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Abstract 

Falling is the second leading cause of accidental or injury-related death in the aging 

population worldwide and a leading cause of serious injury.  Whole-body vibration (WBV) 

training has been implemented as a way to improve functional performance among the elderly 

and reduce the falls risk.  The purposes of this study were: 1) examine to what extent a six-week 

course of WBV training reduced falls risk and improved fall outcomes in response to slips, and 

2) examine whether the benefits of WBV training could be retained at least 2 months after the 

completion of the entire training session.  A total of 17 independently living, healthy older adults 

were recruited for the 6-week WBV intervention and were randomly assigned to the WBV group 

or the control (CON) group.  Participants in the WBV group performed three ten-minute sessions 

per week for six weeks with a vibration frequency of 20 Hz and 1.3-millimeter vibration 

amplitude.  The CON group performed the same protocol, but instead of vibration, they 

encountered an audio recording of the vibrator motor noise.  Fall risk evaluation and treadmill 

slip outcomes were assessed prior to the six-week training period, at the end of the six-week 

training period, and two-months after the completion of the protocol.  There were no significant 

(p<0.05) improvements between groups in any of the measures for the fall risk evaluation or the 

treadmill slip outcomes.  Both groups saw significant improvements throughout the study, 

showing signs of performance retention for the ten-minute walking test (10MWT) and the two-

minute walking test (2MWT).  Overall, the study findings revealed that six weeks of WBV was 

no more beneficial than the CON group. 
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CHAPTER 1 

Introduction 

Falls among Older Adults 
 

Falling is the second leading cause of accidental or injury-related death in the aging 

population worldwide (World Health Organization, WHO 2018) and a leading cause of serious 

injury.  Annually, an estimated 420,000 individuals die as a direct result of falls or fall-related 

injuries and it has been reported that falls claim one life every 20 minutes (Centers for Disease 

Control and Prevention, 2018).  Falls can occur at any age, but they are more common in adults 

65 years of age or greater.  The highest morbidity related to falls occurs in individuals over the 

age of 65; these individuals are more likely to succumb to fall-related injuries (WHO, 2018).  

Annually, more than one-third of all elderly (i.e. 60 years and older) persons in the United States 

fall (Berg, Alessio, Mills, & Tong, 1997; Campbell et al., 1990; Tinetti & Powell, 1993).  The 

increased prevalence of falls creates a significant global healthcare issue, because among all 

annual worldwide falls, 37.3 million are serious enough to require medical attention (WHO, 

2018).  Furthermore, falling once increases the chances of falling again, which could potentially 

lead to further injury (Stevens et al., 2012).  In 2006 there were a total of 36,689 accidental 

injury mortality cases among the elderly, and of these cases approximately 29% were attributed 

to falls (CDC, 2018).  Moreover, unintentional mortality related to falls was the leading cause of 

emergency room visits among adults aged 65 years or older (Florence et al., 2018).  In 2008, 

there were a reported 2.1 million reported cases of falls, and of these cases 560,000 individuals 

required hospitalization (Florence et al., 2018).  Approximately 10% of all reported falls resulted 

in injuries that required medical attention (Alexander, Rivara, & Wolf, 1992; Tinetti, Speechley, 

& Ginter, 1988; Tromp et al., 2001). 
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Approximately one-third (28-35%) of community dwelling elderly fall per year and this 

number is projected to rise as the older population is expanding (National Council of Aging; 

NCOA, 2015).  A recent study investigated which groups are most vulnerable to mortality due to 

unintentional falls and found that 22% of fall mortalities took place in only three states: Florida 

(n = 6,640; 8.4%), California (n = 6321; 8.0%), and Texas (n = 4576; 5.8%) (Alamgir, 

Muazzam, & Nasrullah, 2012).  Furthermore, between 2003 and 2007 there were 79,386 reported 

fall fatalities and a significant increase in fall fatalities within those years.  In other words, the 

fall mortality rate increased by 22.14 per 100,000 during this time.  Falls accounted for 43.8% of 

the total unintentional injury mortalities during 2003 and 2007 (Alamgir et al., 2012; Hu & 

Baker, 2010).  The National Health Interview Survey has also indicated that falls are the primary 

factor leading to restricted activity days among older adults (Rubenstein, 2006).  Falls have 

accounted for approximately 18% of restricted days among the older adult population 

(Rubenstein, 2006).  Older studies have also reported the negative impact of falls among older 

adults in the United States.  A study conducted by (Kosorok, Omenn, Diehr, Koepsell, & Patrick, 

1992) examined the number of restricted activity days among older adults in the United States 

and determined that of the 31 days of restrictive activity throughout the year, up to 20% of the 

restricted activity days were due to falls. 

Global Economic Burden of Falling 
 

The procedures and care associated with typical aging can be costly.  The average annual 

direct and indirect cost of age-related medical procedures and hospital visits in 2013-2014 was 

approximately $40 billion; direct medical costs alone were $23.6 billion (Degrauw, Annest, 

Stevens, Xu, & Coronado, 2016).  Expenses for hospital visits, inpatient stay, medication, 

surgical procedures, as well as outpatient care can create tremendous stress and family burden.  
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Moreover, when combined with fall-related injuries and the expenses associated with additional 

treatment due to falls, overall quality of life can be impacted. 

Increased fall risk is mainly due to the loss of physical ability, other age-related changes, 

and complications stemming from the aging process (Alexander et al., 1992).  This presents a 

critical issue, because older adults are more likely to be hospitalized because of falls.  Moreover, 

older adults are more likely to experience more severe injuries (e.g. hip fractures) associated with 

the fall, which can further result in greater medical expenses (Covington, Maxwell, & Clancy, 

1993). 

Overall, the direct costs of fall-related injuries and complications can be considerable.  

Other items, such as personal care services or other non-medical services (i.e. transportation, 

pain and suffering, loss of productivity) can contribute to increased burden, which can ultimately 

affect the quality of life for the elderly and their caretakers (Carroll & Slattum, 2005). 

Fall Prevention and Fall Intervention State-of-the-Art 
 

In an attempt to mitigate the costs of medical procedures and rehabilitation associated 

with age-related changes and accidents (i.e. falls), several types of fall prevention programs for 

elderly individuals have been implemented.  To date, the common approaches to fall prevention 

in older adults have attempted to mitigate specific risk factors associated with increased falls 

risk, such as muscle weakness (Woo, Hong, Lau, & Lynn, 2007), decreased mobility and range 

of motion (Pang, Eng, Dawson, McKay, & Harris, 2005), sensory loss (Pereira, Vogelaere, & 

Baptista, 2008), and deficits in balance (Pollock, Martin, & Newham, 2012).  Some studies have 

examined the effects of surgery (Kannus, Sievänen, Palvanen, Järvinen, & Parkkari, 2005), 

medication or supplementation (Broe et al., 2007) to reduce falls, while others have used 

wearable technology to improve visual acuity (Fung, Richards, Malouin, McFadyen, & 
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Lamontagne, 2006).  Still others have used traditional means of fall prevention, such as aerobic 

and resistance exercise. 

While some wearable technology (e.g. foot orthotics or exosuits) has been shown to be 

productive with regards to stability at the lower extremity, there are still some limitations that 

prevent older individuals from benefiting (i.e. comfort and affordability).  Similarly, while 

medication and surgery may have a positive impact on overall physical function, these methods 

of fall prevention can be costly and may also have undesired side-effects, which can further 

increase falls risk.  For example, polypharmacy or simultaneous use of multiple drugs can result 

in physiological changes (i.e. hypotension) that can increase the risk for falls (Baranzini et al., 

2009).  Similarly, surgery may also result in secondary complications, such as infection or pain, 

which can alter gait and increase the risk for falls.  Task-specific exercise programs have been 

shown to be more beneficial compared to other methods, such as supplementation (Smith, 

Forster, & Young, 2006), surgery (e.g. corrective vision surgery) (Kannus et al., 2005), and use 

of wearable technology (Awad et al., 2017).  Research suggests that task-specific programs have 

the ability to drive neural plasticity and therefore restore function (Shepherd, 2001).  However, 

much like medication or wearable technology, fall prevention programs centered round exercise 

regimens are not without their limitations.  For example, some exercise programs might require 

specialized equipment that can be cumbersome, confusing to use, or difficult to access.  One 

study found that older adults were less likely to participate in a personal exercise regimen 

because of high costs associated with memberships (62%) or a lack of knowledge on how to 

exercise properly (42%), and even a lack of transportation to the facility (57%) (Rimmer, 2008).  

Furthermore, depending on physical ability, older adults may not be able or willing to use the 

specific equipment needed for the fall prevention program to be effective (Shaughnessy, 
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Resnick, & Macko, 2006).  This point is important to address because if compliance in 

rehabilitation programs is poor, then improvements in performance could be delayed or restricted 

(Damush, Plue, Bakas, Schmid, & Williams, 2007). 

Recently, a method known as whole-body vibration (WBV) training has been 

implemented as a way to improve functional performance among the elderly.  Compared to 

traditional exercise programs, WBV is less strenuous, has the ability to be portable and cost-

effective, and requires little to no previous experience with physical exercise.  Several studies 

have shown that WBV has the ability to significantly improve risk factors associated with falling 

in elderly individuals, therefore possibly reducing the risk of falls and injury (Choi, Kim, Cho, & 

Lee, 2016; Lee, Cho, & Lee, 2013; Merkert, Butz, Nieczaj, Steinhagen-Thiessen, & Eckardt, 

2011; Tankisheva, Bogaerts, Boonen, Feys, & Verschueren, 2014; Van Nes et al., 2006).  

Although several studies have examined the effects of WBV in older adults, none have 

systematically or comprehensively assessed the effects of WBV in reducing fall incidences.  

Therefore, it remains unknown whether WBV could prevent falls in real life.  Furthermore, 

current studies have failed to assess whether or not the effects of training can be retained over 

time.  Therefore, it is not well-understood if whole-body vibration training can: 1) be an effective 

method in reducing the rate of actual falls and 2) nurture long-term health benefits. 
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Purpose of the Study 

Although previous studies have examined some of the effects of WBV in elderly patients, 

existing studies have only examined a limited number of fall risk factors, such as balance or 

strength deficits.  Furthermore, no study has yet determined if WBV can reduce the rate slip-

related falls.  Finally, the majority of existing studies only investigated the short-term effects of 

WBV (i.e. immediately after training or days after training).  The retention (if any) of the WBV 

training effect on lowering risk of falls among frail or elderly populations still remains relatively 

unknown.  Given these constraints, the comprehensive therapeutic effects of the WBV on 

reducing risk of falls are still unknown.  Consequently, it is highly desirable to conduct a 

systematic study to identify the extent to which the WBV could reduce the risk of falls among 

this population.  Therefore, the purposes of this study were: 1) examine to what extent an 6-week 

course of the WBV training reduced falls risk (determined by a comprehensive battery of risk 

factors) and improved fall outcomes in response to slips, and 2) examine whether the benefits of 

WBV training could be retained at least 2 months after the completion of the entire training 

session. 
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Background and Significance of the Study 

Most falls are linked with postural instability and gait disturbance, which are frequent 

symptoms found in older adults (Meuleners, Fraser, Bulsara, Chow, & Ng, 2016).  Previous 

studies have demonstrated that among people who experience frequent falling, older adults (60 

and over) fall most frequently (Stolze et al., 2004).  Age-related impairments, such as poor 

balance and impaired gait presumably contribute to the large number of falls.  It has been 

reported that 73% of community dwelling older adults experience falls each year (Teasell, 

McRae, Foley, & Bhardwaj, 2002).  Hip fractures, a common result of falling, are also prevalent 

in the elderly who suffer high levels of osteoporosis.  It has been shown that elderly patients have 

a four-fold increased risk of hip fractures associated with a high incidence of falls and loss of 

bone mass in the lower extremities (Dennis, Lo, McDowall, & West, 2002; Ramnemark, Nyberg, 

Borssén, Olsson, & Gustafson, 1998).  Older adults have varying degrees of muscle weakness, 

mobility deficits, postural instability, and other motor impairments, which render them highly 

susceptible to falls (Czernuszenko & Czlonkowska, 2009; Lamb, Ferrucci, Volapto, Fried, & 

Guralnik, 2003). 

Recently, WBV exercise has been developed as a new modality to train older adults 

(Lam, Lau, Chung, & Pang, 2012; Yang, King, Dillon, & Su, 2015a) and people with multiple 

sclerosis (Yang, Estrada, & Sanchez, 2016; Yang et al., 2018) to reduce their falls risk in the 

field of physical therapy.  The transmission of vibrations and oscillations to the human body can 

lead to physiological changes on numerous levels (Madou & Cronin, 2008).  It has been 

suggested that WBV training increases bone density, neuromuscular performance, improves 

body balance and proprioceptive function (Fontana, Richardson, & Stanton, 2005), and improves 

gait parameters and coordination among older adults (Sitj-Rabert et al., 2011).  These effects of 
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WBV exercise have been recognized immediately after exercise (Cardinale & Bosco, 2003), 

within six weeks (Bautmans, Van Hees, Lemper, & Mets, 2005a), four months (Torvinen et al., 

2002), nine month (Stolzenberg, Belavý, Rawer, & Felsenberg, 2013), one year (Bogaerts, 

Verschueren, Delecluse, Claessens, & Boonen, 2007), and 18 months (Stengel, Kemmle, & 

Engelke, 2011).  It has also been demonstrated that vibration is an effective method for 

improving postural control in elderly subjects (Bogaerts et al., 2007).  Improvements have been 

reported associated with both posture control (van Nes, Geurts, Hendricks, & Duysens, 2004) 

and lower extremity torque production (Tihanyi, Horvath, Fazekas, Hortobagyi, & Tihanyi, 

2007). 

Given the projections over the next 40 years and the rapid expansion of the aging 

population (≥ 60 years of age), establishing a cost-effective and low-impact alternative to 

traditional training methods to improve physical performance and reduce the risk of falls is vital. 
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Conceptual Framework 

As discussed previously, older adults are at high risk for falling, with up to 65% of 

individuals falling at least once during hospitalization (Davenport, Dennis, Wellwood, & 

Warlow, 1996; Nyberg & Gustafson, 1995; Teasell, McRae, Foley, & Bhardwaj, 2002).  Given 

the vulnerable state of these individuals, falls can have severe outcomes both physically and 

mentally (Weerdesteyn, de Niet, van Duijnhoven, & Geurts, 2008).  There is considerable 

evidence showing that traditional forms of exercise, such as resistance training, can alleviate the 

neuromuscular and physical constraints and reduce the risk of falls and life altering injuries.  

However, in order to be effective and to increase compliance, existing methods of rehabilitation 

need to be made more accessible to individuals who are most likely to benefit from its use. 

Traditional forms of exercise suffer from cost, participation, physiologic and operational 

barriers (Damush et al., 2007).  Although these methods have the potential to reduce fall risk, 

these barriers can reduce compliance in rehabilitation and can affect patient self-management 

(Wagner, Austin, & Korff, 1996).  WBV has emerged as an effective method to improve 

performance and reduce the risk of fall in older adults.  The user-friendly interface associated 

with WBV appliances has the potential to increase compliance, which can lead to an 

improvement in fall-related performance variables (i.e. fall risk factors), thus reducing the rate of 

real-life fall and improving independence and quality of life. 

A simple conceptual model (Fig. 1) was developed to guide the proposed research and 

was based off existing research pertaining to the use of WBV and performance improvements in 

older adults.  Older adults commonly experience age-related deficits associated with an increased 

risk of falls (Mackintosh, Goldie, & Hill, 2005).  These deficits include decreased, strength, 

balance and sensory deficits, decreased flexibility, and diminished mobility (Mackintosh, Goldie, 



 

 10 

& Hill, 2005).  Traditional forms of exercise can be effective in reducing the real-life falls in 

elderly individuals, however, there are limitations with this form of rehabilitation, which can 

deter regular use.  WBV can serve as a feasible alternative and can lead to improved 

performance and decreased risk of falls.  WBV conducts mechanical vibrations to the body, 

which elicit responses in mechanoreceptors (e.g. Golgi tendon organ and muscle spindles) 

responsible for detecting stretch and tension (Rittweger, Beller, & Felsenberg, 2000; Zaidell, 

Mileva, Sumners, & Bowtell, 2013).  Through a mechanism known as the tonic stretch vibration 

reflex (TVR), older adults undergoing age-related performance deficits may experience 

increased muscle activation and can potentially experience physiological and neurological 

changes (Zaidell et al., 2013).  These changes can lead to improvements in fall risk factors (e.g. 

balance, strength, mobility, sensation, range of motion), and therefore, can result in decreased 

fear of falling, improved self-esteem, and ultimately fewer falls.  These psychological, physical, 

functional, and behavioral improvements can lead to increased independence, increased 

community involvement (Moyes, 2012), and improvements in ADL’s (Delbaere, Close, Brodaty, 

Sachdev, & Lord, 2010). 
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Fig. 1. Conceptual Framework 
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Statement of the Problem 

No study has systematically investigated the effect of WBV training on improving fall 

risk factors among older adults.  Additionally, existing studies have not assessed if the 

therapeutic effects of WBV can be effective in reducing the rate of slip-related falls.  Finally, the 

majority of studies have only examined the acute effects of WBV and therefore, it is uncertain if 

the therapeutic effects of WBV can be retained over long durations.  It is, therefore, highly 

desirable to conduct a systematic study to identify the extent to which WBV training reduces the 

risk of falls and real-life falls among older adults. This study was conducted to fill this 

knowledge gap. 
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Research Questions and Hypotheses 

This study on the effects of WBV training in reducing the risk of falls among healthy 

older adults investigated the following: 

1.   If and to what extent a 6-week course of the WBV training improved fall rates in 

response to an unexpected gait slip and improved the risk factors of falls among 

healthy older adults. 

