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Abstract

The study of words as a mathematical object is a deep and rich field of study. Algebra,

Combinatorics, Theoretical Computer Science etc., are major disciplines, which are fully

using this study. Combinatorial properties (via Codes, Free Hulls, Infinite Words), and

algebraic properties of words are presented in this thesis. The free semigroup on a set

(alphabet) X and finite presentation of semigroups have a central place in the algebraic

study of words. The last part of the thesis is devoted to the study of identities in the

alphabet X = {x, y} for a class of monoids. The characterization of such identities are

given gradually; some elementary identities are established at the beginning. Using the

canonical form of a word, mainly triples of positive integers are those that determine all

these identities.
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Chapter 1

Words

In this chapter, we will focus on what others have called words and review some properties

that they have. In the following chapter, we will talk about known properties of congruences

and the already defined Bicyclic Semigroup. In the last chapter, we will present the new

results of this thesis.

1.1 Definitions and Properties

In this section we will lay the foundation for alphabets and the words that can be created

for them. Note that throughout this thesis we will use semigroup and monoid almost as

synonyms but if a distinction has to be made, for example a theorem is only true if the

algebraic structure is a monoid, then we will make this distinction.

1.1.1 Historical Background

Words have began to be studied in the early 1900’s in the hopes to help deepen the un-

derstanding of language. As the century went on the study of words became a useful tool

for Computer Scientists and an interesting free monoid to study for mathematicians. Most

of the work done on words have been culminated into three books written by a group of

mathematicians that refer to themselves as M. Lothaire, see [4].
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1.1.2 Preliminaries

In our study of words we will first go over some preliminaries. We are going to start with

the definition of some basic algebraic structures.

Definition 1 Let S be a non-empty set and let · : S × S → S be a binary operation on S.

S is called a semigroup if

a · (b · c) = (a · b) · c

for all a, b, c ∈ S.

Definition 2 A semigroup M is called a monoid if there exists 1 ∈M with the property

that

1 · a = a · 1 = a

for all a ∈M

It will also be helpful to define structure preserving maps between two algebraic struc-

tures.

Definition 3 Let M and N be monoids (semigroups) and let φ : M → N . We will say

that φ is a homomorphism if

φ(xy) = φ(x)φ(y)

for all x, y ∈M .

Definition 4 We call a homomorphism an isomorphism if it is bijective. If there exists

a isomorphism between two algebraic structures we will say that they are isomorphic to

one another. We will use the symbol ∼= to say they are isomorphic.

Here it is important to note that if there is an homomorphism then the domain and

codomain have similar structure but if there is an isomorphism then both algebraic struc-

tures have the same structure, i.e. we are just changing the name of the elements.

The following definition of alphabet and subsequent definitions and notations are from

Lothaire, see [4].
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Definition 5 Let X be a non-empty set which we will call the alphabet and let the set

X+ be the set of all non-empty finite sequences of elements of X, which we will refer to as

the words over an alphabet X.

Note that the alphabet does not have to be finite but in most of its applications it is

considered to be finite. Some examples of alphabets are the English alphabet {a,b,c, . . . ,

z} and {0,1} used for binary. We will be considering words much like vectors such that

the letters in u ∈ X+ will be referred by u = u0u1 . . . un. It can be observed that X+ is a

semigroup with concatenation as the operation i.e. u, v ∈ X+ u · v = u0u1 . . . unv1v2 . . . vm.

We will maintain the convention of writing u · v as simply uv.

Definition 6 Let X+ be the words over an alphabet X, then the length of a word u,

u ∈ X+, is denoted by nX(u) = n where u = u0u1 . . . un and ui ∈ X.

Definition 7 Let 1 denote a word where nX(1) = 0. We will call 1 the empty word.

Now define X∗ = X+ ∪ {1}.

The notation for using 1 for the empty word reflects the fact that it is the identity of

X∗. However, if the alphabet contains the character 1, such as the binary alphabet does,

a different character should be used, such as e, to avoid confusion. Now it is clear that X∗

is a monoid since for all u ∈ X∗ we have u1 = 1u = u. The following definition will impose

an order on the set X∗.

Definition 8 For u, v ∈ X∗ we say u ≤ v if there exist w ∈ X∗ such that uw = v. We say

that w is a left factor of v.

Definition 9 A monoid (semigroup) M is said to be a free monoid (semigroup) if

there exist an alphabet X for which M is isomorphic to X∗ (X+).

So clearly X+ and X∗ are free. Note that all the definitions we have made for X we

can also do with any subset of X, most notably when we consider a single element u ∈ X

so u∗ (we will not use the braces here) is the free monoid generated by u. Free monoids

will be covered extensively in a later chapter.
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1.1.3 Codes and Free Hulls

Now that we have created a foundation of what we will dive into questions regarding subsets

of monoids that are monoids themselves, which we will call submonoids.

Definition 10 Let M be a monoid and let Z be a non empty subset of M . We will say

that Z generates M if for every x ∈ M we can express x = z1z2 . . . zn for zi ∈ Z and

n ∈ N. Moreover, the identity of M is not an element of Z.

The definition above can also be applied to semigroups by disregarding the condition

of the identity since the identity does not exists.

Note that if we have a generating set Z for some submonoid Y of X∗, over some alphabet

X, then every word in Y can be written as a product of words in Z. Thus, we can think

about Z as being an alphabet generating Y , and vice versa. For example, consider the old

Spanish alphabet that includes the letter ch. Notice how this letter is a combination of

two symbols, yet it is a part of the alphabet and used as a single letter. This alphabet

generates the set of all Spanish words.

Having this in mind, we will show that there exists a unique minimal generating set for

every submonoid of X∗ as shown in Lothaire, see [4]. By minimal in the previous statement

we mean that there is no smaller set that can be a generator.

Theorem 1 Let Y be a submonoid of X∗, then the smallest alphabet that can generate Y

is Z = (Y − 1)− (Y − 1)2.

Proof. Let w ∈ Y . Note that w can be written as a product of non-empty words

w = y1y1 . . . yn where yi ∈ Y and each yi cannot be written as a product of two non-empty

words. Note that Z = (Y − 1) − (Y − 1)2 is exactly the set of words in Y that cannot

be written as a product of two non-empty words, thus yi ∈ Z for all i. Therefore, Z

generates Y .

Now let Z ′ be another set that generates Y . Suppose that Z ′ ⊂ Z, then there exists

z ∈ Z such that z = z1z2 where z1 and z2 are non-empty and z1, z2 ∈ Z ′. Since Z ′ generates

4



Y then z1, z2 ∈ Y . We found z ∈ Z such that it can be written as a non-empty product of

two elements in Y which contradicts the definition of Z, so Z is minimal. �

Definition 11 The set Z from the theorem above is called the minimal generating set

of Y . Z is called a code if Y is free.

Now that we have defined the minimal generating set of a submonoid of X∗, we can use

it to characterize free monoids.

Theorem 2 Let Y be a submonoid of X∗ and let Z be its minimal generating set. Y is

free if and only if whenever

x1x2 . . . xn = y1y2 . . . ym where xi, yj ∈ Z

then n = m and xi = yi

This theorem will be proved in the next chapter where we will have a more abstract

definition of free monoids to show that indeed the two facts are equivalent. For now, note

that this theorem states that Y is a free monoid with generating set Z if and only if

Y = Z∗

Therefore, if we have a free submonoid we can use its minimal generating set as an alphabet.

Remark 1 We will say that Y is freely generated by Z if every element of Y can be uniquely

written as a product of generators from Z.

The following example comes from Lothaire, see [4]. We can see that if we have an

alphabet X = {a, b}, then note that a submonoid Y of X∗ is generated by Z = {a, ab, ba} ⊂

X∗, but it is not generated freely since aba ∈ Y can be written in two ways: aba = a(ba) =

(ab)a. On the other hand, set Z ′ = {aa, ba, baa, bb, bba} freely generates a submonoid Y ′ of

X∗: every element of Y ′ can be uniquely represented by a product of elements of Z ′.
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Another example of a code is {u, v} where u, v ∈ X∗ and there does not exists w ∈ X∗

such that u, v ∈ w∗. Here a person can ask what happens if there does exists such a w.

This is actually interesting question with very promising results. We will cover this more

in detail in the next section.

Theorem 3 A submonoid Y of X∗ is free if and only if pw,wq ∈ Y where p, q ∈ Y and

w ∈ X∗ implies w ∈ Y

Proof. Let Y be a submonoid of X∗ and let Z be its minimal generating set. Now

suppose that if w ∈ X∗ and there exist p, q ∈ Y such that pw,wq ∈ Y implies w ∈ Y .

Then if

x1x2 . . . xn = y1y2 . . . ym xi, yj ∈ Z

we may suppose that x1 ≤ y1, thus, y1 = x1w for some w ∈ X∗. Moreover we have

x2 . . . xn = wy2 . . . yn. Now we have x1w,wy2y3 . . . yn ∈ Y so w ∈ Y . Since Y is minimally

generated by Z we get that w = 1 so x1 = y1. Performing induction we get that n = m

and that xi = yi, making Y free.

Suppose that Y is a free submonoid of X∗. Since Y is free there exists an isomorphism

φ : B∗ → Y where φ(B) = Z, Z being the minimally generating set. Now suppose that

w ∈ X∗ and there exist p, q ∈ Y where pw,wq ∈ Y . Let

φ(x) = p, φ(y) = q, φ(s) = pw, and φ(t) = wq.

Now since φ is a isomorphism and that Y is a submonoid we get φ(xt) = φ(sy) implying

that xt = sy and pwq = pwq so w ∈ Y . �

Theorem 4 Any intersection of free submonoids of X∗ is free.

Proof. Let {Yi}i∈I be a family of free submonoids of X∗. Suppose that there exist

pw,wq ∈
⋂
i∈I

Yi such that p, q ∈ Yi for all i and w ∈ X∗.

By Theorem 3 we know that w ∈ Y for all i since every Yi is free. Thus, w ∈
⋂
i∈I Yi. �

6



Since the property of being free is preserved by intersections, we can now talk about

the smallest, in terms of set inclusion, free monoid containing a subset of X∗, since for any

A ⊂ X∗ the set {Y — A ⊂ Y and Y is free} is not empty so there is always a free hull for

any subset of X∗.

Definition 12 Let A ⊂ X∗ and let Y be the smallest, in terms of set inclusion, free

submonoid containing A. We will call the code generating Y the free hull of A.

Now that we have made a connection between any subset of X∗ and the smallest free

submonoid containing it we can prove something intuitively obvious and very powerful.

