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Abstract: 
 

Low-dimensional magnetic materials show novel properties that is not seen in bulk magnets. The weak 

interactions such as spin-orbit interactions, electron correlation, van der Waals interaction in case magnetic 

bi-layers, play an important role in determining the properties of the system.  Using density functional 

theory, we computationally investigated two categories of magnetic material- 1: Single Molecular Magnets 

(SMM) 2: Van der Waals layered Cr-Halide magnets. We used different classes of density functionals to 

examine the spin ordering and magnetic anisotropy barriers in several single molecule magnets - Mn12, Co4, 

Ni4, V15.  We find that the magnetic anisotropy barrier significantly depends on the choice of the functional 

and also on the structure. On our second part of the project we perform calculations on bi-layered systems 

CrBr3and CrI3. To treat the correlated d-orbitals of the Cr3+we perform GGA+U correction in order to 

capture correct electronic properties of the system. Also, our theoretical calculation suggests that that van-

der-Waals (vdW) functionals which is non-local exchange correlation function of vdW-DF represent the 

vdw interaction between the stack of layers and the generalized gradient approximation (GGA-PBE) are 

inadequate for the description of vdW interactions. We also report comparative study of the MAE, and 

magnetic exchange interaction (J) with respect to pressure up to 1GPa. 
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Chapter 1: Introduction 
 

Scaling from the bulk dimensions to the smaller units, in which isolated molecules and collection 

of molecules can exhibit magnetic properties, often referred to the term Molecular Magnetism [1]. 

At this moment there is tremendous interest in the idea that molecules can store singular bits of 

data and this could be utilized in ultra-high-density data storage or quantum computing. 

Historically, these systems have operated at very cold temperature and is not useful in a sort of 

industrial applications. As we gather an ever-increasing number of data that needs to be stored - 

particularly in the immense banks of Internet search engines - enormous amounts of energy are 

being used to power the storage facilities and, yet further, to keep them cool. It has been found that 

Single molecular magnets (SMM) have potential applications in high density digital storage device 

and an entire arrangement of data stored in sub-atomic bits would assist us with retreating from a 

potential crisis - however an impediment to this is the intensely low temperature that these 

molecules need to be kept at: 30-40 kelvin. But at the School of Chemistry at the University of 

Manchester, the research group, led by Dr. David Mills and Dr. Nicholas Chilton have figured out 

a way to store such molecules at just 60 kelvin (around the boiling point of liquid nitrogen)[2]. It 

shows that magnetic hysteresis, a memory effect that is a prerequisite of any data storage, is 

conceivable in individual molecules at 60 K. This is close to the temperature of liquid nitrogen 

(77K). The outcome implies that data storage with single molecules could become a reality in the 

light of fact that the data servers could be cooled using relatively cheap liquid nitrogen at 77K 

instead of far more expensive liquid helium (4.15 K). This is substantially more reasonable and 

could signify a leap towards a progressive technology. In this study, we focus on concentrating 

about SMM which are often called atomic nano magnets.  

 

 

 

 

 



2 

1.1: A Brief about SMM 
 

Single-molecule magnets (SMM) are compounds consisting of correlated metal ion and organic 

ligands that exhibit magnetic stability below a certain ‘blocking’ temperature. In contrast to 

traditional magnetic materials, SMM are organic or inorganic/organic hybrid materials, comprised 

of metal containing spin units. This temperature is mainly determined by the energy required to 

switch between two opposite orientations of the molecule’s magnetic moment. A key factor is the 

metal ion’s magnetic anisotropy which is the extent to which the ion’s response to a magnetic field 

depends on the direction of the field. [1]. In 1967 Wickman et al. [3] reported the first molecule-

base magnet, [Fe(dtc)2Cl] (monochlorobis(diethyl-dithio-carbamato) iron(III), which has a S=3/2 

ground state and the critical temperature is 2.46 K. After that, there is a 10-year span without any 

further activity. In 1987 Miller, Epstein, and their co-workers [4] synthesized another molecule 

that ferromagnetically orders at Tc= 4.8 K. After this discovery, some more molecule-based 

magnets have been reported, including some that order at room temperature [5]. The above 

molecule-based magnets results from the intermolecular interaction and have large regions, called 

domains, that have their spins correlated due to intermolecular magnetic exchange interactions. 

Single molecule magnets have been extensively studies in recent years because of both scientific 

and practical reasons [6][1]. For these magnetic species, the size of them becomes such small that 

each crystallite behaves as a single domain. Recently, the first single molecular magnet is 

synthesized by Lis et al . It contains 12 manganese atoms; the four-minority spin Mn (IV) atoms 

form a cube at the center of the molecule and eight majority spin Mn (III) atoms form a crown 

around the inner cube. And the inner four Mn (IV) ions are ferromagnetically coupled to each other 

and the eight outer crown Mn (III) ions are also ferromagnetically coupled. But these two types of 

ions are antiparallel with each other and this leads this molecule possessing total spin S=10 ground 

state [8×2−4×3/2=10] and magnetic moment of 20 µ B. This molecule has a very low critical 

temperature below 3 K but has a very high energy barrier around 60∼62K [7]. In spite of this, a 

lot of experiments suggest that the spin system is somehow able to overcome this barrier at low 

temperatures [1] . Below 3 K, steps are observed in the hysteresis loop of powder sample [8] and 

single crystals [9] .From the crystalline field or coordinator theory, the orbital contribution to the 

magnetic moment is partially quenched by the symmetry and the anisotropy is commonly 

expressed with an effective spin Hamiltonian: 
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𝐻 = 𝐷𝑆𝑧
2 + 𝐸(𝑆𝑧

2 − 𝑆𝑧
2) + 𝑔𝜇𝐵𝑆 ⋅ 𝐻 

The first term is the axial anisotropy corresponding to the energy barrier between states, say, “spin 

up” and “spin down”, second term is the transverse second-order magnetic anisotropy and the last 

term is the Zeeman interaction. For a molecule with uniaxial symmetry, E=0. The anisotropy 

constant D is known to be negative so that the Sz= ±10 levels lie lowest in energy, while the Sz=0 

level lies highest. As there is no external field, the microstates with the same absolute value 

(|Sz|=±10) have the same energy, the pairs with the same energy level can tunnel each other and a 

short cut of the barrier occurs to accelerate the magnetic relaxation. This quantum tunneling 

happens when two microstates (spin up and spin down) with different spin number have the same 

energy. For example, a spin up microstate will directly flip into the spin down state without 

climbing the anisotropy barrier. This quantum property of superposition of these two states is used 

in the idea of quantum computing. When external field is applied, the energy coincident between 

two states will vanish and the quantum tunneling effect is suppressed. But at some field strength, 

the energy coincident happens again. So, it is very important to investigate the anisotropy energy 

of the molecules, which comes from the spin-orbital coupling. A stable single molecular magnet 

must have a high anisotropy energy, which prevent different microstates to flip through thermally 

activated and it must have a large spin for the ground state. The three necessities for a particle to 

be a SMM are: (1) a generally large spin S for the ground state; (2) an obvious negative magneto-

anisotropy, for example a prevailing zero-field splitting (zfs) term, D2Sz (D < 0), in the spin 

Hamiltonian; and (3) not very large of value for the tunnel splitting of the ground state. The large 

spin and negative magneto-anisotropy decide the magnitude of the thermodynamic barrier for 

classical thermal activation, leading to reversal of the direction of magnetization for a molecule. It 

is imperative to stress that, regardless of whether an specific complex have a large barrier for 

magnetization reversal, it may not function as a SMM if the complex has a quick pace of quantum 

tunneling of the direction of its magnetization. To make future applications more feasible: Raising 

of the anisotropy energy is an absolute necessity. 
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1.2: Spin and the idea of making a quantum Bit 
 

Although our study does not focus on implementation of SMM in quantum computing but it is 

important to computationally search for perfect candidate material suitable in the area of quantum 

computing and a thorough study of the magnetic properties of those material can certainly enhance 

the steps towards the future of quantum computing. 

To find the prime factors of a 2048-bit number it would take a classical computer millions of years. 

A quantum computer can do it in minutes and that is because quantum computers is built on qubits, 

these devices which take advantage of quantum superposition to reduce the number of steps 

required to complete the computation. But how is a qubit made in practice and how do you read 

and write information. Researchers of Fundamental Quantum Tech Lab use outermost electron in 

the phosphorous atom as a qubit. This single P atom is embedded in a single crystal right next to 

tiny transistor [10]. Now the electron has a magnetic dipole called its spin and it has two 

dimensions, up or down, which are like the classical one and zero.  

