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Abstract 

We report on the optimized synthesis conditions of iron (Fe)-doped gallium oxide (Ga2O3; 

Ga1.9Fe0.1O3, referred to as GFO) inorganic compounds. The GFO materials were synthesized 

using a standard high-temperature solid-state chemical reaction method by maintaining the Fe 

doping amount constant. X-ray diffraction (XRD) revealed that GFO compounds crystallize in the 

β-Ga2O3 phase. The effect of the sintering temperature (Tsint), which was varied in the range of 

900–1200 °C, is significant, as revealed by scanning electron microscopy (SEM) analysis. Tsint 

influences the grain size and microstructure evolution, which, in turn, influences the dielectric 

properties of GFO compounds. The energy-dispersive X-ray spectrometry (EDS) data demonstrate 

the uniform distribution of the elemental composition over the microstructure. The temperature 

and frequency-dependent dielectric measurements indicate the characteristic features that are 

specifically due to Fe doping in Ga2O3. The results demonstrate that densification and control over 

the microstructure and properties of GFO can be achieved by optimizing Tsint. 

New sets of GFO compounds were synthesized by varying the iron (Fe)-doping amount 

(i.e., Ga2–xFexO3; x= 0.00 – 0.30) following the standard high-temperature (Tsint: 1200 oC) solid-

state chemical reaction method. XRD studies of the sintered compounds provided evidence for the 

Fe3+ substitution at Ga3+ site without any secondary phase formation. Rietveld refinement of XRD 

patterns reveal that the GFO compounds crystallized in monoclinic crystal symmetry. X-ray 

photoelectron spectroscopy (XPS) data revealed that at lower concentrations of doping, Fe 

exhibited mixed chemical valence states, whereas single chemical valence state was evident for 

higher Fe content. Local structure and chemical bonding analyses using X-ray absorption near 

edge structure (XANES) revealed that the Fe occupied octahedral and tetrahedral sites similar to 

Ga in parent Ga2O3 lattice without considerable changes in the local symmetry. Raman 
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spectroscopy also confirmed the crystalline nature of the GFO compounds. Morphology of the 

GFO compounds was characterized by the presence of rod-shaped particle features employing 

SEM. The EDS confirmed the chemical stoichiometry of the GFO compounds, where the atomic 

ratio of the constituted elements was in accordance with the calculated concentration values. 

Optical absorption spectra revealed a significant red shift in the optical band gap with Fe 

doping. Origin of the significant red shift is attributed to the strong sp-d exchange interaction 

originated from the 3d5 electrons of Fe3+. Coupled with optical band gap red shift, electrocatalytic 

studies of GFO compounds revealed that doped Ga2O3 compound exhibited electrocatalytic 

activity in contrast to intrinsic Ga2O3. Fe doped samples demonstrated appreciable electrocatalytic 

activity towards the generation of H2 through electrocatalytic water splitting. Electrocatalytic 

activity of the GFO compounds is attributed to cumulative effect of different mechanisms such as 

doping resulted new catalytic centers, enhanced conductivity, and electron mobility. Hence, a new 

pathway in which electrocatalytic behavior of the GFO compounds resulted due to Fe chemical 

states, red shift in optical band gap was explored for the very first time. The implications derived 

from this work may be applicable to a large class of compounds and further options may be 

available to design functional materials for electrocatalytic energy production. 
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Chapter 1: Introduction 

Current world energy sector heavily relies on energy generated from the fossil fuel. The 

demand for fossil fuel-based energy production is ever increasing. The graphical presentation in 

Figure 1.1 demonstrates the projection by International Energy Agency (IEA) on different sources 

of energy production until 20401 and it is quite clear from the graph that the renewable source-

based energy production is increasing gradually. Combustion of fossil fuel generates hazardous 

emissions such as NOx, CO, CH4, CO2, SO2 etc. which have environmental as well as health 

concerns. Furthermore, these gases contribute to the global warming. Non-fossil fuel based clean 

energy system has gained enormous interest from both academic and industrial sectors as a result 

of global warming which is the biggest threat to our existing world. 

 

Figure 1.1: Projection of energy production by IEA. 

Energy conversion technologies associated with different electrochemical reactions such 

as oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution 

reaction (OER) have been recognized as efficient means in the energy conversion and storage 

technologies.2-6 However, electrode materials play a pivotal role in order to design high efficiency 

energy conversion systems that include fuel cell, water splitting devices, and metal-air batteries to 

generate hydrogen and oxygen.7-9 Currently, extensive research has been undertaken to develop 
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multifunctional diversified electrode materials for the aforementioned systems.10-11 Hydrogen 

produced from HER in water splitting process can be used in proton exchange membrane-based 

fuel cell (PEMFC) as a clean fuel for corresponding anodic reaction (hydrogen oxidation reaction). 

Similarly, ORR is a significant cathodic reaction in PEMFC, where oxygen gets reduced as a result 

of water formation, so there has been a huge demand for a very active electrode material to meet 

the demand of the situation i.e. to integrate HER, ORR, and OER in order to develop a viable 

energy technology. Platinum (Pt) and Ir/Ru based materials are used for this purpose as state-of-

the-art catalysts, but the cost of these materials is quite high as well as they are less durable and 

abundant in natural resources which limit their extensive application in industry.12 Current efforts 

are devoted in developing a cost-effective multifunctional electrocatalyst materials with superior 

properties which can be made of less expensive high abundance natural material resources. 

Catalyst performance generally depends on the number of active sites that can be introduced 

through doping of active elements. However, interstitial defects can also act as active sites 

combined with enhanced surface area due to porous nature of the material system. Currently, 

researchers are devoting time in order to formulate a metal oxide based electrocatalyst for HER 

and ORR with good conductivity by introducing doping of carbonaceous elements, nitrogen, 

sulfur, and metallic backbones such as Pt/Ni/Mn,13-19 but the design of these metal oxides are very  

important considering several factors like harnessing maximum catalytic efficiency, specific 

surface area and structural porosity. It is reported that nanotubular shape,20 3D foam-like 

structure,21 and ordered mesoporous architecture,22 are the viable designs for this purpose. 

Electrospinning in addition with thermal treatment is currently being used for large scale catalyst 

fabrication. Being one of the versatile techniques, it has several advantages such as it can 

synthesize nanofibers with high specific surface area, controllable 3D architecture. 
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Electrospinning also has the ability of blending additives in situ. As a result, electrospinning 

technique has emerged as the most successful technique for the production of transition metal 

oxide nanofibers with mesoporous architecture for both HER and ORR.23-28 Other than 

electrospinning technique, solid state chemical reaction route can also be found useful for the 

fabrication of transition metal doped nanostructured electrocatalyst.  

Catalytic activity of β-Ga2O3 whether synthesized by electrospinning process or solid-state 

reaction route, can be enhanced by fabricating nanoarchitecture and spongy porous-like structure. 

It is reported that nanofibers of gallium oxide (β-Ga2O3) synthesized by electrospinning process, 

showed electrocatalytic activity as a bifunctional material for both HER and ORR. β-Ga2O3 has a 

wide band gap (4.9 eV) range with very high breakdown potential of ∼8 MV/cm, and because of 

these salient features, β-Ga2O3 has emerged as a superior material in the semiconducting industry 

as well as in power device applications.29 β-Ga2O3 has ample amount of moderate Lewis acid sites 

on the surface which can influence its catalytic behavior.30 
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Chapter 2: Motivation and Significance of the Project 

While β-Ga2O3 can be fabricated in thin film and bulk forms, doping of various elements 

in thin film and bulk β-Ga2O3 has been attempted to tailor the functional properties.31 In order to 

alter electronic structure and derive new and enhanced properties, doping and alloying with 

selectively chosen elements is an efficient and proven method. For instance, it has been reported 

that the Sn and Cr doped β-Ga2O3 nanowires exhibit excellent luminescence properties suitable for 

display device applications.32 Metal doped Ga2O3 has been found to be attractive and exhibits 

superior catalytic activity for application in energy-harvesting devices. Enhanced catalytic activity 

has been observed in Ga2O3 by the approach of metal ion dopants such as Ni, Zn and Pb.33-35 

However, the attention paid toward the optical, optoelectronic and catalytic properties of Fe-doped 

β-Ga2O3 is meager. Therefore, the present work was performed to fill this knowledge gap and also 

to explore the unexpected property realization (if possible) in Fe-doped β-Ga2O3. 

Our focus and challenging goal of the present work is toward the synthesis and 

optimization of iron (Fe)-doped Ga2O3 compounds. However, as a first step for optimization of 

sintering temperature to obtain high-quality Fe-doped Ga2O3 compounds, we considered the 

selected composition of Ga1.9Fe0.1O3. The impetus for the work on Fe-doped Ga2O3 (Ga1.9Fe0.1O3, 

referred to as GFO) is as follows. To improve the Ga2O3 functionality with metal incorporation, 

the use of isovalent and/or multivalent ion(s) opens the possibility of designing materials for many 

strategic applications.36-42 For instance, the emerging concept of hybrid Ga2O3 nanomaterials is 

found to be attractive for contemporary applications in lithium-ion batteries, transparent 

conductive oxides, and photoluminescence.43 In addition, some of the approaches open up new 

possibilities for cost-effective large-area green electronics, which are used for energy-harvesting 

devices. Doping other metals in Ga2O3 has proven to be quite useful in the design of electrodes for 
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enhanced photocatalytic activity.33-34, 39 While these emerging applications are appealing and many 

methods of the chemical and physical synthesis of compounds are available, it is imperative to 

choose and optimize the processing conditions needed to reach the desired properties. Most 

importantly, a better understanding of the influence of thermochemical synthetic conditions, the 

fundamentals of associated chemical kinetics and crystal growth, and, finally, control over the 

phase and chemistry is quite important. 

2.1 RESEARCH OBJECTIVES 

The principal hypothesis that constitutes the background for this dissertation work is to 

establish a structure property correlation and performance evaluation of Fe doped gallium oxide 

ceramic material for optical and electrocatalytic applications. The main objective of this research 

work is, therefore, to design, fabricate, and set a basis for fundamental understanding of the effect 

of Fe doping into β-Ga2O3 specifically on its structure, properties and phenomena. The specific 

tasks and objectives pertinent to the undertaken research work are discussed below briefly. 

2.1.1 Fabrication of Iron (Fe) Doped Ga2O3 Compounds 

The primary objective of this research work is to fabricate high-quality intrinsic and Fe 

doped Ga2O3 bulk ceramic compounds employing solid state chemical reaction method. The goal 

is to investigate the structure property correlation of the fabricated compounds and their different 

properties for application in the field of optoelectronics and electrocatalysis. Inclusion of specific 

transition-metal ion in Ga2O3 is expected to show magnetic and magnetoelectronic properties, 

which might be useful for integration into other future applications.44 Therefore, from a 

fundamental as well as an applied perspective, it is interesting and highly beneficial to derive a 

better understanding of the underlying science of the Fe doping into Ga2O3 to develop and design 

materials for industrial applications. The aforementioned properties and phenomena mainly 
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depend on the microstructural and interfacial chemistry, which, in turn, are sensitive to the 

processing conditions and associated chemical synthesis. Furthermore, the physical and chemical 

properties and preparation methods of nanosized powder particles are significantly different from 

the bulk materials.45-46 Also, optimization of the sintering process is of the utmost importance in 

order to achieve the best possible density and to obtain better chemical, physical, and electrical, 

properties of the oxides. It is beneficial to start the process with the smallest possible size particle 

because the higher surface energy associated with the small precursor particle will act as the 

driving force for the sintering process.47-50 However, unfortunately, there is no substantial literature 

available until now on the impact of the firing conditions for synthesizing GFO compounds. 

Therefore, the work presented here and specifically filling this fundamental knowledge gap in 

synthesizing such GFO compounds is expected to significantly contribute to the fundamental 

science of metal-doping effects in Ga2O3-based compounds. 

2.1.2 Optimization of Synthesis Conditions 

Optimizing the fabrication condition in order to achieve desired structure, morphology, 

electronic, optical, and catalytic properties, is of paramount importance. The impact of synthesis 

conditions such as proper mixing of the precursor powders with the binders, maintaining exact 

furnace temperature for calcination and sintering, duration of calcination and sintering, and partial 

pressure of the reactive gases inside the hot furnace atmosphere dictate the ultimate crystal 

structure, grain size, band gap, capacitance, resistivity, and related properties. 

2.1.3 Establishing Structure-Property Correlation 

Deriving a structure-property relationship is quite helpful in order to achieve an in-depth 

analysis of the transition metal doped Ga2O3 ceramic compounds for optical and electrocatalytic 

applications. The influence of synthesis parameters on the structure and property will be discussed 
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in detail. Special heed will be given towards the metal doping technique to introduce, modify 

and/or enhance the optical, and electrocatalytic properties as well as overall performance of these 

doped compounds. Furthermore, a comprehensive understanding of the structure-property 

relationship based on optimization of the calcination and sintering environments may provide a 

roadmap to the design and processing of Ga2O3 based materials for applications in catalysis, 

electronics, magneto-electronics, optoelectronics, energy storage, and conversion. 

2.1.4. Evaluation of Practical Application Potential 

Tuning the optical and optoelectronic properties of Ga2O3 has gained great attention due to 

their potential integration into several technological applications, which include solar blind photo 

detectors, photo-catalysis, luminescent phosphors, and photovoltaics. Ga2O3 valance band edge is 

found to be located at –7.75 eV vs vacuum, hence it can provide photo-generated charges with 

high oxidizing potentials which makes it useful for photocatalytic applications.34 In fact, Ga2O3 

has been reported to be an excellent water splitting photocatalyst for the generation of hydrogen. 

However, the main drawback associated with photocatalytic applications of Ga2O3 is its wide band 

gap (~5 eV), which limits their functionality due to UV-only absorption. Thus, despite its greatest 

potential, in a broader context, the photocatalytic applications of this material are considerably 

limited because it fails to generate sufficient electron-hole pairs upon solar light illumination. 

Different approaches have been adopted in order to enhance the photocatalytic activity of Ga2O3 

based materials. Doping with suitable ions is one of the most popular methods, where the 

photocatalytic properties of β-Ga2O3 significantly altered by dopants. 

During last few decades, hydrogen (H2) has been advocated as a clean and sustainable 

source of energy and is considered as an ideal candidate to meet the future energy requirements. 

Among different techniques available, electrocatalytic water splitting is considered the most 



8 

economical and viable process. Electrocatalysts minimize the energy requirement for water 

splitting and, in this regard, platinum (Pt) shows the best result. But the high price and low 

abundance of Pt limit its extensive use. As an alternative, sulfides, phosphides and oxide-based 

materials have already been explored as an electrocatalyst. In the present work, for the first time, 

it is reported that the iron (Fe) doping facilitated selectivity across a wide spectral range and, 

specifically, the red-shifted optical band gap, and the electrocatalytic behavior of the transition 

metal doped Ga2O3 ceramics. 
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Chapter 3: Literature Review 

3.1. GALLIUM OXIDE 

Gallium oxide (Ga2O3) is a well-known transparent conductive oxide (TCO). Oxides of In, 

Zn, Sn, Cd, Cu, Mg metals also belong to this group.51 Lecoq de Boisbaudran52 discovered 

elemental gallium and its compounds in 1875. The early literatures have very few basic studies on 

Ga2O3. Wide-band-gap oxides such as ZrO2, Y2O3, HfO2, La2O3, Ga2O3, and GeO2 have been the 

focus of much attention in recent years because of their wide range of technological applications 

in photocatalysis, chemical sensing, electronics, photonics, electro-optics, optoelectronics, and 

magnetoelectronics.53-57 Gallium oxide (Ga2O3), one among the wideband-gap oxides, has drawn 

the attention of the scientific and research community for its fascinating physical, chemical, and 

electronic properties, which can be readily utilized in numerous technological applications. Ga2O3 

with a band gap (Eg) of ~5 eV is an ideal candidate for utilization in the fields of electronics,58-59 

optoelectronics,36, 60 spintronics,44, 61 gas sensing,62-63 and ultraviolet photodetection.33, 64 

Ga2O3 exhibits several polymorphs; however, thermally stable β-Ga2O3 is the most popular 

for numerous industrial applications.37 Intrinsic β-Ga2O3 is an insulating oxide. The electrical 

conductivity of Ga2O3 can, however, be tuned, and n-type semiconducting behavior can be realized 

by selective metal-ion doping. Ionization of the oxygen vacancies in Ga2O3 is the source of 

electrons, but the resulting conductivity of Ga2O3 upon doping is still not clear and a subject of 

much debate.38-39 On the other hand, intrinsic and doped Ga2O3 materials have been the subject of 

intense research in recent years because of their ability for the efficient use and tolerance of the 

hostile environments of high pressure and temperature (≥500 °C) in chemical sensing and 

catalysis.40 Intrinsic and doped Ga2O3 materials have emerged as the most efficient sensing 

materials, particularly for oxygen sensing at higher temperatures.41, 62-63 
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In view of fascinating properties and potential technological applications in diverse fields, 

Ga2O3 has been studied extensively. Several research groups have paid attention to tune their 

structural and physical properties by various means, such as elemental doping, adopting different 

processing methods, and fabricating thin films using different techniques.65-66 Specifically, in order 

to further improve the functionality and performance of Ga2O3, doping using either isovalent 

and/or multivalent ion(s) has been considered in the literature.67 There are only a few 

theoretical/experimental studies which discuss about possible defects and effect of these defects 

on n-type conductivity of Ga2O3 upon doping of transition metals. 

