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Abstract

Given a, b ∈ N such that a > b we define a Kneser-like bipartite graph G(a, b), whose two

bipartite sets of vertices represent the a-subsets and b-subsets of S = {1, . . . , a + b + 1},

and whose edges are pairs of vertices X and Y such that X ∩ Y = ∅. We prove that the

eigenvalues of the Laplacian matrix of graphs G(a, 1) are all nonnegative integers. In fact,

we describe these eigenvalues, and their respective multiplicities.
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Chapter 1

Introduction

1.1 Historical Background

In mathematics it is often convenient to represent a graph as a matrix. Adjacency and

Laplacian matrices are often common ways of representing graphs. Throughout recent

decades mathematicians have shown how Laplacian matrices show important properties of

graphs.

The use of Laplacian matrices (which we define shortly) were first motivated by the

famous Matrix Tree Theorem which tells us the number of spanning trees of a graph G

on n vertices is equal to the absolute value of the determinant of any (n − 1) × (n − 1)

submatrix of its Laplacian. [3]

The spectrum of these Laplacian matrices have also been studied profoundly in recent

decades by mathematicians. A special, interesting case are Laplacian integral graphs, which

are simply graphs whose Laplacian spectrum consists entirely of integers. Dr. Russell

Merris, for example, has shown that if graph G is connected, r-regular, and is Laplacian

integral graph on n vertices, then the spectrum of G is Laplacian integral if and only if

G = Kn. [2]

Another important property of a graph that we get from its Laplacian matrix is its

algebraic connectivity, which is simply the second smallest eigenvalue of the matrix. The

eigenvectors corresponding to this eigenvalue are now widely known as Fiedler Vectors.

These Fiedler vectors have been found to be useful in algorithms for distributed memory

parallel processors.

In this thesis we analyze Laplacian matrices of certain bipartite graphs that Dr. Art
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Duval from the University of Texas at El Paso and Dr. Jeremy Martin from the University

of Kansas discovered. We explain why these matrices are Laplacian integral. In fact, we

will see that Laplacian spectra of these graphs have strictly nonnegative integers, a rare

phenomenon.

1.2 Preliminaries

As it is common in algebraic literature, we will denote J as the matrix of all ones and j as

the vector of all ones.

Also, as we will be dealing with binomial coefficients quite often, it is important to make

an important distinction.
(
n
k

)
are all combinations made from choosing k ∈ N elements of

n ∈ N, whereas
(
N
k

)
represents all the combinations of k-subsets (k ∈ N) of set N . We will

clearly state what set N will be in each case in order to avoid confusion.

Definition 1.1. A graph G is a pair of sets (V,E), where V is a finite non-empty set of

elements called vertices, and E is a set of unordered pairs of distinct vertices called edges.

Definition 1.2. If the vertices of a graph G can be partitioned into two non-empty sets

so that no edge joins two vertices in the same set, then G is called bipartite. The two sets

are called partite sets.

Definition 1.3. The degree of a vertex v, denoted deg(v), is the number of vertices adjacent

to v.

Definition 1.4. Let G be a graph on n vertices labelled 1, . . . , n. The adjacency matrix of

G on n vertices is the n× n matrix A = |aij| where

ai,j =

 1, if i 6= j and i and j are adjacent,

0, if i = j, or i 6= j and i is not adjacent to j

Definition 1.5. The degree matrix D(G) = diag(deg v : v ∈ V ) is the diagonal matrix

indexed by V with the vertex-degrees on the diagonal.

2



Definition 1.6. The difference

L(G) = D(G)− A(G)

is called the Laplace matrix (or Laplacian) of G.

In other words, a Laplace matrix will have (−1)s where the adjacency matrix had 1s,

the degree of each vertex v ∈ V down the diagonal, and 0s everywhere else. With that said

we can use an equivalent definition of the Laplace matrix as follows:

Let G be a graph on n vertices labelled 1, . . . , n. The Laplacian matrix of G is the n × n

matrix L = [`i,j] where

`i,j =


−1, if i 6= j and i and j are adjacent,

0, if i 6= j and i is not adjacent to j,

di, if i = j

Definition 1.7. An m×m symmetric real matrix M is said to be positive semidefinite or

non-negative definite if xTMx ≥ 0 for all x ∈ Rn. Formally,

M positive semi-definite ⇐⇒ xTMx ≥ 0 for all x ∈ Rn

Definition 1.8. The set of all eigenvalues of a Laplace (or Laplacian) matrix L is known

as the Laplacian spectrum of L.