Theorem 5 (Deflect Theorem) Let A be the free hull of Y ⊂ X∗ such that Y is not a

code, then the following inequality holds

|A| ≤ |Y | − 1

Proof. Let α : Y → A, α(y) = a such that y ∈ aA∗. To check if α is well-defined let

y ∈ Y then since A is a code there exists a ∈ A such that y ∈ aA∗, so every element of

Y is mapped onto A. Now suppose that α(y) = a1 and α(y) = a2. Then y ∈ a1A∗ and

y ∈ a2A∗ so there exist a ∈ a1A∗ and a′ ∈ a2A∗ such that a = a′. From Theorem 2 we can

see that a and a′ are of equal length and that each of their letters are equal thus a = a′ so

a1A
∗ = a2A

∗.

Now that we know that α is well defined we will show that α is not injective but it is

surjective.

Since Y is not a code there exist an equality x1x2 . . . xn 6= y1y2 . . . ym such that xi, yi ∈ Y

for all i and x1 6= y1. Thus, α(x1) = α(y1) but x1 6= y1 so α is not injective.

Suppose that α is not surjective, then their would exists a z ∈ A such that z /∈ α(Y ).

Let Z = (A− z)z∗ which is the subset of A that would not be mapped to at all. Suppose

that the following equality holds

z1z2 . . . zn = z
′

1z
′

2 . . . z
′

m, zi, z
′

i ∈ Z.

7



Then since zi, z
′
j ∈ Z we can write them as follows zi = yiz

ki and z
′
j = y

′
jz
k
′
i where

yi, y
′
j ∈ (A − z) and ki, k

′
j ≥ 0. Recall that A is a code yi = y

′
i, z

ki = zk
′
i , and n = m.

Therefore Z is a code. Note that Y ⊂ Z∗ ⊂ A∗ which contradicts the minimality of A,

therefore α is surjective.

Since we showed that α is surjective but not injective it follows that |A| ≤ |Y |−1 holds.

�

This proof comes from Lothaire, see [4]. The Deflect Theorem proves that codes of free

monoids, free hulls, are the smallest way of representing any subset of X∗.

1.1.4 When Do Words Commute?

In the Preliminaries we noted that the monoid X∗ is not commutative so let’s investigate

if it is possible to find a submonoid of X∗ that is commutative. Let’s start off by the

simplest case, if we consider {a}, a ∈ X as our submonoid then obviously any word in

a∗ commutes since we only have one letter. We will try to generalize this idea with the

following definition, which was obtained from Lothaire and Mikhalev, see [4, 5].

Definition 13 Let u ∈ X+ then we call u primitive if u ∈ w∗ implies u = w.

With a name like primitive we can see that we will show that we can use these words

as building blocks to create other words.

Theorem 6 If there exist u, v ∈ X∗ and n,m ≥ 0 such that un = vm then there exists w

such that u, v ∈ w∗.

Proof. Suppose that there exist n,m ≥ 0 such that un = vm for some u, v ∈ X∗. If

u = v then the result is trivial so suppose that u 6= v. The set {u, v} is not a code since

un = vm and by the Deflect Theorem we get that their must exist w ∈ X∗ such that

u, v ∈ w∗. �

Now we can see that for all u ∈ X+ we have u1 = u1 so there exists a unique primitive

word such that u ∈ w∗.

8



Theorem 7 The set of words that commute with a word u ∈ X+ is a monoid generated

by a single primitive word.

Proof. Let z be a primitive word such that a ∈ z∗. If ab = ba then the set {a, b} is

not a code. So there exists a word c ∈ A+ such that a, b ∈ c∗. Moreover, c ∈ z∗ since z is

primitive, thus the set of all words that commute with a is z∗. �

From Theorem 7 we can see that there are commutative submonoids of X∗. Moreover,

this is also free and has a code of {w}. These are all nice properties to have but it is

disappointing that to get all of this we have to limit ourselves to only using one word,

so let’s leave the question of submonoids behind and see what we can say if we can only

commute by breaking down a word into two fixed words.

Definition 14 Two words x, y ∈ X∗ are said to be conjugates if there exist u, v ∈ X∗

such that x = uv and y = vu.

Let aaba, abaa ∈ {a, b}∗, then aaba and abaa are conjugates since a, aba ∈ {a, b}∗,

aaba = a(aba), and abaa = (aba)a.

Similarly to before, we will follow the steps of Lothaire, see [4], and find an easy way

to check if two words are conjugates or each other.

Theorem 8 Two words x and y are conjugates if and only if there exists a word z such

that xz = zy. More precisely we can show that there exist words u and v such that x = uv,

y = vu, and z = u(vu)∗.

Proof. Suppose that x, y ∈ X∗ are conjugates, thus x = uv and y = vu for some

u, v ∈ X∗, and let z ∈ u(vu)∗. We know that z = u(vu)n for some non-negative integer n.

Thus, xz = (uv)(u(vu)n) = (u(vu)n)(vu) = zy.

Conversely, suppose that xz = zy for some z ∈ X∗. Then for all n ∈ N xnz = zyn also

holds. Note that there exist an n0 ∈ N such that

(n0 − 1)nX(x) ≤ nX(z) ≤ n0nX(x).

9



With this n0 we get that

z = xn0−1u, x = uv, and vz = yn0 .

Thus, y = vz = vxn0−1u = (vu)n0 so y = vu showing that x and y are conjugates of each

other. �

1.1.5 Formal Series

Now that we have a foundation of words, how to represent them, and some basic properties

they can have, we can move on to problems involving words. Enumeration problems come

up frequently when working with words, and to tackle these type of problems we will create

a mapping from X∗ to a ring, usually the integers.

Definition 15 Let X be an alphabet and K be a ring with unity. A formal series with

coefficients in K and variables in X is a mapping from X∗ to K. The set of all of

these functions will be denoted by K〈〈X〉〉.

The notation we will be using comes from Lothaire, see [4], and is different from tradi-

tional functional notation. Let σ ∈ K〈〈X〉〉 and let w ∈ X∗, then we will denote the value

of σ at w by 〈σ,w〉; we will call this value the coefficient of w in σ.

One of the most useful formal series is the characteristic series of A ⊂ X defined as

A : X∗ → Z, 〈A, w〉 = 1 if w ∈ A

〈A, w〉 = 0 if w /∈ A

Another useful formal series is nX which gives the length of a word.

Definition 16 Let σ ∈ K〈〈X〉〉; if all but finitely many of the coefficients of σ are 0, then

we will call σ a polynomial. We will denote the set of all polynomials by K〈X〉.

10



Note that the set K〈X〉 is a subring of K〈〈X〉〉 since adding two polynomials will create

a formal series which has at most a finite number of non-zero entries. A polynomial we will

be using later on in this section is the characteristic series of a single word.

Now that we have defined formal series we are able to define operations on them, see

Lothaire [4].

Definition 17 Let σ, τ ∈ K〈〈X〉〉, then for all w ∈ X∗

〈σ + τ, w〉 = 〈σ,w〉+ 〈τ, w〉

〈στ, w〉 =
∑
uv=w

〈σ, u〉〈τ, v〉

With this definition the following theorem tells us how these operations interact with

characteristic functions.

Theorem 9 Let X be an alphabet and consider A,B ⊂ X∗ then the following are true

i Let C = A ∪B, then C = A+B if and only if A ∩B = ∅

ii Let C = AB, then C = AB if and only if xy = x′y′ implies x = x′ and y = y′ for

x, x′ ∈ A and y, y′ ∈ B.

iii Let A ⊂ X+ and P = A∗ then P = A∗ if and only if A is a code.

Proof.

i Let C = A ∪B and w ∈ X∗.

Assume that C = A + B and suppose that A ∩ B 6= ∅. Thus, let w ∈ A ∩ B so

w ∈ C and 〈A, w〉 = 1, 〈B, w〉 = 1, and 〈C, w〉 = 1. This contradicts to the fact that

C = A+B so A ∩B = ∅.

Conversely assume that A ∩ B = ∅. If w ∈ C, then 〈C, w〉 = 1. Note if w ∈ C then

w ∈ A or w ∈ B and since A∩B = ∅ then only one of the following equals 1, 〈A, w〉 = 1

11



or 〈B, w〉 = 1, so 〈A, w〉+ 〈B, w〉 = 1 . If w /∈ C then, 〈C, w〉 = 0. Since w /∈ C then

w /∈ A and w /∈ B so 〈A, w〉+ 〈B, w〉 = 0 Thus 〈A, w〉+ 〈B, w〉 = 〈C, w〉 for all w ∈ A

so C = A+B.

ii Let C = AB and w ∈ X∗.

Suppose that C = AB and suppose that there exists a word w ∈ C that can be written

in the following ways w = xy and w = x′y′. Then

〈C, w〉 = 〈AB, w〉 =
∑
uv=w

〈A, u〉〈B, v〉 ≥ 〈A, x〉〈B, y〉+ 〈A, x′〉〈B, y′〉 = 2

But this contradicts to the fact that C is a characteristic function thus w can be written

uniquely as an element of XY .

Conversely suppose w ∈ C, then w = xy where x ∈ A and y ∈ B and this representation

is unique. Thus, 〈C, w〉 = 〈C, xy〉 = 1 and 〈A, x〉〈B, y〉 = 1 · 1 = 1. Now, if w /∈ C

then clearly 〈C, w〉 = 0 = 〈A, x〉〈B, y〉 where w = xy. Thus C = AB.

iii Let A ⊂ X+ and P = A∗.

Suppose that P = A∗ and suppose that A is not a code. Since A is not a code we are

able to write some w ∈ P in two different ways w = b1 . . . bn and w = c1 . . . cm. Note

that from (i) and (ii) we get that

A∗ =
∏
a∈A

a

therefore

〈P , w〉 = 〈A∗, w〉 =
n∏
i=1

〈bi, bi〉+
m∏
j=1

〈cj , cj〉 = 2.

But this contradicts to the fact that P is a characteristic function so A∗ is a code.

Conversely suppose that A is a code then, if w ∈ P then w = a1 . . . an where an ∈ A

and this representation is unique. Similarly to before we get that

A∗ =
∏
a∈A

a

12



and since the representation is unique we get

〈P , w〉 =
n∏
i=1

〈ai, ai〉 = 1.

Clearly if w /∈ P then the coefficients of both series are 0. Thus, we have P = A∗.

�

Definition 18 Let σ ∈ K〈〈X〉〉 and let λ ∈ K〈X〉 then we can define the product of them

as follows

〈σ, λ〉 =
∑
w∈X∗
〈σ,w〉〈λ,w〉

Note that since λ is a polynomial we will not have an infinite product when multiplying

by a formal series, such as σ. Since polynomials are so useful we will try to carry on the

property of having infinitely many zero coefficients to a family of formal series to generalize

the definition of sums.

Now we can break down any formal series into a sum of this form and work with a sum

of a locally finite family which are easier to work with.

Definition 19 Let σi ∈ K〈〈X〉〉 for i ∈ I. We will call (σi)i∈I locally finite if for all

w ∈ X∗ all but finitely many of the coefficients 〈σi, w〉 are zero.