2.   If the therapeutic effects of WBV could be retained at least 2 months after the 

completion of the entire training session. 

Aligning with our aims, we tested the following hypotheses: 

1. WBV training would improve fall rates during the unexpected treadmill-slip, stemming 

from the training-induced improvements in the fall risk factors. 

2. WBV training effects would last at least 2 months among older adults. 
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Definitions 

For the purposes of this proposed study, the following terms were defined: 

a.   Activities of Daily Living (ADL).  Activities performed throughout a 24-hour period, 

which require basic skill and focus.  These activities typically pertain to tasks of self-

care, such as bathing or showering (Pedretti, Pendleton, & Schultz-Krohn, 2013). 

b.   Fall Risk Factor.  A measure or variable that increases a person’s risk for 

experiencing a fall. 

c.   Fear of Falling.  How worried an individual is about falling while carrying out several 

indoor or outdoor activities of daily living (measured with the Fall Efficacy Scale). 

d.   Frequency of Falls.  The number of times the participant’s center of mass shifts and 

inadvertently descends to the floor with or without injury (Lamb, Jorstad-Stein, 

Hauer, & Becker, 2005). 

e.   Older adults.  Defined as an individual 60 years of age or older (National Institutes of 

Health (NIH), 2013).  The current study will expand this age group to individuals 60 

years of age or older. 

f.   Placebo Training.  A procedure that has no therapeutic effect.  In this case, placebo 

training will involve standing on the vibration platform without any vibration for the 

same time period as the experimental group. 

g.   Self-selected walking speed- walking velocity (meters per second) which participant 

selects and can walk comfortably at for two-minutes on standard treadmill.  This is 

selected prior to performing walking trials on the perturbation treadmill. 
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h.   Slip Perturbation.  Abrupt change of direction to walking surface, resulting in an 

unexpected and sudden forward shift in the subjects’ base of support relative to the 

center of mass, resulting in a slip. 

i.   Vibration Amplitude.  The deflection of the training platform upwards or downwards 

in millimeters (mm). 

j.   Vibration Frequency.  The intensity or speed of the vibration measured in hertz (Hz). 

k.   Whole-body Vibration.  Training modality, which transmits oscillations and 

vibrations to the human body via vibrating platform (Lam et al., 2012; Madou & 

Cronin, 2008).  
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Limitations 

The study may have the following possible limitations: 

1.   This study only examined healthy older individuals which might only provide insight to a 

narrow subset of individuals with similar functional profiles.  This may have hindered our 

ability to generalize the study findings to the broader aging population. 

2.   Although study findings may have provided evidence of retention, it is not certain if the 

benefits from the six-week WBV intervention (if any) can sustain beyond the 2-month 

interest window. 

3.   Because participation in the study was voluntary, adherence to the vibration training 

protocol may have varied due to loss of interest or other limitations in certain individuals.  

However, we did anticipate a moderately better adherence rate with WBV training in 

comparison with conventional exercise-based programs. 

4.   Participants’ performance in the outcome measures of interest may have varied according 

to personal conditions, such as disease, fatigue, attitude or mood change, self-efficacy, or 

feelings towards research setting and protocols.  The randomization procedure typically 

addresses this concern.  However, to be more conservative, these potential confounders 

were included as covariates and were controlled for in statistical analyses.  Moreover, a 

matched-pair study design was used to reduce the effects of heterogeneity and decrease 

the effects of performance variability among participants. 

5.   Given the longitudinal nature of the study, attrition occurred, which reduced the statistical 

power of the study and made it difficult to accurately assess the effects of vibration 

training and retention. 
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Although these limitations exist, the findings from this study can provide evidence of the 

possible effects of vibration training in reducing falls in response to simulation treadmill slips, 

which may be used to develop more effective interventions that can prevent falls in real-life 

scenarios. 
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Summary 

This chapter provides an overview and introduction to the proposed research, which 

includes the purpose, background and significance, conceptual framework, statement of the 

problem, research questions, hypotheses, definitions, assumptions, and limitations.  The purposes 

of this study were to examine if and to what extent a six-week course of the whole-body 

vibration training reduces the fall risk and the fall rate in response to a simulated slip during 

walking among healthy older individuals.  Finally, the study set out to examine whether the 

WBV training effect could be retained at least 2 months after the completion of the entire 

training session healthy older individuals.  The findings from this study could be utilized to 

develop more affordable, accessible, and effective training regimens to reduce falls in individuals 

not only affected age-related performance deficits, but other movement disorders, such as 

multiple sclerosis, stroke, Parkinson’s disease, and spinal cord injury.  
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CHAPTER 2 

Literature Review 

Risk Factors for Falls 

Risk factors are aspects of an individual’s lifestyle or environment that may increase the 

probability of experiencing a negative event, such as a fall (Masud & Morris, 2001).  In some 

cases, intrinsic issues, such as disease or pathology might be contributing factors, which may 

result in the undesired event.  Age-related physiologic and motor changes (i.e. functional 

impairment or disease) present a significant challenge to the health care industry.  Compared to 

healthy young adults, elderly individuals tend to be more associated with frequent use of 

medication, cognitive decline, functional decline, and disability or disease.  Despite numerous 

studies examining the risk factors for falls and falls prevention in the elderly, falls among older 

adults and those with disease still impose a great societal burden.  As a result, the prevention and 

management of falls among the elderly and populations with limited mobility have become a 

health initiative. 

As alluded to previously, age-related and disease-related changes in physical function can 

increase the risk for falls.  Typically, the risk for falls varies depending on biological and 

functional capabilities within different age-groups, but falls are less likely to be driven by simple 

age-dependent variability (Lord, Sherrington, Menz, & Close, 2007).  The majority of falls are 

caused by a combination of factors, as stated previously (Hornbrook & Stevens, 1994; Lord et 

al., 2007) and studies have recognized numerous risk factors that can be linked to falls (Oakley et 

al., 1996).  This review will briefly discuss some risk factors for falling that might present in the 

elderly, such as medication, physical environment, cognitive and emotional state, but will 

primarily highlight impaired physical function and disease given that WBV can directly modify 
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these fall risk factors.  Furthermore, this review will dissect the global burdens associated with 

falls and will discuss the state-of-the-art with respect to controlled whole-body vibration, human 

performance, and fall prevention. 

Medication 

Given the advances in medicine, people are living longer.  As a result, people experience 

more age-related changes, which includes disease.  The demand for care among this population 

requires different health care needs, and this means medical treatment for conditions such as, 

hypertension, epilepsy, insomnia, and even dementia.  Studies have shown that consumption of 

certain prescription medications can increase the risk for falls among the elderly.  Specifically, 

findings have revealed that the classes of medications that are strongly associated with falls 

include: central nervous system (CNS) medications, cardiovascular medications, and 

polypharmacy.  CNS medications are drugs that affect the central nervous system (i.e. brain or 

spinal cord) and produce a response to alleviate a given medical ailment.  Cardiovascular (CV) 

medications are prescription drugs for diseases relating to the function of the heart and blood 

vessels.  Polypharmacy refers to the simultaneous use of multiple drugs to treat one or a 

combination of conditions. 

cns, cv, and polypharmacy medication use.  The literature has reported that the use of 

prescribed medications significantly increases the risk for falls (Ensrud et al., 2002; Faulkner et 

al., 2009; Kallin, Gustafson, Sandman, & Karlsson, 2004).  This is likely due to their undesired 

side-effects, such as hypotension and dizziness, which may leave individuals at higher risk for 

falls (Li, Hamdy, Sandborn, Chi, & Dyer, 1996; Rubenstein, Josephson, & Robbins, 1994).  One 

study revealed that CNS medications were prescribed more frequently to patients who reported 

falls compared to patients in a control group (97% vs. 55%, respectively; p < 0.001) (Walker, 
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Alrawi, Mitchell, Regal, & Khanderia, 2005).  A study by Thapa (1995) revealed that compared 

to non-users, the rate recurrent falls was significantly higher for CNS drugs users (p < 0.05) 

(Thapa, Gideon, Fought, & Ray, 1995).  Several other studies have concluded that CNS class 

medications, along with CV medications, and polypharmacy can have a significant impact on 

falls risk (Cumming et al., 1991; Marcum et al., 2016) and can therefore be classified as fall risk 

increasing drugs.  Specifically, it has been reported that individuals taking these medications 

have an increase in the risk of falls by 2-fold (Cumming et al., 1991; Landi, Onder, & Cesari, 

2005; Lavsa, Fabian, Saul, Corman, & Coley, 2010).  Several studies have shown that 

polypharmacy can have a significant impact on overall well-being, and can significantly increase 

the risk of injurious falls, as well as recurrent falls (Hajjar, Maher, & Hanlon, 2014; Richardson, 

Bennett, & Kenny, 2015; Ziere et al., 2006).  French et al., (2006) identified that patients who 

were classified as fallers were prescribed significantly more medications than the matched 

control group (French et al., 2006). 

Environment 

Falls can occur for a multitude of reasons and one element aside from medication that 

contributes significantly to the occurrence of falls is the physical environment.  Findings from 

several studies have shown that how a person interacts with the environment and the hazards 

within the environment can dictate whether or not a fall will occur.  Given the complex etiology 

of falls, every aspect of a person’s environment must be assessed for environmental hazards, 

which may increase the risk for falls.  This section will briefly discuss fall risk hazards 

associated with community (indoor and outdoor) and hospitals or chronic care facilities. 

community.  Falls often result from environmental hazards while performing activities of 

daily living (ADL).  For example, clutter around the home, abrasive walking surfaces (e.g. 
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carpets or rugs, or exposure to stairs or steps) can lead to unexpected trips, stumbles, or falls, in 

which older or frail individuals may not be able to recover from quickly (Bergland, Jarnlo, & 

Laake, 2003; Faulkner et al., 2009; Lord, Ward, Williams, & Ansety, 1993; Prudham & Evans, 

1981).  Studies have reported that up to 30% of community living individuals over the age of 65 

fall every year (A. Campbell, Reinken, Allan, & Martinez, 1981; Prudham & Evans, 1981).  

Several authors have stated that environmental hazards are more likely to result in falls in 

individuals who report better health compared to those who report issues with health (Bergland 

et al., 2003; Lord et al., 2007; PA et al., 2000; Weinberg & Strain, 1995).  This suggests that 

healthier individuals interact more with their environment and are more likely to perform more 

hazardous tasks that may put them at greater risk for falls.  Active elderly persons might be more 

able and willing to navigate throughout the home and might be more likely to perform more 

demanding tasks, such as stair navigation. 

community in-home risks.  In most cases, falls occur on level surfaces within the home 

(e.g. bedroom, kitchen, or living room).  A study performed my Northridge et al., (1995) 

revealed that 46.8% of all reported falls were attributed to environmental hazards.  It was found 

that participants who reported having loose grab bars or no grab bars around the home 

experienced significantly (p < 0.05) increased rates of falls than participants who did not report 

these hazards (Northridge, Nevitt, Kelsey, & Link, 1995).  Additionally, clutter and the presence 

of rugs and carpet throughout the home were associated to increase frequency of falls.  The 

findings from this study highlight the fact that falls tend to occur where people spend the most 

time (Northridge et al., 1995).  Therefore, more emphasis should be placed on prevention 

strategies and home hazard modification to effectively reduce the rate of falls in frail individuals 

and older adults (Nevitt, Cummings, Kidd, Black, 1989). 
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Other studies have shown similar findings in regard to the importance of home hazard 

modifications and the effectiveness of decreasing falls risk.  A study by Lord et al., (1993) 

revealed that the most common causes of falls were trips, slips, and loss of balance.  The 

majority of falls were a result of trips (45.1%), followed by lost balance (18.3%) and slips (16.3).  

These findings are consistent with several other studies, which state that falls normally results 

from a combination of multiple and varying risk factors (Lipsitz et al., 1991; Lord et al., 2007; 

O’Loughlin, Robitaille, Bolvin, & Suissa, 1993).  A study by Bergland et al., (1998) reported 

similar findings and found that up to 41% of falls occurred indoors.  Data presented by the 

National Council of Safety (2018) indicated that the leading cause of accidental death associated 

with falls occurred on stairs (National Safety Council, 2018).  Approximately 10% of fall-related 

deaths occur as a result of stair-related falls and up to 75% falls occur during decent (National 

Safety Council, 2018).  The characteristics of stairs and other similar obstacles (i.e. ramps) 

present specific challenges.  Certain features, such as railing, compliant surfaces and adequate 

lighting are imperative to reduce the risk for falls when navigating stairs and other areas of the 

home, such as hallways or bedrooms.  It has been reported that participants who have undergone 

home modifications experience fewer falls that participants who did not receive modifications 

(Nikolaus & Bach, 2003). 

community outdoor risks.  Outdoor environments present a significant challenge to older 

adults and individuals with mobility impairments.  The outdoors in particular introduce excessive 

environmental demands that these populations may have difficulty adjusting to physically 

(Connell & Wolf, 1997; Li et al., 2006).  Regardless of where the falls occur, environmental 

factors, such as misalignments in the walking surface, steps, uneven ground, or low-friction 

surfaces all increase falls risk (Lord et al., 2007).  Findings from several studies have reported 
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that between 39.5% and 61.4% of falls occur outdoors (Downton & Andrews, 1991; Lord et al., 

1993; Weinberg & Strain, 1995).  Another study by Li et al., (2006) reported that outdoor falls 

accounted for 72% of the most recent falls in middle aged-men, 57% of the most recent falls in 

older men, and 51% of the most recent falls in middle-aged women (Li et al., 2006).  For older 

adults (men and women) over 80 years of age, outdoor falls accounted for 48% of the most 

recent falls.  These findings are in line with those reported by Bergland & colleagues (2003) who 

found that outdoor falls were significantly more frequent outdoors than indoors (57.5 vs. 42.5%).  

The study found that more than half (57.5%) of the falls reported in the study occurred in an 

outdoor setting (Bergland et al., 2003). 

Weinberg et al., (1995) reported that the main causes of falls were environmental 

features, such as sidewalks or uneven terrain; approximately 22.2% of falls were attributed to 

sidewalks.  These findings are consistent throughout the literature.  Li et al., (2006) reported that 

the majority of falls outdoors occurred during walking when participants were exposed to 

sidewalks or curbs, and uneven surfaces.  Given that active lifestyles are generally promoted for 

older adults and other populations, studies suggest that improvements to these environments are 

vital to decrease the risk for falls (Li et al., 2006). 

hospitals and chronic care facilities.  Although not the main focus of this review, it is 

important to acknowledge that falls also frequently occur in hospitals or chronic care facilities 

(Morgan, Mathison, & Rice, 1985).  Studies have shown that 2 to 12% of patients experience at 

least one fall during hospital stays (Vlahov, Myers, & Al-Ibrahim, 1990).  A prospective 

observational study by Vassallo, Amersey, Sharma, & Allen (2000) investigated the influence of 

hospital ward design on fall characteristics of rehabilitation patients.  The findings of the study 

revealed that rehabilitation wards in which 85% of patients who were in beds in direct view of 
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the nurse’s station experienced fewer falls in comparison to rehabilitation wards in which 15% of 

patients that were in beds not in direct view of the station (Vassallo, Amersey, Sharma, & Allen, 

2000).  The majority of studies have acknowledged that falls that occur in clinical or assisted 

living settings are not necessarily due to risk factors within the facilities (i.e. bed-rails or high 

beds), but rather the current condition of the individuals who experience the falls (Jones, 

Simpson, & Pieroni, 1991; Raz & Baretich, 1987).  Individuals residing in chronic care facilities 

typically present with other risk factors (i.e. cognitive and physical impairments), which may 

increase their risk of falls (Rubenstein, Josephson, & Osterweil, 1996; Thapa et al., 1996). 

