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Abstract 

With an ever-present rise in population, along with an increase in industrial and 

manufacturing plants, contamination of potable water has become a global concern. While water 

treatment facilities exist which can help with the purification of water from bacterial and organic 

contaminants, these facilities are expensive to set in place and maintain. Therefore, in 

impoverished areas, point of use (POU) purification systems are often preferred, such as filters 

made from activated carbon. These filters are inexpensive and relatively easy to install and use. 

However, while activated carbons generally display excellent adsorption capabilities towards 

organic contaminants, their adsorption towards inorganic pollutants is limited. Moreover, most 

research towards their production generally utilizes large polymers, such as lignocellulosic 

material, along with metal salts for their activation. The use of smaller monomeric carbon sources 

has seldom been explored. 

We proposed the use of a smaller carbon source, glucose, as well as the utilization of zinc 

oxide nanoparticles for the synthesis of these carbon adsorbents. By utilizing this method we 

developed four adsorbent materials, including a high surface area adsorbent (1228 m2/g) which 

showed great adsorption capacities towards organic contaminants, as well as a photoactive 

adsorbent which demonstrated catalytic degradation capabilities towards methylene blue, 

ofloxacin and tetracycline. In addition, we expanded upon the adsorptive properties of these 

carbon-based materials by incorporating further functionalization, developing an adsorbent with 

magnetic properties which showed promise towards the adsorption of Pb(II), As(III) and As(V) 

(Qe: 5.57, 7.86 and 4.48 mg/g, respectively), as well as an adsorbent functionalized with sulfur for 

the adsorption of inorganic contaminants (Ba (Qe 8.65 mg/g) and As(III) (Qe 2.66 mg/g)).  
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Chapter 1: Introduction 

1.1 WATER CONTAMINATION 

Water contamination is a rather broad term, as the identity and source of ‘contaminants’ 

spans a wide berth of pollutants and origins. In a very broad sense, water contaminants can be 

classified as either biological, organic, or inorganic in nature. Organic contaminants can be largely 

classified into more specific subcategories, such as pharmaceuticals/personal care products, 

pesticides, veterinary products, industrial compounds and byproducts, food additives, and many 

more smaller, more individualized subcategories such as nanomaterials and plasticizers.1 The 

emergence of these organic contaminants into the environment is also varied, but can be broadly 

classified as emerging from wastewater effluents, septic tanks, hospital effluents, subsurface 

storage of industrial waste, and potentially through groundwater-surface water exchange. 2-6  While 

many sources of pollution can be pinpointed (point-source pollution), such as industrial effluents, 

resource extraction (mining, fracking), and landfill sites, other sources (such as runoff water from 

stormwaters, catchments and field drains) can span a broad geographical area, resulting in diffuse 

pollution.7-9 

Much like with organic pollutants, inorganic pollution can be largely varied in nature. 

Broadly speaking, most inorganic contaminants can be classified under heavy metals, oxyanions 

and cations, halides, and radioactive materials.10 Inorganic contaminants are persistent to 

degradation, and most biological systems are not equipped for their removal, making these 

contaminants especially potent.11 For example, large concentrations of nitrate in drinking waters 

can result in an increased risk for methemoglobinemia and the formation of carcinogenic 

nitrosamines.12 While fluoride in small concentrations can have beneficial health effects, large 

concentrations of fluoride and fluorine-containing compounds could potentially result in teeth 
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decay, crippling, and skeletal fluorosis.13  Perhaps the more commonly discussed and potentially 

more harmful inorganic contaminants consist of heavy metals, with the more commonly studied 

metals being arsenic, copper, chromium, lead, mercury, nickel, and zinc.14,15 While there are 

natural sources for inorganic contamination onto an ecosystem, such as volcanic eruptions, natural 

erosion of soil, and the natural disintegration of rocks, man-made pollution has drastically 

increased the quantity and variety of heavy metal pollution onto the environment. Wastewater from 

a large variety of industrial processes (mining, fracking, plastics, smelters, dyes, alloys, etc.) are a 

common source of toxic heavy metal pollution, including arsenic, cadmium, chromium, copper, 

mercury, lead and zinc.11 

Large concentrations of these heavy metals can have wide-ranging adverse effects on entire 

ecosystems, as they can spread through food chains and expedite circulation.16 Due to our inability 

to remove many of these heavy metals from our bodies, large and/or frequent exposure to these 

toxic metals can have long-lasting deleterious effects, ranging from skin disease, kidney disease, 

stomach/liver problems, high blood pressure, and cancer development, amongst many others. 

1.2 REMEDIATION PROCESSES 

There have been a plethora of methods utilized for the decontamination of water, spanning 

a wide variety of scientific approaches. Water remediation from organic pollutants has seen the 

employment of methods such as physical adsorption,17,18 chemical reduction/oxidation,19,20 

electrochemical degradation,21 photocatalytic degradation,22,23 and even biological methods24 

having been employed for the removal and/or degradation of these contaminants. Degradation 

processes and reduction/oxidation catalysis, either chemical or electrochemical, can be particularly 

appealing as they often result in the complete mineralization of organic contaminants. However, 

they require the use of added reagents or energy in order to catalytically remove contaminants 
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from water, making them less ideal for use in places with fewer resources to spare. From these 

methods, adsorption is often the preferred method for remediation of water from organic pollutants 

due to its low cost and ease of use, with activated carbons seeing the most success in real world 

applications. 

Removal of heavy metals from water poses a different problem, as these contaminants 

cannot be degraded to their mineralization products by catalytic degradation, as is the case with 

many organic contaminants. The more commonly employed methods for water remediation in the 

case of heavy metals include membrane filtration,25 electrocoagulation,26,27 microbial 

remediation,28 and a plethora of modified adsorbents29,30 and activated carbons.31,32 While 

membrane filtration, electrocoagulation, microbial remediation and other chemical methods for 

the removal of heavy metals can be highly effective, their preparation and applied use can often 

be expensive and require materials and resources which are often unavailable in more 

impoverished communities, which are at highest risk of consuming heavy metal contaminated 

water. An analysis of unit prices for bioderived activated carbon adsorbents found ranges from 

$0.3 to $22 per kilogram of adsorbent, making them relatively accessible to the general 

population.33  However, adsorption of inorganic contaminants by these activated carbons is 

generally significantly lower than for organic contaminants, often necessitating further 

modifications of the adsorbent for efficient removal of heavy metals from water.34  

1.3 ADSORBENTS 

 As we have discussed, the removal of contaminants from water, both organic and 

inorganic, is oftentimes best accomplished by adsorption processes as they tend to be more 

inexpensive to manufacture, have broader applications, and are generally easier to implement than 

their counterparts as they can be utilized in a point of use (POU) system, such as by attaching a 
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filter containing the adsorbent material directly on the water source, such as a sink, faucet, hose, 

etc. A wide variety of adsorbents have been explored, ranging from organic to inorganic 

adsorbents. Some of the more common inorganic adsorbents studied include silica-based 

adsorbents,35-40 layered double hydroxides,41-44 inorganic polymer monoliths45-47 and a wide 

variety of engineered nanoparticles, particularly iron oxide-based nanoparticles.48-52 These 

inorganic adsorbents are generally used for the removal of inorganic contaminants from water, 

although their use for the removal and sometimes catalytic degradation of organic contaminants 

has also been explored.  

 Organic adsorbents, more specifically carbon-based adsorbents, are widespread and very 

commonly studied. Some of the more common carbon-based adsorbents include nanotubes (both 

multiwalled and single-walled),53-57 a variety of activated carbons,58-65 graphene/graphite and their 

derivatives such as oxidized graphene, reduced-graphene oxide, and derivatized reduced graphene-

oxide.66-71 These carbon-based adsorbents have been used for the removal of both organic and 

inorganic contaminants from water with generally mid-to-high adsorption capacities. The list of 

contaminants removed by these organic-based adsorbents is extensive, with the removal of organic 

contaminants such as phenolic compounds, dyes and dye precursors, pharmaceuticals and 

endocrine-disrupting compounds, and even landfill-leachate. Inorganic contaminants include a 

vast variety of heavy metals, commonly copper(II), lead(II), mercury(II), zinc(II), chromium(VI), 

and both arsenic(III) and arsenic(V).72 

 Of these carbon-based adsorbents, activated carbons are of particular interest as they can 

be synthesized from a vast variety of carbon precursors, given that proper carbonization time and 

temperature as well as activating agents are employed. Common methods of generating activated 

carbons include physical73 and/or chemical processes,74 most of which employ large polymeric 
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carbon sources such as lignocellulosic materials and the use of metal salts or acids such as zinc 

chloride or phosphoric acid for their activation.75 A type of activated carbon which utilizes natural 

carbon sources are called biochars, which have become a hot topic in the preparation of activated 

carbons due to the general availability of these carbon sources. Biochars tend to have some slight 

differences from the majority of activated carbons. First, due to many biochars being derived from 

biosources which are plant-based, biochars usually contain mineral constituents. Second, most 

biochars are produced by temperatures under 700 oC without the use of an activating agent. Third, 

biochars in general tend to have a lower surface area than activated carbons. Finally, precursors 

for biochar tend to be wider than those for activated carbon and are often cheaper to procure. 

Biochar precursors span a wide variety of bio-sources; as a small sampling, biosourced precursors 

have included pinewood,76,77 rice husk,78,79 switch grass,80,81 sugarcane bagasse,82,83 peanut 

shell/hull,84-86 corn stalk/straw/cobs,87-89 wheat straw/residue,90,91 soybean residue,92,93 and a wide 

variety of sewage and animal waste.94-96  

1.4 RESEARCH AIMS 

As we have seen, most of these biochars employ large polymeric carbon sources such as 

lignocellulosic materials,  plant residue or waste for their production. Few studies have been 

done on the carbonization of monomers such as monomeric glucose as the carbon source and 

nanoparticles such as zinc oxide as templating agents for the generation of porosities.22,97,98 We 

therefore propose the use of glucose as a monomeric carbon source for pyrolysis, with the 

included use of zinc oxide nanoparticles as templating agents (Scheme 1.1). In more common 

approaches, lignocellulosic materials (wood, leaves, etc.) are left to soak in an activating 

solution, where the metal salts then slowly seep into the material. Depending on conditions, this 

may result in an uneven distribution of the activating agents, which after carbonization can 
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results in areas which, due to the lack of activating agent, do not form porosities.99-101 Owing to 

the solubility of glucose in water, we hypothesize that as we remove water from the solution 

containing ZnO nanoparticles and glucose begins to precipitate, glucose will arrange itself 

around the zinc oxide nanoparticles in a (near)homogeneous distribution. During pyrolysis, 

glucose will decompose to form a robust carbon matrix. After removal of the nanoparticles, a 

porous carbon-based adsorbent with relatively high surface area will be produced which can be 

used for the adsorption of organic contaminants from water. Moreover, this material can be 

further functionalized to work as a viable adsorbent for inorganic water contaminants, as well as 

infused with nanoparticles for the simultaneous adsorption and degradation of contaminants. 

 

Scheme 1.1: Transformation of glucose to four separate adsorbents; a photoactive adsorbent (top, 

left), a high surface area adsorbent (top, right), a thiol-functionalized adsorbent 

(bottom, right) and a magnetic adsorbent (bottom, left). 
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The aims of this dissertation are multifaceted, with the goals of this project divided into 

four chapters: 

 

• Aim 1: Develop an adsorbent containing TiO2 nanoparticles for the simultaneous 

adsorption and photodegradation of organic pollutants (Chapter 2). 

• Aim 2: Develop a high-surface area adsorbent utilizing our method for the efficient 

adsorption of organic pollutants (Chapter 3). 

• Aim 3: Develop a one-step synthetic method for the production of a magnetic adsorbent 

aimed at the removal of inorganic contaminants (Chapter 4). 

• Aim 4: Further functionalize the adsorbent found in Aim 2 with sulfur for the purpose of 

water remediation of inorganic pollutants (Chapter 5). 

 

The remainder of this work focuses on the development of these materials and encompasses 

the results found for each, any outstanding outcomes and conclusions, as well as any possible 

future work needed to for their improvement. 
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Chapter 2: TiO2-Carbon Nanoporous Composites Prepared via ZnO 

Nanoparticle-Templated Carbonization of Glucose for the Adsorption and 

Photodegradation of Organic Pollutants in Water  

2.1  INTRODUCTION 

Porous carbon materials are currently used for a variety of applications, from 

electrochemical applications such as chemical sensing,102 energy storage and supercapacitance103 

to the adsorption of organics, both in the gas phase104-107 and as aqueous contaminants.97,98,108,109 

For the latter, activated carbon has seen the most success in real world applications due to its high 

surface area, hydrophobic surface capable of further functionalization,110 and great adsorption 

capacities for organic compounds. Activated carbon has been formed by physical73 and/or 

chemical74 processes; however, the use of nanoparticles to template the carbonization process to 

control its morphology has received less attention, with only a handful of examples reported.97,98 

The use of nanoparticles during pyrolysis and subsequent removal from the carbon material can 

produce unique porosities which are less likely to appear by other methods. 

While carbon activation via physical and chemical means has been thoroughly explored, 

templating with nanoparticles has seen less attention. Having nanoparticles of a certain size present 

during pyrolysis and subsequently removing them from the carbon material can leave behind 

micro- and mesoporosities of a very uniform size. In our study we employ Zinc oxide (ZnO) 

nanoparticles for the templation of glucose. Zinc oxide is commercially available, relatively 

inexpensive, and acts orthogonally to TiO2 (titanium oxide) in the presence of acid, allowing us to 

remove ZnO without damaging the TiO2 nanoparticles. We also chose zinc oxide over magnetic 

nanoparticles such as magnetic iron oxide to avoid agglomeration during the mixing and 

carbonization processes. Zinc oxide templated carbon materials have been explored as 

biosensors,102 and to the best of our knowledge nanotemplated adsorbent materials using ZnO 
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nanoparticles as templates are scarce, and those that exist are either bimetallic zinc oxide or used 

a synthetic polymer as their carbon source for carbonization, not a bioavailable carbon source such 

as glucose. 