Effect on n-type conductivity by doping of transition metals such as W, Mo, Re, and Nb in 

Ga2O3 is discussed based on formation energies using first-principles calculations.68 All these 

impurities or dopants can be incorporated at Ga sites in inequivalent crystallographic sites, with 

preferentially in octahedral sites. In contrast to Fe, Mo, and Re act as deep donors, whereas 

tetrahedral sites of W and Nb act as shallow donors with a difference in formation energies. Zn 

and Cu act as acceptors, these dopants increase hole concentrations in intrinsic Ga2O3.69 It has been 

demonstrated that doping of Ga2O3 with tungsten (W) and titanium (Ti) provides enhanced ability 

to obtain tunable and controlled optical properties.70-71 Additionally, Oleksak et al. have 

demonstrated that W-doped Ga2O3 thin films can form dense low-k dielectric materials, where the 

relative W content can significantly alter the dielectric constant.72 The Ga2O3 nanowires doped 

with Li or In shown enhanced luminescence for application in display devices.65, 73 The enhanced 

photocatalytic activity, which may be useful in a wide variety of energy-harvesting devices, has 

been reported for transition metal ion-doped Ga2O3 and Ga2O3 hybrid materials.66 

It is well known and evident that the nature and amount of foreign metal ions will dictate 

the resulting properties and phenomena of Ga2O3.67 Therefore, it will be of great interest to study 
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the doping of isovalent/aliovalent ions at Ga sites in Ga2O3 crystal to investigate the effect of such 

metal ions on structural, physical, chemical, and electronic properties of the resulting materials. 

Specifically, from fundamental as well as applied perspective, it is highly beneficial to derive a 

better understanding of the underlying science of the transition metal ion doping into Ga2O3 to 

design materials for electrical and optical device applications. The Shannon ionic radii Ga and Fe 

closely match with each other; Ga3+ -0.62 Å (octahedral coordination), 0.47 Å (tetrahedral 

coordination) and Fe3+ -0.64 Å (octahedral coordination), 0.49 Å (tetrahedral coordination).74-75 It 

is reasonably assumed that Fe3+ can be substituted to Ga sites and can replace Ga3+ from both 

octahedral and tetrahedral positions in stoichiometric proportion. However, isovalent Fe3+ may 

induce some degree of structural disorder and lattice strain, which can significantly modify the 

electrical and dielectric properties in comparison to those of intrinsic β-Ga2O3. Also, the physical 

and chemical properties of the doped Ga2O3 are sensitive to the microstructure and chemistry, 

which in turn depends on the synthesis process and conditions employed.  

3.1.1 Crystal Structure of Gallium Oxide 

As mentioned before that Ga2O3 exhibits five different polymorphs such as α, β, γ, δ, and 

ε. Among these phases, thermodynamically, β-Ga2O3 is the most stable oxide.37 The melting point 

of β-Ga2O3 is very high (1780 °C), which makes this material interesting and suitable for high-

temperature electrochemical and electromechanical applications.66, 72, 76-77 β-Ga2O3 crystallizes in 

a base-centered monoclinic (space group C2/m) crystal structure (Figure 3.3), where O ions are in 

a distorted cubic packing arrangement and Ga3+ occupies distorted tetrahedral and octahedral 

sites.43, 73 The lattice parameters of β-Ga2O3 are a = 12.22 Å, b = 3.04 Å, c = 5.80 Å, and β = 

103.83°.69, 78-79 Heating GaO(OH) in the air between 450 and 550 oC can synthesize all of these 

polymorphs as depicted in the Figure 3.1. 
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Figure 3.1: Synthesizing route of Ga2O3 polymorphs. 

α-Ga2O3 

Both α-Ga2O3 and corundum (Al2O3) have similar crystal structure (i.e. rhombohedral 

structure) as both originate from the same group in the periodic table (Group IIIA).80-81 The 

associated space group with this structure is 𝑅𝑅3̅𝑐𝑐. The lattice parameters which were calculated 

experimentally, are a= 4.98 Å and c= 13.43 Å.82 The crystal structure of α-Ga2O3 is depicted in 

Figure 3.2. Corundum substrate can be used to grow heteroepitaxial thin film of α-Ga2O3 as both 

have the similar crystal symmetry. The inter-ionic distance (between two Ga3+) in α-Ga2O3 are 

substantially shorter than in the case of β-phase.83 In α-Ga2O3, gallium ions sit in the octahedral 

sites (two-third occupancy of the total sites) whereas the oxygen ions are configured in hexagonal 

close packed structure. He et al.84 calculated the theoretical band gap of α-Ga2O3. α-Ga2O3 
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registered comparatively higher refractive index as well as the reflectance in comparison to the β 

phase but, the effective mass of electrons is higher for the later. α-Ga2O3 is a potential candidate 

for photocatalytic application as it has the highest band gap among all the polymorphs. Ultrasonic 

mist chemical vapor deposition (USCVD) technique is the most common route for synthesizing α-

Ga2O3 as this key technology is a safe and simple, as well as economic and environmentally 

friendly.81, 85 

 

Figure 3.2: Crystal structure of α-Ga2O3. 

β-Ga2O3 

β-Ga2O3 is the most studied and stable phase (until its melting point 1900 oC) amongst all 

Ga2O3 polymorphs. Other polymorphs of Ga2O3 are metastable and eventually transform to β-

Ga2O3 if heat treated above 800 oC.86 β-Ga2O3 has versatile application area. β-Ga2O3 crystallizes 

in monoclinic crystal symmetry having C2/m space group which is shown in Figure 3.3. The 

standard lattice parameter values obtained from the experimental calculations are a= 12.23 Å, b= 

3.04 Å, c= 5.80 Å and β= 103.7o.83, 87 Ga ions in β-Ga2O3 coordinated themselves in both 
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tetrahedral and octahedral sites unlike α-Ga2O3 where Ga3+ are only octahedrally coordinated. It 

is important to mention that change in coordination geometry in the lattice in general has 

significant impacts on structural and physical properties and as a result it affects the coveted 

application areas. 

 

Figure 3.3: Crystal structure of β-Ga2O3. 

β-Ga2O3 is a poor thermal conductor because of crystalline anisotropy and the very same 

reason is responsible for orientation specific thermal conductivity of β-Ga2O3; [010] direction 

registered the highest thermal conductivity, whereas lowest thermal conductivity was recorded 

along [100] direction at all temperatures.88 β-Ga2O3 is well-suited for application as a transparent 

conducting oxide throughout the ultraviolet (UV) spectrum region.89-90 β-Ga2O3 has a direct band 

gap of ~4.9 eV as well as high theoretical breakdown electric field (~8 MV/cm).91-92 These features 

are paving the way for β-Ga2O3 as a potential candidate for high power electronics.92 

γ-Ga2O3 

γ-Ga2O3 is the less known polymorph amongst all which is why it is not very common in 

research community owing to its poor crystalline nature. It crystallizes in defective cubic spinel-

type structure (MgAl2O4 type or simply AB2O4) with 𝐹𝐹𝐹𝐹3̅𝑚𝑚 space group having lattice parameter 

of a cubic structure (a= 8.23 Å).93 Figure 3.4 shows the equivalent crystallographic configuration 
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of γ-Ga2O3 by depicting MgAl2O4 crystal structure. By introducing Ga-ion defects in primitive 

cells employing first principle calculations, it has been proven that 14 inequivalent crystallographic 

configurations are possible. The primitive cells consisted of 6 tetrahedral cationic sites, 12 

octahedral cationic sites, and 24 oxygen sites.94 There was no clear preference set for the defect 

location whether the introduced Ga3+ will sit in tetrahedral or octahedral sites.94 

 

Figure 3.4: Crystal structure of γ-Ga2O3 which is represented by an equivalent crystal structure of 
MgAl2O4. 

δ-Ga2O3 

δ-Ga2O3 has body-centered cubic crystal structure with 𝐼𝐼𝐼𝐼3̅ space group.95 Roy et al.95 

being the first to synthesize δ-Ga2O3, brought Infront of the research community in the year of 

1952. The lattice parameter of δ-Ga2O3 mentioned by Roy et al. was a= 10.0 Å.95 The δ-Ga2O3 

crystal structure which is quite similar to bixbyite crystal structure such as In2O3 and Mn2O3 is 

depicted in Figure 3.5 by an analogous crystal symmetry.43  
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Figure 3.5: Crystal Structure of δ-Ga2O3 represented by an analogous crystal structure of In2O3. 

ε-Ga2O3 

The crystal structure of ε-Ga2O3 is not well established among the research community. It 

was reported that ε-Ga2O3 can be synthesized from δ-Ga2O3 when δ-Ga2O3 is heated above 500 

oC.95 ε-Ga2O3 crystal structure can be synthesized from Sn-doped highly conductive Ga2O3 films 

synthesized via pulsed laser deposition (PLD) route at a temperature above 475 oC. which was 

taken granted for ε-Ga2O3 but raised suspicion.96 Considering the aforementioned condition, ε-

Ga2O3 crystallizes in orthorhombic crystal symmetry with 𝑃𝑃𝑃𝑃𝐼𝐼21 space group. The lattice 

parameters calculated for ε-Ga2O3 has a= 5.12 Å, b= 8.79 Å, and c= 9.41 Å.97 Figure 3.6 represents 

an analogous crystal structure of ε-Ga2O3 by depicting AlFeO3 crystal structure. 
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Figure 3.6: ε-Ga2O3 represented by an equivalent crystal structure of AlFeO3. 

3.1.2 Gallium Oxide Crystal Growth and Hybrid Oxide Synthesis Techniques 

Ga2O3 bulk crystals can be synthesized by melt growth techniques, whereas solid-state 

chemical synthesis processing can be employed to obtain doped compounds of Ga2O3 (i.e., hybrid 

oxides). 

Melt Growth 

  As a viable technology melt growth is a very common among different crystal growth 

techniques in order to produce single crystals of any material. Considering the growth rate, 

scalability, and crystal quality, melt growth is the most suitable method to grow Ga2O3 crystals.43 

In an oxidizing environment, Ga2O3 melts completely at a temperature above 1820 oC; but when 

it is heated in an oxygen deficient atmosphere, Ga2O3 decomposes to form lower volatile oxides.43 

Various melt growth techniques used to grow Ga2O3 crystals, are listed below:  

• Verneuil Method  

• Floating Zone (FZ) Method   

• Czochralski (CZ) Method  
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• Edge-defined Film-fed Growth (EFG) Method  

• Vertical Bridgman Method 

Solid-State Synthesis Method  

The solid-state synthesis method or solid-state reaction route is widely considered for the 

preparation of polycrystalline solids. The precursors used in this technique should be solid 

materials. This is basically a high temperature (at temperatures above 1000 oC) synthesis route as 

solid materials do not react at room temperature given sufficient time due to high activation energy 

required for the reaction kinetics. The feasibility and reaction rate is determined by many factors 

such as structural properties of the precursor materials,  reaction conditions, reactivity of the raw 

materials, surface area of the solids, and the thermodynamic free energy change associated with 

the reaction, etc.98 The experimental procedure mainly has two steps namely, mixing of the 

reagents and the heat treatment.   

3.1.3 Application of β-Ga2O3 

Electrocatalytic Properties of β-Ga2O3 

Since decades, platinum is used in the fuel cell as an electrode material; but an ongoing 

search for a cost-effective as well as efficient electrode material for fuel cell that can replace 

platinum, has become the center of interest for unconventional energy source-based power 

systems. Transition/post-transition metal oxide-based catalysts are tried so far in this context for 

the efficient conversion of energy, mainly oxygen reduction reaction (ORR), oxygen evolution 

reaction (OER), and hydrogen evolution reaction (HER). It is reported somewhere that electrospun 

β-Ga2O3 nanofibers which is a post-transition metal oxide, is an efficient bifunctional catalyst 

material. Ion transport is mainly facilitated by the highly porous architecture of these spongy 

nanofibers. This new catalyst registered similar efficiency like the Pt/C catalyst. The ORR onset 

https://en.wikipedia.org/wiki/Polycrystalline
https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Reactivity_(chemistry)
https://en.wikipedia.org/wiki/Surface_area
https://en.wikipedia.org/wiki/Thermodynamic_free_energy
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potential for this β-Ga2O3 nanofibers catalyst was 0.84 V (vs RHE) and for HER, the onset 

potential was −0.34 V (vs RHE); but the current density was clearly superior to the Pt/C catalyst. 

This salient feature is a result of unique morphology associated with large surface area and without 

doping. Generally, doping induces many defects in a near perfect structure which helps to increase 

the ionic transport which is mainly responsible for this performance. 

3.2 IRON(III) OXIDE 

Iron(III) oxide also known as ferric oxide (Fe2O3) is an inorganic compound. It can be 

obtained from hematite mineral following extractive metallurgical routes. Fe2O3 is one of the three 

oxides of iron. The other two oxides are iron(II) oxide (i.e., FeO) and iron(II,III) oxide (i.e., Fe3O4) 

which can be found in magnetite mineral. FeO is the rarest oxide among three. Iron(III) oxide 

mainly has two polymorphs namely, α-Fe2O3 and γ-Fe2O3. While α-phase has rhombohedral 

corundum structure, γ-phase has cubic crystal symmetry. The magnetic properties of α-phase can 

be influenced by several factors, among them particle size is significant. γ-phase is metastable and 

converted to α-phase if it is heated at high temperature. γ-Fe2O3 is ferromagnetic, however ultrafine 

particles (>10 nm) of γ-Fe2O3 is superparamagnetic. α-Fe2O3 finds application in photoanode for 

solar water oxidation; iron(III) oxide is also used in magnetic recordings and for medicinal 

purposes.99 Figure 3.7 shows a crystal structure of hematite unit cell. 

https://en.wikipedia.org/wiki/Inorganic_compound
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Figure 3.7: Crystal structure of hematite unit cell. 
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Chapter 4: Materials and Methods 

4.1 MATERIALS 

 The precursor materials such as Ga2O3 and Fe2O3 were procured from Sigma Aldrich and 

Noah Technologies Corporation, respectively. The purity of Ga2O3 was ≥99.99% trace metals basis 

and that of Fe2O3 was 99.9% pure and particle size < 3 microns average. 

4.2 SYNTHESIS TECHNIQUE 

Ga2-xFexO3 (GFO, 0.00 ≤ x ≤ 0.30) compounds were synthesized from high pure precursor 

materials (i.e., Ga2O3 and Fe2O3) through a conventional solid-state chemical reaction route. In 

order to obtain phase pure GFO compounds, initially the precursor materials were weighed in 

stoichiometric proportion in accordance with specific concentration. The stoichiometrically 

weighed powders were ground in an agate mortar to obtain homogeneously mixed compound using 

ethanol as a wetting media and polyvinyl alcohol (PVA) as a binder. In order to obtain single phase 

GFO compounds calcination of homogenously mixed powders were done in a muffle furnace at 

1100 oC for 6 h with a ramp rate of 10 oC/min (both heating and cooling). The calcined powders 

were again ground to reach ultrafine particles with narrow particle size distribution, which helps 

to improve the sintered density of the green pellets. Uniaxial hydraulic press was used to prepare 

circular green pellets of about 8 mm diameter and 1 mm thickness by applying 5 ton load for 4-5 

minutes. The as-prepared pellets were sintered at 1200 °C for 6 h in the same muffle furnace to 

fabricate final pellets with superior density. 

 However prior to above, in order to optimize the structural properties, the GFO compounds 

were synthesized for a particular concentration (x=0.10) by varying the calcination and sintering 

temperature while keeping the calcination and sintering time constant for 6 h. Calcination was 
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performed at different temperatures ranging from 800 to 1100 °C; after that, the green pellets were 

sintered in the same furnace at different temperatures, Tsint = 900−1200 °C. 

4.3 EXPERIMENTAL METHODS 

Different analytical tools and techniques have been employed in order to characterize the 

physical and chemical properties of Fe-doped Ga2O3 (GFO) compounds such as X-ray Diffraction 

(XRD), X-ray Photoelectron Spectroscopy (XPS), UV-Vis Spectroscopy, Scanning Electron 

Microscopy associated with Energy-dispersive X-ray spectrometry (SEM-EDS), X-ray 

Absorption Near Edge Structure (XANES), Raman Spectroscopy and electrochemical analysis. 