Compromised Cognitive and Emotional State 

Approximately two thirds of all cognitively and emotionally impaired older adults fall 

annually (Dijk & Meulenberg, 1993).  This represents a rate that is two to eight times greater 

than healthy older adults (Tinetti et al., 1988).  Although mental and cognitive risk factors for 

falls have received less attention than physiological risk factors, several studies have provided 

evidence for the association between cognitive and emotional impairments and falls (Kvelde et 

al., 2013; Nevitt, Cummings, Kidd, Black, 1989; Tinetti et al., 1988).  Identifying cognitive 

impairments and changes in emotional status can play an important role in identifying 

individuals who are at risk for falls.  Depression, a fear of falls, and dementia has been widely 

reported to be associated with an increased risk of falls (Allan, Ballard, Rowan, & Kenny, 2009; 

Kallin et al., 2004). 

depression, fear of falls, and dementia.  It has long been accepted that depression is 

associated with falls in the elderly (Lord et al., 2007).  Depression has been shown to affect 

executive function, attention, and processing speed (McDermott & Ebmeier, 2009).  Control of 

stability during walking requires intact cognitive function, specifically attention and executive 
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function (Hausdorff, Schweiger, Herman, Yogev-Seligmann, & Giladi, 2008).  Older adults 

require greater allocation of attention to account for changes in sensory and motor function when 

navigating through new environments or throughout a living area.  Depression can affect these 

processes and can leave individuals at greater risk for falls (Wright, Kay, Avery, Giordani, & 

Alexander, 2011).  Additionally, depression can lead to changes in motor function, which can be 

characterized by slow gait patterns, shorter stride length, and increase variability (low stability), 

which are all recognized fall risk factors (Hausdorff, Rios, & Edelberg, 2001; Hausdorff, Peng, 

Goldberger, & Stoll, 2004; Maki, 1997; Michalak et al., 2009).  Research has shown that 

depressive symptoms are especially high in those who experience recurrent falls (Iabonir, Phil, & 

Flint, 2013).  An 8-year prospective study revealed that an increase in depressive symptoms was 

positively associated with increased fall rates (Somadder, Mondal, & Kersh, 2007).  The study 

found that in depression was significantly more common in recurrent fallers than non-fallers 

(44.8% vs. 26.9%). 

fear of falls.  There are several consequences that are associated with falls.  Aside from 

the risk of injury, psychological trauma also exists, of which fear of falls is the most common 

(Miller, Speechley, & Deathe, 2001).  Despite being a consequence of falls, fear of falls is part of 

a cycle that revolves around falls.  A history of falls often times results in post-traumatic stress or 

fear of falls, which can lead to a variety of avoidance or safety behaviors (Chung, McKee, & 

Austin, 2009; Iabonir et al., 2013), which can increase falls risk.  Research has shown that fear of 

falls is strongly associated with falls (Arfken, Lach, Birge, & Miller, 1994).  In some cases, 

intense fear can be excessive and disabling, and these behaviors can result in falls due to changes 

in gait patterns (Iabonir et al., 2013).  Fear of falls is common in the elderly, especially for those 

who have experienced recurrent falls, with the majority of studies reporting a prevalence of 25-
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50% (Howland et al., 1998; Murphy, Williams, & Gill, 2002).  Many community-based 

investigations report that 48% of persons over the age of 75 years who experienced a fall in the 

previous year acknowledge a fear of falls (Tinetti & Powell, 1993).  Findings from other studies 

have concluded that persons most afraid of falls do suffer more falls (Arfken et al., 1994; Lord et 

al., 2007).  Studies have shown that anxiety or fear of falls can be persistent, with up to 80% of 

elderly participants reporting fear of falls over a three year period (Austin, Devine, Dick, Prince, 

& Bruce, 2007). 

Delbaere et al., (2010) assessed community-dwelling older adults and found that those 

who showed low physiologic falls risk but exhibited high perceived falls risk were more at likely 

to show signs of cognitive impairment or anxiety (Delbaere et al., 2010).  These findings are 

important because as previous studies have shown, there is a strong association between the fear 

of falls and risk of future falls (Friedman, Munoz, West, Ruben, & Fried, 2002).  As previously 

mentioned, fear of falls has been shown to manifest as changes to the gait pattern (Iabonir et al., 

2013).  Research has shown that cautious or fearful walkers tend to have greater kinematic 

variability, which is indicative of poor stability (Chamberlin, Fulwider, Sanders, & Medeiros, 

2005; Rochat et al., 2010).  Other studies have shown that participants who are more fearful of 

falls tend to produce inaccurate adjustments to posture when exposed to obstacles or threats in 

the environment (Delbaere et al., 2010).  Although the adoption of a cautions gait pattern may be 

suitable for some individuals, some studies suggest that there may be an optimal range of 

cautiousness that may serve as a protective mechanism against falls (Davis, Campbell, Adkin, & 

Carpenter, 2009; Nagai et al., 2011). 

dementia.  The annual incidence of falls in individuals with dementia is between 70 and 

80% (Dijk & Meulenberg, 1993; Shaw, 2007), which represents twice the incidence of healthy 
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individuals (Tinetti et al., 1988).  Similar to depression and fear of falls, studies have suggested 

that cognitive decline associated with dementia can result in serious motor dysfunction, which 

can lead to falls in elderly persons (A. Campbell et al., 1981; Clark, Lord, & Webster, 1993).  

Specifically, studies have shown that patients with senile dementia of Alzheimer’s disease tend 

to fall more frequently and suffer more severe outcomes than healthy adults (Brody, Kleban, & 

Moss, 1984; Buchner & Larson, 1987; Dijk & Meulenberg, 1993). 

One study assessed the prevalence of falls among elderly individuals and found that the 

odds of experiencing a fall were almost two to three times greater for participants with dementia 

(Finkelstein, Prabhu, & Chen, 2007).  Another examined older adults with dementia living in a 

nursing home and found that residents with dementia were almost twice as likely to fall 

compared to healthy residents (Doorn et al., 2003).  Findings from this study also revealed that 

the rate of injurious falls was higher for patients with dementia compared to healthy residents 

(1.61 vs. 0.99 injurious falls per person-year, p < 0.002) (Doorn et al., 2003).  Similar findings 

were reported by (Eriksson, Gustafson, & Lundin-Olsson, 2008; Kiely, Kiel, Burrows, & Lipsitz, 

1998; Rubenstein et al., 1994; Thapa et al., 1996). 

Dementia can lead to limited attention (Sheridan & Hausdorff, 2007), behavioral risk 

factors (Doorn et al., 2003), hypotension (Passant, Warkentin, & Gustafson, 1997), impaired 

visual-spatial perception (Buchner & Larson, 1987), and impaired gait and balance (Tanaka, 

Okuzumi, & Kobayashi, 1995), which can limit the capacity for individuals to recognize and 

avoid hazards, which can lead to falls (Rubenstein et al., 1994).  Several studies have shown that 

dementia can lead to decreased control of postural balance and increase gait variability, such as 

increased step variability and stride length variability (Gabell & Nayak, 1984; Visser, 1983).  

Findings from one study suggest that stride length variability in particular was significantly 
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affected by senile dementia (Nakamura, 1996).  Studies have also shown that senile dementia 

during the moderate stages can significantly decrease step length (shuffled gait), and result in 

bradykinesia or slower gait (Visser, 1983).  A combination of these risk factors increases the risk 

for falls in patients with dementia.  Visser (1983) suggested that interventions to target gait 

abnormalities and motor dysfunction during the advanced stages of dementia is essential to 

reduce falls in this population. 

Impaired Physical Function 

The current understanding of fall risk factors and their effects on the elderly suggests that 

individuals with physical impairments or disease leading to physical impairments are vulnerable 

to experiencing falls or recurrent falls (Sattin, 1992; Schwenk et al., 2013).  Additionally, aging 

and disease can negatively affect important mechanisms for falls prevention, such as sensation 

and balance, strength and power, flexibility, spasticity, and gait characteristics. 

sensory and balance impairments.  Balance is controlled by afferent information from 

several physiological systems, which include the somatosensory system and the visual system.  

Both of these systems are responsible for detecting or sensing physical changes the environment 

(van Deursen, 1999).  This somatosensory system is particularly important for controlling 

posture and balance, as it allows the feet to detect surface textures and changes while standing or 

walking.  Research has shown that physical impairment stemming from trauma or disease can 

result in sensory and balance deficits.  As balance is fundamentally important for preventing 

falls, balance dysfunction can lead to increased falls risk and fear of falls (Sattin, 1992), which 

can ultimately lead to a reduction in physical activity and loss of independence (Austin et al., 

2007). 
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disease impact on balance.  Findings from several studies have indicated that metabolic 

and chronic neurological diseases, as well as age-related changes can have an impact on 

peripheral sensation that can negatively affect balance and increase the risk for falls (Lamb et al., 

2003; Leonard, Farooqi, & Myers, 2004; MacGilchrist et al., 2010; Mackintosh, Hill, Dodd, 

Goldie, & Culham, 2005).  A study by Priplata et al., (2006) found that application of vibration 

noise ameliorated sensation impairments in patients with neuropathy and improved balance 

parameters.  Application of noise resulted in reductions of sway ranging from 2.9% to 53.8% 

displacement (Priplata, Patritti, Niemi, & Hughes, 2006).  These findings suggest that improved 

cutaneous sensation of the feet can improve postural control and balance to reduce the risk of 

falls. 

range of motion impairment.  Flexibility and range of motion (ROM) plays a vital role 

in preventing falls.  Older adults and individuals with diseases affecting flexibility at the ankle 

and hip are at significantly greater risk for falls (Kemoun, Thoumie, Boisson, & Guieu, 2002; 

Menz, Morris, & Lord, 2006).  Studies have shown that the risk for falls increases by 35-40% 

after 60 years of age, which is a consequence of reduced flexibility (Hornbrook & Stevens, 

1994).  A reduction in flexibility decreases the ability to clear obstacles and the lack of stretch 

reflexes decreases the ability to produce rapid adjustments to compensate for the loss of balance 

(Pyykko, Jantti, & Aalto, 1990).  Studies have revealed that fallers show significantly less ankle 

dorsiflexion (drop-foot) and hip extension than non-fallers (Barak, Wagenaar, & Holt, 2006; 

Mecagni, Smith, Roberts, & O’Sullivan, 2000).  This would suggest that it is more difficult for 

individuals to step over or clear obstacles when ankle and hip flexibility is limited.  Limited 

ankle and hip flexibility can result in shuffled walking patterns, much like that those exhibited by 

the elderly and patients with stroke or Parkinson’s disease (Weerdesteyn et al., 2008).  These gait 
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characteristics significantly increase the risk for falls among the older adults and have the 

potential to significantly impact overall quality of life (Weerdesteyn et al., 2008). 

A study by Menz et al., (2006) revealed that fallers had significantly (p < 0.05) less ankle 

flexibility than non-fallers.  This study also revealed that in addition to ankle dorsiflexion deficit, 

toe (Hallux) plantarflexion impairment was also highly prevalent in fallers compare to non-

fallers (Menz et al., 2006).  The authors suggest that the flexibility in the toes plays an important 

role to stabilize the body when the center of mass is altered during locomotion, and the impaired 

grasping reflex of the toes can contribute to a loss of stability and falls (Menz et al., 2006).  Two 

other retrospective studies also revealed that fallers had significantly reduced ankle flexibility 

than non-fallers (Gehlsen & Whaley, 1990; Nitz & Choy, 2004).  The study by Gelhsen & 

Whaley (1990) found that reduced flexibility, especially at the ankle might increase the risk of 

falls and significantly impact the performance of tasks associated with daily living.  A study by 

Mecagni et al., (2000) found significant correlations between ROM and the Performance-

Oriented Mobility Assessment (POMA).  Pearson product moment correlations ranging between 

(0.26 - 0.63) suggest that range of motion plays a vital role in balance and falls prevention 

(Mecagni et al., 2000).  A study by Kemoun et al., (2002) supported these findings and 

determined that ankle flexibility, specifically dorsiflexion during the second phase of double 

support and dorsiflexion at the beginning of swing, was significantly lower in fallers (p = 0.040 

and p = 0.020) than non-fallers (Kemoun et al., 2002). 

Older individuals often times experience a significant decrease in ankle dorsiflexion 

strength due to muscle atrophy, and may develop a foot characteristic similar to drop-foot, which 

hinders the ability to clear obstacles successfully, and increases the risk for falls (R. W. Teasell, 

Bhogal, Foley, & Speechley, 2003).  Several studies have shown the effectiveness of improving 
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weak ankle dorsiflexion and plantarflexion for prevention of falls.  More recent studies 

emphasize the importance of a multifocal intervention to improve overall function in the elderly 

and those with clinical impairments, but most agree that improvements to flexibility is key for 

falls prevention (Chan et al., 2012). 

strength, and power deficits.  Strength impairments and gait deficits are two strongly 

interrelated factors that can increase the risk for falls.  In older adults, deficits in strength can 

lead to changes in gait characteristics, such as step length, that can contribute to falls.  Some 

studies have supplemented balance training with forms of resistance training to develop muscle 

strength and muscle power to facilitate optimal gait patterns.  Numerous studies have highlighted 

the importance of developing strength and power.  Muscle strength is related to bone strength, 

which is a key mechanism for preventing fractures upon falls; whereas muscle power is more 

related to falls as it is the key mechanism responsible for producing the necessary responses to 

slips or trips (Runge, Rehfeld, & Resnicek, 2000; Runge & Hunger, 2006).  Therefore, 

developing muscle strength and power is important in fall prevention programs because not only 

does strength and power reinforce control of balance and stability, but developing these two 

properties facilitates proper compensatory movements when presented with a slip or trip, 

facilitates fall recovery, and prevents fractures upon experiencing falls. 

Buchner et al., (1997) implemented a 26-week resistance-training program in a sample of 

105 older adults and found that participants in the strength-training group had lower fall rates 

compared to those in the control group.  The study found that strength training had a protective 

effect on the risk of falls.  Individuals who were part of the control group had significantly more 

hospital visits during the follow-up period compared to the training group (p < 0.05) (Buchner et 

al., 1997).  A study by Liu-Ambrose et al., (2004) found that resistance training for strength 



 

 33 

development significantly reduced falls risk in older adult women.  The study found that fall risk 

scores were reduced by 57.3% in the strength-training group compared to 20.2% for a stretching 

only group.  Additionally, the authors observed an increase in the normalized squat loads (load 

(kg)/body mass (kg)) in the resistance training group, which were significantly associated with 

reductions in postural sway scores (p < 0.01), indicative of balance control, an essential 

mechanism for fall prevention (Liu-Ambrose et al., 2004).  Another study found similar results 

and reported that a five-month exercise program with strength training lead to beneficial effects 

in preventing falls in elderly participants.  Those involved in the strength training program 

experienced a significant decrease in the incidence of falls compared to those in the control 

group (0.0% vs. 12.1%, p < 0.05) (Iwamoto et al., 2009). 

The study conducted by Perry et al., (2007) found that overall; fallers had only 85% of 

the strength, and only 75% of the power exhibited by non-fallers (p < 0.001).  The fallers were 

weaker than the non-fallers on three primary strength measurements: isometric hamstrings 

flexion (p = 0.02), isometric dorsiflexion (p = 0.004), and isometric plantarflexion (p = 0.002) 

(Perry, Carville, Smith, Rutherford, & Newham, 2007).  These findings are consistent previous 

findings from other studies, which revealed that individuals who experienced multiple falls (>2) 

exhibited weaker quadriceps strength than those who only reported one fall or no falls (Lord & 

Ward, 1994).  Additionally, the above findings are in line with a meta-analysis conducted by 

Moreland et al., (2004).  The analysis found that participants who reported at least one fall, or 

experienced recurring falling exhibited significant lower-extremity weakness compared to non-

fallers (p < 0.05) (Moreland, Richardson, Goldsmith, & Clase, 2004). 

gait impairments.  Musculoskeletal and neurological changes associated with aging can 

also impact gait characteristics, which in turn can negatively affect balance and contribute to an 
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increase in the risk for falls.  For example, older adults might exhibit a condition known as drop 

foot, in which the foot of the weaker lower extremity drags during locomotion (Olney & 

Richards, 1996a).  This condition results in excess rotation or circumduction of the weakside hip 

to compensate for the lack of activation of the weaker lower limb.  This gait pattern can 

significantly increase the risk of tripping due to the drop foot and can also result in rapid fatigue, 

due to the energy cost associated with the compensatory hip rotation (Olney & Richards, 1996b; 

Titianova, Pitkänen, & Pääkkönen, 2003).  Similar patterns are observed in more frail older 

adults (Lu, Chen, & Chen, 2006) and studies have shown these impaired gait patterns can reduce 

obstacle clearing, which as stated previously, can increase the risk of falls.  As mentioned 

previously excess stride length variability is often present in individuals age-related gait 

impairments (Nakamura, 1996).  Studies have also shown that some elderly individuals may 

present with decrease step length (shuffled gait), which can result in bradykinesia or slower gait 

(Visser, 1983).  A combination of these risk factors increases the risk for falls, especially in 

patients with dementia. 