 

Fig. 1. 1 Up Down spin as classical 1 and 0 

To differentiate the energy state when the spin is up and spin down, strong magnetic field needs 

to be applied. To do that Researchers of Fundamental Quantum Tech Lab used super conducting 

magnets are used which is a large solenoid- a coil of super conducting wire that sits inside of a 

water vessel that is full of helium vessel. So now the electrons will line up with its spin pointing 

down that is its lowest energy state and it would take some energy to put it into the spin up state 

which is not much energy. But if it were in a room temperature the electron would have so much 

thermal energy that it would be bouncing around from spin up and spin down. To avoid such 

activities of spin, the temperature is cooled down to few hundreds of degree above absolute zero 
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to make sure there is not enough thermal energy in the surroundings to flip it the other way and 

the spin remains in a single state. So, it is very important to search for molecules which have a 

high anisotropy barrier. Now if we are to write information onto the qubit we can put the electron 

into the spin up state by hitting it with a pulse of microwaves which is of very specific frequency 

and that frequency depends on the magnetic field that the electron is sitting in. Now the electron 

acts as a radio which can only tune in to one station and when that station is broadcasted the 

electron gets excited and turns to the spin up state.  

 

 

Fig. 1. 2 Excited Spin flipping when magnetic field is applied 

 

1.3: SMM in the areas of Quantum Computing 
 

Energy levels and magnetic quantum states are well defined at the molecular level for molecular 

magnets. Due to the fact that their basic units contain identical clusters of transition metals, 

Molecular magnets have actually shown, since the beginning of the 90s, fascinating quantum 

phenomena, such as the tunnelling of magnetization through an anisotropy barrier and quantum 

interference (Berry’s phase). 

It is reported that single spin of SMMS can be treated as a query, so the SMMS which forms a 

crystal with large spin moments can act as large independent units [6]. Hence several queries can 

be done within the single crystal. Different ways of Super position of different spin eigen states is 

necessary. They showed that this query can be implemented in terms of a unitary transformation 

applied to the single spin of a molecular magnet. Such molecular magnets, forming identical and 
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largely independent units, are embedded in a single crystal so that the ensemble nature of such a 

crystal provides a natural amplification of the magnetic moment of a single spin. We can use such 

spin systems of given s to great advantage in building dense and highly efficient memory devices. 

The well-known Mn12 and Fe8 complexes have a total spin S = 10. Below a few kelvin, thermal 

fluctuations cannot overcome the anisotropy barrier on the scale of hours, and quantum physics 

sets in. So, the magnetization varies by the transition of discrete energy levels generated from zero 

field splitting. 

1.4: Magnetism and transition metals 

 
As previously discussed, traditional magnetic materials are two- and three-dimensional arrays of 

inorganic atoms, whose magnetic cores are transition metals, lanthanide metal containing spin 

units. Most of the transition elements show paramagnetic behavior. The unpaired electrons in (n-

1) d orbitals are responsible for the magnetic properties. From Pauli Exclusion Principle we know- 

Two electron with same energy level must have opposite spins, so their magnetic moments cancel 

each other. In the case of paired electrons, the electrons in each pair will have opposite spin. The 

magnetic field created by the electrons of same pair is equal and opposite in nature. Hence the 

magnetic field which is created by one electron is canceled by the other. So, the net effect of the 

magnetic moment is zero. Whereas an unpaired electron is regarded as a micro magnet which has 

a definite magnetic moment. So, some transition elements, lenthanides, and actinides have a net 

magnetic moment since their energy levels have unpaired electrons. 

 

Fig. 1. 3 D orbital energy level following Hund’s rule 
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The reason we focus on transition metal systems with d unpaired electron because P orbitals with 

unpaired electrons are mostly alkali, which is reactive and those even at their vapor forms are 

dimers. But liquid oxygen shows paramagnetic behavior because it is attracted by magnetic field 

and the oxygen has two unpaired electrons. Electrons for their characteristic of revolving around 

the orbitals and, also spinning in its own axis creates a magnetic field. Unpaired electrons spin 

with same direction with respect to each other, increases the magnetic field effect.  

 

1.5: Magnetic Anisotropy Energy and Spin Orbit Coupling (SOC) 
 

Magnetic Anisotropy arises from unpaired electrons in a material, molecule or cluster, which are 

not distributed equivalently in all directions in space. This phenomenon plays a major role in the 

creation of an energy barrier which separates different microstates with different spin magnetic 

moment. At a molecular level, there are two sources of magnetic anisotropy: 1) dipolar interactions 

[11] 2) single-ion anisotropy [12]. Now, we will talk about these two sources independently.  Given 

two electrons in two orbitals with two distinctive energy levels, four ground-state combinations 

are possible. The combination with both electrons occupation of the lower energy is called singlet 

state (S=0), and there is only one microstate for S=0 and the other three combination structures a 

triplet state (S=1, ms=0, ±1). When there is no external field, all three triplet-states are degenerate. 

Assumed we compress this molecule towards certain direction, for example, z-axis, the electrons 

experience a more prominent repulsion when they are in XZ (state Ty) and YZ (state Yx) plane 

than when they are in XY (state Tz) plane. In this way, the degeneracy of triplet states is lifted. 

The electrons in plane XY will have a low energy, but state Ty and Tx have the same energy; the 

splitting energy is given by parameter D and has a unit of energy. Moreover, in the event that we 

extend this molecule along x-axis,the result is that the degeneracy of Tx and Ty is expelled; the 

electrons in XZ plane endure less repulsion than in YZ plane. This energy difference between 

states Tx and Ty is characterized by parameter E. The below Fig.4. shows the energy splitting due 

to dipolar interaction.[13] 
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Fig. 1. 4 Schematic picture of energy splitting due to dipolar interaction 

 

Another source of magnetic anisotropy is single-ion anisotropy. In transition metal systems, both 

dipolar interactions and single-ion anisotropy contribute to the total anisotropy. However, the 

anisotropy caused by dipolar interactions is quite weak, comparing to single-ion anisotropy. The 

free ion has an orbital moment if there are unpaired electrons in inner shell for this ion. But this 

orbital degeneracy can be partially quenched by the crystal field or the ligand field environment. 

However, there still remains some orbital moment, which comes from the orbital degeneracy. 

Single-ion anisotropy results mainly from spin-orbital coupling on the ion. The concept of orbital 

degeneracy is that there are two or more orbitals that can be interconverted by rotation about a 

suitable axis. For a free transition metal ion, d orbitals form five-fold degeneracy. The dxz and dyz 

orbitals can be interconverted by rotation 90o about z-axis, so that if an electron were initially in 

the dxz orbital it could circulate about the z-axis by jumping between them alternately, which can 

be easily seen in below fig. 5. This circulation is equivalent to a current flowing and so it produces 

an orbital moment. Therefore, there would exist an extra spin-orbital coupling term. 

 

Fig. 1. 5 dxz and dyz orbitals can be interconverted by rotation 90o about z-axis, as if an electron is 

hopping between these two orbitals 
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Chapter 2: Theory 

 

2.1: Density Functional Theory 
 

DFT is one of the most popular and successful quantum mechanical approaches to matter. In its 

most basic form, it is simply solving Schrödinger’s Equation. All information about a given system 

is contained in the system’s wave function, Ψ. The nuclear degrees of freedom (e.g., the crystal 

lattice in a solid) appear only in the form of a potential v(r) acting on the electrons, so that the 

wave function depends only on the electronic coordinates. This wave function is calculated from 

Schrödinger’s equation, which for a single electron moving in a potential v(r) is 

[−
ħ2𝛻2

2𝑚
+ 𝜈(𝒓)] 𝜓(𝒓) = 𝜖 ∗ 𝜓(𝒓) 

If there is more than one electron (i.e., one has a many-body problem) Schrödinger’s 

equation becomes 

[∑ (−
ħ2𝛻𝑖

2

2𝑚
+ 𝜈(𝒓𝒊))

𝑁

𝑖

+ ∑ 𝑈(𝒓𝒊, 𝒓𝒋)

𝑖<𝑗

] 𝜓(𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵) = 𝐸𝜓(𝒓𝟏, 𝒓𝟐 … , 𝒓𝑵) 

where N is the number of electrons and 𝑈(𝒓𝒊, 𝒓𝒋) is the electron-electron interaction.  

In a multi-electron system, the number of electrons per unit volume in a given state is the electron 

density for that state. Its formula in terms of Ψ is  

𝜌(𝒓) = 𝑁∫ |Ψ(𝒓1, 𝒓2 ⋯ 𝑟𝑁)2𝑑𝒓1 ⋯ 𝑑𝒓𝑁 

with a condition 

∫ 𝜌(𝒓)𝑑𝒓 = 𝑁 

Hohenberg and Kohn proved that if the ground state is non-degenerate, its total energy could be 

calculated by the electron density ρ (r). 