Recall that the nullity of a matrix is the dimension of the null space of a matrix and

rank is the dimension of the row space of a matrix. We now introduce a very well-known

theorem involving the two terms.

The Fundamental Theorem of Linear Algebra. For any k× l matrix M , Rank(M)+

Nullity(M) = l.

This next lemma is a well known theorem which we now state and show the proof, as

it is instructive and straightforward.

3



Lemma 1.9. The eigenvalues of the matrix Jm are 0 and m with multiplicities m− 1 and

1, respectively.

Proof. Let the square matrix of all ones, Jm, be given. First, we can easily see that m is

an eigenvector of Jm with the corresponding eigenvector j as,

Jmj =


1 1 1 . . . 1

1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1




1

1
...

1

 =


m

m
...

m

 = mj.

The solutions x of Jmx = 0 satisfy

x1 = −x2 − x3 − · · · − xm.

Therefore, every vector in the null space is of the form

x =



−x2 − x3 − · · · − xm
x2

x3
...

xm


= x2



−1

1

0
...

0


+ x3



−1

0

1
...

0


+ · · ·+ xm



−1

0

0
...

1


for some scalars x2, x3, . . . , xm. It follows that,



−1

1

0
...

0


,



−1

0

1
...

0


, . . . ,



−1

0

0
...

1


︸ ︷︷ ︸

m−1


is a basis of the null space of Jm.
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Chapter 2

Vertices and Edges

In this chapter we concern ourselves with the construction of G(a, b) in anticipation of

analyzing their Laplacian matrices. We look over some useful properties of the graph such

as the number of vertices, the degree of vertices and connectedness. A concrete example is

shown to clarify the nature of G(a, b).

2.1 Construction of graphs G(a, b)

Given numbers a and b, where a, b ∈ N, and a > b, we can construct the bipartite graph

G(a, b) in the following way:

We begin with the set S = {1, 2, . . . , a+ b+ 1}. The vertices of the first partite set will

be all the sets of cardinality a that can be chosen from set S. The set of all such vertices

will be denoted as A.

Similarly, the vertices of the second partite set will be all the sets of cardinality b that

can be chosen from set S. The set of all such vertices will be denoted as B. An edge is

formed between a vertex X ∈ A and a vertex Y ∈ B if and only if X ∩ Y = ∅.

Every vertex X ⊂ A has cardinality a and every vertex Y ⊂ B has cardinality b. We

denote these graphs by G(a, b), furthermore, we denote the Laplacian matrix of the graph

G(a, b) by L(G(a, b)) from this point on. Also, throughout this thesis we let n = a+ b+ 1.

We will also refer to the cardinality of sets B and A as β and α, respectively, from this

point forward. Finally, as commonly seen in combinatorial matrix books, σ(G) represents

the spectrum of L(G).
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2.2 G(2, 1) Example

Given a = 2 and b = 1 we can construct G(2, 1) in the manner explained above in Section

2.1.

Starting with the set S = {1, 2, 3, 4} we can begin generating vertices. The vertices of

the first partite set will be all the sets of cardinality a = 2 that can be chosen from set S.

We thus get
(
4
2

)
= 6 vertices. These 2-subsets of S are,

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} = A.

Similarly, the vertices of the second partite set will be all the sets of cardinality b = 1

that can be chosen from set S. We thus get
(
4
1

)
= 4 vertices. These 1-subsets are

{{1}, {2}, {3}, {4}} = B. Now, an edge is formed between a vertex X ⊂ A and a ver-

tex Y ⊂ B if and only if X ∩ Y = ∅. This finally gives us G(2, 1) as shown below.

