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ABSTRACT 

 
 Exposure to air pollution from traffic-related emissions is a preventable cause of 

respiratory and cardiovascular diseases. However, the impacts on at-risk populations, such as 

children with asthma and low-income residents, are yet to be fully understood in the border city of 

El Paso, TX. This dissertation focused on the most common traffic-related pollutants which 

include particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and ozone (O3). The research 

described in this work provides an overview of air pollution measurements and shares insights 

from three different studies in our region.  

 People with asthma are more likely adversely affected by traffic emissions, particularly 

young children. Previous studies showed regular exercise reduces asthma exacerbation and 

improves lung function. However, few studies have looked at the physical activity and air quality 

relationship. We found inverse associations of air pollution and time spent in physical activity by 

children with asthma attending an elementary school near a heavy traffic road.  

 Through secondary data analyses, we also linked short term effects of traffic-related 

pollutants with respiratory outcomes such as airway inflammation and lung function. Furthermore, 

we found associations between air pollution and metabolic syndrome in our region. Our 

investigations included measured concentrations of traffic-related pollutants and land use 

regression models using geographic information system (GIS) measures. As expected, we found 

associations between air pollution and respiratory outcomes, but also unexpected associations with 

obesity from both short-term and long-term exposure to air pollutants. We expect future studies to 

consider statistical models that combine geographic information systems with more health 

outcomes to elucidate further negative health effects caused by exposure to air pollution in 

vulnerable populations.  



 viii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................ V 

ABSTRACT ................................................................................................................................. VII 

LIST OF FIGURES ..................................................................................................................... XII 

LIST OF TABLES ...................................................................................................................... XIII 

CHAPTER 1 INTRODUCTION .....................................................................................................1 

1.1 Structure of the dissertation .......................................................................................................2 

1.2 Measures of interest ...................................................................................................................3 

1.2.1 Air quality measurements ..............................................................................................3 

1.2.2 Physical activity .............................................................................................................4 

1.2.3 Cardiorespiratory outcomes ...........................................................................................5 

1.3 Description of relevant research studies ....................................................................................7 

1.3.1 Healthy Living and Traffic-Related Air Pollution in an Underserved Community 

Study ..............................................................................................................................7 

1.3.2 Evidence-based Screening for Obesity, Cardiorespiratory Disease, and 

Environmental Exposures in Low-income El Paso Households Study .........................8 

1.4 Specific study aims ....................................................................................................................8 

1.5 Research questions ...................................................................................................................12 

1.6 Theoretical framework .............................................................................................................12 

1.6.1 Traffic-related air pollutants ........................................................................................12 

1.6.2 Impacts of air quality on physical activity ...................................................................14 

1.6.3 Association between air quality and lung function and inflammation ........................17 

1.6.4 Association between air quality and metabolic syndrome ...........................................17 



 ix 

1.7 Air pollution in El Paso............................................................................................................20 

1.8 Cardiorespiratory health issues in El Paso ...............................................................................21 

1.9 Healthy People 2020 ................................................................................................................21 

1.10 Ethical aspects ........................................................................................................................22 

1.11 Practice model ........................................................................................................................23 

CHAPTER 2 MODERATE TO VIGOROUS PHYSICAL ACTIVITY LEVELS NEGATIVELY 

CORRELATE WITH TRAFFIC RELATED AIR POLLUTANTS IN CHILDREN WITH 

ASTHMA ATTENDING A SCHOOL NEAR A FREEWAY ............................................25 

2.1 Introduction ..............................................................................................................................25 

2.1.1 Exposure to air pollutants and physical activity ..........................................................25 

2.1.2 Air pollutants in the school environment .....................................................................26 

2.1.3 Physical activity in those who have asthma .................................................................26 

2.2 Methods....................................................................................................................................27 

2.2.1 Setting, population, and sample ...................................................................................27 

2.2.2 Data analysis ................................................................................................................30 

2.3 Results ......................................................................................................................................31 

2.3.1 Models predicting physical activity data .....................................................................35 

2.4 Discussion ................................................................................................................................36 

2.4.1 Principal findings .........................................................................................................36 

2.4.2 Comparison with other studies ....................................................................................37 

2.4.3 Strengths and limitations..............................................................................................39 

2.5 Conclusion ...............................................................................................................................40 

CHAPTER 3 SHORT TERM EFFECTS OF TRAFFIC RELATED AIR POLLUTION ON 

CARDIORESPIRATORY OUTCOMES AMONG LOW INCOME RESIDENTS FROM 

EL PASO ..............................................................................................................................41 

3.1 Introduction ..............................................................................................................................41 

3.1.1 Effects of air pollutants on cardiorespiratory health ....................................................41 

3.1.2 Short term exposure assessments .................................................................................42 

3.2 Methods....................................................................................................................................44 

3.2.1 Setting, population, and sample ...................................................................................44 



 x 

3.2.2 Measures ......................................................................................................................44 

3.2.3 Data analysis ................................................................................................................45 

3.3 RESULTS ................................................................................................................................47 

3.3.1 Demographics ..............................................................................................................47 

3.3.2 Air pollution measurements .........................................................................................49 

3.3.3 Respiratory associations ...............................................................................................51 

3.3.4 Cardiovascular associations .........................................................................................57 

3.4 Discussion ................................................................................................................................72 

3.4.1 Principal findings .........................................................................................................72 

3.4.2 Strengths and limitations..............................................................................................74 

3.4.3 Comparison with other studies ....................................................................................74 

3.5 Conclusions ..............................................................................................................................76 

CHAPTER 4 LAND USE REGRESSION OF LONG-TERM TRANSPORTATION DATA ON 

CARDIORESPIRATORY OUTCOMES OF LOW INCOME RESIDENTS FROM EL 

PASO, TX .............................................................................................................................77 

4.1 Introduction ..............................................................................................................................77 

4.1.1 Long term air pollution exposure .................................................................................77 

4.1.2 Limitations of central air monitoring stations ..............................................................78 

4.1.3 Incorporating geographical information to models ......................................................78 

4.2 Methods....................................................................................................................................79 

4.2.1 Setting, population, and sample ...................................................................................79 

4.2.2 Traffic-related measures ..............................................................................................80 

4.2.3 Statistical analyses .......................................................................................................85 

4.3 Results ......................................................................................................................................86 

4.3.1 GIS mapping ................................................................................................................86 

4.3.2 Traffic measurements...................................................................................................88 

4.3.3 Respiratory associations ...............................................................................................89 

4.3.4 Cardiovascular associations .........................................................................................93 

4.3.5 Predictive probability model ......................................................................................106 

4.4 Discussion ..............................................................................................................................110 

4.4.1 Principal findings .......................................................................................................110 



 xi 

4.4.2 Strengths and limitations............................................................................................111 

4.4.3 Comparison with other studies ..................................................................................112 

4.4 Conclusions ............................................................................................................................113 

CHAPTER 5 CONCLUSION......................................................................................................114 

5.1 General findings .....................................................................................................................114 

5.2 Mitigation strategies...............................................................................................................115 

5.3 Final remarks .........................................................................................................................117 

REFERENCES ............................................................................................................................118 

APPENDIX ..................................................................................................................................130 

Cardiovascular associations with traffic-related variables (2014-15 data) ..................................130 

VITA ............................................................................................................................................139 

 

 

 

 

 

  



 xii 

LIST OF FIGURES 

Figure 1.1: Risk factors for metabolic syndrome............................................................................ 6 

Figure 1.2: Specific aims outline diagram .................................................................................... 10 

Figure 1.3: Theoretical framework ............................................................................................... 19 

Figure 1.4: Practice model ............................................................................................................ 24 

Figure 2.1: Location of school and CAMS stations ...................................................................... 30 

Figure 3.1: Location of CAMS stations in El Paso, TX for selected air pollutants ...................... 45 

Figure 3.2: Summary boxplots of air pollution concentrations .................................................... 51 

Figure 4.1: Residential addresses of participants from El Paso, TX ............................................ 81 

Figure 4.2: Major Arterial Roads Layer ....................................................................................... 82 

Figure 4.3: Ports of entry in El Paso, TX ...................................................................................... 83 

Figure 4.4: Metropolitan Planning Organization traffic layer ...................................................... 83 

Figure 4.5: U.S. Census street layer and zoomed version ............................................................ 84 

Figure 4.6: Distance to nearest major arterial road layer and layer zoom. ................................... 86 

Figure 4.7: Summary of street length within 500m using the Census.gov layer and layer zoom. 87 

Figure 4.8: Summary of vehicle miles traveled (VMT) within 500m using the MPO layer and 

layer zoom. .................................................................................................................................... 87 

Figure 4.9: Scatterplot matrix of pairs of traffic variables (N=662). ............................................ 89 

Figure 4.10: Scatterplot matrix of pairs of traffic variables (N=4,959). ....................................... 96 

Figure 4.11: Traffic-related variables applied to a city grid for a) street length (500m), b) 

distance to nearest port of entry (POE), c) vehicle miles traveled (500m) ................................. 108 

Figure 4.12: Predictive model of higher risk of metabolic syndrome based on the land use 

regression model ......................................................................................................................... 109 



 xiii 

LIST OF TABLES 

Table 1.1: Diagnostic criteria for metabolic syndrome .................................................................. 7 

Table 1.2: Measures to be explored for each specific aim ............................................................ 11 

Table 2.1: Summary statistics for school and ambient pollutant metrics: mean, standard deviation 

(SD), median, interquartile range (IQR), minimum (min), and maximum (max) ........................ 32 

Table 2.2: Summary of subject demographics and physical activity information ........................ 33 

Table 2.3: Summary Statistics of subject specific factors and physical activity rates per factor 

level. .............................................................................................................................................. 34 

Table 2.4: Overall associations between moderate to vigorous (MVPA) and sedentary physical 

activity and pollutant metrics. ....................................................................................................... 36 

Table 3.1: Descriptive of the demographic information for subjects (N=662)............................. 47 

Table 3.2: Summary statistics of participant’s characteristics ...................................................... 49 

Table 3.3: Spatial distribution of subjects to the nearest CAMS stations ..................................... 49 

Table 3.4: Summary statistics for pollutant measurements over various window exposures. ..... 50 

Table 3.5: Descriptive statistics for eNO, FEV1, FVC, and PEF metrics. .................................... 52 

Table 3.6: Association between respiratory outcome and pollutant metrics. ............................... 53 

Table 3.7: Descriptive statistics for cardiovascular syndrome risk factors. ................................. 57 

Table 3.8: Correlation analysis ..................................................................................................... 58 

Table 3.9: Association between cardiovascular outcomes and pollutant metrics. ........................ 60 

Table 3.10: Summary of metabolic syndrome risk factors. .......................................................... 69 

Table 3.11: Associations between metabolic syndrome (MetS) risk factors and MetS 

classification and pollutant metrics. .............................................................................................. 69 

Table 4.1: Descriptive statistics of traffic variables (unit: km, in thousands) .............................. 88 



 xiv 

Table 4.2: Descriptive statistics for eNO, FEV1, FVC and PEF metrics. ..................................... 89 

Table 4.3: Correlation analysis between respiratory outcome and traffic variables (unit: km, in 

thousands). .................................................................................................................................... 91 

Table 4.4: Summary and parameter estimates of multivariate regression models for respiratory 

outcomes. ...................................................................................................................................... 91 

Table 4.5: Descriptive of the demographic information for subjects (N=4,959).......................... 94 

Table 4.6: Descriptive statistics of traffic variables (N=4,959; unit: km, in thousands) .............. 95 

Table 4.7: Descriptive statistics for cardiovascular risk factors (N=4,959). ................................ 97 

Table 4.8: Correlation analysis with traffic variables (N=4,959, unit: km, in thousands)............ 99 

Table 4.9: Summary of metabolic syndrome risk factors (N=4,959). ........................................ 100 

Table 4.10: Univariate associations between metabolic syndrome (MetS) risk factors and MetS 

classification and traffic variables (N=4,959). ............................................................................ 100 

Table 4.11: Summary and parameter estimates of multivariate regression models for continuous 

MetS risk factors (N=4,959). ...................................................................................................... 102 

Table 4.12: Summary and parameter estimates of multivariate logistic regression model for 

binary MetS factors (N=4,959). .................................................................................................. 105 

Table 4.13: Summary of variable selection for multivariate logistic regression models using a 

stepwise selection technique. ...................................................................................................... 106 

 

 



 

 
1 

CHAPTER 1 INTRODUCTION 

This dissertation is focused on traffic-related air pollution and the negative health impact 

it has on physical activity and cardiorespiratory health outcomes such as lung function and 

inflammation, as well as risk factors for metabolic syndrome. This research provides data to 

support mitigation strategies that would reduce the impact of air pollution exposure in at-risk 

environments such as schools and low income communities.  

Pollutants in the atmosphere can cause harm to living organisms and the natural 

environment. Even at relatively low concentrations, the health effects of air pollution are of great 

concern (Kim, Kabir, & Kabir, 2015). Air pollutants contribute to various health problems 

including heart or lung disease, irregular heartbeat, aggravated asthma, decreased lung function, 

and increased respiratory symptoms (Atkinson, Fuller, Anderson, Harrison, & Armstrong, 2010a; 

Cadelis, Tourres, & Molinie, 2014a; Andrew W. Correia et al., 2013). Furthermore, several 

reviews summarize the associations of ambient (outdoor) air pollution with diabetes (Eze et al., 

2015), asthma emergency room visits (Zheng et al., 2015), blood pressure (Giorgini et al., 2016), 

and cardiovascular disease (Franklin, Brook, & Pope III, 2015). 

Outdoor air pollution leads to 3.3 million premature deaths per year worldwide with 

important contributions in the U.S from power generation and traffic. (Lelieveld, Evans, Fnais, 

Giannadaki, & Pozzer, 2015).  In an urban environment, traffic air pollutants originate from the 

emissions of motor vehicles, wear of vehicle components such as brakes and tires, and suspension 

of road dust (Kok, Driece, Hogervorst, & Briedé, 2006). Those who are more likely to be affected 

by excessive levels of air pollutants include people with asthma, lower income, and those living 

close to heavy traffic roads (Alexis et al., 2014; Xianglu Han & Luke P. Naeher, 2006; Makri & 

Stilianakis, 2008). 
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Recent studies have found significant associations of traffic-related pollutants with airway 

inflammation and lung function in children with asthma (Provost, Madhloum, Int Panis, Boever, 

& Nawrot, 2015). In elementary school children, those living 30-300 meters from a major roadway 

were found to have increased arterial stiffness, carotid intima-media thickness, higher absenteeism, 

and asthma symptoms, as well as decreased academic performance (Armijos et al., 2015). In 

addition, people with lower incomes are considered at risk since they are more likely to live in 

neighborhoods with higher pollution levels, including traffic-related air pollution (Cushing, 

Morello-Frosch, Wander, & Pastor, 2015) making this an environmental justice issue. 

The focus of this dissertation is to investigate associations of negative cardiorespiratory 

health effects and air pollutants in at-risk populations (children with asthma, low-income residents, 

and people living near heavy traffic roads). In addition, the findings of this work will be used to 

inform stakeholders regarding mitigation strategies that could decrease the exposure of traffic-

related pollutants in these populations. 

1.1 Structure of the dissertation 

 The first chapter of this dissertation will provide an overview of air pollution and how it is 

measured, cardiorespiratory outcomes associated with air pollution, as well as outline the specific 

aims, concepts, and theoretical framework of this research. The second chapter will describe a 

research study investigating the association of air pollution with time spent in physical activity by 

children with asthma attending an elementary school near a heavy traffic road. The third and fourth 

chapters will focus on secondary data analyses exploring the association between air pollution 

levels and cardiorespiratory health outcomes in low-income communities. The final chapter will 

include a summary of the findings, recommendations about air pollution mitigation strategies, 

suggestions for future research, and conclusions. 
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1.2 Measures of interest 

The research presented in this dissertation used several methods of assessing air quality. 

These methods will allow explorations of how air quality is associated with physical activity and 

cardiorespiratory outcomes in our selected populations.  

1.2.1 AIR QUALITY MEASUREMENTS 

Currently used methods for assessing air quality include the use of ground-level monitors, 

continuous ambient monitoring stations (CAMS), and emission-based air quality models (El-

Harbawi, 2013; Steinle, Reis, & Sabel, 2013). In addition, air quality models can be improved with 

the use of traffic-related data which can provide information through spatial modeling of traffic 

volume and density. 

Ground-level air pollution monitors placed at sites of interest provide the most accurate 

data compared to that monitored at locations away from the site and models. Another advantage 

of ground-level monitors is the possibility to determine their location and ensure they represent an 

accurate estimate of the air pollution exposure at a selected site. However, purchasing and 

maintaining the monitoring equipment can be expensive which makes this method less feasible for 

obtaining air quality data in large studies (Engel-Cox, Oanh, van Donkelaar, Martin, & Zell, 2013; 

O'Neill et al., 2003).  

A more common approach for acquiring air quality data is to retrieve verified data from 

centralized, state-operated CAMS; traffic-related pollutant data obtained from these stations can 

be generalized for the communities surrounding them (Gonzales et al., 2012; Sayeed et al., 2020; 

Staniswalis, Yang, Li, & Kelly, 2009). Using CAMS data provide a cost-effective method to assess 

air pollution exposure, and many U.S. cities rely on them for air quality monitoring and 

compliance. However, when compared with on-site monitoring, the distance from the monitoring 



 

 
4 

station and their spatial variability limit the accuracy of this method. Nevertheless, some regional 

studies have found success with this method by comparing on-site measurements with CAMS data 

(Raysoni, Stock, Sarnat, Sosa, et al., 2013; Sandoval, 2012). 

Emission-based air quality models that use geographic information system (GIS) measures 

are another way to assess traffic-related air pollution at exposure sites. For example, dispersion 

models can predict air pollution near roadways when emission factors, meteorological conditions, 

and traffic data are available near roadways of interest (D. Wen et al., 2017). Furthermore, traffic 

density within an impact zone, population density, distance to a major roadway, and percent 

urbanization have been used in research linking prenatal traffic-related air pollution exposure and 

birth weight (Lakshmanan et al., 2015). Other traffic-related variables such as length of street 

around address, census block size, and traffic counts may act as a surrogate exposure indicator for 

elevated levels of air pollution.   

1.2.2 PHYSICAL ACTIVITY  

Physical activity is essential for overall health and regular outdoor activities can lead to a 

significantly lower risk of cardiovascular and other chronic diseases (M. Chen et al., 2013; Janssen 

& LeBlanc, 2010). Since self-reported data is not very reliable, researchers should use objective 

measures to accurately assess the impact of physical activity on health outcomes (Gorber & 

Tremblay, 2016; McCormack et al., 2004). As an objective measure, accelerometers are a standard 

tool used for an individualized assessment of physical activity. These devices measure acceleration 

along three axes and use algorithms to categorize movement into time spent in sedentary, light, 

moderate, and/or vigorous activity (Troiano et al., 2008).  
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1.2.3 CARDIORESPIRATORY OUTCOMES 

The health outcomes of interest for this study which are associated with exposures to traffic 

air pollution are lung inflammation, lung function, and metabolic syndrome. 

1.2.3.1 Lung inflammation 

 

Exhaled Nitric Oxide (eNO) is considered a biomarker of inflammation present in the 

respiratory tract and lungs; this is an important indicator of symptom exacerbation in asthma and 

other lung diseases (Pendharkar & Mehta, 2008). An elevated eNO value indicates airway 

inflammation which could be due to an increased inflammatory response and can trigger symptoms 

in people with asthma (Holguin, 2008). Assessments of eNO have been used in large 

epidemiological studies to elucidate the negative impacts of air pollution in children with asthma 

due to respiratory tract and lung inflammation (Delfino et al., 2006; Holguin, 2008), but also in 

adults with an without asthma (Tunnicliffe, Harrison, Kelly, Dunster, & Ayres, 2003). 

1.2.3.2 Lung function  

Lung function measurements are assessed by using a spirometry device. For this test, the 

participant is required to blow as hard as possible through tubing connected to a device that will 

record the volume of air expired. The results are expressed in terms of forced vital capacity (FVC), 

forced expiratory volume in one second (FEV1), and peak expiratory flow (PEF). The alterations 

in these measures could indicate if a participant has an increased likelihood of  respiratory disease 

and have been used in assessments of traffic and air pollution exposure (Hankinson, Odencrantz, 

& Fedan, 1999; Holguin, 2008). 

 



 

 
6 

1.2.3.3 Metabolic syndrome 

 

Metabolic syndrome (MetS) is a cluster of associated risk factors for cardiovascular disease, 

type 2 diabetes, hypertension, and lipid disorders. MetS is linked to insulin resistance, which 

increases the risk of developing some of the mentioned conditions (Expert Panel on Detection & 

Treatment of High Blood Cholesterol in, 2001). Currently, MetS integrates the risk of related 

diseases by considering the presence of at least three out of five risk factors. The five risk factors 

for MetS are: large waistline, high blood pressure, high triglyceride level, low HDL-cholesterol 

level, and high fasting blood glucose (Figure 1.1) (Rice et al., 2015).  

 

Figure 1.1: Risk factors for metabolic syndrome 

In the U.S., the cutoff values for MetS have been established by the NIH guidelines and 

are based on the National Cholesterol Education Program (NCEP) Adult Treatment Panel III 

Metabolic 
Syndrome

Large 
Waistline

High Fasting 
Glucose

High Blood 
Pressure

High 
Triglycerides

Low HDL-
Cholesterol
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recommendations. These guidelines are summarized in Table 1.1. (Expert Panel on Detection & 

Treatment of High Blood Cholesterol in, 2001; Grundy, Hansen, Smith, Cleeman, & Kahn, 2004). 

Table 1.1: Diagnostic criteria for metabolic syndrome 

Risk Factor Cutoff values 

Large waistline 
≥ 102 cm (≥ 40 inches) in men 

≥ 88cm (≥ 35 inches) in women 

High blood pressure 
≥ 130mmHg systolic or 

≥ 85mmHg diastolic 

High triglycerides ≥ 150mg/dL  

Low HDL-cholesterol 
< 40mg/dL in men  

< 50mg/dL in women 

High fasting glucose ≥ 100 mg/dL  

1.3 Description of relevant research studies 

1.3.1 HEALTHY LIVING AND TRAFFIC-RELATED AIR POLLUTION IN AN UNDERSERVED 

COMMUNITY STUDY 

The second chapter described in this dissertation is part of a larger project that quantifies 

traffic-related air pollution and the associated respiratory health and physical activity of at-risk 

school children living in a near-road, underserved community. This study aimed to develop related 

health guidelines for a selected school district and community to reduce the burden of air pollution 

on children’s health. The project was funded through the Center for Advancing Research in 

Transportation Emissions, Energy, and Health (CARTEEH). Specific project activities included 

the collection of children’s on-campus school physical activity data and on-site measurements of 

traffic-related air pollutants (particulate matter, nitrogen dioxide, and ozone). The selected 

population on which this study focused was a cohort of twelve children with asthma attending an 

elementary school near a heavy traffic road measured over a period of ten weeks.  
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1.3.2 EVIDENCE-BASED SCREENING FOR OBESITY, CARDIORESPIRATORY DISEASE, AND 

ENVIRONMENTAL EXPOSURES IN LOW-INCOME EL PASO HOUSEHOLDS STUDY 

The third and fourth chapters in this dissertation analyze the health outcome data from a 

project funded through the City of El Paso’s Department of Public Health (EPDPH). Overall, this 

project aims to evaluate the health status of participants who are uninsured or have a low-income 

status by using a questionnaire and health screenings to assess their overall health status. 

For the first year of the EPDPH project, the health screenings conducted included blood 

pressure, anthropometric measurements (height, weight, and waist), spirometry, exhaled nitric 

oxide, a lipid profile (triglycerides, total cholesterol, HDL, LDL) and fasting glucose 

measurements. After the first year, nitric oxide and spirometry assessments were not performed 

due to high testing costs and efforts were redirected into collecting data related to metabolic 

syndrome and its components which are known risk factors for cardiovascular disease. As of 

January 2020, this project has served approximately 5,000 participants. 

1.4 Specific study aims 

The specific aims for this dissertation include the following: 

Aim 1: Investigate the longitudinal relationship between traffic-related air pollutants and 

physical activity in children with asthma attending a school near a heavy traffic road in El 

Paso, TX.  

• Objective 1.1: Assess the relationship between percent time spent in physical 

activity levels (%time spent in moderate to vigorous physical activity (MVPA), 

%time spent in light physical activity, and %time spent in sedentary activity) and 

traffic-related air pollutants (PM2.5, PM10, NO2, and O3).  
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Aim 2: Investigate the short-term association between cardiorespiratory health outcomes 

(MetS risk factors, lung function, and inflammation) and traffic-related air pollutants (PM, 

NO2, O3) in residents of low-income communities of El Paso, TX. 

• Objective 2.1: Assess the relationship between individual cardiovascular health 

outcomes of MetS (BMI, waist circumference, blood pressure, triglycerides, HDL-

cholesterol, and glucose) and traffic-related air pollutants (PM2.5, PM10, NO2, and 

O3).   

• Objective 2.2: Determine if MetS classification (binary) is related to traffic-related 

air pollutants (PM2.5, PM10, NO2, and O3).   

• Objective 2.3: Determine relationships between respiratory health outcome 

measures for lung function and inflammation (exhaled nitric oxide, FVC, FEV1, 

and PEF) and traffic-related air pollutants (PM2.5, PM10, NO2, and O3) using data 

from the first year of the study that contained respiratory outcome measurements. 

• Aim 3: Investigate the long-term association between individual health outcomes 

(lung function, inflammation, MetS risk factors) and traffic-related GIS data for residents 

of low-income communities of El Paso, TX. 

• Objective 3.1: Assess the relationship between individual cardiovascular health 

outcomes of MetS (BMI, waist circumference, blood pressure, triglycerides, HDL-

cholesterol, and glucose) and traffic-related GIS data (distance to nearest major 

traffic road, traffic counts, total length of street within a 500m and 1000m radius, 

distance to nearest port of entry).   

• Objective 3.2: Determine if MetS classification (binary) is related to spatial 

transportation data. 
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• Objective 3.3: Determine the relationships between respiratory health outcome 

measures for lung function and inflammation (exhaled nitric oxide, FVC, FEV1, 

and PEF) and the spatially distributed traffic-related data among a subset of the data 

(the first year of the study with respiratory outcome measurements). 

The outline and relationship between outcome variables and measurements of air pollution 

exposure are outlined below (Figure 1.2) while Table 1.2 describes in more detail the variables to 

be considered by aim and population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
CAMS: Continuous Ambient Monitoring Station 

GIS: Geographical Information System 

MetS: Metabolic Syndrome 
 

Figure 1.2: Specific aims outline diagram 
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Table 1.2: Measures to be explored for each specific aim 

Specific 

Aim 

Air Pollution Outcome Population 

Aim 1  • PM2.5 (Continuous) 

• PM10 (Continuous) 

• NO2 (Continuous) 

• O3 (Continuous) 

 

• % time spent in moderate to 

vigorous physical activity 

(MVPA) 

• % time spent in light physical 

activity 

• % time spent in sedentary 

activity 

Children with 

asthma attending 

an elementary 

school near a 

heavy traffic 

road (2017) 

(N=12) 

Aim 2 

 

Short 

term 

exposure 

• PM2.5 (Continuous) 

• PM10 (Continuous) 

• NO2 (Continuous) 

• O3 (Continuous) 

 

 

 

 

• BMI (Continuous) 

• Waist Circumference 

(Continuous) 

• Mean Blood Pressure 

(Continuous) 

• Triglycerides (Continuous) 

• HDL (Continuous) 

• Glucose (Continuous) 

 

Residents from 

housing 

authority 

communities 

(2014-2015) 

(N=662) 

 

 

 

 

 

 

• Metabolic syndrome 

(Categorical) 

• eNO (Continuous) 

• FEV1 (Continuous) 

• FVC (Continuous) 

Aim 3 

 

Long 

term 

exposure 

• Distance to nearest 

high traffic road 

• Traffic count (VMT) 

within 500m & 

1000m radius (traffic 

MPO data) 

• Total length of street 

within 500m and 

1000m (Census data) 

• Distance to port of 

entry 

 

 

• BMI (Continuous) 

• Waist Circumference 

(Continuous) 

• Mean Blood Pressure 

(Continuous) 

• Triglycerides (Continuous) 

• HDL (Continuous) 

• Glucose (Continuous) 

 

Low-income 

residents from El 

Paso County 

(2014-2020) 

(N=4,959) 

 

• Metabolic syndrome 

(Categorical) 

• eNO (Continuous) 

• FEV1 (Continuous) 

• FVC (Continuous) 

Residents from 

housing 

authority 

communities 

(2014-2015) 

(N=662) 
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1.5 Research questions 

The main research question of this dissertation explores if there is an association between 

traffic-related air pollution and the health-related outcomes (physical activity, lung function and 

inflammation, and metabolic syndrome risk factors). The initial step was formulating a plan for 

data collection and defining any specific subgroups to sample. The objectives included collecting 

or retrieving health data from participants at their school/neighborhoods or at a convenient 

location. Air quality data were obtained through on-site monitoring and from the Texas Air 

Monitoring Information System (TAMIS) database for CAMS maintained by the Texas 

Commission of Environmental Quality (TCEQ), in the case of air pollutant concentrations; traffic-

related data were calculated using data available through the Census.gov website, the El Paso 

Metropolitan Planning Organization (MPO) TransCAD model, and the Department of 

Transportation (DOT) GIS mapping. Health-related data were obtained through the relevant 

studies, the Healthy Living and Traffic-Related Air Pollution in an Underserved Community study 

and the Evidence-Based Screening for Obesity, Cardiorespiratory Disease, and Environmental 

Exposures in Low-Income El Paso Households study. 

1.6 Theoretical framework 

1.6.1 TRAFFIC-RELATED AIR POLLUTANTS 

Air pollutants can originate from anthropogenic (man-made) sources or natural activities. 

In urban areas, the main sources of anthropogenic emissions include those associated with motor 

vehicle traffic (exhaust emissions; wear of tires, brakes, and roads), industrial activities (power 

plants, oil refineries, chemical facilities), housing (food cooking and heating), building 

(excavations, demolitions), as well as cigarette smoking and aerosol canisters. The work of this 

dissertation will explore the most common traffic-related air pollutants (PM, NO2, and O3). 
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The Environmental Protection Agency (EPA) classifies particulate matter (PM) in different 

size categories which determines their transport and depth of penetration into the respiratory and 

cardiovascular system; the categories include coarse particles (PM10) which have an aerodynamic 

diameter of 10μm or smaller; fine particulates (PM2.5) which have a diameter of 2.5μm or smaller; 

and ultrafine particles which have a diameter less than 0.1μm (Esworthy, 2013). Motor vehicle 

emissions are a major source of particulate matter (PM) in urban environments and can have a 

wide range (14 to 50%) of the total fine particle mass (Hailin et al., 2008; Sheesley, Schauer, 

Chowdhury, Cass, & Simoneit, 2003; Yu et al., 2013). Besides fuel emissions, PM is also 

generated by the wearing and breakdown of vehicle components such as brakes and tires, as well 

as suspension of road dust (de Kok, Driece, Hogervorst, & Briedé, 2006). Exposure to particulate 

matter is associated with heart and lung disease, irregular heartbeat, aggravated asthma, and 

decreased lung function (Atkinson et al., 2010a; Cadelis et al., 2014a; Andrew W. Correia et al., 

2013).  

Nitrogen dioxide (NO2) is one of a group of highly reactive gases known as oxides of 

nitrogen or nitrogen oxides (NOx = NO + NO2) and it is a primary indicator of emissions from 

cars, trucks and buses, and off-road equipment. Breathing air with a high level of NO2 can irritate 

the respiratory airways leading to inflammation and aggravate respiratory diseases, particularly 

asthma. This airway inflammation might lead to respiratory symptoms (such as coughing, 

wheezing or difficulty breathing), hospital admissions, and visits to emergency rooms (Alving, 

Weitzberg, & Lundberg, 1993). Furthermore, longer exposures to elevated concentrations of NO2 

may contribute to the development of asthma and potentially increase susceptibility to respiratory 

infections (Khreis et al., 2017).  
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Ozone (O3) is composed of three oxygen atoms and at ground level is formed through 

photolysis of NO2 in the presence of solar radiation and other precursor compounds such as nitrous 

compounds and various volatile organic compounds (VOC). Ozone is considered a highly reactive 

gas and its release into the environment depends on the presence of the precursor pollutants and 

the conditions promoting the transformations (heat and sunlight) (Krzyzanowski, 1997). When 

inhaled, ozone chemically reacts in the respiratory tract, leading to a number of adverse health 

effects (Nuvolone, Petri, & Voller, 2018). 