These techniques helped us to characterize the synthesized compounds in order to achieve 

optimized properties for their intended applications in required fields and also allowed us to draw 

a behavioral map of the doped compounds which was needed to achieve the research goal. 

4.3.1 Crystal Structure and Surface Morphology  

X-ray Diffraction (XRD) 

In traditional XRD, a monochromatic X-ray is emitted and directed towards the sample 

(placed on a sample holder) surface. As a result, atoms from the sample’s surface and inner crystal 

planes cause the X-ray to diffract. The resulting scattered X-ray then undergoes either constructive 

or destructive interferences based on the crystal structure and plane orientations. A detector 

collects the diffracted X-ray at various angles obviously satisfying the Bragg’s law which is shown 

below to identify the crystal unit cell.  

                                      𝑃𝑃𝑛𝑛=2𝐹𝐹𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑                                               (Eq. 4.1) 

where, n is an integer, 𝑛𝑛 is the wavelength of X-ray, d is the interplanar spacing and 𝑑𝑑 is the Bragg’s 

angle. Figure 4.1 depicts the graphic representation of X-ray interacting with a crystalline material. 
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Figure 4.1: Schematic diagram of X-ray interacting with a crystalline material. 

The phase purity and crystal structure of synthesized GFO compounds were studied using 

a Bruker D8 Discover X-ray diffractometer (Source: Cu Kα, λ = 1.5406 Å). The lattice constants 

(a, b, c), unit cell volume (V) and theoretical density (ρth) were calculated from the X-ray 

diffraction (XRD) data. The effective density (ρeff) was measured employing Archimedes’ 

principle (ASTM B962) and relative porosity was determined using both ρth and ρeff. The 

magnitude of error while calculating the lattice constants is about 0.0004 Å which is negligible. 

The following equations (eq. 4.2−4.5) are employed for cell parameters, unit cell volume, and 

density calculations: 

1/d2 = 1/Sin2β (h2/a2+k2Sin2β/b2+l2/c2-2hlCosβ/ac)             (Eq. 4.2) 

V = abcSinβ                                      (Eq. 4.3) 

ρ
th 

= nM/NV        (Eq. 4.4) 

Relative Porosity = [(ρth-ρeff)/ρth]100%                                              (Eq. 4.5) 

where, M is the molecular weight, N is the Avogadro number, n is the number of atoms per unit 

cell (here, n = 2), and V is the unit cell volume. 
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Rigaku Benchtop powder X-ray diffractometer (Mini Flex II) was used to reconfirm the 

phase purity and the crystal structure of synthesized GFO compounds employing Rietveld 

refinement. Scanning parameters were: 10° – 80° (2θ range), step size – 0.02° and Scan rate – 

0.6̊/min. Structural refinement of selected compositions was carried out using full proof software 

package.100 

Scanning Electron Microscope (SEM) 

  SEM employs a very focused beam of electrons to reveal the surface morphology of the 

specimen. The high energy electrons which are emitted from an electron gun, directly focused on 

the sample by some magnetic lens arrangements in order to scan the surface. Generally, images 

are generated by a rastering process. SEM can furnish detailed images of the specimens at different 

magnifications. Best resolution of the sample images can be obtained by varying the electron 

incident current and voltage. The acquired images were analyzed using the Image J software 

package,101 which allows us to measure the individual grain size of the specimen almost accurately. 

Surface morphology of the GFO samples was studied using a Hitachi S-4800 field emission 

scanning electron microscope (SEM) operating in secondary electron imaging mode at an applied 

source voltage of 20 kV. Prior to imaging, samples were coated with gold to make the surface 

conductive and avoid the charging effect. Secondary electron mode was used throughout the 

sample study as this mode is beneficial for inspecting the surface topography. Figure 4.2 depicts 

the working mechanism of a SEM. 
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Figure 4.2: SEM working mechanism. 

4.3.2 Chemical Analysis 

Energy-Dispersive X-ray Spectrometry (EDS) 

Energy-dispersive X-ray spectroscopy (EDS), also known as energy dispersive X-ray 

analysis (EDXA) or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique 

which is typically used for the chemical characterization or elemental analysis  of a sample. It 

basically depends on an interaction between a source of X-ray excitation and a sample. The 

characterization technique can be explained by considering a fundamental concept that each 

element has a distinctive atomic structure which allows a unique set of peaks on its 

electromagnetic emission spectrum. The principle of EDS is depicted in Figure 4.3. The EDS 

spectra were collected to confirm the stoichiometry of synthesized compounds. In addition, 

elemental mapping was carried out for the samples to observe the constituent elemental 

https://en.wikipedia.org/wiki/Characterization_(materials_science)
https://en.wikipedia.org/wiki/Elemental_analysis
https://en.wikipedia.org/wiki/X-ray_generator
https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Sample_(material)
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Emission_spectrum
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distribution. The samples for SEM and EDS analyses were prepared by attaching the GFO pellets 

on carbon tape, which was pasted on an aluminum grid for better connectivity. 

 

Figure 4.3: Principle of EDS. 

X-ray Photoelectron Spectroscopy (XPS) 

XPS is a highly surface sensitive technique generally employed to evaluate the surface 

chemistry of a sample. This technique quantifies the chemical data of the substrate surface using 

inelastic X-ray scattering phenomena. The high energy X-ray interacts with the surface atoms of 

the sample, which results in electron emission. This phenomenon is known as the photoelectric 

effect. The kinetic energy of the emitted electron is measured following the equation mentioned 

below: 

                                                          𝐾𝐾𝐾𝐾=ℎ𝜈𝜈−𝐵𝐵𝐾𝐾−Φ                                       (Eq. 4.6)  

where, KE is the kinetic energy of the electrons, h is Planck’s constant, 𝜈𝜈 is frequency, BE is 

binding energy and Φ is the spectrometer work function. However, if the photon energy is less 

than the work function, there will be no emission of electrons from the orbitals. The kinetic energy 

of these emitted electrons is equivalent to the difference between the incident photon energy and 

binding energy of the electron, so the kinetic energy can be used to ascertain the concentration of 
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the constituent elements on the sample surface, as each element possess a unique set of core level 

electron configuration. XPS can also indicate the chemical state of a particular element in the 

sample by recording the variations in elemental binding energy or chemical shift(s). Figure 4.4 

shows the basic functioning of an XPS system.102 

 

Figure 4.4: Basic functioning of an XPS system. 

X-ray photoelectron spectroscopy (XPS) spectra of GFO compounds were collected 

employing Kratos Axis Ultra DLD spectrometer using high-performance Al Kα monochromatic 

X-ray source (1486.6 eV) and a high-resolution hemispherical analyzer. The X-ray source was set 

at 150 W. Emitted photoelectrons were collected using detector which is aligned normally to the 

sample surface. Data were collected in a 700 × 300 μm2 area with a pass energy of 40 eV, which 

produced a full width half-maxima (FWHM) of 0.59 eV for the Ag 3d5/2 core level of a standard 

Ag sample. Charge neutralization was obtained with low-energy electrons (< 3.8 eV) as these 

ceramic pellets are highly insulating. The pellets were placed on the XPS stubs with the help of 
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double-sided Cu tapes and the same Cu tape, connecting the sample surface and the Cu stubs, was 

used in order to reduce and/or eliminate the charging issues.  Data were analyzed by employing 

CasaXPS software using Gaussian/Lorentzian (GL(30)) line shape and Shirley background 

correction.103-104 The binding energy of carbon (C 1s) at 284.8 eV was used as the charge reference. 

Survey scans were performed at pass energy of 160 eV, while high-resolution scans were carried 

out at a pass energy of 40 eV. Survey scans were collected over the binding energy (B.E.) range 

of 0-1400- (-)5 eV. The step size for the survey and high-resolution scans were 0.5 and 0.1 eV, 

respectively. Though both Ga2p and Ga 3d spectra were collected but, Ga 2p spectra is presented 

in order to avoid the interference of Ga 3d peaks with the O 2s peak.  Ultra-high vacuum level in 

the range of 1X10-9 Torr was maintained throughout the tests. Precaution has been taken in order 

to minimize the effect of adventitious carbon adsorption on the sample surface during sample 

transfer. Estimation error was taken ±0.01 at.% for calculating the concentration of various 

constituent elements, i.e., Ga, Fe and O. Three different areas were scanned for each sample to 

maintain good statistical index. 

X-ray Absorption Near-Edge Structure (XANES) 

X-ray absorption near edge structure (XANES) which is also known as near edge X-ray 

absorption fine structure (NEXAFS), is a typical absorption spectroscopy. This characterization 

technique which is a complementary technique to XPS, is generally used to study the features in 

the X-ray absorption spectra (XAS) of condensed matter. Photo-absorption cross section for 

electronic transitions from an atomic core level to final states triggers the resulting spectra. The 

energy range for this technique is between 50–100 eV above the selected atomic core level 

ionization energy. It is important to mention here that the interatomic distance between the 

absorbing atom and its first neighbour atoms is smaller than the wavelength of the photoelectron. 

https://en.wikipedia.org/wiki/Absorption_spectroscopy
https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy
https://en.wikipedia.org/wiki/Cross_section_(physics)
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Figure 4.5 depicts the fundamental mechanism associated with XANES. XANES is more efficient 

in determining the changes at local geometries and electronic structure of compounds. XANES is 

a very sensitive technique, which can determine changes in coordination geometry and oxidation 

states of constituent elements of the complex chemical compounds.105-106 

The XANES spectra of sintered GFO powders were collected at beamline 6.3.1.2 of the 

advanced light source (ALS) at Lawrence Berkeley National Laboratory (LBNL) in total electron 

yield mode (TEY). To collect the patterns, the specimen powders were pressed into In foil and 

fixed onto a Cu sample pack using adhesive carbon tape. The analysis chamber pressure was 

maintained below 1X10−9 Torr during the measurements. Calibration standards were furnished by 

ALS mounted within the X-ray absorption spectroscopy instrument chamber for accurate 

measurement of the energy positions. Ga L-edge, O K-edge, and Fe L-edge were recorded for all 

the GFO samples. Reference Ga L-edge, Fe L-edge, and O K-edge spectra were also collected 

from high purity (>99.9%) Ga2O3 and Fe2O3 standard powder samples for calibration. 

 

Figure 4.5: Fundamental working principle of XANES. 

Raman Spectroscopy 

Raman spectroscopy which is named after famous Indian physicist C.V. Raman is mainly 

used to study the vibrational modes of molecules. Raman spectroscopy is generally used to get 

information on structural fingerprint by which a molecule can be identified. It depends on inelastic 

https://en.wikipedia.org/wiki/C._V._Raman
https://en.wikipedia.org/wiki/Inelastic_scattering
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scattering of photons which is known as Raman scattering. A laser source (either of visible, near 

infrared, or near ultraviolet range) is used to generate monochromatic light. The resulting laser 

light interacts with the sample molecular vibrations, phonons or other excitations present in the 

system and as a result the laser photon energy shifts up or down. This deviation of the laser photon 

energy provides information about the different vibrational modes in the system. Infrared 

spectroscopy serves as a complementary technique to Raman spectroscopy.107 Figure 4.6 is the 

graphical representation of a typical setup for a dispersive Raman spectroscopy. Raman 

spectroscopic studies were performed on an InVia Micro RAMAN (Renishaw) spectrophotometer 

with 532 nm laser excitation.  

 

Figure 4.6: Raman spectroscopy setup. 

https://en.wikipedia.org/wiki/Inelastic_scattering
https://en.wikipedia.org/wiki/Raman_scattering
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Ultraviolet
https://en.wikipedia.org/wiki/Monochromatic
https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Infrared_spectroscopy
https://en.wikipedia.org/wiki/Infrared_spectroscopy
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4.3.3 Dielectric Properties 

Dielectric measurements were performed using a HP precision LCR meter. LCR meter 

which is a typical electronic test equipment, is generally used to measure the capacitance (C), 

inductance (L) and resistance (R) of an electronic item. Simpler versions of this instrument 

involves the measurement of impedance which is then converted to the corresponding capacitance 

or inductance value in monitor display. Reasonably accurate readings can be yielded if the 

capacitor or inductor component under examination does not show up significant resistance. More 

advanced designs available in the market can be able to measure true inductance or capacitance. 

This instrument is also equipped to measure the equivalent series resistance of capacitors and the Q 

factor of inductive components.  

Prior to the measurements, samples were fine polished and coated with silver paste on both 

sides. Silver-coated pellets were cured at 90 °C for 2 h to make sure the proper functioning of the 

electrodes. For all the samples, capacitance and dielectric dissipation (tan δ) data were collected 

to calculate the real (ε′) and imaginary (ε″) parts of the dielectric constant. Data are collected in 

the frequency range of 90 Hz to 1 MHz at 1 V input ac signal amplitude at room temperature. High 

temperature measurements were performed at 1 KHz, 10 KHz, 100 KHz, and 1 MHz, respectively, 

employing a temperature-controlled furnace. The temperature was varied from 30 to 500 °C. 

Standard calibration and precautions were taken to remove any stray capacitance and contact 

resistance before each measurement. The experiments were performed in a repetitive manner in 

order to take statistical errors into consideration. 

4.3.4 Spectral Selectivity - Optical Absorption 

Optical absorption edge of the synthesized GFO compounds were studied using 

Ultraviolet–visible spectroscopy or ultraviolet–visible spectrophotometry (UV–Vis or UV/Vis). 

https://en.wikipedia.org/wiki/Electronic_test_equipment
https://en.wikipedia.org/wiki/Capacitance
https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Electrical_impedance
https://en.wikipedia.org/wiki/Equivalent_series_resistance
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Q_factor
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This indicates absorption spectroscopy or reflectance spectroscopy involving the ultraviolet 

(partly) and the adjacent visible (full) spectral regions. The absorption or reflectance in the visible 

range has a direct impact on the perceived color of the chemicals involved. 

Atoms and molecules undergo electronic transitions when illuminated in this electromagnetic 

spectrum region. Absorption spectroscopy is a complementary characterization technique 

to fluorescence spectroscopy. While, absorption spectroscopy deals with transitions from the 

ground state to the excited state, fluorescence spectroscopy indicates transitions from the excited 

state to the ground state. 

Optical absorption edge is associated with charge transfer from valance band to conduction 

band, which originally depends on overall electronic band structure of a particular compound. 

Though X-ray diffraction analysis showed the evidence for elemental substitution in parent phase, 

however optical absorption spectra can provide deeper insights into elemental substitution in the 

same. Hence, we have collected absorption spectra of GFO compounds using UV-Vis 

spectrophotometer (PerkinElmer, Model: Lambda 1050). Sintered GFO pellets were used for these 

measurements. 

4.3.5 Electrocatalytic Activity Studies 

A potentiostat was used to get a deeper insight into the electrocatalytic activity of the 

selected GFO compounds. A potentiostat is an electronic hardware with a three electrode 

cell setup and mostly employed to run electroanalytical experiments. The working principle of a 

potentiostat is that the potential of the working electrode is kept constant with respect to 

the reference electrode by tuning the current at an auxiliary electrode. A simplified electrical 

circuit which is described in terms of simple op amps, is depicted in Figure 4.7. 

https://en.wikipedia.org/wiki/Absorption_spectroscopy
https://en.wikipedia.org/wiki/Ultraviolet
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Color_of_chemicals
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Molecular_electronic_transition
https://en.wikipedia.org/wiki/Fluorescence_spectroscopy
https://en.wikipedia.org/wiki/Fluorescence
https://en.wikipedia.org/wiki/Excited_state
https://en.wikipedia.org/wiki/Excited_state
https://en.wikipedia.org/wiki/Ground_state
https://en.wikipedia.org/wiki/Electronic_hardware
https://en.wikipedia.org/wiki/Voltammetry
https://en.wikipedia.org/wiki/Voltammetry
https://en.wikipedia.org/wiki/Electroanalytical_method
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Working_electrode
https://en.wikipedia.org/wiki/Reference_electrode
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Auxiliary_electrode
https://en.wikipedia.org/wiki/Electric_circuit
https://en.wikipedia.org/wiki/Electric_circuit
https://en.wikipedia.org/wiki/Op_amps
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To evaluate the effect of doping on the electrocatalytic activity of the doped and undoped 

samples, their activity towards the Hydrogen Evolution Reaction (HER) was analyzed. In order to 

do this, a three-electrode system where the sample is the working electrode, Ag/AgCl the reference 

electrode and platinum as the counter electrode was formulated in presence of 0.5 M H2SO4 aq. 

electrolyte. The preparation of the working electrode was done by mixing the bulk powder samples 

with 80 µL of 5 wt% Nafion 117 solution (Sigma-Aldrich) and drop-casting 20 µL of the 

completely mixed solution onto a freshly polished glassy carbon working electrode. Subsequently, 

the redox properties were studied using a linear sweep voltammetry (CHI 6273E potentiostat) with 

scan rate of 20 mV s −1 over a voltage range of 0 to -1.3 V. 