With this new definition we will be able to generalize addition for a certain family of

series.

Definition 20 Let (σi)i∈I be a locally finite family. The sum of (σi)i∈I , denoted by σ,

is a formal series defined by,

〈σ,w〉 =
∑
i∈I

〈σi, w〉.

For a simple example of a locally finite family in an alphabet X let a ∈ X then consider

the formal series of families (an)n∈N. Moreover any infinite family of characteristic functions

is a locally finite family since for all w ∈ X∗ there will be at most one function whose

coefficient is 1 while the rest will be 0. The importance of these locally finite families is

given by the following theorem.
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Theorem 10 Let the locally finite family (w)w∈X∗ and let σ ∈ K〈〈X〉〉 then we can write

σ in terms of an infinite sum

σ =
∑
w∈X∗
〈σ,w〉w.

Proof. Consider the locally finite family (w)w∈X∗ and let σ ∈ K〈〈X〉〉. Let λ =
∑

w∈X∗

and v ∈ X∗ then,

〈λ, v〉 =
∑
w∈X∗
〈w, v〉 = 〈v, v〉 = 1.

Form this it follows that σ =
∑

w∈X∗〈σ,w〉w. �

1.2 Infinite Words

1.2.1 Defining and Constructing Infinite Words

Let us move on to defining infinite words. Note that the definition of these types of words

is basically a sequence but the way we are going to work with them will be a bit different.

The definitions and theorems in this section come from Lothaire, see [4].

Definition 21 Let X be an alphabet. An infinite word on X is a function

a : N→ A

and we will say that a = a0a1a2 . . . an . . . , ai ∈ X.

Definition 22 Let a be an infinite word on an alphabet X and let µ be a homomorphism

from X∗ to another free monoid Y ∗, then µ(a) = µ(a0)µ(a1) . . . .

Definition 23 Let a be an infinite word on an alphabet X then the left factor of length

k, k ∈ N, is a[k] = a0a1 . . . ak−1.

Note that we can create an infinite word out of an infinite word by considering everything

after a left factor of length k, i.e. a = a[k]b where b = akak+1 . . . .

14



Definition 24 Let a be an infinite word on an alphabet X then a factor of a is any word

u ∈ X∗ such that there exists k ∈ N where a = a[k]ub.

From these definitions we see that we can create an infinite word by just creating a

sequence of letters in a given alphabet, but we can also create infinite words from a specific

sequence of words.

Definition 25 Let w0, w1, w2, . . . be a sequence of words in X∗ such that wn−1 ≤ wn for

all n ∈ N and the length of the words is increasing. Then define the infinite word a by

a[k] = wn if |wn| = k. The infinite word a is called the limit of (wn)n∈N and written

a = limwn.

The last common way of creating an infinite word is using a special kind of homomor-

phism and iterate it on some letter of X.

Theorem 11 Let α : X∗ → X∗ be a homomorphism such that α(a) 6= 1 for some a ∈ X

and there exists some letter a0 such that α(a0) = au for some u ∈ X+. Then the limαn(a0)

is an infinite word.

Proof. Let α : X∗ → X∗ be a homomorphism and a0 be as described in the theorem.

Then for any n ∈ N we have the following

αn+1(a0) = αn(a0u) = αn(a0)α
n(u).

From this we can see that αn(a0) ≤ αn+1(a0) for all n ∈ N so limαn(a0) is well defined and

therefore is an infinite word. �

1.2.2 Proving Properties Using Infinite Words

Now that we know some common ways of creating and working with infinite words we will

move on to proving that if an infinite word on an alphabet X has a property then there

are infinitely many words in X∗ with that property if that property is carried out to the

factors of the word.
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Definition 26 Let P be a property that a word v can have, denoted P (v). P is said to be

stable for factors if P (xuy) implies P (u) for all words x, y, and u such that v = xuy.

The set that denotes the words that satisfy P is LP = {w ∈ X∗ | P (w) is satisfied}.

Note that in the definition above the word with the property in question does not have

to be finite. Note that if the word is infinite then when we break the word down at least

on of its factors must be infinite.

Theorem 12 Let X be a finite alphabet and let P be a property of elements that is stable

for factors, then the set LP is infinite if and only if there exists an infinite word on X with

property P .

Proof. Suppose that the set LP is infinite. Since X is finite we know by the Pigeonhole

Principle that there are infinitely many words in LP that start with the same letter, call

it a0 ∈ X. Since P is stable for factors that means that a0 has property P , this will

be the base case for our induction. Now assume that there exists a word a0a1 . . . an that

has the property P , thus a0a1 . . . an ∈ LP . Consider the set (a0a1 . . . an)X∗. This set is

clearly infinite and therefore once more by the Pigeonhole Principle there exists a letter an

such that LP ∩ (a0a1 . . . anan+1)X
∗ is infinite, thus a0a1 . . . anan+1 ∈ LP . In conclusion, we

created an infinite word letter by letter at is in LP .

Conversely, suppose that there is an infinite word a on X with a stable property for

factors P . Since P is a stable property for factors then every left factor of the infinite word

a has property P . Therefore, a[k] ∈ LP for all k ∈ N making LP infinite. �

1.2.3 Infinite Square-Free Word

To be able to show that there is an infinite square-free word we must first show that there

is an infinite word with no overlap called the infinite word of Thue-Morse. We will then

create a homomorphism to apply to the infinite word with no overlap to create the square-

free word. This construction of an infinite square-free word can be found in Lothaire and

Mikalev, see [4, 5].
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Definition 27 Let X be an alphabet and let w ∈ X∗ where w = a0a1 . . . an and ai ∈ X for

all i. Then we will define the reversal of w by w̃ = anan−1 . . . a1a0. We will call a word

w a palindrome if w = w̃.

If we are considering the reversal of a word, w, that is we can describe as the product

of two words, w = uv, we will use the following notation, w̃ = (uv)̃.

Definition 28 Let X = {a, b} and let w ∈ X∗. We will define the complement of w as

by w where the every a in w is replaced with b and similarly every b is replaced with a.

For example let w = abbaba then w = baabab.

Remark 2 It is clear from the definition that w and wv = wv for any w, v ∈ {a, b}∗.

Let X = {a, b}, this will be the alphabet we will use for the rest of the section unless

specified otherwise, consider the homomorphism

µ : X∗ → X∗ where µ(a) = ab and µ(b) = ba.

We will use this homomorphism for the rest of the section.

Theorem 13 Let u0 = a, v0 = b, and for any n ≥ 0 we have un+1 = unvn and vn+1 = vnun.

The following properties of µ are true:

i un = µn(a) and vn = µn(b) for n ≥ 0.

ii vn = un and un = vn for n ≥ 0.

iii u2n and v2n are palindromes for n ≥ 1.

iv u2n+1 = v2n+1 for n ≥ 0.

Proof.
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i For n = 0, µ0 is just the identity mapping therefore u0 = a = µ0(a) and v0 = b = µ0(b).

Moreover, note that µ0(a)µ0(b) = ab = µ1(a) and µ0(b)µ0(a) = ba = µ1(b).

Now suppose that, un = µn(a), vn = µn(b), and µn(a)µn(b) = µn+1(a) for some n. Now

un+1 = unvn = µn(a)µn(b) = µn+1(a),

therefore doing an induction on product of homomorphisms, we get that µn(a)µn(b) =

µn+1(a) so we conclude that un+1 = µn+1(a). Similarly, vn+1 = µn+1(b) completing the

induction.

ii As a base for the induction note that u0 = a = b = v0 and v0 = b = a = u0.

Now suppose that, vn = un and un = vn for some n. Then, un+1 = unvn = unvn =

vnun = vn+1. Similarly, vn+1 = un+1.

iii For the case of n = 1 we can see that u2 = abba = ũ2 and v2 = baab = ṽ2.

Suppose that un and vn are palindromes and consider ũn+2 = (un+1vn+1)̃ = (unvnvnun)̃ =

unvnvnun = un+1vn+1 = un+2 so un+2 is a palindrome and similarly for vn+2.

iv For n = 0 we have that u1 = ab = v1.

Now suppose that, u2n−1 = v2n−1 for some n, and from here we can see that

u2n+1 = u2nv2n = (u2n−1v2n−1)(v2n−1u2n−1) = (v2n−1u2n−1)(u2n−1v2n−1) = v2nu2n = v2n+1.

�

Remark 3 By iterating µ on a we create an infinite word t = abbabaabbaababba . . . likewise

iterating µ on b we also create an infinite word t = baababbaabbabaab . . . . t and t are known

as the infinite words of Thue-Morse.

We will use the following two lemmas to show that t has no overlapping factors.

Lemma 1 Let Y = {ab, ba}. If w ∈ Y ∗, then awa, bwb /∈ Y ∗.
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Proof. This proof will be done by induction on nY (w). If nY (w) = 0 then w = 1 and

we only have two cases to consider and indeed aa, bb /∈ X∗.

Now suppose that u is the smallest word (in terms of length) in Y ∗ such that u = awa

or u = bwb for some w ∈ Y ∗. Without loss of generality assume that u = awa ∈ Y ∗, where

u = u1 . . . un and ui ∈ Y for all i. We know that u1 = ab and that un = ba, therefore

u = abvba for some v ∈ Y ∗. This means that there exist a smaller word than u, which we

will denote by v, for which bvb ∈ Y ∗. This contradicts the minimality of u so awa /∈ Y ∗

and bwb /∈ Y ∗. �

Lemma 2 Let w ∈ X∗. If w has no overlapping factors, then µ(w) has no overlapping

factors.

Proof. By contraposition suppose that there exists some w ∈ X such that µ(w) has

an overlapping factor. Since µ(w) has an overlapping factor we know that there exist

x, y, v ∈ X∗ and c ∈ X such that µ(w) = xcvcvcy. Since x, y, v ∈ X∗ they have even length

and since c ∈ X we know that nX(cvcvc) and nX(xy) are odd. Now note that since µ is a

homomorphism we can apply to each letter individually therefore µ(w) ∈ {ab, ba}∗ = Y ∗.

Thus we have two cases.

Case 1: nX(x) is even and x, cvcv, cy ∈ Y ∗

Case 2: nX(x) is odd and xc, vcvc, y ∈ Y ∗

In both case we can deduce from Lemma 1 that nX(v) is odd since if it was even then

cvcv ∈ Y ∗ or vcvc ∈ Y ∗ would give us v, cvc ∈ Y ∗.

Note if nX(x) is even we can see that cv ∈ Y ∗ and we can break down w = rsst with

r, s, t ∈ X∗, µ(r) = x, µ(s) = cv, and µ(t) = cy. Note that s and t must start with the

same letter to give that their image under µ starts with c so w has an overlapping factor.