Nanoparticles are oftentimes used to enhance the ability of carbon adsorbents to remove 

organic contaminants from water. The catalytic degradation of several organic pollutants has been 

previously explored, resulting in the elucidation of intermediates and final degradation products. 

Methylene blue111 and ofloxacin,112 for example, are found to oxidize to mineralization products 

such as CO2 and heteroatoms of nitrogen and sulfur, while degradation products of tetracycline 

show a decrease in toxicity after photocatalysis.113 Carbonized materials can provide an adequate 

anchor for catalytic nanoparticles, and as such the carbonization process has been employed to 

generate materials with semiconductor,114 photocatalytic115 and H2 evolution116,117 properties. 

Titanium oxide nanoparticles in particular have been explored for their ability to generate reactive 

oxygen species in water when their electrons are excited from the valence band to the conductive 

band, most commonly by activation using ultraviolet (UV) light.118 Embedding TiO2 nanoparticles 

to the surface of activated carbon has shown effective adsorption and degradation of organic 

pollutants such as phenol,119,120 tetracycline,121 methyl orange,122 and humic acids,123 amongst 

others. In most cases the nanoparticles are embedded to the surface of activated carbon, leaving 

them exposed to UV light irradiation but possibly resulting in leaching of the nanoparticles over 

time. We propose embedding the nanoparticles inside the activated carbon, providing a carbon 

matrix which will prevent, or at least minimize, possible leaching. 

In this study, we explored the carbonization of glucose at 500 °C in the presence of zinc 

oxide and titanium oxide nanoparticles. The ZnO nanoparticles were then removed by acid 

treatment, leaving behind a nanotemplated activated carbon, forming our NTC (nanotemplated 
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carbon) and NTC-TiO2 (nanotemplated carbon with TiO2 nanoparticles) materials. These materials 

were characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), scanning electron 

microscopy (SEM), and energy dispersive x-ray spectroscopy (EDX-S). Their adsorption and 

photodegradation properties were explored against methylene blue, ofloxacin, and tetracycline. 

2.2 MATERIALS AND METHODS 

2.2.1 Chemicals and Reagents  

D-(+)-Glucose (ACS reagent), titanium (IV) oxide (nanopowder, 21 nm particle size, ≥ 

99.5% trace metal basis), and zinc oxide dispersion (50% weight in water, < 35 nm particle size) 

were all purchased and used as-is from Sigma Aldrich. 

2.2.2 Preparation of Glucose-Nanoparticle Mixtures  

For the preparation of glucose-zinc oxide (Glc-ZnO) mixture (1:1 wt:wt), 2 g of glucose 

were dissolved in 5 mL of reverse osmosis (RO) water followed by the addition of  4 g of a 50% 

weight zinc oxide dispersion. The mixture was sonicated for 30 min and subsequently stirred for 

another 30 minutes. At this point the water was co-evaporated with reagent alcohol under reduced 

pressure until completely dry. 

 For the preparation of glucose-zinc oxide-titanium oxide (Glc-ZnO-TiO2) mixture (2:1:1 

wt:wt:wt respectively), 2 grams of glucose were dissolved in 5 mL RO water followed by the 

addition of 2 g of a 50% weight zinc oxide dispersion and 1 g of titanium oxide nanoparticles. 

Sonication, stirring and co-evaporation were performed following the protocol used for the Glc-

ZnO mixture. 

The abovementioned mixtures were carbonized under Argon flow for two hours at 500 °C 

with a ramp speed of 10 °C/min.  
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2.2.3 Removal of Zinc Oxide Nanoparticles  

Glc-ZnO and Glc-ZnO-TiO2 were subjected to aqua regia (AR) (7.5 mL AR / g of material) 

and left stirring overnight at room temperature. The samples were then centrifuged, decanted, 

washed with RO water and dried under reduced pressure. The materials generated after AR 

treatment from Glc-ZnO and Glc-ZnO-TiO2 will hereafter be referred to as nanotemplated carbon 

(NTC) and nanotemplated carbon with titanium oxide (NTC-TiO2), respectively. 

2.2.4 Adsorption Capacity and Kinetic Studies  

All adsorption capacity studies were performed using 10 mg of NTC, NTC-TiO2 or 

commercially available activated carbon and 10 mL of the target contaminant solution (methylene 

blue, ofloxacin or tetracycline). Adsorption capacity solutions were done at concentrations of 10, 

25, 50, 75 and 100 ppm in RO water and neutralized to a pH of 7.0 (+/- 0.2) using a 0.1 M NaOH 

solution. Adsorption capacity studies were done under stirring over 24 h at room temperature, at 

which point they were centrifuged and the supernatant analyzed by UV-VIS spectroscopy. 

Adsorption studies for NTC-TiO2 were carried out separately in the dark and under UV light to 

compare adsorption only (dark) versus adsorption and photodegradation (UV). Experiments in the 

dark were covered with aluminum foil and experiments under UV light were carried out in a UV 

reactor under UV-B light with an intensity of 21,500 lux, as measured by a digital light meter 

(LX1330B).  

 Kinetic studies were performed using 10 mg of NTC, NTC-TiO2 or commercially available 

activated carbon and 10 mL of the target contaminant. All contaminant solutions were done at a 

concentration of 50 ppm at pH 7. Aliquots were taken at 0 min, 7 min, 15 min, 30 min, 1h, 2h, 4h, 

and 24h. 



 12 

2.2.5 Characterization  

Carbonization was performed using a GSL-1100X from MTI Corporation. The crystal 

structure analysis of the carbon material and the embedded nanoparticles was performed on a 

Bruker Instruments D8 diffractometer (K radiation, λ = 0.154 nm) with a scan rate of 3 deg/min. 

A Hitachi H-7650 instrument was used for SEM as well as EDX-S images and a Hitachi H-7650 

instrument was used for TEM images. Samples for SEM were placed as powders in 12 mm 

diameter carbon adhesive tabs. Samples for TEM were suspended in acetone before placement in 

a CF200-CU carbon support film. Image J software was used to calculate the pore size from these 

images. Adsorption measurements were taken through a 10.00 mm quarts cuvette using a NU-

T6PC instrument purchased from Zhengzhou Nanbei Instrument Equipment corporation. The 

specific surface area and BJH adsorption measurements were taken using a Micrometrics surface 

area analyzer TriStar II 3020 instrument. Samples were heated at 85 °C and degassed overnight 

prior to analysis. Nitrogen adsorption-desorption isotherms were measured at 78 K in flowing 

nitrogen. SAXS measurements were carried out using a Xeuss 2.0 HR SAXS/WAXS system with 

a Cu source tuned to λ = 0.1542 nm at two sample-to-detector distances (1209 mm, and 156 mm) 

which yielded a Q-range of 0.008-2.5 Å-1. All powder samples were loaded into 1 mm-pathlength 

polyimide tubes and sealed with epoxy. Prior to loading into SAXS capillary sample tubes, the 

samples were dried in a vacuum oven at 120 °C and 1 mbar for approximately 24 hr. Atmospheric 

water adsorbed in the materials were 0.06 g/g and 0.12 g/g of water per gram of porous material 

for NTC-TiO2 and NTC, respectively.  



 13 

2.3 RESULTS AND DISCUSSION 

2.3.1 X-ray Diffraction 

Carbonized glucose-nanoparticle mixtures, as well as NTC and NTC-TiO2, were analyzed 

by X-ray diffraction (Figure 2.1). The Glc-ZnO mixture after carbonization shows well-defined 

peaks belonging to zincite 124 (JCPDS card number 36-1351), indicating the presence of ZnO 

nanoparticles within the carbon matrix. After acid treatment of NTC, trace amounts of ZnO 

nanoparticles can be seen, with small, broad peaks rising slightly above baseline. XRD of Glc-

ZnO-TiO2 shows the presence of both ZnO nanoparticles as well as characteristic peaks for 

micropowder TiO2 in the anatase phase 125 (JCPDS card number 21-1272). Notably, NTC-TiO2 

shows the presence of TiO2 and the absence of ZnO, demonstrating the ability of TiO2 

nanoparticles to survive acid treatment by aqua regia. The XRD profile of carbonized glucose is 

shown as a control, demonstrating a mostly amorphous structure. 

 

Figure 2.1: XRD diffractograms of carbonized glucose-zinc oxide (Glc-ZnO, red), carbonized 

glucose-zinc oxide-titanium oxide (Glc-ZnO-TiO2, blue), carbonized glucose-zinc oxide-titanium 

oxide after acid treatment (NTC-TiO2, green), carbonized glucose-zinc oxide after acid treatment 

(NTC, teal), and carbonized glucose control (Glucose, black). 
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2.3.2 Energy-dispersive X-ray Spectroscopy 

Energy-dispersive X-ray spectroscopy measurements were taken in order to corroborate 

XRD data and to estimate the atomic composition of our samples (Table 2.1). Both Glc-ZnO and 

Glc-ZnO-TiO2 show a high weight percentage belonging to the nanoparticles (~65% and ~77%, 

respectively), with carbon and oxygen percentages at relatively low levels. After acid treatment, 

NTC and NTC-TiO2 both show the disappearance of Zn, with the carbon percent composition 

doubling for both. While the oxygen content doubled between Glc-ZnO-TiO2 and NTC-TiO2, it 

nearly quadrupled between Glc-ZnO and NTC. This suggests that much of the oxygen content of 

NTC-TiO2 comes from titania nanoparticles present, which remains largely unaltered during acid 

treatment, while the removal of ZnO nanoparticles presents a clearer representation of the 

composition of our carbonaceous material alone. The carbon to oxygen weight ratio of NTC (C/O 

3.71) is much higher than that of commercial glucose (1.33 C/O wt%), indicating the loss of large 

amounts of oxygen during the pyrolysis process, with water and small COx molecules as the most 

likely byproducts. The presence of chlorine in both NTC and NTC-TiO2 is postulated to be the 

result of HCl addition to alkenes formed during the pyrolysis process, indicating the formation of 

sp2 carbons during the elimination of oxygen under anaerobic carbonization. 

Table 2.1: EDX analysis for carbonized glucose-zinc oxide (Glc-ZnO), carbonized glucose-zinc 

oxide after acid treatment (NTC), carbonized glucose-zinc oxide-titanium oxide (Glc-ZnO-TiO2), 

and carbonized glucose-zinc oxide-titanium oxide after acid treatment (NTC-TiO2). 
 

Carbon (%) Oxygen (%) Zinc (%) Titanium 
(%) 

Chlorine (%)  

Glc-ZnO 30.52 4.8 64.68 
  

NTC 70.96 19.12 
  

9.92 

Glc-ZnO-TiO2 13.31 9.39 57.42 19.89 
 

NTC-TiO2 29.75 20.89 
 

44.69 4.67 
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2.3.3 Scanning and Transmission Electron Microscopy 

Scanning electron microscopy images (Figure 2.2) show rough, amorphous carbon 

particles containing crevices and macropores for both Glc-ZnO and Glc-ZnO-TiO2 after 

carbonization. The porous nature of these materials is in stark contrast to the carbonized glucose 

control, which contains very smooth carbon particles with no evident crevices or porosity. 

Removal of ZnO nanoparticles results in a more homogeneous material of smaller carbon particle 

size (Figure 2.2 b,d). Transmission electron microscopy images of NTC and NTC-TiO2 (Figure 

2.3 a,b) show porosities with an average diameter of approximately 15 nm for both materials, 

which is in agreement with the <35 nm size of the ZnO nanoparticles used for nanotemplating.  

 

Figure 2.2: SEM images of carbonized glucose-zinc oxide (a, Glc-ZnO), carbonized glucose-zinc 

oxide after acid treatment (b, NTC), carbonized glucose-zinc oxide-titanium oxide (c, Glc-ZnO-

TiO2), carbonized glucose-zinc oxide-titanium oxide after acid treatment (d, NTC-TiO2), and 

carbonized glucose (e, glucose). 
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Figure 2.3: TEM images of (a) NTC and (b) NTC-TiO2. 

2.3.4 Small-angle X-ray Scattering 

Small-angle X-ray scattering measurements for NTC, NTC-TiO2 and carbonized glucose 

control can be seen in Figure 2.4.  The control sample only shows surface scattering (Porod slope 

= 4) off the large powder grains which levels out at high Q to an amorphous carbon signal with no 

mesopores. Each porous material exhibits two gentle “bends”, one at Q ~0.02 Å-1 and the other at 

Q ~0.1 Å-1, indicating the presence of two porosity length scales. Data from the wide-angle region 

in the I(2θ) representation can be seen in Figure 2.4B. The carbon structure is more disordered in 

the porous materials than the carbonized glucose, which has a sharper amorphous carbon peak at 

2θ ~22.5°. The interplanar spacing is also shorter for glucose, noted by the shift to higher angle. 

ZnO peaks in NTC and the anatase TiO2 peak in NTC-TiO2 are similar to the XRD measurement.  

Comparison of the relative peak positions of anatase (101) and ZnO (100) in the Glc-ZnO-TiO2 

sample in the XRD data with the scattering intensities of the corresponding peaks in the SAXS 

measurement show a ~28-fold decrease in the ZnO intensity in the NTC sample. This shows most 

of the ZnO was removed with the acid treatment and the residual ZnO comprises 3-4% of the 

original ZnO amount before acid etching. 
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Figure 2.4: SAXS/WAXS results showing nanostructure, carbon amorphous structure and 

nanoparticle crystalline peaks. A) Comparison of NTC, NTC-TiO2, and the carbonized glucose 

control sample. B) WAXS data in the I(2θ) representation.  