 

Figure 4.7: Potentiostat electric circuit diagram. 
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Chapter 5: Effect of Sintering Temperature-Optimization of Synthesis Conditions 

5.1 CRYSTAL STRUCTURE AND SURFACE MORPHOLOGY 

The XRD patterns of the GFO compounds sintered under variable processing temperature 

for constant amount of Fe doping concentration (i.e., x= 0.10) are shown in Figure 5.1. The peaks 

are indexed using JCPDS 00-041-1103 for β-Ga2O3.108 The data shown are for GFO samples 

sintered at variable Tsint. The XRD data and peak assignment (Figure 5.1) clearly indicate that GFO 

crystallizes in a monoclinic β phase. It is evident from the XRD data that there is no secondary 

phase formation at all Tsint values. It can be noted that the peak intensity increases with increasing 

Tsint. In addition, although not significant, a slight positive shift of the peak position with increasing 

Tsint can be noted. The first observation, i.e., a peak intensity increases with increasing Tsint, 

indicates enhanced crystallinity of the GFO materials. Peak shifting can occur only when stress is 

introduced into the crystal structures of the GFO compounds. Therefore, the slight positive peak 

shift with increasing Tsint indicates a reduction in the interplanar distance between the crystal 

planes. This, in turn, induces some amount of strain in the crystal, which may be due to Fe doping 

or excess thermal energy. Furthermore, the XRD data indicate that doped Fe might preferentially 

occupy the substitutional atomic positions within Ga2O3 because no extra peak is observed due to 

Fe doping.74 However, this is only a speculation based on the XRD observations and also 

considering the ionic radius difference in the Ga3+ and Fe3+ ions. The ionic radius of Ga3+ is 0.62 

Å, and that of Fe3+ is 0.64 Å.109 The lattice constant values for different samples along with density 

and porosity measurements are listed in Table 5.1. The effective density (ρeff) was calculated by 

employing Archimedes ‘principle (ASTM B962). Using the XRD data, the lattice constants (a, b, 

and c), unit cell volume (V), and theoretical density (ρth) were determined and the relative porosity 

was calculated from ρth and ρeff employing equations (eq. 4.2-4.5). 
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It is evident from Table 5.1 that increasing Tsint significantly influences the relative density 

and porosity of the materials. The variation in the density with the sintering temperature is shown 

in Figure 5.2. The GFO samples sintered at 900 °C show relatively lower density compared to 

samples sintered at higher temperatures. While the density improves significantly with Tsint, there 

is no appreciable change in the density for Tsint = 1100−1200 °C. Inhomogeneity, incomplete phase 

formation, incomplete or partial sintering, or the presence of porosity might be the reasons for the 

observed low density of the GFO compounds at lower Tsint. Furthermore, the presence of porosity 

or atomic-scale defects is unavoidable in high-temperature chemical synthesis processes. With 

increasing sintering temperature, cavities vanish, and the samples become denser. The evidence 

for grain coalescence was provided by the electron microscopy analysis, as presented and 

discussed in subsequent sections. However, while an appropriate heat preservation temperature 

can optimize the sample density, a very high insulation temperature may result in a loss of parental 

oxide by evaporation, leading to a decrease in the density.110 This effect is quite prevalent in 

different oxides of molybdenum.111-112 Thus, from the XRD and density measurements, Tsint = 

1100−1200 °C appears to be preferable to obtain relatively dense GFO compounds crystallized in 

a monoclinic β-phase. 

Having understood the crystal structure and density of the GFO compounds, we now 

consider the effect of Tsint on the average crystallite size and micro-strain in the GFO compounds. 

The average crystallite size was calculated using the Scherrer formula:113 

                            βs = λ/D cos θ                                            (Eq. 5.1) 

where, D is the average crystallite size, λ is the Cu Kα radiation wavelength (1.5406 Å), θ is 

Bragg’s angle, and βs is the measured integral peak width. The integral width was obtained by 

multiplying the shape factor (1.06), which is dimensionless. A Gaussian profile is used for 
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measuring the full width at half maximum (FWHM) of the peak. The intense (002), (111), (−311), 

and (−712) reflection peaks were used in the peak broadening analysis to determine the average 

crystallite size. The crystallite size of the GFO compounds determined from these calculations is 

∼55 nm. Variation of the average crystallite size with Tsint is not significant; the crystallite size 

varied in the range of ∼55−64 nm. The micro-strain in the GFO compounds was evaluated by the 

standard Williamson−Hall (W−H) method using a Gaussian profile fitting for FWHM 

calculations.113 The strain values increase gradually with increasing sintering temperature and 

then, finally, they remain constant at 0.17%. The average crystallite size and micro-strain approach 

their optimum values of 55 nm and 0.17%, respectively, at 1100−1200 °C. The optimized 

calcination temperature increases the specific surface area. Du et al. reported that the average 

particle size of 30 nm of gallium-doped zinc oxide calcined at 540 °C for 1.5 h showed better 

electrical properties.46 The sintering ability depends on the particle size distribution range. The 

effective sintering of the compact occurs when the particles size distribution is narrow. The 

porosity present in the green compact also plays a crucial role in influencing the sintering ability. 

When the porosity is eliminated from a locally dense region, those particles will not further take 

part in sintering; this requires the porosity within the green compact to be of close size.47 
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Figure 5.1: XRD patterns of GFO compounds as a function of Tsint. All of the GFO compounds 
crystallize in a monoclinic β phase of Ga2O3. It is evident that the peak intensity 
increases with increasing Tsint. 

 

 

 

 

 



38 

Table 5.1: Lattice Parameter, Unit Cell Volume, Density and Relative Porosity of GFO 
Compounds for Different Sintering Conditions 

Sintering 

Temperature 

Tsint (oC) 

 

Lattice Parameter (Å) β Unit 

Cell 

Volume 

V (Å3) 

 

Theoretical 

Density 

(ρth) 

(g/cm3) 

 

Effective 

Density 

(ρeff) 

(g/cm3) 

Relative 

Porosity 

(%) 

a b c    

900 12.625 3.040 5.957 107.69o 218.399 5.657 4.048 38.98 

1000 12.396 3.040 5.944 106.52o 217.923 5.661 3.902 32.43 

1100 12.410 3.050 5.933 106.20o 217.996 5.667 3.825 31.18 

1200 12.415 3.050 5.931 106.08o 218.054 5.668 3.452 28.58 

 

 

Figure 5.2: Density variation of the GFO compounds with Tsint. It is evident that the density 
increases with increasing Tsint. 
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The Raman spectroscopic data of Ga1.9Fe0.1O3 ceramics are shown in Figure 5.3. It can be 

seen that the spectra exhibit several characteristics peaks, which are indicative of crystalline nature 

of the samples. Furthermore, the Raman scattering peak evolution with increasing Tsint is evident 

(Figure 5.3). The Raman spectra can be conveniently analyzed, based on the crystal structure and 

crystal symmetry considerations of Ga2O3, in order to understand the chemical quality and 

chemical bonding within Ga1.9Fe0.1O3. The monoclinic β-Ga2O3 belongs to the space group 

C2/m/C32h. According to factor group analysis,114 the crystal modes can be classified according 

to:  

                          Γopt = 10Ag + 5Bg + 4Au + 8Bu   (Eq. 5.2) 

where, symmetry Ag and Bg phonon modes are Raman active while phonon modes with Au and Bu
 

symmetry are infrared active. Thus, a total of 15 Raman modes and 12 infrared active modes are 

predicted for β-Ga2O3.114-115 The Raman scattering peaks observed in the present work and their 

mode assignments are presented in Table 5.2. The data obtained for Ga1.9Fe0.1O3 sintered at various 

Tsint are presented and compared with that of bulk Ga2O3. The Raman-active modes of Ga2O3 can 

be classified into three groups: high-frequency stretching and bending of GaO4 tetrahedra (~770–

500 cm-1), mid-frequency deformation of Ga2O6 octahedra (~480–310 cm-1), and low-frequency 

libration and translation (below 200 cm-1) of tetrahedra-octahedra chains.115 

The Raman peaks observed for Ga1.9Fe0.1O3 ceramics sintered at Tsint= 1200 oC at 143, 168, 

202, 345, 475, 652, and 763 cm-1 correspond to Bg(2), Ag(2), Ag(3), Ag(5), Ag(7)/Bg(4), 

Ag(9)/Bg(5), and Ag(10) phonon modes, respectively.116 The bands at lower frequencies are 

assigned to the librations and translations of chains. The bands at 413, 345, 320 cm-1 
are assigned 

to the deformation of octahedron.116 The bands at 763, 652, 629, 475 cm-1 
are derived from the 
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stretching and bending of tetrahedron.116 The peak positions and mode assignments are in good 

agreement with those reported for β-Ga2O3 bulk. In addition, these observations and Raman mode 

assignments of the peaks are also in agreement with those reported for β-Ga2O3 thin films and 

nanowires.114-117 

The combined effect of Fe doping and processing conditions (Tsint) on the structural quality 

and chemical bonding in Ga1.9Fe0.1O3 ceramics can be understood as follows. With Fe content, the 

Raman active modes of Ga1.9Fe0.1O3 ceramics have a clear shift (see, Table 5.2). In addition, the 

Raman scattering peaks in the spectra also exhibit a line broadening (Figure 5.3) for Ga1.9Fe0.1O3 

ceramics. However, this is more dominant at lower Tsint. The broadening of the Raman peaks is 

clearly seen at Tsint= 900 oC; the peaks continue to be broader until Tsint= 1100 oC, at which point 

the peaks become sharp. Also, this peak broadening is particularly true for the Raman modes in 

the low-to-mid spectral range between 300 and 500 cm-1, which is due to Fe atoms entering into 

the crystal lattice of Ga2O3 to form the Ga1.9Fe0.1O3 ceramics. Such peak broadening in Raman 

modes due to dopant effects was also noted in β(GaAl)2O3 films, where the broadening of Raman 

modes was particularly dominant in the mid-spectral range with Al-doping.117 The peak around 

1400 cm-1 is vanishing as the sintering temperature has been increased which is shown by dotted 

circling in Figure 5.3.  Wang et al. reported that, with the increase of Al content, the Raman active 

modes of (AlGa)2O3 films exhibited a right shift coupled with a line broadening, especially at 

higher Al content.117 This peak broadening of Raman modes in the 310-480 cm-1 range was 

attributed to the more Al atoms entering into the crystal lattice of Ga2O3 to form ternary solid 

solution.117 However, the broadening observed in this case of Fe is not significant compared to Al 

in Ga2O3 due to the reason that Fe doping concentration is very less as well as ionic radii mismatch 

between Ga3+ and Fe3+ is very small.74, 118-120 
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The Raman spectroscopic data and analyses are in corroboration with our previous XRD 

and SEM results, which were discussed quite extensively in our previous work.74 However, in the 

context of understanding the importance of present work, we describe the salient features here. 

Phase purity of all the synthesized GFO compounds were confirmed from X-ray diffraction (XRD) 

patterns.74 XRD data, high resolution scans as well as refinement procedures revealed that all the 

GFO compounds were phase pure without any secondary phases.74, 119 For the specific composition 

in question i.e., Ga1.9Fe0.1O3, it is evident from the XRD data that there is no secondary phase 

formation at any of the Tsint values. However, although not significant, a slight positive shift of the 

peak position with increasing Tsint can be noted. Thus, increasing Tsint induces a reduction in the 

interplanar distance between the crystal planes. This in turn induces some amount of strain in the 

crystal which may be due to Fe doping or excess thermal energy.74 The effect of Tsint was not very 

significant; grain size varied in the range of ~55-64 nm with Tsint. However, the strain values 

increased gradually with increasing sintering temperature. The major effect of Tsint is the drastic 

decrease in porosity, which approaches minimum when the optimum Tsint=1200oC is used for 

synthesis of Ga1.9Fe0.1O3 samples.74 Also, because of the difference in the ionic radii of Fe3+ and 

Ga3+ and Fe3+ (0.64 Å) has smaller ionic radius than Ga3+ (0.76 Å), so iron doping will facilitate 

the formation of smaller nuclei during synthesis process. Incorporation of Fe in Ga2O3 may inhibit 

the grain growth during sintering process.74 
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Figure 5.3: Raman shifts of differently sintered GFO compounds. 
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Table 5.2: Raman data for Ga1.9Fe0.1O3 ceramics at various Tsint. The data of Ga1.9Fe0.1O3 
ceramics is compared with that of bulk Ga2O3 

  Rao et al.116 This Work (Sintering Temperature) (oC) 
Ser
ial 
No. 

Mode 
Symm
etry 

Bulk 
Empiric
al 
Calculat
ion (cm-

1) 

Bulk 
Experime
ntal Data 
(cm-1) 

900 
(cm-1) 

Frequ
ency 
Shift 
(cm-

1) 

1000 
(cm-1) 

Frequ
ency 
Shift 
(cm-1) 

1100 
(cm-1) 

Frequ
ency 
Shift 
(cm-1) 

1200 
(cm-1) 

Frequ
ency 
Shift 
(cm-1) 

1 AZ 104 - - - - - - - - - 
2 BZ 113 - 112 - 112 - 112 - - - 
3 BZ 150 144 140 -4 143 -1 143 -1 140 -4 
4 AZ 166 169 165 -4 165 -4 168 -1 168 -1 
5 AZ 207 200 196 -4 196 -4 202 +2 199 -4 
6 AZ 317 317 - - 317 0 320 +3 317 0 
7 AZ 348 344 342 -2 345 +1 345 +1 343 -1 
8 BZ 356 - - - - - - - - - 
9 AZ 414 416 413 -3 413 -3 413 -3 412 -4 
10 AZ 469 472 - - 472 0 - - 472 0 
11 BZ 474 - - - - - 475 +1 - - 
12 AZ 601 629 611 -18 - - - - - - 
13 BZ 624 - - - 627 - 627 - 622 - 
14 AZ 635 654 652 -2 649 -5 652 -2 655 +1 
15 AZ 732 767 754 -13 760 -7 763 -4 763 -4 

 
The SEM images of the GFO compounds are presented in Figure 5.4. It is clear from the 

images that the sintering temperature influences the final microstructure to a greater extent. The 

sintering temperature induced grain growth, and grain coalescence can be seen in these images. 

The porosity level is quite higher in low-temperature sintered samples; however, the porosity 

decreases as Tsint approaches the optimum at Tsint = 1200 °C. It is evident from the images that, 

although the particle sizes remained almost the same for all samples, the coalescence degree 

increased with increasing Tsint. The average particle size values obtained from the SEM 

micrographs employing ImageJ analysis are tabulated in Table 5.3. The smaller particles observed 

in the 900, 1000, and 1100 °C samples are no longer present in the 1200 °C sample. The apparent 

larger particles seen in the 1200 °C sample are due to coalescence of the smaller particles. 
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As the heat preservation temperature goes up, grains receive more energy. In this scenario, 

integration and annexation phenomena between grains become obvious. As a result of these, most 

of the voids and/or holes present in the material disappear, leading to continuous grain growth.110 

Atuchin et al. and Lim et al. have also mentioned similar kinds of behavior.121 Beside this, Fe-

doped into gallium oxide could also be the reason behind the observed microstructural variation. 

Fe doping may facilitate the formation of smaller nuclei during the synthesis process and inhibit 

grain growth during the sintering process. Fe3+ may act as a kinetic barrier for grain displacement 

and segregation throughout the microstructure, preventing further grain growth.47-48 Although 

most of the Fe3+ ions will occupy substitutional lattice positions, some fractions can sit in the defect 

chemistry and/or in the interstitial positions and inhibit the grain growth process. Grain growth 

mainly takes place by the free movement of the grain boundaries or if one grain consumes another. 

It follows the procedure of recovery and recrystallization in metals, but it is quite similar in the 

case of ceramics and minerals. The internal energy that is associated with the interfacial area must 

be released or reduced in the whole procedure. Thus, the final microstructure of the GFO material 

is influenced by the combined effect of sintering conditions and Fe content doped into GFO. 
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Figure 5.4: SEM images of GFO materials as a function of Tsint. Coalescence of grains occurs with 
increasing Tsint. 