The findings from these studies highlight the importance of muscle strength and power in 

preventing falls.  Moreover, these studies also highlight the importance of developing flexibility 

and efficient walking kinematics.  Developing strength and power is highly desirable for the 

beneficial effects these elements can have on facilitating more efficient gait patterns and making 

the process of locomotion more automatic.  Exercise interventions for fall prevention focus on 

developing muscle strength and power to aid in the performance of more demanding task and to 

reduce the risk of falls and fall-related injuries.  Additionally, fall intervention programs should 

aim to address the physical risk factors previously discussed in this section to improve overall 

quality of life. 
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It is important to note that these risk factors could potentially be multi-correlated.  In 

some circumstances, it might be possible that improving one of these risk factors via intervention 

could lead to improvements seen in other factors.  For example, improving muscle strength and 

power of the lower limbs could potentially result in better control of the limbs, and thus lead to 

improved gait patterns, such as smooth gait and longer step length. 

Limitations Regarding Fall Risk Factors 

A major limitation associated with studies assessing the risk factors resulting in falls is 

that many findings are based on self-report, which could dramatically alter the manner in which 

investigators interpret patient findings.  Information regarding medication prescriptions might be 

inaccurate and could hinder progress in fall prevention interventions.  Inaccurate recollection of 

dosage and types of medications could potentially increase the risk of falling and serious injury.  

In a similar manner, limitations can potentially arise with regard to the literature examining 

environmental risk factors for falls.  Often time’s investigators fail to assess risk factors within 

the home and only focus on those that are common in public spaces (i.e. uneven pavement, 

cracks in the street, steps, and crowds).  Furthermore, in many studies, investigators have failed 

to consider changes in lifestyle exhibited by each participant.  Dramatic lifestyle changes may 

result in exposure to new environments such as parks or high-traffic areas, which may increase 

the risk of falls.  With regard to impaired physical function, one limitation that presents itself, is 

that it is not well-understood how individuals with mild impairments are affected.  The majority 

of research looking at impaired physical function as a risk factor for falling has examined 

individuals in a hospital or clinical setting with more severe impairments. 
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Direct and Indirect Consequences of Falling 

The adverse effects associated with falls are not limited to direct injury stemming from 

the fall itself, but also extend to economic and family burdens, which can also contribute to the 

diminished quality of life.  Both falls and their subsequent additional burdens can be grouped 

under unique classifications often referred to as direct and indirect consequences (Heinrich, 

Rapp, Rissmann, Becker, & König, 2010). 

Direct Consequences 

Falls can lengthen hospital stays, increase medical expenses, cause injury and discomfort 

and cause skepticism towards treatment and healthcare providers (Byers, Arrington, & Finstuen, 

1990).  There is no doubting that the monetary expenses, which will be discussed below can 

result in excess family burden and can result in excess stress, but the direct consequences 

stemming from the fall itself can profoundly affect activity, independence, and lifestyle 

(Alexander et al., 1992).  Direct consequences refer to physical or mental trauma stemming from 

the actual fall incident, and may include broken bones, contusions, head trauma, and even 

internal organ damage or death. 

Among people aged 65 years and older, falls are considered the leading cause of fatal and 

non-fatal injuries (CDC, 2016).  If recalled from previous sections, older adults have a greater 

risk of experiencing falls, mainly due to performance changes associated with aging (Alexander 

et al., 1992).  Falls in this population can result in significant injuries, such as head contusions or 

hip fractures that can adversely affect lifestyle and quality of life.  One study found that in 180 

reported falls, 49% resulted in contusions and 41% resulted in soft tissue abrasions (Teasell, 

McRae, Foley, & Bhardwaj, 2002). 
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Recent studies have continued to document the adverse effects associated with falling in 

both healthy older adults (Hoffman, Hays, Shapiro, Wallace, & Ettner, 2017; P. et al., 2015; 

Roubik et al., 2017; Wallander, Axelsson, Nilsson, Lundh, & Lorentzon, 2017).  In this case, 

falls can lead to significant injuries, which can result in loss of independence, depression, and 

overall poor quality of life.  It is important to note however, that the injuries associated with 

falling, in some cases, may only be one aspect that can affect quality of life.  The indirect 

consequences can also take a significant toll on one’s rehabilitation and can potentially hinder 

any progress with recovery.  As briefly stated above, secondary complications associated with 

falling, such as medical costs, family burden, and excess stress can severely impact lifestyle and 

can transform into a pattern (i.e. vicious cycle), which can further increase the risk for falling. 

Indirect Consequences 

Indirect consequences of falls refer to circumstances that may negatively impact quality 

of life after the fall incident has taken place.  Secondary complications, such as medical costs, 

severe fear of falling, and even depression may arise and can severely impact overall quality of 

life by resulting in decreased independence (Heinrich et al., 2010).  Moreover, excess family 

burden could potentially affect caretaker dynamics, which could lead to excess stress in the 

household, resulting in disputes and unstable living environments. 

One of the most common indirect consequences stemming from falls is economic burden.  

The fees associated with rehabilitation alone are extremely costly and can become an 

overwhelming source of stress when combined with secondary trauma associated with falls and 

injuries stemming from falls.  Alarmingly, elderly patients who are discharged from hospitals 

after falls are more likely to have recurrent falls while at home, resulting in secondary visits to 

the hospital (Forster & Young, 1995), and therefore increases medical expenses.  Results from 
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the study by Davenport et al., (2009) found that up to 63% of falls reported in the study occurred 

in the initial two-weeks following hospital discharge, some of which required secondary medical 

attention (R. D. Davenport et al., 2009).  Several other studies have reported similar findings, 

which indicate that recurrent falls in older adults after discharge remains a serious issue that can 

lead to severe economic burden (Berg, Alessio, Mills, & Tong, 1997; Buatois et al., 2010; 

Moylan & Binder, 2007; Shumway-Cook, Brauer, & Woollacott, 2000). 

Studies have identified that medical costs associated with fall-related trauma can be 

financially crippling and can often severely impact quality of life and result in increased levels of 

stress and family burden.  Falls can lead to extended hospital visits and the additional sessions 

that might be needed for therapy, and other procedures, such as x-rays can be extremely costly 

even with insurance (Gelber, Josefczyk, Herrman, Good, & Verhulst, 1995).  Studies showed 

that individual hospital visits associated with falls averaged between $17,000 and $23,000 in 

2004 (Roudsari, Ebel, Corso, Molinari, & Koepsell, 2005).  One study conducted by (Alexander 

et al., 1992) found that of the almost $1billion in hospital charges in Washington State, for 

patients >65 years, roughly 5% ($53 million) were attributed to hospitalization for fall-related 

trauma.  With regards to aggregate spending, a more recent study found that up to $6.2billion 

were spent nationally on fall-related medical conditions (Druss, Marcus, Olfson, & Pincus, 

2002).  This amount equates to a rough annual average of $2,000 per individual (Cohen & 

Krauss, 2003).  According to a more recent study, annual costs for non-fatal fall injury treatment 

is $31.1billion, with the average individual cost of treatment significantly greater at roughly 

$10,000.00 (E. R. Burns, Stevens, & Lee, 2016). 
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depression and fear of falling. 

Falling among older adults can result in financial burden, but repeated falling can also 

lead to depression, fear of falling, and ultimately a loss of independence (Allan et al., 2009).  As 

discussed in the section on risk factors for falls, it is well-established that altered cognition and 

mental state can significantly impact physical performance (Hausdorff et al., 2004; Michalak et 

al., 2009), which can lead to an increased risk for falling.  As the meta-analysis conducted by 

Deandrea and colleagues (2010) showed, there is a significant association between depression 

and falls.  Moreover, other studies also provided evidence for a strong relationship between fear 

of falling and recurrent falls.  Repeated fall episodes can result in post-traumatic, which alter 

performance and avoidance strategies (Chung et al., 2009; Iabonir et al., 2013), which can 

increase falls risk (Chung et al., 2009; Iabonir et al., 2013).  Identifying this vicious cycle early 

after discharge is an integral component of fall prevention, especially amongst the elderly and 

individuals with stroke in the chronic stage of recovery. 

mortality (rate of death in the population). 

While injuries, medical expenses, and behavior changes are commonly considered as the 

burdens associated with falls, many tend to overlook the fact that death is a very real possibility 

that may occur as a result of falling.  After all, falls are currently classified as the leading cause 

of injury and death among the elderly (CDC, 2018).  Death typically occurs in vulnerable 

populations from secondary complications stemming from the fall injuries.  Unlike younger 

patients who are often healthier, elderly individuals or individuals with compromised 

physiological systems do not have the ability to adapt to trauma as effectively and are more 

likely to succumb to their injuries, especially when those injuries are severe (Johnson, Margulies, 

Kearney, Hiatt, & Shabot, 1994; Samayoa et al., 2018).  One Canadian report found that the 
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number individuals >65 years of age who died as a direct result of a fall increased significantly 

(p < 0.05) from 3,209 between 1997-1999 to 4,110 during 2000-2002 (Stinchcombe, Kuran, & 

Powell, 2014).  In 2016, 29,668 United States residents age >65 years died as a result of a fall; a 

significant increase from 18,334 deaths, which occurred in 2007 (Burns & Kakara, 2018).  

Overall, the rate of fall-related deaths in older adults increased 31% during this time period 

(Burns and Kakara, 2018). 

One major factor that affects these populations is their limited physical ability; if a person 

has issues with recovering from a fall and is unable to get up after a fall, then it is likely that they 

will remain on the floor for a prolonged period of time, which may lead to more severe 

complications, such as hypothermia or dehydration (Simpson & Mandelstam, 1995).  It is these 

secondary complications that can ultimately result in death.  Batchelor and colleagues (2012) 

stated that between 30 and 40% of older adults are not able to stand back up after a fall, which 

can increase their risk of death by exposure or ‘long-lie’ (Batchelor, Mackintosh, Said, & Hill, 

2012; Simpson & Mandelstam, 1995).  In order to prevent these ‘long-lie’ episodes or better yet, 

in order to prevent the falls altogether, mechanisms and preventive strategies need to be 

implemented to assist and prepare vulnerable individuals.  Fall prevention programs or 

interventions to target specific risk factors for falling, such as muscle weakness or balance 

deficits have been developed and the following section will discuss these in greater detail. 
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Interventions for Falls Prevention 

Historically, fall intervention programs have included a battery of modalities to address 

the fall risk factors previously mentioned.  The majority of studies have implemented aerobic or 

resistance-training programs combined with exercises designed to address balance deficits (e.g. 

static squats).  Although the majority of these interventions observed improvements in balance 

and other fall risk factors, many of the fall intervention programs have only included healthy 

younger populations.  Therefore, many of the traditional forms for fall prevention may not be 

accessible to more frail individuals, such as older adults.  Recently, whole-body vibration 

(WBV) training has been become popular for use as an effective and cost-effective method to 

improve risk factors for falls in the elderly, as well as persons with neurological disorders.  

However, methodological variance and design flaws in the current literature have hindered the 

development of standard protocols, which may be deemed more effective. 

Whole-Body Vibration 

WBV training is a neuromuscular technique that has historically been used on athletes to 

enhance performance measures, such as strength, and has also been applied in the prevention and 

therapy of osteoporosis (Issurin, Liebermann, & Tenenbaum, 1994; Kerschan-Schindl et al., 

2001; Rittweger, Beller, & Felsenberg, 2000).  However, in recent years, WBV has emerged as 

an effective means of to battle age-related performance deficits.  During the past decade, 

especially, the use of WBV has been used frequently in research and clinical settings as a means 

to improve risk factors commonly associated with falls. 

As part of a WBV training regimen, participants sit or stand on an oscillating platform 

that delivers vibratory mechanical stimulation at frequencies ranging from 20-50 Hz (Delecluse, 

Roelants, & Verschueren, 2003) while the participant performs static or dynamic exercises (i.e. 
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double or single legged squats).  The relatively low frequency mechanical stimulation provided 

by the vibrating platform is delivered to the body and results in the stimulation of sensory 

receptors in the muscles (i.e. muscle spindles) (Delecluse et al., 2003).  The stimulation of the 

muscle spindles results in the activation of alpha-motor neurons in the CNS to elicit tonic or 

sustained muscle contractions in the lower limbs (Delecluse et al., 2003).  These sustained 

muscle contractions are an inherent reflex in healthy adults that facilitates the maintenance of 

posture, which is important for independent locomotion and fall prevention. 

Similar to other widely-implemented fall prevention programs based on techniques like 

functional electrical stimulation (FES) to promote muscle and limb function, WBV can directly 

stimulate and strengthen the muscles responsible for postural control.  Improvement of these 

components over time can decrease the risk for falls and can be applied to task specific activities, 

such as treadmill walking or even overground walking, thereby increasing independence for 

activities of daily living.  In addition to receiving direct vibratory stimulation of the muscles, 

participants can also perform static or dynamic exercises to directly promote development of 

strength (Tankisheva et al., 2014), cardiovascular fitness, and coordination (Choi, Kim, Cho, & 

Lee, 2016), which are key elements that can aid in fall prevention. 

Studies involving individuals with older adults have focused on the specific effects of 

WBV on balance and postural control, mobility and motor function, muscle strength and 

architecture, and spasticity, and although not directly targeted towards gait recovery or fall 

prevention per se, findings from several studies have reported benefits.  Findings have indicated 

that repeated exposure to WBV can potentially promote brain plasticity, strength, balance and 

can serve as a platform to regain independent control of balance and gait, thus reducing the risk 

of falls (Chan et al., 2012; Liao, Ng, Jones, Chung, & Pang 2016; Liao, Lam, Pang, Jones, & Ng, 
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2014).  Studies have reported improvements in weight shifting and balance (van Nes, Geurts, 

Hendricks, & Duysens, 2004), walking performance (Guo et al., 2015), and strength (Tankisheva 

et al., 2014) associated with WBV training programs among older adults. 

wbv, postural control, and balance.  A study by (Verschueren et al., 2004) was among 

the first to examine the effects of WBV on postural control in older adults.  Participants in the 

study underwent vertical WBV training for 24-weeks at moderated vibration intensities (35-40 

Hz) and were then assessed for balance and maintenance of posture via posturography 

assessment.  The study findings revealed that postural sway in the anterior-posterior (A/P) 

direction, along with the peak-to-peak amplitude of the sway were significantly (p< 0.05) 

deceased for the WBV training group post-training.  These changes were not observed in the 

control group.  Another study (Cheung et al., 2007) assessed balance by exploring the limits of 

stability before and after 3-months of side-alternating WBV (20 Hz) and found that when 

compared to two control groups, participants in the WBV group displayed significant 

improvements in movement velocity (p< 0.01), maximum distance of sway excursion (p< 0.01), 

and directional control (p< 0.05), all indicative of enhance postural control.  Similar findings 

have been reported throughout the literature (Bogaerts et al., 2011; Ko et al., 2017; Mikhael, Orr, 

Amsen, Greene, & Fiatarone Singh, 2010; Tseng et al., 2016) and have provided substantial 

evidence that WBV might be an effective training modality to improve postural control, which is 

key factor in the prevention of falls. 

While some studies have explored the effects of WBV on body balance in older adults by 

assessing static and dynamic balance via posturography, a large proportion of studies have 

adopted a different approach and have used clinical tools, such as the Berg Balance Scale (BBS), 

Romberg Test, or the Tinetti Balance Assessment Tool to assess WBV effects on balance.  One 
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study assessed the effects of a 6-week WBV (35-40 Hz) training program and found that 

compared a control group who only performed static exercises, participants in the WBV groups 

exhibited significant (p= 0.002) improvements in performance for the Tinetti Balance 

Assessment Tool (Bautmans, Hees, Lemper, & Mets, 2005).  In fact, the study findings showed 

that participants in the control group experienced significant (p= 0.004) performance deficits 

after the 6-week protocol.  Another study by (Bruyere et al., 2005) discovered similar results and 

found that after 6-weeks of WBV training, participants in the training group improved  

significantly (p< 0.001) compared to the control group who only experienced traditional physical 

therapy.  Specifically, members of the WBV group improved their performance on the Tinetti 

Balance Assessment Tool by 2.4 + 2.3 points, while members of the control group actually 

showed a decrease (p< 0.001) in performance.  In general, the literature is consistent in findings, 

much like findings on posturography reported above, with regard to the effects of WBV on 

postural control and balance as measured by clinical tools.  The majority have identified 

significant benefits in postural control and balance associated with WBV (Bissonnette, Weir, 

Leigh, & Kenno, 2010; Furness & Maschette, 2009; Kim. et al., 2014; Kim et al., 2014; Simão et 

al., 2012). 