 

From a single measurement, SAXS does not differentiate between pores that are accessible 

and non-accessible to the fluid. In order to check how each nanostructure fills with fluid, H2O 

immersion measurements were carried out (Figure 2.5).  These measurements show a uniform shift 

to lower SAXS intensity, I(Q), compared to the dry material reference curves. For NTC/water the 

intensity decrease is a factor of 4-5, consistent with complete filling of the porous carbon, whereas 

for NTC-TiO2/water the decrease is approximately a factor of 3, consistent with a lower fraction 

of the porous matrix available for water adsorption compared to NTC. Polydisperse sphere (PS) 

distributions of the dry NTC and NTC-TiO2 materials show both materials contain a narrow 

distribution of spheres with diameters ~5nm, and large sphere distribution with diameters of 20-

30nm (Figure 2.5B, top). The NTC-TiO2 is weighed toward larger sizes, presumably due to TiO2 

NPs that are slightly larger than the pores. PS model of dry and H2O-immersed NTC (Figure 2.5B, 
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middle) show similar distributions near r~12.5nm, but the H2O immersed sample shows a slight 

increase at r~32nm, possibly due to the small fraction of ZnO particles that were not removed 

through the acid treatment.   

 

 

Figure 2.5:  A) Polydisperse sphere distribution (PS) model fit to the SAXS data; B) Dry reference 

and PS model fit curves for NTC/NTC-TiO2 (top), NTC/NTC-H2O (middle) and NTC-TiO2/NTC-

TiO2-H2O (bottom); C) Diagram of the NTC and NTC-TiO2 nanostructure based on the PS model 

results. 

 

The volume-normalized pore size distribution for NTC shows there are pores with radius 

of 2.8 nm and 11.5 nm. The larger pore size is more polydisperse than the small pore radius. The 

PS model for NTC-TiO2 similarly has a small sphere distribution centered at 2.8 nm, but the large 

sphere radius distribution, though its peak is at the same position as for NTC, is more heavily 

weighed at sphere radii greater than 12 nm. This is likely due to the presence of TiO2 nanoparticles 

which are likely larger than the large pore spaces of NTC. 
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2.3.5 Brunauer-Emmett-Teller and Barrett-Joyner-Halenda Measurements 

The BJH cumulative pore volume charts for NTC and NTC-TiO2 can be seen in Figure 2.6, 

with a summary of Brunauer-Emmet-Teller surface area analysis depicted in Table 2. While the 

total surface area calculated for carbonized glucose was negligible, NTC and NTC-TiO2 saw an 

increase to 302 and 230 m2/g, respectively. Total pore volumes for NTC and NTC-TiO2 were 0.486 

and 0.269 cm3/g, respectively, with 84% and 90% of the total pore volume belonging to pores in 

the range of 2 to 50 nm (mesoporous), as seen in Table 2.2. It should be noted that NTC-TiO2 has 

lower BET surface area, average pore diameter and total pore volume than NTC, presumably due 

to the lower ratio of ZnO nanoparticles available for removal by acid, which is directly responsible 

for the generation of porosity. Microporosities (<2 nm) are not observed for these materials, 

indicating adsorption capabilities for gases at STP would not be ideal. However, the average pore 

diameter of NTC (17.08 nm) and NTC-TiO2 (10.53 nm) is ideal for the adsorption of small organic 

molecules in solution, making them good candidates for water remediation of organics. This can 

be seen in the kinetic profiles of our materials (Figure 2.7).  

 

Figure 2.6: BJH Adsorption Cumulative Pore Volume charts for (a) NTC and (b) NTC-TiO2. Peak 

values for both are at ~30 nm. 

 

(a) (b) 
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Table 2.2: BET surface area analysis for NTC and NTC-TiO2 after acid treatment.  

* Percent Mesoporosity given by Mesopore Volume/Total Pore Volume Values are calculated 

from BJH adsorption data. 

 

2.3.6 Adsorption Measurements 

2.3.6.1 Adsorption Capacities 

The adsorption capacity profiles for NTC, NTC-TiO2 (Dark), NTC-TiO2 (UV) and 

activated carbon against methylene blue, ofloxacin, and tetracycline at five different 

concentrations can be seen in Figure 2.7. Interestingly, NTC-TiO2 (Dark) had very similar 

adsorption capacities at most concentrations against methylene blue, ofloxacin and tetracycline as 

NTC despite having a lower surface area. This can be attributed to hydrogen bonding between 

these analytes and hydroxyls present in both the carbon material and TiO2 NPs, as well as possible 

ionic interactions between the contaminants and these hydroxyls at pH 7. All three contaminants 

can interact with our carbonized materials through hydrophobic and π-π interactions in much the 

same manner as they can with activated carbon. Of note is the higher adsorption/photodegradation 

of these contaminants across most concentrations for NTC-TiO2 (UV) versus NTC-TiO2 (Dark). 

This trend is directly attributed to ROS generation by TiO2 NPs under UV light for NTC-TiO2 

(UV). Ultraviolet light can excite TiO2 NPs at or near the surface of our material, thus generating 

highly reactive oxygen species which can degrade contaminants not only in the surrounding area, 

but also those trapped in the material as well. This liberates adsorption sites which can then adsorb 

more contaminant, thus increasing the adsorption capacity over time. It should also be noted that 

 BET Surface 
Area (m2/g) 

Average Pore 
Diameter (nm) 

Total Pore 
Volume (cm3/g) 

Mesopore 
Volume (cm3/g) 

Macropore 
Volume (cm3/g) % MES* 

NTC 302 17.1 0.49 0.41 0.08 84% 

NTC-TiO2 230 10.5 0.27 0.24 0.03 89% 
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the adsorption capacities of NTC-TiO2 (UV) taken at matching time points against these 

contaminants is comparatively similar to those of activated carbon at most concentrations. 

 

 
    

 

Figure 2.7: Adsorption profiles over 24h against (a) Methylene Blue, (b) Ofloxacin, and (c) 

Tetracycline. 10 mg of adsorbent (NTC, NTC-TiO2 or activated carbon) were exposed to 10 mL 

of a pH 7 contaminant solution (10, 25, 50, 75, and 100 ppm) at room temperature. *Qe values for 

NTC-TiO2 (UV) are a representation of the total decrease in contaminant resulting from adsorption 

and degradation. 
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2.3.6.2 Kinetic Studies 

Kinetic adsorption studies were performed for all four contaminants over seven time points 

(0 min, 7 min, 15 min, 30 min, 1h, 2h, and 4h) and can be seen in Figure 2.8. NTC adsorbed all 

contaminants at a faster rate than a commercially available activated carbon control, as can be seen 

from t = 0 min across all contaminants. This is attributed to the higher surface area of NTC as 

compared to NTC-TiO2, which results in more surface sites and better permeation of the 

contaminants into NTC than NTC-TiO2. NTC was capable of adsorbing 91% of a 50 ppm 

methylene blue solution within immediate contact, 64% of Ofloxacin and 43% Tetracycline within 

the same time period. This is in stark comparison to activated carbon which only adsorbed 70% 

methylene blue, 17% ofloxacin and 40% tetracycline within the same time period. Within the first 

7 minutes of contact NTC adsorption increased to 97% methylene blue, 79% ofloxacin and 75% 

tetracycline. Adsorption of the contaminants onto NTC-TiO2 at 7 min is nearly equal under both 

dark and UV light conditions, indicating that the decrease in contaminant concentration is initially 

due mostly to adsorption of the material, not degradation by ROS. However, as time progresses, 

the percentage of each contaminant present in the solution decreases at a higher rate for NTC-TiO2 

under UV light due to a combination of both adsorption by the material and photodegradation by 

reactive oxygen species. This can be seen by the rapid increase in Qe for NTC-TiO2 against all 

contaminants, with adsorption values nearing or reaching those of our activated carbon control. 
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Figure 2.8: Kinetic study profiles against (a) Methylene Blue, (b) Ofloxacin, and (c) Tetracycline. 

10 mg of adsorbent (NTC, NTC-TiO2 or activated carbon) were exposed to 10 mL of a 50 ppm 

pH 7 contaminant solution at room temperature. Aliquots were taken at 0 min, 7 min, 15 min, 30 

min, 1h, 2h, and 4h. *Qe values for NTC-TiO2 (UV) are a representation of the total decrease in 

contaminant resulting from adsorption and degradation. 
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2.4 CONCLUSION 

An adsorbent material containing TiO2 nanoparticles embedded onto a carbon matrix was 

successfully synthesized via the carbonization of glucose containing ZnO/TiO2 nanoparticles 

followed by acid removal of ZnO, leaving behind a porous material capable of both adsorption 

and photodegradation of organic contaminants. The successful removal of ZnO nanoparticles after 

carbonization of glucose was proven by XRD, EDX and SAXS, which showed only trace amounts 

of ZnO NPs left after acid treatment. TiO2 NPs are shown to be unaffected by the acid treatment. 

BET surface area analysis and SAXS experiments both show the appearance of porosities, with 

average pore diameters ranging from 2.8 and 11.5 nm in SAXS to 17.1 nm (NTC) and 10.5 nm 

(NTC-TiO2) by BJH analysis. Both NTC and NTC-TiO2 show fast adsorption profiles against 

methylene blue, ofloxacin, and tetracycline (pH 7, 50 ppm). Exposure of NTC-TiO2 to UV light 

results in a lower contaminant concentration in solution over 24h than NTC, despite NTC-TiO2 

having lower porosity and surface area. We believe this is the result of a combination of adsorption 

by NTC-TiO2 and photogeneration of ROS which can degrade contaminants contained both in 

solution and adsorbed onto the material.  
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Chapter 3: Zinc Oxide Nanoparticle-templated Conversion of Glucose to a 

High Surface Area Biocarbon for the Removal of Organic Pollutants in Water 

3.1 INTRODUCTION 

The presence of organic contaminants in water is of pressing concern due to the harmful 

effects which can occur from prolonged exposure to these chemicals. Amongst these contaminants 

are dyes and dye precursors, such as methylene blue (MB) and 2-naphthol, respectively. As many 

as 7 x 105 tons of dye are produced annually, with up to 15% of the dyes being lost in the effluent 

during the dyeing process.126  Ingestion of methylene blue can result in nausea, vomiting, mental 

confusion and even methemoglobinemia.127,128 Organic dyes have also been shown to be 

detrimental to aquatic life.129 Since many dyes are resistant to light, oxidizing agents, and 

biodegradation, one of the best approaches for the removal of these contaminants from water is 

adsorption.10,130  

Phenolic compounds such as 2-naphthol are another group of organic water contaminants 

which can be highly detrimental to our health, as can be evidenced by their inclusion on the priority 

pollutant list by the US Environmental Protection Agency.131 2-Naphthol is used in many industrial 

products, predominantly pesticides, oil and their residues, and Sudan dyes.132,133 Studies have 

shown that ingestion of water contaminated with 2-naphthol can result in kidney malfunction and 

problems with blood circulation in humans.134 To complicate matters, these pollutants have also 

shown high resistance to light, heat, biodegradation and moderate oxidizing conditions, making 

their remediation complicated.135,136 

Bisphenol-A (BPA), a plasticizer used for the widespread synthesis of polycarbonate 

plastics and epoxy resins, is another common organic contaminant in water. BPA falls in a class 

of organic molecules called synthetic estrogens, many of which are believed to contribute to breast, 

prostate and testicular cancers.137,138 Three million tons of BPA were estimated to have been 
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produced worldwide in 2003,139 and despite bans to prevent BPA from being used in items such 

as children’s food and drink containers, BPA production remains high.140 BPA has been shown to 

induce mutations in ovarian cells and increase cell proliferation in breast and prostate cells.141  

Remediation of water from organic pollutants such as the ones mentioned here has received 

much attention, with methods such as physical adsorption,17,18,142,143 chemical 

reduction/oxidation,19,20,144 electrochemical degradation,21 photocatalytic degradation,22,23 and 

even biological methods24 having been implemented for the removal and/or degradation of these 

contaminants. From these methods, adsorption is often the preferred method for remediation due 

to its low cost and ease of use, with activated carbons seeing the most success in real world 

applications. Common methods of generating activated carbons include physical73 and/or chemical 

processes,74 most of which employ large polymeric carbon sources (such as lignocellulosic 

materials) and metal salts or acids such as zinc chloride or phosphoric acid for activation.75 

Activation of these polymeric carbons for the production of biochar requires soaking the material 

in water containing these acids for long periods of time, which may result in a less than ideal 

homogeneity along its fibrous network. This lack of homogeneity can result in a porous adsorbent 

with drastically different surface area and pore size from one region to another, or even from batch 

to batch. To achieve a highly homogeneous carbon mixture before carbonization, we employ zinc 

oxide nanoparticles as a sacrificial template around which glucose can intercalate. Few studies 

have been done on the carbonization of monomers such as glucose as the carbon source and 

nanoparticles such as zinc oxide as templating agents for the generation of porosities.22,97,98,145  

Herein we propose the carbonization of glucose in the presence of zinc oxide nanoparticles 

to form an adsorbent material for the remediation of water from methylene blue, 2-naphthol and 

bisphenol-A. A homogeneous mixture of the two was carbonized under inert atmosphere at 1000 
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oC for two hours, resulting in the reduction of Zn(II) and sublimation of zinc(0),146 yielding a 

porous carbon material in-situ which we refer to as nanotemplated carbon (NTC). This material 

was then characterized by x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Barrett-

Joyner-Halenda (BJH) and elemental mapping. Its adsorption properties were analyzed under 

various concentrations and pH, and the data was modeled using the Langmuir and Freundlich 

isotherm models. Its kinetic properties were also explored, with the data further analyzed using 

pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. 