34

24

23

14

13

12

1

2

3

4

A

B
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2.3 Number of Vertices of G(a, b)

Theorem 2.1. Given a, b ∈ N where a > b, the number of vertices of G(a, b) is(
a+ b+ 2

b+ 1

)
=

(
a+ b+ 2

a+ 1

)
.

Proof. Let a, b ∈ N where a > b be given. From here we get that set S = {1, 2, . . . , a+b+1}

from which our vertices will form. By using the symmetry and Pascal’s identity of binomial

coefficients we get our desired results through a series of equalities. We note that the number

of vertices is,(
n

a

)
+

(
n

b

)
=

(
n

n− a

)
+

(
n

b

)
=

(
n

b+ 1

)
+

(
n

b

)
=

(
n+ 1

b+ 1

)
=

(
a+ b+ 2

b+ 1

)
or(

n

a

)
+

(
n

b

)
=

(
n

a

)
+

(
n

n− b

)
=

(
n

a

)
+

(
n

a+ 1

)
=

(
n+ 1

a+ 1

)
=

(
a+ b+ 2

a+ 1

)
.

2.4 Degree of Each Vertex of Graph G(a, b)

Theorem 2.2. The degree of every vertex Y ∈ B is a+ 1.

Proof. Let set S = {1, 2, . . . , a+ b+ 1} and let Y (a b-subset of S) be an arbitrary vertex

of B. Because vertex Y ⊂ B cannot share an edge with any vertex X ⊂ A that has an

element of S in common, we remove the elements in the set (or vertex) Y from the set S,

which are a total of b elements removed. Then, we choose combinations of length a from

the remaining elements in S, as these vertices will share an edge with Y . The degree of

vertex Y ⊂ B will then be,(
n− b
a

)
=

(
a+ b+ 1− b

a

)
=

(
a+ 1

a

)
= a+ 1.

7



Theorem 2.3. The degree of every vertex X ∈ A is b+ 1.

Proof. In this proof, similar to the previous, we let set S = {1, 2, . . . , a+ b+ 1} and let X

(an a-subset of S) be an arbitrary vertex of A. Because vertex X ⊂ A cannot share an

edge with any vertex Y ⊂ B that has an element of S in common, we remove the elements

in the set (or vertex) X from the set S, which are a total of a elements removed. Then,

we choose combinations of length b from the remaining elements in S as these vertices will

share an edge with X. The degree of vertex X ⊂ A will then be(
n− a
b

)
=

(
a+ b+ 1− a

b

)
=

(
b+ 1

b

)
= b+ 1.

2.5 Connectedness of G(a, b)

Definition 2.4. A graph is connected if there exists a path between every pair of distinct

vertices.

Definition 2.5. The distance between two vertices X and Y is the length of the shortest

path between X and Y .

Theorem 2.6. G(a, b) is connected and thus, has one component.

The idea is to show connectedness between two arbitrary vertices by following a path

that jumps from vertices in A to vertices in B (and vice versa) in a progressive manner

until the path is completed.

Proof. Let A and A′ be arbitrary vertices in A. Our goal is to find a connected path from

A to A′. To be able to so, we will denote p ≤ a as the number of elements of A that

are not in A′. Given Ai we define Ai+1 = (A \ {v}) ∪ {a′} such that a′ ∈ A′, a′ /∈ A and

v /∈ A′. Therefore, the number of elements of Ai+1 that are not in A′ is (p− 1). We define

Bi = Ai ∪ Ai+1 for i ∈ {1, 2, ...,
(
n
b

)
}. This is not difficult to see as Ai = A and Ai+1 have

8



a + 1 distinct elements of S, and n − (a + 1) = b, so there must be a vertex Bi that is

adjacent to both vertices. We now find a path from A to A′.

If p = 1, then A = A1 and A′ are adjacent to B1 as A′ = A1+1.

If p > 1, then we follow the connected path A1, A1+1, . . . , A1+(p−2), A1+(p−1), A1+p = Ak

that is guaranteed to be connected by vertices Bi.

From Theorem 2.2 we saw that every vertex Y ∈ B is connected to a vertex in A. Therefore,

by showing that there is a path between any two arbitrary vertices in A, we have shown

that G(a, b) is connected.