𝐸 = 𝐸[𝜌(𝒓)] = ∫ 𝑑𝒓𝜌(𝒓)𝑉𝑒𝑥𝑡(𝒓) + 𝐹[𝜌(𝒓)] 

The functional F[ρ(r)] consists of three parts: 
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𝐹[𝜌(𝒓)] = 𝑇[𝜌(𝒓)] + 𝐸𝐻[𝜌(𝒓)] + 𝐸𝑥𝑐[𝜌(𝒓)]

[𝜌(𝒓)] =
1

2
∫ 𝑑𝒓𝜌(𝒓)𝑉𝐻[𝜌(𝒓)] =

1

2
∫ 𝑑𝒓𝜌(𝒓)∫ 𝑑𝒓′

𝜌(𝒓′)

|𝒓 − 𝒓′|

 

𝑇[𝜌(𝒓)] is the kinetic energy and 𝐸𝐻 is the Hartree energy coming from the electrostatic interaction 

of the electron. The last term is the exchange correlation energy, which contains all the 

contributions which is not taken into account by the first two terms, such as spin-orbital coupling. 

In 1965, Kohn and Sham [P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 

136, B864, 1964] improved it into a practical method by representing the density 𝜌(𝒓) in terms of 

normalized single-particle orbitals 𝜑𝑖(𝒓) with occupation number ni: 

𝜌(𝒓) = ∑  

𝑜𝑐𝑐

𝑖

𝑛𝑖|𝜑𝑖(𝒓)|2
 

With condition: 

∑  

oc𝑐

𝑖

𝑛𝑖 = 𝑁 

So now the total energy in terms of 𝜑𝑖(𝒓) 

𝐸 = ∑  

𝑜𝑐𝑐

𝑖

𝑛𝑖∫ 𝑑𝒓𝜑𝑖
∗(𝒓)[−

∇𝑖
2

2
+ 𝑉𝑒𝑥𝑡(𝒓) +

1

2
𝑉𝐻[𝜌(𝒓)]]𝜑𝑖(𝒓) + 𝐸𝑥𝑐[𝜌(𝒓)] 

This equation leads to a eigenvalue problem called the Kohn-Sham equation: 

                     [−
∇𝑖

2

2
+ 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻[𝜌(𝒓)] + 𝑉𝑥𝑐[𝜌(𝒓)]]𝜑𝑖(𝒓) = 𝜀𝑖𝜑𝑖(𝒓)  

𝑉𝑥𝑐[𝜌(𝒓)] =
𝛿𝐸𝑥𝑐[𝜌(𝒓)]

𝛿𝜌(𝒓)
 

The operator used in the equation depends on the density ρ(r) and thus related to single-electron 

orbital ϕi(r), which we wish to calculate, so Kohn-Sham equation have to be solved by SCF (Self 

Consistent Field). 
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2.2: Exchange Correlation Functional: 
 

The Exc term can be represented as exchange and correlation parts and can be written in terms of 

the energy per particle, εx and εc 

𝐸𝑥𝑐[𝜌] = 𝐸𝑥[𝜌] + 𝐸𝑐[𝜌]

= ∫ 𝜌(𝒓
 
)𝜖𝑥[𝜌(𝒓

 
)]𝑑𝑟

 
+ ∫ 𝜌(𝒓

 
)𝜖𝑐[𝜌(𝒓

 
)]𝑑𝒓

  

Assuming that the exchange-correlation energy density at every position in space for the molecule 

is the same as it would be for the uniform electron gas having the same density as found at that 

position also known as Local Density Approximation (LDA) functional: 

𝐸𝑥
𝐿𝐷𝐴[𝜌] = 𝐶∫ 𝜌

4
3(𝒓)𝑑𝒓 

There are several expressions for the correlation energy which have been obtained by fitting to the 

results of accurate QMC calculations of the uniform electron gas. An improvement in the accuracy 

provided by the LDA can be obtained by Generalized Gradient Approximation (GGA) functionals. 

These depend not just on the value of the density at a point (as in the LDA case) but also on its 

gradient. So we have 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝝆] = ∫ 𝜌(𝒓)𝜖𝑥𝑐(𝜌(𝒓), |∇𝜌(𝒓)|)𝑑𝒓 

Most GGA (General Gradient Approximation) functionals are constructed in the form of a 

correction term which is added to the LDA functional 

𝜖𝑥
𝑐

𝐺𝐺𝐴[𝜌] = 𝜖𝑥
𝑐

𝐿𝐷𝐴[𝜌] + Δ𝜖𝑥
𝑐

[
|∇𝜌(𝒓)|

𝜌
4
3(𝒓)

] 

 

The Jacob’s Ladder [14] of DFT represented the hierarchy of these approximations with a common 

expression for the ingredients. 

𝐸𝑥𝑐[𝜌] = ∫ 𝑑3𝑟 𝜌(𝒓)𝜖𝑥𝑐([𝜌], 𝒓) 

where 𝜖𝑥𝑐([𝜌], 𝒓 ) is an energy per electron at point r. The Jacobs ladder of DFT for categorizing 

the approximations based on the ingredients that the approximations depend on is given below. 
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Table 1: Functional Taxonomy on the basis of different parameters 

DFT Exc Approximations Ingredients needed for approximation 

LSDA 𝜌 

GGA’s 𝜌, ∇𝜌 

Meta-GGA’s 𝜌, ∇𝜌, ∇2𝜌, 𝜏 

Hybrid Functionals 𝜌, ∇𝜌, ∇2𝜌, 𝜏, 𝜓𝑜𝑐𝑐 

RPA 𝜌, ∇𝜌, ∇2𝜌, 𝜏, 𝜓𝑜𝑐𝑐, 𝜓𝑢𝑛𝑜𝑐𝑐 

 

The term τ = τ↑+τ↓ is the Kohn-Sham kinetic energy density and it is defined as: 

𝜏𝜎 =
1

2
∑ |

𝑜𝑐𝑐

𝑖=1

∇𝜓𝑖𝜎(𝒓)|2 

Where, σ is the spin index and the summation i runs over occupied orbitals. The inclusion of τ is 

for the following reasons. First, it arises naturally in the Taylor expansion of the exact spherically 

averaged exchange hole near the reference point [15] .Second, the use of τ provides a simple and 

straightforward way to make a correlation functional exactly one-electron self-interaction free 

[16]. The inclusion of the kinetic energy density also enables meta-GGAs to have the flexibility to 

satisfy more exact constraints and thus circumvent the “structure or energy” dilemma experienced 

by GGAs. The recently developed nonempirical SCAN meta-GGA was constructed to take 

advantage of the previous discoveries. SCAN is the first meta-GGA that is fully constrained, 

obeying all 17 known exact constraints that a semilocal functional can. In SCAN, the kinetic 

energy density τ is used to construct an iso-orbital indicator α which is represented as  

𝛼 =
𝜏 − 𝜏𝑊

𝜏𝑢𝑛𝑖𝑓
> 0 

Where, 𝜏𝑊 = |∇
→

𝜌|2/8𝑝 is the Weizsa¨cker kinetic energy density and the denominator term of the 

iso-orbital indicator 𝜏𝑢𝑛𝑖𝑓 = (3/10)(3𝜋2)2/3𝜌5/3 is the kinetic energy density in the uniform 

density limit. 
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Furness and Sun found that in SCAN, the 𝛼 used with respect to the electron density display 

divergent behavior at rapidly decreasing electron densities. To make SCAN computationally more 

stable SCAN functional is modified regularized SCAN (rSCAN) functional has been designed. In 

the regularization the iso-orbital indicator was modified slightly as  

𝛼′ =
𝛼3

𝛼2 + 𝛼𝑟
 

Where, 𝛼𝑟= 1 × 10-3, a small constant. The rSCAN functional replaces the problematic region 0 < 

α < 2.5 of the switching function f(α) used in 

the SCAN functional by a polynomial of degree 7 which removes the oscillatory behavior seen in 

the exchange correlation potential (Vxc) plots. 