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals and Reagents 

D-(+)-Glucose (ACS reagent), zinc oxide dispersion (50% weight in water, <35 nm particle 

size) were both purchased from Sigma-Aldrich. Sand (particle size 30-40 mesh) and PTFE filters 

(25 mm diameter, 0.2 m porosities) were purchased from VWR. 

3.2.2 Preparation and Carbonization of Glucose-Nanoparticle Mixtures 

For the preparation of glucose-zinc oxide (Glc-ZnO) mixture (1:1 wt:wt), 1.5 g of glucose 

and 1.5 g of ZnO NPs were dissolved/suspended in 20 mL of reverse osmosis (RO) water. The 

mixture was sonicated for 30 min and subsequently stirred for another 30 minutes. At this point 

the water was evaporated under reduced pressure using a rotary evaporator until mostly dry. The 

Glc-ZnO mixture was further allowed to dry under reduced pressure via vacuum pump overnight. 

When fully dry, the Glc-ZnO mixture was weighed, transferred to a quartz crucible and 

placed in the furnace. In order to maintain an inert atmosphere, the furnace was argon-flushed for 

30 min prior to carbonization, then carbonized under constant argon flow for two hours at 1000 

°C with a ramp speed of 10 °C/min, with a recovery of 0.239 g of carbonized material. 
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3.2.3 Preparation of Solutions for Adsorption Studies 

For all solutions, RO water was adjusted with 0.1 M HCl or 0.1 M NaOH solutions to a pH 

of 3, 7 or 10, respectively.  

For the preparation of 1000 ppm methylene blue stock solution, 250 mg were placed in a 

250 mL volumetric flask and filled slowly until close to the mark with the corresponding acidic, 

neutral or basic water (pH 3, 7 or 10), taking care to sonicate to ensure all the MB was dissolved. 

When near the mark, the pH was once again measured and adjusted if necessary, then filled to the 

mark. 

For the preparation of 1000 ppm 2-naphthol stock solution, 250 mg were placed in a 250 

mL volumetric flask. For pH 7 stock solution, 2-Naphthol was first dissolved in 25 mL of 2-

propanol before filling it near the mark with pH 7 RO water. For pH 3 stock solution, 2-Naphthol 

was first dissolved in 25 mL DMSO, then filled near the mark. For pH 10 solution, 2-Naphthol 

was first dissolved in 25 mL DMF before filling near the mark. The pH of each solution was again 

measured and adjusted if necessary, then filled to the mark with their corresponding RO water. 

For the 1000 ppm bisphenol-A stock solution, 250 mg were placed in a 250 mL volumetric 

flask. For pH 7 stock solution, BPA was first dissolved in 25 mL of methanol, then filled with pH 

7 RO water near the mark. For pH 3, BPA was first dissolved with 25 mL reagent alcohol and then 

filled near the mark. For pH 10, BPA was first dissolved in 25 mL of methanol, then slowly filled 

to the mark with pH 10 RO water, adding reagent alcohol if it began to precipitate out of solution. 

The pH of each solution was taken again and adjusted if necessary, then filled to the mark with 

RO water of their corresponding pH. 

Solutions of 250, 500, and 750 ppm for MB, 2-naphthol and BPA were all made from the 

corresponding stock solutions using a 100 mL volumetric flask. 
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3.2.4 Adsorption Capacity and Kinetic Studies 

All adsorption capacity studies were performed using 10 mg of NTC or activated carbon 

(AC) and 10 mL of the target contaminant solution. Adsorption capacity solutions were done at 

three separate pH (pH 3, pH 7 and pH 10) and at four separate concentrations (250, 500, 750 and 

1000 ppm). Adsorption capacity studies were done under stirring over 24 h at STP, at which point 

they were centrifuged and the supernatant diluted for analysis by UV-Vis spectroscopy. All 

dilutions were made using water adjusted to the corresponding pH for the study. UV-Vis aliquots 

for methylene blue were diluted to 1% for Ci-1000 ppm, 1.3% for Ci-750 ppm, 2% for Ci-500 ppm 

and 4% for Ci-250 ppm. Aliquots for 2-naphthol and bisphenol-A were diluted to 10% for Ci-1000 

ppm, 13% for Ci-750 ppm, 20% for Ci-500 ppm and 40% for Ci-250 ppm.  

 Kinetic studies were performed using 15 mg of NTC or AC and 15 mL of the target 

contaminant. All contaminant solutions were done at a concentration of 100 ppm at a pH of 7 (+/- 

0.2). One mL aliquots were taken at 0 s, 15 s, 30 s, 1 min, 2 min, 5 min, 15 min, 30 min, 1 h, 2 h 

and 4 h, and subsequently filtered through a 0.2 m PTFE syringe filter. Aliquots for UV-Vis 

spectroscopy analysis for methylene blue were diluted to 10%. 2-naphthol and bisphenol-A 

aliquots were measured directly after filtration. 

3.2.5 Experimental Data Modeling 

 Langmuir and Freundlich adsorption isotherm models were applied to the pH dependent 

adsorption capacity data, while pseudo-first order, pseudo-second order and intra-particle diffusion 

models were applied to the kinetic experiments data. A summary of each model can be found 

below: 

a) Langmuir isotherm model: This model quantitatively describes the monolayer adsorption of the 

adsorbate onto the surface of the adsorbent with no further interaction between the molecules, after 
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which point no further adsorption takes place. Of the four linear forms of the Langmuir equation, 

type I was chosen for this study due to the minimal deviations from the fitted equation.147,148 

Langmuir type I isotherm can be seen in Equation 1, where Ce (mg/L) is the adsorbate 

concentration at equilibrium, Qe (mg/g) is the adsorption capacity of the adsorbent at equilibrium, 

Qmax (mg/g) is the maximum adsorption capacity, and KL is the Langmuir constant related to the 

net enthalpy of adsorption.149  

C𝑒

Q𝑒
=

1

Q𝑚𝑎𝑥K𝐿
+

C𝑒

Q𝑚𝑎𝑥
       Equation 1 

b) Freundlich isotherm model: This isotherm is an empirical formula describing the non-ideal and 

reversible adsorption of the adsorbate onto the adsorbent, often applied to multilayer adsorption.150 

The Freundlich isotherm can be expressed by Equation 2, where Qe (mg/g) is the adsorption 

capacity at equilibrium, Ce (mg/L) is the adsorbate concentration at equilibrium, KF is the 

Freundlich constant and 1/n is the intensity of adsorption. KF and 1/n are obtained from the 

intercept and slope of the LnCe vs LnQe plot, respectively.  

ln(Qe) = ln(KF) +
1

𝑛
ln(Ce)      Equation 2 

c) Pseudo-first order model: The pseudo-first order equation, also known as the Lagergren 

equation, is used to describe the rate of sorption in the liquid-phase system.151 It is defined by 

Equation 3, where Qe (mg/g) is the adsorption capacity, Qt (mg/g) is the adsorption at time t (in 

minutes) and k1 is the pseudo-first order rate constant (min-1). 

log(Qe − Qt) = log(Qe) −
k1

2.303
t     Equation 3 

d) Pseudo-second order model: The pseudo-second order equation is used when the overall 

sorption kinetics are attributed to the rate of direct adsorption/desorption process, often seen as a 

type of chemical reaction.152,153 It assumes that the rate of ion exchange occurring on the surface 

is responsible for the removal kinetics. It can be described by Equation 4, where t is the time in 
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minutes, Qt (mg/g) is the adsorption at time t, Qe (mg/g) is the adsorption capacity at equilibrium 

and k2 is the pseudo-second order rate constant (g mg-1min-1). 

t

Qt
=  

1

k2Qe
2 +

t

Qe
       Equation 4 

e) Intraparticle diffusion model: Intraparticle diffusion is one of the governing rate-limiting steps 

in a typical liquid-solid adsorption, along with film diffusion and mass action.154 Weber-Morris 

found that in many cases, adsorption varies almost proportionally with the square root of t.155 This 

relationship can be seen in Equation 5, where Qt (mg/g) is the adsorption at time t, ki (mg g-1min0.5) 

is the intra-particle diffusion rate constant, and C (mg/g) is a constant related to the boundary layer 

thickness. 

Qt =  kit
0.5 + C       Equation 5 

3.2.6 Flow Adsorption Study 

For the preparation of the adsorbent, 1 g of NTC was finely ground and mixed with 100 g 

of sand. A 250 mL glass chromatographic column was first fitted with a cotton support, followed 

by the dry addition of the NTC/sand mixture, and finally with 20 g of sand to prevent the leaching 

of our adsorbent by the added water. The column was first washed with 0.5 L of tap water, at 

which point filtration of a 20 ppm MB solution made in tap water was started. The continuous flow 

of this 20 ppm MB solution, with a controlled rate of 4.5 mL/min, was continued for 15 L with 

UV-Vis measurements taken at regular intervals. 

3.2.7 Characterization 

Carbonization was performed using a GSL-1100X from MTI Corporation. The crystal 

structure analysis of the carbon material and the embedded nanoparticles was performed on a 

Panalytical Empyrean 2 diffractometer (Cu anode, K radiation, λ = 1.54 nm) with a scan rate of 

1.7 deg/min. A Hitachi S-4800 instrument was used for SEM as well as EDS imaging. Samples 
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for EDS were placed as powders in 12 mm diameter carbon adhesive tabs. UV-Vis adsorption 

measurements were taken through a 10.00 mm quarts cuvette using a NU-T6PC instrument 

purchased from Zhengzhou Nanbei Instrument Equipment corporation. The specific surface area 

and BJH adsorption measurements were taken using a Micrometrics surface area analyzer TriStar 

II 3020 instrument. Samples were heated at 85 °C and degassed overnight prior to analysis. 

Nitrogen adsorption-desorption isotherms were measured at 78 K in flowing nitrogen.  

3.3. RESULTS AND DISCUSSION 

3.3.1 X-ray Diffraction  

X-ray diffractograms for NTC as well as control ZnO nanoparticles can be seen in Figure 

3.1. After carbonization at 1000 oC for two hours under argon, we observe none of the 

characteristic ZnO diffractogram peaks left in our material. This is expected, as Zn(II) can be 

reduced by carbon at temperatures exceeding 900 oC, at which point they become volatile and 

sublime from the reaction mixture.146 For the range of 20 to 80 degrees we observe no sharp signals 

in our material, indicating a highly amorphous composition. However, the appearance of a small, 

broad signal at 29.5 degrees is attributed to the carbon material itself, as graphenic carbons have 

been observed to show this broad (0 0 2) reflection between 20 and 30 degrees.156,157 In addition, 

the broad peak centered around 43o indicates the presence of honeycomb structures formed by sp2 

hybridized carbons.158  
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Figure 3.1: X-ray diffractogram of NTC (black) and ZnO nanoparticles (red). 

 

3.3.2 Energy Dispersive X-ray Spectroscopy 

Elemental mapping of NTC shows the bulk of the material is composed of carbon and 

oxygen, as expected (Figure 3.2). Table 3.1 summarizes the atomic percentages present in the 

material. We observe a carbon atomic composition of 90.2%, with oxygen making up another 

8.2%. The other 1.6% atomic composition is due to impurities such as sodium, magnesium, 

aluminum, silicon, phosphorus, as well as some tin and molybdenum. These impurities can be 

attributed to contaminated crucible, quartz tube, desiccator, and general laboratory ambience. The 

high carbon content is expected, as glucose undergoes large amounts of dehydration at these high 

temperatures under inert atmosphere. The majority of the lost mass is attributed to the loss of ZnO, 

as well as water and small COx species.159-161  
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Figure 3.2: Elemental Mapping of NTC showcasing carbon and oxygen content. 

 

3.3.3 BET and BJH Analysis 

The parameters employed during pyrolysis have a large impact upon the physical 

characteristics of the carbonized material, affecting total surface area and pore size.86,162-165 Surface 

area in particular is largely affected by pyrolysis temperature. The general trend follows that, as 

pyrolysis temperature is increased, surface area also increases up to a certain threshold. This trend 

is also observed in our material. Keeping the ramp rate and pyrolysis time the same, when pyrolysis 

temperature is set at 500 oC, the resulting NTC has a surface area of 302 m2/g. When pyrolysis 

temperature is increased to 1000 oC, the surface area drastically increases to 1228.19 m2/g, as 

evidenced by the Brunauer-Emmett-Teller (BET) displayed in Figure 3.3A. We can see a 

calculated total surface area of 1228.19 m2/g, with most of this area taking place at higher relative 

pressures. The adsorption/desorption curve fits a Type IV isotherm model, indicating a porous 

material with low energy for adsorbent-adsorbate interaction. From the BJH adsorption isotherm 

(Figure 3.3B) we can see that a large portion of the pore volume is allocated to cavities with pore 

width between 10 and 100 nm, with a calculated BJH adsorption average pore width of 14.74 nm. 

However, a large amount of area is shown for cavities under 5 nm in width, as can be seen in 

Figure 3.3C. From this we can gather that our material has pores in the range of micro-(<2 nm), 

meso- (2 - 50 nm) and macroporosities (>50 nm). 
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Figure 3.3: A) BET surface area, B) BJH desorption cumulative pore volume, and C) surface area 

vs. pore width plots for NTC. 

 

3.3.4 Transmission Electron Microscopy 

Transmission electron microscopy images of NTC (Figure 3.4) shows a highly irregular, 

porous material. The average diameter of these porosities was calculated to be 20.79 nm by ImageJ 

software. Smaller porosities were observed, and these porosities were calculated to have an 

average diameter of 3.14 nm by ImageJ software. Averaging both the larger and smaller porosities 

together, we calculate an overall average pore diameter size of 16.37 nm, which is in agreement 

with the 14.74 nm pore width calculated from BJH. 