Now if nX(x) is odd we have a similar case. We can break down w = rsst with

r, s, t ∈ X∗, µ(r) = xc, µ(s) = vc, and µ(t) = y. In this case we get that r and s give us

the overlapping factor in w. �

Theorem 14 t has no overlapping factors.
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Proof. Assume towards contradiction that t has an overlapping factor. If t has an

overlapping factor that means there exists a natural number k such that the overlapping

factor is in the left factor µk(a). Note that a has no overlapping factors so applying Lemma

2 k times we would deduce that µk(a) has no overlapping factors which is a contradiction,

therefore t has no overlapping factors. �

Sadly the infinite word of Thue-Morse is not square-free but we will now create a

homomorphism to create a square-free word using the infinite word of Thue-Morse.

Let X = {a, b} and Y = {a, b, c}. Consider the homomorphism

λ : Y ∗ → X∗ where λ(a) = abb, λ(b) = ab, and λ(c) = a.

With this homomorphism we can take any infinite word b on Y and create an infinite word

on X that starts with the letter a.

Lemma 3 Let a be an infinite word on X = {a, b} that starts with the letter a and has

no overlapping factors, then we can write a = y0y1 . . . yn . . . where yn ∈ {a, ab, abb}. The

factorization is unique.

Proof. We can clearly see that any a in a must be followed by at most two b’s since bbb

is an overlapping factor. That justifies the inclusion of ab and abb. To justify the inclusion

of a note that aa is not an overlapping factor.

For uniqueness suppose that a = y0y1 · · · = z0z1 . . . where yn, zn ∈ {a, ab, abb}. Note

that since words are left cancellative there must be some k ∈ N where yk 6= zk. But due

to the set {a, ab, abb} we can assume without lost of generality that yk < zk meaning that

yk+1 has to start with b but that is a contradiction. �

This lemma tells us that given any infinite word on X without overlapping factors we

can find a unique infinite work on Y , b, with the property that λ(b) = a

Theorem 15 Let a be an infinite word on X that starts with the letter a and has no

overlapping factors and and let b be an infinite word on Y such that λ(b) = a, then b is

square-free.
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Proof. Assume towards contradiction that b is not square-free, then there exists some

word u ∈ Y ∗ such that uu is in b. Let d be the letter after uu in b. Since λ is a

homomorphism we can study λ(uud). We know that λ(uud) is a factor of a. Now recall

that all the images of λ start with a so λ(uud) = avavaw for some v, w ∈ X∗, so a

has an overlapping factor which is a contradiction. Therefore, we can conclude that b is

square-free. �

With this theorem and lemma we can say that t is produced by a infinite square-

free word which is usually called m. We can construct m by breaking down t into the

yn ∈ {a, ab, abb} from Lemma 3 and creating m one letter at a time.

Another way of constructing m, which does not depend on t, is by iterating the homo-

morphism

φ : X∗ → X∗, φ(a) = abc, φ(b) = ac, and φ(c) = b

on a, thus

λ(t) = m = limφn(a),

see [4].
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Chapter 2

Algebraic Properties of Free

Semigroups

2.1 Relations and Mappings

This goal of this section is to introduce relations that are able to work with the binary

relations on a semigroup or monoid. We will look at specific sets that are created from

these relations. Moreover, in this section we will be looking at mappings between the

algebraic structures that we have been studying. The notations and theorems from this

section were obtained from Howie, see [3].

Let us start by getting some basic definitions and conventions that we will be using out

of the way.

Definition 29 A relation ρ on sets X and Y is a subset of the Cartesian product X × Y ,

if we have X = Y then we call ρ a relation on X.

There is some common terminology that we will be using such as if (x, y) ∈ ρ then we

will say that x is related to y and will often use the notation xρy. Note that relations do

not have to be symmetric therefore stating that y is related to x is not given. We will also

use the notation

xρ = {y ∈ X : xρy}

to describe the set of all elements related to x.

The diagonal, {(x, x) : x ∈ X}, is relation that we will often refer to, so we will

conveniently refer to it as 1X .
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Relations are usually described as the generalization of mappings since they do not have

the restriction that every element has to be related to a element and that it can only related

to one element. From this idea of generalizing mappings comes the next definitions.

Definition 30 Let ρ be a relation on a set X then the following sets are known as the

domain and image of the relation respectively,

dom(ρ) = {x ∈ X : there exists y ∈ X such that xρy},

im(ρ) = {y ∈ X : there exists x ∈ X such that xρy}.

Definition 31 Let ρ be a relation on a set X. Then we call ρ a partial mapping if

|xρ| = 1 for all x ∈ dom(ρ). If dom(ρ) = X then we will call ρ a map.

Notice that in this generalization not every element in X has to related to an element

but we keep the restriction that every element that is actually related to an element is

related to exactly one element of X. Since it is suppose to be a generalization of mappings

it can be seen that an equivalent definition of a partial mapping is: if xρy and xρz then

y = z.

Similarly to mappings we can compose to relations by the following definition.

Definition 32 Let ρ and σ be relations on X, then the composition of ρ and σ is

denoted

ρ ◦ σ = {(x, y) ∈ X ×X : there exists z ∈ X such that xρz and zρy}.

From this definition it is easy to see that composition of partial maps is a binary relation

on the set of all partial maps denoted PX . Recall that functions with the same domain and

codomain form a monoid with their composition. Similarly we have that the composition of

partial maps is associative and the relation 1X is the identity element. With this intuition

in mind we go consider the following remark.
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Remark 4 PX is a monoid with the operation ◦, where PX is the set of all partial maps

on a non-empty set X.

Definition 33 Let ρ be a relation on a sets X and Y then we will call ρ−1 = {(y, x) ∈

Y ×X : xρy} the inverse of ρ.

Note that ρ−1 is always a relation but it is not always guaranteed that the inverse of a

partial map is a partial map. For a quick example consider ρ : a, b→ a, b where aρ = {a}

and bρ = {a}. Then ρ−1 is not a partial map since |aρ−1| = 2.

Since we will be sometimes dealing with a monoid it is always necessary to make the

distinction between the inverse relation and the inverse relation in terms of the operation

of composition.

Now we will turn our attention to one of the most useful types of relations.

Definition 34 Let ε be a relation on X, then we call ε an equivalence relation if ε

satisfies the following properties

i 1X ⊂ ε (reflexive)

ii ε = ε−1 (symmetric)

iii ε ◦ ε ⊂ ε (transitive)

Remark 5 Symmetry can can also be reformulated in these terms xεy then yε−1x.

Likewise, transitivity can also be reformulated in the terms of xεz and zεy then xεy.

Equivalence relations are an essential tool for studying many areas of mathematics due

to the following theorem.

Theorem 16 Let ε be an equivalence relation on a non-empty set X, then the sets

xε for x ∈ X

create a partition on X.
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Conversely, if we have a partition of X, {Ai}i∈I then the relation

xρy if x, y ∈ Ai for some i.

is an equivalence relation.

Proof. Let ε be an equivalence relation on X and we have to show that the sets of the

form xε form a partition.

i From relexivity we get that x ∈ xε for all x ∈ X.

ii Now let x, y ∈ X such that xε ∩ yε 6= ∅. Then there exists z ∈ xε ∩ yε. That is xεz

and zεy and from transitivity we get that xεy implying that xε = yε.

iii Since xε ⊂ X for all xinX we get that ∪x∈Xxε ⊂ X. To show the other inclusion, let

a ∈ X. Then a ∈ aε from (i) so a ∈ ∪x∈Xxε and thus X ⊂ ∪x∈Xxε

From (i), (ii), and (iii) we can see that the sets xε for x ∈ X create a partition on X.

For the converse, let {Ai}i∈I be a partition on X and define ρ as stated by the theorem.

i Since {Ai}i∈I is a partition then for all x ∈ X we have that x ∈ Ai for some i, thus xρx

for all x ∈ X.

ii Suppose that xρy then x, y ∈ Ai for some i. Then y, x ∈ Ai so yρ−1x.

iii Suppose that xρy and yρz then x, y ∈ Ai and y, z ∈ Aj. Since {Ai}i∈I is a partition

then Ai = Aj so x, z ∈ Ai implying that xρz.

From (i), (ii), and (iii) we can see that ρ is an equivalence relation. �

The following theorem allows us to create an equivalence relation from any mapping.

Theorem 17 Let ρ : X → Y be a mapping, then ρ ◦ ρ−1 is an equivalence relation.

Proof. Let ρ : X → Y be a mapping, then xρ 6= ∅ for all x ∈ X. Let y ∈ xρ. We can

see that x ∈ yρ−1, therefore (x, x) ∈ ρ ◦ ρ−1 for all x. Showing that 1X ⊂ ρ ◦ ρ−1.
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Suppose that x(ρ◦ρ−1)z. This implies that there exists y ∈ Y such that xρy and yρ−1z.

From here we can see that z(ρ ◦ ρ−1)−1x.

Suppose that x(ρ ◦ ρ−1)y and y(ρ ◦ ρ−1)z. Then there exists a, b ∈ Y such that xρa,

aρ−1y, yρb, and bρ−1z. Since ρ is a mapping we get that a = b. Therefore we get that

x(ρ ◦ ρ−1)z making ρ ◦ ρ−1 transitive. �

Definition 35 The equivalence relation from the previous theorem, ρ ◦ ρ−1, is known as

the kernel of ρ and is denoted ker(ρ).

Similarly to the previous theorem, the next theorem will also lead to a new definition.

Theorem 18 Let us denote {ε}i∈I to be a family of equivalence relations on a set X then

∩i∈Iεi

is also an equivalence relation on X.

Proof. Out of convenience let ∩i∈Iεi = E . Note that 1X ⊂ εi for all i ∈ I so 1X ⊂ E .

Suppose that xEy, then xεiy for all i ∈ I. Since each εi is an equivalence relation we

get that yε−1i x for all i ∈ I so yE−1x.

Now suppose that xEy and yEz, then xεiy and yεiz for all i. Since these are equivalence

relations we get that xεiz for all i, thus xEz. �

Definition 36 Let ρ be a relation on a set X then we will denote ρe to be the smallest, in

terms of set inclusion, equivalence relation containing ρ.

Since equivalence relations are closed under intersections then the previous definition

is well defined since we can just take the intersection of all the equivalence relations that

contain ρ,

ρe = ∩i∈Iεi

where εi is an equivalence relation containing ρ. This is a not the nicest definition to work

with. Therefore, following the ideas presented in Howie, see [3], we will create an equivalent

condition that we can work with better.
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Definition 37 Let ρ be a reflexive relation on a set X then we will define

ρ∞ = ∪n∈Nρn

where ρn = ρ ◦ ρ ◦ · · · ◦ ρ, n many times.

We force ρ to be reflexive so we insure that ρn ⊂ ρn+1 for all n ∈ N. ρ∞ is usually

transitive closure of ρ due to the following theorem.