Remark. G(a, b) can have a maximum diameter of 2p, and p is bounded above by a. There-

fore, diam(G) ≤ 2a.

2.6 Example showing G(3, 2) is Connected

As stated in Theorem 2.6, it suffices to show that there is a path between any two vertices

in a partite to show the whole graph is connected. For this example we look at G(3, 2).

We will show that vertices A = {1, 2, 6}, A′ = {4, 5, 6} ∈ A are indeed connected.

Here, A is of length a = 3 and has one element of S in common with A′, meaning that

p = 2 in this example. Now, following the explanation of the proof above, we first find a

vertex A1+1 ∈ A that is connected to A = A1 and agrees with A1 in every element but one,

call it a′. That one element of A is an element of vertex A′ that is not in A, so a′ = {5}.

Now, A1+1 = {1, 5, 6}. Note how by comparing our new vertex A1+1 with A′ we now see

that these vertices disagree in only 1 = p− 1 element now.

To show A = A1 is connected to A1+1, we find a vertex B1 ∈ B that shares an edge

with both vertices. Again, from the proof of Theorem 6, we know vertex B1 = A1 ∪ A1+1,

so B1 = {3, 4}. We repeat this process and see that vertex A1 = {1, 2, 6} is connected

to vertex B1 = {3, 4} which is connected to vertex A1+1 = {1, 5, 6}. From here on we

follow the connected path B1+1 = {2, 3}, A1+2 = A′ = {4, 5, 6}, showing that vertex A is

connected to vertex A′.

9



{1, 2, 6} {3, 4} {1, 5, 6} {2, 3} {4, 5, 6}

10



Chapter 3

Laplace Eigenvalues of G(a, 1)

In this chapter we review properties already known about Laplacian matrices and go into

the investigation as to why the Laplacian matrix of G(a, 1) always has integer eigenvalues.

In fact, we prove that these Laplacian eigenvalues are 0, a+ b+ 2, b+ 1, 1, and a+ 2 with

multiplicities 1, 1,
(
n
a

)
−
(
n
b

)
, a+ 1, and a+ 1, respectively.

3.1 L(G(2, 1)) Example

Recall from Section 2.2 the list of all vertices from the two partite sets

A ∪ B = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

The Laplacian matrix of G(2, 1) will then be,

L(G(2, 1)) =



3 0 0 0 0 0 0 −1 −1 −1

0 3 0 0 0 −1 −1 0 0 −1

0 0 3 0 −1 0 −1 0 −1 0

0 0 0 3 −1 −1 0 −1 0 0

0 0 −1 −1 2 0 0 0 0 0

0 −1 0 −1 0 2 0 0 0 0

0 −1 −1 0 0 0 2 0 0 0

−1 0 0 −1 0 0 0 2 0 0

−1 0 −1 0 0 0 0 0 2 0

−1 −1 0 0 0 0 0 0 0 2


As we can observe, the Laplacian matrix of G(2, 1) can be split into four smaller matrices

to form a nice block-form matrix,

11



 3I C

CT 2I

.

3.2 Laplacian Matrix Properties

In Section 1.2, we saw that by definition, all Laplacian matrices are symmetric, meaning

that if we call the top right matrix of the block form C, then the lower left matrix of the

block form must be CT . Also, because the degree of every vertex of B is (a + 1) and the

degree of every vertex of A is (b+1) (as shown in Theorems 2.2 and 2.3), we can generalize

the block form of L(G(a, b)) to  (a+ 1)I C

CT (b+ 1)I

.

This block form will be of great use for proofs to come.

We now move on to state the dimensions of these submatrices. The dimensions of

matrices (a+1)I, C, CT , and (b+1)I are
(
n
b

)
×
(
n
b

)
,
(
n
b

)
×
(
n
a

)
,
(
n
a

)
×
(
n
b

)
,
(
n
a

)
×
(
n
a

)
, respectively.

