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Abstract 

 

The present dissertation is focused on the analysis of the atmospheric conditions of a 

turbulent environmental system and its effects on the diffraction of a laser beam that moves 

through it. The study is based on the optical communication of two labs placed at the summit of 

two mountains located in Maui, Hawaii. The emitter system is located at the Mauna Loa mountain 

and the receiver at the Haleakala. The distance between both mountains is 150 km. The emitter 

system is at a height of 3.1 km and the receiver at 3.4 km. The maritime environment at the location 

experiences continuous atmospheric of turbulence. The turbulence conditions present a series of 

rotating systems called Eddies, which act as a kind of lens that diffuses light because they change 

the refractive index of the air, affecting the phase of the laser beam used in the communication. 

Thus, the objective of this study has been to find a mathematical relation between the level of 

turbulence, measured by the Reynolds number, and an optical parameter, represented by the 

structure constant of refractive index Cn
2 for measuring the optical disturbance.  The profile of 

temperatures is required to perform the calculations of the Cn
2. I lacked experimental data, so I 

used a CFD simulation software called ANSYS Fluent. Additionally, neural network algorithms 

were used to fit the temperature data to an equidistant coordinate network. At the end of the study, 

the positive correlation between Reynolds and Cn
2 was obtained and an equation that shows the 

positive trend between both parameters. 
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Executive Summary 

 

The presence of strong turbulence in atmosphere along the laser propagation path affects 

the quality of laser-based remote sensing and imaging and presents challenges to remote sensing 

technologies. To improve the quality of image detection and target selection in presence of the 

turbulence there is a need for characterizing these conditions. 

 

The goal is to develop new correlations to effectively characterize and compensate the 

images for turbulent effects. There is a location at Maui, Hawaii, where Air Force Research 

Laboratories (AFRL) communicate at the top of two mountains named Mauna Loa and Haleakala 

using optical devices. These laboratories are particularly interested in developing new metrics for 

deep turbulence effects on laser propagation through long path. 

 

The approach to get these correlations was the Kolmogorov´s theory, which states that in 

turbulent media, kinetic energy is transferred through a series of rotational systems called Eddies 

that decrease in size as the kinetic energy is transferred.  

 

Kolmogorov defined the behavior of velocity variations in a turbulent environment through 

the function of velocity structure. Since the objective was to find correlations that allowed 

characterizing the effects of turbulent flow on optical variables, the optical variable that was 

decided to study is the constant of the diffusion index Cn
2 that depends on the temperature 

variations. 
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Cn
2 depends on temperature variations. Such temperature variations follow a pattern similar 

to the velocity variations defined in the Kolmogorov´s structure function. For this reason, it was 

decided to use that relationship for the calculation of Cn
2. 

 

The temperature data necessary to calculate the variations was obtained through a fluid 

simulation software called ANSYS Fluent, since it did not have experimental data. The 

information obtained from the software is not generated in equidistant coordinates as required to 

apply the equation. This is where the use of neural networks is necessary to generate that 

information. 

 

Neural networks are algorithms that have the characteristic of being able to predict 

information based on data with which it has been previously trained. The algorithm used was 

trained with the spatial information obtained from the ANSYS Fluent and later fed with a profile 

of equidistant coordinates to predict the temperatures exactly in those coordinates. 

 

These new series of data based on an equidistant mesh allowed me to use the equation to 

calculate the value of Cn
2. The next step was to relate these values to the level of turbulence present 

in each case.  

 

The best way to define the level of turbulence is the Reynolds number, which is directly 

related to the wind velocity. The range of atmospheric velocities at the height of this region of 

Maui ranges from 5 to 16 m/s and I selected a time step of 0.25 m/s to generate the cases of study, 

where each velocity corresponded to one case. At the end I generated 45 cases. 
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For each of the 45 cases of velocity and Reynolds numbers, I carried out the same process 

of exporting the temperature profile from the ANSYS Fluent, adjusting the generated values with 

neural networks, and finally calculating the Cn
2 values.  

 

In the end, a table and a graph were generated with the corresponding values between the 

Reynolds number and the constant of the structural function of temperature, finding a positive 

correlation between both variables and a linear trend equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

Table of Contents 

 

Acknowledgements ..................................................................................................................... v 

Abstract ....................................................................................................................................vii 

Executive Summary ................................................................................................................ viii 

Table of Contents ....................................................................................................................... xi 

List of Tables .......................................................................................................................... xiii 

List of Figures ......................................................................................................................... xiii 

Chapter 1: Introduction ............................................................................................................... 1 

Chapter 2: Background and Literarture Review ........................................................................... 3 

Chapter 3: Problem Definitions ................................................................................................. 43 

Chapter 4: Methodology ............................................................................................................ 62 

Chapter 5: Results and Discussions ........................................................................................... 73 

Chapter 6: Conclusions ............................................................................................................. 86 

Chapter 7: Future Studies .......................................................................................................... 88 

Scholarly Contributions ............................................................................................................. 90 

References ................................................................................................................................ 92 

Vita    ........................................................................................................................................ 99 

 

 



xii 

List of Tables 

 

Table 5.1: Cases of Analysis ..................................................................................................... 75 

Table 5.2: Cn
2 vs Reynolds ........................................................................................................ 82 

 



xiii 

List of Figures 

 

Figure 2.1: The Kolmogorov model of the energy cascade.. ...................................................... 17 

Figure 2.2: Rotational systems in turbulent media called eddies.. .............................................. 17 

 

Figure 2.3: Changes in laser direction due to the presence of Eddies.......................................... 21 

Figure 2.4: Distribution of the Cn value during a typical summer day in Hawaii.. ...................... 24 

Figure 2.5: Definition of the source plane and observation plan inside a cartesian system. ......... 27 

 

Figure 2.6: Distribution of the laser phase screen in a 2D map. .................................................. 28 

Figure 2.7: Mass flow vectors entering and leaving an element volume.. ................................... 33 

Figure 2.8: Components of the surface forces as shear stresses. ................................................. 34 

 

Figure 2.9: Mass flow vectors entering and leaving an element volume. .................................... 36 

Figure 2.10: Graphic definition of the neural network algorithm................................................ 38 

Figure 2.11: Sigmoid Function (Left), ReLu Function (Right). .................................................. 39 

Figure 3.1: Original geometry dimensions.. ............................................................................... 45 

Figure 3.2: Scaling down the geometry...................................................................................... 45 

Figure 3.3: Final geometry dimensions.. .................................................................................... 46 

Figure 3.4: Velocity simulated with scaled conditions... ............................................................ 49 

Figure 3.5: Velocity simulated with original conditions.. ........................................................... 49 

Figure 3.6: Temperature variations simulated with scaled conditions.. ....................................... 50 

Figure 3.7: Temperature conditions simulated with original conditions.. ................................... 50 

Figure 3.8: ANSYS Fluent Sections for fluid analysis.. ............................................................. 51 

Figure 3.9: 3D ANSYS solid model of the case of analysis. ...................................................... 51 

 

Figure 3.10: Design tree for the ANSYS Meshing section. ........................................................ 52 

 

 



xiv 

Figure 3.11: Designation of named sections according to the original model. ............................ 52 

Figure 3.12: Edge dimensioning for defining the element size of the mesh.. .............................. 53 

Figure 3.13: 3D mesh with 20 mm side elements. ...................................................................... 54 

 

Figure 3.14: Components of the Set up section in ANSYS Fluent. ............................................. 54 

Figure 3.15: Close view of the non-equidistant mesh generated in ANSYS Fluent..................... 56 

Figure 3.16: Equidistant points created to simulate the original model. ...................................... 57 

Figure 3.17: Distribution of the errors for Hidden Layers vs Neurons. ....................................... 60 

Figure 3.18: Mesh comparison of meshes before and after Neural Network algorithm. .............. 61 

Figure 4.1: Range of Reynolds numbers .................................................................................... 64 

Figure 4.2: Temperature and pressure data in the specified sections. . ........................................ 66 

 

Figure 4.3: Codes to generate the UDF in C language for temperature and pressure. ................. 67 

Figure 4.4: Range of velocities for the 45 cases of analysis. ...................................................... 68 

Figure 4.5: Non equidistant mesh from the ANSYS File. .......................................................... 69 

Figure 4.6: Transition from Non-Equidistant to Equidistant Mesh. ............................................ 69 

Figure 4.7: Temperature information in equidistant positions. ................................................... 70 

Figure 5.1: Profiles of temperatures at a range of velocities from 5 to 10 m/s ............................ 77 

Figure 5.2: Profiles of temperatures at a range of velocities from 11 to 16 m/s .......................... 78 

Figure 5.3: Profiles of velocities for a range of velocities from 5 to 10 m/s ................................ 79 

Figure 5.4: Profiles of velocities for a range of velocities from 11 to 16 m/s. ............................. 80 

Figure 5.5: Re vs Cn
2 trend. ....................................................................................................... 83 

Figure 5.6: Distribution of the Cn value during a typical spring day in Hawaii .......................... 84 

 

 

 



1 

Chapter 1: Introduction. 

 

 

Laser propagation through atmospheric turbulence has been of interest by many scientists 

and engineers for centuries. Before the invention of lasers, astronomers observed the light coming 

from the stars distorted by a turbulent atmosphere. After the invention of lasers, scientists and 

engineers observed similar phenomenon specially on long distances, then many focused their 

efforts on understand it, particularly after the appearance of optical communication systems [1]. 

 

The first intentional approach is the use of analytical equations to understand the turbulent 

behavior of the atmosphere. The Navier-Stokes equation is excellent due to the inclusion of all the 

variables involved in the fluid phenomena, the truly weakness of this approach is the enormous 

quantity of calculations that takes part in every case of analysis. Even though talking about high 

performance computer capacity, the volume of fluids that can be fully calculated using Navier- 

Stokes equations is very small [2].  

 

Then, a different approach is used for analyzing the behavior of the turbulent atmosphere, 

which is the theory of the energy cascade of Kolmogorov. This approach defines that the energy 

from the turbulent atmosphere is transmitted inside a spam called inertial subrange [3]. 

 

On the other hand, counting on the CFD fluid simulation resource by ANSYS Fluent, we 

decided to use it to make important contributions to the understanding of the turbulent conditions 

in the analyzed volume of turbulent air between two mountains. 

 

Due to the random approach of ANSYS for mesh construction and the importance for our 

study to have a proportional mesh with specific values of pressure, temperature and wind velocity, 

we decided to use another source for exporting that data but work the results to obtain a 
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proportional matrix with the corresponding speed, pressure and temperature data within a 

proportional mesh. 

 

This other resource is called neural networks, which are computational algorithms that 

estimate conditions based on a group of data used as training group. In the present case, the data 

corresponding to an atmospheric volume generated on a non-proportional mesh were used to train 

the algorithm and thereby estimate the temperature, pressure and speed conditions of another 

structured atmospheric volume based on a proportionate spatial mesh. 

 

 The need to have a proportional mesh is to calculate the optical parameter called 

diffraction constant Cn
2. The objective of the thesis is to find the relation between the Reynolds 

number and the values of Cn
2, and the values of Cn

2 are calculated on proportional deltas of 

distance, which accuracy would be enormously low basing the calculations on a non-proportional 

mesh [4]. 

 

At the end, the calculations of Cn
2 related to Reynolds number took us to the conclusion 

that there is a correlation of the Reynolds number over Cn
2 but only after velocities of 13 m/s that 

are present in the Hawaiian environment during the months of October through late January and 

May through July [2]. 

 

A future work is focused on relating data obtained from atmospheric devices to compare 

with the current analytical approach. The Dr. Rao, who belongs to the AFOSR laboratory at Maui, 

has validated these correlations as very close to the real turbulent behavior [1]. 

. 
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Chapter 2: Background and Literature Review. 

 

This chapter shows the entire theoretical basis used for the development of this study. The 

first concepts are those based on the fundamental mathematics to understand the optical 

propagation, with a strong basis on the theories presented by Tatarskii [5]. 

 

The following concepts are related to the Kolmogorov's theory, which seeks to explain the 

turbulence phenomenon by means other than the Navier-Stokes equations and proposing its 

Energy Cascade Theory and the concept of rotational systems called Eddies.  through which this 

energy is transferred. The Eddies are rotational systems through which the kinetic energy is 

transferred from a high level position with the largest Eddies sizes, until the complete dissipation 

of energy with Eddies sizes too small that the rest of the energy dissipates in the form of heat. 

These Eddies are the cause of laser diffraction since they act as atmospheric lenses. 

 

Additionally, Kolmogorov proposes a mathematical model to link the turbulence model 

with fluctuations in refractivity, using the structural function of temperature and the power spectral 

density. This section is titled Turbulence Model of Refractivity Fluctuations. From this section the 

structural function of temperature was extracted, which was used for calculations of the structural 

constant of temperature CT
2 and from it, the structural constant of the index of refractivity Cn

2. 

 

After the Kolmogorov’s analysis, I present a section related to observing the turbulent 

atmospheric effects on Cn
2 using the Fried parameter, which is based on statistical methods that 

relates to Gauss's theory. I linked this section with a presentation of the typical Cn
2 behavior on a 
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summer day in Maui with a graph based on experimental readings, to have an example of what 

could be obtained with the present study. 

 

Due to the enormous amount of data from the temperature readings and that were used in 

matrix form, the numerical methods are presented in this section as a tool to calculate the structural 

functions CT
2 and Cn

2. On the other hand, they are also presented here because other members of 

Dr. Kumar’s team, already have been working with relating the atmospheric turbulence and the 

optical variables. Particularly Diego Lozano used profusely used the numerical methods for 

generating phase screens that allowed him to see the laser’s phase variation at intermediate 

positions on its path. 

 

On the other hand, because I did not have access to experimental information of the 

temperature profiles, all the temperature profiles corresponding to each case of wind velocity were 

generated through a CFD simulation software called ANSYS Fluent. For this reason, I present a 

section explained in detail about the theoretical foundations behind the Fluid Dynamics and 

Computational Fluid Dynamics (CFD). 

