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Abstract

We study the positivity preserving property and an incompressibility condition in a recently pro-

posed tumor growth model as well as its numerical simulations. In this model, the biological pro-

cess is described by a free-boundary problem of hyperbolic equations that govern the in-tumor

motion of cancer cells and the infiltration of immune cells. Particularly, due to an assumption

that cells take constant volume (the incompressibility condition), the tumor growth/shrinkage is

closely correlated to the magnitude of infiltration of immune cells into the tumor.

Despite the fact that previous simulation results largely reproduced experimental data, there

remain unanswered questions that are crucial for the justification of such models. In this thesis,

we make a first step to address two such questions, namely preserving the positivity of variables

that represent cell number densities and the incompressibility condition, from both a mathe-

matical perspective and a numerical point of view. In particular, we first show that under certain

assumptions, the analytic solutions to the mathematical model must preserve positive cell number

densities as well as maintaining the cell incompressibility. Then we examine a recently proposed

segregate-flux finite volume method, which is designed preserves numerical cell incompressibil-

ity, and show that it also positivity-preserving under minor modifications.

vi



Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 A Tumor Growth Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Model in normalized coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 A schematic description of the model and open problems . . . . . . . . . . . . . 7

1.4 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 FVM for the model problem, DTCL, and DGCL . . . . . . . . . . . . . . . . . . 10

2.2 Finite volume discretization using segregated fluxes . . . . . . . . . . . . . . . . 12

2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Preliminary Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Characteristic analysis of the G-equation . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Characteristic analysis of the M-equation . . . . . . . . . . . . . . . . . . . . . 18

3.3 The incompressibility assumption . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Numerical Positivity Preserving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Advection equation with first-order upwind FVM . . . . . . . . . . . . . . . . . 21

4.2 The first-order fluxes for the model problem . . . . . . . . . . . . . . . . . . . . 22

4.3 The PPM flux for the model problem . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 An enhanced PPM flux with synchronized limiter . . . . . . . . . . . . . . . . . 26

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



Introduction

Tumors are complex tissues that contain cancer cells and other variety of cells including those

in the immune system [13, 15]. For the past decades, researchers from different fields have

relied on mathematical modeling to complement their experimental studies; by way of analyzing

the complex biology of tumors in order to extract simple principles useful for designing novel

diagnostic and treatment strategies [14].

Numerous investigations show that immune cell infiltration plays a crucial role in tumor

growth in many types of cancers [6, 8]. However, existing lab and clinical studies have led to

seemingly conflicting observations. On the one hand, local contact between immune cells and

tumor (cancer) cells leads to the demise of the latter; on the other hand, when too many immune

cells enter (infiltrate) the tumor in a short period of time they tend to enlarge the region the tumor

occupies and results in aggressive tumor growth [7, 9, 11]. To this end, mathematical modeling

has become an indispensable tool to gain a deeper understanding of this phenomenon and several

models based on partial differential equations (PDE) have been developed in the past decades.

Recently, B. Niu et al. [1] proposed a free-boundary PDE model for immune cell infiltration

that is driven by PDGF (platelet-derived growth factor) into glioma tumor. This model is moti-

vated by the conservation law of incompressible fluids, and it enjoys the advantage over others in

its explicitly capturing the (moving) tumor boundary hence one easily relates the migration of var-

ious types of cells to the growth or shrinkage of the tumor domain. However, it also complicates

both the mathematical analysis and the numerical investigation using classical methodologies.

Three different cell species are considered in this model: the glioma cells (G), the necrotic

cells (H), and the immune cells (M); among the three, G and H are native ones and their domain

define the tumor region, whereas M is the infiltration species whose motion is guided by the

gradient of chemoattractant (A) that is secreted by glioma cells. This procedure is described by
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the equations below in the spherical symmetry case:

∂G(r, t)
∂ t

+
1
r2

∂

∂ r

[
r2G(r, t)V (r, t)

]
= λG(r, t)−µG(r, t) ,

∂H(r, t)
∂ t

+
1
r2

∂

∂ r

[
r2H(r, t)V (r, t)

]
= µG(r, t)−δH(r, t) ,

∂M(r, t)
∂ t

+
1
r2

∂

∂ r

[
r2M(r, t)V (r, t)

]
=−α

r2
∂

∂ r

[
r2M(r, t)

∂A(r, t)
∂ r

]
−ρM(r, t) ,

on a moving domain 0≤ r ≤ R(t) for the cell number densities and:

∂A(r, t)
∂ t

=
ν

r2
∂

∂ r

[
r2 ∂A(r, t)

∂ r

]
+

mG(r, t)
β +G(r, t)

− γA(r, t)

on the unbound domain 0≤ r < ∞ for the chemoattractant concentration. Here the radius of the

tumor is denoted R(t) and the in-tumor migration velocity for native cells (G and H) is V (r, t).

In particular, one has R′(t) = V (R(t), t) and an integral equation for V is obtained by summing

all three cell-species equations and replacing G+H +M by a constant θ that represents the total

number of cells per unit volume:

1
r2

∂

∂ r

[
r2V (r, t)θ +αr2 ∂A(r, t)

∂ r
M(r, t)

]
= λG(r, t)−δH(r, t)−ρM(r, t) .

The Greek letters are model parameters describing proliferation, apoptosis, and necrosis of cells

whose values are typically obtained by independent studies.

An important assumption in deriving the V -equation is the incompressibility of the cells:

G+H +M = θ ,

whereas whether it will be satisfied by the solutions to the model remains an open question.

Nevertheless, motivated by preserving the cell incompressibility at the discrete level, a segregate-

flux finite volume method (FVM) is proposed recently [2] and the authors show that this method

outperform conventional FVMs and deliver convergence numerical solutions.

An interesting observation from the previous computational study is that even in extreme

scenarios, such as when a strong discontinuity presents and when some cell number densities di-

minishes towards zero, all numerical solutions remain positive. Such a phenomenon is known as

2



positivity-preserving in the literature; whereas unlike many other contexts in which the positivity-

preserving property is usually discussed, no maximum principle can be derived in the present

settings. In fact, whether the solutions to the mathematical problem will stay positive remains

an open question, too, despite the fact that it makes perfect biological sense – all cell number

densities should be positive. To gain a better understanding of the model, the main purpose of

this thesis is to make an attempt in providing mathematical justification of the two important

properties: positivity-preserving and cell incompressibility of both the mathematical model and

the segregate-flux method.