In spite of the findings reported above, there have been studies which did not yield any 

performance benefits associated with WBV.  The study by (Avelar et al., 2011) examined the 

effects of a 12-week WBV protocol and found no significant differences (p> 0.05) in the WBV 

group with regard to performance on the BBS.  In fact, only the exercise control groups 

experienced any benefits.  The authors of this study attributed the lack of significant 

improvements to the protocol, stating that it may have been insufficient to yield any 

physiological benefits, and thus no performance benefits.  Similar results were reported in the 
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study by (Nils Stolzenberg, Belavý, Rawer, & Felsenberg, 2013) who reported no significant 

findings between groups in balance and postural control after 9-months of WBV training.  These 

findings were attributed to the fact that participants in the control group displayed poorer balance 

at the start of the study relative to the WBV group and were therefore more likely to experience 

performance benefits regardless of the intervention.  Finally, the studies by (Buckinx et al., 2014; 

Sitjà-Rabert et al., 2012) also failed to reported significant improvements in balance and postural 

control among older adults.  Buckinx and colleagues attributed the lack of findings to extra 

cushioning that was placed between the feet of the user and the vibration platform.  This 

component decreased the intensity of the protocol and may have resulted in insufficient dosage.  

The latter attributed that lack of statistically significant performance findings to insufficient 

power in the sample of their study (Sitjà-Rabert et al., 2012a). 

wbv, muscle strength, and muscle power.  In addition to examining the effects of WBV 

on balance and postural control, several studies have also examined the potential benefits of 

WBV on muscle strength and power, which can be significant risk factors for falls.  As 

previously discussed, muscle strength is related to bone strength, which is a key mechanism for 

preventing fractures upon falls; whereas muscle power is strongly related to falls, as it is the key 

mechanism responsible for producing the necessary responses to slips or trips (Runge, Rehfeld, 

& Resnicek, 2000; Runge & Hunger, 2006).  WBV has demonstrated that it can yield 

improvements in muscle strength, muscle power, and even muscle architecture, which can be key 

to minimizing the risk of falls and injuries stemming from these falls in older adults. 

A study by (Russo et al., 2003) examined the effects of six-months of WBV (12-28 Hz) 

on muscle power in post-menopausal women.  The study findings revealed that women who 

received WBV during the 6-months significantly (p< 0.02) improved muscle power by 
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approximately 5% while performing a vertical jump (pre: 178.9 + 9.6W to post: 187.3 + 9.5W), 

while women who did not receive WBV actually decreased slightly from pre-testing to post-

testing with regards to muscle power.  Despite improvements seen in the ability to generate 

power, participants in neither group showed significant improvements in force development.  

The study by (Hawkey, Griffiths, Babraj, & Cobley, 2011) examined the effects of a 5-week 

WBV (30-45 Hz) training program on counter movement vertical jump performance in middle-

age adults and found similar results.  Compared to a control group who underwent no vibration, 

older adults in the study training group significantly (p< 0.05) improved in VCMJ performance 

after the intervention (pre vs. post: 22.3 + 4.3cm vs. 24.9 + 3.3cm and 24.2 + 4.8 vs. 24.1 + 

4.0cm).  A final study by (von Stengel, Kemmler, Engelke, & Kalender, 2011) examined 

performance of the VCMJ and corroborated the findings above.  After completion of an 18-

month WBV (25-35 Hz) training program, participants in the experimental group exhibited 

significant improvements in the vertical jump compared to the control group.  Specifically, 

participants displayed a significant (p< 0.05) increase of (1.7 + 2.6W/kg) during the VCMJ, 

compared to virtually no difference in the control group (0.4 + 2.0W/kg). 

While some studies have found improvements in muscle power during CMJ performance 

associated with WBV training, other have found improvements in muscle power by examining 

performance on the chair rise test.  The study by (Runge et al., 2000) was among the first to 

examine the effects of WBV (27 Hz) on muscle power in older adults by using the chair rise test.  

In this study, authors examined the effects of two months of WBV on leg power strength as 

quantified by performance on the chair rise test.  The chair rise test requires that participants rise 

five times as quickly as possible without upper extremity assistance.  The study findings revealed 

that participants in the training group improved significantly in the chair rise time by about 36% 
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(i.e. faster times), while no difference was observed in the control group.  Another study by 

(Yang, King, Dillon, & Su, 2015) implemented the five repetition chair rise test to assess the 

effects of the effects of eight-weeks of WBV (20 Hz) on muscle power and also found that 

performance was significantly improved after the intervention.  From pre-training to post-

training participants in the study experienced improved times in the chair rise test (10.36 + 2.62 

vs. 13.17 + 3.57s, p< 0.001). 

While the studies described above examined the effects of WBV on power development 

of the lower-extremities, several others have examined the therapeutic effects of WBV lower leg 

strength.  As previously mentioned, muscle power gives one the ability to generate compensatory 

steps needed to resist falling; however, muscle strength allows one to maintain the support of the 

body while performing the compensatory step.  Therefore, muscle strength is also an important 

component of that must be addressed for falls prevention.  Similar to the studies by Runge et al., 

2000 and Feng et al., 2015, several studies have utilized the chair rise test to assess the effects of 

WBV on muscle strength.  However, instead of using the five-repetition chair rise test, the 

following studies used the 30-second chair rise test, which requires one to rise as many times as 

possible in 30 seconds. 

The study by (Bissonnette et al., 2010) evaluated the effects of eight-weeks of WBV on 

performance in older adults and found that participants involved in the WBV protocol 

significantly improved the number of chair rise repetitions during the 30-second period.  After 

the eight-week intervention, there was an average increase in the number of repetitions of 

61.91% (10.37 + 3.34 vs. 16.79 + 4.22, p< 0.05).  Similar results were also observed in a study 

conducted by (Marín et al., 2011).  Not only did participants in the study experience significant 

p< 0.05 improvements in the 30-second chair rise test, but participants actually showed signs of 
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declined performance after a three-week detraining period (p< 0.05).  These improvements with 

regards to leg strength as quantified by the 30-second chair rise tests have been reported 

throughout the literature (Santin-Medeiros, Santos-Lozano, Cristi-Montero, & Garatachea 

Vallejo, 2017; L. Zhang et al., 2014; Alvarez-Barbosa et al., 2014) and indicated that WBV 

might be an effective method to improve muscle strength and specifically chair-rise 

performance, which can be a good indicator of falls risk in older adults. 

The majority of studies have utilized isokinetic dynamometers to examine the effects of 

WBV in muscle strength in older adults, specifically knee flexor and extensor strength.  A study 

by (Roelants, Delecluse, & Verschueren, 2004) examined the effects of 24-weeks of WBV (35-

40 Hz) on performance outcomes in post-menopausal women.  Specifically, the authors aimed to 

identify the effects of WBV on isometric and dynamic knee strength.  The findings revealed that 

members of the WBV group showed significant improvements (12.4% + 2.1%) in dynamic knee 

extensor strength after 12-weeks of training compared to the control group.  Similar to the results 

presented by (Russo et al., 2003), this study also found that participants in the control group 

experienced decreases in extensor strength during the course of the study (-4.3 + 1.6%, p< 0.05).  

The decrease in muscle strength observed in both control groups described above was likely 

attribute to age-related changes or changes associated with post-menopausal symptoms. 

Several other studies have reported similar findings and all support that WBV training 

can be a feasible and effective method to improve strength among older adults.  The studies by 

(Verschueren et al., 2004) and (Bautmans, Hees, et al., 2005) both examined the effects of 

moderate intensity WBV (35-40 Hz) and found that isometric knee extensor strength improved 

significantly in the training group.  The former identified a between-group difference in 

isometric strength (p< 0.001), while the study by Bautmans and colleagues (2005) did not 
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identify and between-group difference with respect to muscle strength.  The study by (Bogaerts 

et al., 2011) assessed isometric strength and found that after a 12-month WBV (35-40 Hz) 

program, participants showed significant improvements (9.8%, p= 0.005) in isometric strength 

compared to the control group who showed no change at all.  Several other studies have reported 

similar results, which show that maximum isometric and dynamic knee extension and flexion 

show significant (p< 0.05) improvements after participation in a structured WBV training 

program (Cristi, Collado, Márquez, Garatachea, & Cuevas, 2014; Ko et al., 2017; Leung et al., 

2014; Ochi et al., 2011; Perchthaler, Grau, & Hein, 2015; Tseng et al., 2016; Verschueren et al., 

2011; L. Zhang et al., 2014).  These performance gains are likely due to the fact that frail elderly 

adults are highly trainable and are physiologically receptive to training, specifically balance and 

training target to weight-shifting (Bautmans, Hees, et al., 2005).  Even short bouts of WBV can 

potentially lead to acute neurological changes or adaptations that could lead to improved strength 

and power development that are essential in preventing falls. 

Overall, the findings from the studies discussed above provide some evidence, which 

indicates that WBV can be an effective training modality to improve power development and 

strength of the lower extremities.  These improvements are important in producing compensatory 

movements in response to slips or trips (Levinger et al., 2018).  Failure to generate sufficient 

power in response to these perturbations in the base of support can result in delayed slip 

responses or complete absence of the compensatory step or steps needed to resist falling 

altogether.  For this reason, effective WBV training regimens should aim to target these 

important falls risk factors. 

wbv and gait function.  As stated previously, impairment in gait is one of the primary 

factors that increases the risk for falls among older adults.  Evidence in the literature has 
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suggested that WBV can be a useful intervention to improve mobility in older adults.  Studies 

show that WBV has the potential to improve balance and postural control, as well as power 

development and muscle strength.  As a result, individuals who undergo these physiological 

changes may also experience significant improvements in locomotion and mobility (i.e. weight 

shifting, turning, obstacle avoidance).  Improved mobility, especially during transfer tasks (i.e. 

sit to stand), is important as it allows older adults to successfully navigate through the 

environment and perform practical activities of everyday living.  A number of studies have 

assessed the effects WBV on functional mobility in older adults and have used various 

assessment tools to identify improvements.  While varying in their methods, the majority of 

studies reported functional improvements associated with WBV. 

For example, the study by (Rees, Murphy, & Watsford, 2007) assessed the effects of 

WBV (26 Hz) in older adults while performing stair climbing tests, a task that represents one of 

the common activities performed by the elderly, which results in injurious falls.  The study found 

that after partaking in a regiment of WBV, older adult participants significantly improved 

performance during the stair climbing tasks.  Rees and colleagues (2007) found that the time to 

complete the stair climb (e.g. 2 complete ascents) task improved from the pre-training to the 

post-training evaluation.  Despite these improvements, the findings identified that there were no 

significant between group differences between the WBV group and the standard exercise group.  

Although lacking between group differences, this study still provided some evidence for the 

potential functional benefits to be gained by WBV. 

While the study discussed above described a task-specific assessment to examine 

performance, several others have implemented more practical tools to assess functional 

performance in older adults.  The studies by (Cristi et al., 2014; Mikhael et al., 2010; Simão et 
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al., 2012) assessed the effects of WBV on six-minute walk performance in older adults.  The test 

requires that the participant walk the greatest total distance in the six-minute window and 

provides a good indication of functional performance (Mikhael et al., 2010), walking function 

(Simão et al., 2012), and endurance (Cristi et al., 2014).  The study by (Mikhael, et al., 2010) 

investigated the effects of 13-weeks WBV (12 Hz) on functional performance that participants 

involved in WBV training did not exhibit any significant (p>0.05) improvements within-group 

or between groups in performance during the six-minute walking test.  Similarly, Cristi et al., 

2014 also reported that no significant findings were discovered after nine-week WBV (30-45 Hz) 

program.  In both cases, it is likely that the pilot nature of the studies (i.e. small sample) and type 

II errors resulted in a lack of significant findings (Mikhael et al., 2010). 

While the study by Mikhael and colleagues (2010) did not yield and significant findings 

with respect to the 6-minute walking test, the study by Simao et al., (2012) did in fact see 

improvements in this test associated with WBV training.  The study by Simao and colleagues 

(2012) investigated the effects of a 12-week WBV (30-40 Hz) and found that after the training 

protocol was completed, participants in the WBV group walked significantly further (p< 0.05) 

during the 6-minute walking test compared to the control group.  Another study showed that after 

an 8-week WBV (27 Hz) program, participants in the training group were able to significantly 

improve on the 2-minute step test (78.9 + 22.3steps vs. 98.5 + 22.4steps) (Dudoniene et al., 

2013).  No differences were observed between groups however.  While slightly different from 

the 6-minute walking test, the test described in this study provides a good measure of aerobic 

endurance and thus, overall functional ability. 

The studies described above utilized longer (endurance-based) assessments tools to 

identify the impact of WBV on overall performance.  While the findings from these studies can 
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be useful in assessing overall functional benefits, they fail to assess certain aspects of 

performance.  Several studies have utilized tests, such as the five and ten-meter walk, and the 

Timed-Up-and-Go (TUG) Test to evaluate agility and walking speed, which can provide more 

insight into the benefits associated with WBV.  While these tests typically provide an index of 

muscle power (Kawanabe et al., 2007), they can also provide valuable information with regards 

to agility, body balance, and posture.  Overall improvements in these tests may indicate that 

WBV may be effective in improving locomotor risk factors for falling. 

A total of five studies have examined the effects of WBV in older adults on 10-meter 

walking performance, and all have shown that WBV significantly improves performance (i.e. 

increase walking speed and decreased completion times).  After a two-month WBV program (12-

20 Hz) Kawanabe et al., (2007) found that ten-meter walking time was significantly (p< 0.05) 

improved (decreased 14.9%) in the WBV training group compared to the control group.  Similar 

findings were reported in the study by (Rees et al., 2007), which showed that participants 

involved in WBV training (26 Hz) significantly decreased ten-meter walking time (4.40 + 0.40s 

vs. 4.45 + 0.59s) and five-meter walking time (2.30 + 0.15s vs. 2.38 + 0.23s) compared to a 

control group.  Significant 10-meter walking improvements (i.e. increased walking speed and 

faster completion times) after WBV interventions were also reported by (Bogaerts et al., 2011; 

Ochi et al., 2011; Simão et al., 2012). 

Historically, the TUG test has been implemented to provide an index of agility and 

functional mobility in older adults (Podsiadlo & Richardson, 1991).  During the test, the 

participant is observed and timed as they rise from a chair, walk a distance of three meters, turn 

and walk back to return to the seated position (Podsiadlo & Richardson, 1991).  A large body of 

literature reports that WBV may significantly improve performance on the TUG test, indicative 
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of better agility and thus, decreased falls risk.  A meta-analysis conducted by (Orr, 2015) 

reported on 11 studies in which the TUG test was used to assess functional mobility in older 

adults.  The analysis showed that in seven of the studies, participants involved in WBV training 

experienced improvements in performance of the TUG test.  An analysis of 12 tests revealed that 

WBV training resulting in significant improvements in TUG test results compared to participants 

in a control group.  While this meta-analysis identified the benefits associated with WBV in 

studies conducted up to 2015, to date, a total of 23 scientific articles have reported on the 

benefits of WBV in older adults on TUG performance (Radlinger et al., 2015; Santin-Medeiros, 

Rey-Lopex, Santos-Lozano, Cristi-Montero, & Garatachea Vallejo, 2015; Sucuoglu, Tuzun, 

Akbaba, Uludag, & Gokpinar, 2015; Yang et al., 2015). 

This section has described many of the functional gait and performance benefits 

associated with WBV training.  However, the studies described above have used assessment 

tools that fail to provide insight into the body mechanics that occur during walking that are 

essential to identify falls risk (i.e. dysfunctional gait kinematics).  To date, only four studies have 

assessed the effects of WBV on gait kinematics in older adults directly. 

A study conducted by (Kawanabe et al., 2007) assessed the step length and maximum 

standing time in older after a two-month WBV program.  The study revealed that participants 

involved in the WBV training program exhibited significantly improved walking kinematics 

compared to the control group, as made evident by increase step length and increase single-leg 

support.  A second study by (Pollock, Martin, & Newham, 2012) also found that participants 

involved in the training program exhibited significant increases (p=0.002) in stride-length during 

a walking task.  This increased stride length is indicative of a more stable and confident walking 

pattern, which is essential in reducing the risk of falls among the elderly, and has also been 
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reported by (Ochi et al., 2011) .  The overall performance improvements associated with WBV 

(i.e. balance and postural control, muscle power and strength, agility, and endurance) ultimately 

result in more stability during walking and potentially less falls.  A final study by (Beaudart et 

al., 2013) examined the effects of WBV on stride length and stride symmetry in older adults 

during walking, but ultimately did not observe any difference within or between groups with 

regards to body kinematics. 