 

The profiles of temperature were generated to calculate the structural function of the 

temperature CT
2, which in turn will allow the calculation of Cn

2. However, to apply the structural 

temperature equation, it is necessary to have a temperature profile defined in a series of equidistant 

coordinates, since the position vector must be constant between each coordinate. This condition of 

equidistant positions is not fully generated with the CFD simulation software. 
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To generate this temperature profile at equidistant coordinate positions, I used neural 

network algorithms. These algorithms can be trained with a series of data and then make 

predictions based on this training. The neural algorithms were trained with the information 

obtained from the CFD simulation; after this training, the algorithm was fed with a series of 

equidistant positions to make the predictions at each coordinate. For this reason, at the end of this 

chapter, a specific section is dedicated to explaining in detail the theoretical basis of the operation 

of neural network algorithms. 
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Fundamentals of Optical Propagation 

 

The general description of our project starts with the theoretical bases of light propagation 

or more commonly known as optical propagation. It is worth remembering that a general accepted 

way to understand the propagation of light is to understand the light phenomena it as a wave of an 

electromagnetic nature. Then, for this reason, Maxwell's equations have a clear application [6]. 

 

During this chapter, theoretical results will be obtained from Maxwell’s equations, using a 

perturbation technique described by Tatarskii [5]. For the sake of simplicity, a plane wave is 

assumed to be incident upon the random medium and just the resultant fluctuations of amplitude 

and phase are considered. 

 

The Wave Equation for Optical Propagation. The atmosphere is assumed to have zero 

conductivity and unitary magnetic permeability, while the electromagnetic field is assumed to have 

a sinusoidal time dependence, given by 𝑒−𝑖𝜔𝑡. Amplitude and phase statistics for short pulses can 

be derived by Fourier decomposition of their waveform into a spectrum of plane waves [6]. Given 

such conditions, Maxwell’s equations are written as follows: 

 

 ∇ ∙ 𝐻 = 0 (2.1) 

 ∇ × 𝐸 = 𝑖𝑘𝐻 (2.2) 

 ∇ × 𝐻 = −𝑖𝑘𝑛2𝐸 (2.3) 

 ∇ ∙ (𝑛2𝐸) = 0 (2.4) 
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Where 𝑖 = √−1, 𝑘 =
𝜔

𝑐
  stands for the wave number of the radiation, 𝜔 for its radian 

frequency, and 𝑐 is the speed of light in free space. The operator ∇ is the vector derivative 

(
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
). Both 𝐸 and 𝐻 correspond to the vector amplitudes of the electric and magnetic field, 

respectively, and are position dependent functions. The assumed sinusoidal time dependence is 

contained in 𝑘. Finally, 𝑛(𝑟) is the atmospheric refractive index in a position dependent random 

function [9]. 

 

The most commonly known wave equation for the electric field is obtained by substituting 

(2.3) in (2.2) as seen below: 

 −∇2𝐸 + ∇(∇ ∙ 𝐸) = 𝑘2𝑛2𝐸 (2.5) 

 

Then (2.4) is expanded and solved for ∇ ∙ 𝐸 and the result inserted into (2.5) to obtain: 

 

 ∇2𝐸 + 𝑘2𝑛2𝐸 + 2∇(𝐸 ∙ ∇ log(𝑛)) = 0 (2.6) 

 

In (2.5), 2∇(𝐸 ∙ ∇ log(𝑛)) refers to the change in polarization as the wave propagates, 

which is considered negligible for 𝜆 ≪ 𝑙0 [2]. Depolarization effects of the atmosphere are even 

negligible for 𝜆 > 𝑙0. Thus, (2.6) can be rewritten as: 

 

 ∇2𝐸 + 𝑘2𝑛2𝐸 = 0  (2.7) 

 

Finally, the desired results are obtained by solving equation (2.7).  
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Solution by the Method of Small Perturbations. The method consists of a series of 

decreasing 𝐸 terms. As assumption, each 𝐸𝑚 is of the order of smallness (𝑛1)𝑚. If |𝐸𝑚+1| ≪ |𝐸𝑚|, 

then the series converge, and propagation is accurately described. Otherwise, the series would 

diverge. Physically, the order of the terms represents the scattering of the wave [7]. The zero-order 

for unscattered, first order for single scattering, and so on. For the current analysis, just the single 

scatter case is solved. 

 

First, 𝐸 = 𝐸0 + 𝐸1 is inserted into (2.7) and terms of the same order in 𝑛1 are gathered and 

equated to zero, as follows: 

 ∇2𝐸0 + 𝑘2𝐸0 = 0 (2.8) 

 ∇2𝐸1 + 𝑘2𝐸1 + 2𝑘2𝑛1𝐸0 = 0  (2.9) 

 

The product 𝐸1𝑛1 is of order 𝑛1
2, therefore, it is ignored. As Tataraskii [13], the incident 

field is assumed to be a unit amplitude plane wave propagating in the 𝑧 direction, 𝐸0 = 𝑒𝑖𝑘𝑧, so 

(2.9) is rewritten as: 

 ∇2𝐸1 + 𝑘2𝐸1 = −2𝑘2𝑛1𝑒𝑖𝑘𝑧  (2.10) 

 

Now, its solution is the convolution of the term on the right side with the Green’s function 

of the equation: 

 

𝐸1(𝑟) = (4𝜋)−1 ∫ 𝑑3

𝑉

𝑟𝑒

𝑖𝑘[(𝜚−𝜚′)
2

]

2(𝑧−𝑧′) [2𝑘2𝑛1(𝑟′)𝑒𝑖𝑘𝑧′
] 

 

(2.11) 
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It is stated that the scattered field observed in 𝑟 is a spherical wave emitted at 𝑟′, with an 

amplitude proportional to the product of the local refractive index 𝑛1(𝑟′) and the strength of the 

incident radiation. 

 

The equation in (2.11) can be simplified by the characteristics of laser propagation: 

Monochromatic, scattered by weak large-scale refractivity fluctuations and contained in a narrow 

cone in the forward scatter direction (+𝑧) . From laws of diffraction, the maximum scattering 

angle is in the smallest eddies traversed. In this case, the scattering angle 
𝜆

𝑙0
 is 3 × 10−4 radians, 

therefore, the transverse displacement from the forward propagation from scatterer to receiver 

|𝜚 − 𝜚′| is much smaller than the distance between them |𝑧 − 𝑧′|. That is, if |𝑧 − 𝑧′| ≫ |𝜚 − 𝜚′|, 

then 𝑟 − 𝑟′ can be replaced by 𝑧 − 𝑧′ in the denominator of (2.11). For the argument, the 

wavelengths that are contained within this distance must be considered. Thus, the terms that are 

retained are the ones that make the argument larger than 2𝜋 radians [1]. Then, |𝑟 − 𝑟′| is expanded 

into a binomial series, and after reducing it by the Fresnel approximation, the following equation 

is obtained: 

 

𝐸1(𝑟) =
𝑘2𝑒𝑖𝑘𝑧

2𝜋
∫ 𝑑3

𝑉

𝑟′𝑒

𝑖𝑘[(𝜚−𝜚′)
2

]

2(𝑧−𝑧′)
𝑛1(𝑟′)

(𝑧 − 𝑧′)
 

 

(2.12) 

This equation is the Fresnel diffraction formula and is the solution to the diffusion equation 

when the source term is −2𝑘2𝑛2. Now, in order to calculate how the amplitude and phase fluctuate 

when crossing the atmosphere relatively to the free space, the field 𝐸 is rewritten as:  
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𝐸

𝐸0
=

𝑘2𝑒𝑖𝑘𝑧

2𝜋
∫ 𝑑3

𝑉

𝑟′𝑒

𝑖𝑘[(𝜚−𝜚′)
2

]

2(𝑧−𝑧′)
𝑛1(𝑟′)

(𝑧 − 𝑧′)
 

 

(2.13) 

 

This is the Fresnel diffraction formula and is the solution to the diffusion equation when 

the source term is −2𝑘2𝑛2. In addition, the exponential term predicts the location of the 

interference fringes produced in the receiving plane in 𝑧 by the interference of the incident plane 

wave and the scattered spherical wave (Huygen’s wavelet) emitted from (𝜚′, 𝑧′). 

 

Now, to calculate how amplitude and phase fluctuate when crossing the atmosphere 

relatively to the free space [11], the field 𝐸 = 𝐸0 + 𝐸1 must be written in terms of both amplitude 

and phase as follows:  

 𝐸

𝐸0
= 1 +

𝐸1

𝐸0
=

𝐴

𝐴0
𝑒𝑖(𝑠−𝑠0) 

(2.14) 

 

The last term results from 𝐸 = 𝐴𝑒𝑖𝑠 and 𝐸0 = 𝐴0𝑒𝑖𝑠0, where 𝐴1 is the amplitude of 𝐸1. 

Then, its natural logarithm is taken. Since |
𝐸1

𝐸0
| ≪ 1 and 

𝐴1

𝐴0
≪ 1, the logarithm is expanded into a 

power series and just the first term is retained, as follows: 

 

 𝐸1

𝐸0
≅

𝐴1

𝐴0
+ 𝑖(𝑠 − 𝑠0) 

(2.15) 

 



11 

Equation (2.15) implies that, when normalized by 𝐸0, amplitude ratio and phase 

fluctuations must be obtained from (2.12), from its real and imaginary parts, respectively [12]. 

Resulting in:  

 𝐴1

𝐴0
=

𝑘2

2𝜋
∫ 𝑑3

 

𝑉

𝑟′ cos [
𝑘(𝜚 − 𝜚′)2

2(𝑧 − 𝑧′)
]

𝑛1(𝑟′)

(𝑧 − 𝑧′)
 

(2.16) 

 
(𝑠 − 𝑠0) =

𝑘2

2𝜋
∫ 𝑑3

 

𝑉

𝑟′ sin [
𝑘(𝜚 − 𝜚′)2

2(𝑧 − 𝑧′)
]

𝑛1(𝑟′)

(𝑧 − 𝑧′)
 

(2.17) 

Where there is no wave attenuation as 𝑛1(𝑟′) is real. Now, log amplitude 𝜒 = ln (
𝐴1

𝐴0
) ≅

𝐴1

𝐴0
 

(what is often measured experimentally) and 𝑠 − 𝑠0 = 𝑠1 are defined by convention. It should be 

noted, though, that 𝜒 is identical to 
𝐴1

𝐴0
 for weak scatterings as in the current case. Furthermore, as 

the analysis is considering a plane wave, statistical homogeneity of both amplitude and phase is 

expected to remain constant in the plane z [8]. On the other hand, 𝜒 and 𝑠 are expected to fluctuate 

along the 𝑧 axis (in the propagation direction), with a growth directly proportional to the distance 

travelled as it propagates through more refractive turbulence. Consequently, 𝑛1(𝑟′) is expanded 

into a two-dimensional Furier-Stieltjes transform as follows:  

 

 
𝑛1(𝑟′) = ∫ 𝑑𝜈(𝐾, 𝑧′) 𝑒𝑖𝐾∙𝜚′

 
(2.18) 

 

Where the variation of 𝑛1(𝑟′) is transformed only in the plane transversal to the 

propagation direction and 𝑑𝜈 is set as function of 𝑧′.Then, equation (2.17) is inserted into (2.15) 

and (2.16), and integration over 𝑑𝜈 is substituted with that over 𝑑3𝑟′ (since 𝑑3𝑟′ = 𝑑2𝜚′𝑑𝑧′) to 

obtain:   
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[
𝜒(𝑟)

𝑠1(𝑟)
] =

𝑘2

2𝜋
∫ ∫ 𝑑

𝑧

0

𝑧′ ∫ 𝑑2𝜚′𝑒𝑖𝐾∙𝜚′
{

cos  
sin  

[
𝑘(𝜚 − 𝜚′)2

2(𝑧 − 𝑧′)
]} 

 

(2.19) 

 

The integral over 𝜚′ is performed after substituting 𝜚′′ = 𝜚′ − 𝜚. Now, since the sine and 

cosine terms are function of |𝜚′′|, polar coordinates 𝜚′′ = (𝜚′′, 𝜃) can be used to integrate directly 

over 𝜃. Additionally, the inner integrals are rewritten in terms of 𝐼1,2, as follows: 

 

𝐼1,2 = 𝑒𝑖𝐾∙𝜚 ∫ 𝑑𝜚′′𝜚′′
∞

0

{
cos  
sin  

[
𝑘𝜚′′2

2(𝑧 − 𝑧′)
]} ∫ 𝑑𝜃𝑒𝑖𝐾𝜚′′ cos(𝜃−𝜓)

2𝜋

0

 

 

(2.20) 

 

Where 𝐾 = (𝐾, 𝜓) is let in the last term. The solution of the inner integration is the Bessel 

function 2𝜋𝐽0(𝐾𝜚′′), which is then substituted in (2.20): 

 
𝐼1,2 = 2𝜋𝑒𝑖𝐾∙𝜚 ∫ 𝑑𝜚′′𝜚′′

∞

0

𝐽0(𝐾𝜚′′) {
cos  
sin  

[
𝑘𝜚′′2

2(𝑧 − 𝑧′)
]} 

 

(2.21) 

 

The remaining integral is the Hankel transform of the trigonometric term, which, when 

solved, (2.20) becomes: 

 
𝐼1,2 =

2𝜋(𝑧 − 𝑧′)

𝑘
𝑒𝑖𝐾∙𝜚 {

sin  
cos  

[
𝑘𝜚′′2

2(𝑧 − 𝑧′)
]} 

 

(2.22) 

 

The resulting expression is then inserted into (2.19) to obtain: 

 

[
𝜒(𝑟)

𝑠1(𝑟)
] = ∫ 𝑒𝑖𝐾∙𝜚 (𝑘 ∫ 𝑑

𝑧

0

𝑧′𝑑𝜈(𝐾, 𝑧′) {
sin  
cos  

[
𝐾2(𝑧 − 𝑧′)

2𝑘
]}) 

 

(2.23) 
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This equation is interpreted as a two-dimensional Fourier expansion as (2.18). Therefore, 

the terms in brackets represent the random spectral amplitudes of both amplitude and phase 

fluctuations [9].  

 

As in any random process, the properties of the outcome of experiments were averaged. 

Consequently, the two-dimensional covariance functions 𝐵𝜒(𝜚) and 𝐵𝑠(𝜚) are used to settle the 

statistical homogeneity of amplitude and phase in the plane 𝑧 = constant. (It should be noted that 

〈𝜒〉 = 〈𝑠1〉 = 0 since 〈𝑛1〉 = 0 by definition and because only the first order term 𝐸1was retained.) 