Since the sum of all eigenvalues equals the trace of the matrix, we have

n∑
i=1

λi(G) =
∑
v∈V

deg(v) = 2|E(G)|

Moreover, since the sum of the absolute values of the off-diagonal entries in each row of

a Laplacian matrix is equal to the diagonal entry of the row, it follows by the Gershgorin

Disc Theorem that all eigenvalues of a Laplacian matrix are nonnegative real numbers [3].

Therefore, Laplacian matrices are postive semidefinite.

3.3 Eigenvalue 0

Without further ado, we now begin looking at our first eigenvalue of L(G(a, 1)).

Theorem 3.1. The multiplicity of 0 as an eigenvalue of the Laplacian matrix of G is equal

to the number of connected components of G. [1]

12



This result implies that λ1(G) = 0 is a simple eigenvalue of L(G) if and only if the graph

G is connected. Because all G(a, b) are connected, as shown from the proof of Theorem

2.6, 0 is a simple eigenvalue for all L(G(a, b)), which we prove next.

Theorem 3.2. λ1(G) = 0 is a simple eigenvalue of L(G(a, b)) and its corresponding eigen-

vector is (1, . . . , 1)T = j.

Proof. Let L(G(a, b)) be given. The block form of L(G(a, b)) is, as we know, (a+ 1)I C

CT (b+ 1)I

 = M.

By definition of Laplace matrix, every row of the matrix sums to 0. Therefore, multiplying

matrix M by the vector (1, . . . , 1)T = j should give us the 0 vector, i.e.

M j = 0j.

Finally, we know the multiplicity of this eigenvalue is 1 (simple) from Theorem 3.1.

3.4 Eigenvalue a + b + 2

Theorem 3.3. a + b + 2 is an eigenvalue of L(G(a, b)) with corresponding eigenvector

((a+ 1)j, (−b− 1)j)T where the first
(
n
b

)
components of the eigenvector are (a+ 1) and the

last
(
n
a

)
components are (−b− 1).

Proof. Given G(a, b), we have our known Laplace matrix in block form. We take the

product of this matrix and the eigenvector ((a+ 1)j, (−b− 1)j)T . So, we have, (a+ 1)I C

CT (b+ 1)I

 (a+ 1)j

(−b− 1)j


which clearly results in a vector of length

(
n
b

)
+
(
n
a

)
. First, we focus on the first

(
n
b

)
com-

ponents of said dot product. We first get the obvious product (a + 1)2. Next, we know

that by definition of Laplace matrix that there are exactly (a + 1) (−1)’s in every row of

13



matrix C. This means our next product is (−1)(a + 1)(−b − 1). Adding both results we

get that the first
(
n
b

)
components of the dot product is (a+ 1)2 + (−1)(a+ 1)(−b− 1).

Similar reasoning is used for the other
(
n
a

)
components of the dot product. We know

by definition of Laplace matrix that matrix CT has exactly (b + 1) (−1)’s in every row.

This, again, gives us our product (−1)(b + 1)(a + 1). Lastly, our final product will be

(b + 1)(−b − 1). Adding both of these results we get that the last
(
n
a

)
components of the

product is (−1)(b+ 1)(a+ 1) + (b+ 1)(−b− 1). Therefore, the product of the block form

matrix and the eigenvector is,

 ((a+ 1)2 + (−1)(a+ 1)(−b− 1))j

((−1)(b+ 1)(a+ 1) + (b+ 1)(−b− 1))j

 = (a+ b+ 2)

 (a+ 1)j

(−b− 1)j



3.5 Eigenvalue b + 1

To show b+1 is an eigenvalue of L(G(a, 1)) we will be focusing on the linear independence of

the row space of matrix CT . For L(G(a, 1)), since b = 1, our eigenvalue is b+1 = 1+1 = 2.

Lemma 3.4. The column vectors of matrix CT corresponding to matrix L(G(a, b)) are

linearly independent.

Proof. In Section 3.2 we saw that CT has dimensions
(
n
a

)
×
(
n
b

)
. Now, we solve for vector v

in the equation CTv = 0 as we do to find the nullity of matrices. The rows in CT are made

of all the (b+ 1)-subsets of B. This means that we will have
(
n
a

)
linear equations (with

(
n
b

)
unknowns) that make up the system for finding the nullity of CT . These equations will be

all the combinations of the form

−
∑

z∈( [n]
b+1)

xz = 0.

