586

lbph 0.007482273

svi 0.474413962

lcp 0.201077847 0.79941013

lpsa 0.291553599 0.23893327

pgg45 0.017668468 2.22722249

Pred. Accuracy 0.8485 1.0000

Figure 4.52 shows important predictors using the best predictive model with L1 and L2

penalties. The features pgg45, lcp, lcavol and svi, lpsa, lcavol were the top three predictors
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for Lasso and Ridge LR respectively . The prediction accuracy of each model using the

test data was 1.0000 for lasso and 0.8485 for Ridge.

Figure 4.52: Lasso and Ridge regression variable important plot

4.6.2 Logistic Principal Component Regression(LR-PC):

The four PC components obtained in section (4.5.2) were used as predictor to fit a logistic

regression to the prostate cancer data. The coefficients of the resulting model are in Table

4.16. We compared the predictive performance of PCR to the other models in Table 4.18.

4.6.3 Logistic Partial Least squares Regression(LR-PLS)

The Logistic partial least square(PLS) regression is the next model applied to the Prostate

cancer data. The PLS model was fitted to the train set and used cross validation to select

the number of principal components that maximizes predictive accuracy. Two component

were used as shown in Figure 4.53(left). The prediction accuracy of the final model on

the test set was 0.8182. We compared the predictive performance of LR-PLS to the other

models in Table 4.18.
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Table 4.16: LR-PC coefficient

Component Estimate Std. Err. z value P-value

(Intercept) 7.924 2.862 2.769 0.00563 **

PC1 5.547 1.789 3.101 0.00193 **

PC2 -2.769 1.059 -2.614 0.00896 **

PC3 -3.069 1.217 -2.523 0.01164 *

PC4 2.941 1.26 2.333 0.01965 *

Null deviance = 83.591 on 63 df and Residual deviance = 24.526 on 59 df

AIC: 34.53 and Pred. Accuracy: 0.9697

Figure 4.53: Selecting the number of component by CV(left) and variables importance plot

(right).

4.6.4 Multivariate Adaptive Regression Splines(MARS):

We perform a 10-fold cross-validation grid search to identify the optimal combination of

these hyperparameters that minimize prediction error. The model that provides the optimal

combination includes first degree interaction effects and retains 2 terms. The cross-validated

prediction accuracy for these models is displayed in Figure 4.54. The optimal model’s cross-
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validated prediction accuracy was 1.000 on the train set . The final model gave prediction

error of 1.000 on the test data.

Figure 4.54: Selecting the number of component by CV

We ranked the predictors in terms of importance using the generalized cross-validation

(GCV) show in Figure 4.55. From Figures 4.55, the pgg45 was the only predictor of

prostate cancer. We compared the predictive performance of MARS to the other models

in Table 4.18.

Figure 4.55: MARS variable importance plot

113



4.6.5 Random Forest(RF):

We trained the random forest models with 500 trees and chose m =
√
p = 3 as random

sampled candidate at each split. The OOB error of the random forest stabilized at B = 36

trees as shown in Figure 4.56. The random forest model with m = 3 and B = 36 on the

prostate test data gave a prediction accuracy of 1.000.

Figure 4.56: Selecting the tree size

Figure 4.57 shows variable importance ranked using the Mean Decrease Gini indices. The

figure shows that pgg45, lcavol and lcp to be top three most important predictors of prostate

cancer. We compared the predictive performance of RF to the other models in Table 4.18.

Figure 4.57: RF variable importance plot
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4.6.6 Gradient Boosting

The gradient boosting algorithm with 1000 tree was fitted to to the Prostate cancer data.

The optimal tree size by 10 fold cross validation was 483 as show in Figure 4.58. The blue

dotted line indicates the best iteration, and the black and green curves indicate the training

and cross validation error respectively.

Figure 4.58: Selecting the Tree size

Figure 4.59: GBM variable importance plot

For the interpretation, we display the relative importance of variables in boosted trees.
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From the variable importance plot in Figure 4.59, pgg45 was the most important predictors

of the stage of prostate cancer. The prediction accuracy form test data and the selected

model is 1.00. We compared the predictive performance of GBM to the other models in

Table 4.18.

4.6.7 Support Vector Machine(SVM):

We applied the Gaussian kernel SVM to the Prostate cancer data and used 10-fold cross

validation to tune two parameters γ and C. The best tuning parameters on our search grid

gave gamma = 0.1215503 and cost = 2. shown in Figure 4.60.