Now, since both functions are often computed in the receiving plane located at 𝑧 = 𝐿, they’re 

defined as 𝐵𝜒(𝜚, 𝑧) = 〈𝜒(𝜚1 + 𝜚, 𝑧)𝜒 ∗ (𝜚1 + 𝑧)〉 and 𝐵𝑠(𝜚, 𝑧) = 〈𝑠(𝜚1 + 𝜚, 𝑧)𝑠 ∗ (𝜚1 + 𝑧)〉. 

Then, (2.23) is rewritten as: 

[
𝐵𝜒(𝜚)

𝐵𝑠(𝜚)
]

= 𝑘2 ∫ ∫ 𝑒𝑖𝐾∙(𝜚1+𝜚)−𝑖𝐾′ ∙𝜚1 ∫ 𝑑𝑧′
𝑧

0

∫ 𝑑𝑧′′
𝑧

0

{
sin  
cos  

[
𝐾2(𝑧 − 𝑧′)

2𝑘
]

sin  
cos  

[
𝐾′2(𝑧 − 𝑧′′)

2𝑘
]} 

∙ 〈𝑑𝜈(𝐾, 𝑧′)𝑑𝜈 ∗ (𝐾′, 𝑧′′)〉 

 

 

 

(2.24) 

     

Furthermore, the equation for the two-dimensional random amplitude 𝑑𝑣 is: 

 

 〈𝑑𝜈(𝐾, 𝑧′)𝑑𝜈 ∗ (𝐾′, 𝑧′′)〉 = 𝛿(𝐾 − 𝐾′)𝐹𝑛(𝐾′, 𝑧′ − 𝑧′′)𝑑2𝐾𝑑2𝐾′′ (2.25) 

Where 𝐹𝑛(𝐾′, 𝑧′ − 𝑧′′) is the two-dimensional spectral density of 𝑛1(𝑟′), defined by: 

 
𝐹𝑛(𝐾′, 𝑧′ − 𝑧′′) = ∫ 𝑑𝐾𝑧

∞

−∞

𝜙𝑛(𝐾′, 𝐾𝑧) cos[𝐾𝑧(𝑧′ − 𝑧′′)] 
(2.26) 
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The 𝜙𝑛 term is the three-dimensional refractivity spectrum. Then, (2.24) is inserted into 

(2.23), where the 𝐾′ integration is performed to obtain: 

[
𝐵𝜒(𝜚)

𝐵𝑠(𝜚)
] = ∫ 𝑑2𝐾𝑒𝑖𝐾∙𝜚 

∙ (𝑘2 ∫ 𝑑𝑧′
𝑧

0

∫ 𝑑𝑧′′
𝑧

0

{
sin  
cos  

[
𝐾2(𝑧 − 𝑧′)

2𝑘
]

sin  
cos  

[
𝐾′2(𝑧 − 𝑧′′)

2𝑘
]} 𝐹𝑛(𝐾, 𝑧′ − 𝑧′′)) 

 

 

 

(2.27) 

 

The terms in brackets correspond to the two-dimensional spectral densities of 𝜒 and 𝑠, as 

demonstrated by their Fourier transform, which are then rewritten as 𝐹𝜒(𝐾, 0) and 𝐹𝑠(𝐾, 0). 

Consequently, (2.27) is simplified in three phases [15]. First, it is noted from (2.26) that 

𝐹𝑛(𝐾, 𝑧′ − 𝑧′′) = 𝐹𝑛(𝐾, 𝑧′′ − 𝑧′). Second, since 𝐹𝑛 correlates 𝑛1 along adjacent planes along the 

𝑧 axis, only homogeneities whose size 2𝜋𝐾−1 ≥ |𝑧′ − 𝑧′′| provide significant contributions. 

Therefore, 𝐹𝑛 is expected to decay sharply for 𝐾|𝑧′ − 𝑧′′| > 1. Then, (2.27) is rewritten as: 

 

[
𝐹𝜒(𝐾, 0)

𝐹𝑠(𝐾, 0)
] = 𝑘2 ∫ 𝑑𝜉

𝐿

0

𝐹𝑛(𝐾, 𝜉) ∫ 𝑑𝜂

𝐿−
𝜉
2

𝜉
2

[cos (
𝐾2𝜉

2𝑘
) ∓ cos (

𝐾2(𝐿 − 𝜂)

𝑘
)] 

 

 

(2.28) 

 

Where 𝐿 = 𝑧 and the transformation of variables 𝜉 = 𝑧′ − 𝑧′′, 2𝜂 = 𝑧′ + 𝑧′′ is carried out. 

Finally, since 𝐹𝑛 → 0 for 𝜉 > 𝐾−1 and 𝐾𝑚𝑎𝑥~2𝜋𝑙0
−1 (where 𝑙0 is the microscale of the turbulence), 

the argument of cos (
𝐾2𝜉

2𝑘
) satisfies 

𝐾2𝜉

2𝑘
≤

𝐾

2𝑘
, and 

𝐾

2𝑘
≪ 1, respectively. Therefore, cos (

𝐾2𝜉

2𝑘
) ~1 

for entire integration over 𝜉. Furthermore, by assuming 𝜉 ≪ 𝐿, its presence can be ignored within 

the 𝜂 integration limits, as 𝐾−1 has a maximum value of 
𝐿0

2𝜋
 (thus, 𝜉 ≤ 𝐿0) for the Kolmogorov 
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spectrum and region of integration 𝜉 ≤ 𝐾−1. Lastly, if 𝐿0 ≪ 𝐿 then the 𝜉 dependence is completely 

inserted into the 𝜂 integral. This implies that the path must be much longer than the outer scale, 

which is satisfied when 𝐿0~1 𝑚, near the ground [10]. Consequently, both integrals in (2.27) 

become independent and two expressions are obtained:          

 

  ∫ 𝑑𝜉
∞

0
𝐹𝑛(𝐾, 𝜉) = 𝜋𝜙𝑛(0, 𝐾) (2.29) 

 

Where the upper limit is replaced by infinity with negligible error, since 𝜉 ≤ 𝐿0.   

 

 
[
𝐹𝜒(𝐾, 0)

𝐹𝑠(𝐾, 0)
] = 𝜋𝑘2𝐿 [1 ∓ (

𝑘

𝐾2𝐿
) sin (

𝐾2𝐿

𝑘
)] 𝜙𝑛(𝐾) 

(2.30) 

 

 

The Kolmogorov´s Theory. 

 

 

 

The turbulence in the Earth's atmosphere is directly related to random variations in 

temperature and convective air movement, which alters the refractivity index of the air, both in 

position and in time. As optical waves propagate through the turbulent air, these waves are 

distorted by fluctuations in the refractive index of the atmosphere [11]. 

 

The equation of the refractive index of air referred to the optical frequencies is presented 

in equation (3.1). This equation will later be related to the turbulence equation to model its effects 

[11]. 

 

 𝑛 − 1 = 77.6(1 + 7.52 × 10−3𝜆−2)(𝑃 𝑇⁄ )10−6  (2.31) 
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In this equation, P represents pressure in millibars, T represents temperature in K degrees, 

and λ is the wavelength of light in μm (micrometers). Then, n - 1 is closely related to the deviation 

of the refractivity index. The typical value at sea level is 3 x 10-4. 

  

The present study is focused on analyzing the simulation of the temperature changes and 

analyzing their effects in the refractive index to lay the foundations for future mathematical 

modeling that will allow us to overcome these effects [12].  

 

To perform the simulation of the phenomenon of turbulence, one approach is the analytical 

use of the Navier-Stokes equations, however, as mentioned in the introduction, the volume of 

equations and operations required to solve the model is enormous; due to its size, other calculation 

tools were sought. Even so, the model is the basis of the CFD (Computational Fluid Dynamics) 

simulations used in this study to generate temperatures, pressures and velocities all over the 

volume under analysis [13]. 

 

In this way, our analysis was based on an approach that demands less amount of 

information and can help us to understand the phenomenon of turbulence through the Theory of 

Energy Cascade, proposed by the Russian mathematician Andrey N. Kolmogorov. For this reason, 

it is known as the Kolmogorov´s model [14]. 

 

Kolmogorov's idea is that when the kinetic energy enters a fluidic system, it does so 

through rotational systems called eddies. These eddies can be identified through their bigger 

diameters that are also called outer scale lengths, identified by Lo. whose size is larger when the 

process of transmitting kinetic energy starts into the system begins. Once the energy enters the 

major size eddies, it dissipates into smaller rotational systems until those systems reach the 

smallest diameters known as inner scale lengths or lo. The Reynolds number corresponding to the 

eddies is Reo = uolo [15]. 
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After the eddies have reached their minimum size or the inner scale length, the rest of the 

kinetic energy dissipates as heat. All this phenomenon must occur within a range called inertial 

subrange, and Figure 2.1 shows how this dissipation occurs [16]. 

 

 

 

 

 

 

 

 

 

Figure 2.1: The Kolmogorov model of the energy cascade. 

 

Figure 2.1 shows a turbulent system where the different sizes of eddies can be observed 

depending on the degree of kinetic energy dissipation. 

 

 

 

 

 

 

 

 

 

Figure 2.2: Rotational systems in turbulent media called eddies. 

 



18 

Structure Tensor. Based on the presence of the eddies in the turbulent environment, 

Kolmogorov proposes the structural equation of velocity. 

 

The idea is to consider the velocities of two different points in the space which distance is 

defined by the vector r [17]. He has found that the mean-square velocity of the velocity difference 

could be described by a form called structure-function, which is defined as: 

 

 𝐷𝑖𝑗(𝑟) =  〈[𝑣𝑖(𝑟1 + 𝑟) −  𝑣𝑖(𝑟1)][𝑣𝑗(𝑟1 + 𝑟) −  𝑣𝑗(𝑟1)]〉 (2.32) 

The structure equation in this case is referred to velocities in the different components. 

Important assumptions of homogeneity and isotropy are necessary to make this equation valid. 

The homogeneity establishes that the difference in velocity is only related to the displacement 

vector r [18] . The isotropy of the magnitude r is the most important concept. 

 

The previous assumptions lead to the description of the turbulence as a single structure-

function Drr, thus, the following equation can describe it: 

 

 𝐷𝑟𝑟 =  〈[𝑣𝑟(𝑟1 + 𝑟) −  𝑣𝑟(𝑟1)]2〉 (2.33) 

Considering that r is within the inertial subrange, thus Drr has the universal form 

 

 𝐷𝑟𝑟 = 𝐶𝑣
2𝑟2 3⁄           𝑙𝑜 <  𝑟 <  𝐿𝑜 (2.34) 

Cv
2 is the structural constant of velocity, which has a direct relationship to the total amount 

of energy in the turbulent flow [19]. As mentioned above, this equation holds for the values of r 

that lie at the microscale level lo to the outer turbulence scale Lo. 

 

The microscale lo corresponds to the lowest eddies size values in the limit of energy 

dissipation through viscosity effects. The outer scale Lo corresponds to the largest size of the scale 
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for which the eddies can be considered isotropic. Near the ground the lo has an order of size of 

millimeters while Lo has an order of meters. Both amounts show an increase with height at floor 

level [20]. 

 

Turbulence Model of Refractivity Fluctuations 

 

 

 

The crucial point is to relate the turbulent model that Kolmogorov proposes to the 

refractivity equation. A key concept to establish this relation is the conservative passive additive 

defined by Professor Valerian Tatarskii [21]. Conservative quantities are the ones related to an 

identified air parcel and that parcel will keep the changes referred to those quantities no matter 

how much the parcel moves into space. 

 

This is the reason why the way of analyzing temperature, pressure and speed must be based 

on the fluctuations of these properties. Because the variations in these properties follow a pattern 

similar to the variation in the velocity that was previously demonstrated through the velocity 

tensor, therefore the variations in temperature can be expressed using the structural constant of 

thermal variation. 

 

 𝐷𝑇 = 𝐶𝑇
2𝑟2 3⁄  (2.35) 

Additionally, because refractivity has also a direct relationship with the velocity variations, 

the structural refractivity constant can as well be expressed using the same structural relation. 

 

 
𝐷𝑛 = 𝐶𝑛

2𝑟2 3⁄ = 8𝜋 ∫ 𝑘2
∞

0

𝛷𝑛(𝑘) [1 −  
𝑠𝑖𝑛(𝑘𝑟)

𝑘𝑟
]  𝑑𝑘 

(2.36) 

The previous relationship established with the concept of structural refractivity constant 

and the power spectral density of Kolmogorov (Φ), it is possible to determine the complete 
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function of the power spectral density. This function can be calculated by inverting the previous 

equation in and solving it for the variable. 

 

 
Φ(𝑘) =  

1

4𝜋2𝑘2
∫

sin(𝑘𝑟)

𝑘𝑟
 

𝑑

𝑑𝑟

∞

0

 [𝑟2
𝑑

𝑑𝑟
𝐷𝑛(𝑟)] 𝑑𝑟 

(2.37) 

 

k is the angular frequency measured in rad/m and is equal to 2π/λ. Then, working with the 

previous equations, the following function can be obtained. This equation is valid in the 

Kolmogorov’s inertial subrange [21]. 

 

 
𝛷𝑛(𝑘) = 0.033 𝐶𝑛

2 𝑘−11 3⁄           
2𝜋

𝐿𝑜
< 𝑘 <  

2𝜋

𝑙𝑜
 

(2.38) 

The power spectral density is the probability function associated with atmospheric 

turbulence. It is important to comment that there are turbulent atmospheric observations that 

deviate from the Kolmogorov’s model, so it has also been necessary to find a statistical model that 

more accurately represents the effects of atmospheric turbulence [22]. 

 

Finally, relating the structural equations for the constants of temperature and refractivity, 

we have the final equation for the structural constant of refractivity as a function of pressure, 

temperature and the structural constant of thermal variation [23]. 

 

 
𝐶𝑛

2 =  (
79 𝑃

𝑇2
 × 10−6)

2

𝐶𝑇
2
 

(2.39) 

 

The variations in temperature and pressure, as well as the structural variable of the 

temperature, were used to perform the calculations of the structural constant of refractivity for the 

present project. 
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Effects of Turbulence on Optical Propagation 

 

 

 

Changes in the refractive index due to fluctuations in temperature are regularly smooth 

random functions of space and time. An auxiliary figure to understand the effects of variations in 

the refractive index is interpreting the presence of rotational systems or eddies as lenses [24].  