Table 5.3: Average Particle Size Measured from SEM Micrograph 

Sintering Temperature (oC) Average Particle Size (μm) 

900 0.90±0.35 

1000 0.93±0.29 

1100 0.99±0.30 

1200 2.10±1.06 

 

5.2 CHEMICAL ANALYSIS 

5.2.1 Energy-Dispersive X-ray Spectroscopy (EDS) 

The EDS studies indicate that the GFO materials obtained under different firing conditions 

are stoichiometric and homogeneous with uniform distribution of constituent elements. The EDS 

data of GFO are presented in Figures 5.5 and 5.6, respectively. The typical EDS spectrum of a 
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GFO sample is shown in Figure 5.5. The characteristic X-ray peaks from Ga, Fe, and O atoms are 

evident in the EDS spectrum (Figure 5.5). The peaks are representative of Ga Kα, Ga Kβ, Fe Kα, 

Fe Kβ, and O Kα at their respective energy positions, consolidating the presence of Ga, Fe, and O 

atoms in the compound. Being a qualitative analytical tool, the EDS data can be used to confirm 

the chemical quality of the GFO compounds synthesized. Also, the EDS elemental data 

(composition in atom %) listed in Table 5.4 indicates that the doped ceramic compound maintains 

a proper atomic ratio during doping between the parental compound (Ga) and the dopant (Fe), 

having the chemical formula Ga(2-x)FexO3 for all of the sintered samples. 

The elemental mapping images of GFO samples are shown in Figure 5.6. The mapping 

images of Ga K, O K, and Fe K obtained for samples at different Tsint are presented. These mapping 

images clearly reveal the uniform elemental distribution. It is evident from these images that Fe 

doping into gallium oxide is homogeneous in terms of the distribution of the constituent atoms 

across the microstructure. Therefore, we can safely conclude that sintering at various temperatures 

did not establish a concentration gradient of a particular element, but rather it helped to obtain a 

homogeneous microstructure with uniform distribution of the elements. However, similar to SEM 

imaging analysis, based on the color contrast of the respective mapping images, it can be claimed 

that the samples become more compact with increasing Tsint. This is more prominent, as revealed 

in the mapping of Fe K for the sample sintered at 1200 °C. 
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Figure 5.5: EDS spectrum of the GFO material sintered at 1200 °C. The respective X-ray peaks 
due to Ga, Fe, and O atoms are as labeled. 

Table 5.4: Elemental Composition Data from EDS 

Sintering 

Temperature (oC) 

Ga (at.%) Fe (at.%) O (at.%) 

900 56.12 3.29 40.60 

1000 55.25 3.89 40.86 

1100 57.01 3.73 39.26 

1200 56.38 3.45 40.17 

 

 

 Energy (KeV) 

1200oC 
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Figure 5.6: Elemental mapping images of GFO compounds synthesized at different Tsint. The 
corresponding SEM images are also shown. Chemical uniformity of the GFO 
samples is evident from the images. 

5.2.2 X-ray Photoelectron Spectroscopy (XPS) 

The XPS survey and deconvoluted core level spectra (Ga 2p, Fe 2p and O 1s) of 

Ga1.9Fe0.1O3 compounds are shown in Figure 5.7 and 5.8, respectively. The Ga 2p and O 1s peaks 

are labelled in the survey spectra, but Fe concentration is so less that it can’t be observed 

throughout the spectra, though high resolution XPS spectra evidenced the presence of Fe. The peak 

assignments were done after comparing with the binding energy (BE) following the standard NIST 

database.122 The Ga 2p region (Figure 5.8(a)) combination of Ga 2p doublet i.e., the Ga 2p3/2 and 

Ga 2p1/2 peaks, which are located about at BEs of 1117.34 and 1144.17 eV, respectively. For the 
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pure Ga metal, the location of Ga 2p3/2 is around 1116.50.122 Compared to the Ga metallic state, 

the observed Ga 2p3/2 peak shows almost 1 eV positive shift corroborating that all the Ga exists in 

the oxidation states. Ga 3d peak was also recorded (not shown) at a BE of 20.3 eV. This exhibited 

positive shift in the BE of Ga 2p3/2 peak is owing to the redistribution of the electronic charge, as 

Ga stabilized as Ga2O3 in the GFO compounds. The Ga 2p XPS data, which are consistent with 

the reported values in the literature for Ga2O3, validates the claim that Ga ions  exist in the highest 

valence states (i.e., Ga3+) in all the GFO compounds.65  

Figure 5.8(b) depicts the HR XPS spectra of Fe 2p region.  The deconvoluted spectra of Fe 

2p region clearly reveals that Fe exhibits mixed valance state (i.e., Fe3+ at 711 eV and Fe2+ at 708.7 

eV) for 1100 oC and 1200 oC sintered samples whereas single valance state (i.e., Fe3+) of Fe exists 

for rest of the sintered samples.122 It can be related to the varying diffusion rate associated with the 

electronic flux as sintering temperature approaches the optimized condition. This will help to 

achieve many unique as well as important characteristic properties such as magnetic, spintronic, 

and optical etc. out of the GFO compounds as a result of jumping and sharing of electronic clouds 

between these two valence states.  

The O 1s peak (Figure 5.8(c)), at a BE of 530.87 eV, is the characteristic feature of Ga-O 

bond.119, 123-124 The O 1s peak is not symmetric for all the sintered compounds. The HR core level 

spectra fitting mainly results in three components representing different chemical states. The most 

intense peak centered at B.E. of 530.25 eV is the characteristic peak of oxygen bonded to Fe within 

the GFO compound.119, 124 The third component located at higher BE (i.e., 532 eV), attributing to 

either carbonyl (oxygen bonded to carbon) or hydroxyl (oxygen bonded to hydrogen) groups, 

which were adsorbed on the sample surface as impurities during sample handling, appear as a 

shoulder contribution with minor intensities.65 It can be noticed from O 1s spectra (Figure 5.8(c)) 
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that as the sintering temperature approaches optimized condition the contributions from Ga2O3 and 

iron oxides are levelling off. In 900, 1000 and 1100 oC sintered samples the iron oxide contribution 

is quite higher than the Ga2O3. This has happened because the precursor iron (III) oxide powder 

used for preparing these GFO compounds, was not well diffused through the system and dispersed 

mainly around the surface due to inefficient firing condition. Moreover, being a surface sensitive 

technique, XPS easily catches those iron oxide signals and as a result the iron oxide intensity came 

up as higher than the Ga2O3. With increasing sintering temperature, these excess undissolved iron 

(III) oxide compacts on the surface diffused through the bulk and intensity of iron oxide came 

down subsequently. 
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Figure 5.7: Survey spectra of GFO compounds at various sintering temperature.  
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Figure 5.8: High resolution XPS spectra of (a) Ga 2p (b) O 1s (c) Fe 2p. 

As temperature is closed to the optimized condition, Fe starts diffusing from the surface to the 

bulk and helps to achieve a uniform elemental dispersion throughout the sample. XPS study also 

proves that the main constituent elements present in the GFO compounds are nearly stoichiometric. 

XPS study revealed that the samples show mixed or single valence states depending on the 

sintering condition. Moreover, stoichiometry of the constituent elements is verified employing the 

XPS analysis. 

5.3 DIELECTRIC PROPERTIES 

The results obtained from dielectric property measurements on the differently sintered 

GFO samples are shown in Figures 5.9-5.11. The real (ε') and imaginary(ε") parts of the dielectric 

constant and loss tangent (tan δ) for GFO are shown in Figures 5.9-5.11, respectively. It is evident 

that (Figure 5.9) the dielectric constant is very high at lower frequencies and then starts to decrease 

with increasing frequency. The associated high dielectric loss (Figure 5.11) at low frequency might 

be due to the mobile charge carriers, direct-current conductance, and defects present in the 

samples.125 The mobility of free charge carriers increases the conductivity, which, in turn, 
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increases dielectric losses due to charge leakage.126 Perhaps, the differences in the microstructure 

and grain size may account for the observed differences in the dielectric behavior of these GFO 

materials synthesized at various Tsint. Note that ε' increases with decreasing grain size;127 in fact, 

the samples sintered at 1200 °C registered higher ε' values than others. Charge accumulation at the 

interfaces especially at the grain boundaries increases the ε' value. Whereas grains are semi-

conductive, grain boundaries act as highly insulating layers. When the grain size is decreased, the 

grain boundary area will only increase, giving more resistance to the charge mobility and thereby 

reducing the conductivity. From the density consideration, the 1200 °C sintered sample registered 

higher density among the other samples; also, it has less porosity and defect concentration because 

of its compact-ness. Because of its lower porosity and atomic defects, the charge loss through 

leakage will be minimal, and it is able to store huge amounts of charge. Although the 1200 °C 

sintered sample has comparatively higher particle size in some regions, it also has some 

microstructural area consisting of particles that are more or less similar in size to the rest of the 

samples. Among the two mechanisms described above, the second mechanism is more dominant 

in nature in this case. 

Figure 5.12 represents the measured and simulated frequency dependences of ε'. Debye’s 

model has been employed to simulate the experimental data and dispersion behavior, in addition 

to confirming the validity of such a model in accounting for the dielectric behavior. It is noticed 

that the dielectric constant decreases with increasing frequency; however, the decrease is rapid at 

lower frequencies but much slower at higher frequencies. This is because, at higher frequency 

regions, the species that contribute to the polarization phenomenon fall behind the applied voltage. 

Variation of the dielectric constant values with the frequency is an example of dispersion due to 

Maxwell−Wagner125 type polarization, which agrees with the Koops phenomenological theory.128 
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The dispersion behavior of this kind can be explained based on the contribution of various 

polarization sources.129 The higher values of ε' at lower frequencies are mainly due to polarization 

of the interface and grain boundaries.130 However, there is a high possibility that intrinsic factors 

like ionic, electronic, and space charge polarization can contribute to this fact. The ε' value 

decreases in the high frequency region due to less directional polarization. However, electronic 

charge carriers show strong localized behavior in a heavily polarized crystal system by electron-

phonon coupling.131 This kind of dielectric phenomenon is obvious in materials having 

microstructural characteristics of dielectric and conductive phases. Because multiple ions (Ga, Fe, 

and O) are involved in the relaxation process, the modified Debye model was used to simulate the 

experimental data and observed dispersion behavior. In this model, ε' follows the relationship: 

                              ε’(ω) =  ε’∞ + � ε’o−ε’∞
1+(ωτ)2(1−α)�                 (Eq. 5.3) 

where, ε'(ω) denotes the complex permittivity and ε'o - ε'∞ is the dielectric relaxation strength, with 

ε'o being the static (lowest frequency permittivity; 90 Hz in our case) and ε'∞ the permittivity at the 

highest frequency (1 MHz). τ is the Debye average relaxation time, α is the spreading factor of the 

actual relaxation time about the mean value, and the angular frequency (ω) of the field is expressed 

as ω = 2πf, where f is the linear frequency of the applied field with a signal of 1 V. 

The spreading factors of the GFO samples were obtained by employing a Cole-Cole plot.47 

However, in our modified method, the real part of the dielectric constant was taken rather than the 

complex part, and an integrated graph was plotted for ln[(ε'o - ε'ω)/( ε'ω - ε'∞)] versus ln ω for all of 

the samples. A linear regression was performed to calculate the slope (Figure 5.13) and to 

determine the spreading factor α. The calculated values of the spreading factor (α) and relaxation 

time (τ) for GFO samples are documented in Table 5.5. These calculated values of τ and α were 

used to match the experimentally obtained values of ε' with the calculated values by fitting to 
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Debye’s model (eq. 5.3), as shown in Figure 5.12. It is clear from Figure 5.12 that the experimental 

and calculated data are consistent with each other particularly at the higher-frequency region. Thus, 

the validity of the model is confirmed by asserting the likelihood of more than one ion contributing 

to the relaxation process. 

 

Figure 5.9: Comparison of the real part of the dielectric constant of GFO materials synthesized at 
different Tsint. The frequency dispersion of the dielectric constant is shown. 
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Figure 5.10: Comparison of the imaginary part of the dielectric constant of GFO materials prepared 
at different Tsint. 

 

Figure 5.11: Comparison of the loss tangent of GFO materials prepared at different Tsint. 
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Figure 5.12: Variation of the real part of the dielectric constant of GFO materials prepared at 
different Tsint. The experimental and simulation data are shown. The dispersion 
behavior (experimental data) fits the modified Debye model (simulation data) 
function (see the text for the description). 
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Figure 5.13: ln[(ε'o - ε'ω)/( ε'ω - ε'∞)] versus ln ω plots of GFO materials. The spreading factor and 
relaxation time were calculated by fitting the curves. 

Table 5.5: Calculated Values of the Spreading Factor (α) and Relaxation Time (τ) of GFO 
Compounds at Different Tsint 

Sintering Temperature (Tsint)  

(oC) 

Spreading Factor α Relaxation Time τ (s) 

900 0.699 0.000362 

1000 0.658 0.000097 

1100 0.654 0.000272 

1200 0.759 0.000920 

Finally, to validate the temperature stability of GFO materials, the temperature dependence 

of ε' of GFO materials was studied. Temperature-dependent ε' plots of GFO compounds are 

presented in Figure 5.14 as a function of the sintering temperature. It is evident from the plots that 

some of the samples show two dielectric relaxation peaks. There is a shift of dielectric maxima 
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toward higher temperature with decreasing Tsint. GFO samples sintered at 1200 °C show the 

highest dielectric constant values. The first dielectric relaxation can be noted in the temperature 

range of 350-450 °C, while the second relaxation peak appears at ∼500 °C. Also, the dielectric 

constant values increase monotonically with the temperature for all of the GFO samples sintered 

at various Tsint. The very high or giant dielectric permittivity observed might be due to the charge 

injection, illumination, or temperature itself.131 At the lower-frequency range, all types of 

polarizing sources, i.e., ionic, electronic, dipolar, and space charge, contribute to the higher values 

of ε'. This might be due to the fact that, at higher frequency, polarization decreases as electron 

hopping lags behind the alternating current (ac) of the externally applied field. 

The dielectric relaxation mechanism of ceramic materials is determined by several factors 

such as the synthesis method, microstructural and atomic defects (e.g., porosity and Schottky and 

Frenkel defects), temperature, associated electromagnetic field, ionic substitution, relative 

percentages of grain and grain boundary, interfacial area, etc.130 The GFO crystallites are 

surrounded by grain boundaries and voids. Grain boundaries are rich in defect concentration, 

which may cause the trapping of free carriers, layer depletion, and band bending.132 Thus, the low-

temperature dielectric relaxation occurs mainly because of the interfacial polarization caused by 

the charge carriers. The strong interaction between the lattice and charge carriers and the formation 

of a highly insulating grain boundary are the reasons behind the single relaxation behavior. At high 

temperature, space-charge polarization occurring at the grain boundaries associated with high-

temperature oxygen vacancies contributes to the relaxation behavior.133 The Fe doping in Ga2O3 

with increasing sintering temperature increased the interionic distance, and that is evident from the 

higher values of the spreading factor and mean relaxation time (Table 5.5). A high bond length or 

large interionic distance increases the hopping distance for the GFO compound, which, in turn, 
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increases the α and τ values. The charge carrier’s mobility and hopping rate increase at high 

temperatures because of sufficient availability of the thermal activation energy. Thus, the positive 

temperature shift of relaxation maxima can be attributed to the thermally activated relaxation 

process. This type of peak shifting appears when the jumping frequency of the localized electrons 

is almost the same as the frequency of an externally applied ac signal. The Rezlescu model claims 

that this relaxation peak appears as a combined effect of both p-type and n-type charge carriers.134 

Charge carriers cannot adapt to the fast-changing field as we go from lower to higher frequency, 

decreasing the polarization. So, higher thermal energy, i.e., higher temperature, is needed to show 

maxima at the higher-frequency level. 

 

Figure 5.14: Temperature-dependent dielectric constant ε' (T) of GFO materials as a function of 
the sintering temperature. The data shown are obtained at a constant frequency of 1 
MHz. It is evident that ε' (T) increases with increasing Tsint. 
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Chapter 6: Effect of Variable Fe Concentration- GFO Compounds at Optimized Sintering 

Condition 

6.1 CRYSTAL STRUCTURE AND SURFACE MORPHOLOGY  

Figure 6.1 shows the XRD patterns of selected GFO compounds where the calcination and 

sintering temperatures were kept constant at 1100 and 1200 oC, respectively and doping (Fe) 

concentration was varied from x=0.00-0.30. There is no discernible difference noticed for 

differently doped GFO compounds. The XRD patterns clearly indicate that the intrinsic Ga2O3 and 

GFO compounds crystallize in monoclinic phase with C2/m space group ((JCPDS #00-041-

1103).108 The peaks and their respective positions are as indexed in Figure 6.1. The XRD patterns 

confirm the phase purity of the GFO compounds, where no sign of secondary phase is even at a 

relatively higher Fe content. As anticipated, a clear solid solution is formed because of close ionic 

radii of Ga3+ and Fe3+ in both tetrahedral and octahedral coordination. 