14



where [n] represents the sets made from all
(
n
b

)
combinations.

Given two subsets of
(
[n]
b+1

)
, our linear equations can be of the form

−x1 − x2 − · · · − xp−1 − xp = 0

−x1 − x2 − · · · − xp−1 − xq = 0.

This implies that xp = xq. By choosing equations pairwise in the manner we did to show

that xp = xq, we can show that x1 = x2 = · · · = xb+1. Now considering an arbitrary

equation, say,

−x1 − x2 − · · · − xp = 0

we can get the following equalities,

−x1 − x2 − · · · − xp = −x1 − x1 − · · · − x1 = −(b+ 1)x1 = 0

which finally implies that x1 = x2 = · · · = x(n
a)

= 0.

Theorem 3.5. b+ 1 is an eigenvalue of L(G(a, b)) with multiplicity
(
n
a

)
−
(
n
b

)
.

Proof. Let L(G(a, b)) be given. The block form is this matrix is then, (a+ 1)I C

CT (b+ 1)I

.

From Lemma 3.4, we know that all the columns in matrix CT are linearly independent.

Therefore, the rows of C are linearly independent. By definition, Rank(C) =
(
n
b

)
. Now, by

The Fundamental Theorem of Linear Algebra, there are
(
n
a

)
−
(
n
b

)
vectors which form a basis

of the null space of C, we will call these vectors v. These vectors are of length
(
n
a

)
, but we

can extend them to be of length
(
n
a

)
+
(
n
b

)
(as it should be) by adding

(
n
b

)
0s to the beginning

of the vector. So the new vectors would then be of the form (0j, v)T . These
(
n
a

)
−
(
n
b

)
vectors

are all eigenvectors of the Laplace matrix of G(a, b) with eigenvalue (b+1) as we would have,
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 (a+ 1)I C

CT (b+ 1)I

0j

v

 =

 0j

(b+ 1)v

 = (b+ 1)

0j

v

.

3.6 Eigenvalues 1 and a + 2

As we previously saw, we had two eigenvalues with the same multiplicity, namely 0 and

a + b + 2. Here, we take a look at another pair of eigenvalues with the same mulitplicity.

Before going on to state and prove the next theorem, it is important to realize something

about matrix C, which we label as Lemma 3.6.

Lemma 3.6. Any two rows of matrix C in L(G(a, 1)) have a (−1) in the same component

exactly once.

Proof. We have two cases to prove here in order to show that it is indeed exactly one

common component in which two rows have a (−1). For the first, suppose two arbitrary

rows, c1 and c2, of matrix C of the block form of L(G(a, 1)) have a (−1) in the same

component more than once. Because in the block form of L(G(a, 1)), matrix C has exactly

two (−1)’s in every column, if c1 and c2 have a (−1) in the same component more than once,

then the vertex defined by exactly those two rows (having a (−1) in that row component)

appears more than once, contradicting our combination construction. For the second case,

suppose two arbitrary rows, c1 and c2, of matrix C of the block form of L(G(a, 1)) do not

have a (−1) in any same component. Then, we would be missing the vertex of A that is

defined by exactly those two rows.

Theorem 3.7. Both 1 and a+ b+ 1 = a+ 2 are eigenvalues of L(G(a, 1)) with multiplicity

a+ b = a+ 1.

Proof. Let L(G(a, 1)) be given. The block form of the matrix is then, (a+ 1)I C

CT 2I
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The eigenvector corresponding to eigenvalue a+ 2, will be named ( v
w ). As it turns out, the

eigenvector corresponding to eigenvalue 1 will be ( v
−aw ). We can see this with a system of

equations where both products result in the same equation. So, we multiply what we claim

to be the eigenvector by the block form of L(G(a, 1)), and we get the following:

 (a+ 1)I C

CT 2I

v
w

 = (a+ 2)

v
w


Leading us to,

(a+ 1)v + Cw = (a+ 2)v

CTv + 2w = (a+ 2)w.

This now reduces to,

Cw = v

CTv = aw.