Because of the influence of traffic-related pollutants on human health, there has been a rise 

in studying their short-term and long-term impact (Abraído-Lanza, Echeverría, & Flórez, 2016; 

Shima, 2017). However, the differences in measurement methods make it difficult to generalize 

and compare findings between air pollution exposure studies (Xianglu Han & Luke P Naeher, 

2006). Nevertheless, increasing the amount of research by conducting air pollution exposure 

studies in our region adds knowledge about the impact of traffic-related pollutants which can be 

used to influence local policy changes. 

1.6.2 IMPACTS OF AIR QUALITY ON PHYSICAL ACTIVITY  

 In an air polluted environment, people who engage in outdoor physical activity are likely 

to have increased exposure to air pollutants compared to those who have a more sedentary lifestyle, 

which could be counterproductive to the promotion of physical activity, Nevertheless, the benefits 

of physical activity are essential for overall health; at least a mean of 30 minutes per day of light 

physical activity is recommended and moderate to vigorous physical activity should be 

incorporated when possible (Janssen & LeBlanc, 2010).   

Under controlled conditions, exposure to air pollutants during exercise showed reductions in 

exercise performance (Cutrufello, Rundell, Smoliga, & Stylianides, 2011) and lung function 
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(Cutrufello, Smoliga, & Rundell, 2012). Furthermore, increased levels of air pollutants have been 

associated with self-reported physical inactivity (Roberts, Voss, & Knight, 2014; X.-J. Wen, 

Balluz, Shire, Mokdad, & Kohl III, 2009). In summary, exposure to air-polluted environments 

might lead to negative health effects due to airway exposure to air pollutants and lack of physical 

activity.  

 Although, regular outdoor activities can significantly lower risk of metabolic syndrome 

(M. Chen et al., 2013), increased respiratory demand during physical activity may lead to higher 

deposition of air pollutants in the lungs (Giles & Koehle, 2014), which can lead to respiratory and 

cardiovascular problems resulting from exposure to air pollutants during outdoor physical activity 

(Le Tertre et al., 2002; Pope et al., 2015; Shah et al., 2013; Sharman, Cockcroft, & Coombes, 

2004). Therefore, there may exist a contrast of negative and positive health effects when 

performing physical activity in areas with higher air pollution. 

 Health risks of air pollution are thought to increase linearly with increased exposure from 

low to moderate levels of air pollution. Still, the benefits of physical activity (PA) also follow a 

linearly increased curve with increasing dose (Kelly et al., 2014). This paradox exposes the need 

to explore correlations between air pollutant exposure and other factors that impact health. Some 

studies have estimated the health benefits and risks of physically active traveling (e.g. cycling, 

walking) in different areas (Doorley, Pakrashi, & Ghosh, 2015; Gröning, 2004; Tainio et al., 2016). 

In these studies, the health benefits due to PA from increased active traveling were significantly 

larger than the health risks caused by increases in exposure to air pollution. Furthermore, Tainio 

and collaborators (2016) showed that promoting cycling and walking is justified in the vast 

majority of settings, and only in cities with a very high level of PM the risk might outweigh the 

benefit. 
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 Yet, the question remains whether a dose-response relationship between physical activity 

and air pollution applies to different types of activities and how it affects vulnerable groups. Other 

studies have shown that people with asthma (or even those with mild asthmatic symptoms) may 

have reduced physical activity and avoid aerobic fitness and leisure-time energy expenditure due 

to concerns about triggering asthma symptoms (Garfinkel, Kesten, Chapman, & Rebuck, 1992; 

Mälkiä & Impivaara, 1998). Given that asthma affects children at a young age, when they are 

likely to establish their health habits, it is important to emphasize physical activity with asthma 

patients (Mancuso et al., 2006). The U.S. management guidelines for asthma state that most 

patients can be controlled well enough to perform physical activity and that additional therapy 

options can be made available to them (Busse et al., 2007; Education, Program, Lung, & Asthma, 

1997). Therefore, it is in the best interest of those who have asthma to achieve a balance between 

having a healthy amount of physical activity and controlling their respiratory symptoms.   

 Unfortunately, the impact of air pollution on people with asthma often prevents people 

from achieving a physically active lifestyle. Participants with asthma who performed exercise in 

an environment that had high levels of pollution were at a higher risk of having an asthma attack 

(Sharman et al., 2004) and lung diseases (Giles & Koehle, 2014). Also, children with asthma living 

in low income communities are likely to have increased clinical asthma symptoms when they are 

exposed to short-term increases in air pollutants (Wendt, Symanski, Stock, Chan, & Du, 2014).  

 In conclusion, the importance of promoting physical activity for overall health conflicts 

with the negative consequences of physical activity in environments with high levels of air 

pollutants. Therefore, further research and improvement of exposure models to air pollutants are 

needed to compare physical activity but also other health outcomes to improve recommendations.   
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1.6.3 ASSOCIATION BETWEEN AIR QUALITY AND LUNG FUNCTION AND INFLAMMATION  

Expiratory function measured by spirometry is used as a marker for respiratory health. 

Regarding children’s respiratory health, a meta-analysis explored associations between primary 

traffic air pollutants (NO2, NO, NOx, PM2.5) and lung function in almost 5,000 children (Barone-

Adesi et al., 2015). The study showed an inverse association between most of the pollutants and 

both FEV1 and FVC. Furthermore, other studies have documented the association between 

residential air pollution exposure and reduced lung function in children with asthma (Delfino et 

al., 2008) and relationships with ozone and nitrogen dioxide levels (Ierodiakonou et al., 2016). 

Particulate matter can affect gas exchange within the lungs and can even penetrate the lung, 

Smaller particles behave similarly to gas molecules which allows them to reach into the circulatory 

system, eventually, these particles in the bloodstream can cause significant health problems (Shah 

et al., 2013). Also, research suggests associations between changing PM levels and acute-phase 

reactants, endothelial dysfunction, and altered autonomic control of the heart (Sun, Hong, & Wold, 

2010). This exchange between small particles and the circulatory system affects cardiovascular 

outcomes possibly due to oxidative stress and inflammation (Møller & Loft, 2010). Furthermore, 

a study by Hoffman and collaborators showed that residential exposure to traffic is associated with 

coronary heart disease (Hoffmann et al., 2007). 

1.6.4 ASSOCIATION BETWEEN AIR QUALITY AND METABOLIC SYNDROME  

Metabolic Syndrome is one of the major medical and public health problems in the U.S. 

affecting about 22.5% of adults in the U.S. (Beltrán-Sánchez, Harhay, Harhay, & McElligott, 

2013; Ford, 2005) and about one-quarter of the world population (Cameron, Shaw, & Zimmet, 

2004; Grundy, 2015; Saklayen, 2018). Evidence suggests exposure to air pollutants can alter 

biochemical pathways that control adipose tissue, increase the number of fat cells, alter food intake 
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and metabolism, influence release of inflammatory mediators, and affect glucose metabolism 

(Rao, Patel, Puett, & Rajagopalan, 2015; Wellen & Hotamisligil, 2003; Xu et al., 2003). Since the 

mentioned biochemical pathways contribute in the development of Mets risk factors (obesity, high 

blood pressure, altered lipids, and high blood glucose) air pollution contributes to the burden of 

MetS. 

In addition, air pollution may lead to type 2 diabetes and promote the development of 

several cardiovascular risk factors (such as elevated lipid profiles and blood pressure) (Bowe et 

al., 2018; Pope et al., 2015; Rao et al., 2015). Possible risks for this association include exposure 

to ambient pollutants from vehicles and industrial emissions; however, the link between 

inflammation and long-term air pollution exposure in humans is still lacking (J.-C. Chen & 

Schwartz, 2008). If such links were demonstrated, they might provide insights into the high 

prevalence of type-2 diabetes and cardiovascular disease.  

The goals of our proposed research are to better understand the relationship between 

health outcomes and air pollutants from anthropogenic sources related to traffic. The research 

scope of the presented studies will explore air pollution exposure in children with asthma and low-

income residents with risk factors related to cardiorespiratory diseases.  

A theoretical framework illustrating relationships between air pollution and 

cardiorespiratory outcomes is provided in Figure 1.3.  
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1.7 Air pollution in El Paso 

El Paso, Texas usually meets National Ambient Air Quality Standards for nitrogen dioxide, 

PM2.5, and ozone. However, its high desert location makes attainment of lower levels of coarse 

particles PM10 difficult. Previous studies have determined how anthropogenic sources, 

meteorological conditions, and topography cause variation on the concentration of air pollutants 

in the El Paso region. For example, traffic emissions from the El Paso-Ciudad Juarez international 

border crossings make up a sizable portion of the anthropogenic emissions in El Paso.  

Li and collaborators characterized the temporal and spatial variations, along with the 

composition of particulate matter (PM10 and PM2.5), and found their concentrations increase during 

the winter (W.-W. Li et al., 2001) . Also, a 2010 study across four schools determined that PM10 

concentration was greater in the area encompassed by the I-10 Freeway and the El Paso/Ciudad 

Juarez border highway (Raysoni et al., 2011). Furthermore, weekday traffic during peak hours 

contributes to increases in all traffic-related pollutants (Noble et al., 2003).   

Nitrogen dioxide has been found to predominate in central El Paso with lower values in 

the East and West sides of the city. In addition, a winter study showed significant variability in 

NO2 concentrations, which decreased as ground elevation increased in the city (Gonzales, Qualls, 

Hudgens, & Neas, 2005). This was further studied using GIS with elevation, population density, 

distance to border crossing and distance to a petroleum facility as useful predictive variables of 

NO2 concentration (Smith et al., 2006). Furthermore using land use regression showed that 

concentrations of NO2 increase during wintertime and in the central regions of the city (Gonzales 

et al., 2012).  

In contrast, ozone concentration seems to be consistent throughout the El Paso region. 

Although the ozone level has been declining when compared to other years, the 8-hour mean values 



 

 
21 

where exceeded at three CAMS in 2017. A combination of high surface temperatures, strong 

sunlight, and high concentrations of precursor gases could be the causes of high ozone 

concentrations (MacDonald et al., 2001).  

1.8 Cardiorespiratory health issues in El Paso 

Health issues of high prevalence in El Paso and its border region include asthma and 

chronic diseases. At El Paso Children’s Hospital, asthma without any further complications is the 

most prevalent General Pediatrics diagnosis, and in the Pediatric Intensive Care Unit, bronchitis 

and asthma with complications is the most prevalent diagnosis, followed by bronchitis and asthma 

without complications and diabetes without complications (McGladrey, 2014) 

Regarding cardiovascular risk factors, according to the Conduent Healthy Communities 

Institute, nearly 35% of El Paso County adults reported not having a cholesterol check in five or 

more years. Also, the prevalence rates of high blood pressure (25%) and type 2 diabetes (15.1%) 

are higher than state and U.S. rates (Healthy Paso Del Norte, 2017). Furthermore, a 2016 study 

determined the prevalence of MetS in Hispanic residents of low-income communities and found 

it affects more than 50% of their selected population (Aguilera, 2016). 

1.9 Healthy People 2020  

Healthy People 2020 outlines several objectives that are addressed in this research. 

Regarding air pollution, the third objective under the Environmental Health topic (EH-3) aims to 

reduce air toxic emissions to decrease the risk of adverse health effects caused by mobile, area, 

and major sources of airborne toxics.  

In terms of physical activity (PA), PA-3 aims to increase the proportion of adolescents who 

meet current Federal physical activity guidelines for aerobic physical activity and for muscle-
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strengthening activity and PA-4 aims to increase the proportion of the Nation’s public and private 

schools that require daily physical education for all students 

MetS is a risk factor for cardiovascular disease and under the Heart Disease and Stroke 

(HDS) topics there are several related objectives. HDS-1 is to increase the overall CVD health 

among the U.S. population and HSD-2 is to reduce coronary heart disease death. Some of the MetS 

risk factors are addressed as well by the HSD objectives. HSD-4 aims to increase the proportion 

of adults who have had their blood pressure measured within the preceding 2 years and can state 

whether their blood pressure was normal or high and HDS-6 aims to increase the proportion of 

adults who have had their blood cholesterol checked within the preceding 5 years.  

Another topic outlined in Healthy People 2020 related to the outcome variables explored 

in this dissertation is Nutrition and Weight Status (NSW). NSW-8 aims to increase the proportion 

of adults who are at a healthy weight. NWS-9 aims to reduce the proportion of adults who have 

obesity. Lastly, under the topic of Social Determinants of Health, AHS-1 is to increase the 

proportion of persons with health insurance (Health & Services, 2013; HealthyPeople, 2020) 

 

1.10 Ethical aspects 

 Awareness by researchers of bioethical concepts was crucial to deliver a better experience 

for our participants. We followed the National Institutes of Health (NIH) provided guidelines for 

the inclusion of women, children, and minorities in research studies. The data from human 

participants used in this dissertation came from studies that have been approved by an institutional 

review board (IRB). The presented research also followed the same steps to ensure we do not 

violate anyone’s rights, ensure the relevance of the research proposed, and position the researchers 

as the appropriate team to conduct the study.  
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Participants’ autonomy needs to be respected; therefore, all of our participants went through a 

consent (and assent when applicable) process in which they became aware of their risks and 

benefits and were assured they could decide whether to participate or not. In the relevant studies, 

following the principle of non-maleficence, we guaranteed no risk or minimal risk. Regarding 

beneficence, being part of the presented studies study might not have a direct effect on a participant 

but did allow us to understand a topic for the better of the community. Finally, following the 

principle of justice, we did our best ensure everyone had equal rights to be included as participants 

in each of the studies (Beauchamp & Childress, 2009).  

1.11 Practice model 

 This dissertation evaluated the association and detrimental health effects of air pollution 

on health and implications regarding physical activity and cardiorespiratory diseases. 

Dissemination of the findings of this research will be brought first to the community through local 

news media and health networks which include the Joint Advisory Committee (JAC) that serves 

as the local community-based organization overseeing the process to achieve cleaner air for the 

Paso del Norte region. In addition, presenting this research will further enhance our existing 

relationships with other community advocates, program coordinators, and service providers to 

facilitate policy change within the El Paso community. Furthermore, results will be shared through 

regional and national conferences. Mitigation strategies to reduce the impact of air pollutants in 

the community will be disseminated separately and presented as a policy brief. A practice model 

is provided in Figure 1.4. 
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Figure 1.4: Practice model 
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CHAPTER 2 MODERATE TO VIGOROUS PHYSICAL ACTIVITY 

LEVELS NEGATIVELY CORRELATE WITH TRAFFIC RELATED AIR 

POLLUTANTS IN CHILDREN WITH ASTHMA ATTENDING A SCHOOL 

NEAR A FREEWAY 

 

2.1 Introduction 

In a polluted environment, people who engage in outdoor physical activity are likely to 

have increased health risk compared to those who have a more sedentary lifestyle, which could be 

counterproductive to the promotion of physical activity 

2.1.1 EXPOSURE TO AIR POLLUTANTS AND PHYSICAL ACTIVITY 

Physical activity is essential for overall health (Janssen & LeBlanc, 2010).  Regular 

outdoor activities, like walking, jogging, or dancing, can lead to a significantly lower risk of 

cardiovascular disease and metabolic syndrome (M. Chen et al., 2013). However, outdoor physical 

activity also exposes people to air pollutants which might lead to adverse health problems such as 

cardiovascular (Le Tertre et al., 2002; Sharman et al., 2004) or respiratory diseases (Pope III, 

Ezzati, & Dockery, 2009; Shah et al., 2013). 

During physical activity, a higher deposition of air pollutants in the lungs may occur due 

to increased respiratory intake (Giles & Koehle, 2014). In controlled studies, the exposure to air 

pollutants during exercise has led to a reduction in performance (Kenneth W. Rundell, Slee, 

Caviston, & Hollenbach, 2008) and inhalation of airborne particles during exercise has been 

associated with reduction in lung function (Cutrufello et al., 2012). Also, increased levels of air 

pollutants are associated with self-reported inactivity (Roberts et al., 2014; X.-J. Wen et al., 2009). 

For this reason, exposures to an environment with an increased level of air pollution might lead to 

adverse health effects due to airway exposure to airborne pollutants and lack of physical activity. 
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2.1.2 AIR POLLUTANTS IN THE SCHOOL ENVIRONMENT 

Research suggests that spending time in an environment near heavy traffic is particularly 

harmful to children. Children attending elementary school spend about 6-8 hours per day in various 

school microenvironments. Outdoor activities are relatively common in elementary schools due to 

the lack of indoor playgrounds. In many countries, severe conditions of air pollution frequently 

require the cancellation of physical or sport activities in elementary schools, which may lead to an 

increase in sedentary behavior and contribute to the overweight and obesity epidemic (Giles & 

Koehle, 2014). This is particularly important for schools located near busy traffic intersections or 

freeways where children may be exposed to an even higher level of traffic pollution. Among the 

traffic-related air pollutants that children of roadside communities are commonly exposed are 

coarse particulate matter (PM10 or particles less than 10µm in aerodynamic diameter), fine 

particulate patter (PM2.5 or particles less than 2.5µm in aerodynamic diameter), nitrogen dioxide 

(NO2), and ozone (O3). 

2.1.3 PHYSICAL ACTIVITY IN THOSE WHO HAVE ASTHMA 

People with asthma (or even those with mild asthma symptoms) may engage less in 

physical activity, avoid aerobic fitness, and reduce leisure-time energy expenditure due to concerns 

of triggering asthma symptoms (Garfinkel et al., 1992; Mälkiä & Impivaara, 1998). Given that 

asthma affects children at a young age when they are likely to establish their health habits, it is 

important to emphasize physical activity with asthma patients (Mancuso et al., 2006). National 

management guidelines for asthma state that the majority of patients can be controlled well enough 

to perform physical activity and that additional therapy options can be made available to them 

(Busse et al., 2007; Education et al., 1997). Therefore, it is in the best interest of those who have 
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asthma to achieve a balance between having a healthy amount of physical activity and controlling 

their respiratory symptoms.  

 However, the impact of air pollution on people with asthma often prevents them from 

achieving a physically active lifestyle. In controlled studies, among the groups exposed to higher 

concentrations of air pollutants, there was a higher risk of having an asthma attack (Sharman et 

al., 2004) and lung diseases (Giles & Koehle, 2014). Children with asthma living in low- income 

communities are likely to have increased clinical asthma symptoms when they are exposed to 

short-term increases in air pollutants (Wendt et al., 2014).  

In summary, the importance of promoting physical activity for overall health benefits 

conflicts with the negative consequences of physical activity in environments with high levels of 

air pollutants. Although air quality is a concern in school environments, since studies have 

documented that air pollutants are inhaled into lungs during exercise and that people with asthma 

may reduce or avoid physical activity cardiovascular (Garfinkel et al., 1992; Le Tertre et al., 2002; 

Mälkiä & Impivaara, 1998; Pope III et al., 2009; Shah et al., 2013; Sharman et al., 2004), there are 

no studies that assess changes in air quality over time and how those changes correlate with 

objectively measured physical activity in children with asthma in a school setting. The findings of 

this study are expected to fill this gap and inform the implementation of policies and health 

recommendations for communities to reduce the adverse impact of air pollution on physical 

activity in school settings.  

2.2 Methods  

2.2.1 SETTING, POPULATION, AND SAMPLE 

This study was conducted in El Paso, Texas from October to December 2017 at an 

elementary school located within 50 ft of a heavy traffic freeway. Air pollutants and concurrent 
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meteorological data were continuously monitored through the duration of the study. Physical 

activity was assessed weekly during school hours. The Institutional Review Board (IRB) of The 

University of Texas at El Paso approved the protocol for this study prior to participant recruitment 

and data collection. 

Children with asthma were recruited by contacting the school nurse and disseminating 

flyers to each student. The participant’s parent or legal guardian provided written consent and 

children provided assent. English and Spanish versions of consent and assent forms were available 

for the participants and their parents or guardians. The selection criteria for the study included 

children between 6 and 12 years with a physician diagnosis of asthma and no other lung disease, 

no major illness, and living in a non-smoking household. Twelve children satisfied the eligibility 

requirements and participated in the study. 

At the start of the study, parents were asked to answer a baseline questionnaire that 

provided information on health status, current allergies, insurance status, medication usage, 

household characteristics, symptoms and activity limitation due to symptoms, emergency room 

visits, and hospital admissions. In addition, each Friday during the study, the participants answered 

questions about symptoms and medication use using the Asthma Control Questionnaire (ACQ) 

(Juniper, Gruffydd-Jones, Ward, & Svensson, 2010). English and Spanish versions were available.  

Physical activity rates categorized by activity intensity rated as moderate to vigorous 

(MVPA), light, and sedentary were measured using an accelerometer (wGT3X-BT; ActiGraph). 

During the Friday data collection visits, the accelerometer was placed on the wrist of the 

participants and kept during school hours. Physical activity rates were calculated using the 

ActiLife (V.6.13.3) software using the children algorithm (Pamty Freedson, 2005). The software 
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allowed determination of a participant’s percentage of time in either sedentary, light, or MVPA 

during a specific time window (9:00 AM to 2:00 PM). 

Air pollutants were continuously measured throughout the study in an outdoor environment 

close to the school. Air monitors were placed in a fenced area immediately adjacent to Highway 

I-375 within the school premises. The analysis included measurements for PM10, PM2.5, NO2, and 

O3. PM2.5 and PM10 mass concentrations were measured using GRIMM Technologies Aerosol 

Spectrometer 11-A. NO2 measurements were obtained using 2B Technologies Model 405 

NO2/NO/NOx. Ozone (O3) was measured using 2B Technologies Model 202. Temperature and 

relative humidity were collected from the weather station located at El Paso International Airport. 

Air pollution data recorded at the Texas Commission on Environmental Quality (TCEQ) operated 

continuous ambient monitoring stations (CAMS) at Chamizal were used for comparison of site-

specific PM2.5, PM10, and O3 data. Another CAMS site at Ascarate Park was used to compare NO2 

(Figure 2.1). Hourly measurements were averaged to calculate values for 96, 72, 48, and 24-hours 

prior to the physical activity measurements. 
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Figure 2.1: Location of school and CAMS stations 

2.2.2 DATA ANALYSIS 

 Descriptive statistics were calculated to assess air pollution metrics and physical activity 

(MVPA/light/sedentary) status. Correlation analyses using Spearman correlation were conducted 

to explore relationships between physical activity, and outdoor pollutant concentrations. Summary 

statistics of subject demographic information and air pollution metrics were calculated. Physical 

activity outcomes between the subject-specific factor groups (%time spent in sedentary, light, or 

moderate to vigorous physical activity) were compared using Kruskal-Wallis test.  

Longitudinal associations between MVPA/sedentary physical activity measures and air 

pollution metrics were examined using generalized estimating equations (GEE) approach (Liang 

& Zeger, 1986). We assumed the subject-specific cluster and exchangeable correlation structure 

for the repeated measures of the physical activity data.  
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Separate models were run for each pollutant variable of interest (PM concentrations, NO2, 

or O3) with various exposure periods (previous 24-hr, 48-hr, 72-hr, or 96-hr means). 

Meteorological variables such as temperature and relative humidity, were averaged over the same 

periods of time. We expanded our analysis to include up to 96-hr averages of pollution prior to the 

physical measurements since an effect of air pollutants on physical activity might require more 

exposure time to manifest a change in time spent in physical activity 

96-hr means of temperature and relative humidity showed strongest associations with 

response outcome, and as a priori fixed covariates in all models, we controlled for the 96-hr 

temperature and relative humidity. Effect estimates for each measurement are presented as the 

percent change in rate of physical activity per increase in pollutant concentrations. A p < 0.05 was 

considered statistically significant. All statistical analyses were performed using R version 3.2.2.  

2.3 Results 

 We considered various exposure windows for the outdoor pollutants. Hourly 

measurements were aggregated into 24-hr, 48-hr, 72-hr, and 96-hr means. Hourly concentrations 

measured at the nearest CAMS location were also averaged over the same periods for comparisons. 

Descriptive statistics for air pollutant concentrations are listed in Table 2.1. Table 2.1 also 

compares the site-specific and CAMS ambient concentrations, averaged for the 96-hr exposure 

time. The mean concentrations at CAMS monitoring site were lower than the school 

measurements, with a tendency for larger variations than those at the school. 

 

 

 

 



 

 
32 

Table 2.1: Summary statistics for school and ambient pollutant metrics: mean, standard deviation 

(SD), median, interquartile range (IQR), minimum (min), and maximum (max) 

Pollutant 24-hr 48-hr 72-hr 96-hr 

96-hr 

(CAMS) 

PM2.5 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 

Mean 12.52 11.73 11.48 12.16 10.17 

SD 3.71 2.40 1.88 2.80 5.25 

Median 13.15 11.13 11.35 11.27 9.75 

IQR 4.91 4.14 3.12 4.07 5.22 

Max 18.86 15.65 14.33 17.58 18.69 

Min 6.33 8.98 8.60 8.61 3.40 

PM10 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 

Mean 45.30 43.05 42.55 44.94 36.89 

SD 17.36 12.47 8.70 9.13 12.43 

Median 40.30 38.47 40.32 45.84 38.67 

IQR 24.57 19.06 11.93 9.56 16.84 

Max 74.14 62.31 56.99 60.10 51.61 

Min 24.49 25.87 31.36 28.54 13.84 

NO2 ppb ppb ppb ppb ppb 

Mean 17.63 18.20 18.40 18.94 17.90 

SD 6.06 3.25 3.06 3.72 5.11 

Median 19.22 18.59 18.47 19.04 16.33 

IQR 7.81 4.76 2.76 4.96 5.20 

Max 26.17 22.16 22.70 23.64 27.13 

Min 7.21 12.20 12.17 11.62 13.02 

O3 ppb ppb ppb ppb ppb 

Mean 21.41 20.37 21.75 20.35 19.85 

SD 10.51 6.66 7.25 5.47 5.08 

Median 19.60 18.94 19.37 18.29 18.85 

IQR 18.09 11.69 12.32 8.57 7.51 

Max 38.90 31.13 34.52 29.71 28.43 

Min 9.16 12.52 13.86 15.59 14.81 

 

Table 2.2 includes summary statistics of participants’ age, anthropometric measures, and 

physical activity rates by level (MVPA, light, and sedentary). The mean age for the participants 

was 8.3 years (SD=1.5) and mean body mass index (BMI) was 17.9 (SD=5.0). The mean BMI-

for-age percentile was 49.8±41.2. The mean (±SD) physical activity levels for MVPA, light, and 

sedentary activity were 63.4% (±8.2%), 10.1% (±1.7%), and 26.5% (±0.079%), respectively. A 
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pairwise t-test indicated the three activity levels were significantly different from each other (all 

p-values <0.001, with Bonferroni adjustment).  

Table 2.2: Summary of subject demographics and physical activity information 
Variable mean ± SD range 

Age (yrs) 8.3 ± 1.5 (6-10) 

Height (in) 54.3 ± 4.4 (46.3-70.0) 

Weight (lb) 76.3 ± 27.3 (45.8-134) 

BMI (kg/m2) 17.9 ± 5.0 (12.3-27.8) 

BMI (%) 49.8 ± 41.2 (0-99.4) 

Physical Activity (%, N=102)    

     MVPA 63.4 ± 8.2 (30.4-77.7) 

     Light 10.1 ± 1.7 (7.1-14.4) 

     Sedentary 26.5 ± 7.9 (13.7-61.7) 

 

The subject-specific factors including medication information are characterized in Table 

2.3. Rates of MVPA and sedentary activities by their factor levels were compared using Kruskal-

Wallis test to examine whether the mean rates between factor levels were statistically different. 

The test results showed significantly different rates for some factors (gender, BMI category, father 

with asthma status, siblings with asthma, having eczema, health insurance, smoking status) and 

medications (Leukotrieneblockers [LB], Long-acting bronchodilators and inhaled corticosteroids 

[LABAIC], and Nasal corticosteroids [NC]) with both MVPA and sedentary activities (see bold 

p in Table 2.3). For example, types of insurance, i.e., Medicaid vs. private, was a significant factor 

(p = 0.003) to have different rates in the MVPA, participants with Medicaid spent more time in 

MVPA (0.665) than those with private insurance (0.612). Conversely, participants with Medicaid 

spent less time in sedentary activities (0.239) than those with private insurance (0.279, p =0.039). 
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Table 2.3: Summary Statistics of subject specific factors and physical activity rates per factor level. 
Subject-specific Factor Frequency,% Physical activity 

 (N=12) MVPA p* Sedentary p* 

Sex       
  

  Male 7 58% 65.8% 0.001 24.2% 0.001 

  Female 5 42% 60.0%  29.2%  

BMI category   
      

  Underweight & Normal 8 67% 61.9% 0.010 28.4% < 0.001 

  Overweight & Obesity 4 33% 66.5%  22.6%  

Mother with Asthma 5 42% 63.2% 0.895 26.1% 0.503 

    No 7 58% 63.6%  26.7%  

Father with Asthma 3 25% 60.9% 0.041 28.8% 0.032 

    No 9 75% 64.3%  25.7%  

Mother with Hay Fever 8 67% 63.4% 0.944 26.3% 0.595 

    No 4 33% 63.5%  26.8%  

Father with Hay Fever 8 67% 62.7% 0.305 26.9% 0.511 

    No 4 33% 64.8%  25.6%  

Siblings with Asthma 6 50% 61.2% 0.005 28.8% 0.001 

    No 6 50% 65.6%  24.1%  

Siblings with Hay Fever 8 67% 63.0% 0.602 27.2% 0.169 

    No 4 33% 64.2%  25.1%  

Having Eczema 3 25% 66.8% 0.012 23.2% 0.011 

    No 9 75% 62.2%  27.7%  

Allergic Phenotype (Aeroallergens) 8 67% 63.1% 0.597 26.7% 0.794 

    No 4 33% 64.1%  26.0%  

Allergic Phenotype (Food) 3 25% 61.8% 0.143 27.4% 0.366 

    No 9 75% 64.1%  26.1%  

Caretaker Education   
      

  Less than or Equal to High School 6 50% 63.8% 0.997 26.3% 0.771 

  Greater than High School 6 50% 63.1%  26.6%  

Health Insurance Coverage (N=11)   
      

  Medicaid 6 55% 66.5% 0.003 23.9% 0.039 

  Private 5 45% 61.2%  27.9%  

Smoking (outside of household) 2 17% 59.9% 0.013 29.9% 0.010 

    No 10 83% 64.2%  25.7%  

Cooking Fuel   
      

  Electric 1 8% 68.7% 0.035 22.7% 0.127 

  Gas 11 92% 62.9%  26.8%  

Leukotrieneblockers (LB)** 7 58% 66.4% < 0.001 23.7%  < 0.001 

    No   5 42% 59.4%  30.3%  

Short-acting bronchodilators (SABA) 7 58% 62.8% 0.155 27.3% 0.065 
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Subject-specific Factor Frequency,% Physical activity 

    No 5 42% 64.4%  25.2%  

Inhaled corticosteroids (IC) 6 50% 63.2% 0.894 26.1% 0.493 

    No 6 50% 63.6%  26.8%  

Long-acting bronchodilators and inhaled 

corticosteroids (LABAIC) 2 17% 
68.1% 

0.012 
22.0% 

0.013 

    No 10 83% 62.6%  27.2%  

Nasal corticosteroids (NC) 4 33% 66.8% 0.003 23.4% 0.007 

    No 8 67% 61.7%  28.0%  

Systemic corticosteroids (SC) 2 17% 64.6% 0.641 25.3% 0.791 

    No 10 83% 63.2%  26.7%  

*p for mean difference in physical activity between factor levels using Kruskal-Wallis test. 

** All medications are expressed in italic.  

2.3.1 MODELS PREDICTING PHYSICAL ACTIVITY DATA 

Table 2.4 presents effect estimates using GEE models, 95% confidence intervals, and 

corresponding p. We scaled the effects to interquartile range (IQR) increases in pollutant metrics 

to compare the magnitude of effect across different scales of the pollutant concentrations. The 96-

hr school pollutant concentrations (PM2.5, PM10, and NO2) were negatively associated with 

moderate to vigorous physical activity (p<0.001 for PM; p =0.036 for NO2), whereas they were 

positively associated with sedentary activity (p<0.001 for PM; p=0.019 for NO2). The relationship 

between 96-hr O3 and moderate to vigorous activity was not significant (p=0.661). However, the 

72-hr maximum ozone data were associated with a decreased rate in moderate to vigorous activity 

(p=0.001). 

The 96-hr mean ambient PM and NO2 concentrations at the Ascarate CAMS were 

significantly associated with physical activity levels, showing consistent patterns of association 

with 96-hr school concentrations. The largest percent time spent in MVPA per school pollutant 

increase in IQR was observed in the association between 96-hr PM2.5; 3.45% decrease in MVPA 

(95% CI: -5%, -1.9%). We have a similar amount of percent change in sedentary activity [3.43% 

increase (95% CI: 1.78%, 5.09%)] as the IQR in PM2.5 increases.  
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Table 2.4: Overall associations between moderate to vigorous (MVPA) and sedentary physical 

activity and pollutant metrics. 