To this end, the rest of the thesis is organized as follows. A slightly simplified model prob-

lem that contains two instead of three cell species is introduced in Chapter 1. In this chapter,

we also describe the technique to convert the free-boundary problem to a fixed-boundary one

using a normalized coordinate system. The numerical scheme is reviewed in Chapter 2, which

includes a general FVM strategy as well as the segregate-flux scheme. Mathematical analysis of

the positivity-preserving and cell incompressibility properties are proved in Chapter 3 with the

assumption that solutions exist in the strong sense. Next, the positivity-preserving property of

the segregate-flux FVM is discussed in Chapter 4, where a simple fix is proposed to ensure that

the method computes positive cell number densities at the new time step providing that the they

are positive at the previous time step. Finally, we conclude the thesis and speculate on the future

directions in Chapter 5.
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Chapter 1

A Tumor Growth Problem

For simplicity, we consider a two-species system with an additional variable for the velocity:

∂G
∂ t

+
1
r2

∂

∂ r

[
r2GV

]
= f , (1.1a)

∂M
∂ t

+
1
r2

∂

∂ r

[
r2M(V +u)

]
= h , (1.1b)

1
r2

∂

∂ r

[
r2V + r2uM

]
= f +h . (1.1c)

Here r is the radial coordinate inside the tumor: 0≤ r ≤ R(t) with R(t) being the tumor radius at

time t. The upper case letters denote dependent variables: G is the number density of the native

cells (cancer cell, necrotic cell, etc.) in the tumor, M is the number density of the infiltrating cells

(such as the immune cells), V is the velocity of the native cells, and R is the tumor radius. For

this problem, G and M are considered dimensionless, i.e., they are normalized by the constant

total cell number per unit volume θ > 0; hence for a biologically relevant solution it is natural to

required that 0 ≤ G,M ≤ 1. The lower case letters denote either the independent variables such

as r and t, or prescribed quantities or functions. In particular, u is the infiltration velocity that

determines how M enters or exits the domain. The source terms f and h are known functions of G

and M that model the proliferation, apoptosis, and interaction among cell species. For simplicity,

we suppose there exists a positive constant L such that:

f = f̂ (G,M)G , h = ĥ1(G,M)G+ ĥ2(G,M)M ,

where
∣∣ f̂ ∣∣ , ∣∣ĥ1

∣∣ , ∣∣ĥ2
∣∣≤ L and ĥ1 ≥ 0 ∀(G,M) ∈ [0, 1]2 . (1.2)

The biological motivation behind these assumptions can be found in [21]. In short, the hat func-

tions represents the growth/decay rate or conversion rate within and between cell species, which

are typically bounded functions as observed in lab studies.
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The tumor grows at a rate determined by the velocity V at the outer boundary:

R′(t) =V (R(t), t) . (1.3)

And in deriving the velocity equation (1.1c), the cell incompressibility is assumed:

G+M ≡ 1 . (1.4)

As in many mathematical models of similar biological systems [22–24], the incompressibility

identity (1.4) is assumed rather than enforced to derive the velocity equation. Whether the solu-

tions satisfy the incompressibility assumption remains an open probem, but in Chapter 3, we will

prove it in the case of classical solutions.

To see why (1.4) should hold, we introduce the total cell number variable Θ
def
== G + M.

Adding (1.1a) and (1.1b) and incorporating (1.1c), one arrives at an equation for Θ:

∂Θ

∂ t
+

1
r2

∂

∂ r

[
r2(Θ−1)V

]
= 0 . (1.5)

Clearly, Θ≡ 1 (the incompressibility constraint) solves (1.5). This equation is called the totality

conservation law (TCL); and if a numerical discretization for (1.1) gives rise to a consistent

discretization of (1.5), i.e., a formula that only depends on Θ but not on how it splits into G

and M, the method is said to satisfy the TCL discretely, or DTCL. Applying the conventional

upwind method to solve (1.1), for example, does not satisfy DTCL because G and M are carried

by velocities that may have opposite directions, see a brief discussion in Chapter 2 and a more

thorough exposition in [2].

1.1 Model in normalized coordinates

To avoid dealing with a changing domain, we normalize the radial coordinate by the change of

variables (r, t) 7→ (η , τ) = (r/R(t), t). To this end, the governing equations are converted to the

5



conservation form:

∂ (η2R2G)

∂τ
+

∂

∂η

[(
V
R
− ηR′

R

)
η

2R2G
]
= η

2R2 f −η
2R′RG , (1.6a)

∂ (η2R2M)

∂τ
+

∂

∂η

[(
V
R
− ηR′

R
+

u
R

)
η

2R2M
]
= η

2R2h−η
2R′RM , (1.6b)

1
η2

∂

∂η

[
η

2
(

V
R
+

u
R

M
)]

= f +h . (1.6c)

for all η ∈ [0, 1], τ ∈ [0, T ] with some T > 0. The radius R(τ) is determined by:

R′(τ) =V (1, τ) . (1.6d)

Similarly, the TCL in the normalized coordinates is:

∂ (η2R2Θ)

∂τ
+

∂

∂η

[
η

2R(Θ−1)V
]
− ∂

∂η

[
η

3R′RΘ
]
=−η

2R′RΘ . (1.7)

Setting Θ = 1, this equation reduces to:

∂ (η2R2)

∂τ
− ∂

∂η

[
η

3R′R
]
=−η

2R′R , (1.8)

which holds trivially at the continuous level and is called the geometric conservation law (GCL).

At discrete level, however, a discrete version of the GCL may not be satisfied by the numeri-

cal method. If the method satisfies a discrete version of (1.8), it is said to satisfy the discrete

geometric conservation law (DGCL).

1.2 Initial and boundary conditions

The tumor growth problem (1.6) is completed by proper initial and boundary conditions. At

τ = 0, the initial data for cell number densities satisfy:

G(η ,0)≥ 0 , M(η ,0)≥ 0 , G(η ,0)+M(η ,0) = 1 , ∀ 0≤ η ≤ 1 . (1.9)

No initial data is needed for V , because (1.6c) does not contain an inertia term; and V can be fully

determined by integrating (1.6c):

V (η ,τ) =
R
η2

∫
η

0
s2( f (s,τ)+h(s,τ))ds−u(η ,τ)M(η ,τ) . (1.10)

6



Here we write f (s,τ)= f (G(s,τ),M(s,τ)) and h(s,τ)= h(G(s,τ),M(s,τ)) for short. In addition,

the zero boundary condition for velocity at the tumor center is assumed and it comes from the

spherical symmetry assumption:

V (0,τ) = 0 , ∀ 0≤ τ ≤ T . (1.11a)

The boundary conditions for cell numbers at η = 0 is the no-flux condition, which is again due

to the spherical symmetry assumption:

∂G(0,τ)
∂η

=
∂M(0,τ)

∂η
= 0 , ∀ 0≤ τ ≤ T . (1.11b)

At the right boundary, the local velocity for G is V (1,τ)
R(τ) −

R′(τ)
R(τ) = 0 thus no boundary condition is

required; and the classical characteristic condition is specified for M:

M(1,τ) = mbc(τ) if u(1,τ)< 0 , ∀ 0≤ τ ≤ T , (1.11c)

where mbc is the prescribed ambient immune cell number density.

1.3 A schematic description of the model and open problems

G

M
u

mbc(t)

f̂

ĥ1

R(t)

V

ĥ2

The model can be described schematically in the diagram

on the right. When too many immune cells enter the do-

main (the arrow with u), especially if the infiltration out-

weighs the decay of cells inside the tumor, the total tumor

number increases and thusly the tumor expands due to the

incompressibility of cells; and vice versa. In the diagram,

the directions of the arrows are motivated by the typical observation that G tends to reproduce it-

self very quickly ( f̂ > 0), whereas the immune cells tend not to reproduce (ĥ2 < 0). The positivity

of cell number densities and incompressibility are two important features of this model. Between

the two, this thesis focuses on the positivity from both a mathematical perspective (Chapter 3) and

a numerical point of view (Chapter 4). Note that the incompressibility is addressed by numerical

7



methods in the literature [2], see also the next chapter for a review, a mathematical justification

is nevertheless provided in Chapter 3.