The unit cell parameters of pure Ga2O3 and GFO compounds were calculated by the 

procedure outlined in previous section. The cell parameter values of GFO compounds are 

summarized in Table 6.1. The unit cell parameters of intrinsic Ga2O3 are in agreement with the 

literature.135 Along with the cell parameters of GFO solid solutions, the data obtained on physical 

properties are also presented in Table 6.1. Effective density (ρeff) of the GFO samples was 

calculated employing Archimedes principle (ASTM B962). Relative porosity was calculated by 

comparing theoretical density (ρXRD) and ρeff.74 It is evident (Table 6.1) that the cell parameters 

increase with increasing Fe content because of slightly higher ionic radius of Fe3+ compared to 

Ga3+. Also, because of the thermal processing of the compounds, lattice distortion might have 

taken place because of the difference in thermal expansion co-efficient. We can observe that, with 

increasing iron concentration, the lattice constant mismatch between the intrinsic Ga2O3 and GFO 
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compounds increases slightly. It is known that intrinsic Ga2O3 has inherent oxygen vacancies and 

atomic oxygen can be introduced in the pellets from the furnace atmosphere at high processing 

temperatures.74 This atomic oxygen then converts into the molecular oxygen, which remains in the 

GFO defect structure, causing lattice distortion which may lead to slight increment in the unit cell 

parameter and consequently peak angle shifts in XRD pattern. Figure 6.2 shows the variation of 

theoretical density (ρXRD) with increasing Fe concentration. The measured effective density (Table 

6.1) of the pellets is lower than the theoretical density. These lower values of the effective density 

(ρeff) depend on many factors such as duration of sintering process and presence of porosity and/or 

atomic scale defects, which is unavoidable in this kind of high-temperature ceramic synthesis 

process.106, 108 The calculated relative porosity is more or less same for all the pellets and is around 

36% except for pure Ga2O3 which is 26.55%. 
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Figure 6.1: XRD pattern of GFO compounds. 
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Figure 6.2: Variation of the theoretical density (ρXRD) of GFO compounds with Fe content. The 
unit cell volume values were determined from the XRD measurements. 

Table 6.1: Lattice Constant, Unit Cell Volume, Density, and Relative Porosity of GFO Compounds 

Dopant 

Concentration 

(x) 

Lattice Parameter (Å) Unit Cell 

Volume V 

(Å3) 

 

Theoretical 

Density ρth 

(g/cm3) 

 

Effective 

Density ρeff 

(g/cm3) 

Relative 

Porosity 

(%) 

a b c  

0.00 12.405 3.052 5.897 215.323 5.781 3.766 26.55 

0.05 12.396 3.053 5.893 215.320 5.717 3.741 34.56 

0.10 12.410 3.053 5.892 215.478 5.709 3.656 35.96 

0.15 12.415 3.056 5.896 215.929 5.701 3.629 36.34 

0.20 12.429 3.056 5.901 216.329 5.669 3.624 36.07 

0.25 12.450 3.057 5.910 216.946 5.631 3.590 36.25 

0.30 12.452 3.059 5.909 217.116 5.606 3.570 36.32 
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The variation of average crystallite size with Fe concentration was in the range of 57−62 

nm. Thus, there is no considerable change in crystallite sizes with varying Fe concentration. 

Structure Refinement: High-resolution XRD scans were used to perform the Rietveld refinement. 

The purpose of the detailed XRD high-resolution scans and refinement analyses was to better 

understand the Fe site occupancy and structural distortions (if any) in the parent lattice of β-Ga2O3. 

X-ray diffraction data reveal that all of the compounds were phase-pure without any secondary 

phases. Figure 6.3 represents the refined X-ray diffraction patterns of selected GFO compounds. 

Rietveld refinement of diffraction patterns was carried out by considering the monoclinic crystal 

symmetry with a C2/m space group. Pseudo Voigt peak shape function has been used to refine 

experimental diffraction patterns. In all of the refined patterns, simulated and experimental pattern 

intensities were fitted with a minimal differential curve. The obtained goodness of fit (χ2) for three 

selected compounds is 1.61 (x= 0.00), 1.49 (x= 0.20), and 1.12 (x= 0.30). Hence, the structural 

refinement data reveals that, even at a higher concentration of Fe (x= 0.30), GFO compounds 

stabilize in monoclinic crystal symmetry, which is similar to the intrinsic Ga2O3. The refined unit 

cell parameters are provided in Table 6.2. Refined cell parameters indicate a small increment in 

unit cell volume associated with small ionic radii difference between Fe3+ and Ga3+. The atomic 

coordinates obtained from the refinement procedure are listed in Table 6.3. 
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Figure 6.3: XRD patterns of GFO compounds. Rietveld structural refinement of XRD patterns is 
also presented. The experimental and calculated XRD patterns after the refinement 
are shown. Good agreement between the experimental and calculated XRD patterns 
can be noted. 

Table 6.2: Unit Cell Parameters of GFO Compounds Obtained from Structural Refinement 

Composition 

 

     (x) 

                  Unit cell parameters  

 

   a (Å)           b (Å)          c (Å)        β (deg)                     

     Unit cell Volume 

 

 (Å)3 

x   = 0.00 

 

x   = 0.20 

 

x   = 0.30 

12.2192       3.03951         5.80541        103.856    

 

12.2555        3.04532        5.81512        103.854        

 

12.2719        3.04791        5.82019        103.811 

 

209.341 

 

210.718 

 

211.402 
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Table 6.3: Rietveld Structural Refinement Parameters Obtained for GFO Compounds 

Fe 

concentration 

Atoms Atomic coordinates Uiso 

X Y Z 

 Ga1 0.09012 0.00000 0.79649 0.00162 

 Ga2 0.15885 0.50000 0.30921 0.00471 

0.00 O1 0.15308 0.00000 0.10793 0.01013 

 O2 0.17102 0.00000 0.56049 0.01013 

 O3 -0.0079 0.50000 0.26514 0.01013 

      

 Ga1 0.0899 0.00000 0.7922(8) 1.00000 

 Ga2 0.1577(3) 0.50000 0.3103(9) 0.01044 

 O1 0.16051 0.00000 0.09246 -0.0828 

0.30 O2 0.17149 0.00000 0.56117 -0.0624 

 O3 -0.00240 0.50000 0.25687 -0.0553 

 Fe1 0.0899(3)   0.00000 0.7922(8)   0.00253 

 Fe2 0.1577(3)  0.50000 0.3103(9)   0.00253 

 

Figure 6.4 shows the SEM images of GFO compounds. Fe doping moderately changes the 

microstructure of intrinsic Ga2O3. The rod-shaped particle morphology is observed in all the 

sintered samples. The rod-shaped morphology is the inherent characteristic of Ga2O3, which is also 

reported by Shimura and Yoshida.66 The particle coalescence can be seen in some cases 

predominantly in higher Fe content samples. The particle size reduction from 3.5 to ∼2.0 μm with 

increasing Fe content can be noticed. The particle size is measured by employing ImageJ software 
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analysis with at least 30 measurements per sample.101 An interesting phenomenon observed is the 

narrow particle size distribution with increasing Fe doping. Smooth and uniform distribution of 

the particles can be noticed in all images that is one of the characteristics of the high-temperature 

solid state synthesis process. Also, it is helpful in getting better final densification through the 

sintering process. 

The rod-shaped particle feature seen throughout the microstructures of all the four GFO 

compounds correlates our observation with the XRD and lately with XANES studies, where it is 

mentioned that the doped Fe preferentially sits in the parental Ga sites by forming substitutional 

solid solutions and maintains the same crystal symmetry as of the intrinsicGa2O3. Thus, the salient 

characteristic features of the Ga2O3 can only be expected and seen in the SEM images rather than 

the features corresponding to the doped iron or iron oxide compounds. The apparent larger 

particles seen in the less iron containing samples might be due to the coalescence of the smaller 

particles. Integration and annexation phenomena between grains become obvious at the optimized 

processing condition. As a result of these, most of the voids and/or holes present in the material 

before were starting to disappear, paving the way for continuous grain growth.110 Atuchin et al. 

and Lim et al. have also observed similar behavior in Mo- and Ge-containing multicomponent 

oxide ceramics.57, 136 Fe doping in pure Ga2O3 might help in the formation of smaller nuclei and 

inhibit the grain growth during the synthesis and sintering process respectively. It might act as a 

kinetic barrier which prevents further grain displacement and segregation throughout the 

microstructure, thus reducing further grain growth.47-48 Although from the XRD and XANES 

studies it can be concluded that most of the doped Fe ions occupied the substitutional lattice 

positions of the parental Ga ions owing to their same ionic radii, some fractions can fit itself in the 

defect chemistry and/or in the interstitial lattice positions and impede the grain growth process. 
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Discussion on defects, specifically line or point defects in the limelight of SEM, is not 

totally possible because of the inherent low resolution of the SEM instruments. However, it is 

reliable to comment on the grain boundaries and qualitatively on the microscopic porosity of the 

micrographs. It is evident from the SEM images that some pores are present in each of the 

micrographs and it can be supported by our porosity calculations, though no typical characteristic 

grain boundary is omnipresent throughout the micrographs. From Table 6.1, it is obvious that the 

relative porosity percentage increases for the GFO compounds in comparison to the pure β-Ga2O3 

by more or less 10%, but among the GFO compounds, it is almost constant (∼36%). As mentioned 

before that, with increasing Fe concentration, the rod-shaped particles take narrow size 

distributions and probably this has helped to restrain the porosity level to a legitimate range. It can 

be assumed by the visual observation of the micrographs that higher Fe content GFO compounds 

have more compact structure. However, pure Ga2O3 micrograph has also evidenced a close-packed 

structure. This can be attributed to the Fe doping which might act as the grain growth inhibitor 

helped to obtain a narrow size distribution of the particles throughout the micrographs. In case of 

solid-state processing, porosity can act as a pinning phase and hinder grain growth. Liu and 

Patterson described elaborately on how porosity as a dispersed second phase in the main matrix 

can act as a grain growth inhibitor and help in achieving proper densification.137 Porosity can be 

like interconnected channels or segregated upon separation based on the sintering conditions. It 

reduces the total energy of the grain boundary by getting attached to it and consequently slows 

down the grain boundary movement. Parameters such as effective surface area of pores, contact 

area between the pore and the grain boundary, grain boundary curvature, as well as the relative 

motion between the grain boundary and pore influence the above discussed phenomenon.137 
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Figure 6.4: SEM data of Ga(2-x)FexO3 compounds. 

6.2 CHEMICAL ANALYSIS 

6.2.1 Energy-Dispersive X-ray Spectrometry (EDS) 

It is evident from the EDS data (Figure 6.5) that the dispersion of the constituent cations, 

that is, the ratio of Fe to Ga, is properly maintained closer to the theoretical atomic ratio despite 

the fact that the high temperature fabrication route is adopted to synthesize these samples. The 

EDS analysis of these samples confirms that, in sintered samples, the constituted elements are in 

stoichiometric proportion with respect to desired composition. We attribute this chemical quality 

of the GFO samples is due to proper mixing of the constituents during the preparation stages, 

precise maintenance of the furnace atmosphere by controlling the associated parameters, and exact 

densification obtained by employing the optimum firing conditions.72 



71 

The elemental composition data collected from EDS are presented in Figure 6.5. It can be 

seen that the Ga content in GFO compounds decreases progressively with increasing Fe content. 

Figure 6.6 shows the elemental mapping of pure Ga2O3 and with highest Fe content (x= 0.30) GFO 

compound. It is evident from these images that the Fe-doped Ga2O3 compounds are homogeneous 

in terms of distribution of the principal constituent elements. The images report the increasing 

amount of iron which is noticeable from the image color contrast and the chemical homogeneity 

throughout the samples. Such chemical homogeneity is noted in all the GFO compounds. 
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Figure 6.5: Atomic ratio of constituent elements of GFO compounds obtained from EDS. 
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Figure 6.6: Elemental mapping of representative GFO compounds (Top x=0.00 and Bottom 
x=0.30, respectively). The data indicate the uniform distribution of the constituent 
elements. 

6.2.2 X-ray Photoelectron Spectroscopy (XPS) 

Being a surface sensitive characterization technique X-ray photoelectron spectroscopy 

(XPS) is employed to figure out the surface chemistry of the GFO compounds and the present 

chemical valence states of the constituent elements. The XPS survey scans of the selected 

compositions is represented in Figure 6.7. The survey scans indicate core level peaks of constituent 

elements such Ga, Fe, O, Ga LMM Auger peak, O KLL and C 1s. The C 1s peak, corresponding 

to the adventitious carbon adsorbed on the sample surface due to exposure to air during transferring 

the samples to the XPS load lock chamber. However, in surveys scans we could be able to observe 

Fe 2p peak in compounds with higher Fe concentration (in Figure 6.7 it is indicated as red dotted 

oval). 

 High resolution XPS spectra of Ga 2p and O 1s peaks are shown in Figure 6.8. The peak 

assignments and binding energy (BE) comparison are made following the NIST database. The Ga 

2p region (Figure 6.8(a)) shows the high-resolution spectra of both Ga 2p3/2 and Ga 2p1/2 located 
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at ≈ 1117.6 and 1144.6 eV, respectively. The Ga 2p3/2 peak is located at a higher BE (1117.6 eV) 

in all the GFO samples compared to pure Ga metal which is located at 1117.0 eV.122 Compared to 

the Ga metallic state, the observed Ga 2p core level peaks exhibit a positive shift of 0.6 eV 

indicating that all the Ga exists in its oxide state. It has been widely reported that the Ga 2p core 

level peak exhibits a positive BE of 0.6 eV due to the redistribution of electronic charge leading 

to the formation of fully oxidized state (i.e., Ga3+).65 Thus, the Ga XPS data, which are consistent 

with the values reported for the Ga2O3 standard in the literature, confirms the existence of Ga ions 

in highest valance state.65 The slight alteration in BE and peak intensity of Ga 2p peak with Fe 

doping may be due to the weakening of Ga-O bonds in Ga2O3. This weakening causes a decrease 

in the electron density around the Ga ions.42 
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Figure 6.7: XPS survey scans of selected GFO compositions sintered at 1200 °C for 6 hrs. 

The O 1s peak (Figure 6.8(b)) appears at a BE of 530.4 eV, which is a characteristic of Ga-

O bond. This peak is very sensitive to the variation in chemical bonding.73 It can be noted that this 

O 1s peak is not symmetric for all the GFO samples. The peak fitting of the O 1s core level peak 

results in at least two components representing the different chemical states or differently bonded 

oxygen. The most intense and main component, which is centered at a BE of 530.4 eV, is the 
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characteristic of oxygen bonded to Ga within the GFO compound. The O 1s peak for Fe2O3 and/or 

FeO becomes merged with the O 1s peak for Ga2O3 as most metal oxide peaks can be obtained in 

BE range of 530-531 eV. This has caused the O 1s peaks becoming slight broader in the Fe 

containing compounds. A second component, which appears as a shoulder contribution with minor 

intensity, is located at a higher BE of 532 eV. This component with minor intensity can be 

attributed to either carbonyl (oxygen bonded to carbon) or hydroxyl (oxygen bonded to hydrogen) 

groups, which were adsorbed onto the surface during sample handling.  

 

Figure 6.8: High resolution XPS spectra of GFO (0.00 ≤ x ≤ 0.30) compounds (a) Ga 2p, and (b) 
O 1s. 

Figure 6.9 represents the high resolution XPS spectra of Fe 2p region.  The deconvoluted 

spectra of Fe 2p3/2 peak clearly reveals that Fe exhibits mixed valance states (i.e., Fe3+ and Fe2+) in 

GFO samples with lower Fe content. However, Fe exhibits single valance state (i.e., Fe3+) in 

compounds with higher Fe content. It is mainly because of few reasons namely, considerable iron 
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content, fabrication method, furnace atmosphere, and to maintain the stoichiometry and charge 

neutrality. With increasing iron concentration in the GFO compounds intensity of Fe peak 

increases, whereas intensity of Ga peak decreases gradually. In addition, the shake-up satellite 

peak around 720 eV was observed in accordance with the literature, which is the characteristic 

feature of Fe3+ in α-Fe2O3.138-139 However, the satellite peak is less pronounced in compounds with 

mixed valency state. 

 

Figure 6.9: Deconvoluted high resolution XPS spectra of Fe 2p region of GFO compounds. 
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6.2.3 Local Structure and Bonding 

The XANES data of GFO compounds with Ga2O3 structural figure are shown in Figure 

6.10. The data shown in Figure 6.10(a)-(c) are the Ga L-edge, Fe L-edge, and O K-edge spectra, 

respectively, obtained as a function of variable Fe content. Figure 6.10(d) depicts the tetrahedral 

(Ga1) and octahedral (Ga2) coordination positions in the Ga2O3 structure. The as-received Ga2O3 

and Fe2O3 powders were used as the reference samples. From this observation, it is evident that 

GFO compounds crystallized in beta monoclinic phase without any structural modification even 

at higher content of Fe. In intrinsic Ga2O3, Ga3+ occupies both octahedral and tetrahedral lattice 

positions.66 Ga L-edge spectra (Figure 6.10(a)) show two absorption peaks at around 1120 and 

1128 eV. The first peak at 1120 eV arises due to octahedral coordination of Ga3+ (circled as O), 

whereas the second peak at 1128 eV is for tetrahedral coordination (circled as T). However, there 

is no considerable variation in Ga Ledge absorption spectra even at higher concentration of Fe, but 

small shift in absorption peaks attributed to change in bond length because of the slight ionic radii 

difference of Ga3+ and Fe3+. 