 

In this model, the atmosphere could be assumed as a large number of random lenses with 

different shapes and sizes that move randomly into space. Figure 2.3 shows this phenomenon 

where the laser beam that leaves the emitting device, finds the different eddies that act as lenses 

and thus suffers variation in the direction due to different diffraction indices along the path, until 

it reaches the detector device [25]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Changes in laser direction due to the presence of eddies. 
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In the previous sections, the induced atmospheric effects on the refractive index were 

already characterized. In this section, we will observe the propagation of light as a flat wave front 

that moves through turbulent flow. The phase change is produced by changes in the refractive 

index of an atmospheric layer of thickness δh and height h as shown in the following equation 

[26]: 

 

 
𝜑(𝑥)  = 𝑘 ∫ 𝑑𝑧 𝑛(𝑥, 𝑧)

ℎ+ 𝛿ℎ

ℎ

 
(2.40) 

 

The phase change can be affected by different variables in addition to the refractive index, 

for example layers that are thicker than the turbulent cell [27]. This is the reason why Gaussian 

statistics are used to estimate the phase changes, given the statistical properties of the refractive 

index.  

 

Therefore, we can start this analysis by deriving the statistical data to show trends and 

patterns of behavior of a wave front. 

 

 𝑈 =  𝑒𝑖𝜔(𝑥) (2.41) 

The coherence function Bh(ρ) needs to be denoted in terms of phase structure function with 

the purpose of doing this [25]. 

 

 𝐵ℎ(𝑟) =  〈𝑈(𝑥)𝑈∗(𝑥 + 𝑟)〉 (2.42) 

 

 𝐵ℎ(𝑟) =  〈𝑒(𝑖[𝜑(𝑥)− 𝜑(𝑥+𝑟)])〉 (2.43) 

 Due to the Gaussian behavior of  [𝜑(𝑥) −  𝜑(𝑥 + 𝑟)], then the following relationship can 

be applied  
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 〈𝑒(𝛼𝜒)〉 =  𝑒(
1
2

𝛼2〈𝜒2〉) 
(2.44) 

Therefore, the following equations can be derived [10]: 

 

 
𝐵ℎ(𝜌) =  𝑒[−

1
2

 〈|𝜑(𝑥)− 𝜑(𝑥+𝑟)|2〉] 
(2.45) 

 
𝐵ℎ(𝜌) =  𝑒[−

1
2

 𝐷𝜑(𝑟)] 
(2.46) 

Due to the chaotic behavior of the turbulent atmosphere, the stochastic processes such as 

velocity or temperature cannot be approximated as stationary. In any case, these stochastic 

processes can still be analyzed statistically if they have stationary increases [28]. Instead of 

focusing on the stochastic process based on time or a point in space 𝑥(𝑟), we center the analysis 

on the function  𝑥(𝑟 + 𝑟1)–  𝑥(𝑟1), that has a behavior close to stationary. The coherence function 

and the structure function can be simplified using the Fried Parameter. 

 

 
𝐵ℎ(𝜌) = 𝑒𝑥𝑝 [−3.44 (

𝜌

𝑟𝑜
)

5 3⁄

]     ,     𝐷𝜑(𝜌) = 6.88 (
𝜌

𝑟𝑜
)

5 3⁄

        
(2.47) 

 

The coherence function and the phase structure function depend on the Fried Parameter 

[24], which is a function of the intensity of the turbulence, the zenith angle and the wavelength. 

This parameter will be widely used in characterizing the effects of atmospheric turbulence on the 

phase changes of the laser propagating into that medium. 
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Behavior of the Refractive Index Cn
2 in Open Atmosphere 

 

 

 

Although the concept of refractivity index was previously referred to, with this chapter the 

purpose is to delve a little deeper into the concept commenting on important references about the 

behavior of it in the Earth's atmosphere depending on the time of day, the time of year and the 

height of the measurement [17]. 

 

As mentioned previously, the purpose of this analysis is to calculate the variability of the 

optical parameter denominated refractive index constant Cn
2 relative to Reynolds number. Cn

2 is 

the refractive index structure constant and is calculated in the equation (3.9). 

 

The Cn
2 is dependent on the altitude and of the time in the day. Figure 2.4 shows a variation 

of the constant Cn in a lapse of 24 hrs. It can be observed from a range of 0.15 x 10-6 that happens 

where the sun is more brilliant to 1 x 10-6 particularly during the night [19]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Distribution of the Cn value during a typical spring day in Hawaii. 
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The cycle of Cn during the day, represents a similar behavior on the surface of the earth (in 

the approximate range between 30 to 100 m). The fluctuation of temperatures, and therefore of Cn, 

is very reduced at night and the first hours of the morning. After the sun heats the soil, the process 

of atmospheric convection starts and, consequently, the temperature variations.  

 

The instability due to convection generates temperature variations [29]. The process by 

which these temperature variations occur starts when the materials are heated by the sun. Then the 

air in contact with these surfaces heats up, loses density, and rises, colliding with the cold layers 

in its path and this mixture of layers of cold and hot air causes irregularities in the temperature. 

The heating process as the atmosphere irregularities continue during the day, which in turn causes 

an increase in Cn, until the end of the afternoon, when the solar heat falls [30] . Consequently, Cn 

values also decrease. 

 

Typical Cn
2 values on a sunny day at the height of 2 m above the ground, are within a range 

of 10-17 m-2/3 to 10-12 m-2/3. Some other variations in the previous figure have to do with the sudden 

presence of clouds when the solar heat falls; consequently, the Cn values also decrease, since the 

grown quickly cools down and the structure of the temperature in the air becomes uniform rapidly 

[19]. 
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Numerical Simulation of Laser Propagation. 

 

 

 

The laser can be understood as an electromagnetic wave that suffers distortion in turbulent 

environment by the rotational phenomenon mentioned previously and that is called eddies. This 

distortion can be understood based on the theory of geometrical optics. The effect of the eddies in 

the optical waves, as also mentioned previously, is similar to thin lenses that can modify their 

waves [31]. 

 

During the current work, the simulation was done to measure the phase variance of a laser 

beam that propagates along horizontal paths in a maritime atmosphere between the top of two 

mountains where two important sites are placed, the Mauna Loa NOAA observatory and the AFRL 

AEOS telescope on Haleakala in Hawaii. The distance between them is 150 km and the height of 

the mountain, where the laser emitter is placed, is 3.1 km. On the other hand, the height of the 

mountain of the Haleakala, where the receptor is placed, is 3.4 km. 

 

The equations to be modeled and solved through numerical methods have to be created in 

a geometric structure using a series of planes generated in a Cartesian system, in such a way that 

the entire laser path, as well as its phase changes can be understood plane by plane. Then the laser 

path is placed at the z coordinate, the vertical axis is y and the depth is x. The distance between the 

mountains is defined over the z axis and the height of the mountains is defined over the y axis [32]. 
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Figure 2.5 represents the way in which the Cartesian axes were established on the volume 

under study. It is important to mention the definition of observation plane and source plane into 

the diagram. The source plane is represented by the emission point of the laser beam. The 

observation plane is placed in certain position along the z-axis where I have decided to perform 

the analysis of velocity, pressure and temperature as well as refractivity conditions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Definition of the source plane and observation plan inside a cartesian system 

 

The geometry used in the figure establishes 𝑟1  =  (𝑥1, 𝑦1) the coordinates for the plane of 

the source and 𝑟2  =  (𝑥2, 𝑦2) for the plane of observation or receiver. The distance between the 

two planes is Δz. The figure shows the basic problem, given the optical plane of the source field 

𝑈(𝑥1, 𝑦1), is necessary to define the field of the observation plane 𝑈(𝑥2, 𝑦2). The solution is found 

in the fraction integral given by Fresnel in the following equation [33]: 

 

 

𝑈(𝑥2, 𝑦2) =  
𝑒𝑖𝑘𝛥𝑧

𝑖𝜆𝛥𝑧
∫ ∫ 𝑈(𝑥1, 𝑦1)𝑒𝑖

𝑘
2𝛥𝑧

[(𝑥1−𝑥2)2+ (𝑦1−𝑦2)2]𝑑𝑥1𝑑𝑦1

∞

−∞

∞

−∞

 

(2.48) 
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In order to make a better observation of the laser phase behavior along the route, it is 

necessary to generate a certain number of planes, then the diagram shows an ith observation plan. 

In this way, the z-axis has been divided by several planes to establish points of observation. Then 

each plane represents partial states of observation that allow the calculation of the atmospheric 

conditions such as velocity, temperature and pressure, based on previous results to finally calculate 

the diffractive index structure constant Cn
2 on each case [34]. 

 

In addition, a very powerful tool to analyze the behavior of laser diffraction is through the 

generation of phase screens. In the previous paragraph, there is a mention that the generation of 

intermediate planes allows the calculating of Cn
2, so it is worth mentioning also that it is possible 

to generate phase screens [35]. The phase screens are 2D maps, as seen in Figure 2.6, that through 

colors demonstrate the conditions of the laser phase and allow them to observe its behavior along 

the path. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Distribution of the laser phase screen in a 2D map. 
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Fourier Transforms: from Analytical to Numerical. To solve the Fresnel equation using 

numerical methods, an important tool is the Fourier transform, since linear analysis and Fourier 

are essential tools for studying wave optics. Fourier spatial function g (s) and its inverse [36] are 

shown in the equation (2.49): 

 

 

𝐺(𝑓𝑥) = ℱ {𝑔(𝑥)} =  ∫ 𝑔(𝑥)𝑒−𝑖2𝜋𝑓𝑥𝑥𝑑𝑥

∞

−∞

 
(2.49) 

The first step to perform the conversion to numerical analysis is the discretization of the 

Fourier transform into a Riemann sum: 

 

 𝐺(𝑓𝑥𝑚) = ℱ {𝑔(𝑥𝑛)} (2.50) 

 
𝐺(𝑓𝑥) =  ∑ 𝑔(𝑥𝑛)𝑒−𝑖2𝜋𝑓𝑥𝑚𝑥𝑛(𝑥𝑛+1 − 𝑥𝑛)

∞

𝑛= −∞

 ,       𝑚 =  −∞, … , ∞ 
(2.51) 

where n and m are integers. Computational calculations can only work with a finite number 

of samples N, so we set a δ interval such that 𝑥𝑛 = 𝑛𝛿 [37].   Then, the frequency of the interval 

is 𝛿𝑓 =  1 (𝑁𝛿)⁄  so that 𝑓𝑥𝑚 = 𝑚𝛿𝑓 =  𝑚 (𝑁𝛿)⁄ . 

 

 𝐺 (
𝑚

𝑁𝛿
) =  ℱ {𝑔(𝑛𝛿)} (2.52) 

𝐺 (
𝑚

𝑁𝛿
) =  𝛿 ∑ 𝑔(𝑛𝛿)𝑒−𝑖2𝜋𝑚𝑛 𝑁⁄

𝑁 2⁄ −1

𝑛= −𝑁 2⁄

,         𝑛 =  − 𝑁 2, 1 −  𝑁 2⁄ , … , 𝑁 2⁄ − 1  ⁄  

 

(2.53) 

 

The use of positive indices in the rearrangement of samples is similar to what occurs in the 

Discrete Fourier Transform [34]. The equation (2.54) shows the result: 
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𝑔𝑛′ =  
1

𝑁𝛿
 ∑ 𝐺𝑚′𝑒𝑖2𝜋(𝑚′−1)(𝑛′−1) 𝑁⁄

𝑁

𝑚′=1

,                         𝑛′ = 1, 2, … , 𝑁 
 

(2.54) 

The use of the discretization of the optical waves of the laser using the Fourier transform 

allowed us to apply numerical methods to predict the phase changes of the laser that were 

experiencing while propagating in turbulent media [31]. 

 

Fundamentals of Computational Fluid Dynamics. 

  

 

As commented from the beginning of this work, the medium in which the laser beam is 

moving is experiencing turbulence due to the conditions of velocity, temperature and pressure. 

One of the most accurate ways to understand the fluidic phenomenon is through the equations of 

Louis Navier and George Gabriel Stokes. These scientists set out to describe the motion of viscous 

fluids by applying Newton's second law to motion fluids and assuming that the stress in the fluids 

is the result of a sum of diffuse viscosity and pressure [13]. 

 

These numerical relations are called Navier-Stokes equations, which are based on the 

assumption of an incompressible fluid with ρ and μ uniform and ∇ ∙ 𝑈 = 0 [30]: 

 

 
𝜌

𝐷𝑈𝑗

𝐷𝑡
=  𝜇

𝜕2𝑈𝑗

𝜕𝑥𝑖𝜕𝑥𝑖
−  

𝜕𝑃

𝜕𝑥𝑗
− 𝜌

𝜕𝛹

𝜕𝑥𝑗
 

 

(2.55) 

The Reynolds number, 𝑅𝑒 =  𝑢𝐿 𝑣⁄ , is the unique free parameter if the forces are not 

present. In the case of our study, where we focus our research on a turbulent atmosphere, the value 

of the Reynolds number in the 106 units. 

 

The typical wind velocities in Maui, where this study is based on,  are within the range of 

5 to 6 m/s, and since the average height of the mountains of 3250 m, and with a laser dispersion 
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range of 3 m that takes part of the characteristic, the Reynolds number has a range of values from 

1.09 x 106 to 3.47 x 106  [31].  

 

Within this range of Reynolds values, fluidic behavior is known as chaotic and for this 

reason the equations that apply have a particular different effect from the classical theory of 

laminar flow where the Navier-Stokes equations have a prediction within a notorious level of 

accuracy [38].  

 

An essential characteristic of turbulent flow is that is rotational, meaning that it has a certain 

level of vorticity. Vorticity 𝜔(𝑥, 𝑡) is the curl of the velocity 

 

 𝜔 =  𝛻 × 𝑈 (2.56) 

and is equal to twice the average of the fluid rotation at (𝑥, 𝑡). The equation that defines 

the evolution of vorticity is obtained by calculating the curl of the Navier-Stokes equations [39]: 

 

 𝐷𝜔

𝐷𝑡
=  𝜈𝛻2𝜔 +  𝜔 ∙  𝛻𝑈 

 

(2.57) 

 

 The term related to pressure (−∇  × ∇
𝑝

𝜌
) vanishes due to incompressible flows or of 

constant density. 