  

 

 

Pollutant 

  

IQR 

MVPA Sedentary 

Change  

in rate 

per IQR 

95% 

CI 

lower 

95% 

CI 

upper p  

Change  

in rate 

per IQR 

95% 

CI 

lower 

95% 

CI 

upper p 

PM2.5 

24-hr 4.91 0.47% -0.54% 1.48% 0.365 -0.96% -1.92% 0.01% 0.051 

48-hr 4.13 0.80% -0.37% 1.96% 0.180 -1.53% -2.75% -0.31% 0.014 

72-hr 3.11 -1.71% -2.95% -0.46% 0.007 1.43% 0.24% 2.61% 0.018 

96-hr 4.07 -3.45% -5.00% -1.90% < 0.001 3.43% 1.78% 5.09% < 0.001 

96-hr 

CAMS  5.22 -3.86% -6.12% -1.59% 0.001 4.04% 1.71% 6.37% 0.001 

PM10 

24-hr 24.57 -0.43% -1.50% 0.64% 0.427 -0.06% -0.99% 0.87% 0.902 

48-hr 19.05 -0.58% -1.66% 0.50% 0.293 -0.17% -1.18% 0.83% 0.735 

72-hr 11.93 -1.32% -2.24% -0.39% 0.005 1.00% 0.09% 1.91% 0.031 

96-hr 9.56 -1.59% -2.37% -0.81% < 0.001 1.51% 0.69% 2.34% < 0.001 

96-hr 

CAMS 16.84 -2.87% -4.65% -1.08% 0.002 3.07% 1.19% 4.95% 0.001 

NO2 

24-hr 7.81 -0.45% -1.71% 0.82% 0.489 0.43% -0.62% 1.47% 0.424 

48-hr 4.76 -0.28% -1.41% 0.85% 0.626 0.29% -0.72% 1.30% 0.574 

72-hr 2.76 -0.60% -1.30% 0.11% 0.098 0.66% -0.06% 1.38% 0.075 

96-hr 4.96 -1.35% -2.62% -0.09% 0.036 1.52% 0.25% 2.79% 0.019 

96-hr 

CAMS 5.19 -0.78% -1.53% -0.04% 0.040 0.63% -0.12% 1.38% 0.099 

O3 

72-hr 

MaxO38hr 9.94 -3.99% -6.35% -1.63% 0.001 4.62% 2.15% 7.08% < 0.001 

24-hr 18.10 -0.25% -3.51% 3.01% 0.881 1.16% -2.10% 4.43% 0.486 

48-hr 11.69 -1.31% -4.01% 1.40% 0.344 2.07% -0.85% 4.98% 0.164 

72-hr 12.32 -0.66% -2.33% 1.01% 0.437 1.41% -0.37% 3.19% 0.120 

96-hr 8.57 -0.33% -1.81% 1.15% 0.661 0.49% -1.05% 2.04% 0.530 

96-hr 

CAMS  7.50 -0.04% -1.51% 1.43% 0.955 0.24% -1.34% 1.82% 0.766 

2.4 Discussion 

2.4.1 PRINCIPAL FINDINGS  

Measurements at the school showed that the mean 96-hr average concentration for each of 

the pollutants was higher than what was reported by the reference CAMS stations (Table 2.1). This 

would indicate that a higher exposure to air pollutants took place at this site compared to the 

“central-site”, which is typically reported at a publicly operated CAMS location for the region. 

The proximity to a major freeway could potentially lead to adverse health outcomes for children 

attending the elementary school and participating in outdoor activities. In addition, as observed 
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from the pollutant concentrations, we can infer that the larger time windows considered (72/96-hr) 

provide a better representation of the current air pollutant exposure for physical activity at the 

study site. 

We found negative correlations between the 96-hr means of PM2.5, PM10, and NO2 at the 

schools and the amount of time spent in MVPA during school hours. In contrast, sedentary activity 

was positively correlated with air pollutant concentrations. We could not find previous studies that 

directly observed the effects of pollutants on physical activity. However, some studies have 

demonstrated adverse health effects related to physical activity. For example, in healthy males, 

inhalation of particulate matter during exercise leads to adverse respiratory health related to 

reduced lung function (Kenneth W. Rundell et al., 2008). Furthermore, a study conducted in 

California noted a positive association between wheezing and increase levels of NO2 pollutants 

(Peters et al., 1999).  

In addition, meteorological parameters (humidity and temperature) were also controlled 

for the approach we took in this study. We initially found positive correlations with O3 and physical 

activity, possibly because high O3 days imply more sunshine (less cloud cover) and increased 

outdoor temperatures. Consequently, the outdoor environment is more inviting for outdoor 

activities during winter months. Once the statistical approach considered meteorology factors, 

associations with O3 were in the same direction as the other pollutants but were not significant. 

However, the use of maximum 8-hr mean values of O3 did yield a significant association. Some 

studies that have looked at O3 exposure showed that a high daytime O3 concentration was 

consistent with an increased likelihood of new-onset of asthma or exacerbation of undiagnosed 

asthma in physically active children (McConnell et al., 2002). This could mean that O3 levels affect 

differently, or that the effects might be more significant if the values reach a certain threshold. 

2.4.2 COMPARISON WITH OTHER STUDIES 

We noticed differences in physical activity rates between sexes which are consistent with 

other published values (Trojano, 2008) but not with BMI. In this study, children with overweight 
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and obesity were more physically active than underweight and children with normal weight. We 

found correlations between health insurance and physical activity rates which could be related to 

the asthma severity and more frequent visits in the Medicare setting when compared to those in 

the private setting. A study among children with asthma aged 3 to 17 showed that those enrolled 

in Medicaid were more likely to have a preventive care visit during the last year, and about half of 

them did receive a clinician’s advice about physical activity (Perry & Kenney, 2007).  

Having a father or a sibling with asthma (but not a mother) was significantly correlated 

with more time spent in sedentary behavior and less time spent in MVPA. This is somewhat 

consistent with a study in Canada which found that having a parent with asthma increased the odds 

of asthma and wheezing outcomes (Barry et al., 2014). This same study found increased odds of 

symptom severity if a mother was a previous smoker but did not report any data on having either 

a father or a sibling with asthma. 

The treatment options for children with asthma depend on the severity of their condition 

(Masoli, Fabian, Holt, Beasley, & Program, 2004). Those with persistent asthma are recommended 

to take inhaled corticosteroids (ICS) in order to control airway inflammation. The addition of long-

acting β2-agonist (LABA) for patients is an option for those who remain symptomatic with ICS 

treatment only (Partridge, van der Molen, Myrseth, & Busse, 2006). Higher levels of MVPA in 

children using some medications could be a result of increased control over asthma symptoms. 

Furthermore, in a study in healthy adults, pre-treatment with an LB (Montelukast) before exercise 

attenuated the effects of PM inhalation in endothelial dysfunction (a cardiovascular health marker) 

(Kenneth W Rundell, Steigerwald, & Fisk, 2010).    

 Regarding physical activity, a study looking into perceptions of health benefit vs. detriment 

of exercise, researchers found participants with a more severe asthma condition were more likely 
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to believe exercise was not good for their asthma (Mancuso et al., 2006). In another study that 

included 27 adults with mild to moderate asthma, exercise participation was rated only 1.6 in a 4-

point physical activity scale (Garfinkel et al., 1992). Among children with asthma, the severity of 

the disease and parental beliefs about physical activity and asthma predicted the activity level, 

although this was based on self-reported data (Lang, Butz, Duggan, & Serwint, 2004).  

2.4.3 STRENGTHS AND LIMITATIONS 

Measuring physical activity in children is difficult. Children tend to have short bursts of 

activities that are more difficult to measure when compared to adults (van Gent et al., 2007). The 

gold standard for assessing physical activity is the double-labeled water method (Westerterp, 

2009). However, this method does not provide data about activity patterns and is expensive and 

more logistically challenging. Accelerometers record movement of the specific part of the body to 

which they are attached and thus differences in types of physical activities are mostly accurate 

(van Gent et al., 2007) and correlate reasonably with the gold standard (Plasqui & Westerterp, 

2007).  

The sample size was small given the few number of students that have an asthma diagnosis 

attending the school. However, during the ten weeks of the study, the children followed the study 

protocol, and we managed to obtain a sizeable number of repeated measurements (N=102). Also, 

GEE models allowed us to account for individual factors which further validates the longitudinal 

associations with the mentioned traffic-related air pollutants. 

Although this study was longitudinal (repeated measures within individuals over time), 

there might be latent variables that affect children with asthma; therefore, cause and effect cannot 

be inferred from the results. Further research is recommended regarding the effect of air pollution 
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and the physical activity of children with asthma. In future work, expanding this framework to 

include children without asthma (control group) could strengthen findings.  

2.5 Conclusion 

 To our knowledge, this is the first study to characterize the effects of traffic-related air 

pollutants in children with asthma using objective measures of physical activity. Our findings 

suggest that school-based monitoring of air pollutants is an indicator of the health risk of children’s 

exposures and the impact on their physical activity. A higher concentration of traffic-related 

pollutants over 72 and 96-hour exposures seems to have a greater impact on time spent on physical 

activity in children with asthma.  

During physical activity, changes in the frequency of breathing patterns as well as a switch 

to predominantly oral respiration and bypass of nasal filtration could exacerbate the effects of air 

pollutants. Assuming the adverse health effects are related to the amount of pollutants inhaled, in 

children with asthma this might indicate a decrease in time spent in MVPA with a subsequent 

increase in sedentary behavior in an outdoor environment. 

This research work will also aid in the formulation of healthy living recommendations in 

this border region such as placement of natural barriers (shade trees, shrubs, natural vegetation, 

green roofs) at the school to mitigate the effects of air pollutants.   
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CHAPTER 3 SHORT TERM EFFECTS OF TRAFFIC RELATED AIR 

POLLUTION ON CARDIORESPIRATORY OUTCOMES AMONG LOW 

INCOME RESIDENTS FROM EL PASO 

3.1 Introduction 

3.1.1 EFFECTS OF AIR POLLUTANTS ON CARDIORESPIRATORY HEALTH  

People living in areas with higher exposure to air pollution, compared with those in less 

polluted areas, have higher mortality rates and stronger associations with cardiorespiratory disease 

(Dockery et al., 1993; Pope et al., 1995). Also, those living in areas with high air pollution have 

increased likelihood of negative health outcomes like heart and lung disease, irregular heartbeat, 

aggravated asthma, and decreased lung function (Atkinson, Fuller, Anderson, Harrison, & 

Armstrong, 2010b; Cadelis, Tourres, & Molinie, 2014b; Andrew W Correia et al., 2013). In recent 

decades, many cardiorespiratory biomarkers have been identified and studied in relation to air 

pollution exposure (Rom, Boushey, & Caplan, 2013).  

Cardiorespiratory biomarkers can be considered valuable indices of a change in disease risk 

of air pollution exposure, even if not all of them are in the causal pathway for development of a 

disease (Thurston et al., 2017). For example, exhaled Nitric Oxide (eNO) is a biomarker of airway 

inflammation, which is an important determinant of respiratory outcomes and disease (Trachsel et 

al., 2008). On the other hand, lung function measured by spirometry offers respiratory markers 

that are affected by exposure to air pollutants in healthy adults and those with a preexisting lung 

disease (Paulin & Hansel, 2016). Both airway inflammation and decreased lung function have also 

been linked to the effects of traffic-related pollutants in children (Barraza-Villarreal et al., 2008; 

Holguin et al., 2007).  
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There is also evidence of relationships of air pollutants and negative cardiovascular 

outcomes. A couple of studies showed that yearly mean concentrations of particulate matter have 

been associated with higher hospitalization risks, congestive heart failure, and recurrent heart 

attack among patients with previous myocardial infarction (Zanobetti & Schwartz, 2005, 2007). 

Additional studies have looked at the effects of traffic-related air pollutants together with 

components related to metabolic syndrome, a predictor of cardiovascular disease, which includes 

waist circumference, blood pressure, triglycerides, HDL-cholesterol, fasting glucose LDL-

cholesterol, and HbA1c (Clementi et al., 2019). Furthermore, a recent meta-analysis suggested that 

short-term exposure to some air pollutants such as particulate matter, NO2, and O3 may increase 

the risk of hypertension (Cai et al., 2016). 

3.1.2 SHORT TERM EXPOSURE ASSESSMENTS 

Exposures to traffic-related pollutants include particulate matter (PM2.5 and PM10) nitrogen 

dioxide (NO2) and ozone (O3) are considered a major preventable cause of respiratory disease 

(Laumbach & Kipen, 2012). Research about the short-term effects of exposure to the mentioned 

air pollutants has linked them with cardio-respiratory mortality as well (Rückerl, Schneider, 

Breitner, Cyrys, & Peters, 2011). Common study designs have used time-series or cross-sectional 

analyses to report associations between elevated air pollutant concentrations over short periods of 

time (one or several days) and increased cardiovascular mortality and morbidity (Panis et al., 2017; 

Pope III & Dockery, 2006). However, the precise window of exposure for some biomarkers is not 

clearly defined and differs by study.  

 Chuang and collaborators (2010) applied mixed models to examine the associations 

between air pollutants and metabolic markers (systolic blood pressure [SBP], diastolic blood 

pressure [DBP], HDL-cholesterol [HDL], LDL-cholesterol [LDL] , fasting blood glucose [FBG], 
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and HbA1c). The exposure variables included levels of PM, NO2, and O3 on the same day (24-hr 

mean) and 48 to 144-hr means before the day of the health measurements (Chuang, Yan, & Cheng, 

2010). In 2017, Bell and colleagues estimated exposure to ambient PM2.5 based on residential 

addresses using short-term averaging periods on the day of blood draw, the day before, and a 

moving mean of the previous 5 days with HDL-cholesterol (Bell et al., 2017). The MESA study, 

a large epidemiological research, assigned a daily exposure measure from the continuous air 

monitoring station (CAMS) nearest to the participant’s residence with available data for a given 

day and constructed five exposure measures: PM2 the day before measurement, and mean 

concentrations over the two, seven, 30, and 60 days prior to measurement using metabolic 

syndrome as a modifying factor (Park et al., 2010). 

Statistical models that associate air pollution exposure with cardiorespiratory outcomes also 

vary according to the study. A study among patients with type 2 diabetes in China considered 

spline and multiple linear regressions between short-term exposure to PM10, SO2, and NO2 with 

total cholesterol (TC), triglycerides (TG), LDL-cholesterol, and high-HDL-cholesterol (Wang et 

al., 2018). A study among Mexican Americans in Southern California used short-term exposure 

considering up to 58 days of cumulative daily means of PM2.5 to find associations with lower 

insulin sensitivity, HDL-to-LDL ratio, and higher fasting glucose and insulin, total cholesterol, 

and LDL-cholesterol using log transformations (Z. Chen et al., 2016).  

This study aimed to determine the short-term effects on cardiorespiratory outcomes using 

markers for airway inflammation, lung function, and metabolic syndrome (MetS) from a large 

epidemiological study and considered 24 to 96-hr mean concentrations of traffic-related pollutants 

before the health assessments using air pollutant data retrieved from CAMS data near a 

participant’s residential address.  



 

 
44 

3.2 Methods 

3.2.1 SETTING, POPULATION, AND SAMPLE 

The research conducted a secondary data analysis using health outcome measurements 

collected from an epidemiological study entitled “Evidence-based Screening for Obesity, 

Cardiorespiratory Disease, and Environmental Exposures in Low-income El Paso Households,” 

funded by the City of El Paso’s Department of Public Health, which included low-income 

participants from El Paso, TX measured between September 2014 and March 2019. Participants 

included in the epidemiological study were residents living within El Paso county recruited from 

low-income communities. The purpose of the epidemiological study was to obtain biometric and 

biomarker data from participants and it was approved by the Institutional Review Board (IRB) 

under the project numbers 590300-4 and 1249235-3. The secondary data analysis in the present 

study was further approved by the IRB under project number 1611345-1. 

3.2.2 MEASURES 

The methodology of the epidemiological study is described elsewhere (Aguilera, 2016), 

but briefly it includes measures for height and weight (to calculate BMI), waist circumference, 

blood pressure, a lipid profile (TG, TC, HDL, LDL), and fasting glucose. These measures were 

used to determine the rate of metabolic syndrome among the participants. Also, participants were 

measured for airway inflammation using a NiOX device (Aerocrine) to determine exhaled nitric 

oxide (eNO) and lung function was assessed by spirometry (Carefusion Micro Direct MicroLoop 

Spirometer) which measures forced vital capacity (FVC), forced expiratory volume in one second 

(FEV1), and peak expiratory flow (PEF), as well as the %predicted value and best measure for 

each lung function marker.   

Traffic-related air pollutant data for PM10, PM2.5, NO2, and O3 were extracted using publicly 
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available datasets from CAMS maintained by the Texas Commission on Environmental Quality 

(TCEQ). Each participant was assigned to the most representative CAMS station based on their 

residential address (Figure 3.1), if a participant lived in an area near a CAMS station with no data 

it was excluded from the analysis. Short term exposures refer to the mean pollutant concentrations 

averaged over the 24-, 48-, 72-, and 96-hour periods prior to the date of examination for each 

participant.  

 

Figure 3.1: Location of CAMS stations in El Paso, TX for selected air pollutants 

3.2.3 DATA ANALYSIS  

The continuous variables in this study include respiratory markers eNO, FVC, FEV1, PEF, 

%predicted FVC, %predicted FEV1, %predicted PEF; cardiovascular risk markers waist 

circumference, SBP, DBP, TG, HDL, and FBG as well as pulse pressure (PBP), total cholesterol 

(TC), LDL, and TC/HDL. For further statistical analysis, waist circumference, SBP, DBP, TG, 
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HDL, and FBG were coded as binary variables (high or low) to determine whether a participant 

has metabolic syndrome (MetS) following the current diagnostic criteria (having three out five risk 

factors) (Expert Panel on Detection & Treatment of High Blood Cholesterol in, 2001).  

Initially, summary statistics of participant demographic information and characteristics 

were calculated. Correlation analyses using Spearmen correlation were conducted to explore 

relationships between outcome variables and outdoor pollutant concentrations. The associations 

between pollutant metrics and various health outcomes were analyzed using linear regression. 

Before the correlation and regression analyses, Box-Cox transformation was applied to the 

variables TG, TC/HDL, and FBG to account for the skewness in the distribution, and different 

power exponents were selected to transform the data; we also used the log-transformation for the 

eNO and %predicted FVC and the exponent of -0.1 for the %predicted FEV1 values. The square 

root transformation was applied to the %predicted PEF to improve the distribution of the right-

skewed PEF data.  

Logistic regression analyses were used to examine the relationship between categorical 

variables for the specified outcome (presence or absence of Mets and each risk factor) and 

concentration levels of pollutant variables. Regression models were conducted separately for each 

pollutant of interest. The level of statistical significance was set at p < 0.05 for all tests. We used 

the statistical software R (version 3.6.2) to perform the statistical analyses. 
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3.3 RESULTS 

3.3.1 DEMOGRAPHICS 

 

 Summary statistics of subject demographic information and health characteristics are 

shown in Table 3.1. Subjects (N=662) participated in the study during the period from September 

2014 to May 2015. Most of the participants were female (84.4%) and Hispanic (98.2%), and 

subjects had a mean age of 47.8 (±13.8) years with a range of 6-89 years old. The BMI was a mean 

of 30.6 (±6.6) kg/m2, which ranges from 12.66 to 67.65 kg/m2, and 81.1% of participants had 

overweight (35.2%) or obesity (45.9%), whereas 100 participants (15.1%) had a healthy BMI. 

 

 Table 3.1: Descriptive of the demographic information for subjects (N=662). 

Variable   Frequency %* 

Sex Female 559 84.4 

  Male 103 15.6 

Education Middle School 162 24.5 

  Elementary School 148 22.4 

  High School, no diploma 130 19.6 

  High School graduate 86 13.0 

  Some college, not completed 54 8.2 

  Associate degree 26 3.9 

  Bachelor's degree 23 3.5 

  Never attended or Kindergarten only 14 2.1 

  Masters, Doctoral, or Professional degree 2 0.3 

Language Spanish 506 76.4 

  Both 126 19.0 

  English 21 3.2 

Employed Homemaker 211 31.9 

  Employed-Part time 146 22.1 

  Employed-Full time 81 12.2 

  Not employed for more than 1 year 56 8.5 

  Not employed for less than 1 year 51 7.7 

  Self-Employed 32 4.8 

  Student 28 4.2 

  Retired 24 3.6 

  Unable to work 18 2.7 
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Variable   Frequency %* 

Income $0 - $19,999 559 84.4 

  $20,000 - $29,999 50 7.6 

  $30,000 - $39,999 9 1.4 

  $40,000 - $49,999 3 0.5 

  $50,000 - $69,999 2 0.3 

  $70,000 - $99,999 2 0.3 

Marital Status Married 232 35.0 

  Never Married 136 20.5 

  Separated 105 15.9 

  Divorced 88 13.3 

  Widowed 50 7.6 

  A member of an unmarried couple 28 4.2 

  Civil Union 14 2.1 

Ethnicity Hispanic 650 98.2 

  Non-Hispanic 8 1.2 

Race White 600 90.6 

  Black or African American 10 1.5 

  American Indian or Alaska Native 3 0.5 

  Asian 2 0.3 

Health Good 253 38.2 

  Fair 236 35.6 

  Poor 79 11.9 

  Very Good 50 7.6 

  Excellent 21 3.2 

Obesity Obesity 304 45.9 

  Overweight 233 35.2 

  Healthy 100 15.1 

    
*Distribution might not add to 100% due to participants not answering all the questions 
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Table 3.2: Summary statistics of participant’s characteristics  

Variable  Min Q1 Median Mean Q3 Max SD IQR 

Age 

(years) 6 40 49 47.8 57 89 13.8 17 

WEIGHT 

(kg) 
18.1 66.0 76.0 77.4 87.0 164.0 17.9 21.0 

HEIGHT 

(cm) 
115.0 154.0 158.0 159.0 163.5 185.0 8.2 9.5 

BMI 

(kg/m2) 
12.7 26.5 29.7 30.6 34.6 67.7 6.6 8.0  

 

3.3.2 AIR POLLUTION MEASUREMENTS 

 Hourly concentrations at the nearest CAMS locations nearest to subject’s residential 

address (Table 3.3) were averaged over 24-hr, 48-hr, 72-hr, and 96-hr exposure window periods 

for comparisons. The Chamizal station had the highest frequency as the nearest CAMS station 

relative to the participant’s residential address. Not all pollutants are measured at all CAMS 

locations. The means were aggregated to represent prior pollutant exposure until 10 AM of the day 

when health outcomes are measured. Table 3.4 and Figure 3.2 summarize the descriptive statistics 

for the pollutant measurements for the study participants.   

Table 3.3: Spatial distribution of subjects to the nearest CAMS stations 

Nearest CAMS   Frequency % 

PM2.5 Chamizal 298 45.0 

  Ascarate 136 20.5 

  UTEP 121 18.3 

  Socorro 107 16.2 

PM10 Chamizal 391 59.1 

  Socorro 147 22.2 

  UTEP 124 18.7 

NO2 Chamizal 296 44.7 

  Ascarate 242 36.6 

  UTEP 124 18.7 

O3 Chamizal 194 29.3 

  UTEP 115 17.4 

  Skyline 111 16.8 

  Ascarate 87 13.1 

  Socorro 82 12.4 

  Ivanhoe 73 11.0 
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Table 3.4: Summary statistics for pollutant measurements over various window exposures. 

Pollutant   Min Q1 Median Mean Q3 Max SD IQR 

PM2.5 

(μg/m3) 24hr 
1.7 5.0 7.8 8.9 11.1 30.9 5.6 6.1 

  48hr 2.8 5.4 7.8 8.6 9.7 27.3 4.9 4.4 

  72hr 3.2 5.9 7.9 8.6 9.5 24.1 4.0 3.6 

  96hr 3.2 6.0 7.8 8.4 10.0 20.1 3.4 4.0 

PM10 

(μg/m3) 24hr 
7.3 16.0 24.9 31.8 35.2 102.0 24.2 19.3 

  48hr 6.2 17.1 24.4 31.3 37.9 84.7 20.0 20.8 

  72hr 9.2 17.0 25.0 30.1 39.0 72.0 16.0 21.9 

  96hr 8.2 18.7 25.6 29.4 39.4 65.0 13.6 20.7 

NO2 24hr 0.7 8.8 12.7 15.0 21.4 34.0 8.2 12.6 

 (ppb) 48hr 2.4 9.1 13.0 14.6 19.5 31.1 7.0 10.4 

  72hr 3.2 10.2 14.1 14.7 18.0 29.7 6.0 7.8 

  96hr 5.0 11.0 13.8 14.8 18.8 29.7 5.2 7.8 

O3 24hr 6.3 16.5 24.2 25.2 33.1 51.7 10.7 16.6 

 (ppb) 48hr 7.9 17.2 25.3 25.4 31.8 47.0 9.8 14.6 

  72hr 8.9 17.5 24.7 25.1 32.4 48.6 9.5 14.9 

  96hr 9.6 17.0 24.5 25.2 32.7 47.4 9.3 15.6 
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 *The box represents the first to the third quartile. The vertical line is the median. The yellow dot is 

 the mean concentration. PM10 and PM2.5 are expressed in μg/m3, NO2 and O3 are expressed in ppb. 

 

Figure 3.2: Summary boxplots of air pollution concentrations 

3.3.3 RESPIRATORY ASSOCIATIONS 

 Descriptive statistics for exhaled nitric oxide (eNO) and spirometry measurements are 

summarized in Table 3.5. Range for eNO was from 4.9 to 113 with a mean of 21.37 (±14) ppb. 

The forced exhaled volume during the first second of expiration ranged from 0.76 to 4.86 L with 

a mean of 2.4 (±0.6) L, the forced vital capacity ranged from 0.82 to 6 L with a mean of 2.65 (±0.7) 

L, the peak expiratory flow (PEF) ranged from 1.59 to 11.48 L/min with a mean of 5.29 (±1.7) 

L/min.  
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Table 3.5: Descriptive statistics for eNO, FEV1, FVC, and PEF metrics. 

Variable  Min Q1 Median Mean Q3 Max SD IQR 

eNO (ppb) 4.9 13.0 18.0 21.4 24.0 113.0 14.0 11.0 

FEV1 (L) 0.8 2.0 2.3 2.4 2.7 4.9 0.6 0.7 

FVC (L) 0.8 2.2 2.6 2.6 3.0 6.0 0.7 0.8 

PEF (L/min) 1.6 4.2 5.1 5.3 6.2 11.5 1.7 2.0 

FEV1 %Pred 18 83 92 96 101 360 31 18 

FVC %Pred 16 73 82 85 91 266 24 18 

PEF %Pred 14 81 95 96 110 267 27 29 

FEV1/FVC 0.6 0.9 0.9 0.9 1.0 1.0 0.1 0.1 

FEV1Best (L) 0.4 2.1 2.4 2.5 2.8 5.1 0.6 0.7 

FVC Best (L) 0.5 2.3 2.7 2.8 3.2 6.0 0.8 0.9 

PEF Best (L/min) 0.8 5.1 6.1 6.1 7.1 12.2 1.7 2.0 

  

 Table 3.6 presents pollutant effect estimates on respiratory outcomes using linear 

regression models and corresponding p. Regression analysis showed that short-term pollutant 

concentrations of PM2.5 were negatively associated with spirometry measures such as FEV1; β1 = 

−0.011 for 24-hr PM2.5 (p = 0.038), β1 = −0.014 for 48-hr PM2.5 (p = 0.018), and β1 = −0.017 for 

96-hr PM2.5 (p = 0.032). FEV1Best value showed similar associations with 24- and 48-hr PM2.5; β1 

= −0.011 for 24-hr PM2.5 (p = 0.043), and β1 = −0.013 for 48-hr PM2.5 (p = 0.034).  

 PEF was also negatively correlated with PM2.5 for all time exposure periods (β1 = −0.048 

for 24-hr PM2.5, β1 = −0.058 for 48-hr PM2.5, β1 = −0.054 for 72-hr PM2.5, β1 = −0.068 for 96-hr 

PM2.5; p < 0.01). We found that the longer the exposure to PM2.5 concentrations, the greater the 

decrease in lung function, represented by PEF. The 24-, 48- and 96-hr means NO2 had negative 

association with PEF; β1 = −0.023 for 24-hr NO2 (p = 0.013), β1 = −0.028 for 48-hr NO2 (p = 

0.011), and β1 = −0.028 for 96-hr NO2 (p = 0.047). Only 48-hr PM10 showed relevance to the PEF 

Best value with β1 = −0.008 (p = 0.043). The log-transformed exhaled NO, FVC, %predicted 

values in FEV1, FVC, and PEF did not show any significant relationship with pollutant 

measurements. 
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 Our finding was robust in the relationship of FEV1/FVC with pollutant measurements. 

Using generalized linear regression modeling, we observed negative association between 

FEV1/FVC and 96-hr PM2.5 (β1 = −0.023, p = 0.040). The ratio was also negatively associated with 

24-hr NO2 (β1 = −0.011, p = 0.020) and 96-hr NO2 (β1 = −0.019, p = 0.011). However, 24-hr ozone 

data showed a positive correlation with FEV1/FVC value (β1 = 0.008, p = 0.040) which could be 

due to a negative correlation between NO2 and O3. 

Table 3.6: Association between respiratory outcome and pollutant metrics. 