1.4 Nomenclature

At the end of this section, we summarize the nomenclature that will be used throughout the thesis,

among which some have already been used before whereas others will show up shortly.

Symbol Explanation Symbol Explanation

η spatial abscissa Θ total cell number defined as G+M

τ temporal ordinate V velocity variable

∆η uniform interval size u prescribed infiltration velocity

∆τn time step between τn and τn+1 F upw the upwind flux function

G cell number variable for the cancer cells ξ characteristic function

M cell number variable for the immune cells E energy functional

8



Chapter 2

The Numerical Method

Due to the hyperbolic nature of (1.1) and (1.6), the finite volume methods (FVM) [25] are adopted

for numerical simulations. To illustrate the basic idea of general finite volume discretizations, let

us consider a uniform gird of η ∈ [0, 1] with Nη intervals1. The interval size, the interval faces,

and the interval centers are denoted ∆η = 1/Nη , η j = j∆η , and η j−1
2
=
(

j− 1
2

)
∆η , respectively.

Consider a scalar conservation law for a generic conserved quantity X :

∂X
∂τ

+
∂F(X)

∂η
= 0 , X = X(η ,τ) , 0≤ η ≤ 1 , 0≤ τ ≤ T . (2.1)

The spatial discretization can be derived by integrating (2.1) over each interval to obtain:

dX j−1
2

dτ
+

1
∆η

(
Fj−Fj−1

)
= 0 , (2.2)

where X j−1
2

approximates the interval-averaged solution:

X j−1
2
(τ)≈ 1

∆η

∫
η j

η j−1

X(η ,τ)dη , (2.3)

and Fj() denotes a numerical flux that approximates F(X(η j,τ)). Because no direct approxi-

mation to X(η j,τ) is provided in FVMs, Fj is usually computed from nearby interval-averaged

solutions. For example, if F() describes the transport by a constant velocity u, i.e., F(X) = uX ,

the well-known first-order upwind flux by Godunov [26] is defined as:

Fj = F upw(X j−1
2
,X j+1

2
;u) def

==


uX j−1

2
if u≥ 0 ,

uX j+1
2

if u < 0 .

. (2.4)

1In classical literature for finite volume methods, these intervals are referred to as “cells”; here, however, we

reserve the word “cell” for dependent variables and thusly use “interval” for the mesh entities instead.
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Other numerical flux functions that are relevant to this study include the MUSCL scheme by van

Leer [10] and the PPM scheme by Colella and coworkers [20, 27]. In particular, a segregate flux

method is proposed by Zeng et al. to treat infiltration dynamics [2], which will be the underlying

numerical scheme in this work and it is briefly reviewed next.

2.1 FVM for the model problem, DTCL, and DGCL

To get an idea why direct application of classical methods are not suitable for solving (1.6), we

will demonstrate in this section that using upwind flux for both G and M-equations, and using

forward-Euler to march the solutions in time will not satisfy the discrete totality conservation law

and the discrete geometric conservation law.

First of all, the semi-discretized approximations of (1.6) need to take into account of the

weighting by r2, hence they’re defined as:

G j−1
2
(τ)≈ 1

∆ηη2
j−1

2
R2

∫
η j

η j−1

η
2R2G(η ,τ)dη , (2.5a)

M j−1
2
(τ)≈ 1

∆ηη2
j−1

2
R2

∫
η j

η j−1

η
2R2M(η ,τ)dη , (2.5b)

where the half-integer subscripts indicate they are interval-centered variables. In contrast, integer

subscripts are used for nodal quantities such as the velocities:

Vj(τ)≈V (η j,τ) , u j(τ)≈ u(η j,τ) . (2.6)

To this end, the semi-discretization of the system (1.6) for G j−1
2
, M j−1

2
, and Vj is given by:

d(η2
j−1

2
R2G j−1

2
)

dτ
+

1
∆η

[
FG

j −FG
j−1

]
= η

2
j−1

2
R2 f j−1

2
−η

2
j−1

2
R′RG j−1

2
, (2.7a)

d(η2
j−1

2
R2M j−1

2
)

dτ
+

1
∆η

[
FM

j −FM
j−1
]
= η

2
j−1

2
R2h j−1

2
−η

2
j−1

2
R′RM j−1

2
, (2.7b)

V0 = 0 , η
2
j RVj +FM

u, j =
j

∑
k=1

∆η

(
η

2
k−1

2
R2 fk−1

2
+η

2
k−1

2
R2hk−1

2

)
. (2.7c)

10



Here the fluxes FG
j and FM

j approximates (V
R −

ηR′
R )η2R2G and (V

R −
ηR′
R + u

R)η
2R2M at η j,

respectively; and they’re left unspecified for the moment. Similarly, the flux FM
u, j in the velocity

equation approximates uη2RM at η j.

Using the upwind flux directly to compute FG
j and FM

j , one needs to apply F upw to the con-

served quantities (η2R2G and η2R2M) with the velocities V
R −

ηR′
R and V

R −
ηR′
R + u

R , respectively:

FG
j = F upw

(
η

2
j−1

2
R2G j−1

2
,η2

j+1
2
R2G j+1

2
;
Vj

R
−

η jR′

R

)
,

FM
j = F upw

(
η

2
j−1

2
R2M j−1

2
,η2

j+1
2
R2M j+1

2
;
Vj

R
−

η jR′

R
+

u j

R

)
.

To satisfy DTCL, adding FG
j and FM

j needs to form a consistent flux for Θ = G+M, except for

M carried by the infiltration velocity u, which is eventually balanced out by a careful chosen FM
u, j

in the velocity equation. This, however, cannot be achieved by the two upwind fluxes above,

as the two local velocities may have different signs; for example, supposing V j
R −

η jR′

R > 0 and
V j
R −

η jR′

R +
u j
R < 0, one obtains:

FG
j +FM

j =

(
Vj

R
−

η jR′

R

)(
η

2
j−1

2
R2G j−1

2
+η

2
j+1

2
R2M j+1

2

)
+

u j

R
η

2
j+1

2
R2M j+1

2
,

Note that the underlined part does not sum into an expression of either Θ j−1
2

or Θ j+1
2
, which is

technically required by DTCL.

The semi-discretization (2.7) needs to be complemented by a time-integrator, for which pur-

pose the explicit forward Euler (FE) method is chosen throughout the thesis. Hence the fully

discretized method updating the solutions from τn to τn+1 = τn +∆τn now reads:

η2
j−1

2

[
(Rn+1)2Gn+1

j−1
2
− (Rn)2Gn

j−1
2

]
∆τn +

FG,n
j −FG,n

j−1

∆η
= η

2
j−1

2
(Rn)2 f n

j−1
2
−η

2
j−1

2
R′nRnGn

j−1
2
, (2.8a)

η2
j−1

2

[
(Rn+1)2Mn+1

j−1
2
− (Rn)2Mn

j−1
2

]
∆τn +

FM,n
j −FM,n

j−1

∆η
= η

2
j−1

2
(Rn)2hn

j−1
2
−η

2
j−1

2
R′nRnMn

j−1
2
, (2.8b)

V n
0 = 0 , η

2
j RV n

j +FM,n
u, j =

j

∑
k=1

∆η

(
η

2
k−1

2
(Rn)2 fk−1

2
n +η

2
k−1

2
(Rn)2hn

k−1
2

)
. (2.8c)
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Direct application of FE, however, will not ensure DGCL. To see why, suppose R′n is already

computed and one update R by:

Rn+1 = Rn +∆τ
nR′n ,

then the numerical discretization of the GCL (1.8) becomes for each 1≤ j ≤ Nη :

η2
j−1

2
(2∆τnR′n +∆τn(R′n)2)

∆τn −D j[η
3R′nRn] =−η

2
j−1

2
R′nRn , (2.9)

where D j approximates the spatial derivative at η j and it results from the spatial discretization.