Once again, the findings from the studies discussed above provide some evidence, which 

indicates that WBV can be an effective training modality to improve overall functional 

performance and physiological performance among older adults.  Collectively, these 

performance improvements are important in producing compensatory movements, which are 

necessary to resist falls (Levinger et al., 2018).  Although methodological differences exist in the 

literature, ultimately the findings provide support for the feasibility and efficacy of WBV 

training as a tool to improve quality of life in the elderly. 

wbv and fall prevention.  While the majority of studies described above primarily 

examined the effects of WBV on risk factors for falling (e.g. muscle strength and power, 

balance, and gait function), only five studies have assessed the effects of WBV on the rate of 

actual falls, falls incidence, or fear of falling, and only one has examined responses to simulated 

falls (Ochi et al., 2011).  The fact that other studies have assessed whether or not vibration 

training can be beneficial for fall prevention in older adults is significant, however, failure to 

directly assess if WBV can prevent falls may result in speculation to if in fact WBV is actually 

beneficial for accident prevention in older adults. 

The studies by (von Stengel et al., 2012) and (Buckinx et al., 2013) examined the effects 

of WBV training on the falls frequency among older adults.  One study found that after 18-
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months of WBV, participants exhibited significantly lower falls frequency compared to a control 

group (0.7 falls/person vs. 1.5 fall/person) (von Stengel et al., 2012).  Although not significant, 

the findings in the study by (Buckinx et al., 2013) showed a trend to decreased falls frequency 

amongst participants who took part in WBV training.  A study by (Leung et al., 2014) examined 

the effects of WBV (35 Hz) on fall incidence and recurrent falls among older adults.  The 

findings of the study revealed that participants who were involved in the training protocol 

exhibited a significantly lower (46% lower) incidence rate of falls compared to members of the 

control group (p=0.001).  Moreover, participants in the training group also reported fewer 

recurrent falls compared to the control group.  Approximately 2.1% of participants reported 

recurrent falls in the training group, compared to 6.4% of participants reporting in the control 

group. 

(Shim et al., 2014) examined the effects of WBV on fear of falling among older adults.  

The Falls Efficacy Scale (FES) was used to quantify fear of falling and it was found that the FES 

scores improved significantly (decreased) after 6-weeks of WBV training (baseline 23.00 ± 

19.16 vs. follow-up 11.18 ± 10.41).  Another study (Yang et al., 2015a) also examined fear of 

falling among older adults after 8-weeks of WBV and found similar findings that revealed an 

improvement in FES scores from baseline to follow-up (12.20 + 2.54 vs. 10.87 + 1.64, p< 0.05).  

The findings from these studies are important because studies have shown that FES scores are 

closely related to control of balance and gait function (Liu-Ambrose et al., 2006). 

Only one study has investigated the effects of WBV on actual fall responses among older 

adults.  This study examined responses to simulated forward slips before and after 12-weeks of 

WBV training and found that participants in the training group displayed significant 

improvements in step performance during recovery after the slip compared to the control group.  



 

 56 

Training participants had a longer step length and increased step velocity during the recovery 

phase.  These findings indicate that these participants were able to more effectively produce the 

compensatory movements associated with fall-resistance.  Although this is the only study to 

examine these effects among older adults, these findings have been reported in the literature 

among other populations (Yang, Munoz, Han, & Yang, 2017).  Despite the improvements 

discussed in this section, studies investigating the effects of WBV training on risk factors for 

falls and on fall prevention are not without their limitations.  
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Limitations with WBV Literature 

Although the majority of the studies described above have observed functional benefits 

associated with WBV, other studies have reported no benefits associated with WBV training.  

The disconnect between studies has been attributed mainly to differences in methodology.  While 

some studies have kept the frequency of vibration constant, others have varied the vibration 

intensity within the same study.  Moreover, some studies have utilized vibration machines, which 

provided vertical rather that horizontal stimulation, which directly impacts the postural responses 

produced by the participants.  Finally, some studies have introduced visual conditions as postural 

feedback during training sessions.  These confounders and lack of standardized protocols have 

made it difficult to assess the effectiveness of WBV and have also made it difficult to compare 

findings between different studies.  One important item to note, is that only four of the studies 

described in this section have examined if the effects of WBV can be retained over prolonged 

periods, and in these studies vibration frequency and type differed substantially.  In some cases, 

vertical vibrations were implemented and in others side-alternating machines were used.  In 

addition, the vibration frequencies ranged from 15-40 Hz.  Therefore, it is uncertain if there is 

any sort of true retention effect associated with WBV training benefits. 
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CHAPTER 3 

Methodology 

Experimental Design and Sampling 

This exploratory study used a randomized controlled design.  Participants in this study 

were healthy older adults between the ages of 60 and 85 years.  Participants were recruited 

throughout the Greater El Paso Region and through our contacts with different institutes and 

hospitals in the city of El Paso.  Study participants were randomly and evenly assigned into one 

of two groups (vibration-WBV or placebo-CON) using a computer-generated random sequence.  

Participants in the WBV group underwent a six-week vibration training protocol, while 

individuals in the CON group received the six-week placebo training protocol (Fig. 1a).  

Participants in each group attended a total of 18 sessions (three sessions per week for six weeks) 

throughout the six-week training period and were assessed on three occasions: pre-training, post-

training, and two-month follow-up (Fig. 1a).  An a priori sample estimate of 32 participants was 

calculated in G-Power 3.1 using historical findings based on step-time data from (Ochi et al., 

2011), with a critical alpha-level set at 0.05, a large effect size (d= 1.03), and power of 0.80. 
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Fig. 2. Schematics of (a) the whole-body vibration timeline and protocol breakdown and (b) 
participant set-up on the side-alternation vibration platform.  Vibrations were delivered 
intermittently at a frequency of 20 Hz and a vibration amplitude of 1.3mm. 
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Participants 

Recruiting efforts were aimed at healthy older individuals living in the Greater El Paso 

Region.  A total of 17 healthy older adults were recruited for the study.  To exclude any effects 

resulting from confounding factors, such as health status, the inclusion criteria for this study 

included the following: (1) adults aged 60 to 85 years old; (2) able to follow balance assessment 

instructions provided in English or Spanish; (3) able to stand and walk, with or without assistive 

device or braces as part of their activities of daily living (self-report).  The exclusion criteria 

included the following:  (1) Significant cognitive or communication impairment, indicated by a 

score on the MMSE of < 24 out of 30;  (2) Presence of concurrent severe medical illness, 

including unhealed pressure sores, active or untreated infection, thromboembolic disease, active 

heterotrophic ossification in the lower extremities, lower limb fractures in the past 12 months, 

known history of peripheral nerve injury in the lower legs, history of cardiovascular or 

pulmonary complications, or with pacemakers and history of metabolic (endocrine, hepatic) or 

renal dysfunction (Self-report);  (3) Inability to tolerate standing positions of greater than 30 

minutes (decrease in blood pressure by 20 mmHg systolic and 10 mmHg diastolic);  (4) 

Uncontrolled hypertension (systolic blood pressure (SBP) > 165 mmHg and/or diastolic blood 

pressure (DBP) > 110 mmHg during resting) (Hidler et al., 2009; Hornby, Campbell, Kahn, & 

2008);  (5) Resting heart rate (HR) > 85% of age-predicted maximal heart rate (HRmax) 

(HRmax = 220 – age) (Hornby et al., 2008);  (6) Oxygen saturation (measured by pulse 

oximeter) during resting < 95%;  (7) Severe cardiac disease (New York Heart Association 

classification of II-IV) (Hidler et al., 2009);  (8) Uncontrolled seizures; and  (9) Participants 

greater than 250 pounds in weight.  The inclusion and exclusion criteria were assessed by the 

primary investigator. 
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Human Participant Interactions 

initial screening.  Potential participants were initially contacted by the primary 

investigator through telephone (Attachment #1: telephone scripts).  A screening questionnaire 

(Attachments #2 and #3: screening forms) was used during the phone conversation to pre-

determine if the candidates qualified for the study.  If potential participants qualified for the 

study after the phone interview and were still interested in the study, they were scheduled for a 

visit to the research laboratory to undergo further screening tests for eligibility.  The screening 

results (including initial telephone screening and further laboratory screening) for each 

individual were documented on a data collection sheet and were also documented on a computer 

spreadsheet with the de-identified participant identification number on one column and a “pass” 

or “fail” identifier in an adjacent column. 

Upon obtaining permission for data collection from the Institutional Review Board, 

researchers met with interested participants to provide detailed information of the study 

requirements.  The researchers explained the purpose of the study, study procedures and 

requirements to all interested participants and answered all study related questions.  Participants 

were asked to provide written consent to participate on an informed consent form.  Once the 

consent forms were obtained, participants contacted their primary physicians to request the most 

accurate and recent medical information.  Upon completion of these tasks, participants visited 

the laboratory to perform the baseline measurement and respective training sessions (i.e. WBV 

or CON). 

Research Protocol 

After participants passed the initial screening tests and consent forms were read and 

signed, participants were assigned to either the WBV training group or the CON group using a 
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randomly generated number sequence created prior.  All participants performed a warm-up 

exercise prior to performing training protocol.  A research assistant guided each participant 

through a 10-minute standardized warm-up session before beginning the actual experiment.  This 

session was composed of stretching and dynamic exercises, including light walking and stepping 

in place.  This was selected because this exercise was likely to reduce the risk of muscle or joint 

injury during strenuous movements that participants may have encountered during testing. 

Baseline measurement: All study participants were assessed for balance, mobility, gait 

speed, body composition, muscle strength, and gait performance.  This portion of the evaluation 

took approximately two hours to complete.  Upon completion of the baseline session, 

participants actively enrolled in the study began the training regimen. 

Vibration training: The vibration platform rotates about an anteroposterior axis such that 

positioning the feet farther from the axis of rotation results in larger-amplitude vibration.  The 

vibrator provides an oscillation type vibration.  Its vibration frequency varies between 5-30 Hz 

and amplitude changes from 0-25 mm.  At the beginning of the training period, participants 

received an introductory practice session to become familiar with positioning on the vibration 

platform.  In this study, the vibration frequency was fixed at 20 Hz and the amplitude was 1.3 

mm. 

During each training visit, each participant completed one set of WBV training.  The 

participants stood on the vibration platform with the knees flexed at approximately 20º during 

the training sessions to avoid any adverse effects or discomfort stemming from the vibration 

(Fig. 1b).  To avoid the dampening effect resulting from shoes, participants were requested to 

stand on the platform in bare feet.  The vibration training was delivered in an intermittent way: 

each one-minute vibration was followed by a one-minute rest for 10 minutes.  This exact 
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program was repeated three times per week, for six weeks.  Successful completion of the training 

protocol occurred when each participant completed 18 sessions.  At least 24 hours were observed 

between two consecutive training sessions. 

Placebo training: Participants in the CON group visited the laboratory for the placebo 

training three days per week for six weeks.  The only difference between vibration training and 

placebo training was that the vibration frequency and amplitude for the placebo training was set 

to 0 (e.g. no vibration) while the participants stood on the platform.  Furthermore, an audio 

recording of the vibrating motor was played during the training to mimic the actual vibration 

protocol (Bautmans, van Hees, Lemper, & Mets, 2005; Corrie et al., 2015; Turner et al., 2011). 

Each training session was conducted individually at the Gait Research & Movement 

Analysis Laboratory under the supervision of the Principle Investigator.  A stability bar attached 

to the vibration platform was located directly in front of the participants during training and all 

participants were asked to hold the stability bar to minimize any risk of falling. 

Post-training measurements: After the completion of all 21 training sessions, all variables 

related to fall risk were reassessed at two different time nodes: immediately after the completion 

of the 18 sessions, and two months following the training completion. 

Measurements of Interest 

All measurements of interest were recorded at approximately the same time of day and 

were assessed on three occasions: pre-training, post-training, and two-month follow-up. 

laboratory fall characteristics.  Both groups were exposed to an identical simulated slip 

on a specialized treadmill while under the protection of a full body harness system in a 

laboratory environment (Fig. 2).  All participants encountered unanticipated slip perturbations 

while walking on the ActiveStep treadmill (Simbex, Lebanon, NH) (Yang, Bhatt, & Pai, 2013). 
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During each slip test session, participants were moved to the ActiveStep treadmill 

following a 10-minute warm-up walking on a regular treadmill (Tracmaster TMX425, Newton, 

KS, USA).  Before the simulated slip test, they were informed that they would experience normal 

walking initially and a “slip-like” movement on the treadmill “later” without knowing when, 

where, and how the slip would be initiated while walking on the treadmill.  The participants were 

instructed to maintain forward gaze during walking, and to try to recover balance and resume 

walking (if) any slip perturbation was encountered. 

After completing five normal walking trials without slip perturbation on the ActiveStep 

treadmill, participants were then exposed to five trials with the slip perturbation.  The slip trial 

began with 1.5-second ramp up, followed by a 4-second steady state with a backward-moving 

belt speed of 0.6 m/s.  After the detection of 8-16 (randomized) steps were detected, at the 

beginning of the next single stance phase, the top belt accelerated suddenly in the forward 

direction, which abruptly reduced its backward speed and thereby induced a forward 

displacement of the participants’ base of support relative to their center of mass.  Such an abrupt 

change in belt speed produced a slip perturbation, which was unannounced and unpredictable by 

the participants.  The total slip distance of the treadmill belt was 12 cm.  Following the slip 

perturbation, the belt speed returned to the initial speed.  The treadmill kinematic profile of each 

slip trial was fixed and pre-defined by a software program.  Five consecutive slips trials were 

delivered. 

During all trials on the ActiveStep treadmill, a full body safety harness, connected by 

shock-absorbing ropes at the shoulders to an overhead arch, was employed to protect participants 

while imposing negligible constraint to their movement.  Participants’ lower-body kinematics 

were captured by a 10-camera motion capture motion system at 200Hz (Vicon Motion Systems 
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Ltd., Oxford, United Kingdom).  Marker paths were low-pass filtered with a cut-off frequency of 

6 Hz using a fourth-order, zero-lag Butterworth filter and 21 retro-reflective markers were used 

to calculate the body center of mass (CoM) (C-Motion Inc., Germantown, MD) and segment 

kinematics.  One component of the CoM motion-state was computed (i.e. CoM position) with 

respect to trailing heel position during the slip.  A CoM position beyond the limits the trailing 

heel during the slip phase was classified as a slip.  A COG position located anteriorly with 

respect to the trailing heel (i.e. within the base of support) during the slip was classified as a 

recovery. 
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Fig. 3. Image depicting the treadmill, computer, and camera set-up for the slip perturbation 
protocol.  Participants’ were tethered and secured during all walking trials with a harness and 
dynamic ropes attached to an overhead arch on the treadmill. 
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body balance.  Participants’ body balance was assessed using the Berg Balance Scale 

(BBS) test (Berg, 1992).  During the BBS test, participants performed a series of 14 functional 

balance tasks of increasing difficulty from quiet stance, sit-to-stand, weight shifting and 

reaching, turning in place, to single leg and tandem stance.  Participants rested as needed 

between tasks.  The degree of success in achieving each task was given a score of 0 (unable) to 4 

(independent), and the final measure was the sum of all of the scores.  The final score (/56) was 

used for analyses. 

gait performance.  Participants performed three walking trials of self-selected normal 

gait and along a 10-meter straight walkway (10MWT) section of the laboratory.  Time to 

complete each trial in seconds was recorded to the hundredth. 

functional mobility.  Functional mobility was evaluated by using the timed-up-and-go 

test (TUG) (Podsiadlo & Richardson, 1991).  In the TUG test, participants rose from an armed 

chair, walked forward three meters, crossed a marked line on the floor, turned around, walked 

back, and returned to the seated position.  The chair was adjusted to the height of each person 

and was fixed to floor to avoid any unwanted movement during testing.  The test began when the 

investigator said “go” and ended when the participant sat with their back against the backrest of 

the chair.  Participants were instructed that their back must contact the backrest to complete the 

test.  The total time taken to complete the task at maximal speed was used for analysis.  

Participants were briefed with regard to all procedures. 

muscle strength.  The maximum isometric voluntary contraction of the quadriceps and 

hamstrings was assessed for all participants.  Before testing, all participants underwent a 

standardized warm-up and test protocol on a motor-driven dynamometer (System 3, Biodex 

Medical Systems, Inc., Shirley, NY).  During the warm-up, the participants perform isometric 
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contractions, which were similar to those experienced during testing.  The knee extension/flexion 

isometric (static) strength assessment was performed unilaterally on both sides, in a seated 

position on a posterior-inclined (15º) chair.  The proximal portion of the leg, the hips, and the 

shoulders were stabilized with safety belts.  The rotational axis of the dynamometer was aligned 

with the transverse knee-joint axis and connected to the distal end of the tibia using a length-

adjustable rigid lever arm.  The three-dimensional positions of the rotational axis, the position of 

the chair, and the length of the lever arm were recorded and were identical for the strength 

assessment during the other testing sessions (e.g. post-training and two-month follow-up).  Each 

participant performed three repetitions, each lasting seven seconds for both flexion and extension 

on the dominant and non-dominant leg.  A one-minute resting period was administered between 

repetitions. 

endurance capacity.  The endurance capacity of the participants was assessed using the 

two-minute walk test.  During this test, the participant was instructed to walk back and forth, as 

fast as possible, for two minutes between two cones set 30.48 meters (100 feet) away from each 

other.  Participants were permitted to rest during the two-minute test but were made aware that 

the timer would continue to run until time expired.  Total distance traveled during the two-

minutes was used as a measure of endurance capacity. 