The O K-edge (Figure 6.10(b)) XANES spectra are different from the Ga L-edge XANES 

spectra for GFO compounds. Two peaks at around 535 and 542 eV can be observed for O K-edge, 

which is the characteristic of β-Ga2O3.75 A broad diffused peak can be seen for Ga2O3 powder 

sample, which is absent in spectra of the GFO samples. This pre-edge feature can be attributed to 

the presence of ε-Ga2O3, as commercial Ga2O3 powder generally is a mixture of ε-Ga2O3 and β-

Ga2O3.106 

The Fe L-edge (Figure 6.10(c)) spectra show one absorption band, that is, around 710 eV 

and the other absorption band, which is around 722 eV, is not shown here. The two absorption 

features are corresponding to L3-edge and L2-edge (circled in Figure 6.10(c) as for L3), 
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respectively, which are separated due to core-hole and 3d orbital interactions.75 These absorption 

features are in good agreement with the literature of α-Fe2O3. Moreover, the splitting of L3-edge 

is due to crystal field splitting of 3d orbital interactions.75, 105 

The inherent defects in intrinsic β-Ga2O3 are the oxygen vacancies and Ga interstitials.39, 

43 The defect concentration in intrinsic β-Ga2O3 is directly associated with the electron 

concentration, and a theoretical relation between the electron concentration and oxygen partial 

pressure has been established which is [é] ≈ pO2
-1/4, where, [é] denotes the electron concentration 

and pO2
 indicates the partial pressure of oxygen.43 Intrinsic gallium oxide has three different 

oxygen configurations and these configurations vary for different charged states. While one of the 

oxygen atoms is arranged in tetragonal configuration, the rests of the three are coordinated 

trigonally. Gallium also has two configurations namely tetrahedral and octahedral in β-Ga2O3 

crystal system.43, 140 It is not clear that which site is more energetically favorable though some 

researchers favor the tetragonal site as the energetically lower site for maintaining the crystal 

symmetry.39, 141 Inherent defect concentration is so small in intrinsic β-Ga2O3 that introducing 

small amounts of foreign element can alter the defect chemistry. 

It is argued that the negative charge defects have higher formation energy than the positive 

charge defects. The formation energy of the oxygen vacancies is lower than the gallium interstitials 

but often oxygen vacancies are considered as the deep donors (i.e., deep transition levels) and 

responsible for the n-type conductivity whereas other researchers cited that the charge carrying 

ability of the intrinsic β-Ga2O3 oxide is solely due to the defect complexes of hydrogen atom which 

is a shallow donor.140, 142 Being a direct band gap material, band structure of β-Ga2O3 exhibits a 

flat valence band, indicating a high concentration of holes which leads to the low hole mobility, 
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and this self-localization of holes became the main barrier in the fabrication of p-type β-Ga2O3 by 

doping foreign elements.142  

The formation energy of oxygen vacancies strongly depends on the chemical potential of 

oxygen and the fermi energy. The chemical potential of oxygen is not a fixed value and changes 

with the different ambient atmospheric conditions. The oxygen vacancies become the defects with 

lowest formation energy under oxygen deficient conditions and vise-versa. Defects associated with 

oxygen vacancies are more stable in their fully charged states.140, 142 For low monoclinic symmetry 

compounds, a large number of different point defects (e.g., Frenkel, anti-Frenkel and Schottky) 

have to be considered.140 The associated equations for the inherent β-Ga2O3 defects are as follows: 

                        Gax ↔ VGa'''+Gai
 ···                                                   (Eq. 6.1) 

                             Ox ↔ VO
··+2e'+ ½ O2 (gas)                             (Eq. 6.2) 

where, Gax denotes the neutral Ga positions in Ga2O3 crystal, VGa''' denotes the gallium vacancy, 

Gai
 ·· denotes the gallium interstitials, Ox denotes the neutral oxygen positions, VO

··denotes the 

oxygen vacancy and e' denotes the electron. These defects play very significant role under high 

temperature conditions in association with lattice vibration and phonon dispersion. It has been 

found as a general behaviour that the negatively charged defects such as VGa''' and Oi
'' exhibited 

large positive relaxation volumes, whereas the positively charged defects such as Gai
 ··· and VO

·· 

exhibited negative and smaller relaxation volumes.143  

Density functional Theory (DFT) provides the formation energy of oxygen defects in β-

Ga2O3 with a charge state is given by,142, 144  

             𝐾𝐾𝑓𝑓�𝑉𝑉𝑂𝑂
𝑞𝑞� = 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡�𝑉𝑉𝑂𝑂

𝑞𝑞� −  𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡  [𝐺𝐺𝐼𝐼2𝑂𝑂3] +  𝜇𝜇𝑂𝑂 + 𝑞𝑞𝜖𝜖𝑓𝑓                (Eq. 6.3) 

where, 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡�𝑉𝑉𝑂𝑂
𝑞𝑞� and 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡  [𝐺𝐺𝐼𝐼2𝑂𝑂3] represent total energy of the supercell containing a vacancy in 

charge state q, and perfect crystal in the same unit cell, 𝜇𝜇𝑂𝑂 is chemical potential and 𝜖𝜖𝑓𝑓  fermi level 
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measured from top of valance band.  According to DFT calculations, defect formation energies 

varies with fermi level; hence when fermi level is close to valance band, charged oxygen defects 

are dominant whereas, neutral defects are dominant as fermi level is moving up.  

In GFO compounds, Fe does not form any intrinsic defect by itself, due to their close ionic 

radii on octahedral and tetrahedral sites and isovalent electron configuration; but Fe ions can also 

sit into the same interstitial defect sites as Ga3+. So, this will maintain the almost same inherent 

defect structure of the intrinsic β-Ga2O3. Recent theoretical study reveals that Fe substituted on the 

octahedral Ga site (FeGaII) has high formation energy, whereas Fe substituted at tetrahedral site 

(FeGaI) exhibits a low formation energy. In both configurations, Fe acts as a deep acceptor level 

below the conduction band maximum.144 Doping with transition metal specially Fe can introduce 

some new characteristic features such as spintronics, magnetic properties and optoelectronic 

applications by altering the band gap which is currently being studied. 
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Figure 6.10: XANES of (a) Ga L-edge, (b) O K-edge, (c) Fe L-edge, and (d) representative crystal 
structure of Ga2O3 with tetrahedral and octahedral coordination positions. Ga1 and 
Ga2 denote the tetrahedral and octahedral lattice sites in pure Ga2O3 compound, 
respectively. Oxygen atoms at their respective positions are represented by red 
circles. 
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6.3 DIELECTRIC PROPERTIES 

Figure 6.11 shows the real part (ε') of the dielectric constant (Figure 6.11(a)) and the 

dissipation factor (tan δ) (Figure 6.11(b)) as a function of frequency of the composition variation 

GFO compounds. The dispersion behavior of real part of the dielectric constant is the characteristic 

of traditional dielectric oxides. Dielectric materials exhibit high dielectric constant values at low 

frequencies, gradually decreases with increasing frequency. High dielectric constant at low 

frequencies is attributed to the extrinsic (space charge, grains, and grain boundaries) and the 

intrinsic contribution (ionic, dipolar, and electronic) to the dielectric polarization. Decrement of 

dielectric constant with increasing frequency is due to relaxation of extrinsic factors. However, 

predominantly, high dielectric constant at low frequencies might be attributed to the Maxwell-

Wagner type of interfacial polarization.118 

Dielectric factor (tan δ) represents the measurement of energy loss and is expressed as tan 

δ = ε"/ε', where angle δ is the phase difference between applied electric field and current and ε" is 

the imaginary part of the complex dielectric constant. Frequency dependence has profound 

influence on dielectric loss values.145-146 When polarization lags behind the applied alternating 

field, dielectric loss occurs. This mainly arises due to the influence of grain boundaries, impurities 

(e.g., doping), and crystalline defects. Density of ceramic materials also plays a key role in 

manipulating dielectric loss. The low-density ceramic material has high porosity which is 

responsible for low dielectric constant and higher loss. As the calculated relative porosity is quite 

similar for all the doped compounds, then it can be inferred that the role of defect chemistry upon 

doping is playing a significant role in determining the trend of dielectric loss data. Though it is 

confirmed from the XRD and XANES studies that most of the doped Fe occupied the parental 

lattice positions, but some of them can occupy the interstitial positions or the other defect sites. 
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Also, it is important to consider that the inherent defects for the intrinsic Ga2O3 are the interstitial 

Ga ions and O2 vacancies. It is quite possible that for some specific doping concentration, the 

defect chemistry changes in the GFO compounds, which gives inconsistent dielectric loss data. 

The formation of the low dielectric phases and detachment of the loosely bound charges from the 

surface can also be the reasons. The dielectric loss for those particular GFO compounds is slightly 

higher in the low frequency region than the remaining compounds, but with increasing frequency, 

it can be observed that the loss components decrease exponentially as like the other compounds 

and tend to zero. With increasing iron doping (i.e., increasing impurity level) in Ga2O3 decreases 

this jumping tendency. This might be due to two reasons: first, due to the overpopulated charge 

carriers which lead to the strong interaction with the lattice and, secondly, due to the absence of 

major polarizing factors. It is evident from the graph (Figure 6.11(b)) that dielectric loss decreases 

with increasing frequency. 

 

Figure 6.11: (a) Frequency-dependent real part of dielectric constant, and (b) frequency dependent 
dissipation factor (tan δ) of GFO compounds. 

The modified Debye’s model was used to simulate the experimentally measured dielectric 

constant because more than one ion (Ga3+, Fe3+, and O2-) are involved in the relaxation process. 

Using this model, the observed dispersion in ε' is modeled according to eq. 5.3. Figure 6.12 
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compares the experimental and simulated values of frequency dependent real part of the dielectric 

constant (ε'). With the help of the Cole-Cole plot,146 the spreading factor for GFO compounds was 

obtained. However, in our modified method, real part of the dielectric constant was considered 

rather than the complex part, and the graph shown in Figure 6.13 was plotted for ln[(ε'o - ε'ω)/( ε'ω 

- ε'∞)] versus ln ω for all the compositions. A linear regression has been performed to calculate the 

slope of the lines and spreading factors “α” was obtained from these slopes of Figure 6.13. The 

estimated values of τ and α were used to correlate the experimentally obtained values of ε' with 

the calculated values by fitting the model, eq. 5.3, and the result is shown in Figure 6.12. It is 

evident in Figure 6.12 that the experimental and the calculated data are in good agreement that 

confirms the above-mentioned dielectric relaxation behavior of the samples obeying the modified 

Debye model.  

We believe that, with increasing Fe concentration, there is a strong interaction between 

lattice and charge carriers. Doping Fe into Ga2O3 increases the interionic distance, as evidenced in 

structural characterization. This characteristic feature is also evident in dielectric properties, where 

the higher values of spreading factor and mean relaxation time with increasing Fe concentration 

account for increased interionic distance. Because of the higher bond length and/or interionic 

distance, electron hopping distance increases for Fe-doped Ga2O3 compounds, which, in turn, 

increases the α and τ values in comparison to those of intrinsic Ga2O3. The spreading factor values 

for x= 0.00 and x= 0.30 are 0.579 and 0.602, respectively. The relaxation time and the spreading 

factor values for the remaining compounds are calculated for the sake of simulation but are not 

mentioned here. The enhanced dielectric constant of some GFO compounds in comparison to 

Ga2O3 is mainly due to the extra sources of polarization because of Fe doping. This theory can be 

explained by the hopping of electrons between several ions that is Fe2+, Fe3+, Ga3+ and O2-. This 

hopping of electrons facilitates the local displacement of electrons in the direction of the applied 

field. The dipole of the electrons thus produced orientation polarization by aligning themselves in 

the direction of the applied field, which subsequently increased the dielectric constant values. Iron 

inclusion in the Ga2O3 crystal system is also responsible for the rise in atomic polarizability and 
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subsequent increment in dielectric constant. At the same time, charge accumulation at the grain 

boundary increased the interfacial polarization and the dielectric constant. 

 

Figure 6.12: Variation of real part of the dielectric constant of GFO compounds with frequency. 
The dispersion behavior in all these plots fits to the modified Debye function. 



86 

6 8 10 12 14 16

-4

-2

0

2

4

6

8

 

 

ln
[(ε

' o
-ε'

ω)
/(ε

' ω
-ε'

α)
]

lnω (Hz)

 x=0.00
 x=0.05
 x=0.10
 x=0.15
 x=0.20
 x=0.25
 x=0.30

 

Figure 6.13: Variation of ln[(ε'o - ε'ω)/( ε'ω - ε'∞)] vs ln ω for GFO compounds at room temperature. 

Temperature dependence of the dielectric behavior of GFO compounds has been studied 

in order to further understand the effect of Fe incorporation on the properties of intrinsic Ga2O3. 

The temperature-dependent plots of ε' for GFO compounds are presented in Figure 6.14. The data 

were recorded at variable frequencies in the range of 1 kHz to 1 MHz. For all the GFO compounds, 

dielectric constant increases monotonically with temperature at all frequencies. However, the rate 

of increment is higher for the lower frequencies. At the low frequency range, all types of polarizing 

factors, such as ionic, electronic, dipolar, and space charge, contribute to the lager values of 

dielectric constant. At higher frequency, ε' reaches a constant value. This might be due to the fact 

that at higher frequency, polarization decreases as electron hopping cannot follow the fast-

changing alternating current after a certain frequency level of the externally applied field. This is 

the reason why ε' value is almost constant for 1 MHz (Figure 6.14) throughout the whole 
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temperature range. Predominantly higher dielectric constant values observed in GFO compounds 

at 1 kHz are attributed to the electrode material interface polarization. 

Low-temperature dielectric relaxation mainly occurs due to the influence of charge carriers 

contributing to the interfacial polarization. At higher temperature and with increasing dopant 

concentration, a strong interaction between the lattice and the charge carrier occurs and due to the 

formation of highly insulating grain boundaries, single relaxation behavior can be noticed. Also, 

space charge polarization at the grain boundaries assisted by high temperature oxygen vacancies 

contributes to the dielectric relaxation behavior at high temperature.133 Dielectric relaxation 

mechanism of a ceramic material depends on sensitive factors such as microstructural and atomic 

defects (e.g., porosity, Schottky and Frenkel defects), temperature, associated electro-magnetic 

field, ionic substitution, relative percentage of grain and grain boundary, and so on. Incorporation 

of iron in pure β-Ga2O3 has slightly increased the interionic distance. Because of the higher bond 

length and/or interionic distance, electron hopping distances increase for GFO compounds. 

Figure 6.15 illustrates the loss tangent versus temperature plot as a function of frequency 

for GFO compounds at different frequencies. It can be observed that tan δ increases with the 

increasing temperature and obtains maxima. Both temperature and frequency have profound 

influence on dielectric loss values.118, 145 Pure β-Ga2O3 exhibits low dielectric losses at different 

frequencies compared to the Fe-doped Ga2O3 compounds. Dielectric loss increases gradually with 

increasing temperature up to 350 °C in all the studied compositions at different frequencies. 

However, beyond 350 °C, dielectric loss increases drastically, and it is more predominant at low 

frequency (1 kHz) in the all the compositions. Dielectric loss also increases with increasing Fe 

concentration. The high dielectric losses at higher temperatures attributed to (a) hopping of 
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thermally trapped electrons between different lattice sites and (b) thermally activated motion of 

oxygen vacancies. 

 

Figure 6.14: Variation of dielectric constant (ε') with temperature at different frequencies of the 
GFO compounds. (a) x= 0.00, (b) x= 0.15, (c) x= 0.20, and (d) x= 0.30. 
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Figure 6.15: Variation of tan δ with temperature at different frequencies of the GFO compounds. 
(a) x= 0.00, (b) x= 0.15, (c) x= 0.20, and (d) x= 0.30. 
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Chapter 7: Applications 

7.1 OPTICAL 

The optical absorption spectra and associated data analyses of GFO compounds are 

presented in Figure 7.1. It is evident from the optical absorption spectra (Figure 7.1(a)) that the Fe 

doping induces a change in the absorption edge. From the cutoff wavelengths of all of the 

compounds, it is evident that the GFO compounds with Fe concertation x≤ 0.10 exhibit the 

absorption edge in the UV regions (≤ 400 nm), whereas compounds with Fe concentration x ≥ 0.15 

exhibit the absorption edge in the visible region (≥ 400 nm). As the concentration of Fe increases, 

the absorption edge shifts from the UV to visible region, which is referred to as “red shift”. In all 

of the GFO compounds, the progressive shift in the absorption edge is clearly noted. Moreover, a 

small absorption edge at ≈ 450 nm was found in Fe-substituted compounds (indicated with a red 

oval in Figure 7.1(a)). Such small absorption band is associated with a double excitation process 

of Fe3+-Fe3+ and is due to transitions from 6A1 (S) + 6A2 (S) to 4T1 (G) + 4T2 (G).147-149 Figure 7.1(b) 

represents the enlarged profile of Fe-induced double-excitation process. The inset in Figure 7.1(b) 

represents the relative intensity of Fe-induced absorption edge associated with a double excitation 

process with Fe concentration. From the inset figure, it is evident that the relative intensity of Fe 

peak increases with increasing Fe content, as expected. 