 

2.3: Molecular Magnet Mechanisms: 

2.3.1: Heisenberg Model: 
 

The Heisenberg model is used to describe the magnetic exchange interaction between the magnetic 

sites. Considering that only one unpaired electron on each atom contributes the magnetic properties 

to the system, the Hamiltonian has the following form:  

𝐻
^

= ∑  

𝑁

𝑖

[−
∇𝑖

2

2
+ 𝑉(𝑖)] + ∑  

𝑁

𝑖>𝑗

1

𝒓𝑖𝑗
 

where, 𝑉(𝑖) is the electrostatic potential from the nuclei to this electron. This  

Hamiltonian can be decomposed into single-electron Hamiltonian and  

electron-electron Hamiltonian: 

𝐻
^

0 = ∑  

𝑁

𝑖=1

[−
∇𝑖

2

2
+ 𝑉(𝑖)] = ∑  

𝑁

𝑖=1

𝐻
^

𝑖

𝐻
^

𝐼 = ∑  

𝑁

𝑖>𝑗

1

𝒓𝑖𝑗

 



14 

The zero-order approximate wave function can be calculated without the double-electron 

Hamiltonian: 

∑  

𝑁

𝐻𝑖Ψ = 𝐸0Ψ 

The following wave function, product of single-electron wave functions, is one solution 

satisfying the above equation 

Ψ𝑝 = 𝜑𝑎(𝒓𝟏, 𝜎1)𝜑𝑏(𝒓𝟐, 𝜎2)|𝜑𝑐
(𝑟3, 𝜎3) ⋯ 𝜑𝑁(𝒓𝑵, 𝜎𝑁) 

ϕn(ri, σi) is the single-electron spin orbitals, which can be obtained with single-electron 

Schrödinger equation: 

𝐻
^

𝑖𝜑𝑚(𝒓𝒊, 𝜎𝑖) = 𝐸𝑚𝜑𝑚(𝒓𝒊, 𝜎𝑖) 

𝜑𝑚(𝒓, 𝜎𝑖) = 𝜇(𝒓𝒊)𝜎(𝜎 = 𝛼 or 𝛽) 

For a system with several unpaired electrons, we can construct a wave function with linear 

combination of several Slater Determinants,  

Ψ = 𝑎1Ψ1 + 𝑎2Ψ2 + ⋯ + 𝑎𝑁Ψ 

Here Ψ1, Ψ2, Ψ3, ⋅⋅⋅, are the slater determinants and a1, a2, a3, ⋅⋅⋅ are the combination coefficients. 

For a slater determinant, we also can represent with transpositional operator 𝑃𝑣: 

Ψ𝑥 =
1

√𝑁!
∑(−1)𝑣𝑃𝑣Ψ𝑝

𝑋 

Here, ΨX is a slater determinant, and Ψp
X is the product of single-electron wave functions. The 

total energy for a system with wave function as (3.7) will be calculated by: 

𝐸 = ∫ Ψ∗𝐻
^

Ψ𝑑𝜏 = ∑𝑎𝑥
∗ 𝑎𝑦∫ Ψ𝑥

∗𝐻
^

Ψ𝑦𝑑𝜏 

Here, X and Y are the indices to the different arrangement single-electron wave functions from a 

slater determinant. As a result, we get: 

∫ Ψ𝑋
∗𝐻

^

Ψ𝑌𝑑𝜏 =
1

𝑁!
∑  

𝜈,𝜔

∫ (−1)𝜔(𝑃𝜔Ψ𝑝
𝑋)∗𝐻

^

× (−1)𝜈(𝑃𝑣Ψ𝑝
𝑌)𝑑𝜏 
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where ν is the number of exchanging the electrons to get this wave function. The difference 

between Ψ𝑝
𝑋 and Ψ𝑝

𝑌 is the spin part of wave function but the spatial part of wave functions is the 

same. For each Ψ𝑝
𝑋 and Ψ𝑝

𝑌, we can separate it into spatial wave function and spin wave function: 

Ψ𝑝
𝑋 = 𝑈𝑃𝜒𝑝

𝑋 and Ψ𝑝
𝑌 = 𝑈𝑝𝜒𝑝

𝑌 

So the total energy will have the following form: 

𝐸 = ∑  

𝑋,𝑌

𝑎𝑋
∗ 𝑎𝑌[𝐸0 + ∑  

𝜎

𝜒𝑝
𝑋∗

𝐻
^

𝑒𝑥𝜒𝑝
𝑌] 

Where, 

𝐻
^

𝑒𝑥 = −
1

2
∑  

𝑖>𝑗

𝐽𝑖𝑗(𝐼 + 4𝑆
→

𝑖 ⋅ 𝑆
→

𝑗)

𝐽𝑖𝑗 = ∫ 𝜇𝑖
∗(𝑖)𝜇𝑗

∗(𝑗)
1

𝑟𝑖𝑗
𝜇𝑗(𝑖)𝜇𝑖(𝑗)

𝐻𝐻𝑒𝑖𝑠𝑒𝑛𝑏𝑒𝑟𝑔𝑦 = − ∑  

𝑖,𝑗

2𝐽𝑖𝑗𝑆
→

𝑖 ⋅ 𝑆
→

𝑗

 
 

 

Here 𝐼 is an unit matrix, Jij is called exchange integral and µ(i) is the space part of single-electron 

wave function. This is the equivalent Hamiltonian for exchange energy in spin space. [13] 

 

2.3.2: Magnetic Anisotropy 
 

Dr. M. Pederson group in naval research laboratory has developed a simplified but exact method 

for incorporating spin-orbit coupling into density-functional calculations [17]. The method they 

introduced is independent of the type of basis set and is applicable to both isolated and periodic 

systems. Further, there are several computational advantages of this method, i.e. dealing with the 

standard spin-orbit coupling L⋅S term without spherical approximation and also, there is no need 

for the determination of the electric field observed by the moving electrons. The details of this 

method are presented in the following section.  

The classical explanation of spin-orbit coupling is that an electron moving with velocity v, in an 

external electric field E will sense a magnetic field H=v×E/c. And an electron has spin or intrinsic 
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magnetic moment, which results in the interaction energy. If we replace external electric field E 

and velocity v by the Coulomb potential Φ(r) and the momentum operator P in order to determine 

quantum mechanical operator within a Hartree approximation, the Hamiltonian of interaction 

energy will be as following term: 

𝑈(𝒓, 𝑷, 𝑺) = −
1

2𝑐2
𝑺 ⋅ 𝑷 × 𝛁𝚽(𝒓) 

Representing the coulomb potential to spherically symmetric term: 

𝑈(𝒓, 𝑳, 𝑺) =
1

2𝑐2
𝑺 ⋅ 𝑳

1

𝑟

𝑑Φ(𝒓)

𝑑𝒓
 

This equation supposes the coulomb potential is spherical and ignores the non-spherical 

corrections that may be very important for anisotropy energies. The spin-orbit coupling term will 

be represented as an additional term in Hamiltonian matrix with single-electron wave functions, 

which are expressed by: 

𝜓𝑖𝑠(𝑟) = ∑  

𝑗𝜎

𝐶𝑗𝜎
𝑖𝑠𝑓𝑗(𝒓)𝜒𝜎 

Where 𝑓𝑗(𝒓) is a spatial basis function, 𝜒𝜎 is a majority or minority spin spinor and 𝐶𝑗𝜎
𝑖𝑠  are 

determined by diagonalizing the Hamiltonian matrix. In this basis set, the generalized spin-orbit 

interaction is expressed in term of matrix elements: 

𝑈𝑗𝜎,𝑘𝜎′ = ⟨𝑓𝑗𝜒𝜎|𝑈(𝒓, 𝑷, 𝑺)|𝑓𝑘𝜒𝜎′⟩

= ∑  

𝑥

−
1

2𝑖𝑐2
⟨𝑓𝑗|[𝛁 × 𝛁𝚽(𝒓)]𝒙|𝑓𝑘⟩⟨𝜒𝜎|𝑆𝑥|𝜒𝜎′⟩

= ∑  

𝑥

1

𝑖
⟨𝑓𝑗|𝑉𝑥|𝑓𝑘⟩⟨𝜒𝜎|𝑆𝑥|𝜒𝜎′⟩

 

 

With the operator 𝑉𝑥 defined as: 

⟨𝑓𝑖|𝑉𝑥|𝑓𝑗⟩ = −
1

2𝑐2
⟨𝑓𝑖 |

𝑑

𝑑𝑦

𝑑Φ

𝑑𝑧
−

𝑑

𝑑𝑧

𝑑Φ

𝑑𝑦
| 𝑓𝑗⟩

=
1

2𝑐2
(⟨

𝑑𝑓𝑖

𝑑𝑧
|Φ|

𝑑𝑓𝑗

𝑑𝑦
) − ⟨

𝑑𝑓𝑖

𝑑𝑦
|Φ|

𝑑𝑓𝑗

𝑑𝑧
⟩)
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The matrix elements for Vy and Vz are obtained with the cyclical permutations of the coordinate 

labels (x→y→z→x). According to the above equation for the spin-orbit coupling matrix. the 

expression is ideal for basis sets constructed with Gaussian-type functions, Slater functions and 

plane wave. With the spin-orbit coupling as a perturbation term in Hamiltonian and also 

consideration of an external magnetic field B, the perturbed wave functions should satisfy: 