Statistical Analysis 

All analyses were performed using SPSS software version 24 (IBM, Armonk, New 

York).  A Chi-Square Test was conducted to assess any between group differences in baseline 

characteristics and Fisher’s Exact Test was used to denote significance.  The primary analysis for 

this study was conducted for participants who had complete data for the three time points of 

interest (pre-training, post-training, retention).  For continuous variables (fall risk factors and fall 
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rates), including the muscle strength, BBS, TUG, two-minute walk, gait performance, and fall 

characteristics during the simulated slip, a repeated measure analysis of variance (ANOVA) was 

used to identify the potential effect of the WBV training upon reducing the fall risk within each 

group.  The within subject factor was the time instances (pre vs. post vs. retention) while group 

(WBV vs. CON) served as the between subject factor.  For all analyses, a critical alpha level of p 

< 0.05 was used to determine statistical significance and post-hoc Bonferroni corrected pair-wise 

comparisons was performed on significant effects. 
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CHAPTER 4 

Presentation of the findings 

Data collection occurred from June 1, 2019 to March 13, 2020 in the Gait Research & 

Movement Analysis Laboratory (GAIT) at the University of Texas at El Paso in El Paso, Texas.  

Participants completed all 21 sessions of the study protocol and reported no adverse effects 

associated with the fall risk assessments or the WBV training program.  Two participants 

withdrew from the sample for reasons not associated to the study protocol.  Baseline 

characteristics for the two study groups can be are presented in Table 1.  Independent t-tests 

revealed no differences (p >0.05) between the study groups in age (yrs.), height (m), or mass 

(kg).  The Chi-Square Test showed no differences in gender between the study groups (p >0.05). 

The ANOVA revealed a significant main effect of time for the 10MWT [F(2,14)=3.94, 

𝜂"#= 0.360, p=0.044) and the 2MWT [F(2,14)=7.29, 𝜂"#=0.510, p=0.007), but not for the fall rates 

(p > 0.05), BBS (p > 0.05), TUG test (p > 0.05), the right and left measures of isometric 

extension (p > 0.05) and (p > 0.05), and flexion (p > 0.05) and (p > 0.05).  No significant time by 

group 2-way interaction was detected for any of the variables, however, isometric extension 

(N/kg) of the left leg approached significance [F(2,14)=0.193, 𝜂"#=0.27, p=0.09].  Mean and 

standard deviation values are displayed in Fig. 4-7. 

The findings for the 10MWT and 2MWT indicate that all participants, regardless of study 

group demonstrated equal improvements in performance throughout the three time points in the 

study (e.g. pre-test, post-test, and retention).  There were no significant differences observed 

between the WBV and CON group.  Pairwise comparisons revealed that participants in the study 

experienced significant performance improvements within pre-test, post-test, and retention 

evaluations for the 10MWT and the 2MWT.  Performance benefits were detected in the 10MWT 
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with participants showing faster completion times between sessions (post-test vs. retention: 8.00 

+ 0.31 vs. 7.24 + 0.39s, p = 0.33) (Fig. 5a).  Participants also showed significantly increased 

walking distance during the 2MWT (pre-test vs. retention: 168.12 + 5.04 vs. 177.52 + 5.73m, p 

<0.05) (Fig. 5b). 
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Table 1. Participant characteristics at baseline and differences between groups. 

Note:  Values are n, mean ± standard deviation, or as otherwise indicated. ∆Chi Square Test used. 
*Independent T-Test used. 
 
  

Parameter WBV (n = 9) CON (n = 8) p value 

Age (years) 71.44±7.07 69.13±5.19 0.730* 

Sex (female) 7 6 0.563∆ 

Body height (m) 1.61±0.06 1.58±0.09 0.355* 

Body mass (kg) 76.71±13.27 82.91±18.71 0.792* 
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Fig. 4. Group fall rate percentages for the pre-test, post-test, and two-month retention. Fall rates 
were calculated as the quotient between the total number of falls recorded for the entire group 
and total number of valid slip trials for the group. 
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Fig. 5. Group means and standard error bars for the time to complete the 10-meter walk (sec) (a) 
and distance walked for the two-minute walking test (b) for the pre-test, post-test, and two-month 
retention. *p<0.05 
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Fig. 6. Group means and standard error bars for the BBS composite scores (a) and time to 
complete the TUG Test (sec) (b) for the pre-test, post-test, and two-month retention. 
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Fig. 7. Group means and standard error bars for the right (a) and left (b) max extensor torque and 
right (c) and left (d) max flexor torque for the pre-test, post-test, and two-month retention. 
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CHAPTER 5 

Summary, Discussion, and Recommendations 

This study sought to examine the effects of a six-week whole-body vibration training 

program on improving fall risk factors and fall rates in response to a simulated treadmill slip.  

WBV has become an effective alternative to battle age-related deficits in older adults and has 

also shown promise in improving balance and reducing falls-risk.  However, existing literature 

has failed to systematically investigate the effect of WBV training on improving fall risk factors 

among older adults (Lee et al., 2013; Tankisheva et al., 2014; Verschueren et al., 2011).  

Additionally, existing studies have not assessed if the therapeutic effects of WBV can be 

effective in reducing the rate of slip-related falls.  Finally, the majority of studies have only 

examined the acute effects of WBV and therefore, it is uncertain if the therapeutic effects of 

WBV can be retained over long durations.  There is substantial evidence that resistance and 

aerobic exercise can be effective in mitigating age-related performance deficits.  Several studies 

have reported that interventions integrating both resistance and aerobic components can be 

effective in improving muscle strength and power, flexibility, mobility, cardiovascular 

endurance, and balance (del Campo Cervantes, Macías Cervantes, & Monroy Torres, 2019; 

Sañudo et al., 2019; Yoon, Ha, Kang, & Ko, 2019).  Although this traditional approach has been 

shown in some cases to be effective for improving performance and reducing the risk for falls, 

several factors, such as cost, ease of use, and exertion reduce accessibility for older adults 

(Damush et al., 2007; Wagner et al., 1996).   

The results revealed that there were no differences in performance on the functional 

performance tests (i.e. fall risk factors) or the treadmill fall rates between the WBV and CON 

group.  The results determined that participants in the WBV group and the CON group 
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experienced equal benefits throughout the duration of the study associated with the six-week 

training program, specifically in 2MWT and 10MWT performance, which quantified mobility, 

walking capacity, and muscle endurance.  The results did not support our first hypothesis, that 

participants in the WBV group would experience significant (p<0.05) improvements in fall risk 

factors and slip responses compared to participants in the CON group.  As mentioned above, 

participants in both groups experienced equal benefits, but only on a small portion of the test 

battery (e.g. 10MWT and 2MWT; Fig. 5).  Furthermore, there were no significant between-group 

differences in performance outcomes observed for the two-month follow-up (retention), which 

opposed our second hypothesis.  Both groups exhibited retention at the two-month follow-up 

with faster completion times for the 10MWT than recorded at baseline (Fig. 5a).  Similarly, both 

groups showed retention at the two-month follow-up with longer walking distance in the 2MWT 

compared to the six-week post-test (Fig. 5b).  These findings indicate that WBV was no more 

effective than the placebo condition based on our measures of interest. 

The findings from our study are in line with those reported by (Dudoniene et al., 2013), 

which revealed no performance changes between an eight-week WBV group and an eight-week 

WBV plus exercise group.  The study reported benefits for both groups in performance outcomes 

(TUG Test, Dynamic Gait Index, 30 second sit-to-stand) throughout the duration of the study.  

Although the study did not implement a placebo group, the findings still imply that WBV was no 

more beneficial than traditional methods.  Other studies have also shown that WBV is no more 

effective than placebo conditions or traditional methods of intervention (Bogaerts et al., 2011; 

von Stengel, Kemmler, Engelke, & Kalender, 2011).  The findings from these studies as well as 

our study contrast those reported previously by (Kawanabe et al., 2007) and (Simão et al., 2012).  

The study by Kawanabe and colleagues found that incorporating WBV training into a 
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conventional regimen consisting of lower extremity strength exercises significantly improved 

walking speed in the 10MWT compared to the exercise only group.  Simão et al., (2012) 

determined that WBV signifcanlty improved BBS balance scores, distance walked during the 

6MWT (similar to our 2MWT), and walking speed in the 10MWT.  However, much like the 

study by Kawanabe et al., (2007), the participants in this study underwent a combination of 

WBV and squat therapy.  The study was however, able to isolate the effects of WBV by 

reporting that the WBV group walked significanly faster than the sqaut only group.  Several 

other studies have reported improvements associated with WBV, but these too have combined 

exercise with a WBV regimen (Bautmans, Hees, et al., 2005; Bogaerts et al., 2011; Pollock, 

Provan, Martin, & Newham, 2011; Sitjà-Rabert et al., 2012).  The systematic review by Sitjà-

Rabert and colleagues (2012) concluded that WBV can be an integral tool to elicit performance 

improvements for fall prevention, but the issue remains that training effects in WBV participants 

may not be immediately apparent when compared to a control group that undergoes conventional 

exercise or a combination of exercise and WBV. 

A small proportion of studies conducted previously have implemented protocols similar to 

that in our study.  Participants in the study by (Cheung et al., 2007) who underwent WBV 

exhibited improved postural control as quantified by limits of stability compared to a true control 

group.  Machado, García-López, González-Gallego, & Garatachea (2010) reported significant 

between group differences with participants in the WBV group showing greater increases in 

muscle strength and muscle hypertrophy compared to the control group.  Finally, (Yang et al., 

2015) reported significant improvements in participants who underwent 8-weeks of WBV.  

Participants experienced improvements in balance scores (BBS), isometric knee extensor and 

flexor strength, range of motion, and fear of falling scores.  This study did not include a control 
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group, as our study, limiting their ability to make the claim that improvements in performance 

were directly associated with the WBV intervention and not a confounding factor (Yang et al., 

2015).  Postive outcomes with WBV may be confounded if there is no control group; these 

performance improvements can be linked to learning effects, which can occur throughout the 

duration of the study (Yang et al., 2015).  Despite lacking the control group, the findings from 

this study as well as the two described above still provide substantial evidence showing the 

therapeutic benefits of WBV. 

Our study did not yield results indicating any therapeutic effects of WBV, indicating that 

WBV was no better than the CON condition.  One possible reason for this outcome may relate to 

the duration of the study intervention.  Other studies have commonly implemented WBV training 

periods lasting between three and eight months (Bogaerts et al., 2011; Leung et al., 2014; Russo 

et al., 2003; Nils Stolzenberg et al., 2013; Verschueren et al., 2011).  While the six-week period 

that we chose may be sufficient to yield neuromuscular adaptations or increase neural activation 

(Baroni et al., 2013), which in turn might have aided physical performance or lead to acute 

benefits, it may be possible that six weeks does not suffice to obtain benefits from WBV.  

Though it should be noted, that other studies have implemented six-week WBV interventions in 

older adults and have reported improved balance and mobility/walking scores (Bautmans, Hees, 

et al., 2005; Bruyere et al., 2005; Furness & Maschette, 2009), and even improved jump height 

(Perchthaler et al., 2015).  With the exception of the negative findings reported by (Sitjà-Rabert 

et al., 2015), the majority of studies implementing six-week interventions have shown 

improvements in fall risk factors and therefore other explanations for the findings in our study 

must be considered. 
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One possibility is that the training intensity and frequency were not adequate to elicit 

physiological changes leading to the improvements in fall risk factors and fall rates.  The 

vibration frequency selected for the current study was 20Hz and it was delivered intermittently 

for 60-seconds for a total of five-minutes, three times weekly.  The reason the 20Hz vibration 

frequency was selected is two-fold: 1) to maximize comfort and retention in the protocol and 2) 

to reduce the risk of excess stimulation or stimulation resembling that of the physiological 

systems (Muir, Kiel, & Rubin, 2013).  Vibration frequencies ranging from 12.5 to 20Hz have 

typically been classified as low-intensity, while frequencies from 30-50Hz have been classified 

as high-intensity (Muir, Kiel, & Rubin, 2013).  In theory, higher vibration frequencies elicit 

greater responses from the proprioceptors of the lower-extremities, however, many studies have 

shown that WBV interventions utilizing 20Hz still result in improvement performance outcomes 

(i.e. lower falls risk) (Abbasi et al., 2011; Bruyere et al., 2005; Cheung et al., 2007; Furness & 

Maschette, 2009; Kawanabe et al., 2007; Machado et al., 2010; Ochi et al., 2011; Pollock et al., 

2011; Russo et al., 2003; Tseng et al., 2016; Yang et al., 2015). 

The lack of significant findings in the present study is potentially attributed to the small 

sample size.  Based on the a priori sample size estimation, a total of 32 participants was required 

to achieve sufficient statistical power.  A posteriori power-analysis revealed that with the 17 total 

participants that were recruited, the present study only yielded a statistical power of 0.22 at the 

0.05 level, thereby impacting the likelihood of detecting any statistical significance between 

groups.  One study reported statistically significant performance improvements from only nine 

participants, but there was no control group involved in the study and participants were permitted 

to perform exercise outside the study if desired (Giombini et al., 2013).  Given the nature of our 

protocol, the inclusion criteria narrowed the pool of eligible participants to those that were 
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generally healthy and high-functioning and considering the small sample size, a ceiling effect for 

some of the performance variables could have resulted.  For example, scores for the BBS (Fig. 

5a) showed very little variance for both groups.  All participants scored close to maximum 

(56/56), which thereby reduced our ability to discriminate between the two groups. 

We acknowledge several limitations in this study.  The study sample size was small, which 

possibly resulted in low statistical power making it difficult to identify any performance 

differences between the WBV and CON group.  Future studies will aim to increase the study 

sample size to increase study power.  The inclusion criteria can be modified to broaden the 

participant recruitment pool, while upholding research integrity safety.  The small sample size, 

paired with the fact that the majority of the study participants were high-functioning possibly 

resulted in a ceiling effect, which as stated previously reduced the study’s ability to discriminate 

performance outcomes between the two groups.  Another limitation in the study was the short 

duration of the WBV intervention.  While other studies have shown that six-weeks of WBV can 

be effective in improving performance and possibly reducing falls risk, no other study has 

integrated a true control group in their protocol, as we did.  The majority of studies have 

included a control exercise group.  It is possible that the six-week intervention only produced 

acute benefits that were not detected due to our study design.  A more thorough assessment of 

WBV dosage (time and frequency) needs to be conducted to identify if there is an optimal 

intervention length to yield benefits.  The methodology utilized in the study could have also been 

a limiting factor in identify significant results.  For example, isokinetic dynamometry was used 

to assess leg strength, specifically knee flexion and extension torque and no significant findings 

were found (Fig. 7)  While WBV can be effective in stimulating proprioception of the lower 

extremity, the vibratory stimulation is mainly targeted distally at the ankle joint because this is 
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where the majority of the signal is dampened (Pollock et al., 2011).  Therefore, it would be more 

appropriate for future studies to examine ankle plantarflexion and dorsiflexion.  Finally, the fall 

detection method implemented in this study was likely not robust enough to detect a significant 

reduction in fall rates.  Other studies have used more comprehensive approaches to quantify the 

limits of stability or center of mass (CoM) with respect to the base of support (Young, Wilken, & 

Dingwell, 2012).  Despite modifying these parameters in the present study, the method is 

justified.  If body CoM exceeds the posterior limits of the trailing heel during the slip (e.g. 

backwards fall), the argument can be made that there is excess instability leading to a fall 

outcome.  Although there was not a significant change observed between groups in the fall rates 

(main outcome) (Fig. 4), we speculate that with a larger sample size and the current fall detection 

method, we can identify a greater reduction in fall rates stemming directly from WBV.  Future 

studies however, should aim to adopt the comprehensive method for fall detection and assess the 

limits of stability and recovery steps following the slip event. 