We finally get our equation,

CCTv = av (3.1)

As previously stated, we get equation (3.1) with eigenvalue 1 and its corresponding eigen-

vector shown next.

 (a+ 1)I C

CT 2I

 v

−aw

 =

 v

−aw


This leads us to,

av + v − aCw = v

CTv − 2aw = −aw.
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Next,

av = aCw

CTv = aw.

After, we solve for v and w giving us,

v = Cw

CTv

a
= w.

This, again, gives us our equation,

CCTv = av. (3.2)

We see that equations (3.1) and (3.2), are in fact, the same. Now, recall that the dimension

of C for L(G(a, 1)) is n×
(
n
a

)
, and the dimension of CT is

(
n
a

)
×n. CCT = M is therefore

a matrix with dimensions n×n. Furthermore, M has entries (a + 1) on the diagonal and,

by Lemma 3.6, 1’s everywhere else. Now consider, matrix M − aI = J . The eigenvalues of

this matrix are n (with multiplicity 1) and 0 (with multiplicity n− 1), as seem in Lemma

1.9. The eigenvectors of M corresponding to eigenvalue 0 are then all possibilities for our

vector v. Vector v is of length
(
n
b

)
=
(
n
1

)
= n. So, to get w, the rest of the

(
n
a

)
components

of our eigenvectors, we just recall
CTv

a
= w

where we simply plug in every vector v which is multiplied by matrix CT and then divided

by a to give us vector w.

The reason we do not consider the eigenvector corresponding to eigenvalue n from our

n×n J matrix is because that eigenvector is the vector j (as we saw in Lemma 1.9). Plugging

in vector j into the equation (3.1) yields,

CCTv = av =⇒ CCT j = aj =⇒ ((n− 1) + (a+ 1))j = aj

which is clearly false, as (n− 1) + (a+ 1) > a.
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3.7 Conclusion

In the case of L(G(a, 1), we have
(
n
a

)
= (a+2)(a+1)

2
vertices of length a and

(
n
b

)
=
(
a+2
1

)
= a+2

vertices of length b. This means L(G(a, 1)) has (a+2)(a+1)
2

+ a+ 2 = (a+3)(a+2)
2

eigenvalues.

Now, recall the multiplicity of eigenvalue b + 1 = 2 which was
(
n
a

)
−
(
n
b

)
. In this case

since b = 1, we have that
(
n
a

)
−
(
n
b

)
= (a+2)(a+1)

2
− (a + 2) = (a−1)(a+2)

2
. Next, recall that

both eigenvalue 0 and eigenvalue a+ b+ 1 had multiplicity 1. Also, eigenvalues 1 and a+ 2

had multiplicity (a+ 1). If we add these multiplicities together we get,

(a− 1)(a+ 2)

2
+ 1 + 1 + (a+ 1) + (a+ 1) =

(a− 1)(a+ 2)

2
+ 2a+ 4 =

(a+ 3)(a+ 2)

2

which is precisely the total amount of eigenvalues L(G(a, 1)) should have. Therefore, we

can conclude that L(G(a, 1)) has strictly nonnegative integer eigenvalues!
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Chapter 4

Laplace Eigenvalues of G(a, 2)

4.1 Eigenvalue 0

In Section 3.3 we saw from Theorem 3.1 that 0 is a simple eigenvalue of L(G) if and only if

the graph G is connected. From Theorem 2.6 we saw that every graph G(a, b) is connected.

Therefore, 0 is also a simple eigenvalue of L(G(a, 2)).

4.2 Eigenvalue a + b + 2

From Theorem 3.3 of Section 3.4 we recall that a + b + 2 is an eigenvalue for L(G(a, b)).

Therefore, a+ 4 is also an eigenvalue of L(G(a, 2)).

4.3 Eigenvalue b + 1

From Theorem 3.5 in Section 3.5 we also proved that b+ 1 was an eigenvalue of of matrix

L(G(a, b)). This means 3 = b+ 1 is therefore an eigenvalue of L(G(a, 2)) with multiplicity(
n
a

)
−
(
n
b

)
=
(
n
a

)
−
(
n
2

)
.