Figure 7.2 shows the variation in the band gap of GFO compounds with Fe concentration. 

The determination of the cut-off wavelength to calculate the band gap is presented in the inset of 

Figure 7.2. The band gap of intrinsic Ga2O3 is 4.56 (±0.01) eV, which is in good agreement with 

that reported in the literature.150 However, Fe incorporation into Ga2O3 considerably decreases the 

band gap even at a very initial concentration. At the very first step of Fe, i.e., x= 0.05, the GFO 

compounds experience a significant reduction in band gap from 4.56 to 3.34 eV (Figure 7.2). 
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However, further doping of Fe still induces the band gap narrowing but at a much lower rate. 

Overall, the band gap finally reduces to 2.95 (±0.01) eV when Fe content is increased to x= 0.30. 

While such a reduction in band gap is also noted in Cu-, W-, Mo-, and Ti-doped Ga2O3, the red 

shift observed in these GFO compounds even for a lower content of Fe is very significant.  

The chemistry behind the observed wide-range spectral selectivity and red-shift band gap 

in GFO compounds can be explained as follows. Based on the XRD data and refinement procedure, 

the substitutional nature of Fe in Ga2O3 is evident for the entire range of dopant composition. This 

can be easily understood from the considerations of the Shannon ionic radii of Ga and Fe. The 

ionic radii of Ga and Fe are in excellent close match with each other: Ga3+, 0.62 Å (octahedral 

coordination) and 0.47 Å (tetrahedral coordination); and Fe3+, 0.64 Å (octahedral coordination) 

and 0.49 Å (tetrahedral coordination).120 Therefore, Fe3+can be substituted in the Ga site, which 

can replace Ga3+ from both octahedral and tetrahedral positions in stoichiometric proportion. Thus, 

no perturbation to the parent crystal structure, i.e., monoclinic structure of β-Ga2O3, is seen even 

at the highest concentration (x= 0.30) of Fe doping into Ga2O3. Under such isostructural 

configuration, electronic structural changes occur due to the Fe substituting for Ga. Thus, the 

substantial red shift observed in band gap can be explained based on the sp-d exchange interaction 

between valance band electrons and localized d electrons of Fe in Ga2O3. The sp-d exchange 

interactions led to positive and negative corrections to valance and conduction bands; as a 

consequence, band gap narrowing occurs in the systems with sp-d exchange interactions.151-153 In 

the present case, the outer-most electron configurations of Ga3+ and Fe3+ are 3d10 and 3d5, 

respectively. Therefore, in intrinsic Ga2O3, 3d electrons do not involve in hybridization, whereas 

in the case of Fe-doped Ga2O3 compounds, 3d5 electrons involve in hybridization with O p-

orbitals. Owing to this, there is a strong s-d and p-d exchange interactions present in GFO 
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compounds, which leads to abrupt band gap narrowing. These interactions and, hence, the spectral 

selectivity and band gap can be tuned by carefully controlling the Fe content and, hence, the dopant 

chemistry in GFO compounds. 

Figure 7.3 represents the schematic energy diagram of intrinsic β-Ga2O3 and Fe3+ doped 

Ga2O3. The figure clearly shows positive and negative corrections to the valance band and 

conduction band due to sp-d exchange interaction in Fe3+ doped Ga2O3, associated band gap 

narrowing. As explained, in the case of intrinsic β-Ga2O3, valance band edge is dominated by O 

2p orbitals and conduction band is dominated by Ga 4s orbitals, whereas in the case of Fe3+ doped 

compounds, valance band edge is dominated by O 2p orbitals and conduction band edge is 

dominated by Ga 4s and Fe 3d in contrast to intrinsic β-Ga2O3. The sp-d exchange originates in 

Fe-doped compounds due to the contribution of Fe 3d electrons to conduction band. 

 

Figure 7.1: (a) Optical absorption spectra of GFO. (b) Enlarged profile representing the intensity 
variation of peak associated with Fe3+-Fe3+ double-excitation process (Inset: relative 
intensity of Fe-induced double-excitation edge vs Fe content). 
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Figure 7.2: Band gap variation with Fe content. Significant reduction in band gap in GFO 
compounds is evident. 

 

Figure 7.3: Schematic energy diagram of intrinsic and Fe-doped Ga2O3. 
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7.2: ELECTROCATALYTIC ACTIVITY 

After confirming that Fe doping in GFO can intimately modulate its optical properties and 

band gap, we explored its potential to elicit unconventional properties in Ga2O3. While the use of 

Ga2O3 for lasers,154 phosphors,155 etc. is being explored in detail, its potential as a catalyst is 

comparatively less explored. Recent studies indicate that Ga2O3 has considerable utility as 

photocatalysts for the creation of H2 fuel, especially through water splitting.156 However, owing to 

the large band gap of Ga2O3 that makes electrocatalytic reactions tedious, the applicability of 

Ga2O3-based materials toward electrocatalytic processes remained unexplored. Optical band-gap 

analysis of GFO compounds reveals that there is significant reduction in optical band gap, which 

could also impact its electrocatalytic characteristics.  

Figure 7.4 illustrates the electrocatalytic analysis of intrinsic Ga2O3 and two Fe doped 

Ga2O3 samples (x= 0.15 and 0.30, respectively) employing HER as the model reaction. To the best 

of our knowledge, Ga2O3-based samples (individually) as an electrocatalyst for HER are still not 

reported in the literature. As expected, the parent Ga2O3 sample did not exhibit any electrocatalytic 

activity under aerobic conditions within the potential range explored in the study. However, both 

the doped samples (GFO) demonstrated appreciable electrocatalytic activity toward the generation 

of H2 through electrocatalytic water splitting (Figure 7.4(a)). Moreover, the doping percentages 

demonstrated an intricate relationship to the observed catalytic activity (Figure 7.4). The GFO 

sample with lower doping concentration (x= 0.15) demonstrated superior catalytic activity 

compared to GFO with x= 0.30 Fe doping (Figure 7.4(a)). GFO sample with x= 0.15 has an onset 

potential of ∼900 mV and a Tafel slope of 210 mVdec-1, whereas the GFO with x= 0.30 showed 

an onset of 1036 mV and a Tafel slope of 290 mVdec-1 (Figure 7.4). Three principal steps involved 
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in the conversion of H+ to H2 are commonly expressed as the Volmer (eq. 9.1), Heyrovsky (eq. 

9.2), and Tafel (eq. 9.3) equations: 

                  Volmer:  𝐻𝐻+  + 𝑒𝑒 =  𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎   (adsorption process)                                (Eq. 7.1) 

Heyrovsky:  𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎  +  𝐻𝐻+ + 𝑒𝑒 =  𝐻𝐻2  (electrochemical desorption process)        (Eq. 7.2) 

                Tafel: 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎  +  𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐻𝐻2 (recombination process)                           (Eq. 7.3) 

The high value of the Tafel slope for GFO samples reveals that the process is mostly 

governed through the Volmer-Heyrovsky mechanism. The inset of Figure 7.4(a) demonstrates the 

enlarged view of selected potential range showing the onset potential for each sample. The lower-

onset potential and Tafel slope, in combination with a higher current density, revealed the 

superiority of x= 0.15 GFO sample and also emphasize the importance of ideal doping content to 

get enhanced catalytic activity. The electrocatalytic generation of H2 demonstrated here proves for 

the first time that simple doping can evoke novel electrocatalytic performances in Ga2O3-based 

material systems. 

We believe that the inculcation and modulation of electrocatalytic activity in traditionally 

noncatalytic Ga2O3 samples through Fe doping are the result of three disparate mechanisms. While 

it is trivial to mention that the creation of new catalytic centers in Ga2O3 through Fe is the reason 

for the electrocatalytic performance, the nonlinear and bell-shaped behavior of catalytic activity 

points to a more complex enabling mechanism. It is reported that transition-metal doping adjacent 

to catalytic centers (mostly electronegative elements such as oxygen or sulfur) in electrocatalysts 

can enhance its activity by lowering the hydrogen adsorption free energy (ΔGH).157-159 Hence, the 

lattice inclusion of Fe while doping creates highly catalytic centers and lowers hydrogen 

adsorption free energy (ΔGH) by weakening the bonds between Ga and O atoms in the lattice, 

resulting in a more favorable adsorption of proton and its subsequent reduction to H2. However, 
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this still does not explain the modulation of catalytic activity with respect to doping content, as 

well as the bell-shaped behavior of the activity.  

The dependence of electron mobility and conductivity of the sample on catalyst 

performance in HER is well demonstrated. A higher electron mobility and conductivity will allow 

the generated electrons to travel across the catalyst to reach the active centers to enable faster 

reduction, which results in lower-onset potential. The presence of metals in the sample is expected 

to minimally raise the conductivity values of the doped samples. However, the enhanced 

conductivity does not seem to follow a linear relationship with doping. From the XPS study 

(Figure 6.10), it is established that lower doping concentration of Fe has two valence states of +2 

and +3, whereas the higher one has Fe only in the +3-oxidation state. The presence of Fe in mixed 

valence states can impart enhanced conductivity and electron mobility within the system via 

intervalence charge transfer.160 Hence, between GFO sample (x= 0.15 and 0.30), owing to the 

presence of mixed valence states of Fe, the x= 0.15 GFO sample has the highest conductivity and 

hence demonstrates better activity. In addition to decreasing the ΔGH value and increasing the 

conductivity, Fe doping also decreases the band gap of the material. Based on the observed 

catalytic activity, we hypothesize that the band positions (especially the conduction band) for 

doped samples are such that proton reduction is easier for the lower doping concentrations 

(illustrated in Figure 7.5). Hence, as a cumulative effect of the above-stated three phenomena, 

GFO samples with x= 0.15 Fe content demonstrate the best catalytic activity toward HER. 

Though we were able to inculcate appreciable electrocatalytic activity in Ga2O3 through 

simple metal doping, it is worth noting that the obtained results are not optimal for their application 

as an efficient electrocatalyst. However, the aim of the study was to create a new avenue for Ga2O3-

based material in electrocatalysis and to prove that doping-induced band gap tuning can be an 
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effective pathway to generate tunable electrocatalytic activity in a system that had no activity in 

the pristine state. We postulate that engineering the doping concentration, doping type, the size 

and shape, inducing more catalytic centers, or creating high activity hybrids, etc. can result in 

Ga2O3-based catalyst with significantly embellished catalytic properties. However, such 

optimizations are beyond the scope of this work, and efforts in this direction are currently being 

undertaken. 

 

Figure 7.4: Electrochemical characterization of the doped and undoped Ga2O3. (a) Polarization 
curves obtained at a 20 mVs-1 scan rate and (b) Tafel slopes for x= 0.15- and 0.30-
doped samples. 

 

Figure 7.5: Hypothetical schematic showing the band positions in the conduction band for intrinsic 
and Fe-doped compounds. 
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Chapter 8: Summary and Conclusions 

GFO (x= 0.10) compounds were synthesized by employing a high temperature solid-state 

chemical reaction method and varying the thermal conditions. The effects of thermochemical 

processing conditions on the structural and dielectric properties of GFO have been established. 

GFO materials crystallized in the β-Ga2O3 phase. The sintering temperature strongly influenced 

the microstructure and electrical properties of GFO materials. The average crystallite size varied 

in the range of 55-64 nm for variation at Tsint = 900−1200 °C. The particle coalescence was 

relatively higher and better in GFO samples sintered at 1100−1200 °C; the relative porosity 

decreased from 39% to 28%, with increasing Tsint from 900 to 1200 °C. The EDS spectral data and 

elemental mapping data confirmed the high chemical quality and demonstrated the uniform 

distribution of elemental composition throughout the microstructure of GFO materials. The 

deconvoluted XPS spectra of Fe 2p region showed that the Fe exhibited mixed valance state (i.e., 

Fe3+ and Fe2+) for Tsint = 1200 oC sample whereas single valance state (i.e. Fe3+) can be observed 

for rest of the sintered samples. 

The dielectric constant values of GFO synthesized at Tsint =1200 °C were relatively higher 

compared to those prepared at lower Tsint. The frequency dispersion of the dielectric constant fitted 

to the modified Debye model, which considered the multiple ions contributing to the dielectric 

relaxation process. The temperature-dependent dielectric constant plots indicated a thermally 

activated mechanism that was of sheer importance for the observed high-temperature phenomena. 

The spreading factor and relaxation time, calculated using Cole-Cole plots, were in the ranges of 

0.65-0.76 and 10-4 s, respectively. The results demonstrated that densification and control over the 

microstructure and properties of GFO can be achieved by optimizing the sintering temperature. 
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New GFO compounds were fabricated maintaining the optimum synthesis condition (i.e., 

Tsint = 1200 oC) by varying the dopant iron concentration (x= 0.00-0.30). The phase purity and 

crystal structure of the synthesized compounds were confirmed by XRD analysis. The analysis of 

XRD pattern revealed that the synthesized compounds were stabilized in monoclinic phase similar 

to pure Ga2O3 with a C2/m space group. Morphology of the sintered samples revealed rod-shaped 

particle features, and, with increasing Fe content, the particle size distribution got narrowed down. 

The stoichiometry of the compounds was verified by EDS. It was evident from chemical analysis 

that almost each compound maintained the proper stoichiometric ratio with desired composition. 

XANES study also revealed that the doped iron species nearly equally substituted Ga3+ from both 

tetrahedral and octahedral coordinate positions. Frequency-dependent dielectric behavior of all the 

synthesized compounds replicated the Maxwell-Wagner type dielectric relaxation at lower 

frequencies. Temperature-dependent dielectric data also exhibited salient characteristic features of 

the GFO compounds. The spreading factor values increased from about 0.58-0.60 on increasing 

the Fe concentration in intrinsic Ga2O3. The scientific understanding derived from this model 

system of Fe doping into Ga2O3 may be useful and can be applicable to a large class of transition 

metal doped Ga2O3 materials. 

Chemical analyses indicated high-quality GFO materials, where Fe exhibited mixed 

chemical valence states (Fe3+, Fe2+) for a lower concentration of Fe doping. However, for doping 

with higher Fe (x= 0.20-0.30) content, iron ions exhibited only the single chemical valence state 

(Fe3+). Significant red shift of the optical band gap occurred in GFO compounds compared to 

intrinsic Ga2O3. Iron doping facilitated strong sp-d exchange interaction, which originated from 

the 3d5 electrons of Fe3+, was accounted for the observed red shift in the GFO compounds. In 
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addition, a signature of Fe3+-Fe3+ double excitation process was evident as a small optical 

absorption edge at ≈ 450 nm in GFO compounds.  

Moreover, GFO compounds (x= 0.00, 0.15, and 0.30) exhibited electrocatalytic water 

splitting toward the generation of H2 in contrast to intrinsic Ga2O3. The onset potentials and Tafel 

slopes of two GFO (x= 0.15 and 0.30) samples were like: onset potential ∼900 mV and Tafel slope 

∼210 mVdec-1 for x= 0.15 and onset potential ∼1036 mV and Tafel slope ∼290 mVdec-1 for x= 

0.30. The electrocatalytic activity of the Fe doped compounds was attributed to create new catalytic 

centers, enhanced conductivity, and electron mobility. As a concluding and general remark, for the 

first time, we explored a new pathway of deriving electrocatalytic behavior in Fe-doped Ga2O3, 

while such activity was totally absent in the intrinsic or undoped phase. Therefore, the outcomes 

and implications derived from this work may be applicable to a large class of compounds, and 

further options may be available to design functional materials for electrocatalytic energy 

production. 
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Chapter 9: Future Studies 

The following suggestions can be adopted to accomplish more extensive research on this material 

system: 

1. Measurement of electrical properties employing Hall effect in order to determine the carrier 

mobility, carrier concentration, and the type of conductivity. This experiment can also 

provide information which may be critical for versatile applications such as solar cell 

transistor, diodes, transparent conductive oxides (TCO) and high-power electronics.  

2. This hybrid material system can be used for efficient thin film fabrication for extreme 

environment sensor application. 

3. As we doped iron in Ga2O3 in our case, we can do the opposite i.e., doping of Ga in Fe2O3 

and compare the respective properties. 

4. Other transparent metal ions can also be doped in Ga2O3 in order to find new avenues of 

solving different scientific puzzles. 
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