Clearly, if DGCL is satisfied then the latest equality always holds; but it means that the spatial

discretization D j must explicitly depend on the time step size ∆τn, which is highly undesirable.

2.2 Finite volume discretization using segregated fluxes

These numerical difficulties are resolved by the segregated-flux method [2]. Skipping the details,

the fundamental idea is to compute the flux associated with each velocity component separately:

FG
j = FG

V, j +FG
R′, j , FM

j = FM
V, j +FM

R′, j +FM
u, j , (2.10)

Here the terms on the right hand sides approximated different flux components:

FX
V, j ≈V η

2RX
∣∣
η=η j

, FX
R′, j ≈−η

3R′RX
∣∣
η=η j

, FX
u, j ≈ uη

2RX
∣∣
η=η j

, (2.11)

where X is again a generic variable representing the transported quantity such as G and M.

The fluxes associated with the spatially varying velocities V or u are then computed by apply-

ing any chosen numerical flux (we use upwind flux in this thesis for simplicity) to the primitive

variable X instead of the conservative one η2R2X :

FX
W, j = η

2
j RF upw(X j−1

2
,X j+1

2
;Wj) , (2.12)

where W is a generic variable representing the nodal velocities such as V or u. By doing so, one

clearly sees that FM
V, j +FG

V, j = FΘ
V, j, and that FM

V, j and FM
u, j can take M from different directions,

both of which are crucial in achieving DTCL by the final numerical method.

12



Further enhancements are required to ensure DGCL. First of all, to eliminate the issue of a

∆τn-dependent spatial discretization at the end of the previous section, one computes R′n and

Rn+1 according to:

R′n =
(

1− 1
4

∆η
2
)−1

V n
Nη
,

(Rn+1)2− (Rn)2

2∆τnRn = R′n , (2.13)

in the case of the FE time-integrator. If other time-integrators are used, such as the implicit

backward Euler method, the radius updating formula also needs to be modified accordingly. Note

that the factor (1−∆η2/4)−1 is generally not required for deriving a ∆τn-independent spatial

discretization, but it helps eliminate some spurious influx at the tumor boundary.

Lastly, as the operator D j of (2.9) applies to a cubic profile and it is a direct result of the fluxes

FX
R′, j, one needs at least a third-order accurate method to compute the latter to ensure (2.9) holds

at the discrete level. To this end, the last piece in the enhanced method is to use the piecewise-

parabolic method (PPM) [20, 27] to compute FG
R′, j and FM

R′, j. More details will be offered in

Chapter 4, in which we improvise on further enhancements to ensure positivity of cell number

solutions under appropriate Courant conditions to compute the time step size ∆τn.

2.3 Numerical Examples

In this section we demonstrate that the segregate-flux method is not only able to numerically

preserve the incompressibility, but also maintain the positivity of cell number solutions. For

simplicity, we suppose f̂ ≡−1, ĥ1 ≡ 1, and ĥ2 ≡−1; thus the equations (1.1) read:

∂G
∂ t

+
1
r2

∂

∂ r

[
r2GV

]
=−G , (2.14a)

∂M
∂ t

+
1
r2

∂

∂ r

[
r2M(V +u)

]
= G−M , (2.14b)

1
r2

∂

∂ r

[
r2V + r2uM

]
=−M . (2.14c)

Seeing that in traditional numerical solutions to hyperbolic conservation laws, violation of

positivity usually initiates from the vicinity of discontinuities where spurious oscillations typi-

13



cally occur, we consider the following initial data with piecewise constant cell numbers:

R(0) = 1.0 , G(r, t) =


0.9 0 < r < 0.5

0.1 0.5 < r < 1
, M(r, t) =


0.1 0 < r < 0.5

0.9 0.5 < r < 1
. (2.15)

We consider an infiltration velocity that tends to shrink the tumor:

u(r, t) =
rt2

4mbc
, (2.16)

and one that tends to expand the tumor:

u(r, t) =− rt2

4mbc
, (2.17)

where mbc ≡ 0.9 is the constant ambient immune cell number density in both cases.

Computing the time step size using a fixed Courant number 0.8, the radius growth histories

of the two problems on a sequence of uniform grids with number of intervals Nη = 20, Nη = 40,

and Nη = 80 are plotted in Figures 2.1. Note that in Figure 2.1b the radius is not monotonically
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(a) The “shrinking” problem (2.16).
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(b) The “expanding” problem (2.17).

Figure 2.1: The radius histories of the two tumor problems on a sequence of three uniform grids.

growing. The reason is that although the immune cells N infiltrate into the tumor, that is u(R, t)<

0 by (2.17), the aggregate source term (sum of the right-hand sides of the cell-number equations)

removes cells from the tumor – thus the tumor initially shrinks and later expands as the infiltration

velocity increases.
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The cell number solutions at different times with an equal interval 0.2 computed on the finest

grid (Nη = 80) are plotted in Figure 2.2, where the solutions to the “shrinking” problem are

plotted in the left column and that to the “expanding” problem are plotted in the right column.

From these plots, we see that: (a) the solutions are essentially oscillation free, especially nearby
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(a) Solution in G for the “shrinking” problem.
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(b) Solution in G for the “expanding” problem.
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(c) Solution in M for the “shrinking” problem.
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(d) Solution in M for the “expanding” problem.

Figure 2.2: The cell number solutions of the two tumor problems at different times computed on

the finest grid with Nη = 80 uniform intervals.

the discontinuity, (b) the sum of the numerical data in G and M is very close to unity, and (c)

in the “expanding” case, although the cell number G is pushed towards zero as time increases,

the numerical solution stays positive. Note that (a) and (b) are expected from the construction

of the segregate-flux method, see the analysis in [2]; in this thesis, we provide analysis of the

positivity-preserving property of this method in Chapter 4 and thusly offer an explanation to the

observation (c).
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Chapter 3

Preliminary Mathematical Analysis

In this section we use the method of characteristics to conduct some preliminary analysis on

the model problem (1.6) and attempt to justify the positivity of cell number solutions as well as

the incompressibility condition, at least when solutions exist in the strong sense. Note that for

practical problems, such an assumption is often unrealistic. Particularly when the immune cells

actually infiltrate into the tumor (i.e., u(1,τ) < 0), it tends to create a discontinuity in the cell

number solutions. Biologically, such a discontinuity separate a low-density region of tumor cells

nearby the origin and a high-density region nearby the tumor boundary, known as the “rim” [28];

and mathematically, it is a classical shock wave that propagates from the tumor boundary towards

the origin.

Nevertheless, this chapter focuses on the rare situation when classical solution exists to gain

better insight about the problem, whereas analysis of weak solutions as well as the entropy con-

ditions are left for future work.