Respiratory Outcome  Pollutant    Estimate Std. Error t value p 

log(eNO) PM2.5 24hr -0.003 0.004 -0.678 0.498 

  (ug/m3) 48hr -0.002 0.005 -0.382 0.702 

    72hr -0.001 0.006 -0.216 0.829 

    96hr 0.001 0.007 0.159 0.873 

  PM10 24hr 0.000 0.001 -0.100 0.920 

  (ug/m3) 48hr 0.001 0.001 0.485 0.628 

    72hr 0.001 0.001 0.920 0.358 

    96hr 0.002 0.002 1.165 0.244 

  NO2 24hr -0.005 0.003 -1.693 0.091 

  (ppb)  48hr -0.003 0.003 -0.879 0.380 

    72hr -0.002 0.004 -0.502 0.616 

    96hr -0.001 0.004 -0.339 0.735 

  O3 24hr 0.002 0.002 0.937 0.349 

  (ppb) 48hr 0.001 0.002 0.294 0.769 

    72hr 0.000 0.002 0.031 0.975 

    96hr 0.000 0.002 0.021 0.983 

FEV1 PM2.5 24hr -0.011 0.005 -2.080 *0.038 

  (ug/m3) 48hr -0.014 0.006 -2.381 *0.018 

    72hr -0.012 0.007 -1.725 0.085 

    96hr -0.017 0.008 -2.148 *0.032 

  PM10 24hr -0.001 0.001 -1.205 0.229 

  (ug/m3) 48hr -0.001 0.001 -1.047 0.295 

    72hr -0.001 0.002 -0.743 0.458 

    96hr -0.002 0.002 -1.088 0.277 

  NO2 24hr -0.002 0.003 -0.551 0.582 

  (ppb)  48hr -0.006 0.004 -1.577 0.115 

    72hr -0.006 0.005 -1.190 0.235 

    96hr -0.009 0.005 -1.758 0.079 

  O3 24hr 0.000 0.003 0.101 0.920 

  (ppb) 48hr 0.002 0.003 0.863 0.389 

    72hr 0.001 0.003 0.293 0.770 

    96hr 0.001 0.003 0.449 0.654 

FVC PM2.5 24hr -0.010 0.006 -1.594 0.111 

  (ug/m3) 48hr -0.013 0.007 -1.860 0.064 
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Respiratory Outcome  Pollutant    Estimate Std. Error t value p 

    72hr -0.008 0.008 -0.969 0.333 

    96hr -0.011 0.010 -1.147 0.252 

  PM10 24hr -0.002 0.001 -1.150 0.251 

  (ug/m3) 48hr -0.001 0.002 -0.693 0.489 

    72hr -0.001 0.002 -0.261 0.794 

    96hr -0.001 0.002 -0.366 0.715 

  NO2 24hr 0.001 0.004 0.364 0.716 

  (ppb)  48hr -0.005 0.005 -1.017 0.310 

    72hr -0.003 0.006 -0.454 0.650 

    96hr -0.005 0.006 -0.788 0.431 

  O3 24hr -0.002 0.003 -0.642 0.521 

  (ppb) 48hr 0.001 0.003 0.251 0.802 

    72hr -0.001 0.003 -0.325 0.746 

    96hr -0.001 0.003 -0.236 0.813 

PEF PM2.5 24hr -0.048 0.015 -3.289 *0.001 

  (ug/m3) 48hr -0.058 0.016 -3.555 *0.000 

    72hr -0.054 0.019 -2.883 *0.004 

    96hr -0.068 0.022 -3.120 *0.002 

  PM10 24hr -0.005 0.003 -1.509 0.132 

  (ug/m3) 48hr -0.007 0.004 -1.964 0.050 

    72hr -0.007 0.005 -1.522 0.129 

    96hr -0.009 0.005 -1.637 0.102 

  NO2 24hr -0.023 0.009 -2.496 *0.013 

  (ppb)  48hr -0.028 0.011 -2.561 *0.011 

    72hr -0.023 0.013 -1.787 0.075 

    96hr -0.028 0.014 -1.987 *0.047 

  O3 24hr 0.007 0.007 0.961 0.337 

  (ppb) 48hr 0.009 0.008 1.148 0.251 

    72hr 0.004 0.008 0.475 0.635 

    96hr 0.004 0.008 0.534 0.593 

Transformed PM2.5 24hr 0.000 0.001 -0.072 0.943 

FEV1 %Pred (ug/m3) 48hr 0.000 0.002 -0.081 0.935 

   72hr 0.001 0.002 0.519 0.604 

   96hr 0.001 0.002 0.248 0.804 

 PM10 24hr 0.000 0.000 0.705 0.481 

 (ug/m3) 48hr 0.000 0.000 0.129 0.897 

   72hr 0.000 0.000 0.283 0.778 

   96hr 0.000 0.001 0.262 0.794 

 NO2 24hr 0.000 0.001 0.099 0.922 

 (ppb)  48hr 0.000 0.001 0.451 0.652 

   72hr 0.000 0.001 0.374 0.708 

   96hr 0.000 0.001 0.029 0.977 

 O3 24hr -0.001 0.001 -1.415 0.158 

 (ppb) 48hr -0.001 0.001 -1.564 0.118 

   72hr -0.001 0.001 -1.630 0.104 

   96hr -0.001 0.001 -1.462 0.144 

Transformed PM2.5 24hr 0.000 0.002 0.216 0.829 

FVC %Pred (ug/m3) 48hr 0.000 0.002 0.179 0.858 
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Respiratory Outcome  Pollutant    Estimate Std. Error t value p 

   72hr 0.003 0.003 0.953 0.341 

   96hr 0.002 0.003 0.722 0.470 

 PM10 24hr 0.000 0.000 0.355 0.723 

 (ug/m3) 48hr 0.000 0.001 0.269 0.788 

   72hr 0.000 0.001 0.547 0.585 

   96hr 0.000 0.001 0.525 0.600 

 NO2 24hr 0.001 0.001 1.078 0.281 

 (ppb)  48hr 0.001 0.002 0.800 0.424 

   72hr 0.002 0.002 0.917 0.360 

   96hr 0.001 0.002 0.669 0.504 

 O3 24hr -0.002 0.001 -1.861 0.063 

 (ppb) 48hr -0.002 0.001 -1.619 0.106 

   72hr -0.002 0.001 -1.704 0.089 

   96hr -0.002 0.001 -1.569 0.117 

Transformed  PM2.5 24hr -0.357 0.237 -1.508 0.132 

PEF %Pred (ug/m3) 48hr -0.444 0.262 -1.694 0.091 

   72hr -0.354 0.304 -1.167 0.244 

   96hr -0.522 0.350 -1.491 0.136 

 PM10 24hr -0.001 0.049 -0.011 0.991 

 (ug/m3) 48hr -0.054 0.059 -0.911 0.363 

   72hr -0.054 0.073 -0.744 0.457 

   96hr -0.068 0.086 -0.799 0.424 

 NO2 24hr -0.214 0.147 -1.453 0.147 

 (ppb)  48hr -0.124 0.176 -0.706 0.480 

   72hr -0.095 0.204 -0.468 0.640 

   96hr -0.106 0.225 -0.469 0.639 

 O3 24hr -0.014 0.111 -0.124 0.901 

 (ppb) 48hr -0.073 0.124 -0.589 0.556 

   72hr -0.101 0.127 -0.797 0.426 

   96hr -0.101 0.128 -0.791 0.429 

FEV1/FVC PM2.5 24hr -0.006 0.008 -0.765 0.445 

 (ug/m3) 48hr -0.007 0.009 -0.877 0.381 

   72hr -0.015 0.010 -1.563 0.119 

   96hr -0.023 0.011 -2.062 *0.040 

 PM10 24hr 0.002 0.002 1.148 0.251 

 (ug/m3) 48hr 0.000 0.002 0.056 0.955 

   72hr -0.001 0.002 -0.379 0.705 

   96hr -0.002 0.003 -0.837 0.403 

 NO2 24hr -0.011 0.005 -2.342 *0.020 

 (ppb)  48hr -0.007 0.006 -1.170 0.243 

   72hr -0.013 0.007 -1.963 0.050 

   96hr -0.019 0.007 -2.540 *0.011 

 O3 24hr 0.008 0.004 2.057 *0.040 

 (ppb) 48hr 0.005 0.004 1.242 0.215 

   72hr 0.006 0.004 1.338 0.182 

   96hr 0.006 0.004 1.453 0.147 

FEV1 Best PM2.5 24hr -0.011 0.006 -2.027 *0.043 

 (ug/m3) 48hr -0.013 0.006 -2.123 *0.034 
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Respiratory Outcome  Pollutant    Estimate Std. Error t value p 

   72hr -0.011 0.007 -1.521 0.129 

   96hr -0.015 0.008 -1.774 0.077 

 PM10 24hr -0.001 0.001 -1.254 0.210 

 (ug/m3) 48hr -0.002 0.001 -1.082 0.280 

   72hr -0.001 0.002 -0.806 0.421 

   96hr -0.002 0.002 -0.962 0.336 

 NO2 24hr -0.002 0.004 -0.526 0.599 

 (ppb)  48hr -0.006 0.004 -1.442 0.150 

   72hr -0.005 0.005 -1.079 0.281 

   96hr -0.008 0.005 -1.564 0.118 

 O3 24hr 0.000 0.003 0.106 0.915 

 (ppb) 48hr 0.003 0.003 0.852 0.395 

   72hr 0.001 0.003 0.462 0.644 

   96hr 0.002 0.003 0.613 0.540 

FVC Best PM2.5 24hr -0.012 0.007 -1.755 0.080 

 (ug/m3) 48hr -0.014 0.007 -1.858 0.064 

   72hr -0.009 0.009 -1.046 0.296 

   96hr -0.011 0.010 -1.077 0.282 

 PM10 24hr -0.002 0.001 -1.497 0.135 

 (ug/m3) 48hr -0.002 0.002 -1.019 0.309 

   72hr -0.001 0.002 -0.599 0.550 

   96hr -0.001 0.002 -0.568 0.570 

 NO2 24hr 0.001 0.004 0.240 0.811 

 (ppb)  48hr -0.005 0.005 -1.061 0.289 

   72hr -0.003 0.006 -0.460 0.646 

   96hr -0.004 0.006 -0.692 0.489 

 O3 24hr -0.002 0.003 -0.560 0.576 

 (ppb) 48hr 0.001 0.004 0.390 0.696 

   72hr 0.000 0.004 -0.019 0.985 

   96hr 0.000 0.004 0.078 0.938 

PEF Best PM2.5 24hr -0.048 0.015 -3.154 *0.002 

 (ug/m3) 48hr -0.055 0.017 -3.317 *0.001 

   72hr -0.050 0.019 -2.583 *0.010 

   96hr -0.062 0.022 -2.752 *0.006 

 PM10 24hr -0.005 0.003 -1.614 0.107 

 (ug/m3) 48hr -0.008 0.004 -2.026 *0.043 

   72hr -0.008 0.005 -1.623 0.105 

   96hr -0.009 0.005 -1.562 0.119 

 NO2 24hr -0.020 0.009 -2.104 *0.036 

 (ppb)  48hr -0.024 0.011 -2.169 *0.031 

   72hr -0.018 0.013 -1.372 0.171 

   96hr -0.021 0.014 -1.434 0.152 

 O3 24hr 0.005 0.007 0.658 0.511 

 (ppb) 48hr 0.007 0.008 0.844 0.399 

   72hr 0.002 0.008 0.227 0.821 

   96hr 0.002 0.008 0.212 0.832 

*All significant pollutant time exposures and corresponding p are expressed in bold. 
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3.3.4 CARDIOVASCULAR ASSOCIATIONS 

 Descriptive statistics for cardiovascular measurements are presented in Table 3.7. The 

mean for BMI was 30.6 (±6.6) kg/m2 and 95.5 cm for waist. Blood pressure on average was 128/76 

(±20/11) mmHg with a differential blood pressure of 52 (±14) mmHg. The lipid profile measures 

indicated a mean total cholesterol of 190 (±38.7) mg/dL, mean triglycerides of 186 (±114.7) 

mg/dL, mean HDL of 49 (±14.6) mg/dL, mean LDL of 106 (±31.9) mg/dL a fasting blood glucose 

mean of 108.7 (±46.5) mg/dL.    

Table 3.7: Descriptive statistics for cardiovascular syndrome risk factors. 

 Variable Min Q1 Median Mean Q3 Max SD IQR 

BMI (kg/m2) 12.66 26.52 29.69 30.56 34.56 67.65 6.58 8.04 

Waist (cm) 49 86 94 95.46 104 151 14.41 18 

SBP (mmHg) 74 113 125 127.77 140.25 211 20.63 27.25 

DBP (mmHg) 35 69 75 76.18 82 128 11.41 13 

PBP (mmHg) 6 42 49 51.59 59 107 14.48 17 

TC (mg/dL) 99.9 161 187.5 189.95 215 350 38.77 54 

TG (mg/dL) 44.9 107.25 161 186.04 224 650.1 114.66 116.75 

HDL (mg/dL) 14.9 40 48 49.71 58 100.1 14.58 18 

LDL (mg/dL) 12 84 102 106.09 127 220 31.90 43 

TC/HDL 1.4 3.1 3.8 4.17 4.8 22 1.71 1.7 

FBG (mg/dL) 49.9 86.25 94.5 108.68 108 477 46.48 21.75 

 

 Correlation and regression analyses showed that the continuous variable measuring 

metabolic syndrome risk factors (e.g. waist, HDL, and fasting blood glucose), were associated with 

pollutant measurements. Detailed results of the correlation and regression analyses are shown in 

Tables 3.8 and 3.9. Further analyses of waist by gender and blood pressure (SBP and DBP) using 

clinical cutoff values where explored as well. The waist circumference, for females, showed a 

strong relationship with most of the pollutants; positive correlation with PM2.5 and NO2 for all 

exposure periods (p < 0.005), while negative correlations with all ozone for all exposure periods 

(p < 0.050). The relationship between waist and PM2.5 may be due to a strong correlation observed 
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between BMI and waist (correlation coefficient of 0.870 for females and 0.893 for males). The 72-

hr PM2.5 concentration was found to be positively associated with BMI (β1 = 0.132, p = 0.042).  

 We observed a significant relationship between 96-hr mean ozone and HDL, showing 

positive correlation with β1 = 0.136 (p = 0.028). The increase in 24-/48-hr PM2.5 and PM10 were 

significantly associated with an increase in the box-cox transformed fasting blood glucose (p < 

0.05), but not for the original scale of fasting blood glucose. The transformation of fasting blood 

glucose was suitable to find linear relationships with air pollution measurement. 

Table 3.8: Correlation analysis 

Variable Pollutant3 24hr 48hr 72hr 96hr 

BMI  PM2.5 0.070 0.064 0.080 0.069 

 (kg/m2) PM10 0.022 0.018 0.017 0.009 

  NO2 0.048 0.065 0.065 0.052 

  O3 -0.010 -0.018 -0.024 -0.015 

Waist PM2.5 0.113 0.121 0.134 0.129 

 (cm) PM10 0.031 0.043 0.045 0.045 

  NO2 0.126 0.149 0.158 0.142 

  O3 -0.098 -0.112 -0.117 -0.107 

  Female (N=559) PM2.5 0.148 0.161 0.179 0.171 

  PM10 0.050 0.068 0.076 0.077 

  NO2 0.126 0.157 0.164 0.141 

  O3 -0.100 -0.118 -0.123 -0.108 

  Male (N=103) PM2.5 -0.036 -0.060 -0.084 -0.063 

  PM10 -0.056 -0.086 -0.127 -0.124 

  NO2 0.150 0.126 0.130 0.155 

  O3 -0.118 -0.109 -0.112 -0.128 

SBP PM2.5 -0.053 -0.053 -0.034 -0.030 

 (mmHg) PM10 -0.049 -0.065 -0.053 -0.037 

  NO2 -0.030 0.003 0.008 0.022 

  O3 0.021 0.013 0.013 0.010 

  SBP < 130 (N=377) PM2.5 -0.112 -0.090 -0.025 -0.015 

  PM10 -0.106 -0.124 -0.076 -0.062 

  NO2 -0.106 -0.062 -0.020 0.011 

  O3 0.026 0.002 -0.023 -0.044 

  SBP >= 130 (N=263) PM2.5 -0.033 -0.087 -0.102 -0.120 

  PM10 -0.028 -0.055 -0.066 -0.053 

  NO2 -0.006 -0.021 -0.049 -0.078 

  O3 0.039 0.070 0.087 0.094 

DBP PM2.5 -0.075 -0.076 -0.069 -0.069 

 (mmHg) PM10 -0.051 -0.050 -0.047 -0.045 

  NO2 -0.015 -0.022 -0.032 -0.021 

  O3 0.054 0.059 0.063 0.060 
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Variable Pollutant3 24hr 48hr 72hr 96hr 

  DBP < 85 (N=509) PM2.5 -0.062 -0.042 -0.009 0.017 

  PM10 -0.052 -0.048 -0.026 0.000 

  NO2 -0.034 -0.029 -0.014 0.020 

  O3 0.044 0.033 0.016 0.007 

  DBP >= 85 (N=131) PM2.5 0.016 -0.040 -0.054 -0.070 

  PM10 -0.032 -0.036 -0.046 -0.057 

  NO2 0.002 -0.062 -0.120 -0.126 

  O3 -0.080 -0.015 0.015 0.011 

PBP PM2.5 -0.016 -0.016 0.006 0.012 

 (mmHg) PM10 -0.029 -0.054 -0.038 -0.018 

  NO2 -0.031 0.021 0.036 0.047 

  O3 -0.013 -0.028 -0.031 -0.033 

TC PM2.5 -0.042 -0.009 -0.005 0.000 

 (mg/dL) PM10 -0.011 0.005 0.020 0.033 

  NO2 -0.039 -0.034 -0.020 -0.017 

  O3 -0.004 -0.006 -0.010 -0.009 

TG PM2.5 -0.006 -0.008 0.002 0.009 

 (mg/dL) PM10 -0.033 -0.046 -0.040 -0.033 

  NO2 0.004 -0.005 0.007 0.027 

  O3 -0.065 -0.062 -0.053 -0.053 

log.TG PM2.5 -0.004 -0.005 0.016 0.021 

 PM10 -0.026 -0.039 -0.027 -0.020 

  NO2 0.009 0.011 0.027 0.046 

  O3 -0.059 -0.063 -0.061 -0.062 

HDL PM2.5 0.038 0.040 0.026 0.023 

(mg/dL)  PM10 0.049 0.042 0.043 0.045 

  NO2 -0.031 -0.024 -0.037 -0.047 

  O3 0.072 0.069 0.077 0.087 

LDL PM2.5 -0.066 -0.016 -0.026 -0.019 

(mg/dL)  PM10 -0.048 -0.009 -0.011 0.000 

  NO2 -0.028 -0.004 0.000 -0.006 

  O3 0.008 -0.006 -0.013 -0.015 

TC/HDL PM2.5 -0.064 -0.038 -0.028 -0.016 

  PM10 -0.044 -0.033 -0.027 -0.025 

  NO2 -0.005 0.015 0.027 0.027 

  O3 -0.013 -0.012 -0.011 -0.009 

log.TC/HDL PM2.5 -0.075 -0.042 -0.027 -0.018 

  PM10 -0.060 -0.041 -0.033 -0.029 

  NO2 0.006 0.024 0.039 0.042 

  O3 -0.037 -0.039 -0.042 -0.044 

bc.TC/HDL1 PM2.5 -0.076 -0.041 -0.024 -0.016 

  PM10 -0.065 -0.043 -0.035 -0.030 

  NO2 0.012 0.029 0.045 0.049 

  O3 -0.044 -0.048 -0.053 -0.055 

FBG PM2.5 0.019 0.024 -0.002 -0.012 

(mg/dL) PM10 0.024 0.027 0.012 0.016 

  NO2 0.004 0.006 -0.005 -0.017 

  O3 0.008 -0.005 0.003 0.011 



 

 
60 

Variable Pollutant3 24hr 48hr 72hr 96hr 

log.FBG PM2.5 0.048 0.050 0.022 0.012 

 PM10 0.051 0.050 0.032 0.036 

  NO2 0.027 0.033 0.018 0.005 

  O3 -0.011 -0.030 -0.023 -0.015 

bc.FBG2 PM2.5 0.087 0.087 0.065 0.059 

 PM10 0.091 0.084 0.070 0.075 

  NO2 0.054 0.064 0.052 0.043 

  O3 -0.029 -0.052 -0.051 -0.045 

All significant correlations are expressed in bold. 
1) Box-Cox Transformation: bc.TC/HDL = [(TC/HDL)^(-0.5)-1]/(-0.5). 
2) Box-Cox Transformation: bc.FBG = [FBG^(-2)-1]/(-2).  
3) PM10 and PM2.5 are expressed in μg/m3, NO2 and O3 are expressed in ppb. 

 

Table 3.9: Association between cardiovascular outcomes and pollutant metrics. 

Variable Pollutant  Estimate 

Std. 

Error t value p value 

BMI PM2.5 24hr 0.086 0.048 1.792 0.074 

 (kg/m2) (ug/m3) 48hr 0.089 0.055 1.631 0.103 

    72hr 0.132 0.065 2.036 *0.042 

    96hr 0.135 0.077 1.756 0.080 

  PM10 24hr 0.006 0.011 0.564 0.573 

  (ug/m3) 48hr 0.006 0.013 0.449 0.654 

    72hr 0.007 0.016 0.431 0.666 

    96hr 0.004 0.019 0.218 0.828 

  NO2 24hr 0.040 0.032 1.231 0.219 

  (ppb)  48hr 0.062 0.037 1.654 0.099 

    72hr 0.072 0.044 1.660 0.097 

    96hr 0.066 0.050 1.323 0.186 

  O3 24hr -0.006 0.024 -0.254 0.799 

  (ppb) 48hr -0.012 0.027 -0.469 0.639 

    72hr -0.017 0.027 -0.605 0.545 

    96hr -0.011 0.028 -0.384 0.701 

Waist (cm) PM2.5 24hr 0.301 0.104 2.901 *0.004 

(Overall) (ug/m3) 48hr 0.365 0.117 3.114 *0.002 

    72hr 0.486 0.141 3.459 *0.001 

    96hr 0.554 0.166 3.332 *0.001 

  PM10 24hr 0.019 0.024 0.783 0.434 

  (ug/m3) 48hr 0.031 0.028 1.100 0.272 

    72hr 0.041 0.035 1.154 0.249 

    96hr 0.048 0.042 1.153 0.249 

  NO2 24hr 0.225 0.070 3.238 *0.001 

  (ppb)  48hr 0.309 0.081 3.833 *0.000 

    72hr 0.382 0.094 4.060 *0.000 

    96hr 0.393 0.108 3.636 *0.000 

  O3 24hr -0.132 0.052 -2.527 *0.012 

  (ppb) 48hr -0.166 0.058 -2.870 *0.004 

    72hr -0.179 0.059 -3.014 *0.003 

    96hr -0.167 0.061 -2.754 *0.006 
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Variable Pollutant  Estimate 

Std. 

Error t value p value 

Waist (cm) PM2.5 24hr 0.386 0.110 3.508 *0.000 

(Female, N=559) (ug/m3) 48hr 0.473 0.124 3.820 *0.000 

    72hr 0.625 0.147 4.262 *0.000 

    96hr 0.712 0.175 4.077 *0.000 

  PM10 24hr 0.029 0.025 1.172 0.242 

  (ug/m3) 48hr 0.048 0.030 1.595 0.111 

    72hr 0.067 0.037 1.799 0.073 

    96hr 0.079 0.044 1.805 0.072 

  NO2 24hr 0.221 0.075 2.953 *0.003 

  (ppb)  48hr 0.321 0.087 3.702 *0.000 

    72hr 0.392 0.101 3.868 *0.000 

    96hr 0.388 0.116 3.331 *0.001 

  O3 24hr -0.132 0.056 -2.351 *0.019 

  (ppb) 48hr -0.171 0.061 -2.781 *0.006 

    72hr -0.184 0.063 -2.900 *0.004 

    96hr -0.166 0.065 -2.558 *0.011 

Waist (cm) PM2.5 24hr -0.104 0.287 -0.361 0.719 

(Male, N=103) (ug/m3) 48hr -0.202 0.336 -0.602 0.549 

    72hr -0.368 0.434 -0.848 0.399 

    96hr -0.316 0.498 -0.635 0.527 

  PM10 24hr -0.040 0.071 -0.566 0.573 

  (ug/m3) 48hr -0.075 0.086 -0.868 0.387 

    72hr -0.137 0.107 -1.284 0.202 

    96hr -0.150 0.119 -1.258 0.211 

  NO2 24hr 0.273 0.180 1.517 0.132 

  (ppb)  48hr 0.270 0.212 1.275 0.205 

    72hr 0.318 0.243 1.307 0.194 

    96hr 0.438 0.280 1.566 0.121 

  O3 24hr -0.164 0.137 -1.194 0.235 

  (ppb) 48hr -0.176 0.161 -1.099 0.274 

    72hr -0.186 0.163 -1.136 0.259 

    96hr -0.215 0.165 -1.301 0.196 

SBP (mmHg) PM2.5 24hr -0.205 0.154 -1.331 0.184 

(Overall) (ug/m3) 48hr -0.234 0.175 -1.337 0.182 

    72hr -0.180 0.209 -0.862 0.389 

    96hr -0.185 0.246 -0.752 0.452 

  PM10 24hr -0.043 0.035 -1.228 0.220 

  (ug/m3) 48hr -0.069 0.042 -1.651 0.099 

    72hr -0.069 0.052 -1.334 0.183 

    96hr -0.057 0.060 -0.942 0.347 

  NO2 24hr -0.077 0.102 -0.752 0.453 

  (ppb)  48hr 0.008 0.119 0.072 0.943 

    72hr 0.028 0.138 0.202 0.840 

    96hr 0.086 0.157 0.548 0.584 

  O3 24hr 0.040 0.076 0.523 0.601 

  (ppb) 48hr 0.028 0.084 0.331 0.741 

    72hr 0.029 0.086 0.332 0.740 
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Variable Pollutant  Estimate 

Std. 

Error t value p value 

    96hr 0.022 0.088 0.245 0.807 

SBP (mmHg) PM2.5 24hr -0.222 0.102 -2.167 *0.031 

(<130, N=377) (ug/m3) 48hr -0.203 0.115 -1.756 0.080 

    72hr -0.067 0.139 -0.482 0.630 

    96hr -0.048 0.161 -0.297 0.766 

  PM10 24hr -0.047 0.023 -2.039 *0.042 

  (ug/m3) 48hr -0.066 0.028 -2.410 *0.016 

    72hr -0.050 0.034 -1.468 0.143 

    96hr -0.048 0.040 -1.197 0.232 

  NO2 24hr -0.140 0.068 -2.059 *0.040 

  (ppb)  48hr -0.098 0.081 -1.204 0.229 

    72hr -0.035 0.094 -0.377 0.706 

    96hr 0.022 0.105 0.210 0.834 

  O3 24hr 0.026 0.051 0.497 0.620 

  (ppb) 48hr 0.002 0.057 0.043 0.966 

    72hr -0.026 0.058 -0.441 0.659 

    96hr -0.051 0.060 -0.857 0.392 

SBP (mmHg) PM2.5 24hr -0.092 0.173 -0.532 0.595 

(>=130, N=263) (ug/m3) 48hr -0.283 0.201 -1.410 0.160 

    72hr -0.396 0.238 -1.664 0.097 

    96hr -0.553 0.284 -1.947 0.053 

  PM10 24hr -0.018 0.040 -0.454 0.650 

  (ug/m3) 48hr -0.042 0.048 -0.882 0.379 

    72hr -0.063 0.059 -1.064 0.288 

    96hr -0.060 0.070 -0.856 0.393 

  NO2 24hr -0.010 0.115 -0.091 0.928 

  (ppb)  48hr -0.044 0.130 -0.340 0.734 

    72hr -0.119 0.152 -0.782 0.435 

    96hr -0.221 0.176 -1.257 0.210 

  O3 24hr 0.053 0.084 0.628 0.531 

  (ppb) 48hr 0.106 0.093 1.141 0.255 

    72hr 0.134 0.095 1.413 0.159 

    96hr 0.147 0.097 1.517 0.130 

DBP (mmHg) PM2.5 24hr -0.162 0.085 -1.906 0.057 

  (ug/m3) 48hr -0.185 0.097 -1.913 0.056 

    72hr -0.202 0.116 -1.745 0.082 

    96hr -0.239 0.136 -1.758 0.079 

  PM10 24hr -0.025 0.019 -1.276 0.203 

  (ug/m3) 48hr -0.029 0.023 -1.264 0.207 

    72hr -0.034 0.029 -1.197 0.232 

    96hr -0.038 0.033 -1.129 0.259 

  NO2 24hr -0.021 0.056 -0.376 0.707 

  (ppb)  48hr -0.035 0.065 -0.541 0.588 

    72hr -0.061 0.076 -0.800 0.424 

    96hr -0.045 0.086 -0.525 0.600 

  O3 24hr 0.058 0.042 1.374 0.170 

  (ppb) 48hr 0.070 0.046 1.504 0.133 
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Variable Pollutant  Estimate 

Std. 

Error t value p value 

    72hr 0.076 0.048 1.591 0.112 

    96hr 0.074 0.049 1.518 0.130 

DBP (mmHg) PM2.5 24hr -0.088 0.063 -1.394 0.164 

(<85, N=509) (ug/m3) 48hr -0.068 0.072 -0.944 0.345 

    72hr -0.018 0.087 -0.210 0.834 

    96hr 0.039 0.103 0.381 0.703 

  PM10 24hr -0.017 0.015 -1.171 0.242 

  (ug/m3) 48hr -0.019 0.018 -1.088 0.277 

    72hr -0.013 0.022 -0.576 0.565 

    96hr 0.000 0.026 0.007 0.995 

  NO2 24hr -0.033 0.044 -0.759 0.448 

  (ppb)  48hr -0.033 0.051 -0.646 0.518 

    72hr -0.019 0.060 -0.309 0.757 

    96hr 0.031 0.067 0.456 0.648 

  O3 24hr 0.033 0.033 1.000 0.318 

  (ppb) 48hr 0.027 0.036 0.742 0.458 

    72hr 0.013 0.037 0.360 0.719 

    96hr 0.006 0.038 0.160 0.873 

DBP (mmHg) PM2.5 24hr 0.028 0.161 0.176 0.861 

(>=85, N=131) (ug/m3) 48hr -0.087 0.190 -0.456 0.649 

    72hr -0.130 0.213 -0.611 0.542 

    96hr -0.193 0.240 -0.801 0.425 

  PM10 24hr -0.012 0.032 -0.364 0.716 

  (ug/m3) 48hr -0.015 0.037 -0.409 0.683 

    72hr -0.024 0.046 -0.520 0.604 

    96hr -0.034 0.053 -0.644 0.521 

  NO2 24hr 0.002 0.082 0.023 0.982 

  (ppb)  48hr -0.065 0.093 -0.702 0.484 

    72hr -0.146 0.106 -1.367 0.174 

    96hr -0.180 0.126 -1.426 0.156 

  O3 24hr -0.055 0.061 -0.915 0.362 

  (ppb) 48hr -0.012 0.068 -0.173 0.863 

    72hr 0.012 0.070 0.167 0.868 

    96hr 0.009 0.073 0.120 0.904 

PBP (mmHg) PM2.5 24hr -0.042 0.108 -0.393 0.695 

  (ug/m3) 48hr -0.049 0.123 -0.399 0.690 

    72hr 0.021 0.147 0.145 0.885 

    96hr 0.054 0.173 0.311 0.756 

  PM10 24hr -0.018 0.024 -0.741 0.459 

  (ug/m3) 48hr -0.040 0.029 -1.356 0.176 

    72hr -0.035 0.036 -0.956 0.339 

    96hr -0.019 0.042 -0.452 0.652 

  NO2 24hr -0.056 0.072 -0.775 0.439 

  (ppb)  48hr 0.044 0.083 0.527 0.599 

    72hr 0.089 0.097 0.915 0.360 

    96hr 0.131 0.110 1.193 0.233 

  O3 24hr -0.018 0.053 -0.336 0.737 
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Variable Pollutant  Estimate 

Std. 

Error t value p value 

  (ppb) 48hr -0.042 0.059 -0.712 0.477 

    72hr -0.047 0.061 -0.778 0.437 

    96hr -0.052 0.062 -0.846 0.398 

TC (mg/dL) PM2.5 24hr -0.298 0.280 -1.064 0.288 

  (ug/m3) 48hr -0.069 0.318 -0.217 0.828 

    72hr -0.052 0.382 -0.135 0.893 

    96hr 0.004 0.452 0.008 0.994 

  PM10 24hr -0.018 0.064 -0.287 0.775 

  (ug/m3) 48hr 0.010 0.076 0.135 0.893 

    72hr 0.049 0.095 0.518 0.604 

    96hr 0.093 0.112 0.831 0.406 

  NO2 24hr -0.184 0.188 -0.981 0.327 

  (ppb)  48hr -0.189 0.219 -0.864 0.388 

    72hr -0.132 0.255 -0.515 0.607 

    96hr -0.128 0.293 -0.439 0.661 

  O3 24hr -0.015 0.141 -0.108 0.914 

  (ppb) 48hr -0.023 0.156 -0.147 0.883 

    72hr -0.040 0.160 -0.247 0.805 

    96hr -0.038 0.163 -0.230 0.819 

TG (mg/dL) PM2.5 24hr -0.136 0.829 -0.165 0.869 

  (ug/m3) 48hr -0.197 0.939 -0.210 0.834 

    72hr 0.072 1.129 0.064 0.949 

    96hr 0.302 1.337 0.226 0.821 

  PM10 24hr -0.159 0.189 -0.845 0.399 

  (ug/m3) 48hr -0.264 0.226 -1.171 0.242 

    72hr -0.287 0.280 -1.022 0.307 

    96hr -0.280 0.330 -0.849 0.396 

  NO2 24hr 0.053 0.557 0.096 0.924 

  (ppb)  48hr -0.075 0.648 -0.116 0.907 

    72hr 0.126 0.756 0.167 0.868 

    96hr 0.600 0.866 0.693 0.489 

  O3 24hr -0.697 0.417 -1.673 0.095 

  (ppb) 48hr -0.732 0.460 -1.594 0.111 

    72hr -0.642 0.473 -1.359 0.175 

    96hr -0.658 0.483 -1.362 0.174 

log.TG PM2.5 24hr 0.000 0.004 -0.110 0.913 

  (ug/m3) 48hr -0.001 0.005 -0.117 0.907 

    72hr 0.002 0.006 0.402 0.688 

    96hr 0.003 0.007 0.530 0.597 

  PM10 24hr -0.001 0.001 -0.655 0.513 

  (ug/m3) 48hr -0.001 0.001 -0.997 0.319 

    72hr -0.001 0.001 -0.678 0.498 

    96hr -0.001 0.002 -0.508 0.611 

  NO2 24hr 0.001 0.003 0.216 0.829 

  (ppb)  48hr 0.001 0.003 0.275 0.783 

    72hr 0.002 0.004 0.674 0.501 

    96hr 0.005 0.004 1.161 0.246 
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Variable Pollutant  Estimate 

Std. 