 

The equation that shows the evolution or rotation of an infinitesimal linear element of 

certain material 𝑠(𝑡) is the (2.58): 

 

 𝑑𝑠

𝑑𝑡
= 𝑠 ∙  𝛻𝑈 

(2.58) 
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On this equation, without considering the viscous term, it can be seen that is identical to 

the vorticity equation (2.56) [31]. Therefore, in the inviscid flow, the vorticity vector has the same 

behavior of an infinitesimal linear element of material, analysis that is known as the Helmholtz 

theorem. 

 

If the average of the strain produced by the velocity gradients acts to contract the linear 

material element aligned with 𝜔, then the magnitude of 𝜔 increases in the same manner. This 

phenomenon is known as vortex stretching, and is essential process in turbulent flows, and 𝜔 ∙

 ∇ 𝑈  is denoted as the term of vortex stretching [39]. The simulation of fluids in motion using 

Computational Fluid Dynamics, is based on the governing equations of fluid flow representing 

fundamentals of the laws of conservation of physics: 

 

1. Conservation of the fluid mass. 

2. The ratio of change of momentum is equal to the sum of the forces in a fluid particle. 

This statement comes from Newton´s Second Law. 

3. The rate of change of energy is equal to the sum of the rate of the addition of heat and 

of the work done on a fluid particle. This statement comes from the first law of thermodynamics. 

 

Conservation of Mass. The essential concept of mass conservation is to define 

mathematical equations to demonstrate that the rate of the mass increase in the fluid of the element 

is equal to the net change on the mass flow of fluid within the element [13]. Figure 2.7 shows the 

mass flow vectors entering and leaving the element volume. 
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Figure 2.7: Mass flow vectors entering and leaving an element volume. 

 

The rate of mass increase within the element is now equal to the net change in mass flow 

within the element across its faces. All the terms resulting from the mass balance are arranged in 

the left hand of the equation. It yields 

 

 𝜕𝜌

𝜕𝑡
+  

𝜕(𝜌𝑢)

𝜕𝑥
+  

𝜕(𝜌𝑣)

𝜕𝑥
+  

𝜕(𝜌𝑤)

𝜕𝑥
= 0 

(2.59) 

 

using compact vector notation 

 

 𝜕𝜌

𝜕𝑡
+  𝑑𝑖𝑣(𝜌𝑢) = 0 

(2.60) 

Considering that we are assuming incompressible fluid conditions, therefore the final 

equation of conservation of mass will be 

 

 𝜕𝑢

𝜕𝑥
+  

𝜕𝑣

𝜕𝑦
+  

𝜕𝑤

𝜕𝑧
= 0 

(2.61) 
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Conservation of Momentum. Newton's second law defines that the rate of change of the 

momentum of a fluid particle is equal to the sum of the forces on the particle.  The rate of change 

of momentums per unit volume in a fluid particle at x, y, and z is given by [13] 

 

 
𝜌

𝐷𝑢

𝐷𝑡
 

 

(2.62) 

 
𝜌

𝐷𝑣

𝐷𝑡
 

 

(2.63) 

 
𝜌

𝐷𝑤

𝐷𝑡
 

 

(2.64) 

Two types of forces on fluid particles can be distinguished: surface forces and body forces. 

Within the surface forces are those of pressure, viscosity and gravity, and within the body forces 

are the centrifugal, Coriolis and electromagnetic forces [40]. 

 

For practical purposes, contributions due to surface forces are considered as part of the 

general terms of the momentum equations and to include the effects of body forces, and source 

terms are used. Figure 2.8 shows the components of the surface forces as shear stresses. 

 

 

 

 

 

 

 

 

Figure 2.8: Components of the surface forces as shear stresses. 
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The x, y and z components of the momentum equation respectively are defined as follows 

 

 
𝜌

𝐷𝑢

𝐷𝑡
=  

𝜕(−𝑝 + 𝜏𝑥𝑥)

𝜕𝑥
+  

𝜕𝜏𝑦𝑥

𝜕𝑦
+  

𝜕𝜏𝑧𝑥

𝜕𝑧
+  𝑆𝑀𝑥  

 

(2.65) 

 
𝜌

𝐷𝑣

𝐷𝑡
=

𝜕𝜏𝑥𝑦

𝜕𝑥
+  

𝜕(−𝑝 +  𝜏𝑦𝑦)

𝜕𝑦
+   

𝜕𝜏𝑧𝑦

𝜕𝑧
+  𝑆𝑀𝑦  

 

(2.66) 

 
𝜌

𝐷𝑤

𝐷𝑡
=  

𝜕(−𝑝 +  𝜏𝑥𝑥)

𝜕𝑥
+  

𝜕𝜏𝑦𝑥

𝜕𝑦
+  

𝜕𝜏𝑧𝑥

𝜕𝑧
+  𝑆𝑀𝑥  

 

(2.67) 

 

Conservation of Energy. The energy equation is derived from the first law of 

thermodynamics, which states that the rate of change of the energy of a fluid particle is equal to 

the ratio of the heat added to the particle plus the ratio of the work done on the particle [38]. 

 

 
𝜌

𝐷𝐸

𝐷𝑡
 

(2.68) 

 Work. The ratio of work done on the fluid particle by a surface force is equal to the product 

of the force and the velocity component in the direction of the force. The ratio of the total work 

done on a fluid particle by a surface force is as follows: 

  

[−𝑑𝑖𝑣(𝑝𝑢)] +   
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+  

𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+  

𝜕(𝑢𝜏𝑧𝑥)

𝜕𝑧
+  

𝜕(𝑣𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
  

 

+  
𝜕(𝑣𝜏𝑧𝑦)

𝜕𝑧
+  

𝜕(𝑤𝜏𝑥𝑧)

𝜕𝑥
+  

𝜕(𝑤𝜏𝑦𝑧)

𝜕𝑦
+  

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
  

 

 

 

(2.69) 

 

Heat conduction. The net heat flux in a fluid particle in any of the three x, y, and z 

directions is given by the difference between the ratio of the input heat flux to the output heat flux 
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on each respective Cartesian axis. The Figure 2.9 shows the heat flow in each of the geometric 

axes [15]. 

 

 

 

 

 

 

 

 

Figure 2.9: Mass flow vectors entering and leaving an element volume. 

 

The following equations shows the Fourier’s law of heat conduction taking as a reference 

the local temperature gradient. 

 
𝑞𝑥 =  −𝑘

𝜕𝑇

𝜕𝑥
 

(2.70) 

 
𝑞𝑦 =  −𝑘

𝜕𝑇

𝜕𝑦
 

(2.71) 

 
𝑞𝑧 =  −𝑘

𝜕𝑇

𝜕𝑧
 

(2.72) 

  These equations can be written in vector form as follows 

 

 𝑞 =  −𝑘 𝑔𝑟𝑎𝑑 𝑇 (2.73) 

 

General Energy Equation. Considering the general sum of body and surface forces, the 

general equation for energy balance is as follows [41]: 
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𝜕(𝜌ℎ0)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌ℎ0𝑢) =  𝑑𝑖𝑣(𝑘 𝑔𝑟𝑎𝑑 𝑇) +  

𝜕𝑝

𝜕𝑡
+ [

𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+  

𝜕(𝑢𝜏𝑧𝑥)

𝜕𝑧
 

+ 
𝜕(𝑣𝜏𝑥𝑦)

𝜕𝑥
 +  

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑥
 +  

𝜕(𝑣𝜏𝑧𝑦)

𝜕𝑥
 +  

𝜕(𝑤𝜏𝑥𝑧)

𝜕𝑥
 +  

𝜕(𝑤𝜏𝑦𝑧)

𝜕𝑦
 +  

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
] +  𝑆ℎ 

 

(2.74) 

 

General Equilibrium Equation. All the effects caused by viscous stress in the internal 

energy equation are described by the dissipation function, which can be described using the 

Newtonian model for the viscous effects in the equation of internal energy. It can be described as 

follows [41]: 

 

 
𝜌

𝐷𝑖

𝐷𝑡
=  −𝑝 𝑑𝑖𝑣 𝒖 + 𝑑𝑖𝑣 (𝑘 𝑔𝑟𝑎𝑑 𝑇) +  𝛷 +  𝑆𝑖  

(2.75) 

 

Deep Learning Theory. 

 

Much of the current communication technology is based on machine-learning analysis. 

From systems used to identify objects in images, store historic searches to make later 

recommendations to users, filtering social networks, as well as scientific applications to predict 

physical phenomena [42]. 

 

Deep Learning can be defined as a neural network with more than two layers. A neural 

network is a set of algorithms that is named this way, because it behaves like how human neurons 

learn, meaning, through repetitive approaches relating certain experiences to certain results. They 

are designed to recognize patterns [43]. As neurons do, these algorithms learn from data to relate 

initial conditions to final responses identifying the pattern. At the end, the network delivers the 

outputs based on the inputs and the pattern that previously trained the network. 
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The most common deep learning analysis is the one known as supervised learning, which 

in every set of data that is fed into the system, compares the results to verify how accurate the 

model is predicting the outputs and then it goes into the next layer [44]. Figure 2.10 demonstrates 

the model: 

 

 

 

 

 

 

 

 

Figure 2.10:  Graphic definition of the neural network algorithm. 

 

As can be seen in Figure 2.10, the neural network is made up of a variety of nodes that are 

connected and communicated with each other. Each node takes multiple inputs and makes dot 

products with each weight as observed in the equation (2.76). Then it applies an activation function 

to the product of the inputs and generates an output [45]. 

 

 
[𝑥1 𝑥2 𝑥3] ∙ [

𝑤1

𝑤2

𝑤3

] +  [𝑏] =  𝑥1𝑤1 +  𝑥2𝑤2 +  𝑥3𝑤3 + 𝑏 
 

(2.76) 

This product is then used as input for the activation function. The activation function acts 

as a switch and depending on the function, the value can be between 0 and 1 or -1 and 1. It is a 

common practice that for the activation function, any of the following is used: Sigmoid or ReLu 

(Rectified Linear Unit) [44]. 
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Figure 2.11: Sigmoid Function (Left), ReLu Function (Right) 

 

Once the activation function is calculated, the output denoted by h is then determined. 

 

 ℎ1 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 +  𝑥3𝑤3 + 𝑏) (2.77) 

The activation function is denoted by f. In neural networks there are two components: the 

linear component that is the linear algebra and the non-linear component that is the activation 

function [43]. 

 

The hidden layers are giving weights to the different inputs according to the previous 

training of neural network. Based on this weighing, the algorithm is filtering the data to get the 

best result possible.  

 

 
ℎ = 𝑓 ([

𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

𝑤31 𝑤32 𝑤33

] [

𝑥1

𝑥2

𝑥3

] +  [
𝑏1

𝑏2

𝑏3

]) 
 

(2.78) 

A certain number of hidden layers help to reduce the size of the error; nevertheless, it is 

important to identify and an optimum number of hidden layers and the number of internal units 
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because it is possible to increase the error if we continue increasing the number if hidden layers 

infinitely. 

 

Since the beginning of the pattern recognition, the goal of the researchers has been to 

replace features designed by the engineer's hand with multilayered networks, but despite its 

simplicity, this concept was not understood until the mid-1980s. Multilayered architectures can be 

trained by a simple descending stochastic gradient [46]. 

 

The backpropagation procedure to calculate the gradient of an objective function with 

respect to the weights of a group of multilayered modules is nothing more than a practical 

application of the chain rule used to calculate derivatives. The key point is that the derivative or 

gradient of the objective function with respect to the input of a module can be calculated by 

working back from the gradient with respect to the output of the module (or the input of the 

subsequent module) [47]. 

 

The process of the equation (2.78) is a matrix multiplication followed by an activation 

function; this will solve the hidden layer and the process will be repeated to determine the adequate 

weights for the problem. At the beginning of constructing the neural network, the weights are 

initialized through a Gaussian random number generator. At the start of the construction of a neural 

network, the weights are initialized using a Gaussian random generator. The goal is to adjust the 

neural network weights to get better predictions every time. This is accomplished by varying the 

weights to minimize the error between the input and the predicted data. To achieve this, it is needed 

to implement a backpropagation descending gradient. 

 

 𝑤 =  𝑤𝑜 −  𝛼 ∗  Δ 𝑒𝑟𝑟𝑜𝑟 (2.79) 
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The descending gradient method is based on the gradient that makes a change to the new 

weight value w. It takes the current position wo and adjust it with the error weighted by a step size 

α. The crucial component in a neural network is the loss function. Optimizing the algorithm is 

based on minimizing this loss function. This type of algorithm is called of supervised training, so 

the algorithm is intended to learn from a series of data to make predictions. 

 

For a given training pair, the input data will be called xz and the desired output or prediction 

will be yz. Thus, J is the loos for the training of that pair xz. 

 

 
𝐽(𝑤, 𝑏, 𝑥, 𝑦) =  

1

2
‖𝑦𝑧 −  𝑦𝑝𝑟𝑒𝑑 (𝑥𝑧)‖

2
 

 

(2.80) 

 

The variable ypred (x
z) is the output layer of the neural network in. To generalize the cost 

function and include more than one training pair, it is necessary to minimize the function for all m 

training pars: 

 

 
𝐽(𝑤, 𝑏) =  

1

𝑚
∑

1

2
‖𝑦𝑧 −  𝑦𝑝𝑟𝑒𝑑(𝑥𝑧)‖

2
𝑚

𝑧=0

 
 

(2.81) 

 

 

To determine the new weights the descending gradient and bias for each weight will be calculated 

through the equations (2.82) and (2.83): 

 

 
𝑤𝑖𝑗

(𝑙)∗ =  𝑤𝑖𝑗
(𝑙) −  𝛼

𝜕

𝜕𝑤𝑖𝑗
(𝑙)

𝐽(𝑤, 𝑏) 
(2.82) 

 
𝑏𝑖

(𝑙)∗ =  𝑏𝑖
(𝑙) −  𝛼

𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑤, 𝑏) 
(2.83) 
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The way neural networks work is through an initialization of the weights. Then, the 

information is feedforward to calculate the predicted value. At the end, the predicted value and the 

fed value can be taken to determine the loss function. Through the backpropagation and the 

descending gradient, weights and bias can be adjusted [48]. 