Theorem 19 If ρ is a reflexive relation on a set X, then ρ∞ is the smallest transitive

relation that contains ρ.

Proof. We will start off by showing that ρ∞ is transitive. Suppose that xρ∞y and

yρ∞z. This means that there exists i, j ∈ N such that xρiy and yρjz. We can now see that

x(ρi ◦ ρj)z which is the same as saying xρi+jz. From the definition of ρ∞ we can see that

ρi+j ⊂ ρ∞. We can now conclude that xρ∞z showing that ρ∞ is transitive.

To show that ρ∞ is the smallest relation on X that contains ρ, let σ be a transitive

relation that contains ρ. Note that ρ2 ⊂ ρ ◦ ρ ⊂ σ ◦ σ. Recall that σ is transitive so

σ ◦ σ ⊂ σ, thus ρ2 ⊂ σ. By induction we can see that ρn ⊂ σ for any n ∈ N, therefore

ρ∞ ⊂ σ.

�

With this new definition we can now give a workable definition to ρe by this following

theorem.

Theorem 20 Let ρ be a relation on X, then

ρe = (ρ ∪ ρ−1 ∪ 1X)∞.

Proof. Out of convenience let P = (ρ ∪ ρ−1 ∪ 1X)∞. Note that P is a transitive and

reflexive relation. Moreover, since ρ∪ ρ−1 ∪ 1X , we get that P is symmetric. Thus, P is an

equivalence relation.
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Now we are going to show that P is the smallest equivalence relation containing ρ. Let ε

be an equivalence relation containing ρ. Note that 1X ⊂ σ and ρ ⊂ σ. Moreover, since σ is

symmetric we get that ρ−1 ⊂ σ−1 = σ. These subset conditions imply that ρ∪ρ−1∪1X ⊂ σ.

Now we have,

(ρ ∪ ρ−1 ∪ 1X)2 = (ρ ∪ ρ−1 ∪ 1X) ◦ (ρ ∪ ρ−1 ∪ 1X) ⊂ σ ◦ σ = σ.

By induction we get that (ρ∪ ρ−1 ∪ 1X)n ⊂ σ for all n ∈ N. Therefore, P ⊂ σ. This shows

that P is the smallest equivalence relation that contains ρ, i.e. ρe. �

2.1.1 Congruences and ρ]

Now that we have laid a solid foundation for relations we are now able to see how these

relations and operations from semigroups (and monoids) interact with the goal in mind

that we will be using congruences to represent a specific semigroup.

Definition 38 A relation ρ on a semigroup S is called left (right) compatible if for all

a, x, y ∈ S we have

if xρy then (ax)ρ(ay) ( if xρy then (xa)ρ(ya) )

Definition 39 We say a relation ρ on a semigroup S is compatible if

if aρb and xρy then (ax)ρ(by)

for all a, b, x, y ∈ S.

Remark 6 A relation is compatible if and only if it is right and left compatible.

Now we will prove some useful theorems that will assist us in working with compatible

relations.

Theorem 21 Let ρ be a compatible relation on a semigroup S, then ρn is compatible for

all n ∈ N.
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Proof. Let xρ2y, then there exists z ∈ S such that xρz and zρy. Since ρ is right

compatible we get that axρaz and azρay for every a ∈ S, therefore axρ2ay. Similarly we

can show that ρ2 is left compatible showing that ρ2 is compatible. Now by induction we

get that ρn is compatible for all n ∈ N. �

Theorem 22 A right and left compatible equivalence relation ε on a semigroup S is com-

patible on S.

Proof. Suppose that ε is a right and left compatible equivalence relation on a semigroup

S and aεb and xεy. From right compatibility we get that (ax)ε(bx). Similarly, by left

compatibility we get that (bx)ε(by). Now by transitivity we get that (ax)ε(by). �

Compatible equivalence relations are going to be used so often that it will be useful to

give them a name.

Definition 40 Let σ be a relation on a semigroup S then we say σ is a congruence if σ

is an equivalence relation and compatible on S.

Since we will be working with quotient sets in this section it will be useful to define the

following mapping.

Definition 41 Let ρ be a congruence on a semigroup X then we can define

ρ\ : X → X/ρ where aρ\ = aρ

for all x ∈ X.

This mapping is well defined since ρ is an equivalence relation so there is no possible

way that an element of X can be mapped to distinct subsets of X.

Remark 7 Let X be a semigroup and let ρ be a congruence relation then X/ρ is a semi-

group under the following operation,

(xρ)(yρ) = (xy)ρ

for all x, y ∈ X.
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Theorem 23 ρ\ as defined above is a homomorphism.

Proof. Let a, b ∈ X. Consider (ab)ρ\ = (ab)ρ = (aρ)(bρ) = (aρ\)(bρ\) �

Now we can move on to prove a useful property of congruences.

Theorem 24 Let {σi}i∈I be a family of congruences on a semigroup S, then

∩iIσi

is also a congruence.

Proof. Let Since we know that intersection of arbitrary equivalence relations is an

equivalence relation so we only have to show that ∩iIσi is compatible.

Suppose that a(∩iIσi)b and x(∩iIσi)y, then aσib and xσiy for all i ∈ I. Since each

sigmai is compatible we get that (ax)σi(by) for all i ∈ I, therefore, (ax)(∩iIσi)(by). �

Definition 42 Let ρ be a relation on a semigroup S, then we denote the smallest, in terms

of set inclusion, congruence containing ρ by ρ]

Since the intersection of congruences is closed by intersection, this definition makes

sense because we can just consider the intersection of all congruences containing a relation,

i.e.

ρ] = ∩i∈Iσi

where σi is a congruence containing ρ. This definition and reasoning is very similar to the

one used for ρe.

Similar to how we found a nice way of finding ρe for any given relation, ρ, we will do

the same for ρ] following the ideas presented in Howie, see [3]. Similarly for this we will

have to define some more concepts and prove a couple of theorems so let us start with some

new definitions.

Definition 43 Let ρ be a relation on a monoid X then

ρc = {(xay, xby) | x, y ∈ X and aρb}.
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By Theorem 24 and the same logic we have used before for ρe and ρ∞ we will show

the following theorem.

Theorem 25 For any relation ρ on a monoid X, ρc is the smallest compatible relation

that contains ρ.

Proof. Since X is a monoid we can see that (1a1)ρc(1b1) showing that ρ ⊂ ρc. Now

to show that ρc is compatible we will show that it is left and right compatible. Suppose

that uρcv, then u = xay and v = xby for some x, y ∈ X and aρb. Now let z ∈ X, then

zu = (zx)ay and zv = (zx)by. Thus, zuρczv. It can be shown in a similar fashion that ρc

is right compatible.

Now suppose that σ is a compatible relation that contains ρ. Since σ is compatible and

contains ρ then axyσayb for all a, b ∈ X and xρy. Thus, ρc ⊂ σ. �

Now the following lemma show some useful properties of ρc that will be useful in the

proof of some properties of ρ].

Lemma 4 Let ρ and σ be relations on a semigroup X then the following properties hold,

i if ρ ⊂ σ then ρc ⊂ σc

ii (ρ−1)c = (ρc)−1

iii (ρ ∪ σ)c = ρc ∪ σc

Proof.

i Suppose that ρ ⊂ σ, then aσb whenever aρb. From here we can see that for all x, y ∈ X

xayρxby implies that xayσxby.

ii Let u(ρ−1)cv then u = xay and v = xby for some x, y ∈ X and aρ−1b. We know that

bρa so xbyρcxay, which is vρcu. Thus, we get u(ρc)−1v.
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iii Suppose that u(ρ∪σ)cv, then u = xay and v = xby where a(ρ∪σ)b. From a(ρ∪σ)b we

know that aρb or aσb. If we have aρb then uρcv. If we have aσb then uσv. Therefore,

(ρ ∪ σ)c ⊂ ρc ∪ σc.

For the other inclusion, suppose that u(ρc ∪ σc)v where uρcv or uσcv. Giving us that

for x, y ∈ X we have u = xay and v = xby, where aρb or aσb. Thus a(ρ∪ σ)b giving us

that xay(ρ ∪ σ)cxby. Therefore, ρc ∪ σc ⊂ (ρ ∪ σ)c.

�

Remark 8 The last property that we will need for ρc is that 1X = 1cX for any non-empty

set X, which is clear.

With these properties in mind we are finally able to prove the following theorem.

Theorem 26 For any relation ρ on a semigroup X we have that

ρ] = (ρc)e.

Proof. Note that ρc contains ρ and (ρc)e is the smallest equivalence relation containing

ρc and thus it contains ρ. Thus, we only have to show that (ρc)e is compatible.

Recall that we know that

(ρc)e = (ρc ∪ (ρc)−1 ∪ 1cX)∞

and by the previous lemma we get

(ρc ∪ (ρc)−1 ∪ 1cX) = (ρ ∪ ρ−1 ∪ 1X)c.

Note that (ρ ∪ ρ−1 ∪ 1X)c is compatible and ((ρ ∪ ρ−1 ∪ 1X)c)n is compatible for all n ∈ N

by Theorem 23. Therefore, ((ρ ∪ ρ−1 ∪ 1X)c)∞ is compatible.

The only thing left to show is that (ρc)e is the smallest congruence containing ρ. Let

σ be a congruence containing ρ. Notice that σc = σ by definition of σc, and since ρ ⊂⊂ σ

we have that ρc ⊂ σc = σ by Lemma 4. Recall that (ρc)e is the smallest equivalence

containing ρc and σ is an equivalence, thus (ρc)e ⊂ σ. �
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2.2 Free Semigroups

Throughout this section note that we will be focusing on semigroups but all the definitions

make sense and theorems are true if the word semigroup is replaced with monoid.

2.2.1 Categorical Definition

In this section we are going to be working with an alternative, more general, definition

of Free Semigroups found in Howie, see [3]. Moreover, we are going to connect this new

definition to the earlier definition in Chapter 1, so let us start with the new alternative

definition.

Theorem 27 A semigroup FX is free on a set X if and only if

i There exists a function α : X → FX

ii For any semigroup S and ϕ : X → S there exists a unique homomorphism λ : FX → S

such that

X FX

S

ϕ

α

λ

commutes, i.e. λα = φ.

Proof. Let X+ be a free semigroup on an alphabet X. Define

α : X → X+, α(x) = x.

Note that this function just takes the letters in X to the words of length one in X+. This

function is usually called the natural embedding.

Now let S be a semigroup and let ϕ be a function from X onto S. We will define

λ : X+ → S, λ(x) = ϕ(x1) . . . ϕ(xn).
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This function takes a word, applies ϕ to each of its letters and then multiplies them in S.

To show that λ is a homomorphism, let x, y ∈ X+ and consider,

λ(xy) = ϕ(x1) . . . ϕ(xn)ϕ(y1) . . . ϕ(ym) = λ(x)λ(y).