4.4 Conjectured Eigenvalues of L(G(a, 2))

In Section 3.6 we showed that 1 and a+ b+ 1 were both eigenvalues of L(G(a, 1)) with the

same multiplicity by realizing that the product of matrices CCT gave us matrix J . From

there we were then able to figure the eigenvectors corresponding to the eigenvalues 1 and
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a+ 2.

In the case of matrices L(G(a, 2)), the product of matrices CCT would not give us

matrix J because Lemma 3.6 does not hold for matrices L(G(a, 2)). However, through

computer computations we can not only see that 1 and a + b + 1 tend to be eigenvalues,

but we also see a pattern when it comes to the eigenvectors. We then have the following

conjecture:

Conjecture 4.1. Both 1 and a+b+1 = a+3 are eigenvalues of L(G(a, 2)) with eigenvectors( v
−3w
2

)
and ( v

w ), respectively, with multiplicity a+ b = a+ 2.

With graphs G(a, 2) we noticed that the Laplacian matrices had a new pair of eigen-

values. Through computer computations we got the following conjecture,

Conjecture 4.2. Both 2 and a + b = a + 2 are eigenvalues of L(G(a, 2)) with the same

multiplicity, namely, a2+3a
2

.
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Chapter 5

Further Work

5.1 Eigenvalues of L(G(a, b))

Through numerous computer computations, many observations of the eigenvalues of ma-

trices L(G(a, b)) were made. In fact, the biggest conjecture to be proven here (first noticed

by Dr. Art Duval and Dr. Jeremy Martin) would be,

Conjecture 5.1. The eigenvalues of the Laplacian matrix of graphs G(a, b) are strictly

nonnegative integers.

5.2 Related Conjectures

Several patterns were seen when executing these numerous computer computations through

the use of Sage [4]. This led us to our last 2 conjectures. First,

Conjecture 5.2. σ(G(a, b)) is symmetrical.

This means that in the spectrum of L(G(a, b)) always has pairs of eigenvalues with

the same multiplicities, except for eigenvalue b+ 1 which is our midpoint reference for the

symmetry.

For example, the eigenvalues of L(G(3, 1)) are 6, 0, 2, 1, 5 with multiplicities 1, 1, 5, 4, 4,

respectively. The list of all the eigenvalues can be arranged in the following way:

0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 5, 5, 5, 5, 6. This list is symmetrical with respect to our midpoint

b+ 1 = 2 as 0 and 6 are a pair of eigenvalues that have the same multiplicity and 1 and 5

are pairs.
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And second, a very intriguing observation was made giving us the conjecture:

Conjecture 5.3. Given a, b, c, d ∈ N, if a+ b = c+d and c > a > b > d, then σ(G(c, d)) ⊂

σ(G(a, b)).

23



References

[1] Lowell W. Beineke and Robin J. Wilson. Topics in Algebraic Graph Theory. Encyclo-

pedia of mathematics and its applications: 102. Cambridge University Press, 2004.

[2] Robert Grone and Russell Merris. The Laplacian spectrum of a graph. II. SIAM J.

Discrete Math., 7(2):221–229, 1994.

[3] Jason J. Molitierno. Applications of Combinatorial Matrix Theory to Laplacian Matrices

of Graphs. Discrete mathematics and its applications. CRC Press, 2012.

[4] The Sage Developers. SageMath, the Sage Mathematics Software System (Version

2020.1), 2020. https://www.sagemath.org.

24



Curriculum Vitae

Cesar Iram Vazquez graduated from Americas High School, El Paso, Texas, in the spring

of 2014. He entered The University of Texas at El Paso in the fall of 2014 and received

his bachelor’s degree in Mathematics with a minor in Secondary Education in the spring of

2018. In the fall of 2018, he entered the Graduate School of The University of Texas at El

Paso. While pursuing a master’s degree in Mathematics he worked as a Teaching Assistant

and supervisor of the Mathematics Resource Center for Students.

25


	Laplacian Spectra Of Kneser-Like Bipartite Graphs
	Recommended Citation

	tmp.1595967844.pdf.q4KOT