[𝐻 + (
𝑽

𝑖
+

1

𝑐
𝑩) ⋅ 𝑺] |𝜓𝑖𝜎

′ ⟩ = 𝜀𝑖𝜎|𝜓𝑖𝜎
′ ⟩ 

Here V is the spin-orbital coupling term, i is imaginary number. If we denote M=(V/i+B/c), then 

second order perturbation theory tells us that trace of the Hamiltonian matrix is perturbed by 

following expression: 

Δ = Δ1 + Δ2 

Δ1 = ∑  

𝑥𝜎

𝑆𝑥
𝜎𝜎 ∑  

𝑙

⟨𝜙𝑖𝜎|𝑀𝑥|𝜙𝑖𝜎⟩

Δ2 = ∑  

𝜎𝜎′

∑  

𝑥𝑦

𝑀𝑥𝑦
𝜎𝜎′

𝑆𝑥
𝜎𝜎′

𝑆𝑦
𝜎′𝜎

𝑀𝑥𝑦
𝜎𝜎′

= 𝑀𝑗𝑥
𝜎𝜎′∗

= ∑  

𝑖𝑗

⟨𝜙𝑖𝜎|𝑀𝑥|𝜙𝑗𝜎′⟩⟨𝜙𝑗𝜎′|𝑀𝑦|𝜙𝑖𝜎⟩

𝜀𝑖𝜎 − 𝜀𝑗𝜎′

𝑆𝑥
𝜎𝜎′

= ⟨𝜒𝜎|𝑆𝑥|𝜒𝜎′⟩

 

 

here, 𝜙𝑖𝜎 are occupied states and 𝜙𝑗𝜎 are unoccupied states. For uniaxial symmetry the first order 

energy shift equals to zero, and since the Cartesian off-diagonal M matrices vanish and 𝑀𝑥𝑥
𝜎𝜎′

=

 𝑀𝑦𝑦
𝜎𝜎′

, the second order contribution to the energy shift becomes: 

Δ2 = ∑  

𝜎𝜎′

∑  

𝑥𝑦

𝑀𝑥𝑥
𝜎𝜎′

𝑆𝑥
𝜎𝜎′

𝑆𝑦
𝜎′𝜎

𝑆𝑥
𝜎𝜎′

= ⟨𝜒𝜎|𝑆𝑥|𝜒𝜎′
⟩

 

If we assume the states (µ1, µ2) = (↑,↓) is parallel to the a specific axis, say, z axis, the most 

general set of spinors can be expressed by: 
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|𝜒1⟩ = 𝑒𝑖𝛾[cos 
𝜃

2
| ↑⟩ + 𝑒𝑖𝛽sin 

𝜃

2
| ↓⟩]

|𝜒2⟩ = 𝑒−𝑖𝛾[−𝑒−𝑖𝛽sin 
𝜃

2
| ↑⟩ + cos 

𝜃

2
| ↓⟩

 

where θ and β are variational parameters. After performing a bit of algebra, the total energy shift 

has the following form: 

Δ = 𝐴 +
𝐵

𝑐
⟨𝑆𝑧⟩ +

𝛾

2
⟨𝑆𝑧⟩2

𝐴 = (𝑀𝑥𝑥
11 + 𝑀𝑥𝑥

22 + 𝑀𝑧𝑧
12 + 𝑀𝑧𝑧

21 + 𝑀𝑥𝑥
12 + 𝑀𝑥𝑥

21)/4
 

𝛾 = (2/Δ𝑁2)(𝑀𝑧𝑧
11 + 𝑀𝑧𝑧

22 + 𝑀𝑥𝑥
12 + 𝑀𝑥𝑥

21 − 𝑀𝑥𝑥
11

−𝑀𝑥𝑥
22 − 𝑀𝑧𝑧

12 − 𝑀𝑧𝑧
21)

 

γ is the anisotropy tensor. Once the anisotropy tensor has been diagonalized, the total energy 

shift can be rewritten as: 

Δ =
1

3
(𝛾𝑥𝑥 + 𝛾𝑥𝑦 + 𝛾𝑥𝑧)𝑆(𝑆 + 1)

+
1

3
[𝛾𝑥𝑧 −

1

2
(𝛾𝑥𝑥 + 𝛾𝑥𝑦)][3𝑆𝑧

2 − 𝑆(𝑆 + 1)] +
1

2
(𝛾𝑥𝑥 − 𝛾𝑥𝑦)(𝑆𝑥

2 − 𝑆𝑦
2)

 

The anisotropy Hamiltonian splits the (2S+1) spin states and further ignoring the isotropic term 

S(S+1) and the constant term A it can be expressed as: 

𝐻 = 𝐷𝑆𝑧
2 + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) 

Here, the D and E, which are the anisotropic parameters, can be obtained from the diagonalized γ 

tensor. 

𝐷 = 𝛾𝑧𝑧 −
1

2
(𝛾𝑥𝑥 + 𝛾𝑦𝑦) and 𝐸 =

1

2
(𝛾𝑥𝑥 − 𝛾𝑦𝑦) 

For cubic symmetry D=E=0; For axial symmetry γxx=γyy and E=0 and if D>0 the anisotropy is of 

the easy-plane type but if D<0 it is of the easy-axis type. 
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Chapter 3: Results and Computational details 
 

3.1: Computational Details for MAE calculation 
 

In our calculation Naval Research Laboratory Molecular Orbital Library (NRLMOL) code [18] 

has been utilized in calculations on molecular magnets. Linear combination of molecular orbitals 

method with a basis of Gaussian-type orbitals is implemented in the code. This methodology is 

“full-potential” and no muffin-tin or atomic spheres geometry is imposed. It has been applied 

effectively to compute the electronic and magnetic properties of several molecular 

nanomagnets[19] [20]. The MAE can be calculated by incorporating the spin-orbit coupling. In 

many cases the agreement between experiment and the result from the first principles calculation 

are in well consistent. Thereafter, it is fair by all accounts to provide few details on this specific 

implementation. 

The molecular orbitals were expressed as linear combinations of Gaussian functions centered at 

the atomic sites. The multicenter integrals are numerically evaluated on a precisely generated 

variational integration mesh [21]. An effective parallelization makes all-electron calculations 

possible in an affordable period with more than hundred atoms, which is an essential for useful 

applications in the area of SMM. The issue of basis optimization in all methods employing 

localized and fixed basis functions, is solved in NRLMOL by tuning to the arrangements of self-

consistent isolated atoms [22]. The numerically computed Self-consistent potentials are least-

square fitted to the sum of bare spherical Gaussians or Gaussian-screened 1/r potentials, in order 

to simplify multicenter integrations. This information of the basis sets and the gaussian 

representation of the atomic potential is used to generate a numerical variational integration mesh  

that allows to precisely determine integrals required for calculation of secular matrices, total 

energies and derivatives according to: 𝐼 = ∫ 𝑑𝒓𝑄(𝒓) = ∑  𝑖 𝑄(𝒓𝑖)Ω 

where Ωi is the volume associated with point 𝒓𝑖. 𝑄(𝒓𝑖) is often the product of two basis functions 

with a potential. Errors resulting from numerical integration can easily be checked and controlled 

by adjusting a few parameters which control the mesh construction. It ought to be underlined that 

the Gaussian-screened potential are just used to advance the numerical quadrature schemes used 

for mesh generation. The forces acting on each atom are determined from the Hellmann-Feynman-
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Pulay theorem [23][24]. Once the self-consistency is achieved, conjugate-gradient method, or 

LBFGS method, is used to conduct geometry relaxations after obtaining all the forces acting on 

each atom. Once the geometry with equilibrium forces are achieved and the Kohn Sham 

wavefunction [25] is obtained, the magnetic anisotropy energies and other properties 

(polarizabilities, vibrational frequencies) of the system are computed. 

3.1.1: Results for SMM 
 

The simplest form of the anisotropy equation can be represented as axial and transverse anisotropy 

with their corresponding parameters D and E. 

𝐻 = 𝐷𝑆𝑧
2 + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) 

 

Table 2: Axial anisotropy, Spin (S) for different SMM at different functionals and comparison 

with the experimental values. 

System S Sexp D (K) Dexp 

   PBE SCAN RSCAN CAP PKZB  

Mn12O12(O2CH)16(H2O)4 10 10 -0.56 -0.40 -0.41 -0.58 -0.50 -0.56 

Fe4(OCH2)2(C4H9ON)6 5 5 -0.56 -0.27 -0.28 -0.68 -0.48 -0.57 

Co4(CH2C5H4N)4(CH3OH)4Cl4 6 6 -0.79 -1.41 -1.40 -0.92 -0.70 -0.7 - -

0.9 

K6[V15As6O42(H2O)] 0.5 0.5 -

0.007 

-

0.0004 

__ -

0.007 

-0.009 Small 

Cr[N(Si(CH3)3)2] 1.5 1.5 -2.49 __ __ __ __ -2.66 

Ni4(CH2C5H4N)4(CH3OH)4Cl4 4 4 -0.29 -0.11 -0.12 __ __ -0.6 – 

0.8 
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We present a few case studies of MAE at various functionals. As the SMMs are chosen based on 

high spin ground state, it is imperative to find the correct spin-ordering of the SMMs from the 

electronic structure calculations. All our listings suggest correct net spin state as of experimental 

esteems. For Mn12, Fe4, Co4, Ni4, due to their large anisotropy barriers these systems retain their 

moment orientation at reasonably high temperatures. The values of the SMM’s are negative which 

denotes the fact that large values of magnetization are favored, and we can speak of an “easy axis”. 