Now to show that the diagram commutes, let a ∈ X, then we have

λα(a) = λ(a) = ϕ(a).

Conversely, let conditions (i) and (ii) hold when X is an alphabet, S = X+ and ϕ = β

which will be the standard embedding. We will show that λ is actually a isomorphism.

Since the following diagram commutes,

X FX

X+

β

α

λ

we have that λα = β. Suppose that for a, b ∈ X we have α(a) = α(b). We can apply λ to

both sides and get λ(α(a)) = λ(α(b)) which is the same thing as saying β(a) = β(b) which

implies that a = b. Thus since β is injective so is α.

Suppose that u, v ∈ X+ such that u = v, then u1 . . . un = v1 . . . vn where ui = vi. Now

we have that,

u = β(u1) . . . β(un) = λ(α(u1)) . . . λ(α(un)) = λ(x1) . . . λ(xn) = λ(x1 . . . xn) = λ(x).

Similarly we get that v = λ(y) where xi = yi for all i since α is an injection. Therefore we

conclude that x = y.

Now let x ∈ X∗, then

x = β(x1) . . . β(xn) = λ(α(x1)) . . . λ(α(xn)) = λ(y1) . . . λ(yn) = λ(y1 . . . yn) = λ(y).

Therefore, λ is surjective. �
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Note that this theorem shows that the definition of free semigroup we had before is

equivalent to having a set FX that satisfies conditions (i) and (ii). The diagram, condi-

tion (ii), is known as the Universal Property in category theory and is used to generalize

the idea of free semigroups to free objects. We will not go into free objects but we will

use the definition to show interesting properties that free semigroups have. Finally the

homomorphism λ is usually called a substitution by elements of S.

Theorem 28 Two free semigroups on the same set X are isomorphic.

Proof. Let FX and GX be free semigroups on X then there exist homomorphisms λ and

µ such that

X FX X GX

S T

α

ϕ
λ

β

ρ
µ

commute for any semigroups S and T and functions ϕ, and ρ. Since the diagram commutes

for any semigroups we can replace GX for S and FX for T . This will give us the following

X FX X GX

GX FX

α

β
f

β

α
g

We know both of these diagrams commute so we know that

β = fα and α = gβ,

giving us

β = f(gβ) and α = g(fα).

Now since f and g are unique and α and β are standard embeddings we get that f and g

are inverse functions. Hence, f and g are isomorphisms and we have FX ∼= GX . �
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The proof of this theorem is an adaptation of themes shown in Howie, see [3]. Moreover,

this theorem tells us that if we ever have a free semigroup on a set X, call it FX , then we

can just work with X∗. Thus, we can apply all the theory we have shown with X∗ instead

of working with an abstract free semigroup FX .

2.2.2 Characterizations and Theorems

Now we will use the definition from the previous section to create some characterizations

of free semigroups and show some properties. We have already seen some characterizations

of free submonoids when the superset is free in the first chapter. We will use these and

intuition to see what equivalent conditions to being free.

Lets start by proving recalling and proving Theorem 2 using the categorical definition

of free semigroups as it is done in Lothaire, see [4].

Theorem 2 Let Y be a submonoid of X∗ and let Z be its minimal generating set. Y

is free if and only if whenever

x1x2 . . . xn = y1y2 . . . ym where xi, yj ∈ Z

then n = m and xi = yi

Proof. Suppose that Y is free with minimal generating set Z and we have

x1x2 . . . xn = y1y2 . . . ym where xi, yj ∈ Z.

Without loss of generality we can say that x1 ≤ y1. Therefore we have y1 = x1u where

u ∈ Y but recall that x1, y1 ∈ Z which are all the words in Y that cannot be written as

the product of two different words, thus we get u = 1. Now we have x2 . . . xn = y2 . . . ym

but using the same argument as before we can see that n = m and xi = yi for all i.

Conversely suppose that every word in Y can be written uniquely as a product of

elements of its minimal generating set Z. We will show that Y = Z∗. Let S be a semigroup
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and let ϕ be a function from Z to S. Similarly to before, we will define

α : Z → Y, α(z) = z (the standard embedding)

λ : Y → S, λ(y) = ϕ(y1) . . . ϕ(yn) where yi ∈ Z for all i.

From the proof of Theorem 27 we can see that λ is an homomorphism and the uniqueness

comes from the ability to write any word in Y as a unique product of elements of Z. Thus,

Y = Z∗ showing that Y is free. �

This proof is an excellent example to show why it is beneficial to have two different

ways of defining a concept. Proving this theorem can be tedious and unintuitive with the

definition in Chapter 1.

Now let us shift our focus to some definitions which are going to assist us in the charac-

terization of free semigroups. Moreover, we will show some properties that free semigroups

have. Both the characterization and properties can be found in Howie, see [3].

Definition 44 Let M be a monoid. We will define the units of M as the set containing

the invertible elements in M . We will denote it by U(M).

Note that we can write

U(M) = {x ∈M | there exists x−1 ∈M where xx−1 = x−1x = 1}.

For an example, consider the monoid Z with the usual multiplication then U(Z) = {1,−1}.

Note that for any monoid M we have U(M) 6= ∅ since 1 ∈ U(M).

Definition 45 A monoid M is called cancellative if

xy = xz implies y = z and yx = zx implies y = z

for all x, y, z ∈M .

Definition 46 A monoid M is called equidivisible if xy = zw implies

x = za and w = ay for some a ∈M or z = xb and y = bw for some b ∈M
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Definition 47 We say a monoid M has proper length if there exists a homomorphism

f : M → N and f(x) = 0 if and only if x = 1.

Remark 9 X∗ has proper length since nX(xy) = nX(x) + nX(y) for all x, y ∈ X∗ and

f(x) = 0 if and only if x = 1 by definition of the empty word.

Moreover, note that nX has the following property: if x 6= 1, y 6= 1, and nX(x)+nX(y) =

nX(z) then nX(x) < nX(z) and nX(y) < nX(z).

We will not be able to exchange semigroup and monoid for the theorems involving

proper length since X+ does not have proper length.

Now that we have some definitions out of the way we can move on to the theorems.

The first theorem is similar to Theorem 2 but now we are not requiring the monoid of a

subset of a free monoid, thus, we could see Theorem 2 as a corollary of this theorem.

Theorem 29 A monoid X is free if and only if for all w ∈ X there exists a unique

factorization of elements in Z = (X − 1) \ (X − 1)2.

The proof of this theorem is almost exactly the same as converse of the proof for

Theorem 2 therefore it will be omitted. For an alternative proof of this theorem see

Clifford, see [2].

Theorem 30 If a monoid X is equidivisible and has proper length then X is free.

Proof. Let X be an equidivisible monoid with proper length. Let Z = (X−{1})−(X−

{1})2. We will show that that every element of X can uniquely be factorized by elements

of Z.

Let a, b ∈ X−{1} such that ab = 1, thus giving us nX(ab) = 0. Since the X has proper

length we get that nX(a) + nX(b) = 0 giving us that a = b = 1. Consider x ∈ (X − {1})2,

then there exists two words u, v ∈ X − {1} such that x = uv. From proper length we get

that nX(u)+nX(v) = nX(x) and since nX has a lower bound we can say write x = x1 . . . xn

where xi ∈ Z for all i.
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Now suppose that

x1x2 . . . xn = y1y2 . . . ym where xi, yj ∈ Z.

Then once more since we have that xi, yi ∈ Z and Z is the set of words that cannot be

written as a product of two words we get that n = m and xi = yi for all i, thus X free. �

Theorem 31 X is free if and only if the following properties are satisfied:

i U(X) = {1}

ii X is cancellative and equidivisible

iii every w ∈ X has finitely many non-trivial left factors

Proof. Suppose thatX is free. Note that by Theorem 28 we can think ofX as the usual

words with concatenation that we are familiar with. By the definition of concatenation it

is easy to see U(X) = {1} and that every w ∈ X has finitely many non-trivial left factors.

Suppose that zx = zy and x 6= y where x, y, z ∈ X. Since X has proper length we can

see that nX(z) + nX(x) = nX(z) + nX(y) which implies that nX(x) = nX(y). Since x 6= y

we know that there exists a letter in x and y in the same position that do not coincide

giving us that this same letter does not coincide in zx and zy, therefore zx 6= zy. This

is a contradiction giving us that X is right cancellative. It can be shown that X is left

cancellative in a similar way.

Suppose that we have xy = zw for w, x, y, z ∈ X. Then we have that xy = zw =

a1 . . . an. We know that there exists l, k ∈ N such that

x = a1 . . . ak, y = ak+1 . . . an and z = a1 . . . al, w = al+1 . . . an.

If k = l we can use 1 to show the property of equidivisibility is satisfied. Without loss of

generality we can assume that k < l. Now we have

xy = a1 . . . an = (a1 . . . ak)(ak+1 . . . al)(al+1 . . . an) = xbw,

39



thus X is equidivisible.

Conversely, suppose that X has properties (i), (ii), and (iii). Let x, y ∈ X such that

xy = 1. We will show that x = y = 1. Let e = yx and consider (yx)2 = y(xy)x = yx = e.

This gives us that e2 = e and by cancellation we get that eyx = 1. We have shown that x

and y are inverses but U(X) = {1} so x = y = 1.

Now suppose that X − {1} = (X − {1})2. Supposing this allows us to take any x ∈

X − {1} and give it a left factorization as long as we please. Since we showed that no

elements of X have left or right inverses all these factorizations are distinct contradicting

(iii). We can conclude that (X − {1})− (X − {1})2 6= ∅.

With similar reasoning we can show that the sets of the form (X −{1})i are nested for

i ∈ N. Therefore every element x ∈ X can be written x = x1 . . . xn for a unique n, i.e. X

has proper length. Since X is equidivisible and has proper length by Theorem 30 we get

that X is free. �

Note that these types of theorems help in two different ways. They give us a criteria

to check besides a definition and if we satisfy a definition then we have properties that we

can use.

The last theorem in this section is from Clifford, see [2]. In this theorem we are going

to show that if two free semigroups are isomorphic then the alphabets are mapped to each

other via the isomorphism.

Theorem 32 Let FX be a free semigroup on X and let GY be a free semigroup on Y . If

there exists an isomorphism ϕ : FX → GY then ϕ(X) = Y .

Proof. We know that X and Y are the minimal generating sets for FX and GY respec-

tively. Note that

ϕ(F 2
X) = ϕ(FX)ϕ(FX) ⊂ G2

Y

and

ϕ(X) = ϕ(FX − F 2
X) = ϕ(FX)− ϕ(F 2

X) ⊃ GY −G2
Y = Y.