The overall conclusion from this study was that six-weeks of WBV was no more effective 

in improving fall risk factors and decreasing fall rates among healthy older adults.  While the 

findings from this study did not show many statistically significant findings, there are some 

strengths and clinically significant findings, which merit some attention in future studies.  Our 

study did not look specifically at actual falls, but rather at the outcome of simulated falls.  This 

study represents the only one of a few studies to have looked at simulated-slip outcomes during 

treadmill walking in healthy older adults.  The results showed a reduction in the fall rates in the 

WBV group compared to the CON group throughout the duration of the study (including 

retention) (Fig.4).  Although not significant, these findings could potentially have important 

clinical implications for the rapidly growing number of aging adults worldwide.  Future studies 
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are required to identify the full benefits of improving fall risk factors and reducing fall rates in 

older adults. 
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Appendix A: Informed Consent Form 

University  of  Texas  at  El  Paso  (UTEP)  Institutional  Review  Board  
Informed  Consent  Form  for  Research  Involving  Human  Subjects 

Protocol  Title:  Effects  of  a  6-­week  Controlled  Whole-­body  Vibration  Training  Program  
on  Reducing  Falls  Risk  among  Healthy  Older  adults  

Principal  Investigator:  Fabricio  Saucedo  
UTEP:  Department  of  Interdisciplinary  Health  Sciences  

1. Introduction 

In  this  consent  form,  “you”  always  means  the  study  subject.  If  you  are  a  legally  

authorized  representative  (such  as  a  parent  or  guardian),  please  remember  that  “you”  

refers  to  the  study  subject.  

  

You  are   being  asked   to   take  part   voluntarily   in   the   research  project   described  below.  

Please  take  your   time  deciding  and  feel   free  to  discuss   it  with  your   friends  and  family.  

Before   agreeing   to   take   part   in   this   research   study,   it   is   important   that   you   read   the  

consent  form  that  describes  the  study.  Please  ask  the  study  researcher  or  the  study  staff  

to  explain  any  words  or  information  that  you  do  not  clearly  understand.  

  

2. Why is this study being done? 

You  have  been  asked  to  take  part  in  a  research  study  of  examining  the  overall  effects  of  

6-­weeks  of  controlled  whole-­body  vibration  training  on  preventing  falls  among  healthy  

older  individuals.  

  

Approximately,  40  study  healthy  older  adults  will  be  enrolling  in  this  study,  which  will  

take  place  at  The  University  of  Texas  at  El  Paso  (UTEP).  

 

You  are  being  asked  to  be  in  the  study  because  you  are  a  healthy  community-­dwelling  

adult  aged  60  years  or  over  and  you  have  expressed  interest  in  being  involved  in  this  

research  study.  
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If  you  decide  to  enroll  in  this  study,  your  involvement  will  be  about  21  individual  

sessions  within  4  months.  Three  of  these  21  sessions  will  last  approximately  1-­2  hours  

while  the  remaining  ones  last  about  15  minutes.  

 

3.  What  is  involved  in  the  study?  
If  you  agree  to  take  part  in  this  study,  the  research  team  will  ask  you  to  do  the  following  

things:  

1.   General  Screening  

In  order  to  reduce  the  risk  of  injury,  we  will  use  telephone  screening  to  assess  your  

suitability  for  participation.  During  the  telephone  screening  after  the  initial  contact,  a  

questionnaire  will  be  used  to  exclude  those  who  have  a  medical  history  of  muscle,  

bone,  never,  heart  or  lung  problems  or  those  who  use  certain  medications  for  sleeping  

or  depression.  We  will  also  exclude  patients  suffering  from  coexisting  psychiatric  

disorders  or  other  neurological  conditions.    If recruits are not eligible for the study, all 

information from the telephone screening procedures will be kept on file and will not be used for 

data collection.  Files will only be used to keep track of the number individuals screened and 

actually enrolled in the study.  

You  may  be  asked  to  participate  in  the  baseline  test  session  and  20  additional  follow-­up  

sessions  (See  follow-­up  sessions).  Three  of  these  21  sessions  last  approximately  1-­2  

hours  while  the  remaining  ones  take  about  15  minutes  to  complete.  

  

2.   Baseline  Session  of  the  Research  

The  baseline  session  consists  of  a  measurement  session  and  a  training  session.  

  

Measurement   The  measurement  session  includes  the  following  tests:  

1)   A  free  bone  density  test.  A  qualified  project  staff  will  use  an  ultrasound  device  that  

will  determine  your  calcaneus  (heel)  bone  mass  density.  The  device  will  emit  

ultrasound  to  assess  the  bone  density.  This  procedure  is  non-­invasive,  and  the  

soundwave  is  considered  harmless  to  your  body.  

2)   Body  balance  skill  test.  Two  types  of  methods  will  be  used  to  test  your  body  balance  

skills:  Berg  balance  test  and  posturography  test.  For  Berg  balance  test,  you  will  be  
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scored  while  performing  a  series  of  14  functional  balance  tasks  of  increasing  

difficulty  from  quiet  stance,  sit-­to-­stand,  weight  shifting  and  reaching,  turning  in  

place,  to  single  leg  and  tandem  stance.  Balance  during  quiet  stance  will  be  

quantified  by  measuring  spontaneous  sway  as  you  stand  on  side-­by-­side  force  

plates.  Three  trials  of  10  seconds  will  be  tested  in  sequence  for  each  of  the  3  

following  conditions:  eyes  open,  eyes  closed,  and  eyes  open  while  standing  on  a  

block  of  compliant  foam.  

3)   Functional  mobility  test.  Timed  Up  and  Go  test  will  be  used  to  evaluate  your  

functional  mobility.  You  will  begin  the  test  in  a  seated  position.  You  will  be  asked  to  

rise  from  a  chair,  walk  to  a  line  on  the  floor  about  10  feet  away,  turn  around,  walk  

back  to  the  chair  and  sit  down.  The  time  it  takes  you  to  perform  this  test  will  be  

recorded.  

4)   Muscle  strength  test.  Your  muscle  strength  will  be  assessed  with  a  Biodex  muscle  

testing  and  training  system  on  your  right  knee  in  a  seated  position  on  a  backward-­

inclined  chair.  Your  upper  leg,  the  hips,  and  the  shoulders  will  be  stabilized  with  

safety  belts.  You  will  be  asked  to  extend  your  right  knee  as  hard  as  you  can.  

5)   Dynamic  gait  stability.  You  will  be  evaluated  for  normal  walking  trials  over  ground  

and  on  the  slip  trials  on  the  treadmill.  During  normal  walking  and  slip  trials,  a  motion  

analysis  system  is  used  to  record  the  positions  of  feet,  ankles,  knees,  hips,  

shoulders,  elbows,  and  wrists  at  known  landmarks.  For  this  portion  of  the  testing,  

reflective  markers  will  be  place  on  bony  landmarks  on  the  body  to  create  a  digital  

computer  model.    This  process  is  non-­invasive,  and  markers  will  simply  be  attached  

to  the  body  with  hypoallergenic  porous  skin  tape.  

6)   Fall  rate  test.  You  will  be  exposed  to  an  unannounced  simulated  slip  while  walking  

on  a  treadmill  under  the  protection  of  a  full  body  harness.  When  you  walk  on  the  

treadmill,  the  belt  speed  of  the  treadmill  will  suddenly  change  and  produce  a  

simulated  slip.  Your  response  to  the  slip  will  be  recorded.  

  

Training   After  the  baseline  measurement,  you  will  be  assigned  to  one  of  two  

training  regimens  (CWBV  or  Placebo).    The  vibration  group  will  be  asked  to  stand  on  a  

vibration  platform  with  lightly  bended  knees  at  20º  during  the  training.  The  platform  will  
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deliver  oscillation  type  vibration.  The  amplitude  of  the  vibration  is  less  than  0.6  in.  To  

avoid  the  vibration  reduction  resulted  from  shoes,  you  will  be  requested  to  stand  on  the  

platform  in  bare  feet.  The  vibration  platform  will  be  cleaned  by  using  alcohol  after  each  

training  session.  The  vibration  training  will  be  delivered  in  an  intermittent  way:  each  1-­

minute  vibration  will  be  followed  by  a  1-­minute  rest  for  10  minutes.    The  placebo  group  

will  perform  a  similar  routine;;  however,  the  platform  will  not  vibrate.    Rather,  an  audio  

recording  of  the  motor  will  play  over  a  speaker.  

  

Follow-­up  Sessions  
You  will  be  asked  to  come  to  the  laboratory  3  times  per  week  to  receive  the  

aforementioned  training  for  6  weeks.  Immediately  after  the  training  sessions  in  weeks  6,  

we  will  conduct  the  same  measurement  tests  as  expressed  above.  
You  will  be  asked  to  return  to  the  laboratory  2  after  your  completion  of  the  6-­week  

training.  We  will  then  measure  all  parameters  expressed  above.  

4. What are the risks and discomforts of the study? 

  

Rigorous  safety  protection  measures  will  be  adopted  to  prevent  subjects  from  any  

potential  risk  resulting  from  the  vibration  training  or  slip  perturbation.  Before  each  

training  session,  a  5-­minute  warm-­up  walking  on  a  regular  treadmill  will  be  given  to  

subjects.  The  known  risk  that  may  occur  with  participation  in  the  proposed  research  

includes  itching  in  the  lower  legs  during  the  training  session  and  possible  injuries  

resulting  from  slip  perturbation.  During  training,  all  participants  will  be  closely  supervised  

by  a  research  assistant  in  case  of  any  balance  losses  or  fall  incidents.  Subjects  may  

experience  itching  in  their  lower  legs.  The  itching  will  disappear  quickly  following  the  

training  session.  If  the  itchiness  stays  longer  than  3  minutes,  we  will  apply  cold  

compresses  to  the  itching  parts  of  the  legs  to  alleviate  the  itchiness.  To  prevent  any  part  

of  the  body  other  than  the  feet  from  striking  the  treadmill  belt  surface  during  a  falling  

caused  by  the  slip  perturbation,  subjects  will  be  placed  in  a  full-­body  safety  harness  

attached  by  a  pair  of  dynamic  ropes  from  the  shoulders  to  a  load  cell  and  then  to  an  

overhead  arch.  The  length  of  the  dynamic  ropes,  which  are  typically  used  for  fall  
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protection  in  rock  climbing,  will  be  adjusted  so  that  neither  the  knees  nor  the  hands  can  

touch  the  flooring.  The  dynamic  ropes  and  full-­body  harness  both  have  shock-­

absorption  capacity.  The  full-­body  harness  is  padded  and  provides  support  over  a  large  

contact  area  (>  1500  cm2),  primarily  in  regions  that  are  able  to  withstand  larger  forces  

without  injury  (i.e.,  the  pelvis  and  buttocks).    All  participants  will  be  given  food  and  water  

along  with  rest  periods,  if  needed.  

5. What will happen if I am injured in this study? 

The  University  of  Texas  at  El  Paso  and  its  affiliates  do  not  offer  to  pay  for  or  cover  the  

cost  of  medical  treatment  for  research  related  illness  or  injury.  No  funds  have  been  set  

aside  to  pay  or  reimburse  you  in  the  event  of  such  injury  or  illness.  You  will  not  give  up  

any  of  your  legal  rights  by  signing  this  consent  form.  You  should  report  any  such  injury  

to  Fabricio  Saucedo  at  915-­747-­6010  or  fsaucedo3@miners.utep.edu  and  to  the  UTEP  

Institutional  Review  Board  (IRB)  at  (915-­747-­8841)  or  irb.orsp@utep.edu.  

6. Are there benefits to taking part in this study? 

This  study  could  possibly  reduce  your  risk  of  fall  and  improve  your  fall  resistance  skills  

through  the  vibration  training.  Further,  your  participation  in  this  study  may  help  

contribute  to  our  understanding  of  the  effect  of  the  controlled  whole-­body  vibration  

training  in  reducing  the  risk  for  falls  among  older  adults.  This  knowledge  will  provide  a  

basis  for  the  development  of  optimal  controlled  whole-­body  vibration  training  paradigm  

to  reduce  the  chance  of  fall-­related  physical  injury.  

7. What other options are there? 

You  have  the  option  not  to  take  part  in  this  study.  There  will  be  no  penalties  involved  if  

you  choose  not  to  take  part  in  this  study.  

8. Who is paying for this study? 

Internal  Funding:  
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Funding  for  this  study  is  provided  by  UTEP  Department  of  Kinesiology  and  the  

Department  of  Interdisciplinary  Health  Sciences.  

9. What are my costs? 

There  are  no  direct  costs.  You  will  be  responsible  for  travel  to  and  from  the  research  

site  and  any  other  incidental  expenses.  

10. Will I be paid to participate in this study? 

You  will  be  paid  $120  participation  in  this  study.  The  payment  will  be  made  after  the  
completion  of  the  study  and  will  be  documented  using  a  reimbursement  form  that  will  be  
kept  on  file  along  with  all  research  documents.  

11. What if I want to withdraw, or am asked to withdraw from this study? 

Taking  part  in  this  study  is  voluntary.  You  have  the  right  to  choose  not  to  take  part  in  

this  study.  If  you  do  not  take  part  in  the  study,  there  will  be  no  penalty.  

  

If  you  choose  to  take  part,  you  have  the  right  to  stop  at  any  time.  However,  we  

encourage  you  to  talk  to  a  member  of  the  research  group  so  that  they  know  why  you  are  

leaving  the  study.  If  there  are  any  new  findings  during  the  study  that  may  affect  whether  

you  want  to  continue  to  take  part,  you  will  be  told  about  them.    

  

The  researcher  may  decide  to  stop  your  participation  without  your  permission,  if  he  or  

she  thinks  that  being  in  the  study  may  cause  you  harm,  or  if  you  miss  more  than  2  

training  sessions  in  any  single  week,  or  if  you  miss  more  than  5  sessions  in  the  6-­week  

training  period.    

12. Who do I call if I have questions or problems? 

You  may  ask  any  questions  you  have  now.  If  you  have  questions  later,  you  may  contact  

Fabricio  Saucedo  by  phone  at  (915-­747-­6010)  or  via  email  at  

fsaucedo3@miners.utep.edu.  
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If  you  have  questions  or  concerns  about  your  participation  as  a  research  subject,  please  

contact  the  UTEP  Institutional  Review  Board  (IRB)  at  (915-­747-­8841)  or  

irb.orsp@utep.edu.  

13. What about confidentiality? 

1.  Your  part  in  this  study  is  confidential.  None  of  the  information  will  identify  you  by  

name.  All  records  will  be  at  a  single  office  and  in  a  locked  file.  Only  the  personnel  

directly  related  to  the  project  will  have  access  to  the  records.  

  

2.  Every  effort  will  be  made  to  keep  your  information  confidential.  Your  personal  

information  may  be  disclosed  if  required  by  law.  Organizations  that  may  inspect  and/or  

copy  your  research  records  for  quality  assurance  and  data  analysis  include,  but  are  not  

necessarily  limited  to:  

•   The  sponsor  or  an  agent  for  the  sponsor  

•   Department  of  Health  and  Human  Services  

•   UTEP  Institutional  Review  Board  

Because  of  the  need  to  release  information  to  these  parties,  absolute  confidentiality  

cannot  be  guaranteed.  The  results  of  this  research  study  may  be  presented  at  meetings  

or  in  publications;;  however,  your  identity  will  not  be  disclosed  in  those  presentations.  All  

records  will  be  stored  at  a  single  office  and  in  a  locked  file.  Only  the  personnel  directly  

related  to  the  project  will  have  access  to  the  records.  

  

During  the  experiment  your  movement  response  will  be  videotaped.  You  have  the  right  

to  request  to  review/edit  the  tapes.  Your  personal  identity  will  not  be  revealed  in  the  

videotape.  We  will  give  access  only  to  investigators  directly  related  to  this  project.  The  

videotape  or  its  reproduction  may  be  used  for  publication  in  scientific  journals  or  

presentations  at  scientific  meetings.  All  of  the  videos  are  taken  from  the  side  and  back,  

where  no  facial  feature  will  be  identifiable.  Thus,  you  would  not  be  recognizable  by  a  

stranger  without  other  identification  from  the  record.  The  video  tapes  will  be  kept  in  a  

locked  office.  Only  the  Principal  Investigator  has  the  access  key,  and  there  are  no  
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duplicate  keys.  All  records  and  video  tape  will  be  destroyed  after  the  completion  of  the  

entire  project.  

14. Mandatory reporting 

If  information  is  revealed  about  child  abuse  or  neglect,  or  potentially  dangerous  future  

behavior  to  others,  the  law  requires  that  this  information  be  reported  to  the  proper  

authorities.  

15. Authorization Statement 

I  have  read  each  page  of  this  paper  about  the  study  (or  it  was  read  to  me).  I  know  that  

being  in  this  study  is  voluntary  and  I  choose  to  be  in  this  study.  I  know  I  can  stop  being  

in  this  study  without  penalty.    I  also  acknowledge  that  my  contact  information  will  be  

kept  on  file  and  I  may  be  contacted  for  future  studies  or  follow-­up  sessions.    I  will  get  a  

copy  of  this  consent  form  now  and  can  get  information  on  results  of  the  study  later  if  I  

wish.  

Participant  Name:  _________________________      Date:  ______________  

  

Participant  Signature:  ______________________      Time:  ______________  

  

Participant  or  Parent/Guardian  Signature:  _______________  

  

                                Date:  ________________  

  

  

  

Consent  form  explained/witnessed  by  (Signature):  __________________  

  

                      Printed  name:  __________________  

   Date:  _______________  Time:  __________________ 
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