3.1 Characteristic analysis of the G-equation

First let us look at the G-equation (1.6a), which is rewritten as:

∂G
∂τ

+

(
V
R
− ηR′

R

)
∂G
∂η

=

[
f̂ (G)−

ηVη +2V
ηR

]
G . (3.1)

To establish a local existence theory, let us fix η and consider the characteristics coordinate (ξ ,τ),

where ξ is defined by the path:

dξ (η ,τ)

dτ
=−ξ

R′(τ)
R(τ)

+
V (ξ ,τ)

R(τ)
with initial condition ξ (η ,0) = η . (3.2)
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Then along the path defined by ξ (η , ·), one has:

dG(ξ (η ,τ),τ)

dτ
=

[
f̂ (G)−

ξVη(ξ ,τ)+2V (ξ ,τ)

ξ R(τ)

]
G ; (3.3)

denoting the right-hand side by a(ξ ,τ)G, the solution to (3.3) is given by:

G(ξ (η ,τ),τ) = G(η ,0)e
∫

τ

0 a(ξ (η ,τ ′),τ ′)dτ ′ , (3.4)

hence G(ξ ,τ)≥ 0 for all τ ≥ 0 such that the characteristics do not break down.

The reason why the characteristic analysis may fail is the collision of the paths defined

by (3.2). In particular, it is not difficult to see that ξ (0,τ) = 0 and ξ (1,τ) = 1 for all τ > 0

such that R(τ) > 0 and V (η ,τ) < ∞. Indeed, supposing η = 0 one easily sees that ξ (0,τ) = 0

is a solution to (3.2) as V (0,τ) ≡ 0. Similarly, assuming η = 1 one obtains immediately that

ξ (1,τ) = 1 solves (3.2) because R′(τ) = V (1,τ). Then the uniqueness follows easily from the

standard well-posedness theory of ordinary differential equations. Thus the previous analysis

holds provided that η 7→ ξ gives an automorphism of [0 ,1], which is valid if and only if:

∂ξ (η ,τ)

∂η
> 0 for all 0≤ η ≤ 1 .

To this end, let us treat ξ = ξ (η ,τ) as a bivariate function and taking the derivative w.r.t. η on

both sides of (3.4) to obtain:

∂ξη

∂τ
= ξη

(
−R′(τ)

R(τ)
+

Vη(ξ ,τ)

R(τ)

)
, ξη(η ,0) = 1 .

Denoting the right hand side by b(ξ ,τ)ξη , one has:

ξη(η ,τ) = e
∫

τ

0 b(ξ (η ,τ ′),τ ′)dτ ′ , (3.5)

which is positive and finite as long as b(·, ·) remains bounded and integrable.

To summarize, we see that if V ∈ C([0,T ] , W 1,∞([0, 1])), i.e., it is continuous in time and

possesses bounded first spatial derivative, then G(η ,τ) ≥ 0, ∀(η ,τ) ∈ [0,1]× [0,T ] as long as

G(η ,0)≥ 0, ∀η ∈ [0,1] and R(τ)> 0, ∀η ∈ [0,T ].

17



3.2 Characteristic analysis of the M-equation

Now let us apply a similar analysis to the M-equation, which is rewritten as:

∂M
∂τ

+

(
V
R
− ηR′

R
+

u
R

)
∂M
∂η

= ĥ1(G,M)G+

[
ĥ2(G,M)−

η(Vη +uη)+2(V +u)
ηR

]
M . (3.6)

Because the advection velocity is different from that in (3.1), we need to define another set of

characteristics ζ , such that:

∂ζ (η ,τ)

∂τ
=−ζ

R′(τ)
R(τ)

+
V (ζ ,τ)+u(ζ ,τ)

R(τ)
with initial condition ζ (η ,0) = η . (3.7)

Then along a path ζ (η , ·), one has:

dM(ζ (η ,τ),τ)

dτ
= ĥ1G+

[
ĥ2−

ξ (Vη(ζ ,τ)+uη(ζ ,τ))+2(V +u)(ζ ,τ)
ξ R(τ)

]
M . (3.8)

Denoting the term in the square bracket by c(ζ ,τ), the solution to the ODE (3.8) is given:

M(ζ (η ,τ),τ) = M(η ,0)e
∫

τ

0 c(ζ (η ,τ ′),τ ′)dτ ′+
∫

τ

0
e
∫

τ

τ ′ c(ζ (η ,s),s)dsĥ1G(ζ (η ,τ ′),τ ′)dτ
′ . (3.9)

By (1.2) we have ĥ1 ≥ 0, thus the positivity of G indicates that of M.

The characteristic analysis is valid only if the change of variable η→ ζ is well defined. Using

the condition u(0,τ) = 0 for all τ , we clearly see that ζ (0,τ) = 0. However, a major difference

between the M-equation and the G-equation is that ζ (1,τ) 6≡ 1. In fact, using V (1,τ) = R′(τ)

one obtains:

∂ζ (1,τ)
∂τ

= (1−ζ )
R′(τ)
R(τ)

+
u(ζ ,τ)
R(τ)

with initial condition ζ (1,0) = 1 ;

and ζ ≡ 1 is the solution if and only if u(1,τ) = 0.

For simplicity, let us assume u(1,τ) does not change signs (otherwise, we separate the time-

axis into segments in each of which u does not change signs) and distinguish between two sce-

narios:

• u(1,τ)> 0, ∀τ . In this case, all information goes out of the tumor domain at η = 1 hence

the validity of the characteristic analysis reduces to ζη(η ,τ) > 0 for all 0 ≤ η ≤ 1. Fol-

lowing a similar argument as before and taking derivative w.r.t. η in both sides of (3.7):

∂ζη

∂τ
= ζη

(
−R′(τ)

R(τ)
+

Vη(ζ ,τ)+uη(ζ ,τ)

R(τ)

)
, 0≤ η ≤ 1 ,
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we see that ζη > 0 with sufficiently smooth V and u on the domain η ∈ [0, 1].

• u(1,τ) < 0, ∀τ . In this case, all information comes into the domain at η = 1 hence there

are possibly two characteristics emanating from this boundary. To the left of η = 1, which

is denoted η = 1−, V is well-defined hence one has for small τ:

∂ζη(1−,τ)
∂τ

= ζη(1−,τ)
(
−R′(τ)

R(τ)
+

Vη(ζ (1−,τ),τ)+uη(ζ (1−,τ),τ)
R(τ)

)
,

whereas to the right of η = 1, which we denote by η = 1+, V does not exists hence for

small τ:
∂ζη(1+,τ)

∂τ
= ζη(1+,τ)

(
−R′(τ)

R(τ)
+

uη(ζ (1+,τ),τ)
R(τ)

)
.

In order for ζη to be well-defined at η = 1, it is thusly necessary that:

Vη(1−,τ)+uη(1−,τ) = uη(1+,τ) , (3.10)

which is unfortunately rarely true in practice. Indeed, in reality u is always obtained as

the (negative) gradient of the chemoattractant, whose dynamics is governed by a standard

diffusion process – hence u is usually very smooth at all η and uη < 0. In this case, (3.10)

is valid if and only if Vη(1,τ) = 0. Let us consider the special case f ≡ h ≡ 0, by (1.10)

this is equivalent to uηM + uMη = 0 at η = 1. However, it is frequently observed that M

is nearly constant nearby η = 1 if u(1,τ)< 0 and mbc(τ) is a constant; hence the previous

condition holds if and only if uη = 0, contradicting the observation uη < 0.