 

Figure 3.4: TEM images of NTC. Average porosities calculated to be 14.74 nm in diameter. 
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3.3.5 Adsorption Studies 

3.3.5.1 Adsorption Capacity and pH-dependent Studies 

Adsorption capacity and pH dependent studies for NTC against methylene blue, 2-naphthol 

and bisphenol-A were performed. Molecular structures of the contaminants can be seen in Figure 

3.5, and the adsorption curves can be seen in Figure 3.6. 

 

Figure 3.5: Molecular structures of methylene blue, 2-naphthol and bisphenol-A shown as their 

neutral species. 

 

 For methylene blue (Figure 3.6A) we can see the general trend of higher adsorption 

capacity as pH increases. At acidic pH, adsorption capacity seems to reach a limit at 313 mg/g. As 

the pH is increased to neutral, adsorption capacity also increases to 539 mg/g, while adsorption 

capacity at basic pH it reaches 877 mg/g, nearly a 1:1 adsorbent/adsorbate ratio. This trend can be 

attributed to the overall charge of methylene blue at these different pH levels. Under acidic 

conditions, the amine in methylene blue can become protonated, resulting in a net-positive charge 

in the molecule. This interferes with its adsorption onto our material, which consists mostly of C-

C sigma and pi bonds and thus adsorbs mostly molecules which are net-neutral in nature via 

hydrophobic and - interactions. These positive charges in methylene blue result in repulsion 

between adjacent MB molecules adsorbed onto our material, decreasing the overall adsorption 

capacity. At neutral pH methylene blue is deprotonated once again, resulting in a net-neutral 

molecule which can more easily interact with our hydrophobic adsorbent without repulsion from 
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adjacent molecules. In fact, this trend is prevalent even at pH 10 up to 750 ppm concentration, 

where the adsorption of methylene blue onto our material is nearly equivalent at both pH 7 and pH 

10. At a concentration of 1000 ppm and pH 10 we can see a large increase in adsorption onto our 

material, possibly due to a shift towards a Freundlich adsorption model where adsorption is 

multilayered, not single-layered as in a Langmuir model. This large decrease in methylene blue 

concentration could also be the result of precipitation of methylene blue from solution, although 

no precipitate was observed on the reaction vessels or the stock solutions. 

Adsorption of 2-naphthol onto NTC (Figure 3.6B) is also highly pH-dependent. At acidic 

pH we observe the lowest adsorption onto our material, reaching an experimental maximum of 

303 mg/g. Under these conditions the hydroxyl in 2-naphthol can become protonated, resulting in 

a net-positive charge which not only interferes with adsorption onto a hydrophobic layer, but also 

results in repulsion between neighboring adsorbates on the surface, resulting in sub-optimal 

adsorption. Under basic conditions we see a rise in the adsorption maximum to 421 mg/g due to 

deprotonation of the hydroxyl, resulting in a net negative charge. However, this charge is 

resonance stabilized and distributed throughout the molecule. This distribution of charge is perhaps 

responsible for the higher adsorption of 2-naphthol onto our material at pH 10 over pH 3, where 

the positive charge is localized at a single point. At neutral pH we observe the highest experimental 

adsorption capacity at 737 mg/g due to the hydroxyl remaining protonated, resulting in a net-

neutral molecule which can better interact with our hydrophobic material without repulsion from 

nearby molecules. 

Adsorption of BPA (Figure 3.6C) follows a similar trend to the adsorption of 2-naphthol 

onto our material. At basic pH, BPA becomes deprotonated, thus affecting its adsorption onto the 

hydrophobic adsorbent and resulting in an adsorption maximum of 392 mg/g. At pH 3 there is the 
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possibility of protonation of one of the hydroxyls, which results in a slightly higher adsorption 

maximum of 459 mg/g. As with 2-naphthol, we see the highest experimental adsorption capacity 

(563 mg/g) under neutral conditions, attributed to the absence of a net charge on BPA and higher 

interaction with the adsorbent. 

 

 
 

Figure 3.6: Adsorption capacity studies for NTC and AC against MB, 2-naphtol and BPA at 

varying concentrations (250, 500, 750 and 1000 ppm) and pH (pH of 3, 7 and 10). 

 

Adsorption capacities for a commercially available AC were also studied under these 

conditions and can be seen in Figure 3.6D-F. Adsorption of MB by AC follows a similar trend as 

with NTC, with the lowest adsorption happening at acidic pH (332 mg/g). Under neutral 

conditions, adsorption is slightly increased (365 mg/g), while at basic pH we observe the highest 

adsorption capacity of MB onto AC (705 mg/g). Adsorption of 2-naphthol also has the lowest Qe 

under acidic conditions (257 mg/g), with a higher adsorption capacity at neutral pH (382 mg/g) 
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and the highest Qe present under basic conditions (512 mg/g). The highest adsorption capacity for 

BPA happens under neutral pH (974 mg/g), much like with NTC. Basic conditions show a slight 

decrease in the adsorption capacity of BPA (831 mg/g) while acidic conditions have a drastic effect 

in the adsorption capacity (499 mg/g).  

It should be noted that under acidic conditions, adsorption of all three contaminants by both 

NTC and AC is the lowest, indicating that electrostatic repulsion between the adsorbates is too 

large to be overcome by adsorbate/adsorbent interactions. At pH 10, however, BPA adsorption by 

AC is quite higher than by NTC, indicating the presence of possible groups in AC which can 

interact electrostatically with the negatively charged BPA molecules; this group appears to be 

absent in NTC. Adsorption of MB and 2-naphthol by both NTC and AC is relatively similar, 

indicating a larger pH effect on BPA than either of the other two contaminants, which in turn 

increased its adsorption onto AC. Of greater interest to us are the adsorption capacities under 

neutral conditions, for which NTC had significantly higher adsorption towards MB and 2-naphthol 

than AC. This indicates that our material has a large adsorption potential towards neutral and 

aromatic organic molecules due to its large surface area and sp2-hybridized carbon composition. 

3.3.5.2 Adsorption Isotherms 

The Langmuir and Freundlich isotherms of NTC based on the previous adsorption capacity 

experiments can be seen in Figure 3.7, with Table 3.1 summarizing the adjusted R2 value for each. 

We can see good correlation by the Langmuir isotherm for methylene blue and bisphenol-A at all 

pH levels, with R2 values ranging from 0.91384 to 0.99998. Freundlich values for methylene blue 

were much lower (0.65518 at pH 3, 0.49276 at pH 7 and 0.33843 at pH 10), indicating that the 

adsorption of methylene blue by our adsorbent more closely resembles a single layer, Langmuir-

type adsorption pattern at all three pH ranges. Interestingly, adsorption of 2-naphthol onto our 
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adsorbent more closely resembles a Freundlich adsorption pattern (R2 = 0.96328) than a Langmuir 

pattern (R2 = 0.62587) at pH 3, while at pH 7 and pH 10 the R2 values for Langmuir (0.99895 and 

0.9983, respectively) are closer to 1 than those for Freundlich (0.89125 and 0.9991, respectively). 

Adsorption of BPA shows higher coefficient of determination for the Langmuir isotherm over the 

Freundlich isotherm at pH 3 and pH 7. At a pH of 10, both the Langmuir and Freundlich isotherms 

show a good fit for the adsorption of BPA, with the Freundlich isotherm fit being slightly higher 

than Langmuir. 

 

 

Figure 3.7: Langmuir and Freundlich adsorption isotherms for NTC against methylene blue, 2-

Naphthol and bisphenol-A. 
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Table 3.1: Summary of Langmuir and Freundlich R2 values for methylene blue, 2-naphthol and 

bisphenol-A adsorptions by NTC at pH 3, pH 7 and pH 10. 

 

Experimental and calculated adsorption maxima (Qmax) values can be seen in Table 3.2. 

With the exception of methylene blue at pH 10, we observe good correlation between experimental 

and calculated Qmax values. The intensity of adsorption (1/n) values for all adsorbates were 

calculated from the slope of each Freundlich isotherm. Intensity of adsorption values of 1/n under 

0 (negative) are considered irreversible adsorptions. Values of 1/n between 0 and 1 are considered 

desirable, and values of 1/n greater than 1 are considered undesirable. From Table 3 we can see 

that all intensity of adsorption values are between 0 and 1, indicating desirable adsorption 

conditions of the adsorbates onto NTC at all three pH. The Langmuir (KL) and Freundlich (KF) 

constants, as well as the dimensionless equilibrium parameter RL, were calculated and their values 

summarized in Table 3. Calculations for KL and RL can be found in Equations 6 and 7, respectively. 

𝐾𝐿 =  
1

𝑄𝑚𝑎𝑥 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
       Equation 6 

R𝐿 =  
1

1+KLCi
        Equation 7 

Where Qmax is the maximum calculated adsorption, yintercept is the y-intercept of the Ce/Qe vs Ce 

Langmuir plot for the given adsorbent and pH, KL is the Langmuir constant, and Ci is the initial 

concentration of the adsorbate solution.  RL values are used to describe a favorable (0 < RL <1), 
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unfavorable (RL > 1), irreversible (RL = 0) or linear (RL = 1) adsorption. From Table 3.2 we can 

see that most RL values fall between 0 and 1, indicating a favorable adsorption onto our adsorbent. 

Interestingly, there are several RL values which are very close to 0 which would describe an 

irreversible adsorption; this could be attributed to very strong adsorbate/adsorbent interactions 

under these conditions.  

Table 3.2: NTC Qmax values calculated (calc.) from Langmuir isotherm and found experimentally 

(exp.), as well as the intensity of adsorption (1/n), Langmuir constant (KL), the equilibrium 

parameter RL and the Freundlich constant KF for methylene blue, 2-naphthol and bisphenol-A at 

pH 3, 7 and 10. 

 
 

Qmax (mg/g) 
    

pH exp. calc. 1/n KL RL KF 

Methylene Blue 

3 313.1 311.5 0.03194 0.05298 0.01852 5.478 

7 539.9 540.5 0.1023 0.8894 0.001123 5.739 

10 877.2 621.1 0.1348 -0.2326 0.004320 5.875 

        

 3 303.1 359.7 0.2104 0.005536 0.1529 4.312 

2-Naphthol 7 737.2 746.3 0.1947 0.2388 0.004169 5.646 

 10 421.6 425.5 0.08324 0.1010 0.009801 5.517 

        

 3 459.5 469.5 0.1252 0.06190 0.01589 5.350 

Bisphenol-A 7 563.4 555.6 0.1508 0.08185 0.01207 5.416 

 10 392.0 393.7 0.07022 0.1101 0.008993 5.518 
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3.3.5.3 Kinetic Studies 

The adsorption kinetics of NTC and AC towards all three contaminants were compared 

and can be seen in Figure 3.8. While the control demonstrated a higher Qt within immediate contact 

for both methylene blue and 2-naphthol, NTC surpassed this Qt within one minute (MB) and thirty 

seconds (2-naphthol), respectively. NTC also retained higher adsorption properties than AC up to 

thirty minutes after initial contact for both MB and 2-naphthol. Our material demonstrates a higher 

Qt for BPA within immediate contact and retains it throughout the four-hour test time.  

 

 

Figure 3.8: Kinetic studies of NTC (black squares) and AC (red dots) against A) methylene blue, 

B) 2-Naphthol and C) Bisphenol-A up to four hours of contact time. Insets are adsorptions up to 

five minutes contact time. 

 

3.3.5.4 Kinetic Models 

Data acquired through the kinetic adsorption experiments was plotted against the pseudo-

first order, pseudo-second order and intra-particle diffusion models summarized in Figure 3.9, with 

the adjusted R2 values summarized in Table 3.3. The data is better represented by the pseudo-

second order kinetic model for all three contaminants, with R2 values nearing 1. Intraparticle 

diffusion kinetic model shows R2 values ranging from 0.42 – 0.44, and pseudo-first order kinetic 

model demonstrates the lowest R2 values, ranging from 0.27 to 0.41. Intraparticle diffusion models 



 44 

for all three contaminants appear to show two adsorption phases, with the first phase (t0.5 between 

0 and 2.236) demonstrating a steep positive slope, followed by a near-plateau at t0.5 between 2.236 

and 15.49. This is indicative of more than one process governing the adsorption process of the 

contaminants onto our adsorbent. 

 

 
 

Figure 3.9: Pseudo-first order, pseudo-second order and intra-particle diffusion models for NTC 

against methylene blue (A-C), 2-Naphthol (D-F), and bisphenol-A (G-I). 
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Table 3.3: Pseudo-first order, pseudo-second order and intraparticle diffusion R2 values for 

methylene blue, 2-naphthol and bisphenol-A. 

 Pseudo-first order Pseudo-second order Intraparticle diffusion 

Methylene Blue 0.27926 0.99943 0.44591 

2-Naphthol 0.41101 0.9999 0.43844 

Bisphenol-A 0.31301 0.99998 0.42816 

 

3.3.5.5 Continuous Flow Adsorption Study 

 To simulate water purification in real-world filtration systems, a continuous-flow 

purification system was tested (Figure 3.10). Briefly, 1 g of NTC was mixed with 100 g of sand 

and packed into a 250 mL glass column. A 20 ppm MB solution made in tap water was passed 

through this packed column via gravity filtration with a constant flow rate of 4.5 mL/min. The 

column was kept under constant flow until traces of MB were observed in the filtrate. Flow 

adsorption proved 100% efficient up to 11.5 L, with the breakthrough point at 12 L. The flow 

experiment was continued up to 15 L, at which point the adsorption efficiency had decreased to 

72%. Under these experimental conditions, this material has the potential to purify 230 L of 1 ppm 

MB-contaminated water with 100% removal efficiency. 