Similarly, we get that Y ⊂ ϕ(X). �
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2.2.3 Ranks and Codes

Recall that in section 1.1.3 we studied that there is a unique set that generates a free

semigroup. In this section we will explore this concept through a more algebraic perspective.

The following definition comes from Mikhalev, see [5].

Definition 48 Let Y be a submonoid of X∗ on a finite alphabet X with generating set

Z = (Y − 1) \ (Y − 1)2 then the rank of X∗ is the cardinality of Z.

Note that the rank of any submonoid is well defined since X is finite and the generating

set of a submonoid is unique.

Remark 10 A free submonoid, Y ∗, of a free monoid, X∗, not necessarily have to have a

smaller rank than X∗.

For this consider an the alphabet X = {a, b}. Then we know that X∗ has rank 2. Now

consider the free submonoid Y ∗ generated by Y = {aa, ba, baa, bb, bba}. Y ∗ has rank 5.

The fact that the generating set is unique is not usually true. Consider Z with the usual

addition then Z can be generated by 〈−1〉 and 〈1〉 so Z does not have a unique generating

set. Consider a group with three elements {a, b, e} with identity e. This group can be

generated by 〈a, b〉 and 〈a, ab〉.

Remark 11 From Theorem 32 we can see that two free semigroups with finite alphabets

are isomorphic if they have the same rank.

2.3 Finite Presentation

In this section we will be continue working with the ideas of congruences and generating

set to be able to create an equivilent way of describing a monoid. Moreover, we will be

defining a important semigroup that we will be working with later.
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2.3.1 Semigroups and Isomorphisms

We are going to start off this section by seeing an interesting consequence of the categorical

definition of free semigroups presented in Clifford, see [2].

Theorem 33 Let X+ be the free semigroup on the alphabet X and let S be a semigroup

with a set of generators M such that |M | ≤ |X|. Then S is isomorphic to a quotient

semigroup of X+

Proof. Note that since |M | ≤ |X| we can see that there exists a surjective function

ϕ : X → M . We can now extend ϕ to be a function λ from X+ to S. Note that since λ

maps X+ onto the generators of S then λ also maps X+ onto S. Now by the Fundamental

Theorem of Homomorphisms we have that S ∼= X+/ker(λ). �

Note α, ϕ, λ, and S from the theorem above will be used for the rest of the section.

From the this theorem we can see that any semigroup S is isomorphic to a quotient

semigroup, X+/ρ, of some free semigroup X+. Since we know what the generators of a

free semigroup are we will try to do the same for an arbitrary semigroup with the following

definition, see Howie, see [3].

Definition 49 If there exists a finite relation σ on X+ such that X is finite and ρ = σ],

then we say that S ∼= X+/ρ has a finite presentation.

Moreover, if σ = {(x1, y1), . . . , (xm, ym)} and X = {u1, . . . , un} then we will express

S = 〈u1, . . . , un | x1 = y1, . . . , xm = ym〉.

We will call the elements of X the generators of S and the elements of σ are the

defining relations.

Note that the first theorem of this section allows us to represent any semigroup as a free

semigroup modulo an equivalence relation. In the definition above we are doing something

similar where we are considering a free semigroup modulo an unique congruence. Thus, we

have found a way of describing a semigroup based on the letters of an alphabet and some

congruences on words made from these letters.

42



2.3.2 Bicyclic Semigroup

In this section we will be looking at a semigroup known as the bicyclic semigroup. We will

show some properties of this semigroup that are covered in Clifford, see [1]. Then we will

give a generalization of this semigroup which we will use in the following section.

Definition 50 The bicyclic semigroup has the following finite presentation

B0 = 〈a, b | ba = 1〉 = X∗/ρ

where X = {a, b} and ρ = {(ba, 1)}]

Note that B0 is actually a monoid but similar to the other sections we will use monoid

and semigroup as almost synonyms.

For an example of the operation we have

aababba = a2(ba)b(ba) = a21b1 = a2b.

It is easy to see that every element of B0 is of the form anbm where n,m ∈ N ∪ {0}. The

formulation of the product in B0 is as follows

akbm · arbs =

 akbm−r+s if m ≥ r

ak−m+rbs if m < r.

We can also see that a and b are not really adding anything to the computation therefore

we can disregard them and see that B0
∼= N ∪ {0} ×N ∪ {0} where the product is just the

result of applying the corresponding operations to the exponents.

Definition 51 Let M be a monoid and x ∈M . The cardinality of the set {xn | n ∈ N∪{0}}

is called the order of the x.

Remark 12 One of the most important properties of B0 is that both a and b have infinite

order.
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The following theorems are some of the theorems that make the bicyclic semigroup so

important to study.

Theorem 34 Let S be a semigroup with e, a, b with the following properties

ae = ea = a, be = eb = b, ba = e, and ab 6= e

then the semigroup made from these three elements is isomorphic to B0.

Proof. Since ae = ea = a, be = eb = b, and ba = e we can see that e ∈ 〈a, b〉 and e is

the identity of this monoid. Note that since ba = e we can write every element of 〈a, b〉 in

the form anbm. Now we just need to show the uniqueness of n and m and we are done. To

show this we are going to need to show the following properties first.

i Suppose that b has a finite order, then there exists k, l ∈ N such that bk+l = bk. We get

bl = e by multiplying from the left to both sides by ak. Now we can see that

a = ea = bla = bl−1

from which we get that ab = bl−1b = bl = e which is a contradiction, thus b has infinite

order. Similarly, we can show that a has an infinite order.

ii Suppose that ak = bl for some k, l ∈ N, then by multiplying to the right by bk we get

that bkak = bk+l = e. Now from (i) we get that k + l = 0 thus k = l = 0.

iii We will show that if akbl = e, k, l ∈ N then k = l = 0. It is easy to see that it true if

k = l = 0 so suppose towards contradiction that k 6= 0. Then we would have

b = be = bakbl = ak−1bl

and thus ab = akbl = e which is a contradiction.

Now we are ready to prove that expressing the elements of 〈a, b〉 in the form anbm is

unique. Suppose that anbm = aibj where either n 6= i or m 6= j. Without loss of generality
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we can assume that m < j. Multiplying to the right by am we have an = aibj−m. If i ≤ n

then multiplying by bi to the left would give us an−i = bj−m where j − m > 0 giving us

j > m which is a contradiction to (ii). Also, if n < i we can multiply by bn from the left

to get e = ai−nbj−m where j −m > 0 which contradicts (iii). �

Theorem 35 Let S be a semigroup and ϕ : B0 → S be a homomorphism then ϕ(B0) is

cyclic or ϕ is an monomorphism.

Proof. Let ϕ(1) = e, ϕ(a) = x, and ϕ(b) = y. We can see that all the conditions of

Theorem 34 are meet by e, x, and y except yx 6= e.

Suppose xy = e. Note that x and y are now inverses of each other, thus for xiyj we can

write this as xi−j. If i ≥ j then this is a power of x, otherwise it is a power of y but recall

that y = x−1 so ϕ(B0) is cyclic group generated by x.

Suppose xy 6= e, then ϕ(xnym) = ϕ(xiyj) gives us anbm = aibj then by Theorem 34

we have that n = i and m = j making ϕ an injective homomorphism. �
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Chapter 3

Identities for a Class of Monoids

3.1 Preliminaries

The results in this chapter were published in Notes on Number Theory and Discrete Math-

ematics, see [6]. In this chapter we will be working with the length of a word in a slightly

different way than what we have been used to. Recall that if we have v ∈ X∗ then nX(v)

is the length of this word. The following definition will try to only count the occurrences

of one specific letter in X.

Definition 52 Let X be an alphabet and let x ∈ X, then the function nx : X∗ → N ∪ {0}

gives the number of times the letter x occurs in v.

For an example consider X = {a, b, c}, then na(abacba) = 3. Note that na(abacba) =

na(a
3) yet nX(abacba) 6= nX(a3).

Remark 13 Note that the length of a word, v ∈ X∗ can be recovered in the following way,

nX(v) =
∑
x∈X

nx(v).

Definition 53 We say v, w ∈ X+ are balanced if nx(v) = nx(w) for all x ∈ X.

Note that if v, w ∈ X∗ are balanced then v is just a permutation of the letter of w, or

vice versa. Therefore, it is easy to see that if v, w ∈ X∗ are balanced then λ(v) = λ(w).

Now recall that X+ is a free semigroup on an alphabet X, therefore it satisfies the

universal property Theorem 27 (ii). In Theorem 27 (ii) recall that the homomorphism

λ is known as a substitution be elements of S. With this in mind we can see that the

following definition is well defined.
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Definition 54 We will call the pair (v, w) ∈ S × S an identity satisfied in the semi-

group S, denoted x ≈ y, if λ(v) = λ(w) for all substitution by elements of S.

Now that we have defined identities satisfied in a semigroup S we will define some more

concepts that are closely related to identities.

Definition 55 If v and w are balanced and v ≈ w is an identity satisfied on S, then we

say that the identity v ≈ w is balanced in S. Moreover, since nX(v) = nX(w) we will

call nX(v) the length of the identity.

Definition 56 If v ≈ w is an identity in S and a, b ∈ S, then the identity avb ≈ awb

satisfied in S and is called a simple consequence of v ≈ w.

For this definition we can see that since λ is a homomorphism and an identity v ≈ w is

satisfied in S we have λ(v) = λ(w). Then if we take a, b ∈ X∗ then

λ(avb) = λ(a)λ(v)λ(b) = λ(a)λ(w)λ(b) = λ(awb).

Thus, avb ≈ awb is an identity satisfied in S.

Remark 14 The relation ≈ is an equivalence relation on the set S. We will call the

equivalence classes formed by this partition the identities partition for S, denoted PS.

3.2 Identities on Bn

Recall that in section 2.3.2 we defined the bicyclic semigroup. In the next definition we

will define a more general family of semigroups.

Definition 57 Let n be a non-negative integer, then we can present the monoid Bn in the

following way,

Bn = 〈a, b | ba = bn〉.
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In section 2.3.2 we gave a formulation of the multiplication for B0 so we will do the

same here for n > 0. If n > 0 then the formulation of the product in Bn is as follows

akbm · arbs =

 ak+rbs if m = 0;

akbm+(n−1)r+s if m > 0.

In this section we will see some of the properties that identities in Bn must have and

prove an identity exists in Bn for all n.

First note that Bn is right cancellative for all n. This implies that the identities for Bn

are also right cancellative. Moreover, since Bn contains a copy of the infinite cyclic group,

〈a〉 or 〈b〉 as shown in Theorem 34, we have that any identity v ≈ w is balanced. Recall

that every element of Bn is of the form akbj. Therefore for every identity satisfied in Bn we

must have that the first letter must coincide, we will suppose they start with the letter x.

Lastly, we will say that if the letters in an identity are swapped this is not a new identity.

Now that we have laid out the foundation for some properties and what we are looking

for the following theorem will show us that there is an identity in B0.