 

From the above calculations, the importance of the activation function can be appreciated. 

Whenever the output of the activation function is close to zero, there will be no information to 

adjust the weights when using the descending gradient. This is how neural networks learn and 

adjust to exclude unnecessary values. When the weights are not adjusted, we realize that our 

numerical network has converged. 

 

 In the case at hand, this type of multilayered architecture was used to predict parameters 

located in cartesian coordinates x, y and z but with no equidistant spaces, so an equidistant model 

was designed and the neural network algorithm was trained to predict what would be the values 

of that same geometrical model would but on an equidistant set of cartesian coordinates [46]. 

 

The Background and Literature review section has presented in detail the theoretical 

foundations that were used for the present study. It is noteworthy that in the Deep Learning section 

the specific case of a neural algorithm that is called supervised was presented. However, within 

this same category, there are additional routines or algorithms particularly used for image 

detection, such as the Convolutional Neural Network, which were not used in the present study, 

but represent a huge component of Neural Networks. 
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Chapter 3. Problem Definition. 

 

 

The section of the Problem Statement presents the details of the case of the study for this 

dissertation and the way the theoretical tools from the Background and Literature Review would 

be used to face the problem. The fundamental component of the Problem Definition is explaining 

the general conditions, tools, and impediments to perform the study, particularly the scaled 

analysis that, as explained during the chapter, was one of the greatest challenges. The purpose of 

scaling the original geometry in a virtual model has been to perform simulations that would allow 

me to generate the temperature profiles that will finally take me to the calculations of CT
2 and Cn

2. 

 

After this introductory paragraph, I return to the concepts presented in the Introduction 

chapter to state the purpose of this study. The main objective of the present dissertation is to find 

a mathematical relation between the atmospheric Reynolds number under turbulent conditions and 

the structural constant of refractivity Cn
2. The reason is that the presence of strong turbulence in 

the atmosphere along a laser propagation path affects the quality of the laser-based communication 

systems. Thus, to improve the quality of image detection and target selection in the presence of 

turbulence there is a need for characterizing these conditions [49]. 

 

This characterization is achieved by finding the mathematical trend between the turbulence 

conditions in the atmosphere and the variations of the optical parameters. The parameters that were 

chosen to find this mathematical relation were the Reynolds number and the structural constant of 

refractivity Cn
2. 
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There is a location at Maui, Hawaii, where Air Force Research Laboratories (AFRL) 

communicate at the top of two mountains named Mauna Loa and Haleakala using optical devices. 

These laboratories are particularly interested in developing these new metrics for deep turbulence 

effects on laser propagation through a long path. To be able to make the necessary adjustments to 

their devices depending on the instantaneous turbulent conditions and thereby improving the 

performance of their optical communication. 

 

 

An important point to face this problem has been the calculation of Cn
2 that requires the 

calculation of CT
2. The structural function of temperature requires the temperature profile of the 

geometry under analysis. Because experimental information on temperatures was not available, it 

was decided to generate this information through a CFD simulation. The biggest challenge I was 

faced with was scaling the model to a level that could be studied by computational means but could 

replicate the original conditions to simulate as closely as possible [50]. 

 

 

To create the model, it was necessary to limit the original geometry. Because the height of 

both mountains is around 3 km, we decided to double the height to 6 km to cover a complete 

volume.  The dimensions were 6 km height, 2 km width and 150 km of length. The distance of 2 

km depth was used to cover a sufficiently wide area where atmospheric temperature variations, as 

a result of turbulence, can have consequences in refractive conditions affecting the laser´s path in 

consequence [41].  

 

Figure 3.1 shows the dimensions of the original geometry and a representation of the 

typical turbulent atmospheric conditions between the two mountains. Note the doubling of the 

height mentioned previously to cover an area of turbulence greater than just the height of the 

mountains. 
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Figure 3.1: Original geometry dimensions. 

 

The initial 3D model was created in a software named NX. Due to the large geometry of 

the real model where the length is 150 km, to fit the geometry into a 3D computational model, it 

was decided to perform a scaling down of 10,000: 1. Figure 3.2 shows the dimensions for the 

scaling down step. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Scaling down the geometry. 
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Figure 3.3 shows the final dimensions of the model. The length was trimmed so the lateral 

dimensions were clearly observed. 

 

 

 

 

 

 

 

 

Figure 3.3: Final geometry dimensions. 

 

Justification. For the model to be analyzed using the CFD ANSYS Fluent simulation 

software, a scaling of 10,000: 1 was necessary. 

 

The scaling dimensional factor was calculated based on the original length and the 

proposed length of the model [51]: 

 

 𝐿𝑜

𝐿𝑠
=  

150,000 𝑚

15 𝑚
= 10,000  

(3.1) 

 

Where 𝐿𝑜 is the original length and 𝐿𝑠 is the length in the scaled model. Both or the 

dimensions are in meters. 

 

Velocity conditions. Following these scaling conditions, the next step was to define the 

values of the properties to be used in the scaled model, so I started with the velocity.  
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Based on the range of 5 to 16 m/s of the original model I performed the scaling down of 

the velocity of 5 m/s. 

 

 𝑣𝑠 =
𝑣𝑜

10,000
=  5 × 10−4  𝑚 𝑠⁄ =  0.5 𝑚𝑚 𝑠⁄  

 

(3.2) 

However, because the appropriate conditions for turbulence are the same in the original 

and in the scaled model regardless of the dimensions, scaling down velocities 10,000 times does 

not produce the turbulence conditions required for my analysis. Not even scaling down the 

velocities 10 times. If the turbulent conditions cannot be reproduced, the effects over the diffraction 

index cannot be calculated [51]. 

 

For this reason, I decided to maintain the same velocities that generate the same turbulent 

conditions of the original geometry even though the volume of fluid as well as the inlet area have 

decreased 10,000 times. 

 

Temperature conditions. The basis for performing the analysis of the changes in the 

constant of diffraction index Cn
2 are the temperature gradients. In a 10,000:1 scaled model there is 

virtually no temperature change between the bottom and the top of the model, not even one-degree 

Celsius. 

 

The temperature in the original model varies from 25 °C at sea level to 5.5 °C degrees at 

the lasers path. For this reason, it was decided to repeat this linear temperature gradient in the 

scaled model to simulate the temperature variations affected by the turbulence conditions. An 

important point to consider is that the temperature at sea level is estimated at 10 °C less than the 

surface of the ground at similar height, however, the ambient temperature scale that was used 
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started from 25 °C since the temperature over the sea, takes a high gradient few meters above it, 

equaling the temperature scale of the atmosphere that initiates at ground level. 

 

Pressure conditions. Because pressure conditions require to be linked to temperature to 

maintain adequate density conditions, it was also decided to set the original manometric pressures 

over all the model. 

 

Testing. I performed numerous tests, more than 1000 CFD Simulations, to verify that the 

boundary conditions explained on this scaling justification are the closest possible to simulate the 

original model conditions. 

 

Figures 3.4 and 3.5 show the comparative simulation of the velocity in the case of scaling 

down the temperature and pressure conditions vs maintaining the original ones. The low precision 

presented by the case of the scaled conditions can be clearly observed with respect to the original 

ones [52]. It can be seen in Figure 3.4 that there are no turbulence conditions and that the velocity 

gradient becomes uniform, decreasing to minimum motion points after half the volume of flow.  

 

On the other hand, Figure 3.5 shows a fully developed turbulent behavior where the 

temperature variations can be clearly observed. The simulation shows zones of high level of 

turbulence throughout the flow volume and in the second half, high zones of velocity variations 

are perceived. These zones have rotational systems dissipating an important part of the energy in 

the form of heat. 
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Figure 3.4. Velocity simulated with scaled conditions. 

 

 

 

 

 

 

 

 

 

Figure 3.5. Velocity simulated with original conditions. 

 

Additionally, Figures 3.6 and 3.7 show the behavior of the temperature with scaled 

conditions vs original one. There is practically no profile of temperature variations in the case of 

the scaled model, but the profile for the case of temperatures in the original model is very clear. 

 

 

 

 



50 

 

 

 

 

 

 

 

 

Figure 3.6. Temperature variations simulated with scaled conditions. 

 

 

 

 

 

 

 

 

 

Figure 3.7. Temperature conditions simulated with original conditions. 

 

These series of 1000 simulations allowed me to define that effectively, in the case at hand, 

the use of the velocity, temperature and pressure conditions of the original geometry, it is the best 

option to simulate the turbulence conditions necessary to necessary to obtain the adequate 

information for my study [53]. 

 

This allows me to conclude that the simulation that was carried out during the present work 

has an acceptable degree of precision. 



51 

Modeling. The CFD simulation software that was used to obtain the temperature, pressure 

and velocity profile was the ANSYS Fluent [54]. This tool has several sections that are shown in 

the Figure 3.8 and will be explained below. 

  

 

 

 

 

 

 

Figure 3.8: ANSYS Fluent Sections for fluid analysis. 

 

In the Geometry section the tool can generate the geometric profile that needs to be 

analyzed or imported in general .iges format from any other design software. In my case I used 

NX to generate the geometry and import it to ANSYS through its module called DesignModeler. 

The Figure 3.9 shows the geometric profile of the case. 

 

 

 

 

 

 

 

 

 

Figure 3.9: 3D ANSYS solid model of the case under analysis. 
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Meshing. The section named Mesh is where each part of the model is defined; after this, 

the sensitive mesh can be generated. The mesh allows the generation of the general simulation. In 

Figure 3.10 the named sections can be seen inside the design tree. In Figure 3.11 the named 

sections are shown on the solid model [54]. 

 

 

 

 

 

 

 

 

 

Figure 3.10: Design tree for the ANSYS Meshing section. 

 

 

 

 

 

 

 

 

 

Figure 3.11:  Designation of named sections according to the original model. 

 



53 

After the corresponding sections have been named, the mesh size is established through 

the command called edge sizing. In this case an edge size of 20 mm was defined. The figure shows 

the edges of the model selected with a division of 20 mm. 

 

The reason I selected a 20 mm for the elements dimension is because it was the smallest 

possible dimension to reach the maximum limit of 500,000 element in the ANSYS Fluent because 

I used a student license. This selection on Figure 3.12 precedes to the generation of the mesh. 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Edge dimensioning for defining the element size of the mesh. 

 

 

In Figure 3.12 the final mesh can be seen. It has 450,000 tetrahedral elements and 550,000 

nodes. This mesh represents components of a matrix that will receive the values of the fluid 

properties using the fundamental fluid equations. 
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Figure 3.13: 3D mesh with 20 mm side elements. 

 

Defining Boundary Conditions and Setting Up the Model. In the Set up section all the 

boundary conditions are defined. These data are fed on the three divisions shown in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Components of the Set up section in ANSYS Fluent. 
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In the Models section of the General modules, the type of analysis that will be performed 

is defined. In my case, since it involves heat flow, it is necessary to indicate that it will be using in 

the Energy´s mathematical modules [37]. On the other hand, the mathematical model that I 

considered most suitable for its precision when simulating turbulent conditions is the LES (Large 

Eddie Simulations). I selected this option inside the Viscous Model section. 

 

In the Materials section I specify air as the working fluid. In the Cell Zone Conditions the 

pressure and temperature conditions were specified according to the range of values that are 

defined in the Chapter 4. Methodology of this dissertation.  

 

Finally, the model is initialized and run with all the data supplied [38]. At the end, a data 

profile with the velocity, temperature and pressure by coordinate can be generated in a .csv file in 

the Solution section.  

 

Neural Network Analysis. Mathematical Background. In the present study, the first part 

has consisted in generating data of the profile of atmospheric temperatures, pressures, and 

velocities. Subsequently, to calculate the structural constant of the refractive index, the following 

equation is required [6]: 

 

 𝐷𝑇 =  〈[𝑇𝑟(𝑟1 + 𝑟) −  𝑇𝑟(𝑟1)]2〉 (3.3) 

After the structural function of the temperature has been calculated, the equation 3.5 is used 

to obtain 𝐶𝑇
2
. This equation was previously defined in Chapter 3: 

 

 𝐷𝑇 = 𝐶𝑇
2𝑟2 3⁄  (3.4) 

Then, clearing 𝐶𝑇
2
 from the equation I have 
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 𝐶𝑇
2 =  𝐷𝑇 𝑟2 3⁄⁄  (3.5) 

Finally, with the set of values obtained from the structural constant of the temperature 𝐶𝑇
2
 

in addition to the values of Pressure and Temperature at the height of the laser´s path, I use the 

equation 3.9 to obtain 𝐶𝑛
2
 [11]: 

 

 
𝐶𝑛

2 =  (
79 𝑃

𝑇2
 × 10−6)

2

𝐶𝑇
2 

(3.6) 

 

Thus, through this process I obtain the value of the structural diffraction constant 𝐶𝑛
2
. 

 

On the other hand, the reason I relied on the use of neural networks was to predict the 

temperature on equidistant coordinates to be able to calculate the structural function of 

temperature. It can be observed from the equation (3.6), that the quadratic difference requires a 

constant value of positional vector r. For the equation to have accuracy, the data has to be placed 

on an equidistant mesh. 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Close view of the non-equidistant mesh generated in ANSYS Fluent. 
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The Figure 3.17 shows the detail of the mesh. It is possible to observe notorious variations 

in the element sizes which side specification is 20 mm. 

 

Neural Network Process. Importing Data. The procedure to transform the non-equidistant 

mesh to an equidistant set of coordinate values is using a neural network algorithm. Thus, that step 

after running the cases from the ANSYS Fluent, was to export the data of velocity, temperature, 

pressure of the entire volume in .csv format. This data was then imported into a script in Python 

language [55].  

 

Inside the Python code, that was created in a Spyder platform, the imported .csv file was 

used to create a matrix of data. Parallel in the script, an equidistant array of coordinates with side 

20 mm was created. Figure 3.16 shows the matrix. 

 

 

 

 

 

 

 

 

 

Figure 3.16: Equidistant points created to simulate the original model. 

 

In the figure 3.16, each coordinate is represented by a blue sphere, the union of all these 

spheres is the diagram presented. 
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Training the Algorithm. The next step is training the neural network algorithm. The 

algorithm used was the MLPRegresor that belongs to the sklearn.neural_network library. 