The z-component of the magnetic moment is dominant for all the SMMs recorded in the table. The 

calculated D-value with PBE functional of Mn12, Fe4, Co4, Cr-amide are in excellent agreement 

with the experimental ones. The only discrepancy is found in the system Ni4 where the D-value is 

almost half of the experimental value. 

Fig. 1. 6 MAE comparison of SMMs for different functionals denoting PBE to be the best 

functional in calculating MAE 

It is reported that the meta-GGAs attempt to improve upon the LDAs and GGAs by introducing 

dependence on the kinetic energy density,  

𝐸𝑥𝑐
𝑀𝐺𝐺𝐴[𝑛] = ∫ 𝑑𝑟𝜖𝑥𝑐(𝑛(𝑟), ∇𝑛(𝑟), 𝜏(𝑟)) 
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However, to see the performance of the meta-GGA on account of computing MAE we plot the 

outcomes for the corresponding functionals. Results show that the PBE functionals provides the 

best depiction of MAE. The SCAN functionals, which is implemented in generalized Kohn-Sham 

scheme, does not perform well in predicting MAE. From the plots the approximations of MAE 

aside from the PBE, show dispersed assessments from the experimental values and the deviance 

of the other functionals from the PBE functional is inconsistent. Though SCAN functional predicts 

structural and electronic structure accurately, it fails to determine accurate MAE of the SMMs. 

Also, to ease severe numerical instabilities in generating the pseudopotentials in case for SCAN, 

rSCAN [26] functional was introduced as a slight modification that replaces the unstable function 

in SCAN with a numerically stable polynomial function. This modification does not impact any 

noticeable changes in the MAE. As the adjustment does not affect the HOMO-LUMO gap of a 

specific system, hence the MAE of SCAN and rSCAN barely shows any significant change. One 

of the pertinent points for the aberration of the D values for SCAN functionals from the PBE is the 

HOMO-LUMO (H-L) gap of the system. Considering the system Mn12 the H-L gap for PBE is 

about 0.46 eV and for SCAN the gap is about 0.90 eV which is double the gap of PBE. This 

discrepancy in the gap is the reason for such deviated estimate of MAE. Although, it appears that 

a large spin and a small gap will help in enhancing the barrier of the system, we find that it is a 

subtle transaction between a few different impacts that determines the barrier. For all SMMs we 

studied here, all the mentioned functionals found the correct spin for all the systems, in agreement 

with experimentally reported results.  

The systems we reported are generally characterized by a high spin ground-state. However, a high 

spin state does not necessarily correlate with a high anisotropy barrier. The pre-factor D is also 

very important. In order to increase the barrier one has to understand and control D. The MAE is 

very sensitive to the geometry changes of the system. Hence, changing the geometry and also 

maintaining the structural stability for increasing D could be an option.  

3.1.2: Brand new molecular design that can endow SMMs larger magnetic 

anisotropy 
 

The quest for single-molecule magnets (SMMs) with better performance encourages new 

molecular design that can endow SMMs larger magnetic anisotropy. Two coordinate Co(II) Imido 
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complexes are outstanding SMM as reported by Yao [27]. Two coordinate Co(II) Imido complexes 

have highly covalent  Co═N cores. 

 

 

Table 3: Co(II) Imido complexes and the Magnetic anisotropy parameters 

System Spin (S) Sexp Bond length 

(Co-N) 

D (K) 

Co(1)N3  

 

1.5 

 

 

1.5 

1.691 -4.82 

Co(2a)N3 1.675 -5.06 

Co(2b)N3 1.677 -5.55 

Co(3)N3 1.682 -6.28 

 

Complex 1 has a near linear C(arene)−N(imido)−Co−C(carbene) alignment and a short 

Co−N(imido bond (1.691(6) Å).  

 

Fig. 1. 7 (a) 3-D visualization of Co(1)N3 complex (b) Co(2a) complex 
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Fig. 1. 8 (a) Schematic structure of [(NHC)CoNDmp] (3 as an example). (b) Molecular structure 

of 3 CoN (c) Structures of the two-coordinate cores in 1, 2a, 2b, and 3 with key interatomic 

distances and angles. 

The four CoN complexes (1, 2a, 2b, and 3) share the common structural features. The short 

Co−N(imido) distance is 1.691, 1.675, 1.677, and 1.682 Å for 1, 2a, 2b, and 3, respectively. From 

the table we can see that upon changing the bond length the MAE can be increased from 10.63 K 

to 13.24 K. Experimentally anisotropy parameters couldn’t be computed correctly, but 

theoretically computed MAE for Co(II) imidos suggests that these complexes exhibit excellent 

SMM property and a slight change in the bond length can be used to raise the anisotropy. 

In the next part we will study about the single molecular magnet Ni4 which is not so well studied 

SMM. 

3.1.3: SMM Ni4 

 

Single Magnetic Molecule [Ni4(hmp)4(CH3OH)4Cl4] [28] where hmp is the anion of 2-

hydroxymethylpyridine, has similar structure as the SMM Co4 however Co atoms are replaced by 

atoms of Ni atoms. In the inner cubic core shown in in fig. 9(b). each Ni4 molecule comprises four 

Ni2+ (Si = 1) ions coupled through oxygen anions. The net ground state spin is 4 (S= 4×1 alternately 

occupying the eight corners with S4 symmetry. In this complex there is a [Ni4(O-hmp)4]
4+ cubane, 

and each NiII ion is six coordinate, being bound to three oxygen atoms of the hmp- ligand, the 

nitrogen atom of hmp-, one Cl-, and one CH3OH atom. The structure has H2O solvate molecule. 
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Fig. 1. 9 (a) Geometry of Ni4 SMM (b) Inner cubic core of 4 Ni2+  atoms 

The bond separation for Ni4 are Ni(1)-Ni(2) = 3.161Å, Ni(1)-Ni(3) = 3.23Å, Ni(1)-O(1) = 2.14Å, 

Ni(2)-O(2)= 2.07 Å and Ni(1)-O(1)-Ni(2) = 98.34°. Experimentally [29] distances for the two 

different Ni4 molecules in complex 1 are reported 3.026(6) and 3.043(5) Å and Ni(1)-O(1)-Ni(2)= 

98.43°. From our calculation the energies of the minority spin LUMO and minority spin HOMO 

levels are found to be −2.90 and −4.55 eV, while the majority spin LUMO and majority spin 

HOMO levels are −2.36 and −4.41 eV, respectively. The Fermi energy is −3.66 eV. Our calculation 

suggests that Ms=4 setup has the lowest energy for this system which is consistent with the 

experimental result. Hai ping [30] revealed that S=0 ends up being the ground state, trailed by S=2 

and S=4. Park [31] reported that total spin of the lowest-energy state to be S = 0, which also does 

not concur with experiment. Our results with no further approximations incorporated to the DFT 

calculation resulted in S = 4 as the minimum energy state. The experimental HFEPR data also 

confirm that Ni4 complexes have a S=4 ground state and that the axial zero-field splitting parameter 

D is negative which is exact as our theoretical estimations. Hai-Ping used plane wave basis sets 
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for the calculation. The plane wave basis sets are delocalized because they are a periodic. Hence, 

the use of Hubbard U comes into play. A gaussian basis set on the other hand is localized. For the 

calculation of isolated molecules gaussian basis sets provide better accuracy. The D parameter 

reported by the theoretical paper of Hai ping and Park is similar to our D parameter which equals 

to -0.29 K. The negative D denotes that when the temperature of the crystal is decreased, the 

transitions at the lowest field become the most intense. As we mentioned before in the Ni4 

complexes there are H2O solvate molecules. Depending on how these H2O solvate molecules are 

arranged about Ni4 molecules and whether some of these H2O molecules are absent, can result to 

discrepancies in the local magnetic moments and the MAE. Also, the hmp- ligand is very sensitive 

to the temperature that freeze out at the low temperatures in the crystal and its conformations may 

lead to different Ni4 molecular environments and play a role in the estimation of MAE.  