 A paper published by Bukallah et al. studied the adsorption of methylene blue onto sand 

collected from local sand dunes in the southeastern region of United Arab Emirates.166 Based on 

their optimized results, they found that optimal adsorption of methylene blue happened with 0.1 g 

of sand, which was able to remove 92% of methylene blue from 5 mL of a  1.8 X 10-5 M solution. 

This molar concentration equates to a 5.7 ppb MB solution. If we were to scale their results to use 

100 g of sand, as in our experiment, we could expect similar adsorption from 5 mL of a 5.7 ppm 

solution. Given that we observed complete MB adsorption of a 20 ppm solution up to 11.5 L, we 

believe sand played a very minor roll in the results of this flow adsorption study.  
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Figure 3.10: Percent adsorption vs number of liters filtered during flow adsorption of MB (20 ppm, 

tap water) by NTC. Insets show column packing, as well as contaminated water (input) and 

purified water (output). 

 

3.4 COMPARISON WITH SIMILAR ADSORBENTS 

Adsorption capacities and surface area of our material has been compared to similar 

adsorbents167-179 and can be seen in Table 3.5. The surface area of NTC, while not the highest, is 

at the higher end of the spectrum, nearly matching those of carbonized metal-organic frameworks 

(MOFs) which are known to have large surface areas, and more than doubling that of sulfonated 

graphene nanosheets. Adsorption capacities for our material at near-neutral pH either surpasses or 
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is on-par with other materials. For methylene blue, adsorption capacity of NTC is higher than other 

biomass-derived adsorbents. Adsorption of 2-naphthol is much higher than that of many 

organoclays, and more than doubles the Qe reported for bamboo hydrochars and even sulfonated 

graphene sheets. Bisphenol-A adsorption, while not the highest, is still on-par with materials such 

as carbonized MOFs and activated tire adsorbents.  

Table 3.5: Comparison of surface area and adsorption capacities of various adsorbents for the 

removal of MB, 2-Naphthol and BPA at near-neutral pH. 
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3.5 CONCLUSION 

In summary, we have developed a carbon adsorbent from the carbonization of glucose at 

1000 oC under Argon conditions in the presence of ZnO nanoparticles. Under these conditions 

Zn(II) is reduced to Zn(0) and sublimed, yielding a nanotemplated porous adsorbent material with 

surface area of 1228.19 m2/g and average pore diameter of 14.77 nm. From EDX-S we observe an 

elemental composition of 90.2% carbon and 8.2% oxygen, indicating an adsorbent with high 

carbon-content composed of sp2 hybridized carbons and honeycomb structures, as evidenced by 

XRD analysis. Its adsorption capacity against methylene blue, 2-naphthol and bisphenol-A were 

found both experimentally and calculated by the Langmuir isotherm model at pH 3, pH 7 and pH 

10. Experimental Qmax values for methylene blue, 2-naphthol and bisphenol-A at pH 7 are 539 

mg/g, 737 mg/g and 563 mg/g, respectively. Adsorption kinetic experiments were performed 

against the three contaminants at pH 7 and the data modeled using the pseudo-first order, pseudo-

second order and intraparticle diffusion kinetic models. In conclusion, carbonization of glucose 

under inert atmosphere in the presence of ZnO NPs has yielded a high-surface area bioderived 

adsorbent with excellent adsorption capacities and fast kinetics towards methylene blue, 2-

naphthol and bisphenol-A. We believe this method of generating biochars from inexpensive 

starting materials can have a huge impact on the synthesis of adsorbents for water remediation of 

organic pollutants in the future. 
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Chapter 4: Iron Oxide Functionalized Adsorbent for the Removal of 

Inorganic Contaminants from Water 

4.1 INTRODUCTION 

Arsenic is an inorganic contaminant which can be found in water, soil, food and even air 

for those exposed to it through their occupation.180 Constant exposure to arsenic can lead to a 

variety of deleterious effects, including vascular diseases, reproductive toxicity and neurological 

effects.181 Arsenic exposure has been linked to cancers of the skin, lung, bladder, liver, and prostate 

182-186. Due to its deleterious effects in humans, the World Health Organization (WHO) has set the 

safe levels of arsenic exposure to 10 parts per billion.187 However, it is estimated that over 100 

million people worldwide are exposed to As levels which are considered carcinogenic, mostly via 

drinking contaminated groundwater.181  

 Many methods have been proposed for the remediation of arsenic-contaminated water. The 

most common technologies include coagulation/filtration, membrane separation, ion exchange, 

and adsorption.188-193 From the aforementioned methods, adsorption has a select few benefits over 

the rest, including ease of operation, relatively lower operation cost, and no need for added 

reagents.194 We have chosen to use our method for developing a high surface area adsorbent as a 

base for further functionalization with iron oxide nanoparticles. There are four main reasons why 

we chose to use this approach for the remediation of arsenic from water. The first is our proven 

method to generate a high surface area adsorbent; in theory, higher surface area directly correlates 

to higher sites for the adsorption of arsenic. Second is the proven efficacy of iron oxide 

nanoparticles towards the removal of arsenic from water; both Fe2O3 and Fe3O4 have proven to be 

potent adsorbents towards arsenic.195-200 Third, it has been shown that iron oxide can be formed 

in-situ via thermal means.201,202 Therefore, our adsorbent material containing iron oxide can be 

made in a single synthetic step, allowing for easier replication of our methodology. And lastly, the 
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presence of magnetic iron oxide in the material imbues it with magnetic properties which can be 

exploited in a filtration system, helping to prevent of minimize leaching of the nanoparticles onto 

the clean water. 

 This material was also tested for its adsorption capabilities against barium and lead, with 

surprisingly good results. Due to the carbon composition of this material, its adsorption against 

methylene blue as a proxy of other organic pollutants was also explored. More interestingly, due 

to the availability of iron in our material, its capacity to perform as a Fenton catalyst was briefly 

explored, with the results outlined in section 4.3.4.1. 

4.2 MATERIALS AND METHODS 

4.2.1 Preparation of Material 

In a typical experiment, D(+)-glucose (4g, 22.2 mmol), FeCl3•6H2O (1.08 g, 4 mmol) and 

FeSO4•7H2O (0.56g, 2 mmol) were dissolved in 50 mL RO water. To this solution, 2g of ZnO NPs 

(<35 nm particle size) were added and the suspension ultrasonicated for 30 minutes, followed by 

stirring for a further 30 minutes to promote homogeneity. This suspension was then concentrated 

under reduced pressure using a rotary evaporator, mixed further using mortar and pestle, and left 

to dry under reduced pressure via vacuum pump overnight. 

 The mixture was then weighed and transferred to a quartz crucible and placed in a sealed 

furnace. The furnace was argon-flushed for 30 minutes, followed by carbonization for two hours 

at 1000 oC with a ramp speed of 10 oC/min under constant argon flow. Carbonized 6.97 g, 

recovered 0.403 g.  

4.2.2 Adsorption Capacity Studies 

 For the adsorption of heavy metals, 100 ppm stock solutions were made for Pb(NO3)2 

(16.13 mg), BaCl2•2H2O (17.85 mg), NaAsO2 (17.54 mg) and Na2HAsO4•7H2O (41.66 mg) in 100 
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mL RO water, respectively. The mixtures were ultrasonicated to ensure full dissolution. These 100 

ppm stock solutions were used to make 10 ppm, 1 ppm and 0.1 ppm contaminant solutions used 

for the study. Adsorption capacity studies were done in triplicate in 20 mL vials using 10 mg 

adsorbent and 10 mL of contaminant solution under constant stirring for three days to allow for 

adsorption equilibrium. At this point the experiments were centrifuged, 7.5 mL of each sample 

transferred to a clean centrifuge tube, and 2.5 mL of a 12% nitric acid solution was added to acidify 

each solution for ICP-OES analysis. 

 Methylene blue adsorption and Fenton reduction studies were performed using 50 mg of 

adsorbent and 50 mL of a 50 ppm methylene blue solution in RO water. To each, varying amounts 

of a 30% hydrogen peroxide solution (0 mL, 0.5 mL, 1 mL, and 2.5 mL respectively) was added. 

The reactions were stirred continuously at 3500 rpm and 1 mL aliquots were taken at 1h, 2h, 3h, 

4h and 24h. Sample aliquots were diluted by a factor of 1/5 and analyzed by UV-VIS 

spectrophotometry.  

4.2.3 Characterization 

Carbonization was performed using a GSL-1100X from MTI Corporation. The X-ray 

diffraction analysis of the carbon material and the embedded nanoparticles was performed on 

a Panalytical Empyrean 2 diffractometer (Cu anode, K radiation, λ = 1.54 nm) with a scan rate 

of 1.7 deg/min. A Hitachi S-4800 instrument was used for SEM as well as EDS images. Samples 

for EDS were placed as powders in 12 mm diameter carbon adhesive tabs. UV-Vis adsorption 

measurements were taken through a 10.00 mm quarts cuvette using a NU-T6PC instrument 

purchased from Zhengzhou Nanbei Instrument Equipment corporation. Infrared spectroscopy 

analysis was done on a Nicolet iS5 FTIR with ATR module using a scanning range of 650-4000 

cm-1. ICP-OES measurements were performed on a Perkin Elmer OPTIMA 4300 DV ICP-OES. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Electron Microscopy 

Scanning electron microscopy images for this material can be seen in Figure 4.1. 

Magnification to 1.00 mm shows a rugged, highly porous material of amorphous distribution. 

Further magnification to 50 um shows small areas with higher electron conductivity than its 

surroundings, as indicated by brighter shading than its darker, less conductive carbon bulk 

material. These areas of higher electron conductivity are speculated to be iron oxide nanoparticles 

formed during the carbonization process.  

 

Figure 4.1: Scanning electron microscopy images of iron oxide-functionalized adsorbent. 

Elemental analysis of this iron oxide-containing adsorbent can be seen in Figure 4.2. As 

expected, the material is mainly composed of carbon, oxygen, and iron. Carbon content is 

predominant after carbonization, making up 49.75% (by weight) of the material. This falls in line 

with what we observed during the synthesis of NTC (Chapter 3), where carbon remained as the 

predominant atom present in the material after carbonization at 1000 oC. In the same manner, 

oxygen content decreased significantly, making up only 7.11% of the material by weight. This 

once again follows both our previous work and literature reports, as carbonization of carbohydrates 

at elevated temperatures results in a drastic decrease of oxygen content due to the evolution of 
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small organic molecules containing oxygen. Iron content is also relatively high (38.24% weight), 

showing the incorporation of iron onto the material. Interestingly, sulfur content is also observed 

in our material in a significant quantity, despite continuous washing of the material after 

carbonization. This seems to suggest that the sulfur content comes not from physical adsorption of 

sulfur salts onto the adsorbent, but as chemical incorporation of sulfur into the material, possibly 

as thioethers, thioesters, or sulfuric/sulfonic acids. Atomic percentages can be seen in Table 4.1. 

 

 

Figure 4.2: Elemental mapping of iron oxide-functionalized adsorbent. 
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Table 4.1: Summary of elemental composition of iron oxide-containing adsorbent by elemental 

weight and atomic percentage. 

 
 

 

4.3.2 Infrared Spectroscopy 

 

Fourier transform infrared spectroscopy analysis of our material can be seen in Figure 4.3 

below. Analysis of the material (Before Correction, black) was unsatisfactory, yielding mostly a 

flatline with small fluctuations centered around 2366, 2336 and 1017 cm-1. A second FTIR reading 

was done after first baselining the instrument with the NTC synthesized in Chapter 3 of this 

dissertation. As the two materials share a similar carbon backbone (glucose carbonized at 1000 oC 

for two hours), performing a baseline with NTC should in theory remove the C-H, C-C and C-O 

stretching and bending frequencies from the IR analysis, allowing for frequencies belonging to 

iron complexes to be highlighted. Analysis after this baseline correction (After Correction, red) 

shows a distinct broad absorption peak from 1017 cm-1 to 1308 cm-1, with the lowest peak centered 

at 1071 cm-1. Some irregularities are also observed in the ranges of 1377 – 1971 cm-1 and 3558 – 

3944 cm-1. Literature reports are conflicting, although most seem to agree that absorption 

frequencies from Fe-O fall in the range of 450 – 650 cm-1.203-206 While we do observe small 

fluctuations at 665 cm-1 and 693 cm-1, these are inconclusive. Due to instrument limitations, 

absorption range was limited above 550 cm-1. The broad signal observed from 1017 cm-1 to 1308 

cm-1 is likely due to C-O stretching, although sulfoxide S=O stretching signals do fall in the range 
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of 1030 cm-1 – 1070 cm-1. This would corroborate our theory that sulfur has been incorporated into 

our material, possibly as a sulfoxide moiety.  

 

4000 3500 3000 2500 2000 1500 1000

 

Wavenumber (cm
-1
)

 Before Correction

 

 After Correction

 

Figure 4.3: Infrared Spectrum of iron oxide-containing adsorbent before (black) and after (red) 

baseline correction. 

 

4.3.3 X-ray Diffraction 

 

 X-ray diffraction analysis of our material can be seen in Figure 4.4. Our iron oxide-

functionalized adsorbent shows distinct peaks at 2  angles 30.00, 33.42, 35.35, 42.99, 52.89, 

56.92 and 62.45, with a few smaller peaks appearing at 70.73, 74.11 and 86.79. In the literature, 

reports for magnetite (Fe3O4) show diffraction patterns at or near 2  angles of 30, 35.7, 43.4, 53.7, 

57.5, and 63.00 for phases (220), (311), (400), (422), (511) and (440), respectively, which are in 

accordance with JCPDS No. 07-0322.207 Hematite (Fe2O3) on the other hand shows diffraction 

peaks at or around 2 angles of 24, 33, 36, 41, 49, 54, 58, 62, 64, and 72 degrees, as per JCPDS 

No. 33-0664.203 Goethite (FeO-OH) demonstrates characteristic diffraction peaks at 2 angles 

17.8, 21.3, 33.3, 34.7, 36.1, 36.7, 41.2, 47.3, 53.3, 55.3, 59.04, 63.9 and 69.0.208 Based on this 
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search the iron content of our material seems to be mostly composed of Fe3O4 nanoparticles, with 

nearly all of the characteristics phases of magnetite being at- or near what is reported for these 

nanoparticles. There also appear to be some overlap with hematite nanoparticles, mainly at 2 

angles 33.42, 35.35 and 62.45 of our material with those reported on the literature for our material. 