MLPRegresor means Multi-Layer Perpectron Regresor and is a model that optimizes the squared-

loss using stochastic gradient descent [43]. 

 

Selecting the Data. The process for prediction begins with the selection of data from the 

.csv file imported from ANSYS Fluent to create two groups of variables (X, Y) selected for training. 

One of them, the X, containing the set of coordinates and the other one corresponding to the 

temperature. This process is shown in equations (3.7) and (3.8). 

 

 

𝑋 =  𝑑𝑓. 𝑙𝑜𝑐[: , [′𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒′, ′𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒′, ′𝑧 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒′] ] (3.7) 

 𝑌 =  𝑑𝑓. 𝑙𝑜𝑐[: , [′𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒′] ] (3.8) 

 

Training. Later comes the training section. Based on the set of values X and relating it to 

Y results, the training comes with a set of values over the 80% of the training data and testing this 

prediction with 20% of the data from the same set of values. Equation (3.9) shows this process. 

 

 

𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑡𝑒𝑠𝑡, 𝑌_𝑡𝑟𝑎𝑖𝑛, 𝑌_𝑡𝑒𝑠𝑡 =  𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡(𝑋, 𝑌, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒

= 42, 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒 = 0.20) 

(3.9) 
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Prediction Process. The next step is to use the neural network algorithm to make the 

prediction. This algorithm is the MLPRegressor and its commands can be seen in equations (3.10) 

and (3.10). The algorithm uses the solver adam and the activation function is relu. In the 

commands shown, 6 hidden layers were used as well as 13 neurons inside each hidden layer, 

  

 

𝑌_𝑐𝑙𝑓 =  𝑀𝐿𝑃𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒𝑠 = (13, 13, 13, 13, 13, 13),

𝑠𝑜𝑙𝑣𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′) 

(3.10) 

 𝑌_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =  𝑌_𝑐𝑙𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) (3.11) 

 

Optimization. The number of hidden layers as well as the number of neurons per hidden 

layer mentioned, were carefully chosen through an optimization process. This process was carried 

out through calculating the value of the error in the prediction. 

The error in the prediction was calculated by the difference between the predicted and the 

initial values previously fed into the algorithm. This process was done using different cases of 

number of hidden layers vs number of neurons by varying both concepts from 2 to 20, respectively 

[56]. This difference is shown in equation (3.12). 

 

 

 𝑒𝑟𝑟_𝑠𝑢𝑚 =  𝑌_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 −  𝑌_𝑡𝑒𝑠𝑡_𝑓𝑙𝑎𝑡 (3.12) 

 

To avoid negative numbers, the error was squared as shown in the equation (3.13) 

 

 

 𝑒𝑟𝑟_𝑠𝑢𝑚 =  𝑒𝑟𝑟_𝑠𝑢𝑚 ∗∗ 2 (3.13) 
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The minimum value of error was found to be 6 hidden layers with a size of 13 elements 

each layer. 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Distribution of the errors Hidden Layers vs Neurons. 

 

The Figure 3.17 shows the distribution of the errors when the number of hidden layers is 

varied with respect to the number of elements per layer. It can be seen that errors are very high 

when the number of hidden layers is varied but the number of elements per layer is kept low like 

from 2 to 5 elements, especially if the number of layers is high and the number of elements is low 

[48]. 
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Mesh comparison. Although the resultant mesh will be presented with all the results in 

Chapter 10, Figure 8.6 shows the objective pursued with the use of the neural algorithm. 

 

 

 

 

 

 

 

 

 

 

Figure 3.18:  Mesh comparison of meshes before and after Neural Network algorithm. 

 

 

This Chapter about Problem Definition allowed me to present all the challenges I faced in 

order to find a relation between the Reynolds number and the structural diffraction constant Cn
2, 

particularly when scaling the model and choosing the adequate properties of temperature and 

pressure, as well as the adequate velocities to reproduce the original conditions.. It is important to 

mention that the support of Dr. Kumar and his research team, like Arturo Rodriguez, was extremely 

important for finding the right geometry and properties to simulate the original conditions. On the 

other hand, Dr. Munoz's support in neural networks as well as the use of his High-Performance 

Computers (HPCs) was crucial for the generation of a defined temperature profile in an equidistant 

coordinate network to finally calculate the values of CT
2 and Cn

2 [46]. 
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Chapter 4: Methodology. 

 

 

The research problem or question to investigate is finding new metrics for deep turbulence 

effects on laser propagation through a long path. Since the most representative parameter of the 

level of turbulence is the Reynolds number, and, on the other hand, a representative optical variable 

is the constant of refractive index Cn
2, the research has been focused on finding the mathematical 

relation between both variables [57]. 

  

To perform the Reynolds number calculations, it was necessary to identify the range of 

velocities present at the location, as well as the kinematic viscosity and the representative length. 

The typical range of velocities was found to be from 5 to 16 m/s. The characteristic dimension 𝐿 

is 3 m, which is the laser´s aperture and the kinematic viscosity 𝜈 is equal to 1.506 x 10-6 m2/s. 

 

On the other hand, the calculation of the structural constant of the diffraction index Cn
2 is 

directly related to the structure constant of the temperature CT
2, which requires a set of temperature 

data in equidistant coordinates for the entire geometric volume under analysis to use the equation 

previously defined in Chapter 3 [53]. 

 

Most of my research work was focused on the collection of temperature data for the 

calculation of Cn
2, and since I did not have access to experimental information on the temperatures 

read at the geographical location under study, I had to generate it by other means. 

 

The generation of these data was represented by two stages: the first, by the entire sequence 

of temperature profiles related to series of CFD simulations based on each case of velocity. I 

established this sequence of velocities within the range of 5 to 16 m/s with a step size of 0.25 m/s, 

generating a total of 45 cases [57]. 
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From each case of velocity that was simulated in the CFD, a profile of temperatures was 

generated and exported into a .csv file in order to calculate CT
2 and, in turn, the corresponding 

calculation of Cn
2. The generated profiles are defined in non-equidistant coordinates, but they need 

to be on equidistant ones for using the structural temperature equation. 

 

It is important to note that when I made a series of adjustments to the volume in the meshing 

step during the CFD simulation, the spatial coordinates were very close to being equidistant. 

However, it was not achieved exactly [22]. Because of this, I decided to do an additional step that 

would allow me to achieve this equidistant mesh. 

 

This additional step focused on the use of neural networks. As reviewed in Chapter 3, 

Neural networks are computational algorithms that can predict values, based on a series of data 

with which they are trained. The data used to train this algorithm were the temperature profile 

along with the corresponding coordinates. After training, the algorithm was asked to predict the 

temperatures that corresponded to an equidistant mesh that was provided. The generated 

temperature profile was the one that was being searched [34]. 

 

The next step was to relate the values of the Reynolds number with respect to the values 

found for the structure refractive index constant Cn
2 in a table. These are the results presented in 

the conclusions section for discussion. 
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The first part of the methodology consisted of identifying the general atmospheric 

conditions for calculating the Reynolds numbers from equation (4.1). An important component is 

the range velocities previously identified from 5 to 16 m/s. Other components are the characteristic 

dimension 𝐿, which is the laser´s aperture and has a value of 3 m, and the kinematic viscosity 

𝜈, which is equal to 1.506 x 10-6 m2/s. 

 

 𝑅𝑒 =  𝑣 𝐿 𝜈⁄  (4.1) 

The calculations result in a range of Reynolds values from 1.09 x 106 to 3.47 x 106. Since 

the value for the transition between laminar to turbulent is 5 x 106, the entire range of Reynolds 

numbers is under turbulent conditions. 

 

 

 

 

 

 

 

Figure 4.1. Range of Reynolds numbers. 

 

The second part consisted of data collection for the calculation of Cn
2. As previously 

mentioned, the calculation of the structure constant of the refractive index Cn
2 depends on the value 

of the temperature structure constant CT
2 that in turn depends on the temperature profile [58]. 

However, since I did not have access to this experimental information, I used a computational 

simulator to generate it. 
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To perform this simulation, it was important to first delimit the geometry that would be 

replicated and scaled for in a computational parametric model. This process of scaling the original 

geometry as well as its justification has been explained in detail in Chapter 3. In this chapter I 

explain in detail the use of specific data to generate the simulation cases, as well as the 

methodology to generate the temperature data for the calculations of CT
2 and Cn

2. 

 

In the conditions of the original model, the laser beacon platform is located at the summit 

of the Mauna Loa at an elevation of 3,058 m and the receiver telescope at the summit of Haleakala 

at 3,397 m. The distance between the two mountains is 150 km. 

 

The velocity range that was used for the analysis and mentioned previously, is 5 to 16 m/s, 

which is taken as the basis of a typical Hawaiian summer day where the wind velocities between 

these mountains ranges from 10 to 35 mph. Due to the height of the bacon laser in Mauna Loa, the 

ambient temperature at that point is 5.5 °C during the daylight varying from a temperature of 15 

°C on the sea surface and 25 °C on the base surface of the mountains [19]. 

 

 Similarly, the variations in pressure are from 101,325 Pa at sea level to 70,630.21 Pa at the 

height of 3,397 m where the laser emitting device is located.  

 

To carry out my research, I needed to simulate the turbulent behavior of atmospheric 

conditions among the previously mentioned mountains. Therefore, I needed a CFD simulator and 

I chose the ANSYS Fluent because of its precision and that it has accurate turbulent flow analysis 

options. The design process was extensively discussed in Chapter 7 so it will only be mentioned 

in this chapter as a general summary. 

 

Another big challenge apart from deciding the scaling down the model was to replicate the 

original conditions of temperature and pressure all over the scaled model. The situation is that in 
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the original geometry, these properties change with the height, then I needed to create a User 

Defined Function, or UDF, to ensure these variations. The UDF function was used in the inlet, 

outlet, top, front, and back atmosphere. 

 

Figure 4.2. shows the boundary conditions of pressure, temperature, and velocity in each 

section, as well the UDF to specify the variation of these properties with respect to height. 

 

 

 

 

 

 

 

 

 

Figure 4.2: Temperature and pressure data in the specified sections. 

 

Equations (4.2) and (4.3) were the ones used to generate the code for the variation of 

temperatures and pressures. 

 

 𝑇(ℎ) = 298.15 + 65 ℎ (4.2) 

 𝑃(ℎ) = 101325 ℎ [1 −  (2.25577 × 10−5)]5.25588  (4.3) 

Figure 4.3 shows the code in C language that was generated with formulas (4.2) and (4.3) 

to create the UDF that was later uploaded into the Set up section of the ANSYS Fluent to run the 

45 cases of analysis. 
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Figure 4.3. Codes to generate the UDF in C language for temperature and pressure. 

 

Analysis. During the analysis stage, the simulation calculations are run in the CFD software 

which uses the information previously fed. The case of analysis is initialized and subsequently run 

with a time step size of 0.002 and a number of time steps of 100,000 with a maximum of iterations 

per time step of 5. In order to handle this high volume of calculations, HPCs (High Performance 

Computers) is used for solving the cases. 

 

The cases of analysis were generated based on the typical velocity range in this area of 

Hawaii, where the values have been identified from 10 to 35 mph. Using the conversion to 

International Units System and with the purpose of using a step size of 0.25 m/s, a range from 5 to 

16 m/s was established. Thus, forty-five cases of analysis were defined. 
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Figure 4.4. Range of velocities for the 45 cases of analysis. 

 

Each case is run in the Fluent section. After this, from the Results section, the data related 

to velocities, temperatures and pressures over each coordinate is exported and stored into a general 

.csv file, so it can be used later on other stages of analysis. 

 

The .csv files with the information of coordinates, velocities, temperatures and pressures 

is defined in non-equidistant coordinates, as it can be seen in the figure 4.5. Thus, it is submitted 

to a code written in Python language that uses training and prediction tools based on neural 

algorithms previously defined into Chapter 2 about the Deep Learning Analysis section. 
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Figure 4.5. Non-equidistant mesh from the ANSYS File. 

 

The neural network algorithm generates a .csv file with the data for velocity, temperature 

and pressure adjusted to equidistant positions as it can be seen on figure 4.6 [54]. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Transition from Non-Equidistant to Equidistant Mesh. 
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 The reason of generating equidistant positions is to be able to use the structure function of 

the temperature which is based on doing the summation of the square difference of the 

temperatures depending on the position vector 𝑟1 and using a distance r whose value must remain 

constant during all the summation [11]: 

 

 𝐷𝑇 =  ∑[𝑇𝑟(𝑟1 + 𝑟) − 𝑇𝑟(𝑟1)]2 (4.4) 

 

 

 

 

 

 

 

Figure 4.7. Temperature information in equidistant positions. 

Once the structural function of temperature has been calculated, the following equations 

are used to obtain 𝐶𝑇
2
  

 

 𝐷𝑇 = 𝐶𝑇
2𝑟2 3⁄  (4.5) 

 𝐶𝑇
2 =  𝐷𝑇 𝑟2 3⁄⁄  (4.6) 

The result of the calculations is the structural temperature index CT
2 and can be considered 

a universal way of calculating spatial temperature variations. After the CT
2 was calculated using 

the python scripts, a new .csv file is created. Thus, the next step is using this information to 

calculate the refractive index for each case of analysis using the equation (3.6). 
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𝐶𝑛

2 =  (
79 𝑃

𝑇2
 × 10−6)

2

𝐶𝑇
2 

(4.7) 

The values of P and T (Temperature and Pressure) used for the equation, are the 

characteristic readings at the laser emission point. In the results section, the range of values of Cn
2 

come from these calculations. 

 

Turbulence conditions in open atmosphere begin at a Reynolds number of 5 x 105. As 

previously mentioned, the Reynolds number calculation comes from the equation [20]. 

 

 𝑅𝑒 =  𝑣 𝐿 𝜈⁄  (4.8) 

The parameters that make up the equation are 𝑣, which is the wind velocity in a range from 

5 to 16 m/s; 𝐿, which is the characteristic dimension of the flow zone, equal to 3 m in the scaled 

model and 𝜈 that is the kinematic viscosity of the air of 1.38 × 10-5 m/s at the temperature of the 

emission zone which is 5.5 ºC or 278.65 K.  

 

The Figure 10.6 specifies the values of the Reynolds numbers corresponding to the range 

of velocities from 5 to 16 m/s. This range is from 1.09 x 106 to 3.47 x 106. Thus, the entire range 

is above the transition value of 5 x 105 that indicates the change from laminar to turbulent flow. 