Theorem 36 Let x, y ∈ B0 then

(I) xyyxxyxyyx ≈ xyyxyxxyyx, (xy2x2yxy2x ≈ xy2xyx2y2x)

is an identity satisfied in B0. This identity is known as Adjan identity. Moreover, Adjan

identity and this following identity are the only identities in {x, y} of length 10,

(II) xyyxxyyxxy ≈ xyyxyxyxxy (xy2x2y2x2y ≈ xy2xyxyx2y).

Note that this identity is only for B0 so now we will show that there is an identity for

Bn.

Theorem 37 Let j ≤ i for i, j ∈ N and n > 0 we have that

(Ai,j) xyi+1x ≈ xyjxyi−j+1 ((A′i,j) yxi+1y ≈ yxjyxi−j+1)

is an identity satisfied in Bn.
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Proof. Since x, y ∈ Bn let x = arbs and y = akbm. Recall that identities are right

cancellative so to prove (Ai,j) we actually only have to show that yi+1x ∼= yjxji−j+1. Let

us start by considering i = j = 1. This gives us

(a) y2x =

 a2k+rbs if m = 0

akb2m+(n−1)k+(n−1)r+s if m > 0,

and

(b) yxy =


a2k+r if m = 0 and s = 0

ak+rbs+(n−1)k if m = 0 and s > 0

akb2m+(n−1)k+(n−1)r+s if m > 0.

Note that y2x = yxy for every case except the case m = 0 and s > 0. Thus, we will

only consider this case. We have

xyi+1x = xyi−1(y2x) = arbsa(i−1)ka2k+rbs = arbsa(i+1)k+rbs = arb2s+(n−1)[(i+1)k+r],

and

xyixy = xyi−1(yxy) = arbsa(i−1)kak+rbs+(n−1)k = arbsaik+rbs+(n−1)k

= arb2s+(n−1)[(i+1)k+r].

Thus, (Ai,j) is true when i = j for Bn.

Now we can see that for any i > j we have that

xyi+1x ≈ xyixy ≈ xyi−1xy2 ≈ xyi−2xy3 ≈ · · · ≈ xyjxyi−j+1.

�

It can be shown that identities of length 2 or 3 do not exist in B0 leaving us with

(A1,1) begin the smallest identity in B0. The follow remark states that this statement can

generalized for an n.

Remark 15 (A1,1) is the shortest nontrivial identity satisfied in Bn for all n > 0.

With this theorem we can show that Adjan identity and the identity (II) are satisfied

in Bn.
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Remark 16 Adjan identity and (II) are both simple consequences of (A′1,1), therefore they

are both satisfied in Bn.

(A′1,1) ⇒ xy
︷︸︸︷
yx2y xy2x ≈ xy

︷ ︸︸ ︷
yxyx xy2x that is (I);

(A′1,1) ⇒ xy
︷︸︸︷
yx2y yx2y ≈ xy

︷ ︸︸ ︷
yxyx yx2y that is (II).

3.3 Canonical Form and Identities Partition PBn

For this section we will consider words and identities that start with the letter x ∈ Bn and

that have ny(v) > 0, i.e. we are looking at words of the form v = xku where k > 0 and the

first letter of u ∈ Bn is y.

Definition 58 Let v be a word, then the canonical form of v is

(∗) x`1(yx)`2z`3 (where z ∈ {x, y}, `1 > 0 and `2, `3 ≥ 0)

Remark 17 If we have a word v with canonical form x`1(yx)`2z`3, then

v ≈ x`1(yx)`2z`3

is an identity satisfied in Bn for all n.

The following lemma will give a nice way of getting the canonical form of any word

v = xku using nx(u) and ny(u).

Lemma 5 Let v be a word then the canonical form of v is given by,

v ≈

 xk(yx)nx(u)yny(u)−nx(u) if ny(u) ≥ nx(u)

xk(yx)ny(u)xnx(u)−ny(u) if ny(u) < nx(u).

50



Proof. Note that the first letter of u is y so by using (Ai,1) and (A′i,1) we get

v ≈ xkyxyx · · · yxzm (m ≥ 0),

where z = x or z = y.

If ny(u) ≥ nx(u) we get that z = y meaning that all the x′s in u are in the yx terms

of the identity give us nx(u) many yx terms. Moreover, since every identity is balanced

in Bn we can see that that m = ny(u) − nx(u). If nx(u) = ny(u), then the number of yx

terms is still nx(u). Similarly, to before due to the balance identities in Bn we get z = y

and m = ny(u)− nx(u).

If ny(u) < nx(u) then we have z = x and the number of yx terms is ny(u) leaving us

with m = nx(u)− ny(u). �

Finally, we have the two big results.

Theorem 38 Let v and w be words of the form v = xku and w = xk
′
u′, then the following

are equivalent:

i v ≈ w is satisfied in Bn for all n

ii v and w have the same canonical form

iii nx(u) = nx(u
′), ny(u) = ny(u

′), and k = k′

iv (v, w) is balanced and k = k′

Proof. We will first show that (ii) if and only if (i), so suppose that v and w have the

same canonical form then by Remark 14 and Remark 17 we get that v ≈ w.

Conversely, suppose that v ∼= w is satisfied in Bn for all n and v ≈ x`1(yx)`2z`3 and

w ≈ x`
′
1(yx)`

′
2z′`

′
3 . To show these two canonical forms are the same we need to show that

`1 = `′1, `2 = `′2, `3 = `′3, and z = z′ if `3 = `′3 6= 0.

Let σ1,1 be a substitution by elements of Bn for n ∈ N such that σ1,1(x) = a and

σ1,1(y) = b. From here we get,

σ1,1(x
`1(yx)`2z`3) = a`1bn`2b`3 = a`1bn`2+`3 if z = y
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and

σ1,1(x
`1(yx)`2z`3) = a`1bn`2a`3 = a`1bn`2+(n−1)`3 if z = x.

Similarly,

σ1,1(x
`′1(yx)`

′
2z′`

′
3) = a`

′
1bn`

′
2+`
′
3 if z′ = y

and

σ1,1(x
`′1(yx)`

′
2z′`

′
3) = a`

′
1bn`

′
2+(n−1)`′3 if z′ = x.

From the equalities above we can see that `1 = `′1. Moreover, since identities satisfied in

Bn are balanced we get that 2`2 + `3 = 2`′2 + `′3.

We are now left with three cases:

1. (z = z′ = y): n`2 + `3 = n`′2 + `′3, that is (n− 2)(`′2 − `2) = 0.

2. (z = z′ = x): n`2 + (n− 1)`3 = n`′2 + (n− 1)`′3, that is (n− 2)(`′2 − `2) = 0.

3. (z 6= z′): without loss of generality, we can assume z = y and z′ = x then n`2 + `3 =

n`′2 +(n−1)`′3 which implies 2n(`′2−`2) = 2`3−2(n−1)`′3 and so, (n−2)(`3 +`′3) = 0

From the cases above we can see that the canonical forms on v and w match for all n except

n = 2.

For the case of n = 2 we are going to be considering a substitution by elements of B2,

σ1,2 where σ1,2(x) = a and σ1,2(y) = b2. From here we get,

σ1,2(x
`1(yx)`2z`3) = a`1b3`2a`3 = a`1b3`2+`3 if z = x

and

σ1,2(x
`1(yx)`2z`3) = a`1b3`2b2`3 = a`1b3`2+2`3 if z = y.

Similarly,

σ1,2(x
`′1(yx)`

′
2z′`

′
3) = a`

′
1b3`

′
2+`
′
3 if z′ = x

and

σ1,2(x
`′1(yx)`

′
2z′`

′
3) = a`

′
1b3`

′
2+2`′3 if z′ = y.
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Similarly to σ1,1 we can see that `1 = `′1 regardless of z. Recall that from σ1,1(u) = σ1,1(v)

we also got that 2`2 + `3 = 2`′2 + `′3.

We now are left with the following three cases:

1. (z = z′ = y): 3`2 + `3 = 3`′2 + `′3 which with 2`2 + `3 = 2`′2 + `′3 we get `2 = `′2 and

`3 = `′3.

2. (z = z′ = x): 3`2 + 2`3 = 3`′2 + 2`′3 which with 2`2 + `3 = 2`′2 + `′3 we get `2 = `′2 and

`3 = `′3.

3. (z 6= z′): without loss of generality, we can assume z = y and z′ = x then 3`2 + `3 =

3`′2 +2`′3 which implies `2 = `′2 + `′3 and so 2`′2 + `′3 = 2(`′2 + `′3)+ `3, that is `′3 + `3 = 0

and therefore `′3 = `3 = 0

We have shown that if v ≈ w is an identity satisfied in Bn then v and w have the same

canonical form and thus showing (ii) if and only if (i).

We can see that (ii) if and only if (iii) follows from Lemma 5, since if v and w have

the same canonical form then they can can be represented in the same way by nx(u) =

nx(u
′), ny(u), ny(u

′) and k = k′ = nx(u)−ny(u) or k = k′ = ny(u)−nx(u) dependent on z.

(iii) and (iv) is true since balanced and nx(u) = nx(u
′) and ny(u), ny(u

′) are equivalent

statements. �

Remark 18 If we have two words v and w such that k is the largest positive integer such

that xk ≤ v and xk ≤ w, ny(v) = ny(w) = l > 1, and nx(v) − k = ny(u) = m > 0, then

v ≈ w is a nontrivial identity for Bn for all n. Thus, the triples of three positive integers

(k, l,m) give us a set of nontrivial identities.

For example, the triple of positive integers (3, 2, 3) determine the set of words

P3,2,3 = {x3y2x3, x3yx3y, x3yxyx2, x3yx2yx}

and the set of nontrivial identities

I3,2,3 = {x3y2x3 ≈ x3yx3y, x3y2x3 ≈ x3yxyx2, x3y2x3 ≈ x3yx2yx,
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x3yx3y ≈ x3yxyx2, x3yx3y ≈ x3yx2yx, x3yxyx2 ≈ x3yx2yx}.

Note that every distinct triple produces a different set of nontrivial identities. The following

theorem will show that we can represent every nontrivial identity with these triples.

Theorem 39 Let Pk,l,m = {xku | the first letter of u is y, ny(u) = l and nx(u) = m},

then

i)

PBn = {{Pk,l,m}k,l>0,m≥0, {xk}k>0}

is the identities partion (the set of equivalence classes) for Bn (n > 0).

ii) The elements of this partition are finite sets and if k, l > 0,m ≥ 0 then

|Pk,l,m| =

 l +m− 1

l − 1

 .

iii) The cardinality of the finite set of all identities corresponding to the triples (k, `,m),

where k, l > 0 amd m ≥ 0, is the following one:

|Ik,l,m| =

 |Pk,l,m|
2

 .
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