3.3 The incompressibility assumption

In this section we prove the incompressibility constraint Θ ≡ 1 when the solutions exist in the

classical sense. The proof is based on the TCL (1.7) and the energy method. For preparation, the

TCL is rewritten as:

∂

∂τ
[η2R3(Θ−1)]+

∂

∂η

[
(η2R2V −η

3R′R2)(Θ−1)
]
= 0 , (3.11)
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Let us suppose that the solutions exist strongly and multiply (1.7) by 2(Θ−1) and integrate the

resulting equation over η ∈ [0, 1]. Using:

(Θ−1)
∂

∂τ
[η2R3(Θ−1)] =

1
2

∂

∂τ
[η2R3(Θ−1)2]+

3
2

η
2R′R2(Θ−1)2 ,

(Θ−1)
∂

∂η
[(η2R2V −η

3R′R2)(Θ−1)] =
1
2

∂

∂η
[(η2R2V −η

3R′R2)(Θ−1)2]+

1
2
(2ηR2V +η

2R2Vη −3η
2R′R2)(Θ−1)2 ,

and defining the energy functional:

E (τ)
def
==

∫ 1

0
η

2R(τ)3(Θ(η ,τ)−1)2dη , (3.12)

one obtains:

E ′(τ) =−
∫ 1

0

(
2V
ηR

+
Vη

R

)
η

2R3(Θ−1)2dη ,

where we used the fact that η2R2V −η3R′R2 = 0 at both η = 0 and η = 1. It follows that:

E ′(τ)≤
3
∣∣∣∣Vη

∣∣∣∣
∞

R(τ)
E (τ) ,

where ||·||
∞

is the L∞-norm and we used the mean value theorem and V (0) = 0. By E (0) = 0 and

the Grönwall’s inequality, we have E (τ) = 0 or equivalently Θ≡ 1 as long as R(τ)> 0.
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Chapter 4

Numerical Positivity Preserving

In this section, we investigate under what conditions the numerical method will preserve the

positivity of the cell number solutions, and how to enhance the scheme if the answer is no. For

this purpose, it is assumed that the numerical solutions are positive at τn, i.e., Gn
j−1

2
,Mn

j−1
2
> 0 for

all 1≤ j ≤ Nη . The target is to ensure Gn+1
j−1

2
> 0 and Mn+1

j−1
2
> 0 for all j. To illustrate the idea of

the analysis tool, we first focus on a some simpler case of linear advection equations and see that

positivity preserving is equivalent to a classical Courant-like condition.

4.1 Advection equation with first-order upwind FVM

Let us consider the simple Cauchy problem for the advection equation on a fixed periodic domain

that is discretized in space by the first-order upwind scheme:

∂X
∂τ

+ v
∂X
∂η

= 0 , η ∈ [0, 1] ; X(0,τ) = X(1,τ) ∀τ , (4.1)

where v is a constant advection speed. Using the notations before, the semi-discretized and the

fully-discretized solutions are denoted X j−1
2

and Xn
j−1

2
, respectively; here j and n are the indices

for the spatial cell and the time stage.

Using the first-order upwind FVM in space, the fluxes are computed as:

FX
j = α

−X j−1
2
+α

+X j+1
2
,

where the α-coefficients are given by:

α
− = max(v,0)≥ 0 , α

+ = min(v,0)≤ 0 . (4.2)
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Hence the ODE system after semi-discretization in space is given by:

dX j−1
2

dτ
+

1
∆η

[
α
+X j+1

2
+(−α

++α
−)X j−1

2
−α

−X j−3
2

]
= 0 , ∀ j , (4.3)

Now suppose the FE time-integrator is chosen, positivity preserving can be ensured if any

discrete solution at τn+1 is a convex combination of that at τn; and it often leads to a Courant-like

condition. In particular, one has:

1
∆τn

(
Xn+1

j−1
2
−Xn

j−1
2

)
+

1
∆η

[
α
+Xn

j+1
2
+(−α

++α
−)Xn

j−1
2
−α

−Xn
j−3

2

]
= 0 , ∀ j ; (4.4)

or equivalently:

Xn+1
j−1

2
=−α

+ ∆τ

∆η
Xn

j+1
2
+

[
1− (−α

++α
−)

∆τ

∆η

]
Xn

j−1
2
+α

− ∆τ

∆η
Xn

j−3
2
. (4.5)

Noticing α+ ≤ 0 and α− ≥ 0, Xn+1
j−1

2
is a convex combination of Xn

j+1
2
, Xn

j−1
2
, and Xn

j−3
2

providing

the classical Courant condition is satisfied:

|v|∆τ ≤ ∆η , (4.6)

where we used the fact that −α++α− = |v|.

4.2 The first-order fluxes for the model problem

Extending the positivity-preserving analysis to the model problem follows a similar strategy -

we attempt to write the solution at τn+1 as a linear combination of those at τn with non-negative

coefficients. We focus on the first-order upwind fluxes in this section; the third-order PPM flux

will be discussed afterwards.

More specifically, the update equation for G j−1
2

is written as:

(
Rn+1

Rn

)2

Gn+1
j−1

2
= Gn

j−1
2
− ∆τn

∆ηη2
j−1

2
(Rn)2

[
FG,n

V, j +FG,n
R′, j −FG,n

V, j−1−FG,n
R′, j−1

]
+∆τ

n f̂ n
j−1

2
Gn

j−1
2
−∆τ

n R′n

Rn Gn
j−1

2
,
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where f̂ n
j−1

2
= f̂ (Gn

j−1
2
). The target is to write for each j:

FG,n
V, j = α

n,−
V, j Gn

j−1
2
+α

n,+
V, j Gn

j+1
2
, (4.7)

FG,n
R′, j = α

G,n,−
R′, j Gn

j−1
2
+α

G,n,+
R′, j Gn

j+1
2
. (4.8)

Here the α-coefficients for the V -fluxes do not carry the letter G on their shoulder, as we will see

later that these coefficients are identical across different cell species. However, if one casts the

R′-flux that is computed by the PPM method (which has a much larger stencil) to the form (4.8),

these coefficients are variable-dependent and thusly carry the superscript G. Denoting β n
j−1

2
=

∆ηη2
j−1

2
(Rn)2 for simplicity, one can write Gn+1

j−1
2

as:

(
Rn+1

Rn

)2

Gn+1
j−1

2
=

1−∆τ
n

α
n,−
V, j +α

G,n,−
R′, j −α

n,+
V, j−1−α

G,n,+
R′, j−1

β n
j−1

2

− f̂ n
j−1

2
+

R′n

Rn

Gn
j−1

2
(4.9)

+
∆τn

β n
j−1

2

[(
α

n,−
V, j−1 +α

G,n,−
R′, j−1

)
Gn

j−3
2
+
(
−α

n,+
V, j −α

G,n,+
R′, j

)
Gn

j+1
2

]
.

Hence a sufficient condition for the positivity of G is that all coefficients on the right-hand side

are non-negative, among which the first term gives an upper bound for the size of ∆τn.