Error t value p value 

  O3 24hr -0.003 0.002 -1.511 0.131 

  (ppb) 48hr -0.004 0.002 -1.611 0.108 

    72hr -0.004 0.002 -1.550 0.122 

    96hr -0.004 0.002 -1.594 0.111 

HDL (mg/dL) PM2.5 24hr 0.102 0.106 0.962 0.336 

  (ug/m3) 48hr 0.121 0.120 1.008 0.314 

    72hr 0.094 0.144 0.651 0.515 

    96hr 0.101 0.171 0.589 0.556 

  PM10 24hr 0.030 0.024 1.233 0.218 

  (ug/m3) 48hr 0.031 0.029 1.062 0.289 

    72hr 0.039 0.036 1.098 0.273 

    96hr 0.048 0.042 1.129 0.259 

  NO2 24hr -0.056 0.071 -0.792 0.428 

  (ppb)  48hr -0.050 0.083 -0.610 0.542 

    72hr -0.090 0.096 -0.938 0.349 

    96hr -0.129 0.110 -1.173 0.241 

  O3 24hr 0.098 0.053 1.838 0.066 

  (ppb) 48hr 0.104 0.059 1.763 0.078 

    72hr 0.117 0.060 1.946 0.052 

    96hr 0.136 0.062 2.206 *0.028 

LDL (mg/dL) PM2.5 24hr -0.391 0.241 -1.622 0.105 

  (ug/m3) 48hr -0.109 0.273 -0.399 0.690 

    72hr -0.203 0.326 -0.624 0.533 

    96hr -0.181 0.386 -0.469 0.639 

  PM10 24hr -0.062 0.054 -1.157 0.248 

  (ug/m3) 48hr -0.014 0.065 -0.218 0.827 

    72hr -0.022 0.080 -0.273 0.785 

    96hr -0.001 0.095 -0.010 0.992 

  NO2 24hr -0.110 0.161 -0.680 0.497 

  (ppb)  48hr -0.021 0.188 -0.109 0.913 

    72hr -0.002 0.219 -0.009 0.992 

    96hr -0.034 0.251 -0.137 0.891 

  O3 24hr 0.024 0.121 0.200 0.842 

  (ppb) 48hr -0.021 0.134 -0.159 0.874 

    72hr -0.042 0.137 -0.308 0.758 

    96hr -0.050 0.140 -0.355 0.723 

TC/HDL PM2.5 24hr -0.020 0.013 -1.591 0.112 

  (ug/m3) 48hr -0.014 0.014 -0.953 0.341 

    72hr -0.012 0.017 -0.707 0.480 

    96hr -0.008 0.020 -0.389 0.697 

  PM10 24hr -0.003 0.003 -1.096 0.274 

  (ug/m3) 48hr -0.003 0.003 -0.823 0.411 

    72hr -0.003 0.004 -0.676 0.499 

    96hr -0.003 0.005 -0.621 0.535 

  NO2 24hr -0.001 0.008 -0.124 0.902 

  (ppb)  48hr 0.004 0.010 0.368 0.713 

    72hr 0.008 0.011 0.662 0.508 
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Variable Pollutant  Estimate 

Std. 

Error t value p value 

    96hr 0.009 0.013 0.672 0.502 

  O3 24hr -0.002 0.006 -0.338 0.735 

  (ppb) 48hr -0.002 0.007 -0.308 0.758 

    72hr -0.002 0.007 -0.288 0.774 

    96hr -0.002 0.007 -0.234 0.815 

log.TC/HDL PM2.5 24hr -0.005 0.003 -1.873 0.062 

  (ug/m3) 48hr -0.003 0.003 -1.059 0.290 

    72hr -0.002 0.003 -0.681 0.496 

    96hr -0.002 0.004 -0.452 0.651 

  PM10 24hr -0.001 0.001 -1.501 0.134 

  (ug/m3) 48hr -0.001 0.001 -1.016 0.310 

    72hr -0.001 0.001 -0.835 0.404 

    96hr -0.001 0.001 -0.717 0.473 

  NO2 24hr 0.000 0.002 0.152 0.879 

  (ppb)  48hr 0.001 0.002 0.596 0.552 

    72hr 0.002 0.002 0.963 0.336 

    96hr 0.003 0.003 1.059 0.290 

  O3 24hr -0.001 0.001 -0.918 0.359 

  (ppb) 48hr -0.001 0.001 -0.977 0.329 

    72hr -0.002 0.001 -1.057 0.291 

    96hr -0.002 0.001 -1.109 0.268 

bc.TC/HDL1 PM2.5 24hr -0.002 0.001 -1.904 0.057 

  (ug/m3) 48hr -0.001 0.001 -1.037 0.300 

    72hr -0.001 0.002 -0.606 0.545 

    96hr -0.001 0.002 -0.409 0.683 

  PM10 24hr 0.000 0.000 -1.616 0.107 

  (ug/m3) 48hr 0.000 0.000 -1.067 0.286 

    72hr 0.000 0.000 -0.870 0.384 

    96hr 0.000 0.000 -0.743 0.458 

  NO2 24hr 0.000 0.001 0.292 0.770 

  (ppb)  48hr 0.001 0.001 0.728 0.467 

    72hr 0.001 0.001 1.126 0.261 

    96hr 0.002 0.001 1.228 0.220 

  O3 24hr -0.001 0.001 -1.115 0.265 

  (ppb) 48hr -0.001 0.001 -1.209 0.227 

    72hr -0.001 0.001 -1.323 0.186 

    96hr -0.001 0.001 -1.394 0.164 

FBG (mg/dL) PM2.5 24hr 0.166 0.336 0.495 0.621 

  (ug/m3) 48hr 0.237 0.381 0.622 0.534 

    72hr -0.025 0.458 -0.054 0.957 

    96hr -0.163 0.542 -0.300 0.764 

  PM10 24hr 0.047 0.076 0.614 0.539 

  (ug/m3) 48hr 0.064 0.092 0.697 0.486 

    72hr 0.034 0.114 0.298 0.766 

    96hr 0.053 0.134 0.398 0.690 

  NO2 24hr 0.024 0.225 0.105 0.917 

  (ppb)  48hr 0.042 0.262 0.160 0.873 
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Variable Pollutant  Estimate 

Std. 

Error t value p value 

    72hr -0.040 0.306 -0.132 0.895 

    96hr -0.153 0.350 -0.438 0.662 

  O3 24hr 0.034 0.169 0.200 0.841 

  (ppb) 48hr -0.025 0.187 -0.135 0.893 

    72hr 0.012 0.192 0.064 0.949 

    96hr 0.054 0.196 0.274 0.784 

log.FBG PM2.5 24hr 0.003 0.002 1.211 0.226 

  (ug/m3) 48hr 0.003 0.002 1.273 0.203 

    72hr 0.002 0.003 0.557 0.578 

    96hr 0.001 0.003 0.313 0.754 

  PM10 24hr 0.001 0.000 1.294 0.196 

  (ug/m3) 48hr 0.001 0.001 1.269 0.205 

    72hr 0.001 0.001 0.809 0.419 

    96hr 0.001 0.001 0.920 0.358 

  NO2 24hr 0.001 0.001 0.678 0.498 

  (ppb)  48hr 0.001 0.002 0.832 0.406 

    72hr 0.001 0.002 0.450 0.653 

    96hr 0.000 0.002 0.122 0.903 

  O3 24hr 0.000 0.001 -0.280 0.780 

  (ppb) 48hr -0.001 0.001 -0.754 0.451 

    72hr -0.001 0.001 -0.585 0.558 

    96hr 0.000 0.001 -0.375 0.708 

bc.FBG2 PM2.5 24hr 0.000 0.000 2.220 *0.027 

  (ug/m3) 48hr 0.000 0.000 2.225 *0.026 

    72hr 0.000 0.000 1.673 0.095 

    96hr 0.000 0.000 1.517 0.130 

  PM10 24hr 0.000 0.000 2.324 *0.020 

  (ug/m3) 48hr 0.000 0.000 2.162 *0.031 

    72hr 0.000 0.000 1.794 0.073 

    96hr 0.000 0.000 1.924 0.055 

  NO2 24hr 0.000 0.000 1.369 0.171 

  (ppb)  48hr 0.000 0.000 1.632 0.103 

    72hr 0.000 0.000 1.330 0.184 

    96hr 0.000 0.000 1.097 0.273 

  O3 24hr 0.000 0.000 -0.750 0.453 

  (ppb) 48hr 0.000 0.000 -1.318 0.188 

    72hr 0.000 0.000 -1.294 0.196 

    96hr 0.000 0.000 -1.146 0.252 

*All significant pollutant time exposures and corresponding p are expressed in bold. 
1) Box-Cox Transformation: bc.TC/HDL = [(TC/HDL)^(-0.5)-1]/(-0.5). 
2) Box-Cox Transformation: bc.FBG = [FBG^(-2)-1]/(-2).  

 

 The classification of metabolic syndrome risk factors (binary outcomes) based on current 

guidelines is presented in Table 3.10. Associations between classification of metabolic syndrome 

factors and pollutant metrics are summarized in Table 3.11. Table 3.11 shows effect estimates 
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using logistic regression models, corresponding p, odds ratios, and 95% confidence intervals of 

the odds ratio. In logistic regression modeling, we also found that increasing PM2.5 and NO2 

concentration was associated with increasing likelihoods of having a high waist (p < 0.05 for 48-, 

72- and 96-hr PM2.5; p < 0.01 for all windows of NO2 concentration). However, the odds of having 

a high waist decreases as the ozone level increases (p < 0.05 for 24/48/72/96-hr O3). The ozone 

increase was also associated with less likelihood of having low HDL status (p < 0.05 for 24-/48-

/72-/96-hr O3), and more exposures to ozone led to a lower odds ratio of having low HDL (0.983 

for 24hr O3, 0.980 for 48- and 72-hr O3, and 0.976 for 96-hr O3).   

 More likelihood of having high glucose was associated with increased PM concentrations; 

1.034 and 1.037 times higher odds ratio as 1 µg/m3 increase in 24- and 48-hr PM2.5, respectively 

(p < 0.05) which is important considering our range for PM2.5 from 5 to 31 ug/m3. One µg/m3 

change in both 24- and 48-hr PM10 results in 1.008 times higher in the odds ratio of high glucose 

(p < 0.05). The 72-hr NO2 concentration was also a significant factor in prediction of the high 

glucose status, showing an increased likelihood of having high glucose as NO2 increases (odds 

ratio = 1.027; p = 0.048). 

 Metabolic syndrome showed significant associations with PM2.5, NO2, and O3. The odds 

of having MetS is 1.051 times higher with 1 µg/m3 increase in 96-hr PM2.5 (p = 0.043). The 

associations of MetS classification with NO2 concentrations are also positive, showing the 

increased odds ratio of 1.027 (p = 0.021), 1.040 (p = 0.004), and 1.056 (p = 0.001) for 48-, 72-, 

and 96-hr exposures, respectively. However, the increased ozone was correlated with a decreased 

likelihood of having MetS (p < 0.05 for all time exposures). 
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Table 3.10: Summary of metabolic syndrome risk factors. 

Variables   Frequency %* 

High Waist Yes 411 62.1 

 No 244 36.9 

High BP Yes 277 41.8 

  No 363 54.8 

High TG Yes 363 54.8 

  No 291 44.0 

Low HDL Yes 329 49.7 

  No 315 47.6 

High FBG Yes 231 34.9 

  No 423 63.9 

Metabolic Syndrome Yes 336 50.8 

  No 307 46.4 

*Percentages might not add to 100% due to missing values 

 

Table 3.11: Associations between metabolic syndrome (MetS) risk factors and MetS classification 

and pollutant metrics. 

Variables Pollutant   Estimate 

Std. 

Error 

z 

value p 

Odds 

Ratio 

Lower 

95% 

CI 

Upper 

95% 

CI 

High 

Waist PM2.5 24 hr 0.030 0.016 1.902 0.057 1.031 1.000 1.065 

   (ug/m3) 48 hr 0.038 0.018 2.084 *0.037 1.039 1.003 1.078 

    72 hr 0.060 0.022 2.697 *0.007 1.062 1.018 1.112 

    96 hr 0.070 0.026 2.697 *0.007 1.072 1.020 1.130 

  PM10 24 hr 0.003 0.003 0.859 0.390 1.003 0.996 1.010 

   (ug/m3) 48 hr 0.004 0.004 0.897 0.370 1.004 0.996 1.012 

    72 hr 0.006 0.005 1.105 0.269 1.006 0.996 1.016 

    96 hr 0.006 0.006 1.044 0.296 1.006 0.995 1.018 

  NO2 24 hr 0.027 0.010 2.641 *0.008 1.027 1.007 1.048 

   (ppb) 48 hr 0.036 0.012 3.028 *0.002 1.037 1.013 1.062 

    72 hr 0.048 0.014 3.399 *0.001 1.050 1.021 1.080 

    96 hr 0.055 0.016 3.373 *0.001 1.056 1.023 1.091 

  O3 24 hr -0.016 0.008 -2.079 *0.038 0.984 0.970 0.999 

   (ppb) 48 hr -0.019 0.008 -2.238 *0.025 0.981 0.965 0.998 

    72 hr -0.021 0.009 -2.465 *0.014 0.979 0.963 0.996 

    96 hr -0.022 0.009 -2.485 *0.013 0.978 0.962 0.995 

High BP PM2.5 24 hr -0.012 0.015 -0.781 0.435 0.988 0.958 1.018 

   (ug/m3) 48 hr -0.007 0.017 -0.410 0.682 0.993 0.959 1.027 

    72 hr -0.009 0.021 -0.417 0.677 0.991 0.952 1.032 

    96 hr -0.007 0.024 -0.300 0.764 0.993 0.946 1.041 

  PM10 24 hr -0.002 0.003 -0.585 0.559 0.998 0.991 1.005 

   (ug/m3) 48 hr -0.002 0.004 -0.525 0.600 0.998 0.990 1.006 

    72 hr -0.003 0.005 -0.620 0.535 0.997 0.987 1.007 
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Variables Pollutant   Estimate 

Std. 

Error 

z 

value p 

Odds 

Ratio 

Lower 

95% 

CI 

Upper 

95% 

CI 

    96 hr -0.003 0.006 -0.471 0.637 0.997 0.986 1.009 

  NO2 24 hr -0.002 0.010 -0.213 0.832 0.998 0.979 1.018 

   (ppb) 48 hr 0.004 0.012 0.379 0.705 1.004 0.982 1.027 

    72 hr 0.004 0.013 0.301 0.763 1.004 0.978 1.031 

    96 hr 0.010 0.015 0.649 0.517 1.010 0.980 1.041 

  O3 24 hr 0.005 0.007 0.719 0.472 1.005 0.991 1.020 

   (ppb) 48 hr 0.003 0.008 0.331 0.741 1.003 0.987 1.019 

    72 hr 0.004 0.008 0.489 0.625 1.004 0.988 1.021 

    96 hr 0.004 0.009 0.519 0.603 1.004 0.988 1.022 

High TG PM2.5 24 hr 0.001 0.015 0.061 0.951 1.001 0.973 1.030 

   (ug/m3) 48 hr 0.000 0.016 0.020 0.984 1.000 0.969 1.033 

    72 hr 0.012 0.020 0.615 0.538 1.012 0.974 1.053 

    96 hr 0.016 0.024 0.668 0.504 1.016 0.970 1.064 

  PM10 24 hr 0.001 0.003 0.378 0.705 1.001 0.995 1.008 

   (ug/m3) 48 hr -0.001 0.004 -0.181 0.857 0.999 0.992 1.007 

    72 hr 0.001 0.005 0.207 0.836 1.001 0.991 1.011 

    96 hr 0.002 0.006 0.342 0.732 1.002 0.991 1.013 

  NO2 24 hr 0.005 0.010 0.478 0.633 1.005 0.986 1.024 

   (ppb) 48 hr 0.009 0.011 0.796 0.426 1.009 0.987 1.032 

    72 hr 0.021 0.013 1.568 0.117 1.021 0.995 1.048 

    96 hr 0.027 0.015 1.770 0.077 1.027 0.997 1.059 

  O3 24 hr -0.011 0.007 -1.435 0.151 0.990 0.975 1.004 

   (ppb) 48 hr -0.014 0.008 -1.690 0.091 0.986 0.971 1.002 

    72 hr -0.016 0.008 -1.874 0.061 0.985 0.968 1.001 

    96 hr -0.016 0.009 -1.919 0.055 0.984 0.967 1.000 

Low HDL PM2.5 24 hr -0.012 0.015 -0.837 0.403 0.988 0.960 1.016 

   (ug/m3) 48 hr -0.006 0.016 -0.364 0.716 0.994 0.962 1.027 

    72 hr 0.005 0.020 0.271 0.786 1.005 0.967 1.045 

    96 hr 0.007 0.023 0.311 0.756 1.007 0.962 1.055 

  PM10 24 hr -0.003 0.003 -1.057 0.291 0.997 0.990 1.003 

   (ug/m3) 48 hr -0.003 0.004 -0.651 0.515 0.997 0.990 1.005 

    72 hr -0.004 0.005 -0.747 0.455 0.996 0.987 1.006 

    96 hr -0.005 0.006 -0.807 0.420 0.995 0.984 1.007 

  NO2 24 hr 0.010 0.010 1.066 0.286 1.010 0.991 1.030 

   (ppb) 48 hr 0.013 0.011 1.109 0.267 1.013 0.990 1.036 

    72 hr 0.017 0.013 1.252 0.211 1.017 0.991 1.044 

    96 hr 0.027 0.015 1.765 0.078 1.027 0.997 1.058 

  O3 24 hr -0.017 0.007 -2.317 *0.021 0.983 0.969 0.997 

   (ppb) 48 hr -0.020 0.008 -2.465 *0.014 0.980 0.964 0.996 

    72 hr -0.021 0.008 -2.462 *0.014 0.980 0.964 0.996 
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Variables Pollutant   Estimate 

Std. 

Error 

z 

value p 

Odds 

Ratio 

Lower 

95% 

CI 

Upper 

95% 

CI 

    96 hr -0.024 0.009 -2.822 *0.005 0.976 0.960 0.993 

High 

FBG PM2.5 24 hr 0.034 0.015 2.269 *0.023 1.034 1.005 1.065 

   (ug/m3) 48 hr 0.037 0.017 2.197 *0.028 1.037 1.004 1.072 

    72 hr 0.030 0.020 1.487 0.137 1.030 0.990 1.072 

    96 hr 0.026 0.024 1.073 0.283 1.026 0.979 1.076 

  PM10 24 hr 0.008 0.003 2.294 *0.022 1.008 1.001 1.014 

   (ug/m3) 48 hr 0.008 0.004 2.011 *0.044 1.008 1.000 1.016 

    72 hr 0.008 0.005 1.661 0.097 1.008 0.998 1.018 

    96 hr 0.009 0.006 1.466 0.143 1.009 0.997 1.021 

  NO2 24 hr 0.014 0.010 1.421 0.155 1.014 0.995 1.035 

   (ppb) 48 hr 0.023 0.012 1.925 0.054 1.023 1.000 1.047 

    72 hr 0.027 0.014 1.975 *0.048 1.027 1.000 1.055 

    96 hr 0.024 0.016 1.551 0.121 1.025 0.994 1.057 

  O3 24 hr -0.008 0.008 -1.030 0.303 0.992 0.977 1.007 

   (ppb) 48 hr -0.014 0.008 -1.686 0.092 0.986 0.969 1.002 

    72 hr -0.017 0.009 -1.899 0.058 0.983 0.967 1.000 

    96 hr -0.015 0.009 -1.690 0.091 0.985 0.968 1.002 

Metabolic 

Syndrome PM2.5 24 hr 0.022 0.015 1.422 0.155 1.022 0.992 1.053 

  (ug/m3) 48 hr 0.029 0.017 1.692 0.091 1.030 0.996 1.066 

   72 hr 0.037 0.021 1.772 0.076 1.037 0.997 1.081 

   96 hr 0.049 0.024 2.025 *0.043 1.051 1.002 1.103 

 PM10 24 hr 0.003 0.003 0.922 0.357 1.003 0.997 1.010 

  (ug/m3) 48 hr 0.003 0.004 0.746 0.456 1.003 0.995 1.011 

   72 hr 0.003 0.005 0.692 0.489 1.003 0.994 1.013 

   96 hr 0.005 0.006 0.883 0.377 1.005 0.994 1.017 

 NO2 24 hr 0.019 0.010 1.888 0.059 1.019 0.999 1.039 

  (ppb) 48 hr 0.027 0.012 2.305 *0.021 1.027 1.004 1.051 

   72 hr 0.039 0.014 2.877 *0.004 1.040 1.013 1.068 

   96 hr 0.054 0.016 3.475 *0.001 1.056 1.024 1.089 

 O3 24 hr -0.018 0.007 -2.470 *0.014 0.982 0.968 0.996 

  (ppb) 48 hr -0.025 0.008 -3.010 *0.003 0.975 0.960 0.991 

   72 hr -0.026 0.008 -3.008 *0.003 0.975 0.959 0.991 

   96 hr -0.027 0.009 -3.079 *0.002 0.974 0.957 0.990 
*All significant pollutant time exposures and corresponding p are expressed in bold. 
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3.4 Discussion 

3.4.1 PRINCIPAL FINDINGS 

  Our study examined the short-term associations (24/48/72/96-hr means) of traffic-related 

air pollutants (PM2.5, PM10, NO2, and O3) with biomarkers of respiratory and cardiovascular disease 

in a group of participants from low-income communities in El Paso, TX. We found associations of 

short-term air pollutant concentrations with respiratory outcomes which was expected. However, 

we also found associations with BMI and metabolic syndrome risk factors such as waist and fasting 

glucose. 

  The FEV1 was negatively correlated with mean concentration levels of PM2.5 (24/48/96-hr) 

indicating a relationship between lung function and ambient PM2.5 before the measurement. 

Specifically, this respiratory indicator represents an increase in risk for obstructive respiratory 

diseases (asthma, chronic obstructive pulmonary disease [COPD]). Furthermore, the PEF, which is 

also an indicator of increased risk for asthma and COPD, was negatively correlated not only with 

PM2.5, but also NO2. However, we did not see an influence of PM10, which might indicate significant 

health effects where caused by smaller particles which affect the lower respiratory tract and can 

further cause obstructive respiratory diseases (Xing, Xu, Shi, & Lian, 2016). Further analysis using 

the best results available for respiratory indicators (FEV1 Best, FVC Best, and PEF Best), as 

interpreted by the spirometry software (CareFusion Spirometry PC Software™ 36-SPC1000-STK), 

confirmed the associations with PM2.5 air pollutants and also NO2. 

 Exhaled nitric oxide (eNO) is a measure of airway inflammation but was not correlated 

with concentration levels of air pollutants in our population. Even so, eNO is clinically useful in 

the treatment and control of asthma (Meyts, Proesmans, & De Boeck, 2003). Given that our 



 

 
73 

inclusion methods did not ask if a participant has asthma, we recommend future studies to consider 

relationships of eNO with air pollution in participants with asthma.  

 We also considered the percent predicted values of lung function, but our analyses did not 

show any significant correlation with air pollutant concentration levels. However, we did find 

associations with the FEV1/FVC ratio which can differentiate obstructive from restrictive 

respiratory diseases. A ratio of 0.7 is indicative of lung obstruction and given the negative 

correlations found with PM2.5 and NO2 for different exposure periods, we theorize obstructive 

respiratory diseases to be more prevalent in our population compared to restrictive respiratory 

diseases (sarcoidosis, lung fibrosis).   

 Although short-term associations with risk factors related to obesity (BMI and waist 

circumference) both in linear and logistic models were not expected as part of this study, the 

relationship was present across most time exposure periods. We also did not expect a causal effect 

between short-term exposure to air pollution and obesity. However, the decreasing ranges and 

similar means of short-term air pollution concentrations (shown in Figure 3.2) could be indicative 

that similar trends could be found with medium or long-term measurements. This can be also 

representative of the environmental conditions and neighborhoods where participants live. A study 

focusing on NO2 had similar concentration trends with increasing windows of time exposure when 

comparing short-term and long-term effects (Deguen et al., 2015) 

 We did not find associations with other metabolic outcomes such as blood pressure or lipid 

profile, but we did find associations with fasting blood glucose both in linear models as well as 

increased risk among those with high fasting glucose levels. Possible reasons for these associations 

include oxidative stress and inflammation caused by air pollution exposure (Bowe et al., 2018; Eze 

et al., 2015; Wolf et al., 2016).   
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3.4.2 STRENGTHS AND LIMITATIONS 

 The present study utilized ambient (outdoor) air pollution measured at nearby CAMS 

stations. However, there could be some variation in the participants’ indoor environment related 

to pollutant exposure. Although research indicates there is a direct relationship between ambient 

and indoor air pollution which is further confirmed by the literature (Andersen, 1972; Raysoni, 

Stock, Sarnat, Montoya Sosa, et al., 2013; Zora et al., 2013), the true exposure concentration of a 

participant can be quite different from the surrogate concentration measured at the CAMS stations. 

 The measurements of air pollution exposure rely on CAMS with available data. In some 

cases, the stations where far from certain areas in El Paso County which led to exclusion of some 

participants from the analysis. Furthermore, not all CAMS had measurements available for every 

traffic-related pollutant. However, six CAMS measured ozone which was at least two times more 

than those measuring other pollutants, and yet we still observed similar trends of ozone 

concentrations compared to the other air pollutants. 

3.4.3 COMPARISON WITH OTHER STUDIES 

 Respiratory outcomes have been associated with air pollution exposure in other 

epidemiological studies. The Framingham study found that moderate exposure measured by the 

EPA’s Air Quality Index for PM2.5, NO2, and O3 was associated with lower FEV1 considering 24 

and 48-hr pollutant concentration means before the measurement (Rice et al., 2013). A study 

among 1,694 female non-smokers from the Wuhan-Zhuhai, China found that in a city at high 

pollutant levels, the moving mean of PM2.5, PM10, NO2, and O3 exposures were significantly 

associated with FEV1 reductions, but also in the low-level air pollution city PM10, O3, and 

PM2.5 were significantly associated with reduced FEV1 (Zhou et al., 2016). The same study also 
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found associations with FVC; however, we did not find them in our study which might be due to 

the relatively low levels of exposure, based on the available CAMS data. 

 Furthermore, a repeated measures study from Belgium found that an increase in PM10 on 

the day of the clinical examination was associated with lower FVC, FEV1, and PEF. Also, an 

increase in NO2 was associated with a reduction in PEF on the day of the examination (Panis et 

al., 2017). In addition, a study of lung function in adults exposed to very low levels of ambient air 

pollution in Europe did not observe an association between air pollution and longitudinal change 

in lung function (Adam et al., 2015). However, they observed that an increase in NO2 exposure 

was associated with lower levels of FEV1 and FVC. Moreover, an increase of PM10, but not other 

PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of 

FEV1. The associations were particularly strong in people with obesity. 

 Regarding metabolic outcomes, Chuang and collaborators observed increased PM10 was 

marginally (p<0.10) associated with elevated systolic blood pressure (24-hr) and triglycerides (24 

to 120-hr), and significantly associated with hemoglobin A1c (72-hr), and reduced HDL (24-hr) 

(p<0.05). They also reported that ozone was associated with diastolic blood pressure (72 and 120-

hr) and hemoglobin A1C (24,72,120-hr) and marginally associated with triglycerides and fasting 

glucose (Chuang et al., 2010). Unfortunately, their study did not consider PM2.5 measurements 

which showed some associations in our study.  

 A study conducted in China showed a positive correlation between air pollution (PM10, 

NO2, and O3) and BMI (M. Li et al., 2015), which agrees well with associations from our study, 

although the time window they considered was based on long term exposures using average 

concentrations within a 3-year period instead of short term exposure. Furthermore, a 2014 review 

by Weichenthal, et al., which considered 14 short-term effect studies of air pollutants, suggested 
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the consistent pattern of associations among participants with obesity suggests that obesity may 

modify negatively the impact of PM2.5 on cardiovascular health (Weichenthal, Hoppin, & Reeves, 

2014). 

3.5 Conclusions 

 Short term exposure to traffic-related pollutants were found to be correlated with 

respiratory outcomes related to pulmonary obstruction in our study. Future studies should consider 

clinical classifications of obstructive respiratory outcomes such as COPD and asthma while 

considering the effects on FEV1 and PEF. 

 The present study might be the first to find associations of short-term exposure to air 

pollutants with obesity; we do not expect this to be a causal relationship. However, since it is 

possible that the short-term data reflect possible similar values of medium to long term data, the 

associations of air pollution with obesity might be explained by the socio-economic and 

neighborhood characteristics of participants. In future studies, we recommend considering obesity 

as a consequence of air pollution exposure and consider extended windows of time (more than 96-

hr means) to assess long-term exposure. Furthermore, the use of statistical models that incorporate 

geographic measures such as distance to nearest pollution sources, street length around 

neighborhoods, or traffic volumes could further elucidate the relationship between obesity and air 

pollution relative to the socio-economic characteristics of the neighborhoods surrounding the 

participants. Lastly, we recommend studies that consider the relationship of air pollution exposure 

not only with fasting glucose, but also glycated hemoglobin and diabetes diagnosis. 
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CHAPTER 4 LAND USE REGRESSION OF LONG-TERM 

TRANSPORTATION DATA ON CARDIORESPIRATORY OUTCOMES 

OF LOW INCOME RESIDENTS FROM EL PASO, TX 

4.1 Introduction 

4.1.1 LONG TERM AIR POLLUTION EXPOSURE 

Over the last three decades, large cohort studies have found associations of long-term 

exposures to air pollutants with increased mortality (Dockery et al., 1993; Pope et al., 1995). 

Highways and roadways are major sources of air pollutants because of vehicle traffic which can 

negatively affect surrounding communities. People with a lower income are more likely to live in 

communities with higher pollution levels from traffic-related air pollution, which can be 

considered an environmental justice issue (Brulle & Pellow, 2006; Cushing et al., 2015).   

Examples of traffic-related air pollutants include particulate matter (PM2.5 and PM10) 

nitrogen dioxide (NO2), and ozone (O3) which pose a risk for cardiorespiratory diseases. Hoek and 

collaborators (2013) summarized long-term exposure to particulate matter (PM) and nitrogen 

dioxide (NO2) on mortality from cardiovascular and respiratory diseases in epidemiological 

studies, and concluded participants with lower education and obesity had a larger risk for mortality 

related to PM2.5 (Hoek et al., 2013). There is also increasing evidence of associations between 

increased long-term exposure to traffic-related air pollutants and lung function decline in children 

(Barone-Adesi et al., 2015) and adults (Rhee et al., 2019), as well as attenuation of this decline 

with reductions in air pollution exposure (Downs et al., 2007). Therefore, identifying zones of 

increased air pollution exposure can help develop strategies to improve the environmental 

conditions of those living in at-risk areas. 
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4.1.2 LIMITATIONS OF CENTRAL AIR MONITORING STATIONS 

Located in the U.S.-Mexico border, the city of El Paso, TX has twelve central ambient 

monitoring stations (CAMS) operated by the Texas Commission of Environmental Quality 

(TCEQ) that measure air pollutants. However, few are equipped to measure all the traffic-related 

pollutants (PM2.5, PM10, NO2, and O3) which limits the quantification of air pollutant 

concentrations in some near-road communities. While previous studies in our region have focused 

on areas surrounding major highways in the city (Raysoni et al., 2011 & 2013), near-road studies 

for areas further north from the border are limited. 

Large studies have established long-term effects of air pollution exposure to PM10, PM2.5, 

and NO2 on respiratory health outcomes including lung function using spirometry measures (Köpf 

et al., 2017). However, long-term studies that consider metabolic factors related to cardiovascular 

health are less common and findings remain mixed. A study among Mexican Americans in 

Southern California was unable to find long-term associations between air pollutants and health 

outcomes, such as glucose and insulin resistance, using spatial interpolation from air quality 

monitors (Z. Chen et al., 2016). However, another study that assessed long-term effects of air 

pollution using land use regression models (LUR) on glucose, insulin, glycated hemoglobin 

(HbA1c), and C-reactive protein, suggested an association between long-term exposure to air 

pollution and insulin resistance (Wolf et al., 2016). 

4.1.3 INCORPORATING GEOGRAPHICAL INFORMATION TO MODELS 

A review of 157 studies using various exposure methods concluded that future research 

would benefit from hybrid models combining the strengths of air pollution exposure assessments and 

geospatial information system (GIS) technologies (Zou, Wilson, Zhan, & Zeng, 2009). Some studies 

have shown consistent associations between near-roadway air pollution and cardiorespiratory 
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diseases using traffic density and proximity to roadways (Gan, Koehoorn, et al., 2010; Gan, 

Tamburic, et al., 2010; Jiang et al., 2016; Kan et al., 2008). Furthermore, Bell and collaborators 

(2017) used a hierarchical spatiotemporal model considering traffic-related air pollutants seasonal 

trends, long-term pollutant means, and land use regression. They estimated mean pollutant 

concentrations at each participant’s home location during the year of their baseline exam, as well 

as three months and two weeks prior to each participant’s baseline exam. Furthermore, geographic 

covariates such as distance to roadway and land use characteristics were used in their models to 

improve prediction (Bell et al., 2017). 