Therefore, the entire analyzed phenomenon is at the level of turbulence. 

 

In the methodology section, all the steps that were used to calculate the relation between 

the Reynolds number and Cn
2 were shown. It is important to note that once the geometry was 

generated in a CAD software and the original conditions such as velocity, temperature and pressure 

were indicated in the boundary conditions of the CFD software, it took time to find a way to place 

the UDFs (User Defined Functions) into the software to effectively replicate the original conditions 

of pressure and temperature. One of the members of the research team had used them, he was not 
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available to help on this research, thus I had to focus on doing the investigation of the manuals of 

ANSYS Fluent, as well as on using the principles of programming in C ++ language. Once these 

functions were generated, the simulation results were diametrically different from the initial 

simulations that I was creating showing a series of turbulent conditions that were not observed in 

the initial simulations [59]. 

 

In Chapter 5, I present a series of final series of simulations as well as calculations made 

for the Reynolds numbers and their corresponding values of the refractive index Cn
2 based on these 

simulations. Also, a graph that relates both parameters and a calculation of their correlation. 
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Chapter 5: Results and Discussions. 

 

 

This Chapter presents the product of all the previous work done with the simulations, 

algorithmic adjustments, and calculations of the Reynolds numbers, CT
2 and Cn

2. Before presenting 

the final sequence of results, I would like to present the intermediate partial results of DT and CT2 

in Table 5.1, in which I show the sequence of cases that I run the in ANSYS Fluent to simulate the 

original conditions. As I mentioned in Chapter 4, the 45 cases were generated by the sequence of 

velocities from 5 to 16 m/s with a step size of 0.25 m/s. All the cases were run using a mesh size 

of 20 mm, which generated a total of 450,000 tetrahedral elements and 550,000 nodes. 

 

Boundary conditions. The boundary conditions of temperature and pressure used for the 

simulations are specified in detail in Chapter 3, with the application of the UDFs (User Defined 

Functions) to replicate the real profile of temperatures and pressures. All cases were including 

Energy calculations due to the heat transfer and run as Large Eddie Simulations (LES) under 

maximum turbulence conditions of 100%. They were run with a time step size of 0.005, and a 

number of time steps of 50,000 and 5 iterations per time step.  This gives a total of 250,000 

iterations per case with a total flow time of 1250 seconds. 

 

 The initialization values of the cases were set to zero. The cases were run until their 100th 

iteration in my personal computer and then I exported them to the HPCs (High Performance 

Computers) to finish running work. Each case was fully completed in 5 days of computational 

work. Fortunately, 5 cases could be run at a time, so the complete solution of the cases took a total 

of 45 days of computational work. Once the simulations were finished in the HPCs, the generation 

of the .csv files was carried out on my personal computer and export the files to the HPCs again 

to use the neural network algorithms to make the mesh adjusting calculations and later the 

temperature differentiation for the CT
2 for which I used python codes. another 10 hours per case, 
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in the same way it was possible to run 5 cases in the HPCs, so all the analysis of DT in total took 

90 hours, for total computational work only related to the structural constant of temperature. 

Considering the simulations and the calculations of the DT, the total working time took from the 

HPCs was about 50 days. 

 

Table 5.1 shows the sequence of velocities corresponding to the Reynolds numbers, which 

values for calculation are explained on detail in Chapter 4, the DT, for which most of the 

computational work for simulating the velocity and temperature profiles was done to calculate it, 

and the values of CT
2 and Cn

2. The dispersion of DT, CT
2 and Cn

2 values can be observed are a result 

of temperature variations and will be one of the important points of discussion of this chapter. 
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Table 5.1: Cases of analysis. 
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Next, I present a series of the velocity and temperature simulations to get an idea of the 

possible results obtained when calculating the relation between the Reynolds number and the Cn
2. 

Together, Figures 5.1 and 5.2 show the temperature profiles for the full sequence from 5 to 16 m/s 

respectively, with a step size of 1 m/s. I used the 1 m/s step size in order to use pictures that could 

cover the entire range of velocities. On the same way, Figures 5.3 and 5.4 together show the entire 

velocities profiles from 5 to 16 m/s with a step size of 1 m/s for the same reason to cover the entire 

range of velocities in a series of pictures. 

 

The sequence of the temperature profiles shows mainly strong variations, although there 

are some cases in which this contrasts are weaker despite the fact that the velocity is increasing 

with each case,  this is the reason why in the later graph 5.1, there is an enormous variability in the 

values of Cn
2. Despite this variability, this positive trend can be observed between both variables, 

and whose relation was calculated using the numerical method of least squares for curve fitting 

that has been coded in Python. 
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Figure 5.1: Profiles of temperatures at a range of velocities from 5 to 10 m/s. 
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Figure 5.2:  Profiles of temperatures at a range of velocities from 11 to 16 m/s. 
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Figure 5.3: Profiles of velocities for a range of velocities from 5 to 10 m/s. 
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Figure 5.4: Profiles of velocities for a range of velocities from 11 to 16 m/s. 
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Returning to the theme of variability between each of the cases of the velocity and 

temperature profiles, it is also notorious to observe that, even within each case, when the number 

of iterations increases, there are notable variations in the velocity and temperature from the 

previously set of iterations. This tells us that the turbulence phenomenon, even in cases of 

mathematical estimation, shows its chaotic nature.  

 

It is also important to note that by drawing a line between the tops of the mountains, just 

over the lasers’ path, it is observed that this part of the geometry experiences the greatest variations 

in temperature and velocity, since the wind that passes over the laboratories experiences a sudden 

drop on the orographic conditions, drastically changing the height, and with it, the velocity and 

temperature. The inverse phenomenon happens when the wind flow passes over the second 

laboratory, decreasing the height and changing the properties of the wind. 

 

Additionally, as seen in Figures 5.3 and 5.4, the behavior of the velocity is approximately 

uniform in the first half of the geometry but, especially in the range of highest velocities from 11 

to 16 m/s, the friction that the air flow has on the surface of the mountains as well as over the sea, 

tends to make their effects on the flow showing zones of high level of turbulence, with the 

formation of zones of high rotation with an approximate diameter measurement of 2 kms. 
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Table 5.2: Reynolds vs Cn
2 
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As a result of the velocity and temperature profiles, as well as the CT
2 and Cn

2 calculations, 

the Table 5.5 was constructed. In this table, a similar variability of the temperature differences 

showed in the temperature profiles can be observed in the variability of Cn
2.  From Table 5.1, 

Figure 5.5 was constructed, which shows the behavior of the Reynolds number and the Cn
2. 

 

 

 

 

 

 

 

 

 

Figure 5.5: Cn
2 vs Re trend.  

 

The equation (5.1) describes the trend of Cn
2 with respect to the Reynolds number. 

 

 𝐶𝑛
2 = 3 × 10−23𝑅𝑒 +  4 × 10−17 (5.1) 

An extremely important point to highlight is that the cases 13 and 25 were eliminated from 

the graph because the resultant Cn
2 values corresponding to each case showed atypical behavior. 

The case 13 that has a velocity of 8.00 m/s generated a Cn
2 of 4.96 x 10-17, this value very close to 

0, so I decided to eliminate it. For the case 25, that has a velocity of 11 m/s, and a corresponding 

Cn
2 of 1.73 x 10-16; this a value very far away from the rest of the Cn

2 values, so I also decided to 

eliminate it. The probable reason for these atypical values is, from one part, the lack of sufficient 

elements in the ANSYS Fluent due to the use of a student license and, from another part, there are 
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probably zones of thermal variation in the real geometry that are not able to be simulated with 

CFD software due to the use of the UDFs (User Defined Functions) that follow strict equations. 

 

The positive relation between the Reynolds number and the Cn
2 can be seen from the 

diagram and from the equation. It is a positive linear trend with a noticeable dispersion. When 

analyzing the graph, the size of this dispersion as well as certain patterns get the attention [19]. 

This could be explained on the base that the temperature values in a state of turbulence, show a lot 

of variations due to the chaotic nature of the phenomenon. At this time, it is worth presenting again 

the figure that was used in Chapter 2 about the theoretical background of this thesis in order to 

make a comparison of the dispersion of Cn
2 values. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Distribution of the Cn value during a typical spring day in Hawaii. 

 

Figure 5.6 shows the enormous n-1 (refractive index) variation that the parameter 

experiences per minute and yet the trend per section is clear. The values presented in Figure 5.5 

are average values of the temperature variations at a certain time of day with the entire range of 

the 45 cases run for the velocity range of 5 to 16 m/s. 
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On the other hand, the Figure 5.5 is made on the basis of experimental readings, and 5.1 is 

based on CFD simulation, so that a notable similarity can be observed in the variations of the 

values for both behaviors: experimental vs simulated. Nevertheless, the trend is clearly observed, 

for this reason I consider this estimation good enough for understanding the relation between the 

Reynolds number and the Cn
2.  

 

Correlation between Re and Cn
2. Based on Table 5.2, the degree of correlation between 

Reynolds number Re and Refractive index Cn
2 has been calculated. The value obtained is the 

correlation coefficient r = 0.511, where r is a sample correlation coefficient.  The range of the 

correlation coefficient is from -1 to 1. So, the result of the correlation coefficient r = 0.511 or 

51.10% indicated that the variables Re and Cn
2 have a moderate positive correlation [57], meaning 

that they are likely to move in the same direction. 

 

These values reinforce the initial objective of finding a relation between the two variables 

that would allow predicting, above all, the value of Cn
2 with the Reynolds values as well as 

obtaining a mathematical relation between the two variables [60]. 

  

It should be noted that, an r value that would suggest a strong positive relationship between 

the two variables is larger than 0.7.  Nonetheless, a potent point is, with a large number of elements 

(population data) and a professional ANSYS Fluent license that can accommodate much larger 

data size, the simulations could lead us to a larger r value. Where, r is the population correlation 

coefficient. 
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Chapter 6: Conclusions. 

 

 

The objective of the equation that relates the Reynolds number and the structure refractive 

index constant Cn
2 is to represents an adequate platform for those who adjust the laser 

communication systems in the Mauna laboratory. Based on this equation, the idea is that they 

program automatic adjustments directly related to the instantaneous wind velocity at their location. 

 

An important point to consider is that there is a noticeable dispersion of the Cn
2 values as 

the Reynolds number values vary. This variation can be explained in that the turbulence 

phenomenon is chaotic and trying to simulate it using CFD software presents high levels of 

variability. It is important to comment that the adjustments have not been tested in optical 

communication elements, and that the equation that defines the trend between the optical 

diffraction constant and the Reynolds number are based on a temperature scale at a typical value 

of 25 °C at sea level, reason why the equation must be valid in these conditions. 

 

In Chapter 3 it was presented how even when simulating the initial conditions of velocity, 

the temperature show considerable variability as the number of iterations continue to grow even 

though each case was considered in a fully developed condition. For this reason, when I identified 

the conditions of variability of Cn
2, that depend directly on the temperature variations, I gave them 

less importance when I identified the positive trend of Cn
2 as the values of the Reynolds number 

varied. This is because, although the dispersion of values is appreciated, the trend is clearly defined 

even visually. 

 

The use of a software platform such as the ANSYS Fluent, whose operation is based on 

the Navier-Stokes equations, represents an extremely useful tool to generate the profile of 

temperatures and velocities at different positions in the space at a given time, however, the 
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necessary scaling of the model, represents a weakness that affects the accuracy of the predictions. 

Additionally, the inaccuracy of the spatial positions in the sensitive mesh that CFD models create, 

despite having internal adjusting tools, requires the use of additional computational scripts to 

generate the required proportional spaces for analyzing the data. This is where Neural Network 

algorithms, with their training and prediction steps, come with high accuracy to solve this need, as 

they are able to use data on the basis of a non-equidistant mesh to be trained and then predict a 

series of data on the basis of an equidistant mesh. 

 

Finally, it can be said that the use of the Python programming platform was decisive in 

order to use all the data collected from our CFD Simulator (ANSYS Fluent), encode the neural 

network algorithms and work on the data obtained from this codification to perform the 

calculations of CT
2 and Cn

2 in order to obtain the equation that relates Reynolds vs Cn
2. 
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Chapter 7: Future Studies. 

 

 

In this chapter, the elements that were missing in the present study are identified, either 

due to lack of information, limitations on resources, or the need of more time to delve into other 

aspects of the research. 

 

An important aspect to consider is having experimental data of velocities, temperatures, 

and pressures in order to make a comparison that would allow corrections and identify more 

improvement points. It is possible that the laboratories at Maui may have this information, so you 

it is important to make contact them for this information to be shared. 

 

Additionally, as it is discussed during the study, the ANSYS Fluent license that was used 

during the simulation of the turbulence conditions was a student one, which had the limitation in 

the number of 500,000 elements to carry out the simulation. A professional license must have 

access to a considerably greater number of elements so that the turbulence phenomenon can be 

simulated with much more accuracy. 

 

It would be worth verifying if, by increasing the capacity of elements in the simulation, the 

dispersion of the Cn
2 values continues to have the variability presented in this study, or the 

correlation between both variables increases. 

 

It is important to comment that for the generation of experimental data there is also the 

possibility to obtain experimental using a wind tunnel. It could allow obtaining readings that would 

help to make comparisons with the data generated with the CFD. 
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The present analysis was performed on the basis of an ambient temperature scale based on 

a set point of 25 Celsius on daylight and a range of maximum wind velocities, however, future 

work may also include a range of average velocities as well as a range of nighttime ambient 

temperatures to know the behavior of Cn
2 at night. 

 

It will also be worth considering the effect of turbulence on optical variables such as Fried 

coherence length, isoplanatic angle, spectra of figure and tilt and several other optical parameters 

and use this information to develop analytical expressions.  

 

The Fried coherence length measures the quality of the laser transmission trough the 

atmosphere due to random inhomogeneities in the refractive index, mainly as variations of 

temperature, and in consequence in density.  

 

Since  the equation that defines the trend between the optical diffraction constant and the 

Reynolds number are based on a temperature scale at a typical value of 25 °C at sea level, thus a 

future point of analysis is to carry out the same calculations but varying the initial temperatures in 

the ground so that all the temperature ranges during the day are included on this study and not just 

a typical value. 
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