Figure 4.60: Selecting the Cost parameter

The resulting model on the test set gave a prediction accuracy of 0.8182. Figure 4.61

shows the variable importance plot from the SVM. The predictors pgg45, lcp and svi are

the top three most important predictor of stage of prostate cancer. We compared the

predictive performance of SVM to the other models in Table 4.18.
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Figure 4.61: SVM variable important plot

4.6.8 Deep Learning: Feed froward Network(FFNN):

The top five FFNN model ordered by miss classifications error form the random hyper-

parameter search using cross validation is shown in table 4.17.

Table 4.17: Selecting the optimal model for FFNN using miss classification error

Actv. Epochs Hidden IDR L1 L2 L.Rate Miss. Err

Tanh 100 [8, 2, 2] 0.000 1.0E-6 7.7E-5 0.02 0.000

Tanh 50 [5, 5, 2] 0.000 2.1E-5 9.5E-5 0.02 0.000

Tanh 100 [8, 3, 2] 0.050 7.3E-5 7.4E-5 0.02 0.016

Tanh 100 [8, 5, 2] 0.050 4.0E-6 8.9E-5 0.02 0.016

Maxout 100 [8, 5, 2] 0.000 9.4E-5 7.8E-5 0.01 0.016

The best model from Table 4.17 row 1, fitted to the test data gave prediction accuracy of

0.909. Figure 4.62 show the pgg45 to be most important predictors of prostate cancer. We

compared the predictive performance of FFNN to the other models in Table 4.18.
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Figure 4.62: FFN variable importance plot

4.6.9 Models Summary

Table 4.18: All model applied to the Prostate Cancer data

Model Sensitivity Specificity Accuracy 95% CI

LR-Ridge 0.7500 0.9048 0.8485 (0.681, 0.9489)

LR-Lasso 1.0000 1.0000 1.0000 (0.8942, 1.0000)

LR-Enet 1.0000 1.0000 1.0000 (0.8942, 1.0000)

LR-PC 0.9167 1.0000 0.9697 (0.8424, 0.9992)

LR-PLS 0.8333 0.8095 0.8182 (0.6454, 0.9302)

MARS 1.0000 1.0000 1.0000 (0.8942, 1.0000)

SVM 0.9167 0.7619 0.8182 (0.6454, 0.9302)

RF 1.0000 1.0000 1.0000 (0.8942, 1.0000)

GBM 1.0000 1.0000 1.0000 (0.8942, 1.0000)

FFNN 0.9091 0.9091 0.9091

118



Table 4.18 compares the result of 10 model applied to the prostate cancer data. The

models are grouped according to their similarities and learning style. i) Linear regularized

models: LR-Lasso, LR-Ridge and LR-Enet. ii) Linear dimension reduction models: PCR

and PLSR. iii) Non-Linear ensemble models : Random forest and Gradient Boosting. iv)

Other Non-Linear models: FFNN, SVM and MARS. From Table 4.18, the linear models:

LR-Lasso, LR-Enet and non linear ensemble models RF and GBM gave the best prediction

accuracy of 1.00. From the variable important plots in Figures 4.52, 4.57, 4.59 and 4.68

the top risk factors of prostate cancer severity are percent of Gleason scores 4 or 5(pgg45),

cancer volume (lcavol) and capsular penetration (lcp).
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4.6.10 ELASTIC NET for Breast Cancer Data

CV: alpha = 0.3 lambda = 0.0273143 ,pred. accu.best model = 0.9663528

Figure 4.63: Selecting the optimal hyper parameters by CV

Figure 4.64: LR-Enet variable importance plot

Pred. accu.Test set =0.9707

120



4.6.11 ELASTIC NET for Heart Disease Data

CV alpha =0.1 lambda = 0.2119891 ,pred. accu. best model= 0.8342982

Figure 4.65: Selecting the optimal hyper parameters by CV

Figure 4.66: LR-Enet variable importance plot

Pred. accu.Test set = 0.8384
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4.6.12 ELASTIC NET for Prostate Cancer Data

cv alpha =1 lambda = 0.0003251038 ,pred accu.best model = 0.9666667

Figure 4.67: Selecting the optimal hyper parameters by CV

Figure 4.68: LR-Enet variable importance plot

Pred. accu.Test set = 1.000
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Chapter 5

Concluding Remarks

The predictive performance of 10 statistical learning models were investigated using three

medical data set, including breast cancer, heart disease and prostate cancer. The objective

is to use these models to predict the presence of breast cancer, heart disease and severity

of prostate cancer in patients in order to select the best predictive model(s) for these

diseases. We also used the models to identify risk factors that contribute significantly to

these diseases.