Fig. 1. 10 Missing any Hydrogen combination changes the oxidation state of O in Ch3OH ligand 
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Fig. 1. 11  Energy at different Net spin for Ni4 SMM showing Net spin of 4 have the lowest 

energy 

 

Ni4 molecular magnets are not well separated from each other so that there are four interacting 

nearest neighboring molecules. To calculate the energies corresponding to different spin 

configuration, we use the following isotropic Heisenberg exchange Hamiltonian 

𝐻 = −2 ∑  

𝑖<𝑗

𝐽𝑖𝑗𝑆𝑖 ⋅ 𝑆𝑗 

which contains the sum over all pairs connected by the different exchange interactions. There are 

two different types of exchange integral; one has a place with the upper and base faces, say, 

between Ni(1)-Ni(2) and Ni(3)-Ni(4) and another belongs to the four side faces between Ni(1)-

Ni(3), Ni(1)-Ni(4), Ni(2)-Ni(3) and Ni(2)-Ni(4). Then the Heisenberg exchange Hamiltonian 

changes to 

𝐻 = −2𝐽1(𝑆1𝑆2 + 𝑆3𝑆4) − 2𝐽2(𝑆1𝑆3 + 𝑆1𝑆4 + 𝑆2𝑆3 + 𝑆2𝑆4) 
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Further, we optimized this 88-atoms molecule with ferromagnetic spin arrangement (S= 4). After 

that, we changed the spin orientation on Ni and acquired the three energies corresponding to 

different spin orderings. 

 

 

Fig. 1. 12 SMM Ni4 core structure with different spin configurations to calculate exchange 

coupling 

 

Then the Heisenberg Hamiltonian takes the following form: 

Ferromagnet (S1=S2=S3=S4=1): 

𝐻𝐹 = −2𝐽1(2 × 1 × 1) − 2𝐽2(4 × 1 × 1) = −4𝐽1 − 8𝐽2 

Antiferromagnet-1 (S1=S2=1 and S3=S4= −1) 

𝐻𝐴𝐹1 = −2𝐽1(2 × 1 × 1) − 2𝐽2(−1 − 1 − 1 − 1) = −4𝐽1 + 8𝐽2 
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Antiferromagnet-2 (S1=S4=1 and S2=S3=-1) 

𝐻𝐴𝐹2 = −2𝐽1(−1 × 2) − 2𝐽2(−1 + 1 + 1 − 1) = 4𝐽1 

With above energy equations, we can get the energy difference: 

Δ1 = (𝐻𝐹 − 𝐻𝐴𝐹1) = −16𝐽2

Δ2 = (𝐻𝐹 − 𝐻𝐴𝐹2) = −8𝐽1 + 8𝐽2
 

So, the exchange integrals J1 and J2 have the forms as: 

𝐽2 = −
1

16
Δ1

𝐽1 = −
1

16
Δ1 −

1

8
Δ2

 

We found that the calculated exchange integrals J1= 4.40 meV and J2= 0.38 meV which compares 

well with the experimental results (J1= 1.14 meV and J2= 0.34 meV) [29]. The discrepancy 

between the calculated exchange integrals and experimental results mainly comes from the 

energies of different spin configurations. 

The calculated the anisotropy energy parameters: D = −0.29 and the corresponding experimental 

results is D= −0.67. The energy barrier between microstate Sz = 4 and Sz = −4 is calculated by E 

= |DSz
2|= 4.64 K. This means below temperature 4.64 K, the magnetic moments will be frozen. 
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3.2: Pressure-Induced Vander Waals (vdW) layered Cr Halides 

 

3.2.1: Computational Details 
The electronic structure calculations of Van der Waals (vdW) layered system CrBr3 and CrI3 were 

carried out with Vienna ab initio (VASP) code [32] within projector augmented-wave (PAW) [33] 

method. General gradient approximation (GGA) in the Perdew-Burke-Enzerhof (PBE) [34] is used 

for the exchange correlation functional. The interlayer vdW force is taken into account by 

including the vdW functional in form of optB88-vdW [35] during the relaxation. A plane wave 

basis set with cut off 500 eV and for Brillouin zone integration a mesh of 8×8×8 k-points generated 

by the scheme of Monkhorst-Pack [36] are used. All the lattice constants and ionic coordinates 

were relaxed until the maximum force on all ions is less than 5 × 10−3 eV/Å. The hydrostatic 

pressure effect was included by adding the PSTRESS [37] tag adopting the vdW.  

 

3.2.2: Onsite Coulomb Interaction GGA+U 
It is known that both LDA and GGA functions tend to over-delocalize d and f states. Such as in 

Mott insulator where the on-site Coulomb interactions are particularly strong for 

localized d and f electrons. The common remedy approach to this shortcoming in these correlated 

systems is the Hubbard-U method. The Hubbard-U method pioneered by Anisimov et al. [38] 

introduced an orbital-dependent term known as on-site Coulomb repulsion energy U into the 

exchange correlation (XC) term of LDA and GGA. They are referred to as LDA + U or GGA + U 

and expressed as follows  

𝐸𝐺𝐺𝐴+𝑈/𝐿𝐷𝐴+𝑈[𝜌(𝒓)] = 𝐸𝐺𝐺𝐴/𝐿𝐷𝐴[𝜌(𝒓)] + 𝐸𝑈[𝜌(𝒓)] − 𝐸𝑑𝑐 

Here, 𝜌(𝒓) is the electron density, EGGA/LDA is the energy from conventional GGA/LDA 

functional, EU is the Hubbard type energy, and Edc is the double-counting correction energy. In 

this method, the Coulomb energy U and the exchange energy J are combined into a single 

parameter U-J. GGA + U potentially improves the insufficient description of strongly localized 

electrons, such as those in Cr-3d state, which is previously not correctly described in LDA and 

GGA. 
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3.2.3: Results 
 

In chromium trihalides, Cr3+ ions are arranged in a honeycomb network in edge-sharing octahedral 

coordination by six X– ions, which are each bonded to Cr ions. The layers of composition of 

CrX3 are stacked with vdW gaps separating them. To improve the description of 3d states in Cr 

atoms, the DFT embedded with Hubbard U parameter is used to treat the onsite coulomb 

interaction on the correlated system. 

  

Fig. 1. 13 Crystal Structure of CrBr3 

 

Table 4: Comparison of Calculated Band gap (BG) with the experimental data for different 

U values. 

System U,V (eV) BG (eV) Exp BG(eV) 

CrBr3 0.0, 0.0 1.35 2.1 

2.7, 0.7 1.80 

CrI3 0.0, 0.0 0.95 1.1 

2.7, 0.7 1.03 
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Fig. 1. 14  Partial Density of States (PDOS) for CrBr3 calculated using GGA+U 

To investigate the electronic structure for CrBr3. The partial density of states (PDOS) is shown in 

Fig. 13. The Fermi energy is set to zero where energy region near the Fermi level is mainly 

composed of the 3d states of Cr3+. From the PDOS of CrBr3 the band gap is about 1.8 eV. The 

occupied and unoccupied states around the Fermi level are fully spin polarized. The occupied Cr-

3d orbitals are only found in the spin-up direction. From Table 5, we can see that +U functional 

increases the band gap of the system and at U= 2.7 eV J=0.7 eV, the band gap is approximately 

consistent with the experimental bandgap while it is largely underestimated by the GGA 

functional. Bulk CrBr3 has a saturated magnetization of ~3𝜇𝐵 per Cr3+ ion. The magnetic ground 

state for CrBr3 and CrI3 are determined by comparing the total energy of different magnetic 

orderings. Our results suggest that both systems favor FM ordering which are consistent with 

previous experimental works. 

Table 5: The calculated lattice parameter of CrBr3 and CrI3 using PBE and optB88-vdW 

functionals 

System Lattice 

Constant (Å) 

PBE optB88-vdW Experiment[39][40] 

CrBr3 a 6.44 6.34 6.26 

c 21.00 18.23 18.2 

CrI3 a 7.00 6.90 6.87 

c 22.40 19.95 19.81 
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It can be seen from table 5 that both lattice parameters increase from Br to higher element number 

I. Wei-Bing Zhang [41] reports that the increasing atomic radius of  Br/I, change of bond lenths 

and the weakening reactivity between the Cr and Br/I atoms is the reason for such behavior. 

Theoretical structural parameters using vdW functional are in good agreement with experimental 

reports but the PBE overestimated the interlayer distance c by approximately 15%. This exhibits 

that van der Waals plays a significant role in interlayer binding and optB88-vdW functional 

computes consistent results. 