Not much overlap appears to be present between our material and goethite. Based on this, we 

believe the iron content of our material to be predominantly magnetite based, with some of the 

nanoparticles corresponding to hematite. 

 

 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

In
te

n
s
it
y
 (

a
.u

.)

2 (degrees)
 

Figure 4.4: X-ray diffractogram of iron oxide-containing adsorbent. 
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4.3.4 Adsorption Studies 

4.3.4.1 Adsorption Capacity Studies for Inorganic Contaminants 

The adsorption capacity of this material against some major inorganic contaminants was 

explored, namely lead(IV), barium(II), arsenic(III) and arsenic(V). While the study was not 

exhaustive, three concentrations for each contaminant were still explored: 0.1, 1.0 and 10.0 ppm. 

A summary of the adsorption capacity and standard deviation of this material at each concentration 

can also be seen in Table 4.2. While maximum adsorption was achieved at concentrations 0.1 and 

1 ppm against most contaminants, sub-maximum adsorption can be seen for all contaminants at a 

concentration of 10 ppm. This is in stark contrast to the adsorption capacities of adsorbent materials 

previously explored in this dissertation against organic contaminants, where we saw adsorption 

equilibriums as high as 737 mg/g. This could be the result of several factors, mainly, the porosity 

of this material is in question. Adsorption of this material against methylene blue was much lower 

when compared to NTC, as will be discussed further in this chapter. While electrochemical 

interactions between the carbon matrix, the iron oxide nanoparticles and the contaminant are 

possible, we believe a lack of porosity would better explain the substantial disparity in adsorption 

capacity. However, as mentioned in the introduction, the World Health Organization has set 

arsenic safe levels to 10 ppb, considerably lower than the adsorption capacity of our material 

against arsenic(III) and arsenic(V) (7.86 and 4.48 mg/g, respectively). While we did not test our 

material at 10 ppb, we did test it at 100 ppb (0.1 ppm in our data) and our material performed 

splendidly against both contaminants. The US Environmental Protection Agency similarly has set 

an action level for lead at 15 ppb, where sites producing higher lead levels must take action to 

remedy these concentrations from their drinking water.209 Once again, our material performed well 

at a concentration of 100 ppb (0.1 ppm) against lead, with a maximum adsorption capacity of 5.58 
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mg/g. Adsorption of barium was much less exciting, achieving a maximum adsorption capacity of 

2.34 mg/g at an initial concentration of 10 ppm barium. Barium toxicity levels are set to 0.5 mg/L 

for soluble barium compounds,210 making our material still relevant as a possible remedy for the 

reduction of barium in contaminated water. It should be noted that while the adsorption capacity 

of this material against these heavy metals may seem low, it is on par to similar adsorbents 

currently being explored in the literature. 

 

Figure 4.5: Adsorption capacity study against lead, barium, arsenic (III) and arsenic (V). 

 

Table 4.2: Summary of adsorption capacities against lead, barium, arsenic (III) and arsenic (V). 

  
Ci (ppm) 0.1 1 10 

 Qe (mg/g) St. Dev. Qe (mg/g) St. Dev. Qe (mg/g) St. Dev. 

Lead 0.123751 0.000753 1.0035 0.019941 5.579612 0.00153 

Barium 0.051666 0.047141 0.112938 0.173781 2.347239 0.111322 

Arsenic (III) 0.142206 0.000385 1.054211 0.001545 7.861099 0.771299 

Arsenic (V) 0.153341 0.007292 1.053994 0.001747 4.480343 0.194216 
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4.3.4.1 Fenton Reaction for the Degradation of Methylene Blue 

 

 The Fenton reaction was first introduced by Henry John Horstman Fenton in 1894 as a 

method of detection for tartaric acid by using iron sulfate and hydrogen peroxide as reactants, 

where he noticed a distinct violet coloration after the reaction.211 While unbeknownst to him at the 

time, he speculated that this formation of color was possibly due to reducing properties of the 

solution.212 It wasn’t until much later that a mechanism for the formation of dihydroxymaleic acid 

from tartaric acid was proposed which involved the oxidation of iron(II) to iron(III), followed by 

the reduction of iron(III) to iron(II) by hydroxyl radicals which regenerates the iron catalyst (see 

Scheme 4.1).  

 

Scheme 4.1: Proposed mechanism for the formation of dihydroxymaleic acid from tartaric acid 

and the catalytic properties of iron (II) under hydrogen peroxide conditions. 

 

 Since then, the Fenton reaction has been further explored for areas beyond the detection of 

tartaric acid, such as the oxidative degradation of organic compounds and common pollutants. 
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While most Fenton reactions are focused on homogeneous conditions which utilize iron sulfate 

salts, there have been several studies which explore the use of iron nanoparticles and 

nanocomposites for the degradation of organic pollutants under heterogeneous conditions. For 

example, Lejin Xu and Jianlong Wang utilized magnetic Fe3O4 nanoparticles for the degradation 

of 2,4-dichlorophenol, achieving complete decomposition and 51% removal of total organic 

compounds (TOC) in just 180 minutes.213 Similarly, Ruixiong Huang et al. studied the degradation 

of bisphenol-A utilizing magnetic Fe3O4 nanoparticles by a sono-Fenton process and found overall 

removal efficiencies over 95%, with about half TOC in solution eliminated.214 Of higher interest 

to us, however, is the use of iron oxide nanoparticles embedded on a carbon backbone, as it more 

closely resembles our adsorbent material. Surprisingly, there have been many studies on iron 

composite materials used as Fenton reagents for the degradation of organic pollutants in water. 

Carbon nanotubes have been popularly utilized as anchor sites for iron oxide nanoparticles for 

Fenton-like processes, and have shown promising results in the degradation of organic pollutants 

such as 17a-methyltestosterone,215 bisphenol-A,216 and various phenolic compounds.217 Other 

solid supports have been also been used, such as graphene218 (used for the adsorption and 

degradation of methylene blue) and mesoporous silicon oxide, which is noteworthy due to being a 

carbon-free adsorbent/catalyst used for the degradation of methyl orange.219  

 We have performed preliminary studies of our material utilizing the Fenton reaction for the 

adsorption and degradation of methylene blue. Reaction conditions can be seen in section 4.2.2, 

with Table 4.3 summarizing the percent adsorption/degradation of a 50 ppm methylene blue 

solution over a 24 hour range with varying volumes of initial 30% hydrogen peroxide solution. As 

a negative control we utilized our adsorbent material without introducing hydrogen peroxide, 
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which prevents the Fenton reaction and illustrates the adsorptive capabilities of our material 

against methylene blue.  

Table 4.3: Summary of adsorption/degradation of methylene blue at varying time intervals and 

hydrogen peroxide concentrations. 

  H2O2 (mL) 

Time 
(Hours) Control 0.5 1 2 

1 37% 44% 42% 50% 

2 52% 52% 49% 53% 

3 52% 52% 50% 59% 

4 56% 53% 54% 62% 

24 75% 87% 99% 100% 

 

 We can see in Figure 4.6 that the adsorption of methylene blue onto our material is mostly 

linear in nature. Our control achieved 75% adsorption of a 50 ppm methylene blue solution without 

the addition of hydrogen peroxide. While these results are positive, they fall short of previous 

materials synthesized in our lab, such as NTC shown in chapter 3 which was capable of complete 

adsorption at concentrations up to 500 ppm. This leads us to believe that the surface area of our 

iron oxide-containing adsorbent is much lower than that of NTC previously mentioned, leading to 

adsorption or organic contaminants being restricted to surface adsorption, without the capability 

of the contaminant to travel further into the adsorbent via porosities in the material. Surface area 

analysis such as BET would be needed in order to corroborate this theory. 

 Addition of hydrogen peroxide results in lower methylene blue concentration in as little 

time as one hour when compared to our control. Interestingly, at time 2-4 hours the difference 

between our control, 0.5 mL H2O2 and 1 mL H2O2 is near equivalent, with our control 

demonstrating slightly higher methylene blue reduction when compared to the other two 

conditions for some of these time frame. At 24 h we can see a larger discrepancy in the reduction 
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of methylene blue between our control and the other three reaction conditions, with our control 

achieving 75% methylene blue reduction as opposed to 100% methylene blue reduction when 

using 2.5 mL of 30% hydrogen peroxide. A general trend can also be found, where the higher the 

amount of hydrogen peroxide used, the higher the methylene blue reduction that is observed after 

24 h. Interestingly, the difference in reduction seems to be insignificant when using 1 mL versus 

2.5 mL of hydrogen peroxide after 24 hours, indicating that 1 mL is enough over this time range 

to completely degrade the methylene blue in the solution.  

 Overall, the capabilities of this iron oxide-containing adsorbent as a Fenton reactant shows 

promise but needs to be further explored before determining its capabilities as a Fenton reactant. 

The addition of outside factors such as heat and ultrasound could be explored as factors to expedite 

the formation of hydroxyl radicals and contaminant degradation. A range of pH should also be 

explored to determine what conditions optimally allow for the formation of these radicals. 

 

Figure 4.6: Methylene blue adsorption/degradation by Fenton reaction. 
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4.4 CONCLUSION AND FUTURE WORK 

 

 In conclusion, we have successfully developed an adsorbent carbon material containing 

iron oxide for the adsorption of heavy metals from water. Carbonization of glucose at 1000 oC 

over a period of two hours under anaerobic conditions yielded a material containing mostly carbon, 

oxygen, iron and surprisingly sulfur, as evidenced by SEM-EDS analysis. We have postulated that 

the sulfur content present in the material comes from carbonization in the presence of sulfate ions 

introduced by iron(II) sulfate. Infrared spectroscopy further corroborates this theory, as the broad 

absorption peak found from 1017 cm-1 to 1308 cm-1 fits the expected S=O stretching peak. X-ray 

diffraction analysis suggests the iron present in this material is composed of a mixture of Fe3O4 

and Fe2O3, with magnetite contributing the bulk of the iron content. Adsorption capacity studies 

also look promising, with Qe for lead, barium, arsenic(III) and arsenic(V) reaching 5.57 mg/g, 2.34 

mg/g, 7.86 mg/g and 4.48 mg/g, respectively. These are promising results, as action levels for these 

contaminants set by the EPA are in much lower concentrations. Moreover, the presence of iron in 

our material allowed us the potential to use this for catalytic degradation of organic contaminants. 

We employed our material under Fenton reaction conditions by the addition of hydrogen peroxide 

for the degradation of methylene blue, an often-employed organic dye for adsorption and 

degradation studies. While our material was successful in the degradation of a 50 ppm solution of 

methylene blue, it required 24 hours to do so, which is not ideal for real world application. 

 While this iron oxide-containing adsorbent shows promise for the remediation of both 

organic and inorganic contaminants in water, further work still needs to be done. The surface area 

of the material needs to be studied, and BJH analysis is essential to elucidate the average diameter 

of the porosities found within the material. Should the material show low porosity, a new 

carbonization method would have to be developed. One possible alternative is to use zinc chloride 
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in place of zinc oxide nanoparticles as templating agents. X-ray photoelectron spectroscopy should 

also be employed to help elucidate the state of the atoms present in the material, including iron 

(iron(II) and iron(III)) and sulfur content and composition. A more extensive XRD analysis using  

an online library would also prove beneficial for iron characterization.  

 Preliminary adsorption studies show much promise, but further adsorption tests still need 

to be done to fully understand the potential of this material for water remediation. Heavy metal 

adsorption tests were done in RO water, but their adsorption in tap water needs to be tested as well 

in order to more closely resemble adsorption in real world applications. Adsorption kinetics for 

the material still need to be performed in order to study how quickly our material can remove these 

heavy metals from water, and to create a suitable adsorption isotherm for the material. Adsorption 

under acidic and basic conditions should also be explored to show the effects of pH on the 

adsorption capacities and kinetics. Adsorption and degradation of organic contaminants via the 

Fenton reaction still needs much more testing; the effects of temperature and pH can greatly affect 

the degradation kinetics of the reaction and must therefore be explored. Moreover, other methods 

for activating the formation of hydroxyl radicals should be explored, for example by the use of 

ultrasound. 

 In all, the material shows great promise, but further testing and characterization are still 

required. 
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Chapter 5: Thiol-Functionalized Porous Carbon for the Adsorption of Soft 

Metals from Water 

5.1 INTRODUCTION 

While porous organic adsorbents such as activated carbon are efficient at removing organic 

contaminants from water, the removal of inorganic contaminants can prove to be challenging. 

Organic contaminants can interact with porous carbon materials through van der Waals, 

hydrophobic, pi-pi and even ionic interactions. However, inorganic contaminants generally lack 

these interactions, and as such their adsorption by carbon adsorbents is limited. The addition of 

functional groups to these adsorbents is one way to remediate this problem.  In order to effectively 

adsorb metal ions in solution, an optimal carbon-based adsorbent needs to be capable of 

undergoing ion exchange, surface-complex formation, and/or chelation with the metal contaminant 

in order to adsorb and retain the metal contaminant.220,221 Lewis bases such as thiols and amines 

can be employed in order to produce a coordinate covalent bond with heavy metal ions, increasing 

the material’s adsorption towards the metal and reducing the risk of releasing these adsorbed 

contaminants back into the purified water.207,222,223 Utilizing this Lewis acid-Lewis base 

interaction, thiol-functionalized materials have been explored for the removal of Hg(II), Pb(II), 

Ag(I), Cu(II), and even As(III) and As(V). 222,224,225 

 In order to make our high-surface area adsorbent material detailed in Chapter 3 an effective 

adsorbent towards heavy metals, we have functionalized its surface with thiols. We have done so 

by following a method which involves carbonization in the presence of thiourea, a thiol-containing 

organic molecule. From the literature we found that thiourea is a relatively common thiol-

containing molecule utilized during carbonization to add sulfur functionality to organic adsorbents. 