 However, none of the mentioned studies considered cardiovascular and respiratory 

outcomes in socioeconomically disadvantaged communities. In addition, traffic and air quality are 

believed to be associated with cardiorespiratory factors. A better understanding of the impact of 

these environmental factors on cardiorespiratory health could help improve overall health in low-

income communities. Therefore, we used traffic-related variables to explore relationship with 

cardiorespiratory health measures collected in our community using LUR models. Our main 

research objective was to determine if there was an association between the traffic-related variables 

(such as distance to major arterial roads, ports of entry, surrounding length of street, and traffic) 

and the cardiorespiratory risk factors and if these data can be used to better predict the risk of 

exposure to air pollution. 

 

4.2 Methods 

4.2.1 SETTING, POPULATION, AND SAMPLE 

This project integrated air quality and traffic-related data with an epidemiological study 

conducted in El Paso, TX. The “Evidence-Based Screening for Obesity, Cardiorespiratory Disease 
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and Diabetes Mellitus in Low-Income El Paso Households” is an ongoing study that collects 

demographic and health-related data from low income participants in El Paso, TX. A team of 

health professionals conducts a yearly socio-demographic survey and collects health data on-site 

at convenient locations for the participants including housing authority communities, faith-based 

organizations, food distribution events by a local food bank, community health fairs, Mexican 

Consulate clinic days, and grocery stores. Health-related data collected include metabolic 

syndrome (MetS), a predictor of cardiovascular risk, which includes waist circumference, blood 

pressure, triglycerides, HDL-cholesterol, and blood glucose. During the baseline year of the study, 

data collected also included respiratory measures of airway inflammation (measured by an exhaled 

nitric oxide test) and lung function (measured by spirometry). 

The present study conducted a secondary data analysis using health data collected between 

2014 and 2020. The larger study protocol and the amendment for conducting this study were 

approved by the Institutional Review Board (IRB) under the project number study numbers: 

590300-4 and 1249235-3 with a separate IRB for the secondary analysis under study number: 

1611345-1. 

4.2.2 TRAFFIC-RELATED MEASURES 

The city of El Paso is located in far west Texas and borders with Ciudad Juarez, Mexico to 

the south and New Mexico to the west and north. For this study, we used data from the 

participant’s home address to determine latitude and longitude coordinates and create a data layer 

using GIS software (Figure 4.1).  
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Figure 4.1: Residential addresses of participants from El Paso, TX 

 

We used mapping tools (ArcGIS Pro 2.5) to calculate the distance to the nearest major 

arterial traffic road (majart) using a GIS layer developed by the Department of Civil Engineering 

at UTEP in collaboration with the City of El Paso, TX (available at the PDNMAPA website 

http://gis.elpasotexas.gov/pdnmapajs/) (Figure 4.2).  

http://gis.elpasotexas.gov/pdnmapajs/
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Figure 4.2: Major Arterial Roads Layer 

 

Given its border with Mexico, El Paso has three international bridges which constitute ports 

of vehicle and pedestrian entry into the U.S. Due to the amount of daily traffic and car idling that 

occurs at these points of entry, we considered the distance from the participants home address to 

the nearest international port of entry (POE) as a layer of interest to explore associations of traffic-

related air pollution with cardiorespiratory health outcomes (Figure 4.3). 
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Figure 4.3: Ports of entry in El Paso, TX 

 To explore the effects of vehicle traffic using GIS tools, we defined impact zones (500m 

and 1000m) relative to a participant’s residential address. We used a GIS layer developed by El 

Paso’s Metropolitan Planning Organization that included traffic counts from the city’s major and 

minor roads address (Figure 4.4). This layer allowed us to calculate the sum of the annual averaged 

daily vehicle miles traveled (VMT) relative to a participant’s residential address.  

 

Figure 4.4: Metropolitan Planning Organization traffic layer 
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 Lastly, we used a GIS layer available at the Census.gov website that includes all available 

streets and roads within El Paso County. This layer allowed us to summarize the length of street 

road within 500m and 1000m zones for every participant relative to their residential address 

(Figure 4.5). A land use regression (LUR) model was used to explore associations between the 

mentioned traffic-related variables with the cardiorespiratory outcomes measured for each 

participant from the epidemiological study.  

 

 

Figure 4.5: U.S. Census street layer and zoomed version 

 

Our analysis established associations between cardiovascular outcome measures using 

linear models for continuous variables (BMI, waist circumference, blood pressure, triglycerides, 

HDL-cholesterol, glucose) and logistic models for categorical outcomes (metabolic syndrome 

[MetS]) with spatial transportation data.    
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 We also used a subset of participants who had respiratory health outcomes (only available 

for the first year of the epidemiological study) to establish associations between respiratory health 

outcome measures using hierarchical models for continuous variables (eNO, FVC, FEV1, PEF) 

with transportation data. Furthermore, we considered the distribution of the participants that were 

classified with MetS using the traffic-related variables to determine the geographical areas of a 

higher probability of MetS classification. 

4.2.3 STATISTICAL ANALYSES  

 

 Regression models were conducted separately for each independent variable. Box-Cox 

transformation was applied to the variables %predicted FEV1, TC/HDL, and glucose to account 

for the skewness in the distribution, and different power exponents were selected to transform the 

data; we also used the log-transformation for the eNO and %predicted FVC. The square root 

transformation was applied to the %predicted PEF to improve the distribution of the right-skewed 

PEF data. Linear regression considered respiratory as well as cardiovascular risk factors. 

Cardiovascular risk factors were classified as “high” or “low” based on clinical cut-off values used 

for the classification of metabolic syndrome (Expert Panel on Detection & Treatment of High 

Blood Cholesterol in, 2001). Participants that had three or more altered risk factors were 

categorized as having metabolic syndrome and, in contrast, those who had three or more risk 

factors within the normal range where categorized as not having metabolic syndrome. Logistic 

regression analyses were also used to examine the relationship between categorical variables and 

traffic-related measurements.  

We applied the land use regression technique to explore the associations between a set of 

spatially distributed respiratory factors from 662 participants and metabolic syndrome (MetS) risk 

factors from 4,959 participants with the traffic and land-use predictors. Lastly, we used a stepwise 
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selection technique to determine the traffic-related variables associated with metabolic syndrome. 

The resulting prediction equation from the model was applied to a grid map of the El Paso area to 

determine zones with higher likelihood of metabolic syndrome. The level of statistical significance 

was set at p of < 0.05 for all tests. We used the statistical software R (version 3.6.2) to perform the 

statistical analysis portion of the study. 

4.3 Results 

4.3.1 GIS MAPPING 

 The use of GIS mapping tolls allowed us to generate traffic-related data for every 

participant as a proxy for traffic-related air pollution exposure, Figure 4.6 illustrates a subset of 

distances to the nearest major arterial traffic road relative to participant’s GIS coordinates. In a 

similar way, we determined distances to the nearest international port of entry (POE) for each 

participant (not shown).     

 

 

 

 

 

 

 

Figure 4.6: Distance to nearest major arterial road layer and layer zoom. 

 

 

 The use of impact zones within 500m and 1000m respective to each participant’s 

residential address was a key component of the analysis. We used these zones to determine the 
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length of street road as well as the amount of vehicle miles traveled (VMT) using GIS layers from 

Census.gov and MPO respectively. Figures 4.7 and 4.8 illustrate the calculation of the VMT and 

the length of street roads within the 500m impact zone. In a similar way, we calculated the 

variables within a 1000m zone (not shown). 

 

 

 
 

Figure 4.7: Summary of street length within 500m using the Census.gov layer and layer zoom. 

 

 

 

 
 

 

Figure 4.8: Summary of vehicle miles traveled (VMT) within 500m using the MPO layer and 

layer zoom. 
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4.3.2 TRAFFIC MEASUREMENTS 

 Table 4.1 summarizes the descriptive statistics of traffic-related measurements. Distance 

to the nearest major arterial road (Dist_nearest_Majart), street length within the 500m and 1000m 

impact zone (Street_Length_500m, Street_Length_1000m), and distance to the nearest port of 

entry (Distance_nearest_POE) all measured in kilometers. Due to the exponential decay of 

distance measurements, we also considered the inverse of distance to the nearest port of entry 

(InvDist_POE) and the inverse of the distance squared (InvSqDis_POE) as alternatives. Traffic 

counts were calculated from the average daily amount of vehicle miles traveled (VMT) within the 

500m and 1000m zone of impact (Traffic_VMT_500m and Traffic_VMT_1000m) and converted 

to the unit in thousands.  

 In Figure 4.9, we show the scatterplot matrix for the pairs of traffic variables to explore the 

distribution of each variable and collinearity between variables. Based on the scatterplot, we 

decided on the impact zone with a 500m radius to be utilized in multivariate regression models. 

 

  Table 4.1: Descriptive statistics of traffic variables (unit: km, in thousands) 

Variable  Min Q1 Median Mean Q3 Max SD IQR 

Distance_nearest_Majart 0.00 0.09 0.20 0.24 0.32 2.26 0.22 0.23 

Street_Length_500m 3.04 8.46 10.96 11.48 14.16 24.85 3.97 5.70 

Street_Length_1000m 14.09 34.32 44.42 43.60 50.36 81.15 12.76 16.04 

Distance_nearest_POE 0.25 2.16 6.60 6.85 11.15 25.36 5.12 8.99 

InvDist_POE 0.04 0.09 0.15 0.35 0.46 4.05 0.42 0.37 

InvSqDist_POE 0.00 0.01 0.02 0.29 0.21 16.44 1.09 0.21 

Traffic_VMT_500m 0.00 13.82 21.98 26.56 33.57 152.94 21.99 19.75 

Traffic_VMT_1000m 0.31 61.73 110.53 126.45 164.79 412.10 85.01 103.06 
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Figure 4.9: Scatterplot matrix of pairs of traffic variables (N=662). 

4.3.3 RESPIRATORY ASSOCIATIONS 

Descriptive statistics for exhaled nitric oxide (eNO) and spirometry measurements are 

summarized in Table 4.2 (N=662). The range for eNO was from 4.9 to 113.0 ppb with a mean of 

21.4 ppb. The forced exhaled volume during the first second of expiration ranged from 0.76 to 

4.86 L with a mean of 2.4 L, the forced vital capacity ranged from 0.82 to 6 L with a mean of 2.65 

L, the peak expiratory flow (PEF) ranged from 1.59 to 11.48 L/min with a mean of 5.29 L/min. 

Table 4.2: Descriptive statistics for eNO, FEV1, FVC and PEF metrics. 

Variable Min Q1 Median Mean Q3 Max SD IQR 

eNO (ppb) 4.9 13.0 18.0 21.4 24.0 113.0 14.0 11.0 

FEV1 (L) 0.8 2.0 2.3 2.4 2.8 4.9 0.6 0.7 

FVC (L) 0.8 2.2 2.6 2.7 3.0 6.0 0.7 0.8 

PEF 

(L/min) 
1.6 4.2 5.1 5.3 6.2 11.5 1.7 2.1 

FEV1 

%Pred 
18 83 92 96 101 360 31 18 
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Variable Min Q1 Median Mean Q3 Max SD IQR 

FVC 

%Pred 
16 73 82 85 91 266 24 18 

PEF 

%Pred 
14 81 95 96 110 267 27 29 

FEV1/FVC 0.6 0.9 0.9 0.9 1.0 1.0 0.1 0.1 

FEV1Best 

(L) 
0.4 2.1 2.4 2.5 2.8 5.1 0.6 0.7 

FVCBest 

(L) 
0.5 2.3 2.7 2.8 3.2 6.0 0.8 0.9 

PEFBest 

(L/min) 
0.8 5.1 6.1 6.1 7.1 12.2 1.7 2.0 

In the correlation analysis and univariate linear regression modeling, the length of the street 

and VMT have shown to be important traffic predictors to find relationships with lung function 

(see Table 4.3). Increases in length of the street within 500m radius zone were associated with 

decreased in lung function; β1 = −0.017 for FEV1 (p = 0.016), β1 = −0.017 for FVC (p = 0.045), β1

= −0.049 for PEF (p = 0.011), β1 = −0.046 for PEF Best (p = 0.021). The finding was similar in 

the relationships between FEV1/FVC/PEF/PEF Best and street length within a bigger zone of 

1000m radius.  

Traffic density within 500m impact zone were also negatively correlated with most of 

spirometry measures; β1 = −0.004 for FEV1 (p = 0.005), β1 = −0.004 for FVC (p = 0.01), β1 = 

−0.008 for PEF (p = 0.03), β1 = −0.003 for FEV1 Best (p = 0.01), β1 = −0.004 for FVC Best (p =

0.03), β1 = −0.008 for PEF Best (p = 0.03). The traffic amount within 1000m zone, in contrast, did 

not correlate with any respiratory measures. In addition to street length and VMT variables, 

distance to the nearest major road was another significant predictor showing a positive correlation 

with PEF (p= 0.09, β1 = 0.663; p = 0.045). 

For the LUR modeling, we applied multivariate linear regression including five traffic 

variables; distance to the nearest major arterial road, street length within 500m impact zone, 

distance to the nearest port of entry, inverse of the distance to the port of entry squared, and traffic 
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vehicle miles traveled within 500m zone. As with findings from the univariate regression, street 

length within 500m zone was a significant traffic variable in modeling of PEF (β1 = −0.056, 

p=0.026) and PEF Best (β1 = −0.057, p=value=0.025). Traffic volume (Traffic_VMT_500m) had 

no significant relationship FEV1 Best.   

Table 4.3: Correlation analysis between respiratory outcome and traffic variables (unit: km, in 

thousands). 

Variable 

Distance_ 

nearest_ 

Majart 

Street_ 

Length_ 

500m 

Street_ 

Length_ 

1000m 

Distance_ 

nearest_ 

POE 

InvDist_ 

POE 

InvSqDist 

_POE 

Traffic_ 

VMT_ 

500m 

Traffic_ 

VMT_ 

1000m 

Log.eNO (ppb) 0.008 0.036 0.003 -0.052 0.025 -0.007 0.034 0.013 

FEV1 (L) 0.071 -0.108 -0.108 0.021 0.010 0.055 -0.125 -0.048 

FVC (L) 0.072 -0.090 -0.091 0.047 -0.014 0.032 -0.116 -0.051 

PEF (L/min) 0.090 -0.114 -0.141 -0.006 -0.006 0.027 -0.097 -0.017 

FEV1 %Pred 0.031 0.010 0.009 -0.105 0.134 0.118 -0.054 0.001 

bc.FEV1 %Pred1) 0.040 0.010 0.006 -0.115 0.118 0.095 -0.052 0.006 

FVC %Pred 0.041 0.007 0.013 -0.077 0.101 0.093 -0.066 -0.009 

log.FVC %Pred 0.038 0.006 0.012 -0.082 0.088 0.069 -0.062 -0.002 

PEF %Pred 0.047 -0.046 -0.063 -0.108 0.075 0.065 -0.060 0.013 

sqrt.PEF %Pred 0.053 -0.050 -0.066 -0.112 0.072 0.063 -0.053 0.024 

FEV1/FVC -0.001 -0.024 -0.033 -0.086 0.066 0.061 -0.019 -0.001 

FEV1
 Best (L) 0.048 -0.079 -0.075 0.005 0.025 0.055 -0.116 -0.046 

FVC Best (L) 0.051 -0.068 -0.060 0.039 -0.006 0.027 -0.100 -0.043 

PEF Best (L/min) 0.064 -0.103 -0.127 -0.016 0.010 0.045 -0.096 -0.015 

All significant correlations are expressed in bold. 
1) Box-Cox Transformation: bc.FEV1.%Pred = [(FEV1.%Pred)^(-0.1)-1]/(-0.1) 

 

Table 4.4: Summary and parameter estimates of multivariate regression models for respiratory 

outcomes. 
Respiratory 

Variable Traffic Variable Estimate 

Std. 

Error t value Pr(>|t|) 

log.eNO (Intercept) 2.913 0.023 128.220 0.000 

  Distance_nearest_Majart 0.043 0.139 0.308 0.758 

  Street_Length_500m 0.003 0.008 0.368 0.713 

  Distance_nearest_POE -0.005 0.005 -1.124 0.261 

  InvSqDist_POE -0.014 0.022 -0.645 0.519 

  Traffic_VMT_500m 0.001 0.001 0.525 0.599 

FEV1 (Intercept) 2.396 0.028 86.197 0.000 

  Distance_nearest_Majart 0.110 0.134 0.820 0.413 

  Street_Length_500m -0.017 0.009 -1.843 0.066 

  Distance_nearest_POE 0.000 0.006 -0.014 0.989 



 

 
92 

Respiratory 

Variable Traffic Variable Estimate 

Std. 

Error t value Pr(>|t|) 

  InvSqDist_POE 0.059 0.026 2.302 0.022 

  Traffic_VMT_500m -0.002 0.001 -1.584 0.114 

FVC (Intercept) 2.642 0.033 80.533 0.000 

  Distance_nearest_Majart 0.147 0.158 0.926 0.355 

  Street_Length_500m -0.012 0.011 -1.074 0.283 

  Distance_nearest_POE 0.004 0.007 0.614 0.540 

  InvSqDist_POE 0.050 0.030 1.665 0.097 

  Traffic_VMT_500m -0.003 0.002 -1.633 0.103 

PEF (Intercept) 5.279 0.075 69.972 0.000 

  Distance_nearest_Majart 0.399 0.364 1.096 0.274 

  Street_Length_500m -0.056 0.025 -2.235 0.026 

  Distance_nearest_POE -0.015 0.016 -0.914 0.361 

  InvSqDist_POE 0.113 0.070 1.623 0.105 

  Traffic_VMT_500m -0.003 0.004 -0.724 0.470 

FEV1%Pred (Intercept) 96.021 1.370 70.071 0.000 

  Distance_nearest_Majart 6.931 6.617 1.048 0.295 

  Street_Length_500m -0.250 0.452 -0.553 0.580 

  Distance_nearest_POE -0.611 0.290 -2.103 0.036 

  InvSqDist_POE 2.997 1.265 2.369 0.018 

  Traffic_VMT_500m -0.076 0.072 -1.044 0.297 

bc.FEV1%Pred (Intercept) 3.641 0.007 510.238 0.000 

  Distance_nearest_Majart 0.044 0.034 1.285 0.199 

  Street_Length_500m -0.001 0.002 -0.394 0.693 

  Distance_nearest_POE -0.004 0.002 -2.476 0.014 

  InvSqDist_POE 0.012 0.007 1.749 0.081 

  Traffic_VMT_500m 0.000 0.000 -0.976 0.330 

FVC%Pred (Intercept) 84.733 1.093 77.489 0.000 

  Distance_nearest_Majart 6.554 5.280 1.241 0.215 

  Street_Length_500m -0.034 0.361 -0.094 0.925 

  Distance_nearest_POE -0.362 0.232 -1.561 0.119 

  InvSqDist_POE 1.869 1.009 1.852 0.065 

  Traffic_VMT_500m -0.078 0.058 -1.348 0.178 

log.FVC%Pred (Intercept) 4.407 0.011 391.189 0.000 

  Distance_nearest_Majart 0.064 0.054 1.171 0.242 

  Street_Length_500m 0.000 0.004 0.017 0.987 

  Distance_nearest_POE -0.004 0.002 -1.772 0.077 

  InvSqDist_POE 0.013 0.010 1.243 0.214 

  Traffic_VMT_500m -0.001 0.001 -1.297 0.195 

PEF%Pred (Intercept) 95.949 1.204 79.693 0.000 

  Distance_nearest_Majart 5.796 5.814 0.997 0.319 

  Street_Length_500m -0.652 0.397 -1.641 0.101 
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Respiratory 

Variable Traffic Variable Estimate 

Std. 

Error t value Pr(>|t|) 

  Distance_nearest_POE -0.700 0.255 -2.743 0.006 

  InvSqDist_POE 1.770 1.111 1.593 0.112 

  Traffic_VMT_500m -0.035 0.064 -0.557 0.578 

sqrt.PEF%Pred (Intercept) 9.702 0.060 160.660 0.000 

  Distance_nearest_Majart 0.338 0.292 1.160 0.247 

  Street_Length_500m -0.036 0.020 -1.812 0.071 

  Distance_nearest_POE -0.037 0.013 -2.915 0.004 

  InvSqDist_POE 0.088 0.056 1.575 0.116 

  Traffic_VMT_500m -0.001 0.003 -0.303 0.762 

FEV1/FVC (Intercept) 0.915 0.003 290.795 0.000 

  Distance_nearest_Majart -0.002 0.015 -0.137 0.891 

  Street_Length_500m -0.002 0.001 -1.518 0.130 

  Distance_nearest_POE -0.001 0.001 -1.966 0.050 

  InvSqDist_POE 0.004 0.003 1.402 0.162 

  Traffic_VMT_500m 0.000 0.000 0.035 0.972 

FEV1Best (Intercept) 2.505 0.029 87.041 0.000 

  Distance_nearest_Majart 0.064 0.139 0.461 0.645 

  Street_Length_500m -0.012 0.009 -1.269 0.205 

  Distance_nearest_POE -0.001 0.006 -0.166 0.868 

  InvSqDist_POE 0.052 0.027 1.964 0.050 

  Traffic_VMT_500m -0.003 0.002 -1.765 0.078 

FVCBest (Intercept) 2.762 0.035 79.642 0.000 

  Distance_nearest_Majart 0.100 0.167 0.595 0.552 

  Street_Length_500m -0.008 0.011 -0.680 0.497 

  Distance_nearest_POE 0.004 0.007 0.570 0.569 

  InvSqDist_POE 0.041 0.032 1.289 0.198 

  Traffic_VMT_500m -0.003 0.002 -1.549 0.122 

PEFBest (Intercept) 6.099 0.077 78.796 0.000 

  Distance_nearest_Majart 0.220 0.374 0.588 0.557 

  Street_Length_500m -0.057 0.026 -2.241 0.025 

  Distance_nearest_POE -0.016 0.016 -0.945 0.345 

  InvSqDist_POE 0.137 0.071 1.920 0.055 

  Traffic_VMT_500m -0.004 0.004 -0.868 0.386 
All significant predictors and corresponding p are expressed in bold. 

 

4.3.4 CARDIOVASCULAR ASSOCIATIONS 

 

 Table 4.5 shows the demographic information of the full dataset from the epidemiological 

which contains data from participants from the last five and a half years (September 2014 to 
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January 2020, N=4,959). The participants’ ages ranged 18-94 years (mean 45.5 years). Most of 

the participants were female (79.5%) and Hispanic (95.5%), and 54.8% of participants were found 

to have overweight (23.9%) or obesity (30.9%), whereas 13.7% of participants were found to have 

a healthy BMI. 

Table 4.5: Descriptive of the demographic information for subjects (N=4,959). 

Variable Category  Frequency %* 
Sex Female 3941 79.5 

  Male 954 19.2 

Education Middle School 896 18.1 

  High School graduate 832 16.8 

  High School, no diploma 723 14.6 

  Elementary School 680 13.7 

  Some college, not completed 636 12.8 

  Bachelor's degree 532 10.7 

  Associate degree 319 6.4 

  Masters, Doctoral, or Professional degree 119 2.4 

  Never attended or Kindergarten only 72 1.5 

Language Spanish 3408 68.7 

  Both 1050 21.2 

  English 396 8.0 

  Other 8 0.2 

Employed Homemaker 1606 32.4 

  Employed-Part time 1025 20.7 

  Employed-Full time 795 16.0 

  Student 313 6.3 

  Retired 290 5.8 

  Not employed for more than 1 year 232 4.7 

  Not employed for less than 1 year 228 4.6 

  Self-Employed 197 4.0 

  Unable to work 126 2.5 

  Seasonal worker 17 0.3 

Income $0 - $19,999 3532 71.2 

  $20,000 - $29,999 603 12.2 

  $30,000 - $39,999 237 4.8 

  $50,000 - $69,999 142 2.9 

  $40,000 - $49,999 133 2.7 

  $70,000 - $99,999 62 1.3 

  $100,000 or more 51 1.0 

Marital 

Status Married 2248 45.3 

  Never Married 905 18.2 

  Divorced 453 9.1 

  Separated 407 8.2 

  Single/Never Married 313 6.3 

  Widowed 313 6.3 
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  A member of an unmarried couple 148 3.0 

  Civil Union 70 1.4 

Ethnicity Hispanic 4738 95.5 

  Non-Hispanic 79 1.6 

  White 41 0.8 

  Black or African American 9 0.2 

  Asian 4 0.1 

  American Indian or Alaska Native 3 0.1 

  Native Hawaiian 2 0.0 

  Other 1 0.0 

Race White 3302 66.6 

  Black or African American 40 0.8 

  American Indian or Alaska Native 16 0.3 

  Asian 14 0.3 

  Native Hawaiian 3 0.1 

Health Good 2072 41.8 

  Fair 1457 29.4 

  Very Good 575 11.6 

  Poor 400 8.1 

  Excellent 339 6.8 

Obesity Obesity 1534 30.9 

  Overweight 1185 23.9 

  Healthy 681 13.7 
*Distribution might not add to 100% due to participants not answering all the questions 

 Table 4.6 summarizes the descriptive statistics of traffic-related measurements. In Figure 

4.10, the scatterplot matrix presented for the pairs of traffic variables explored the distribution of 

each variable and collinearity between variables. Based on the scatterplot, we decided the impact 

zone with a 500m radius to be used in the multivariate regression models. 

Table 4.6: Descriptive statistics of traffic variables (N=4,959; unit: km, in thousands) 

Variable Min Q1 Median Mean Q3 Max SD IQR 

Distance_nearest_Majart 0.00 0.10 0.22 0.33 0.43 3.35 0.34 0.32 

Street_Length_500m 0.28 7.84 10.23 10.73 13.18 25.51 4.23 5.34 

Street_Length_1000m 0.20 28.88 36.95 39.20 48.29 83.04 15.40 19.41 

Distance_nearest_POE 0.16 3.39 8.62 9.48 13.81 37.58 7.00 10.42 

InvDist_POE.km 0.03 0.07 0.12 0.28 0.29 6.15 0.46 0.22 

InvSqDist_POE.km 0.00 0.01 0.01 0.29 0.09 37.78 1.70 0.08 

Traffic_VMT_500m 0.00 6.92 15.49 23.34 27.69 178.54 27.47 20.77 

Traffic_VMT_1000m 0.17 33.96 65.65 102.38 136.48 437.44 100.86 102.52 
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Figure 4.10: Scatterplot matrix of pairs of traffic variables (N=4,959). 

 

 Descriptive statistics for cardiovascular risk measurements (metabolic syndrome) using the 

full five-year dataset are summarized in Table 4.7 (N=4,959). The waist circumference ranged 

from 56 to 154 cm with a mean of 95 (±14.6) cm. Blood pressure (SBP/DBP) measurements ranged 

from 71/35 to 232/151 mmHg with a mean of 123/76 (±19/11) mmHg. Triglyceride (TG) levels 

ranged from 45 to 650 mg/dL with a mean level of 186 (±108) mg/dL. HDL-cholesterol ranged 

from 15 to 100 mg/dL with a mean of 48.6 (±15) mg/dL. Glucose levels ranged from 50 to 500 

mg/dL with a mean value of 113 (±49) mg/dL. Other variables of interest of cardiovascular risk 

which are not components of metabolic syndrome but could potentially offer more information 

related to cardiovascular risk included BMI, pulse pressure (a measure of difference between 

systolic and diastolic blood pressure [PBP]), total cholesterol (TC), TC/HDL ratio and LDL-

cholesterol.  
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Table 4.7: Descriptive statistics for cardiovascular risk factors (N=4,959). 

Variable  Min Q1 Median Mean Q3 Max SD IQR 

BMI (kg/m2) 15.3 25.7 29.1 29.9 33.2 67.7 6.1 7.5 

Waist (cm) 56.0 84.0 93.0 94.0 103.0 154.0 14.6 19.0 

SBP (mmHg) 71 110 121 123 134 232 19 24 

DBP (mmHg)  35 69 75 76 83 151 11 14 

PBP (mmHg) 3 37 45 47 54 133 14 17 

TC (mg/dL) 100.0 160.0 186.0 189.6 214.0 500.0 41.9 54.0 

TG (mg/dL) 44.9 110.0 164.0 186.6 233.0 650.1 108.2 123.0 

HDL (mg/dL)  14.9 38.0 47.0 48.6 57.0 100.1 15.3 19.0 

LDL (mg/dL) 14.0 81.0 102.0 105.3 127.0 314.0 34.7 46.0 

TC/HDL 1.4 3.1 3.9 4.3 5.0 15.5 1.6 1.9 

Glucose (mg/dL) 49.9 90.0 99.0 113.8 116.0 500.0 49.0 26.0 

 

  As shown in Table 4.8, linear relationships were found between traffic variables and a few 

metabolic syndrome risk factors. Waist measurement significantly correlated with the street length 

within 500m area (p = 0.045, β1 = 0.155), the inverse of the distance to the nearest POE (p = 0.046, 

β1 = 1.426), and inverse squared distance (p = 0.033, β1 = 0.270). Blood pressure monitoring 

showed that traffic variables were more associated with pulse pressure (PBP), rather than systolic 

blood pressure (SBP) or diastolic blood pressure (DBP). The PBP increases related to increase in 

street length within 500 and 1000m zones (p = 0.035, β1 = 0.115; p = 0.050, β1 = 0.046, 

respectively), decrease in the distance to the nearest POE (p = −0.059, β1 = −0.118), rise in the 

inverse of the distance to the POE (p = 0.040, β1 = 1.227), and increase in traffic amount within 

500 and 1000m (p = 0.051, β1 = 0.026; p = 0.055, β1 = 0.008, respectively). Both log-transformed 

and Box-Cox transformed glucose levels also showed similar correlation results.  

Log transformed triglycerides were significantly associated with the street length within 

the 500m zone (β1 = 0.005, p=0.036). The fasting glucose showed significant relationships with 

the POE-related distance variables; negative association with distance to the nearest POE (p = 

−0.036, β1 = −0.257), positive associations with the inverse of the distance (p = 0.064, β1 = 6.723) 

and the inverse of the distance squared (p = 0.051, β1 =1.380).  
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Table 4.9 summarizes the frequency of the five metabolic syndrome risk factors (binary 

outcomes) and the MetS classification. The univariate associations between the binary 

classification of MetS risk factors and traffic variables were examined using logistic regression 

modeling (see Table 4.10). The risk of low HDL-cholesterol was found to be higher as the street 

length within the impact zone (odds ratio=1.023, p = 0.006 for the 500m zone) and the inverse 

distance to the POE increases (odds ratio=1.212, p = 0.012). The effect of street length is more 

substantial for the smaller region, i.e., 500m zone, rather than 1000m zone. The street length within 

the 500m impact zone was also an important factor correlated with a higher risk of metabolic 

syndrome (odds ratio=1.020, 95% C.I.=[1.003, 1.037]). Increase of the inverse distance to the 

nearest POE, implying a decrease in the distance to POE, was related to a higher risk in metabolic 

syndrome (β1 = 0.192, p = 0.012). 

Five traffic variables, i.e., distance to the nearest major arterial road, street length within 

500m impact zone, distance to the nearest port of entry, the inverse of the distance to the port of 

entry squared, and traffic vehicle miles traveled within 500m zone, were included in land-use 

regression modeling for multivariate analyses of the 5-year data. As shown in Table 4.11, the most 

significant predictor in the LUR models was the total length of the street within a 500m radius. 

The increase in the street length associated with increasing the MetS factors, in particular, BMI 

(β1 = 0.110, p = 0.002), waistline (β1 = 0.294, p < 0.001), log-transformed triglycerides (β1 = 0.007, 

p = 0.025), and Box-Cox transformed fasting glucose (β1 = 2.218e-07, p = 0.049). However, the 

fasting glucose and log-transformed glucose showed positive relationships with inverse squared 

distance to the port of entry (β1 = 1.156, p = 0.015; β1 = 0.007, p = 0.023, respectively). In the 

modeling of PBP, the increase in PBP was associated with the increase in amount of traffic within 

a 500m radius (β1 = 0.021, p = 0.048) and the proximity to the nearest port of entry (β1 = −0.095, 
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p = 0.013). We also found the effect of traffic volume within the 500m zone on the DBP 

measurement for the participants whose DBP is less than 85mmHg. 

Logistic regression models, including the five traffic predictors, also showed the 

significance of the length of the street within the 500m impact zone (see Table 4.12). As the total 

length of the street increases, the risks of a high waist (β1 = 0.034, p = 0.002), high triglycerides 

(β1 = 0.024, p = 0.034), and low HDL-cholesterol (β1 = 0.032, p = 0.004) were observed. The 

significance of the street length variable in predicting three metabolic syndrome risk components 

may have influenced the prediction of metabolic syndrome classification. The increasing 

likelihood of metabolic syndrome was related to the increased street length within the 500m impact 

zone (β1 = 0.038, p = 0.001, odds ratio = 1.039 [1.016, 1.062]).    