3.2.4: Hydrostatic Pressure effect 

• We have investigated the magnetic properties of layered ferromagnetic CrBr3 and CrI3 under 

hydrostatic pressure. Fig. 14a and b displays the pressure dependence of the c/a ratio and volume 

change. In our computation, both volume and c/a ratio decrease with pressure. It is not surprising 

that the reduction of c is more significant due to weak interlayer coupling. Similar trend is also 

observed in several other vdW layered system such as Cr2Si2Te6 [42].  
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Fig. 1. 15 (a) c/a vs Pressure of CrBr3 and CrI3 (b) Volume vs Pressure of CrBr3 and CrI3 

 

To understand how the magnetic properties may vary with applied pressure, two key parameters, 

exchange coupling J and MAE are considered. As discussed in the previous section, the external 

pressure changes the lattice constants which influence the inter-site electron hopping process. Two 

of the common main mechanisms that contribute to the exchange coupling between the localized 

moments are direct and super-exchange [43]. It is often the result of the competition between the 

two that dictate the response of the applied pressure. In our model, we consider only the nearest 

neighbor exchange interaction J1. The super-exchange interaction which is due to the presence of 

non-magnetic Br/I in between the Cr ions, increases with the applied pressure and subsequently, 
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J1 increases with the isothermal compressibility [44]. Fig. 15 (a) and (b) shows the change of J1 

with pressure.  

 

 

Fig. 1. 16 First nearest neighbor exchange coupling constant J1 as a function of pressure of (a) 

CrBr3 and (b) CrI3 with Hubbard parameter U=2.7eV, J=0.7 eV 

 

This interaction originates due to the virtual hopping of electrons between the two nearest neighbor 

Cr-ions via I/Br ion. In fig. 15(a) and (b), the plot shows a small but noticeable change due to the 

applied pressure. It is seen that J1 increases linearly for P<0.5 GPa while increments are very 

minimal for 0.5 < P < 1.0 for both CrBr3 and CrI3.  

Experimentally [45] it is reported for CrBr3 that the Curie temperature (TC) decreases with pressure 

and the change of TC with respect to pressure is about (dTC/dP) ~ -0.2 which implies the negative 

dependence of J1 on pressure. From the plot in fig.15(a), we can see an increase of J1 with respect 

to pressure depicting an opposite behavior from the experiment. From the theoretical perspective, 

the FM in-plane super-exchange interaction between the Cr3+ in CrBr3 bulk appears to be more 

dominant than the direct exchange (AFM) interaction which leads to the increase of J1 value with 

pressure in the calculation. In the experiment, H. Yoshida claims that the exchange interaction 

becomes stronger with decreasing atomic distance as there are stronger orbital overlaps [45]. Br 

certainly have a smaller atomic radius (114 pm) than that of I (133 pm), which might play a role 

in this dominant Cr-Cr direct exchange interaction. According to the Goodenough-Kanamori-

Anderson rule [46], the strength of the delocalization and correlation between the cation-anion-
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cation orbitals has a significant impact the exchange interaction behavior.  It is probable that CrBr3 

have a different correlation effect then that of CrI3. In order to capture this delocalized behavior in 

CrBr3 we performed calculation using U=0 eV similar to the calculation done by Adolfo O. 

Fumega [47].  

 

Fig. 1. 17 J1 vs Pressure without treating the d orbitals of Cr3+ in the CrBr3 system 

 

Fig. 16 shows that J1 decreases with the application of pressure which follows the same pattern as 

detailed by the experiments. As the pressure increases, the out of plane super exchange between 

the inter-layers tends to increase resulting in decrease in in-plane super-exchange. This reduction 

in the in-plane super exchange behavior reduces J1 as we can see the curve is steeper at J>0.5 GPa. 

This shows that the Hubbard-U have an influence in the calculations.  

 

The application of pressure affects the bond angle of the Cr-Br-Cr which in turn have effects on 

the magnetic exchange coupling behaviors. Fig. 17 shows the pressure dependence of the cation-

anion-cation angle. The bond angle between Cr-Br-Cr is approximately 90° and decreases with 

pressure which is in agreement with the recent calculation done by Fumega [43]. The deviation of 

the bond angle from 90° with pressure also plays major role in the exchange interactions between 

the magnetic ions. Combining all these effects, the competition between the direct exchange and 

the indirect super-exchange interaction determine the nature of the J1 dependence with pressure 

for CrBr3. The competition between direct exchange through Cr–Cr bonding, which leads to AFM 
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ordering, and super-exchange through Cr–X–Cr bonding, which leads to FM ordering determine 

the nature of the J1 dependence with pressure for CrBr3. 

 

Fig. 1. 18 Reduction of Cr-Br-Cr angle as a function of pressure 

 

In the case of CrI3 our calculation shows similar behavior with that of CrBr3 with dJ1/dP~0.1 at 

0<P<0.5. Our calculation shows that the reduction of c is relatively more significant than that of a 

due to the weak interlayer interaction. As the interlayer coupling in CrI3 is much weaker as 

compared to other system, the effect of pressure in increasing the coupling between two adjacent 

layers is much more significant. In bulk CrI3, the interlayer coupling (J) is FM in nature. Thus, one 

expects that TC will increase with the increase in pressure due to the enhancement of interlayer 

FM coupling. Theoretical calculation done on single layered CrI3 by Zhang [41] reports that upon 

applied strain on monolayered CrBr3 and CrI3, the TC and interlayer distance increases. While our 

calculation refers to applying hydrostatic pressure on bulk, its needed to be kept in mind that, 

applied strain on a monolayer stretches the volume while the pressure on a bulk reduces the 

system’s volume. Our applied pressure on the bulk results in decreasing interplanar distances 

following the similar trend. Smaller vdW gap, larger in-plane nearest neighbor Cr-Cr distance can 

enhance Tc, while smaller bond length of Cr-Cr, the increase in interlaying coupling reduces Tc. 

The role of pressure on J values is very complicated and open question considering the fact that, 

there are a very few pressure- induced calculations performed especially on the bulk systems. 
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Fig. 1. 19 The magnetic anisotropy vs Pressure of (a) CrBr3 showing no significant changes (b) 

CrI3 showing strong suppression of MAE. 

 

As shown in fig 18. MAE is calculated for both bulk CrBr3 and CrI3 at different pressure which 

includes the spin orbit coupling (SOC). The easy axis is along the c-direction. Fig. 18 shows bulk 

CrI3 have the strongest magnetic anisotropy but CrI3 undergoes strong suppression of magnetic 

anisotropy energy with pressure. This behavior agrees with the recent calculation done by Rehab 

on monolayer CrBr3 and CrI3  [48]. For CrBr3 as seen from fig. 18(a) there is no significant changes 

in MAE with respect to pressure. From CrBr3 to CrI3, the Cr-Cr separation increases with 

expanding halogen size from Br to I, as a result the direct exchange (overlap between neighboring 

Cr orbitals) weakens which successively, enhances the covalent nature of Cr-X bond [49]. 

Therefore, the super exchange interaction and the spin orbit coupling strengthens more for CrI3 

then CrBr3 [48]. Though decrease in MAE results in the decrease of Tc, the change in bond angle 

and the increase in interlayer coupling could give rise to Tc and hence the MAE and Tc relationship 

might not be consistent with the general trend observed.  
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Chapter 4: Summary and discussion: 
 

To summarize, in the initial segment of our thesis, MAE for several molecular magnets at different 

functionals are calculated. Comparing the MAEs, Mn12 have the highest energy barrier and PBE 

approximation is the best functional to compute consistent MAE. The results suggest that the 

higher-order contributions to the anisotropy barrier are either due to electronic relaxations that are 

dependent on spin-orientation, higher-order couplings between scalar relativistic and spin–orbit 

operators or possibly couplings between electronic and nuclear spins. For Ni4, we found that the 

calculated lowest energy state has a total spin of S=4, which is in agreement with the experiment 

where other theoretical investigation on this specific system failed to determine the correct state. 

The exchange coupling constant J1=4.40 meV, J2=0.38 meV, compared to the experimental value 

J1= 1.14 meV and J2= 0.34 meV. The uniaxial anisotropy parameters are D= −0.29 K. The energy 

barrier between microstate Sz = 4 and Sz = −4 is calculated by E = |DSz
2|= 4.64 K. Co4 and Ni4 

have the same structure and Co ions and Ni ions are in the same environment, but Co-based 

molecule have a high anisotropy energy. To progress towards periodic systems from SMM, we 

have also studied the magnetic properties of vdW layered CrBr3 / CrI3 under hydrostatic pressure. 

For both CrBr3 and CrBr3, J1 is found to decrease and increase monotonically respectively as 

pressure increases from 0 to 1.0 GPa. The MAE for both the systems decreases with the application 

of pressure. The increase of J1 and the decrease of MAE is more dominant for CrI3 then CrBr3. 

The close competition between this super exchange and the direct exchange determines the nature 

of pressure dependence of TC in different magnetic systems. 
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