226-229 We have employed this method by carbonizing glucose at 1000 oC over two hours under 

constant argon flow in the presence of zinc oxide nanoparticles and thiourea. Characterization of 
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this material is found further in this chapter. We have also performed preliminary adsorption 

studies for this material against barium and arsenic(III) with promising results. 

5.2 MATERIALS AND METHODS 

 

5.2.1 Preparation of Material 

 

Initially, D(+)-glucose (4g, 22.2 mmol) and thiourea (4g, 23.2 mmol) were dissolved in 

100 mL RO water. To this solution, 4g of ZnO NPs (<35 nm particle size) were added and the 

suspension ultrasonicated for 30 minutes, followed by stirring for a further 30 minutes to promote 

homogeneity. This suspension was then concentrated under reduced pressure using a rotary 

evaporator, mixed further using mortar and pestle, and left to dry under reduced pressure via 

vacuum pump overnight. 

 The mixture was then weighed and transferred to a quartz crucible and placed in a sealed 

furnace. The furnace was argon-flushed for 30 minutes, followed by carbonization for two hours 

at 1000 oC with a ramp speed of 10 oC/min under constant argon flow for a final recovery of 1.17 

g.  

 On a follow-up experiment, the above steps were repeated with 4g D(+)-glucose, 2g 

thiourea and 4g ZnO NPs (<35 nm particle size) for a post-carbonization recovery of 2.18g. 

 Washing of these materials to remove ZnO NPs after carbonization was done by exposing 

material to 4N HCl (5 mL HCl soln. per 100 mg material). In a 250 mL round bottom, the 

carbonized material was suspended in 4N HCl and left stirring overnight. The material was then 

filtered, washed with RO water until acid was no longer detected, and dried under vacuum. Initial 

weight – 1.77g, recovered 0.46g.  
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5.2.3 Adsorption Capacity Studies 

For the adsorption of heavy metals, 100 ppm stock solutions were made for BaCl2•2H2O 

(17.85 mg) and NaAsO2 (17.54 mg) in 100 mL RO water, respectively. The mixtures were 

ultrasonicated to ensure full dissolution. These 100 ppm stock solutions were used to make 10 

ppm, 1 ppm and 0.1 ppm contaminant solutions used for the study. Adsorption capacity studies 

were done in triplicate in 20 mL vials using 10 mg of adsorbent and 10 mL of contaminant solution 

under constant stirring for three days to allow for adsorption equilibrium. At this point the 

experiments were centrifuged, 7.5 mL of each sample transferred to a clean centrifuge tube, and 

2.5 mL of a 12% nitric acid solution was added to acidify each solution for ICP-OES analysis. 

5.2.4 Characterization 

Carbonization was performed using a GSL-1100X from MTI Corporation. The X-ray 

diffraction analysis of the carbon material and the embedded nanoparticles was performed on 

a Panalytical Empyrean 2 diffractometer (Cu anode, K radiation, λ = 1.54 nm) with a scan rate 

of 1.7 deg/min. A Hitachi S-4800 instrument was used for high resolution SEM imaging and 

elemental analysis. Lower resolution SEM-EDS measurements were performed on a Hitachi SU 

3500 SEM equipped with a STEM detector. Samples for electron microscopy were placed as 

powders in 12 mm diameter carbon adhesive tabs. Infrared spectroscopy analysis was done on a 

Nicolet iS5 FTIR with ATR module using a scanning range of 650-4000 cm-1. ICP-OES 

measurements were performed on a Perkin Elmer OPTIMA 4300 DV ICP-OES. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Electron Microscopy 

 Scanning electron microscopy image of our thiol-containing adsorbent can be seen in 

Figure 5.1. At a magnification of 300 m we can see a highly irregular material with larger 
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sections of the adsorbent being surrounded by smaller spherical sections. Some porosities can be 

observed in the material, however at this magnification we cannot determine whether these are 

true porosities or simply crevices inherent to the amorphous material. 

 

Figure 5.1: Scanning electron microscope image of thiol-containing adsorbent. 

 

Elemental mapping of our thiol-containing adsorbent after carbonization can be seen in 

Figure 5.2. From the elemental analysis we can see the adsorbent is largely composed of carbon 

and sulfur, distributed nearly homogeneously throughout the material. The weight percent 

composition for carbon, sulfur and zinc was 55.71%, 23.26% and 21.01%, respectively. 

Interestingly, oxygen content was not detected in the analysis, suggesting the removal of oxygen 

during carbonization as either water or small organic molecules, as is common when carbonizing 

carbohydrates at higher temperatures. While carbonization at 1000 oC for two hours was enough 

to eliminate zinc from NTC (see Chapter 3), it appears that under these conditions a large portion 

of zinc still remained in our thiol-containing adsorbent, despite washing the material several 
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times with RO water after carbonization to remove unreacted material. In order to remove the 

zinc we reacted the material in a 4N HCl solution overnight. 

 

 

Figure 5.2: Elemental mapping and composition of thiol-containing adsorbent. 

  

Figure 5.3 shows the SEM of our thiol-containing adsorbent before (top) and after 

(bottom) reacting with 4N HCl. It should be noted that this analysis was conducted on a 

benchtop SEM equipped with a module for elemental analysis; elements under aluminum are 

undetectable, therefore carbon and oxygen content could unfortunately not be analyzed. 

Hydrochloric acid is able to dissolve zinc nanoparticles, turning the O-Zn-O network into water 

and ZnCl2, which is water soluble. We can see the effectiveness of this method for removing 

remaining ZnO nanoparticles in the SEMs shown below, as the zinc content decreases from 

51.2% to non-observable weight percent after the reaction (Table 5.1). With the loss of zinc, 

sulfur content of the material increases from 51.2% to 94.4% by weight; it should be noted that 

this weight percent excludes carbon content, as the instrument is incapable of analyzing it. There 
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is also small residual aluminum content present, likely resulting from the aluminum stage used 

during analysis.   

 

 
 

Figure 5.3: SEM-EDS Images of material before acid wash (top) and after acid wash (bottom). 

 

 

 

Table 5.1: Atomic composition by weight percent before and after 4N HCl wash. 

 Weight % 

 Before Wash After Wash 

Aluminum 9.0 5.6 

Sulfur 39.8 94.4 

Zinc 51.2 N/A 

 

 

 

 



 71 

5.3.2 X-ray Diffraction Spectroscopy 

 

 X-ray powder diffraction analysis of our thiol-containing adsorbent can be seen in Figure 

5.4 below. The material shows a mostly amorphous structure, with the appearance of two broad 

signals in the ranges of 17o – 32o and 38o – 48o, with the highest intensities centered around 22.9o 

and 43.25o. These two peaks centered around 22.9o and 43.25o can be attributed to the (002) and 

(100) planes, respectively, which are often found in disordered carbon layers.230,231 Much like 

with our NTC material synthesized in the past, this material demonstrates a highly amorphous 

structure with no clearly defined crystallinity. 
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Figure 5.4: X-ray diffractogram of thiol-containing adsorbent. 

5.3.3 Infrared Spectroscopy 

 

 Fourier transform infrared spectroscopy analysis for our thiol-containing adsorbent can 

be seen in Figure 5.5 below. Direct analysis of our material resulted in what can be best 

described as a flatline with few visible dips in the reading, mainly at 1630 cm-1 and 2220 cm-1 
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(Figure 5.5, Before Correction, black). Due to the similarities in the preparation of this material 

and NTC (Chapter 3), we performed an instrument baseline with NTC in an effort to highlight 

the difference between our thiol-containing adsorbent and NTC, namely the presence of sulfur 

(Figure 5.5, After Correction, red). After performing this baseline correction the appearance of 

broad, better defined absorption peaks were detected, with the main signals centered around 

1385 cm-1, 1632 cm-1 and 1693 cm-1. Interestingly, there were also places where our material 

seems to be showing signs of transmittance in place of absorption, namely at 1059 cm-1, 2158 

cm-1, 2337 cm-1 and 2365 cm-1, with minor transmittance signals at 2850 cm-1 and 2919 cm-1. 

Sulfur C-S stretching signals are often reported in the ranges of 710 – 570 cm-1, C=S stretching 

from 1030 – 1275 cm-1, S-S stretching from 700 – 550 cm-1, S=O from 1225 – 980 cm-1, S-N 

stretching near 700 cm-1, and S-H as a weak signal in the range of 2550 – 2620 cm-1. Our 

material, unfortunately, doesn’t show a match between any of our signals and the ranges 

previously reported for common sulfur compounds, either before or after baseline correction 

with NTC. The more prominent signals found at 1632 cm-1 and 1693 cm-1 could be attributed to 

C=C stretching from alkenes formed during carbonization, as alkenes tend to show signals 

between 1600 cm-1 and 1700 cm-1. 
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Figure 5.5: Infrared Spectrum of thiol-containing adsorbent before (black) and after (red) 

baseline correction. 

 

5.3.4 Adsorption Studies 

 

 The adsorption capabilities of our thiol-containing adsorbent against barium and 

arsenic(III) were explored and can be seen in Figure 5.6 below. Reaction conditions can be seen 

under section 5.2.3, with a summary of the adsorption capacities for this material against under 

varying initial contaminant concentrations outlined in Table 5.2.  

Adsorption against barium at initial concentrations of 0.1 and 1 ppm were satisfactory, 

with our material achieving an adsorption capacity of 0.032 and 0.441 mg/g, respectively. 

Excitingly, at a barium concentration of 10 ppm our material achieved an adsorption capacity of 

8.65 mg/g, indicating a potential use of our thiol-containing adsorbent for larger scale 

decontamination of barium. As mentioned previously, toxicity levels for barium are set to 0.5 

mg/L for soluble barium compounds.210 However, many wastewater products can be riddled with 

heavy metal contamination, such as fracking water which contains alarmingly high 
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concentrations of barium and strontium.232,233 Our material demonstrates promising results as a 

possible remedy for the removal of barium for these contaminated fracking wastewaters. 

 

 

Figure 5.6: Adsorption capacity against barium and arsenic (III). 

  

Adsorption for arsenic(III) at concentrations of 0.1 and 1 ppm were similar to those 

against barium, with adsorption capacities of 0.086 and 0.411 mg/g, respectively. Unlike barium, 

adsorption capacity at initial concentration of 10 ppm achieved an adsorption capacity of 2.66 

mg/g, less than three times what was achieved against barium. As previously mentioned, the 

world health organization has set arsenic safe levels to 10 ppb, considerably lower than the 

adsorption capacity of our material against arsenic(III), making our material a viable option for 

the removal of arsenic(III) from contaminated water. Interestingly, this thiol-containing 

adsorbent achieved an adsorption capacity above 8 mg/g for barium(II), while the iron oxide-

containing adsorbent achieved an adsorption capacity above 7.8 mg/g against arsenic(III). In the 
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future, perhaps a carefully designed adsorbent featuring both thiols and iron oxide nanoparticles 

could provide an adsorbent which could function to remove both contaminants from water 

simultaneously, while maintaining a porous carbon structure to achieve higher surface area and 

thus higher adsorption capacities. 

 

Table 5.2: Summary of adsorption capacity study against barium and arsenic (III). 

 

Ci (ppm) 0.1 1 10 

 Qe (mg/g) St. Dev. Qe (mg/g) St. Dev. Qe (mg/g) St. Dev. 

Barium 0.032203 0.042443 0.441258 0.294896 8.656172 0.429686 

Arsenic(III) 0.086194 0.001355 0.411294 0.009467 2.667108 0.176021 

 

 

5.4 CONCLUSION AND FUTURE WORK 

 

 In conclusion, we have created a carbon adsorbent which has been functionalized with 

sulfur for the adsorption of metals in contaminated water. While zinc was still present after 

carbonization at 1000 oC over a period of two hours, it was successfully removed after overnight 

exposure to 4N HCl while maintaining sulfur content of the material, as shown by SEM-EDS. 

Infrared spectroscopy and X-ray diffraction proved inconclusive, with IR showing the presence of 

alkene C=C and XRD showing the presence of disordered carbon layers of probable graphenic 

nature, but neither could prove the presence or state of sulfur in our adsorbent. Preliminary 

adsorption studies against barium and arsenic (III) show promise, with adsorption capacities at 

8.65 and 2.66 mg/g, respectively.  

 In the future, further analysis and more rigorous adsorption tests need to be conducted on 

this material in order to fully understand its potential for water remediation. Further FTIR 

experiments on a more potent machine could help elucidate the state of sulfur on the material. 

More to the point, XPS analysis would be a more conclusive instrument to reveal both the presence 
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and the state of sulfur in this compound. Surface area analysis is also needed in order to find the 

surface area, with BJH analysis required to analyze the average pore size. Adsorption capacity 

studies should also be done not only in RO water, but in tap water to more closely resemble 

adsorption in real world applications. Adsorption  capacities towards other heavy  metals, such as 

mercury and arsenic(V), should also be explored. Adsorption kinetics and the effect of pH also 

need to be studied; this can help elucidate the speed at which our adsorbent can trap contaminants, 

which adsorption isotherm best describes this adsorption, and under what conditions adsorption 

for these contaminants is optimal.  
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