Table 4.8: Correlation analysis with traffic variables (N=4,959, unit: km, in thousands) 

 Health 

Measures 

Distance_ 

nearest_ 

Majart 

Street_ 

Length_ 

500m 

Street_ 

Length_ 

1000m 

Distance_ 

nearest_ 

POE 

InvDist_ 

POE 

InvSqDist 

_POE 

Traffic_ 

VMT_ 

500m 

Traffic_ 

VMT_ 

1000m 

BMI (kg/m2) 0.022 0.005 -0.010 0.039 -0.002 0.000 -0.043 -0.042 

Waist (cm) -0.001 0.045 0.031 -0.002 0.046 0.033 0.002 0.006 

  Female -0.004 0.059 0.046 -0.009 0.054 0.024 0.013 0.017 

  Male 0.045 -0.018 -0.054 0.065 -0.001 0.028 -0.050 -0.062 

SBP (mmHg) 0.012 0.008 0.018 -0.031 0.018 0.013 0.028 0.021 

  SBP < 130 0.041 -0.021 -0.015 0.029 -0.011 0.012 0.006 -0.007 

  SBP >= 130 0.031 -0.001 -0.001 -0.022 0.033 0.031 0.041 0.020 

DBP (mmHg) 0.022 -0.029 -0.032 0.020 -0.020 -0.006 -0.016 -0.033 

  DBP < 85 0.021 -0.025 -0.025 0.027 -0.040 -0.022 0.010 -0.020 

  DBP >= 85 -0.033 0.030 0.009 0.008 0.013 -0.010 -0.004 -0.018 

PBP (mmHg) -0.002 0.035 0.050 -0.059 0.040 0.023 0.051 0.055 

TC (mg/dL) 0.036 -0.026 -0.040 0.022 -0.015 0.002 -0.012 -0.031 

TG (mg/dL) 0.012 0.028 0.006 -0.010 0.023 0.017 0.014 -0.019 

log.TG 0.013 0.035 0.009 -0.007 0.025 0.019 0.011 -0.027 

HDL (mg/dL) 0.016 -0.046 -0.046 0.001 -0.041 -0.027 -0.025 -0.021 

LDL (mg/dL) 0.023 -0.026 -0.032 0.026 -0.024 -0.007 -0.011 -0.020 

TC/HDL 0.013 0.011 0.000 0.012 0.013 0.018 0.021 -0.003 

log.TC/HDL 0.011 0.019 0.009 0.010 0.020 0.024 0.021 -0.003 

bc.TC/HDL1 0.010 0.021 0.013 0.010 0.022 0.025 0.020 -0.004 

Glucose 

(mg/dL) 0.003 0.032 0.021 -0.036 0.064 0.051 0.018 0.006 
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 Health 

Measures 

Distance_ 

nearest_ 

Majart 

Street_ 

Length_ 

500m 

Street_ 

Length_ 

1000m 

Distance_ 

nearest_ 

POE 

InvDist_ 

POE 

InvSqDist 

_POE 

Traffic_ 

VMT_ 

500m 

Traffic_ 

VMT_ 

1000m 

log.Glucose  0.001 0.037 0.023 -0.035 0.066 0.049 0.017 0.004 

bc.Glucose2  0.001 0.043 0.025 -0.031 0.061 0.040 0.016 0.001 

All significant correlations are expressed in bold. 
1) Box-Cox Transformation: bc.TC/HDL = [(TC/HDL)^(-0.5)-1]/(-0.5). 
2) Box-Cox Transformation: bc.Glucose = [Glucose^(-2)-1]/(-2).  

 

 

Table 4.9: Summary of metabolic syndrome risk factors (N=4,959). 

Variables    Frequency %  

High Waist Yes 2307 46.5 

  No 1603 32.3 

  NA 1049 21.2 

High BP No 2561 51.6 

  Yes 1622 32.7 

  NA 776 15.6 

High TG Yes 2047 41.3 

  No 1588 32.0 

  NA 1324 26.7 

Low HDL Yes 1835 37.0 

  No 1750 35.3 

  NA 1374 27.7 

High Glucose No 1827 36.8 

  Yes 1795 36.2 

  NA 1337 27.0 

Metabolic 

Syndrome Yes 1851 37.3 

  No 1626 32.8 

  NA 1482 29.9 
NA: Not available due to not being measured or being able to determine risk factor 

 

 

Table 4.10: Univariate associations between metabolic syndrome (MetS) risk factors and MetS 

classification and traffic variables (N=4,959). 

Health 

Variable Traffic Variable Estimate 

Std. 

Error 

z 

value Pr(>|z|) 

Odds 

Ratio 

Lower  

95% 

CI 

Upper 

95% 

CI 

High 

Waist Distance_nearest_Majart -0.012 0.095 -0.129 0.898 0.988 0.820 1.192 

  Street_Length_500m 0.010 0.008 1.276 0.202 1.010 0.995 1.026 

  Street_Length_1000m 0.000 0.002 -0.065 0.948 1.000 0.996 1.004 

  Distance_nearest_POE 0.009 0.005 1.834 0.067 1.009 0.999 1.018 

  InvDist_POE.km 0.014 0.070 0.204 0.838 1.014 0.885 1.166 

  InvSqDist_POE.km 0.000 0.019 -0.024 0.981 1.000 0.964 1.038 



 

 
101 

  Traffic_VMT_500m 0.000 0.001 -0.319 0.750 1.000 0.997 1.002 

  Traffic_VMT_1000m 0.000 0.000 -1.370 0.171 1.000 0.999 1.000 

High BP Distance_nearest_Majart 0.005 0.093 0.051 0.959 1.005 0.836 1.205 

  Street_Length_500m 0.002 0.008 0.225 0.822 1.002 0.987 1.017 

  Street_Length_1000m 0.002 0.002 0.733 0.463 1.002 0.997 1.006 

  Distance_nearest_POE -0.008 0.005 -1.706 0.088 0.992 0.983 1.001 

  InvDist_POE.km 0.038 0.068 0.550 0.583 1.038 0.907 1.186 

  InvSqDist_POE.km -0.001 0.019 -0.027 0.978 0.999 0.962 1.036 

  Traffic_VMT_500m 0.000 0.001 0.380 0.704 1.000 0.998 1.003 

  Traffic_VMT_1000m 0.000 0.000 0.341 0.733 1.000 0.999 1.001 

High TG Distance_nearest_Majart 0.090 0.101 0.894 0.371 1.094 0.899 1.336 

  Street_Length_500m 0.011 0.008 1.297 0.195 1.011 0.995 1.027 

  Street_Length_1000m 0.001 0.002 0.621 0.534 1.001 0.997 1.006 

  Distance_nearest_POE 0.002 0.005 0.467 0.640 1.002 0.993 1.012 

  InvDist_POE.km 0.034 0.073 0.468 0.640 1.035 0.898 1.197 

  InvSqDist_POE.km 0.004 0.019 0.216 0.829 1.004 0.968 1.044 

  Traffic_VMT_500m 0.000 0.001 -0.104 0.917 1.000 0.997 1.002 

  Traffic_VMT_1000m -0.001 0.000 -1.612 0.107 0.999 0.999 1.000 

Low HDL Distance_nearest_Majart 0.002 0.100 0.022 0.982 1.002 0.823 1.221 

  Street_Length_500m 0.023 0.008 2.756 0.006 1.023 1.007 1.039 

  Street_Length_1000m 0.006 0.002 2.696 0.007 1.006 1.002 1.011 

  Distance_nearest_POE 0.001 0.005 0.244 0.808 1.001 0.992 1.011 

  InvDist_POE.km 0.192 0.076 2.523 0.012 1.212 1.047 1.413 

  InvSqDist_POE.km 0.037 0.021 1.787 0.074 1.038 0.999 1.085 

  Traffic_VMT_500m 0.002 0.001 1.248 0.212 1.002 0.999 1.004 

  Traffic_VMT_1000m 0.000 0.000 1.152 0.249 1.000 1.000 1.001 

High 

Glucose Distance_nearest_Majart 0.033 0.100 0.329 0.742 1.033 0.849 1.257 

  Street_Length_500m 0.004 0.008 0.478 0.633 1.004 0.988 1.020 

  Street_Length_1000m -0.001 0.002 -0.622 0.534 0.999 0.994 1.003 

  Distance_nearest_POE 0.004 0.005 0.866 0.387 1.004 0.995 1.014 

  InvDist_POE.km 0.136 0.074 1.843 0.065 1.145 0.993 1.327 

  InvSqDist_POE.km 0.025 0.020 1.285 0.199 1.025 0.988 1.068 

  Traffic_VMT_500m 0.000 0.001 -0.247 0.805 1.000 0.997 1.002 

  Traffic_VMT_1000m -0.001 0.000 -1.586 0.113 0.999 0.999 1.000 

Metabolic 

Syndrome Distance_nearest_Majart -0.047 0.102 -0.460 0.645 0.954 0.781 1.166 

  Street_Length_500m 0.020 0.008 2.368 0.018 1.020 1.003 1.037 

  Street_Length_1000m 0.004 0.002 1.598 0.110 1.004 0.999 1.008 

  Distance_nearest_POE 0.002 0.005 0.355 0.722 1.002 0.992 1.012 

  InvDist_POE.km 0.150 0.076 1.964 0.050 1.162 1.003 1.355 

  InvSqDist_POE.km 0.016 0.019 0.802 0.423 1.016 0.979 1.057 

  Traffic_VMT_500m 0.000 0.001 -0.052 0.959 1.000 0.997 1.002 

  Traffic_VMT_1000m 0.000 0.000 -0.802 0.422 1.000 0.999 1.000 

All significant correlations are expressed in bold. 
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Table 4.11: Summary and parameter estimates of multivariate regression models for continuous 

MetS risk factors (N=4,959). 

Health Variable Traffic Variables* Estimate 

Std. 

Error t value Pr(>|t|) 

BMI (Intercept) 29.961 0.108 277.530 0.000 

 (kg/m2) Distance_nearest_Majart 0.562 0.394 1.426 0.154 

  Street_Length_500m 0.110 0.035 3.122 0.002 

  Distance_nearest_POE 0.044 0.018 2.382 0.017 

  InvSqDist_POE.km 0.002 0.061 0.040 0.968 

  Traffic_VMT_500m -0.013 0.005 -2.647 0.008 

Waist (Intercept) 93.875 0.241 389.725 0.000 

 (cm) Distance_nearest_Majart 0.462 0.878 0.526 0.599 

  Street_Length_500m 0.294 0.077 3.793 0.000 

  Distance_nearest_POE 0.054 0.041 1.329 0.184 

  InvSqDist_POE.km 0.176 0.140 1.255 0.210 

  Traffic_VMT_500m -0.020 0.011 -1.801 0.072 

Waist (cm) (Intercept) 92.889 0.267 347.822 0.000 

(Female, N=3941) Distance_nearest_Majart 0.322 0.953 0.338 0.736 

  Street_Length_500m 0.351 0.086 4.097 0.000 

  Distance_nearest_POE 0.049 0.045 1.099 0.272 

  InvSqDist_POE.km 0.053 0.196 0.269 0.788 

  Traffic_VMT_500m -0.019 0.012 -1.548 0.122 

Waist (cm) (Intercept) 97.755 0.536 182.392 0.000 

(Male, N=954) Distance_nearest_Majart 2.616 2.139 1.223 0.222 

  Street_Length_500m 0.190 0.178 1.065 0.287 

  Distance_nearest_POE 0.173 0.098 1.762 0.079 

  InvSqDist_POE.km 0.231 0.202 1.145 0.253 

  Traffic_VMT_500m -0.022 0.025 -0.886 0.376 

SBP (mmHg) (Intercept) 123.202 0.308 399.361 0.000 

  Distance_nearest_Majart 1.804 1.122 1.608 0.108 

  Street_Length_500m -0.054 0.099 -0.542 0.588 

  Distance_nearest_POE -0.084 0.052 -1.610 0.107 

  InvSqDist_POE.km 0.110 0.183 0.600 0.549 

  Traffic_VMT_500m 0.021 0.014 1.518 0.129 

SBP (mmHg) (Intercept) 112.606 0.207 542.694 0.000 

(<130, N=2801) Distance_nearest_Majart 1.764 0.754 2.340 0.019 

  Street_Length_500m -0.027 0.066 -0.402 0.688 

  Distance_nearest_POE 0.044 0.034 1.285 0.199 

  InvSqDist_POE.km 0.131 0.119 1.094 0.274 

  Traffic_VMT_500m 0.015 0.010 1.509 0.131 

SBP (mmHg) (Intercept) 144.678 0.396 365.337 0.000 

(>=130, N=1382) Distance_nearest_Majart 1.123 1.449 0.775 0.438 

  Street_Length_500m -0.143 0.130 -1.102 0.271 
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Health Variable Traffic Variables* Estimate 

Std. 

Error t value Pr(>|t|) 

  Distance_nearest_POE -0.069 0.071 -0.979 0.328 

  InvSqDist_POE.km 0.294 0.253 1.162 0.246 

  Traffic_VMT_500m 0.029 0.018 1.648 0.100 

DBP (mmHg) (Intercept) 76.386 0.183 417.888 0.000 

  Distance_nearest_Majart 0.445 0.665 0.669 0.503 

  Street_Length_500m -0.053 0.059 -0.897 0.370 

  Distance_nearest_POE 0.011 0.031 0.360 0.719 

  InvSqDist_POE.km 0.013 0.108 0.120 0.905 

  Traffic_VMT_500m 0.001 0.008 0.108 0.914 

DBP (mmHg) (Intercept) 71.840 0.140 514.876 0.000 

(<85, N=3246) Distance_nearest_Majart 0.644 0.516 1.249 0.212 

  Street_Length_500m -0.046 0.045 -1.019 0.308 

  Distance_nearest_POE 0.030 0.024 1.284 0.199 

  InvSqDist_POE.km -0.056 0.085 -0.658 0.511 

  Traffic_VMT_500m 0.013 0.006 1.972 0.049 

DBP (mmHg) (Intercept) 92.209 0.247 373.154 0.000 

(>=85, N=937) Distance_nearest_Majart -1.092 0.856 -1.275 0.203 

  Street_Length_500m 0.087 0.080 1.077 0.282 

  Distance_nearest_POE 0.036 0.042 0.848 0.397 

  InvSqDist_POE.km -0.071 0.135 -0.529 0.597 

  Traffic_VMT_500m -0.008 0.012 -0.723 0.470 

PBP (mmHg) (Intercept) 46.816 0.227 206.456 0.000 

  Distance_nearest_Majart 1.359 0.825 1.648 0.099 

  Street_Length_500m -0.001 0.073 -0.014 0.989 

  Distance_nearest_POE -0.095 0.038 -2.481 0.013 

  InvSqDist_POE.km 0.097 0.135 0.720 0.472 

  Traffic_VMT_500m 0.021 0.010 1.978 0.048 

TC (mg/dL) (Intercept) 189.327 0.720 263.063 0.000 

  Distance_nearest_Majart 2.711 2.649 1.023 0.306 

  Street_Length_500m -0.195 0.233 -0.837 0.403 

  Distance_nearest_POE 0.038 0.123 0.308 0.758 

  InvSqDist_POE.km 0.236 0.409 0.578 0.564 

  Traffic_VMT_500m 0.012 0.033 0.369 0.712 

TG (mg/dL) (Intercept) 187.067 1.867 100.215 0.000 

  Distance_nearest_Majart 12.724 6.868 1.853 0.064 

  Street_Length_500m 0.901 0.603 1.494 0.135 

  Distance_nearest_POE 0.094 0.319 0.295 0.768 

  InvSqDist_POE.km 0.730 1.055 0.692 0.489 

  Traffic_VMT_500m 0.026 0.085 0.312 0.755 

log.TG (mg/dL) (Intercept) 5.078 0.010 528.973 0.000 

  Distance_nearest_Majart 0.068 0.035 1.917 0.055 

  Street_Length_500m 0.007 0.003 2.236 0.025 
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Health Variable Traffic Variables* Estimate 

Std. 

Error t value Pr(>|t|) 

  Distance_nearest_POE 0.001 0.002 0.636 0.525 

  InvSqDist_POE.km 0.004 0.005 0.734 0.463 

  Traffic_VMT_500m 0.000 0.000 -0.151 0.880 

HDL (mg/dL) (Intercept) 48.563 0.263 184.810 0.000 

  Distance_nearest_Majart -0.220 0.971 -0.227 0.821 

  Street_Length_500m -0.222 0.085 -2.616 0.009 

  Distance_nearest_POE -0.059 0.045 -1.318 0.188 

  InvSqDist_POE.km -0.151 0.148 -1.024 0.306 

  Traffic_VMT_500m 0.000 0.012 0.002 0.998 

LDL (mg/dL) (Intercept) 104.895 0.624 168.048 0.000 

  Distance_nearest_Majart -0.419 2.311 -0.181 0.856 

  Street_Length_500m -0.130 0.202 -0.645 0.519 

  Distance_nearest_POE 0.037 0.106 0.346 0.729 

  InvSqDist_POE.km -0.025 0.349 -0.073 0.942 

  Traffic_VMT_500m 0.000 0.029 0.015 0.988 

TC/HDL (Intercept) 4.247 0.029 147.650 0.000 

  Distance_nearest_Majart 0.077 0.106 0.727 0.467 

  Street_Length_500m 0.005 0.009 0.492 0.622 

  Distance_nearest_POE 0.005 0.005 1.046 0.296 

  InvSqDist_POE.km 0.017 0.016 1.065 0.287 

  Traffic_VMT_500m 0.002 0.001 1.198 0.231 

log.TC/HDL (Intercept) 1.382 0.006 224.893 0.000 

  Distance_nearest_Majart 0.013 0.023 0.586 0.558 

  Street_Length_500m 0.002 0.002 0.950 0.342 

  Distance_nearest_POE 0.001 0.001 1.143 0.253 

  InvSqDist_POE.km 0.004 0.003 1.284 0.199 

  Traffic_VMT_500m 0.000 0.000 0.907 0.364 

bc.TC/HDL (Intercept) 0.982 0.003 320.741 0.000 

  Distance_nearest_Majart 0.006 0.011 0.530 0.596 

  Street_Length_500m 0.001 0.001 1.148 0.251 

  Distance_nearest_POE 0.001 0.001 1.185 0.236 

  InvSqDist_POE.km 0.002 0.002 1.330 0.184 

  Traffic_VMT_500m 0.000 0.000 0.751 0.453 

Glucose (mg/dL) (Intercept) 113.656 0.841 135.214 0.000 

  Distance_nearest_Majart 3.365 3.096 1.087 0.277 

  Street_Length_500m 0.261 0.271 0.962 0.336 

  Distance_nearest_POE -0.200 0.144 -1.395 0.163 

  InvSqDist_POE.km 1.156 0.474 2.438 0.015 

  Traffic_VMT_500m -0.005 0.038 -0.143 0.886 
log.Glucose 

(mg/dL) (Intercept) 4.678 0.005 908.585 0.000 

  Distance_nearest_Majart 0.019 0.019 1.027 0.305 

  Street_Length_500m 0.002 0.002 1.395 0.163 
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Health Variable Traffic Variables* Estimate 

Std. 

Error t value Pr(>|t|) 

  Distance_nearest_POE -0.001 0.001 -1.161 0.246 

  InvSqDist_POE.km 0.007 0.003 2.279 0.023 

  Traffic_VMT_500m 0.000 0.000 -0.368 0.713 
bc.Glucose 

(mg/dL) (Intercept) 0.500 0.000 1436139 0.000 

  Distance_nearest_Majart 0.000 0.000 1.086 0.278 

  Street_Length_500m 0.000 0.000 1.973 0.049 

  Distance_nearest_POE 0.000 0.000 -0.839 0.401 

  InvSqDist_POE.km 0.000 0.000 1.641 0.101 

  Traffic_VMT_500m 0.000 0.000 -0.596 0.551 

All significant predictors and corresponding p are expressed in bold. 

*Traffic variable units: km, in thousands 

 

 

Table 4.12: Summary and parameter estimates of multivariate logistic regression model for binary 

MetS factors (N=4,959). 
Health 

Variables Traffic Variables* Estimate 

Std. 

Error 

z 

value Pr(>|z|) 

Odds 

Ratio 

Lower  

95% CI 

Upper  

95% CI 

High Waist (Intercept) 0.359 0.034 10.612 0.000 1.431 1.340 1.529 

  Distance_nearest_Majart -0.037 0.123 -0.302 0.763 0.964 0.758 1.227 

  Street_Length_500m 0.034 0.011 3.157 0.002 1.035 1.013 1.058 

  Distance_nearest_POE 0.016 0.006 2.677 0.007 1.016 1.004 1.027 

  InvSqDist_POE.km -0.006 0.019 -0.291 0.771 0.994 0.957 1.034 

  Traffic_VMT_500m -0.002 0.002 -1.326 0.185 0.998 0.995 1.001 

High BP (Intercept) -0.459 0.033 

-

13.944 0.000 0.632 0.592 0.674 

  Distance_nearest_Majart 0.106 0.119 0.886 0.376 1.112 0.879 1.403 

  Street_Length_500m 0.000 0.011 -0.002 0.998 1.000 0.979 1.021 

  Distance_nearest_POE -0.010 0.006 -1.801 0.072 0.990 0.979 1.001 

  InvSqDist_POE.km -0.006 0.020 -0.311 0.756 0.994 0.954 1.032 

  Traffic_VMT_500m 0.000 0.002 -0.133 0.894 1.000 0.997 1.003 

High TG (Intercept) 0.253 0.035 7.291 0.000 1.288 1.203 1.379 

  Distance_nearest_Majart 0.146 0.128 1.136 0.256 1.157 0.901 1.491 

  Street_Length_500m 0.024 0.011 2.120 0.034 1.024 1.002 1.047 

  Distance_nearest_POE 0.005 0.006 0.875 0.381 1.005 0.994 1.017 

  InvSqDist_POE.km -0.001 0.020 -0.061 0.951 0.999 0.961 1.039 

  Traffic_VMT_500m -0.001 0.002 -0.763 0.446 0.999 0.996 1.002 

Low HDL (Intercept) 0.049 0.035 1.398 0.162 1.050 0.981 1.124 

  Distance_nearest_Majart 0.129 0.128 1.006 0.314 1.138 0.885 1.464 

  Street_Length_500m 0.032 0.011 2.862 0.004 1.033 1.010 1.056 

  Distance_nearest_POE 0.010 0.006 1.645 0.100 1.010 0.998 1.022 
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Health 

Variables Traffic Variables* Estimate 

Std. 

Error 

z 

value Pr(>|z|) 

Odds 

Ratio 

Lower  

95% CI 

Upper  

95% CI 

  InvSqDist_POE.km 0.028 0.021 1.319 0.187 1.028 0.988 1.075 

  Traffic_VMT_500m 0.000 0.002 0.039 0.969 1.000 0.997 1.003 

High 

Glucose (Intercept) -0.013 0.034 -0.371 0.710 0.987 0.923 1.056 

  Distance_nearest_Majart 0.095 0.127 0.744 0.457 1.099 0.857 1.412 

  Street_Length_500m 0.009 0.011 0.782 0.434 1.009 0.987 1.031 

  Distance_nearest_POE 0.009 0.006 1.490 0.136 1.009 0.997 1.021 

  InvSqDist_POE.km 0.028 0.020 1.371 0.170 1.028 0.989 1.073 

  Traffic_VMT_500m 0.000 0.002 -0.119 0.906 1.000 0.997 1.003 

Metabolic 

Syndrome (Intercept) 0.127 0.035 3.589 0.000 1.135 1.059 1.216 

  Distance_nearest_Majart 0.022 0.130 0.169 0.866 1.022 0.793 1.319 

  Street_Length_500m 0.038 0.011 3.309 0.001 1.039 1.016 1.062 

  Distance_nearest_POE 0.009 0.006 1.564 0.118 1.009 0.998 1.022 

  InvSqDist_POE.km 0.006 0.020 0.283 0.777 1.006 0.968 1.047 

  Traffic_VMT_500m -0.002 0.002 -1.538 0.124 0.998 0.994 1.001 

All significant predictors and corresponding p are expressed in bold. 

*Traffic variable units: km, in thousands 

4.3.5 PREDICTIVE PROBABILITY MODEL 

The multivariate regression analysis quantified the relationships between different types of 

traffic variables and risk factors for metabolic syndrome. Using a stepwise selection technique, we 

built a multivariate logistic regression model which showed the best performance in estimating the 

likelihood of metabolic syndrome. Based on the modeling, the most relevant variables were the 

length of street 500m, distance to nearest POE, and traffic VMT 500m (Table 4.13). 

Table 4.13: Summary of variable selection for multivariate logistic regression models using a 

stepwise selection technique. 
Health 

Variables Traffic Variables* Estimate 

Std. 

Error 

z 

value Pr(>|z|) 

Odds 

Ratio 

Lower  

95% CI 

Upper  

95% CI 

Metabolic 

Syndrome (Intercept) 0.126 0.035 3.586 0.000 1.134 1.059 1.215 

  Street_Length_500m 0.038 0.011 3.459 0.001 1.039 1.017 1.062 

  Distance_nearest_POE 0.009 0.006 1.569 0.117 1.009 0.998 1.021 

  Traffic_VMT_500m -0.003 0.002 -1.597 0.110 0.997 0.994 1.001 

All significant predictors and corresponding p are expressed in bold. 

*Traffic variable units: km, in thousands 
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The multivariate regression model calculated the coefficients estimates for the selected 

traffic variables which were used to predict the probabilities of occurring in El Paso for MetS. The 

length of street within 500m was positively associated with the likelihood of having Mets 

(p=0.001). Distance to nearest POE was positively associated with the likelihood of Mets, while 

traffic VTM within 500m was negatively correlated with MetS, both were not significant. Using 

these estimates, a land use probability map was made for each traffic variable. The land-use maps 

show the length of street 500m, distance to nearest POE, and traffic VMT 500m with the values 

grouped into different areas for visual interpretation (Figure 4.11). 

The maps show that the areas with the highest amount of street length are located in the 

central part of the city, while the areas with the most traffic are located in the vicinity of the major 

freeways. The distance to POE is associated with the outer west, northeast, and far east of the city. 

Figure 4.11 shows the land-use based on the mentioned variables. Each map provides various 

forecasting results, especially regarding spatial patterns of street length and traffic.  
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Figure 4.11: Traffic-related variables applied to a city grid for a) street length (500m), b) distance 

to nearest port of entry (POE), c) vehicle miles traveled (500m) 
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Lastly, the coefficient estimates of the traffic predictors for the selected model based on 

the variable selection technique, were applied to calculate a predicted probability equation for 

MetS:   

exp{0.126 + 0.038(Street_Length500m – 10.731) + 0.009(DistancePOE – 9.482) – 0.003(VMT500m -23.337)} 

1 + exp{0.126 + 0.038(Street_Length500m – 10.731) + 0.009(DistancePOE – 9.482) – 0.003(VMT500m -23.337)} 

 The predicted values were applied to a gridded map representative of areas in El Paso, TX 

in which the resulting layer (Figure 4.2) shows areas of higher and lower probability of metabolic 

syndrome. 

 

Figure 4.12: Predictive model of higher risk of metabolic syndrome based on the land use 

regression model 
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4.4 Discussion 

4.4.1 PRINCIPAL FINDINGS 

 The present study found expected associations with respiratory outcomes caused by long-

term exposure to traffic emission using the available data subset from the 1st year of the larger 

health study. We found correlations of length of street within the 500m & 1000m impact zone as 

well as the VMT with measures of lung function (FEV1, FVC, PEF). Furthermore, multivariate 

models showed length of street within the 500m was an important traffic predictor for lung 

function based on the peak exploratory flow (PEF & PEF Best).  

 Regarding the cardiovascular outcomes, the present study found associations with long-

term exposure to traffic emission using the available data of a larger health study. The most 

significant predictor in the LUR models of MetS risk factors was the total length of the street 

within a 500m radius from a resident’s address. The increase in the street length was associated 

with increasing waist and triglycerides and decreasing HDL in multivariate models. Furthermore, 

the increase in the inverse of the distance squared to the POE (i.e. a decrease in the distance to 

POE) was significantly associated with an increase in glucose levels, which suggest an increased 

likelihood of higher glucose levels in the neighborhoods further away from the city (north and far 

east areas). In addition, PBP was associated with an increased amount of traffic within a 500m 

radius and the proximity to the nearest POE. 

 While we hypothesized that a closer distance to a POE would lead to an increased risk of 

Mets and its risk factors, the outer regions of the city also included colonias (disadvantaged 

neighborhoods of extreme poverty in the suburban areas) which may convolute our findings with 

respect to this parameter.  Our results were further confirmed in logistic regression models which 

found that as the total length of street increases, the risks of a high waist, high triglycerides, low 
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HDL-cholesterol, and MetS (three or more risk factors) increased. Based on the LUR, MetS is 

higher in the central areas of El Paso where there is likely more street length and traffic. We also 

identified clusters of high MetS in the outer regions of the city, which matches with low-income 

communities and colonias, compared to areas in the west side and lower valley. 

4.4.2 STRENGTHS AND LIMITATIONS 

 The strength of this study is seen in the large size of sample (N=4,959) of low-income 

participants from El Paso, TX which are widely distributed in the city. Also, the use of the LUR 

models allowed direct exploration of several transportation variables on health outcomes instead 

of using concentration estimates, which were used in other studies, that were developed from 

central monitors and a fraction of known pollutants which introduced additional uncertainties. 

 The lack of data regarding indoor air pollutants may result in some complications with our 

study. Although difference  between the indoor/outdoor exposure may exist,  studies in the region 

have shown, in general, that there is a direct relationship between outdoor and indoor air pollution 

(Andersen, 1972; Raysoni, Stock, Sarnat, Montoya Sosa, et al., 2013; Zora et al., 2013). In 

addition,  the traffic data retrieved from the GIS layers provided by El Paso MPO, Census, and 

PDNMAPA were limited to be within the U.S. jurisdiction. For participants living within 1,000 m 

from the border area, our analysis could not include the traffic variables or GIS layers fall on the 

jurisdiction of Ciudad Juarez,  Mexico. However, this lack of partial information did not have 

much influence on the overall analyses since less than 2% of participants lived within 1,000 m of 

the border.  Future studies would benefit from including information from GIS layers with data 

from Mexico. 

 Lastly, it is important to emphasize that the predictions of our models can be further 

improved by including parameters representing the socioeconomic characteristics of the 
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population. The use of clinically aligned information in conjunction with spatial traffic-related 

data would provide additional insights for the border communities. 

4.4.3 COMPARISON WITH OTHER STUDIES 

In recent decades, studies about long-term exposure to outdoor air pollution have played a 

crucial role  in assessing the impact on different populations (Amini et al., 2017; Hoek et al., 2008). 

In our region, previous studies have used land use regression to predict concentrations of traffic-

related air pollutants. In 1999, a LUR model developed to predict concentrations of NO2 (and other 

related pollutants), found the most useful predictive variables were elevation, population density, 

distance to an international port of entry (POE), and distance to a petroleum facility considering 

two monitoring sites (Smith et al., 2006). This was further evaluated in 2006-2007 using a series 

of mixed model LURs which confirmed the mentioned variables as useful predictors of NO2 even 

when considering seasonal variation (Gonzales et al., 2012). Distance to an international port of 

entry (POE) was an important predictor in our model too, however with regards to cardiovascular 

health residents located further from them have a higher risk. 

A study along the interstate highway I-10 in El Paso, comparing field measurements and 

LUR modeling results, suggested that PM concentrations within a 1,000m buffer zone from the 

highway are most likely to be impacted by emissions from the interstate highway (Olvera, Jimenez, 

& Provencio-Vasquez, 2014). In our study, we considered the impact of distance to major traffic 

roads but did not find any associations with cardiorespiratory health outcomes. Another LUR 

study, found that adding traffic variables (vehicle miles traveled, speed, traffic demand, and street 

length) to existing models generated  a good set of predictors for air quality estimation (Olvera et 

al., 2012). In our study we found street length and vehicle miles traveled to be important predictors 

as well.  Most recently, a study compared PM pollution measured at four monitoring sites to those 
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estimated using surrogate variables (land use, traffic intensity, population density, and property 

value) for traffic emissions (Alvarez, Myers, Weigel, & Armijos, 2018). The results, however, 

were reported to be influenced by climate-specific meteorological events and did not yield any 

findings we could compare.   

Finally, it seems only one study has correlated the use of LUR with air pollution and health 

outcomes in El Paso. A 2015 study tested relationships for residential pest and PM2.5 exposures 

with children’s self-reported wheezing severity based on socio-economic factors and a previously 

developed LUR regression model (Grineski, Collins, & Olvera, 2015). Our study used 

cardiorespiratory outcomes and found relationship with traffic-related pollutants which adds to 

knowledge to air pollution research in our region. 