For the M-equation, we similarly obtain:(
Rn+1

Rn

)2

Mn+1
j−1

2
= ∆τ

nĥn
1, j−1

2
Gn

j−1
2

(4.10)

+

1−∆τ
n

α
n,−
V, j +α

n,−
u, j +α

M,n,−
R′, j −α

n,+
V, j−1−α

n,+
u, j−1−α

M,n,+
R′, j−1

β n
j−1

2

− ĥn
2, j−1

2
+

R′n

Rn

Mn
j−1

2

+
∆τn

β n
j−1

2

[(
α

n,−
V, j−1 +α

n,−
u, j−1 +α

M,n,−
R′, j−1

)
Mn

j−3
2
+
(
−α

n,+
V, j −α

n,+
u, j −α

M,n,+
R′, j

)
Mn

j+1
2

]
.

where α
n,±
u,k are coefficients in constructing the fluxes FM,n

u,k . As we assume ĥn
1, j−1

2
= ĥ1(Gn

j−1
2
)≥ 0,

positivity of the M-variables can again be derived from the non-negativity of the coefficients on

the right-hand side.

In this section we focus on α
n,±
V, j and α

n,±
u, j , both of which are constructed using the upwind

flux hence they have similar structures. Letting X represent either G or M, the upwind flux FX ,n
V, j
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is given by:

FX ,n
V, j = η

2
j RnF upw(Xn

j−1
2
,Xn

j+1
2
;V n

j ) =


η2

j RnV n
j Xn

j−1
2

if V n
j ≥ 0 ,

η2
j RnV n

j Xn
j+1

2
if V n

j < 0 .

(4.11)

Hence

α
n,−
V, j = η

2
j Rn max(0,V n

j )≥ 0 , α
n,+
V, j = η

2
j Rn min(0,V n

j )≤ 0 . (4.12)

Similarly for computing FX ,n
u, j , one has:

α
n,−
u, j = η

2
j Rn max(0,un

j)≥ 0 , α
n,+
u, j = η

2
j Rn min(0,un

j)≤ 0 . (4.13)

4.3 The PPM flux for the model problem

To write the flux associated with velocity R′ as a linear combination of discrete solutions in a

certain stencil, we briefly review how FX ,n
R′, j is computed by the PPM flux. Particularly, one has:

FX ,n
R′, j = F upw(Xn

j−1
2 ,+

,Xn
j+1

2 ,−
;−R′nRn) = α

n,−
R Xn

j−1
2 ,+

+α
n,+
R Xn

j+1
2 ,−

, (4.14)

where

α
n,−
R = max(0,−R′nRn)≥ 0 , α

n,+
R = min(0,−R′nRn)≤ 0 . (4.15)

Computing the “bar” variables involves average-preserving parabolic reconstruction of the so-

lution on each interval, while using nonlinear limiters to ensure the reconstructed profile does

not increase the total variation comparing to the piecewise constant discrete data before recon-

struction. For our purpose, however, the key fact that
{

Xn
j−1

2
, Xn

j−1
2 ,+

, Xn
j+1

2 ,−
, Xn

j+1
2

}
always

composes a monotone sequence, where for simplicity X denotes η3X , hence:

Xn
j−1

2

def
== η

3
j−1

2
Xn

j−1
2
, Xn

j+1
2

def
== η

3
j+1

2
Xn

j+1
2
.

Hence there exist 0≤ γ
X ,n
j,− ≤ γ

X ,n
j,+ ≤ 1, such that:

Xn
j−1

2 ,+
= (1− γ

X ,n
j,−)X

n
j−1

2
+ γ

X ,n
j,−Xn

j+1
2
, Xn

j+1
2 ,−

= (1− γ
X ,n
j,+)X

n
j−1

2
+ γ

X ,n
j,+Xn

j+1
2
, (4.16)
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here γ is equipped with a superscript X as it depends on the variable and may not be the same

across different cell species. Combining with (4.14) yields:

FX ,n
R′, j =

[
α

n,−
R (1− γ

X ,n
j,−)+α

n,+
R (1− γ

X ,n
j,+)
]

η
3
j−1

2
Xn

j−1
2
+
[
α

n,−
R γ

X ,n
j,− +α

n,+
R γ

X ,n
j,+

]
η

3
j+1

2
Xn

j+1
2
.

In comparison with (4.8), we get:

α
X ,n,−
R′, j =

[
α

n,−
R (1− γ

X ,n
j,−)+α

n,+
R (1− γ

X ,n
j,+)
]

η
3
j−1

2
,

α
X ,n,+
R′, j =

[
α

n,−
R γ

X ,n
j,− +α

n,+
R γ

X ,n
j,+

]
η

3
j+1

2
.

To this end, the conditions for the right-hand side of (4.9) consist of non-negative coefficients

(except Gn
j−1

2
, which is discussed later for the Courant condition) are listed below:

Gn
j−3

2
: α

n,−
V, j−1 +α

G,n,−
R′, j−1 ≥ 0 ,

Gn
j+1

2
: −α

n,+
V, j −α

G,n,+
R′, j ≥ 0 .

That is,

η
2
j−1Rn max(0,V n

j−1)+
[
max(0,−R′nRn)(1− γ

G,n
j−1,−)+min(0,−R′nRn)(1− γ

G,n
j−1,+)

]
η

3
j−3

2
≥ 0 ,

−η
2
j Rn min(0,V n

j )−
[
max(0,−R′nRn)γG,n

j,− +min(0,−R′nRn)γG,n
j,+

]
η

3
j+1

2
≥ 0 .

A similar argument can be applied to the M-equation, so that we obtain the following require-

ments: If R′n < 0, the first inequality holds naturally and the second one is equivalent to:

γ
G,n
j,− ≤

−η2
j min(0,V n

j )

|R′n|η3
j+1

2

, γ
M,n
j,− ≤

−η2
j (min(0,V n

j )+min(0,un
j))

|R′n|η3
j+1

2

, (4.17)

whereas if R′n > 0, the second inequality holds naturally and the first one is equivalent to:

1− γ
G,n
j−1,+ ≤

η2
j−1 max(0,V n

j−1)

|R′n|η3
j−3

2

, 1− γ
M,n
j−1,+ ≤

η2
j−1(max(0,V n

j−1)+max(0,un
j−1))

|R′n|η3
j−3

2

. (4.18)

Note that in the case of M, we also take into account of the infiltration velocity.

This suggests that while computing the PPM flux, one needs to take into account of the

constraints (4.17) and (4.18), decreasing the limiter values if necessary. An enhancement to the

flux computation is provided at the end of this section.
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Once all the fluxes are computed such that (4.17) and (4.18) hold, the last piece in positivity-

preserving is the non-negativity of the coefficient for Gn
j−1

2
and Mn

j−1
2

in the right-hand sides of

(4.9) and (4.10), respectively. These lead to the following Courant condition for computing the

time step size ∆τn:

∆τ
n ≤

(αn,−
V, j +α

n,−
R′, j)+(−α

n,+
V, j−1−α

n,+
R′, j−1)

β n
j−1

2

+L+
max(0,R′n)

Rn

−1

, (4.19)

∆τ
n ≤

(αn,−
V, j +α

n,−
u, j +α

n,−
R′, j)+(−α

n,+
V, j−1−α

n,+
u, j−1−α

n,+
R′, j−1)

β n
j−1

2

+L+
max(0,R′n)

Rn

−1

. (4.20)

Note that all terms in the parenthesis are non-negative by construction, and we’ve replaced the

generic functions f̂ and ĥ2 by a universal estimate L, which may lead to a more conservative

computation of the time step size but it is also easier to compute and implement.