The models considered include; Logistic regression with L1 and L2 penalties, Princi-

pal component regression(PCR), Partial least squares regression(PLS), Multivariate adap-

tive regression splines(MARS), Support vector machine(SVM-GK), Random Forest(RF),

Gradient Boosting Machines(GBM), Elastic Net(Enet) and Feed Forward Neural Net-

work(FFNN).

The models are grouped according to their similarities and learning style. i) Linear

regularized models: LR-Lasso, LR-Ridge and LR-Enet. ii) Linear dimension reduction

models: PCR and PLSR. iii) Non-Linear ensemble models : Random forest and Gradient

Boosting. iv) Other Non-Linear models: FFNN, SVM-GK and MARS. The methodology

is not new, however the major contribution of this work comes in the realm of applications.

The methodology was applied to three medical data set: Breast Cancer, Heart disease and

Prostate cancer. In all the applications the methodology provides insight into predictive

performance of these model and the risk factors of these diseases.

To improve models performance and generalization of each method, we applied early

stopping, dropout and removed non-significant variables to avoid over fitting. We then used

cross-validation to select the best tuning parameters for each model. Once the predictive
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models were built, we checked their efficiency in the diagnosis and prognosis of disease using

test data. In order to obtain the most efficient model, we also compared the prediction

accuracy, sensitivity, and specificity to find the best classifier (see Tables 4.6, 4.12 and

4.18).

The result show the non-linear models; SVM-GK, RF and FFNN gave the best predic-

tion accuracy of 0.9756 (Table 4.6) for the breast cancer data. From the variable important

plots in Figures 4.21, 4.25, 4.26 the top risk factors of breast cancer are uniformity of cell-

size (Cell.size), uniformity of cell shape (Cell.shape), bare nuclei (Bare.nuclei) and bland

chromatin (Bl.cromatin). This result is in line with previous work of Padmavathi, J.(2011)

[48], Vikas et al.(2014) [41] and Mariani el at. (2019) [47] for their studies on breast cancer

prediction. In their work Vikas et. al compared several supervised learning classifiers, such

as Naive Bayes, Support Vector Machine (SVM-RBF), Neural Networks, and Decision trees

to find the best classifier in breast cancer datasets. Their study showed SVM-RBF kernel

was the most accurate classifier. Mariani el at. in their paper compared the predictive abil-

ity of five ML algorithms using breast cancer data set. Using prediction accuracy and the

Receiver Operating Characteristic (ROC) curve as the perfomance criterion. They showed

Random Forest (RF) to be the best predictive model of breast cancer. Finally in her work

Padmavathi, J. compared feed forward neural network (FFNN) with one hidden layer to

commonly used Multilayer Perceptron network model and the classical logistic regression.

The sensitivity and specificity of both neural network models had a better predictive power

compared to logistic regression. Hence our results of breast cancer prediction reinforced

previous results by different methodology.

The linear models; LR-PLS, LR-PC ,LR-Ridge and LR-Enet was preferred for heart

disease data with prediction accuracy of 0.8384 (Table 4.12). From the variable important

plots in Figures 4.33, 4.34, 4.65 the top risk factors of heart disease are number of major

vessels (ca), Thalassamia (Thal) and exercise induced angina (Exang). This result is con-

sistent with previous work of Dwivedi AK.(2018)[45] and Mariani el at (2019)[47]. In the

paper Dwivedi AK.(2018) evaluated the performance of six machine learning techniques for
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predicting heart disease. The methods were validated using tenfold cross validation and

assessed the performance using receiver operative characteristic curve. The highest clas-

sification accuracy of 85 % was reported using logistic regression. Also Mariani el at. in

their paper compared the predictive ability of five ML algorithms using heart disease data

set. Using prediction accuracy and the Receiver Operating Characteristic (ROC) curve as

the performance criterion. They showed Principal Component Regression (PCR) provided

the best predictive performance for heart disease data set.

Finally a mixture of linear models and non-linear models; LR-Lasso, LR-Enet, RF and

GBM gave the best prediction accuracy of 1.00 for the Prostate cancer data (Table 4.18).

From the variable important plots in Figures 4.52, 4.57, 4.59 and 4.68 the top risk factors of

prostate cancer severity are percent of Gleason scores 4 or 5(pgg45); cancer volume (lcavol)

and capsular penetration (lcp).

In general no particular model, class of models or learning style dominated predictability

for all the three data set. Non-linear models was prefered for Breast cancer data, a linear

model for heart disease and a mixture of linear and non linear models for prostate cancer .
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