 

4.4 Conclusions  

The dissemination of results can lead to decision making and improve policies related to 

healthy living in communities close to busy roadways. Furthermore, the use of predictive models 

based on LUR allows identification of communities at risk for cardiorespiratory health challenges. 

This study offers the transportation professionals a rapid assessment of health risks associated with 

exposures to traffic emissions and assists communities close to busy roadways a way to understand 

the health risks posed to them.  Future studies should focus on the validation of the model with 

field air pollution data and integrate the model with additional layers of information such as socio-

economic status, population density, time of residence, among others, which could further allow 

more accurate predictors of cardiorespiratory diseases. Finally, the use of such models can be 

paired with clinical health outcomes to improve strategies aimed to reduce the effects of air 

pollution exposure on health and associated diseases.  
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CHAPTER 5 CONCLUSION  

5.1 General findings 

 Air pollution emissions quickly disperse into the atmosphere; therefore, understanding 

their characteristics is essential for developing strategies to improve air quality. A large body of 

work demonstrates a link between the effects of air pollution exposure on respiratory health. 

However, the analysis of the data used in this dissertation also found links between air pollution 

exposure and physical activity, obesity, and metabolic syndrome in at-risk populations (children 

and low-income adults).  

 As shown in Chapter 2, children with asthma spent less time in moderate to vigorous 

physical activity when exposed to higher concentrations of traffic-related pollutants while 

attending their elementary school. Severe conditions of air pollution can require cancellation of 

physical or sport activities while in school, which may lead to an increase in sedentary behavior 

and contribute to the overweight and obesity epidemic (Giles & Koehle, 2014). Also, given that 

children attending school spend about 6-8 hours per day in various school microenvironments, it 

is recommended to reduce children’s air pollution exposure in schools (U.S.EPA, 2015). This is 

particularly important for schools located near busy traffic intersections or freeways where 

children may be exposed to an even higher level of traffic pollution.  

 Chapters 3 and 4 focused on the relationship between short-term and long-term traffic-

related air pollution and health outcomes in participants from low-income communities. From 

previous studies, we know people living in areas with high air pollution have increased likelihood 

of cardiorespiratory health outcomes like heart and lung disease, irregular heartbeat, aggravated 

asthma, and decreased lung function (Atkinson et al., 2010b; Cadelis et al., 2014b; Andrew W 

Correia et al., 2013). This dissertation showed short-term air pollution exposure, based on air 
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quality data obtained from central monitoring stations, is positively correlated with decreased 

correlated with decreased lung function, obesity, and higher fasting glucose levels. Furthermore, 

the use of land use regression modeling allowed us to determine traffic-related variables such as 

the length of street within 500m, distance to nearest port of entry, and distance to major traffic 

roads as valuable surrogates to determine long-term exposure to air pollution associations with 

cardiorespiratory health outcomes.   

 For the mentioned reasons, we suggest the implementation of mitigation strategies listed 

in the following section to improve the health of not only at-risk populations, but also the 

community in general. We aim to reduce the exposure to air pollution and improve the health of 

our community by providing these recommendations that can be implemented in communities 

such as schools and low-income housing neighborhoods. 

 5.2 Mitigation strategies 

 Mitigation strategies can be divided into three options, each with their own benefits and 

challenges: reducing the magnitude of air pollution, controlling the emission rate of pollution 

sources, and controlling the source-receptor pathways (McNabola, Broderick, & Gill, 2008; Tong, 

Baldauf, Isakov, Deshmukh, & Zhang, 2016). The first can be achieved with measures such as 

mandatory greenhouse emission reductions, fuel efficiency standards, carbon taxes, introduction 

of electric mass transit, and climate change goals. (Galinato & Yoder, 2010; Münzel et al., 2017). 

Examples of emission control include vehicle tax systems that encourage the use of smaller 

vehicles that produce less pollutants, improvements in vehicle technology, and charging drivers 

who enter congestion zones (Atkinson et al., 2009; Giblin & McNabola, 2009; Matter, 2011; 

Styles, O'Brien, & Jones, 2009). However, both reducing concentrations of air pollution and 
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controlling emission rates require changes in policy or infrastructure which makes them difficult 

to implement at a community level.  

The third option, controlling source-receptor pathways, considers passive control 

measures, such as solid or porous barriers, which can be implemented near roads or within built 

environments to decrease pathways by which pollutants disseminate (Gallagher et al., 2015). 

Particulate matter (PM10 and PM2.5) can adhere to the surface of plants (Hosker Jr & Lindberg, 

1982; Nowak, Crane, & Stevens, 2006), and several studies suggest different types of natural 

barriers can be useful such as trees (Gromke & Ruck, 2007), hedgerows (Gromke, Jamarkattel, & 

Ruck, 2016), and green roofs (Perini, Ottelé, Fraaij, Haas, & Raiteri, 2011; Speak, Rothwell, 

Lindley, & Smith, 2012). Natural barriers lead to the improvement of air quality and overall health 

of those living in urban environment (Currie & Bass, 2008). 

Another option that controls source-receptor pathways includes the use of titanium dioxide 

(TiO2) paint, a photocatalytic agent, that reduces NO2 concentrations (Jeanjean, Gallagher, Monks, 

& Leigh, 2017; Lasek, Yu, & Wu, 2013). Lastly, the presence of enough tree shade near streets 

and sidewalks can reduce higher temperatures on asphalt which leads to a decrease in atmospheric 

O3 concentration. Example of trees and plants helpful in reducing O3 include curtain fig, camphor, 

savin juniper, and Australian laurel (Jim & Chen, 2008).  

Mitigation strategies that control source-receptor pathways that include wide vegetation 

barriers with high leaf density, solid barrier with of photocatalytic agents like TiO2, or 

combinations of vegetation and solid barriers could improve the air quality in a region. 

Furthermore, these mitigation strategies can be implemented in at-risk communities such as 

schools and housing communities without requiring major changes in policy or infrastructure  
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5.3 Final remarks 

 Education is key to improve the health of our communities and children, I feel fortunate to 

have been a part of programs like the EPA-UTEP Air Quality Internship which allowed graduate 

students to interact with elementary school children. During school visits, I was able to teach to 

young students the importance of air quality and how they can contribute to reduce air pollution. 

This interaction also aimed to inspire future experts in the field which will continue the work and 

research beyond what we have done. 

 Next steps include submitting our findings for publication and engaging stakeholders to 

bring awareness about the impact of air pollution and health. Regarding schools specifically, we 

will discuss the impact air pollution is having on children with asthma and discuss the 

implementation of mitigation strategies that would reduce air pollution exposure at schools.  

 We also aim to expand our land use regression models to account for sociodemographic 

information and the possible use of low-cost sensors deployed in low-income communities to 

measure the concentrations of traffic-related pollutants in ambient and indoor environments. We 

hope this will allow us to create a network that will further expand our knowledge of air pollution 

in our region and further identify hot spots of high exposure. 

 Lastly, we hope to reduce cardiorespiratory risk by offering educational materials in 

collaboration with the ongoing epidemiological study, and collaborate with our local health 

department, city planners, and school district officials to further find strategies that can allow us 

to collectively improve the overall quality of life for El Paso residents. To achieve these goals, we 

will need an interdisciplinary, cross-sector approach which illustrates the value of my training in 

the Interdisciplinary Health Sciences PhD Program. 
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APPENDIX 

Cardiovascular associations with traffic-related variables (2014-15 data) 

 Descriptive statistics for cardiovascular risk measurements (metabolic syndrome) are 

summarized in Table 4.5 (N=662). The waist circumference ranged from 49 to 151 cm with a mean 

of 95 cm. Blood pressure (SBP/DBP) measurements ranged from 74/35 to 211/128 with a mean 

of 127/76 mmHg. Triglyceride (TG) levels ranged from 45 to 650 mg/dL with a mean of 186 

mg/dL. HDL-cholesterol ranged from 15 to 100 mg/dL with a mean of 49 mg/dL. Glucose levels 

ranged from 50 to 477 mg/dL with a mean value of 109 mg/dL. Other variables of interest of 

cardiovascular risk which are not components of metabolic syndrome but could potentially offer 

more information related to cardiovascular risk included BMI, pulse pressure (PBP), total 

cholesterol (TC), and LDL-cholesterol. 

 

Table A.1 Descriptive statistics for metabolic syndrome risk factors. 

 Risk Factor Min Q1 Median Mean Q3 Max SD IQR 

Waist (cm) 49.0 86.0 94.0 95.5 104.0 151.0 14.4 18.0 

SBP (mmHg) 74.0 113.0 125.0 127.8 140.3 211.0 20.6 27.3 

DBP (mmHg) 35.0 69.0 75.0 76.2 82.0 128.0 11.4 13.0 

PBP (mmHg) 6 42 49 52 59 107 14 17 

TC (mg/dL) 100 161 188 190 215 350 39 54 

TG (mg/dL) 45 107 161 186 224 650 115 117 

HDL (mg/dL) 14.9 40.0 48.0 49.7 58.0 100.1 14.6 18.0 

LDL (mg/dL) 12.0 84.0 102.0 106.1 127.0 220.0 31.9 43.0 

TC/HDL 1.4 3.1 3.8 4.2 4.8 22.0 1.7 1.7 

Glucose (mg/dL) 49.9 86.3 94.5 108.7 108.0 477.0 46.5 21.8 

 

 Correlation and univariate regression analyses showed that a few metabolic syndrome risk 

factors were associated with inverse distance and inverse squared distance to the nearest port of 

entry (see Table 4.6). The inverse of the distance to the nearest port of entry was associated with 

increases in fasting glucose and triglycerides (β1 = 17.124, p < 0.001; β1 = 22.351, p = 0.039, 
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respectively). The inverse of the distance squared to the port of entry also showed positive 

correlations with fasting glucose and triglycerides (β1 = 9.209, p < 0.001; β1 = 14.086, p = 0.001, 

respectively), implying that the metabolic risk related to fasting glucose and triglycerides decreases 

as subjects live farther away from the port of entry.  

 The classification of metabolic syndrome risk factors (binary outcomes) based on current 

guidelines is presented in Table 4.7. Separate logistic regression models were run for each traffic 

variable of interest to evaluate the binary outcome of the MetS factors. The associations between 

the classification of metabolic syndrome factors and traffic variables are summarized in Table A.2. 

 The logistic regression models showed that the street length within the 1000m impact zone 

was also a significant factor related to a higher risk of high-BP (odds ratio=1.013, p=0.048). The 

increase in the length of the street within the 1000m zone also associated with the risk of high SBP 

(odds ratio=1.014, p=0.030), and the high value in SBP may play a role to determine the high 

blood pressure.  

 The land-use regression model included the five traffic-related variables within the 500m 

impact zone in a multivariate regression model. The most significant predictor in the LUR models 

of MetS risk factors was the inverse squared distance to the nearest port of entry (see Table A.3). 

The increase in the inverse of the distance squared to the port of entry, implying decrease in the 

distance to POE, were significantly associated increases in total cholesterol (β1 = 3.689, p = 0.019), 

triglycerides (β1 = 15.063, p = 0.001), and fasting glucose (β1 = 9.805, p < 0.001). In logistic 

regression modeling, we also found that increasing inverse distance squared to the port of entry 

was associated with an increased likelihood of high total cholesterol (odds ratio = 1.221; p = 

0.055). The LUR model was found to have a week correlation between MetS classification and 

street length within the 500m zone, which implies more likelihood of having metabolic syndrome 
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with increased street length around the residential area (odds ratio =1.050, p = 0.082). However, 

as shown in the previous univariate models, the larger impact zone within the 1000m distance may 

be more appropriate than the 500m zone when modeling binary risk factors of metabolic syndrome. 

 

Table A.2: Correlation Analysis 

 Variable 

Distance_ 

nearest_ 

Majart 

Street_ 

Length_ 

500m 

Street_ 

Length_ 

1000m 

Distance_ 

nearest_ 

POE 

InvDist_ 

POE 

InvSqDist 

_POE 

Traffic_ 

VMT_ 

500m 

Traffic_ 

VMT_ 

1000m 

SBP 0.023 0.008 0.016 0.028 0.024 0.054 0.038 0.030 

  SBP < 130 0.086 -0.079 -0.091 0.102 -0.053 -0.010 -0.016 -0.019 

  SBP >= 130 0.107 -0.073 -0.085 0.024 -0.024 -0.012 -0.004 -0.027 

DBP 0.007 0.005 0.015 0.069 0.015 0.044 0.048 0.018 

  DBP < 85 -0.060 -0.048 -0.017 0.051 -0.022 0.010 0.039 0.003 

  DBP >= 85 0.016 0.122 0.070 0.003 0.031 -0.026 0.087 -0.028 

PBP 0.028 0.007 0.012 -0.014 0.023 0.042 0.017 0.028 

TC 0.053 -0.035 -0.069 -0.017 0.024 0.070 -0.018 -0.046 

TG 0.078 0.056 -0.015 0.025 0.081 0.134 -0.030 -0.080 

log.TG 0.087 0.049 -0.003 0.036 0.053 0.100 -0.033 -0.069 

HDL 0.004 -0.032 -0.020 -0.026 -0.024 -0.033 -0.028 0.009 

LDL 0.013 -0.039 -0.061 -0.032 -0.035 -0.057 0.030 -0.017 

TC/HDL 0.015 0.012 0.003 0.006 0.031 0.071 0.016 -0.035 

log.TC/HDL 0.042 0.015 -0.003 0.013 0.024 0.060 0.017 -0.031 

bc.TC/HDL2) 0.053 0.013 -0.006 0.014 0.018 0.049 0.013 -0.027 

Glucose -0.036 0.074 0.054 -0.039 0.153 0.217 0.010 0.006 

log.Glucose -0.024 0.059 0.058 -0.053 0.127 0.166 0.003 0.023 

bc.Glucose3) -0.006 0.040 0.068 -0.059 0.084 0.095 -0.004 0.045 

All significant correlations are expressed in bold. 
2) Box-Cox Transformation: bc.TC/HDL = [(TC/HDL)^(-0.5)-1]/(-0.5). 
3) Box-Cox Transformation: bc.Glucose = [Glucose^(-2)-1]/(-2).  
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Table A.3: Summary of metabolic syndrome risk factors. 

Variable   Frequency % 

High Waist Yes 411 62.1 

 No 244 36.9 

High BP Yes 277 41.8 

  No 363 54.8 

High TG Yes 363 54.8 

  No 291 44.0 

Low HDL Yes 329 49.7 

  No 315 47.6 

High Glucose Yes 231 34.9 

  No 423 63.9 

MetS Yes 336 50.8 

  No 307 46.4 

 

Table A.4: Univariate associations between metabolic syndrome (MetS) risk factors and MetS 

classification and traffic variables. 

Outcome Traffic Variable Estimate 

Std. 

Error 

z 

value Pr(>|z|) 

Odds 

Ratio 

Lower 

95% 

CI 

Upper 

95% 

CI 

High Waist Distance_nearest_Majart -0.220 0.364 -0.605 0.545 0.802 0.391 1.663 

  Street_Length_500m 0.009 0.021 0.422 0.673 1.009 0.969 1.051 

  Street_Length_1000m 0.007 0.006 1.115 0.265 1.007 0.995 1.020 

  Distance_nearest_POE 0.017 0.016 1.031 0.303 1.017 0.985 1.050 

  InvDist_POE.km -0.042 0.193 -0.217 0.828 0.959 0.658 1.417 

  InvSqDist_POE.km 0.012 0.076 0.162 0.871 1.012 0.877 1.202 

  Traffic_VMT_500m 0.000 0.004 0.054 0.957 1.000 0.993 1.008 

  Traffic_VMT_1000m 0.001 0.001 0.844 0.398 1.001 0.999 1.003 

High BP Distance_nearest_Majart -0.449 0.385 -1.166 0.244 0.638 0.290 1.326 

  Street_Length_500m 0.030 0.020 1.495 0.135 1.031 0.991 1.073 

  Street_Length_1000m 0.013 0.006 1.977 0.048 1.013 1.000 1.025 

  Distance_nearest_POE 0.004 0.016 0.266 0.790 1.004 0.974 1.035 

  InvDist_POE.km 0.228 0.193 1.182 0.237 1.256 0.862 1.852 

  InvSqDist_POE.km 0.146 0.093 1.567 0.117 1.157 0.988 1.445 

  Traffic_VMT_500m 0.005 0.004 1.301 0.193 1.005 0.998 1.012 

  Traffic_VMT_1000m 0.001 0.001 1.103 0.270 1.001 0.999 1.003 

High TG Distance_nearest_Majart 0.919 0.424 2.168 0.030 2.507 1.124 5.931 

  Street_Length_500m 0.015 0.020 0.762 0.446 1.015 0.976 1.056 

  Street_Length_1000m 0.000 0.006 -0.014 0.989 1.000 0.988 1.012 

  Distance_nearest_POE 0.021 0.016 1.327 0.185 1.021 0.990 1.053 

  InvDist_POE.km 0.107 0.193 0.558 0.577 1.113 0.767 1.646 

  InvSqDist_POE.km 0.149 0.106 1.403 0.161 1.161 0.978 1.503 
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Outcome Traffic Variable Estimate 

Std. 

Error 

z 

value Pr(>|z|) 

Odds 

Ratio 

Lower 

95% 

CI 

Upper 

95% 

CI 

  Traffic_VMT_500m -0.003 0.004 -0.929 0.353 0.997 0.990 1.004 

  Traffic_VMT_1000m -0.001 0.001 -1.423 0.155 0.999 0.997 1.000 

Low HDL Distance_nearest_Majart 0.055 0.386 0.143 0.886 1.057 0.494 2.276 

  Street_Length_500m 0.025 0.020 1.226 0.220 1.025 0.985 1.067 

  Street_Length_1000m 0.009 0.006 1.489 0.137 1.009 0.997 1.022 

  Distance_nearest_POE 0.009 0.016 0.581 0.561 1.009 0.979 1.041 

  InvDist_POE.km 0.123 0.191 0.643 0.520 1.131 0.779 1.664 

  InvSqDist_POE.km 0.067 0.079 0.856 0.392 1.070 0.925 1.284 

  Traffic_VMT_500m 0.002 0.004 0.640 0.522 1.002 0.995 1.009 

  Traffic_VMT_1000m 0.000 0.001 0.389 0.697 1.000 0.999 1.002 

High 

Glucose Distance_nearest_Majart 0.463 0.394 1.176 0.240 1.589 0.730 3.474 

  Street_Length_500m -0.001 0.021 -0.051 0.960 0.999 0.959 1.040 

  Street_Length_1000m 0.002 0.006 0.348 0.728 1.002 0.990 1.015 

  Distance_nearest_POE -0.013 0.016 -0.799 0.424 0.987 0.956 1.019 

  InvDist_POE.km 0.170 0.193 0.880 0.379 1.185 0.806 1.734 

  InvSqDist_POE.km 0.078 0.074 1.056 0.291 1.081 0.935 1.273 

  Traffic_VMT_500m -0.003 0.004 -0.725 0.468 0.997 0.990 1.005 

  Traffic_VMT_1000m 0.000 0.001 0.397 0.692 1.000 0.998 1.002 

MetS Distance_nearest_Majart 0.133 0.387 0.343 0.732 1.142 0.534 2.477 

  Street_Length_500m 0.031 0.020 1.541 0.123 1.032 0.992 1.074 

  Street_Length_1000m 0.010 0.006 1.629 0.103 1.010 0.998 1.023 

  Distance_nearest_POE 0.011 0.016 0.726 0.468 1.011 0.981 1.043 

  InvDist_POE.km 0.197 0.196 1.007 0.314 1.218 0.835 1.814 

  InvSqDist_POE.km 0.158 0.106 1.488 0.137 1.171 0.986 1.514 

  Traffic_VMT_500m -0.001 0.004 -0.271 0.787 0.999 0.992 1.006 

  Traffic_VMT_1000m 0.000 0.001 0.111 0.912 1.000 0.998 1.002 

All significant correlations are expressed in bold. 

 

Table A.5: Summary and parameter estimates of multivariate regression models for continuous 

MetS risk factors. 

Health 

Variables Traffic Variables Estimate 

Std. 

Error t value Pr(>|t|) 

SBP (Intercept) 127.671 0.816 156.374 0.000 

  Distance_nearest_Majart 3.606 4.172 0.864 0.388 

  Street_Length_500m -0.126 0.276 -0.457 0.648 

  Distance_nearest_POE 0.157 0.178 0.883 0.378 

  InvSqDist_POE.km 1.391 0.836 1.664 0.097 

  Traffic_VMT_500m 0.052 0.043 1.208 0.228 

SBP (Intercept) 114.051 0.549 207.899 0.000 

(<130, N=377) Distance_nearest_Majart 2.820 2.841 0.993 0.322 
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Health 

Variables Traffic Variables Estimate 

Std. 

Error t value Pr(>|t|) 

  Street_Length_500m -0.302 0.204 -1.479 0.140 

  Distance_nearest_POE 0.212 0.125 1.692 0.092 

  InvSqDist_POE.km 2.108 1.385 1.522 0.129 

  Traffic_VMT_500m 0.030 0.036 0.848 0.397 

SBP (Intercept) 147.381 0.910 162.039 0.000 

(>=130, N=263) Distance_nearest_Majart 7.348 4.596 1.599 0.111 

  Street_Length_500m -0.345 0.309 -1.118 0.265 

  Distance_nearest_POE -0.080 0.198 -0.404 0.687 

  InvSqDist_POE.km 0.310 0.645 0.481 0.631 

  Traffic_VMT_500m 0.032 0.039 0.805 0.422 

DBP (Intercept) 76.136 0.449 169.455 0.000 

  Distance_nearest_Majart 0.364 2.296 0.159 0.874 

  Street_Length_500m -0.057 0.152 -0.378 0.706 

  Distance_nearest_POE 0.198 0.098 2.026 0.043 

  InvSqDist_POE.km 0.741 0.460 1.611 0.108 

  Traffic_VMT_500m 0.032 0.024 1.356 0.176 

DBP (Intercept) 71.994 0.350 205.512 0.000 

(<85, N=509) Distance_nearest_Majart -3.725 1.943 -1.917 0.056 

  Street_Length_500m -0.250 0.122 -2.053 0.041 

  Distance_nearest_POE 0.092 0.079 1.162 0.246 

  InvSqDist_POE.km 0.651 0.524 1.241 0.215 

  Traffic_VMT_500m 0.027 0.020 1.356 0.176 

DBP (Intercept) 92.411 0.668 138.441 0.000 

(>=85, N=131) Distance_nearest_Majart 1.873 2.723 0.688 0.493 

  Street_Length_500m 0.365 0.230 1.589 0.115 

  Distance_nearest_POE 0.074 0.135 0.547 0.585 

  InvSqDist_POE.km -0.375 0.403 -0.930 0.354 

  Traffic_VMT_500m 0.012 0.028 0.415 0.679 

PBP (Intercept) 51.535 0.575 89.652 0.000 

  Distance_nearest_Majart 3.242 2.938 1.104 0.270 

  Street_Length_500m -0.069 0.194 -0.353 0.724 

  Distance_nearest_POE -0.041 0.125 -0.329 0.742 

  InvSqDist_POE.km 0.650 0.589 1.104 0.270 

  Traffic_VMT_500m 0.020 0.030 0.656 0.512 

TC (Intercept) 190.077 1.516 125.367 0.000 

  Distance_nearest_Majart 9.553 8.363 1.142 0.254 

  Street_Length_500m -0.834 0.514 -1.622 0.105 

  Distance_nearest_POE -0.222 0.332 -0.670 0.503 

  InvSqDist_POE.km 3.689 1.566 2.356 0.019 

  Traffic_VMT_500m 0.037 0.080 0.465 0.642 

TG (Intercept) 186.352 4.443 41.944 0.000 
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Health 

Variables Traffic Variables Estimate 

Std. 

Error t value Pr(>|t|) 

  Distance_nearest_Majart 63.169 24.507 2.578 0.010 

  Street_Length_500m 2.310 1.506 1.534 0.126 

  Distance_nearest_POE 1.491 0.972 1.535 0.125 

  InvSqDist_POE.km 15.063 4.589 3.282 0.001 

  Traffic_VMT_500m -0.243 0.235 -1.035 0.301 

log.TG (Intercept) 5.068 0.022 232.742 0.000 

  Distance_nearest_Majart 0.328 0.120 2.729 0.007 

  Street_Length_500m 0.013 0.007 1.789 0.074 

  Distance_nearest_POE 0.008 0.005 1.595 0.111 

  InvSqDist_POE.km 0.054 0.022 2.396 0.017 

  Traffic_VMT_500m -0.001 0.001 -1.056 0.291 

HDL (Intercept) 49.662 0.572 86.764 0.000 

  Distance_nearest_Majart -3.169 3.152 -1.005 0.315 

  Street_Length_500m -0.157 0.195 -0.807 0.420 

  Distance_nearest_POE -0.137 0.126 -1.091 0.276 

  InvSqDist_POE.km -0.414 0.588 -0.705 0.481 

  Traffic_VMT_500m -0.012 0.030 -0.404 0.686 

LDL (Intercept) 106.017 1.308 81.072 0.000 

  Distance_nearest_Majart 2.814 7.747 0.363 0.717 

  Street_Length_500m -0.501 0.457 -1.096 0.274 

  Distance_nearest_POE -0.451 0.290 -1.557 0.120 

  InvSqDist_POE.km -2.582 2.113 -1.222 0.222 

  Traffic_VMT_500m 0.091 0.069 1.329 0.184 

TC/HDL (Intercept) 4.171 0.068 61.072 0.000 

  Distance_nearest_Majart 0.212 0.374 0.567 0.571 

  Street_Length_500m -0.010 0.023 -0.428 0.668 

  Distance_nearest_POE 0.007 0.015 0.459 0.646 

  InvSqDist_POE.km 0.134 0.070 1.929 0.054 

  Traffic_VMT_500m 0.002 0.004 0.559 0.576 

log.TC/HDL (Intercept) 1.366 0.014 100.898 0.000 

  Distance_nearest_Majart 0.096 0.074 1.298 0.195 

  Street_Length_500m 0.000 0.005 -0.046 0.963 

  Distance_nearest_POE 0.002 0.003 0.538 0.591 

  InvSqDist_POE.km 0.023 0.014 1.634 0.103 

  Traffic_VMT_500m 0.000 0.001 0.616 0.538 

bc.TC/HDL (Intercept) 0.976 0.007 145.985 0.000 

  Distance_nearest_Majart 0.057 0.037 1.551 0.121 

  Street_Length_500m 0.000 0.002 0.066 0.948 

  Distance_nearest_POE 0.001 0.001 0.448 0.654 

  InvSqDist_POE.km 0.009 0.007 1.358 0.175 

  Traffic_VMT_500m 0.000 0.000 0.583 0.560 
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Health 

Variables Traffic Variables Estimate 

Std. 

Error t value Pr(>|t|) 

Glucose (Intercept) 108.802 1.789 60.832 0.000 

  Distance_nearest_Majart -3.955 9.866 -0.401 0.689 

  Street_Length_500m -0.199 0.606 -0.328 0.743 

  Distance_nearest_POE 0.230 0.391 0.588 0.556 

  InvSqDist_POE.km 9.805 1.847 5.307 0.000 

  Traffic_VMT_500m -0.030 0.095 -0.322 0.748 

log.Glucose (Intercept) 4.635 0.011 405.152 0.000 

  Distance_nearest_Majart -0.013 0.063 -0.201 0.841 

  Street_Length_500m -0.001 0.004 -0.290 0.772 

  Distance_nearest_POE -0.001 0.003 -0.200 0.842 

  InvSqDist_POE.km 0.046 0.012 3.891 0.000 

  Traffic_VMT_500m 0.000 0.001 -0.364 0.716 

bc.Glucose (Intercept) 0.500 0.000 652753 0.000 

  Distance_nearest_Majart 0.000 0.000 0.061 0.951 

  Street_Length_500m 0.000 0.000 -0.082 0.935 

  Distance_nearest_POE 0.000 0.000 -0.884 0.377 

  InvSqDist_POE.km 0.000 0.000 2.005 0.045 

  Traffic_VMT_500m 0.000 0.000 -0.383 0.702 

All significant predictors and corresponding p are expressed in bold. 

 

 

Table A.6: Summary and parameter estimates of multivariate logistic regression model for binary 

MetS factors. 

Outcome Traffic Variables Estimate 

Std. 

Error 

z 

value 

P 

value 

Odds 

Ratio 

Lower 

95% CI 

Upper 

95% CI 

High Waist (Intercept) 0.534 0.081 6.563 0.000 1.706 1.456 2.003 

  Distance_nearest_Majart -0.193 0.414 -0.467 0.641 0.824 0.367 1.900 

  Street_Length_500m 0.021 0.028 0.745 0.456 1.021 0.967 1.078 

  Distance_nearest_POE 0.026 0.018 1.416 0.157 1.026 0.990 1.064 

  InvSqDist_POE 0.012 0.087 0.134 0.893 1.012 0.859 1.238 

  Traffic_VMT_500m -0.002 0.004 -0.359 0.719 0.998 0.990 1.007 

High BP (Intercept) -0.280 0.081 -3.478 0.001 0.756 0.645 0.885 

  Distance_nearest_Majart -0.253 0.418 -0.604 0.546 0.777 0.332 1.743 

  Street_Length_500m 0.014 0.027 0.497 0.619 1.014 0.960 1.070 

  Distance_nearest_POE 0.021 0.018 1.224 0.221 1.022 0.987 1.058 

  InvSqDist_POE 0.138 0.108 1.285 0.199 1.148 0.960 1.504 

  Traffic_VMT_500m 0.003 0.004 0.604 0.546 1.003 0.994 1.011 

High TC (Intercept) -0.518 0.082 -6.337 0.000 0.596 0.507 0.699 

  Distance_nearest_Majart 0.358 0.443 0.809 0.419 1.430 0.599 3.457 

  Street_Length_500m -0.057 0.028 -2.034 0.042 0.944 0.893 0.998 

  Distance_nearest_POE -0.001 0.018 -0.033 0.974 0.999 0.965 1.035 
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  InvSqDist_POE 0.200 0.104 1.916 0.055 1.221 1.023 1.577 

  Traffic_VMT_500m 0.001 0.004 0.306 0.760 1.001 0.993 1.010 

High TG (Intercept) 0.237 0.081 2.933 0.003 1.267 1.082 1.485 

  Distance_nearest_Majart 1.296 0.499 2.598 0.009 3.653 1.416 9.979 

  Street_Length_500m 0.044 0.028 1.553 0.121 1.045 0.988 1.104 

  Distance_nearest_POE 0.033 0.018 1.829 0.067 1.033 0.998 1.071 

  InvSqDist_POE 0.204 0.150 1.362 0.173 1.226 0.982 1.785 

  Traffic_VMT_500m -0.004 0.004 -0.956 0.339 0.996 0.988 1.004 

Low HDL (Intercept) 0.046 0.079 0.584 0.559 1.047 0.897 1.224 

  Distance_nearest_Majart 0.332 0.443 0.749 0.454 1.393 0.590 3.391 

  Street_Length_500m 0.033 0.027 1.218 0.223 1.034 0.980 1.090 

  Distance_nearest_POE 0.020 0.017 1.132 0.258 1.020 0.986 1.056 

  InvSqDist_POE 0.049 0.088 0.556 0.578 1.050 0.891 1.293 

  Traffic_VMT_500m 0.001 0.004 0.138 0.891 1.001 0.992 1.009 

High 

Glucose (Intercept) -0.603 0.082 -7.328 0.000 0.547 0.465 0.642 

  Distance_nearest_Majart 0.431 0.446 0.966 0.334 1.539 0.636 3.727 

  Street_Length_500m -0.007 0.028 -0.255 0.799 0.993 0.940 1.049 

  Distance_nearest_POE -0.016 0.018 -0.858 0.391 0.985 0.950 1.020 

  InvSqDist_POE 0.088 0.084 1.045 0.296 1.092 0.927 1.321 

  Traffic_VMT_500m -0.002 0.004 -0.416 0.677 0.998 0.989 1.007 

Metabolic (Intercept) 0.092 0.080 1.150 0.250 1.096 0.937 1.283 

Syndrome  Distance_nearest_Majart 0.383 0.449 0.853 0.394 1.466 0.617 3.623 

  Street_Length_500m 0.048 0.028 1.739 0.082 1.050 0.994 1.109 

  Distance_nearest_POE 0.029 0.018 1.614 0.106 1.029 0.994 1.066 

  InvSqDist_POE 0.142 0.123 1.150 0.250 1.152 0.949 1.583 

  Traffic_VMT_500m -0.004 0.004 -0.980 0.327 0.996 0.988 1.004 

All significant predictors and corresponding p are expressed in bold. 
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