4.4 An enhanced PPM flux with synchronized limiter

In this section, we’ll describe an enhancement to the existing segregate-flux method such that the

PPM fluxes are computed in a way such that (4.17) and (4.18) are satisfied.

To this end, we first review how the variables Xn
j−1

2 ,+
and Xn

j+1
2 ,−

in (4.14) are computed as

well as the synchronized limiters.

(L1) Constructing third-order accurate values at η j as:

Xn
j =

7
12

(Xn
j−1

2
+Xn

j+1
2
)− 1

12
(Xn

j−3
2
+Xn

j+3
2
) .

(L2) To compute limiters φ
X ,n
j−1

2 ,±
∈ [0, 1] on each interval, we fist compute two parameters

σ
X ,n
j−1

2 ,±
≥ 0 as follows:

(L2-a) If (Xn
j −Xn

j−1
2
)(Xn

j−1−Xn
j−1

2
)≥ 0:

σ
X ,n
j−1

2 ,−
= σ

X ,n
j−1

2 ,+
= 0 .
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(L2-b) If (a) is not true, compute:

σ
X ,n
j−1

2 ,+
=

2
∣∣∣Xn

j−1−Xn
j−1

2

∣∣∣∣∣∣Xn
j −Xn

j−1
2

∣∣∣ , σ
X ,n
j−1

2 ,−
=

2
∣∣∣Xn

j −Xn
j−1

2

∣∣∣∣∣∣Xn
j−1−Xn

j−1
2

∣∣∣ .
Then, the limiters are given by:

φ
X ,n
j−1

2 ,+
= min

(
1,σX ,n

j−1
2 ,+

)
, φ

X ,n
j−1

2 ,−
= min

(
1,σX ,n

j−1
2 ,−

)
. (4.21)

(L3) Compute the left- and right-extrapolated and limited values at each interval face:

Xn
j−1

2 ,−
= Xn

j−1
2
+φ

X ,n
j−1

2 ,−
(Xn

j−1−Xn
j−1

2
) , Xn

j−1
2 ,+

= Xn
j−1

2
+φ

X ,n
j−1

2 ,+
(Xn

j −Xn
j−1

2
) .

Slight modifications are needed at both boundaries, more details can be found in [2].

A crucial ingredient in the segregate-flux method to achieve numerical incompressibility is to

apply the same limiters to all cell species, a process called limiter synchronization. This can be

achieved for the model problem as below:

(S1) Compute σ
G,n
j−1

2 ,±
and σ

M,n
j−1

2 ,±
as before.

(S2) Compute the “synchronized” parameters:

σ
n
j−1

2 ,+
= min

(
σ

G,n
j−1

2 ,+
, σ

M,n
j−1

2 ,+

)
, σ

n
j−1

2 ,−
= min

(
σ

G,n
j−1

2 ,−
, σ

M,n
j−1

2 ,−

)
.

(S3) If σn
j−1

2 ,+
σn

j−1
2 ,−

< 1, set both of them to zero.

(S4) Compute the synchronized limiters:

φ
n
j−1

2 ,+
= min

(
1,σn

j−1
2 ,+

)
, φ

n
j−1

2 ,−
= min

(
1,σn

j−1
2 ,−

)
. (4.22)

Note that it is because of (S3) that we cannot compute the synchronized limiter by taking the

minimum of the corresponding limiters across all cell species. In the original method φ n
j−1

2 ,±
is

applied to compute the R′-flux for both G and M, instead of using φ
G,n
j−1

2 ,±
and φ

M,n
j−1

2 ,±
.
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To enhance this method so that both (4.17) and (4.18) are satisfied, we first express γ
X ,n
j,− and

γ
X ,n
j,+ using the σ -parameters, where X represents either G or M:

γ
X ,n
j,− =

Xn
j−1

2 ,+
−Xn

j−1
2

Xn
j+1

2
−Xn

j−1
2

= φ
n
j−1

2 ,+

Xn
j −Xn

j−1
2

Xn
j+1

2
−Xn

j−1
2

,

γ
X ,n
j,+ =

Xn
j+1

2 ,−
−Xn

j−1
2

Xn
j+1

2
−Xn

j−1
2

= 1−φ
n
j+1

2 ,−

Xn
j+1

2
−Xn

j

Xn
j+1

2
−Xn

j−1
2

.

Hence the proposed modification follows the next steps:

(M1) Compute σn
j−1

2 ,±
according to (S1)–(S3).

(M2) Update these two parameters as follows. If R′n < 0:

σ
n
j−1

2 ,+
←min

σ
n
j−1

2 ,+
,
−η2

j min(0,V n
j )

|R′n|η3
j+1

2

·
Gn

j+1
2
−Gn

j−1
2

Gn
j −Gn

j−1
2

,

−η2
j (min(0,V n

j )+min(0,un
j))

|R′n|η3
j+1

2

·
Mn

j+1
2
−Mn

j−1
2

Mn
j −Mn

j−1
2

 .

Otherwise (i.e., R′n > 0):

σ
n
j−1

2 ,−
←min

σ
n
j−1

2 ,−
,

η2
j−1 max(0,V n

j−1)

|R′n|η3
j−3

2

·
Gn

j−1
2
−Gn

j−3
2

Gn
j−1

2
−Gn

j−1
,

η2
j−1(max(0,V n

j−1)+max(0,un
j−1))

|R′n|η3
j−3

2

·
Mn

j−1
2
−Mn

j−3
2

Mn
j−1

2
−Mn

j−1

 .

(M3) Repeat (S3) and (S4).

We apply this modification to the numerical examples in Chapter 2.3, and obtain very similar

results. This indicates that although a proof of positivity-preserving for the original segregate-flux

method is lacking, its numerical performance largely resembles that of a positivity-preserving

one, which partially explains why such a performance is observed in the previous numerical

tests.
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Chapter 5

Conclusions

In this thesis, we investigate two important properties of a tumor growth model that is due to im-

munce cell infiltration from both a mathematical point of view and by numerical methods. More

specifically, the two properties are the positivity of cell number densities and the incompressibil-

ity that is assumed instead of enforced in the mathematical model.

From a mathematical perspective, we show that if the solutions in the strong form exist,

they must satisfy both positivity for cell numbers and the cell incompressibility. In particular,

the former is proved by a characteristic analysis for hyperbolic equations, whereas the latter

is shown by an energy method. On the one hand, these results partially justify that the tumor

model makes biological senses; on the other hand, due to the observation that solutions to these

equations frequently exhibit discontinuities, the future work in this direction includes extending

the analysis to weak solutions.

From a numerical point of view, a segregate-flux method was previously proposed by the

advisor of the author such that cell incompressibility was maintained discretely. Furthermore,

it was also observed that such numerical solutions always remain positive, even when they’re

pushed to extreme values such as that very close to zero. In this thesis, a proof to a slightly

modified segregate-flux method is provided, to show that under a regular Courant condition for

calculating the time step size, the cell number solutions at a new time step will remain positive as

long as those at the previous time step are positive at all grid intervals.
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