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Abstract 

Additive manufacturing, which is also known as three-dimensional printing, in space is 

one of the most promising technologies advancing current capabilities for in-orbit space 

manufacturing and assembly. Additive manufacturing contributes to the reduction of cost per 

kilogram and number of launches, thus facilitating extraterrestrial colonization and deep-space 

exploration.  The state of the art includes advancing efforts inside the International Space Station 

(ISS). However, the ISS is a controlled environment and, to the best of our knowledge, no 

spacecraft or satellite has performed additive manufacturing tasks in the extreme environment of 

outer space. In this work a 1U CubeSat named Orbital Factory II (OF2) was developed to perform 

a technological capability demonstration featuring a 1-D printing mechanism that will deposit 

conductive ink and simulate repairing of an electric circuit. OF2 was launched on a Northrop 

Grumman Antares space rocket on November 2, 2019 and it was deployed from the CRS2 NG-12 

(Cygnus) on January 31, 2020. This document presents the payload developed and the libraries 

coded for the on-board computer (OBC) for this OF2 CubeSat. This is the first satellite ever 

launched by the University of Texas at El Paso (UTEP). 
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Chapter 1: Introduction 

Satellites have become an important tool in modern life. They are used in a lot of different 

applications. When someone is making a long-distance phone call, there are satellites working in 

space to enable communication. Meteorologists use satellites to predict the weather and observe 

environmental phenomena. The Global Positioning System (GPS) uses satellites to provide users 

data to calculate their exact position. Television companies use satellites to broadcast their 

programs. All of the data that cell phones use is processed using satellites to transmit and receive.  

Moreover, satellites are used also for space exploration. On September 1977, the National 

Aeronautics and Space Administration (NASA) launched a space probe named Voyager 1. Sixteen 

days later, they launched their second space probe, named Voyager 2. On November 5, 2018, 

Voyager 2 entered interstellar space. After 43 years, Voyager 2 has traveled more than 11 billion 

miles from earth [1]. 

 Even though this is the space device farthest from Earth, it is not the only one in space. At 

present, there are more than 2000 satellites orbiting the Earth while performing various tasks. 

Some of these satellites are a little bit bigger than a Rubik’s cube, 1U units measuring 10 cm x 10 

cm x 10 cm, and they are called CubeSats. In 1999, Jordi Puig-Suari, a professor at California 

Polytechnic State University (Cal Poly), and Bob Twiggs, a professor at Stanford University 

developed the first CubeSat. Their intent was to provide affordable access to space for their 

university science committee. Later on, many other universities around the world started to get 

involved in space programs. CubeSat dimensions are based on the standard CubeSat “unit” which 

is a 10cm cube with a mass approximately from 1 to 1.3 kg [2], as shown in Figure 1.1. The most 

popular sizes are 1.5U, 2U, 3U, and 6U. 
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Figure 1.1: Examples of different CubeSat units, courtesy of NASA 

 

Usually, CubeSats developed by universities are used for space research and experiments. 

A significant problem found in space is that sometimes solar cells get broken or electronic 

components get disconnected. This type of problems can be critical to some devices in space. A 

solution for this problem could be to have an electronic self-repair system that could reconnect 

electronic devices. In 2017, student members of the Center for Space Exploration and Technology 

Research (cSETR) at UTEP won the United Launch Alliance (ULA) CubeSat Competition, also 

called the CubeCorps competition. The prize from this competition was a spot for a CubeSat launch 

mission to geostationary transfer orbit (GTO) in the future. With the goal of gaining experience, 

cSETR decided to start CubeSat programs. The first satellite planned to be launched is Orbital 

Factory II (OF2), which is a 1U CubeSat that will perform an experiment consisting in 3D printing 

a conductive ink in space.  
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        Figure 1.2: Fist poster used to introduce OF2 in different presentations in 2018. 

 

The purpose of this is to propose a solution for those devices in space that get disconnected 

or broken. Also, secondary missions that will be performed in this CubeSat include taking pictures 

of the earth and testing an SBAND module designed by Lockheed Martin. After two years of work, 

OF2 construction was completed. OF2 was launched on a Northrop Grumman Antares rocket on 

November 2, 2019, and deployed from the CRS2 NG-12 (Cygnus) on January 31, 2020. This 

document presents the payload developed and the software libraries developed for the on-board 

computer (OBC) of this small satellite. 
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Figure 1.3: OF2 CubeSat fully assembled. 
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Chapter 2: Related Work 

As Valvano said: 

“The true engineering experience occurs not with your eyes and ears, but rather with your 

fingers and elbows. In other words, engineering education does not happen by listening in class or 

reading a book; rather it happens by designing under the watchful eyes of a patient mentor. So, go 

build something today, then show it to someone you respect.” – J. Valvano [3]. 

This project was possible thanks to related work from people who spent time researching 

and experimenting. For instance, the material selection for the ink was made based on Billah’s 

research [4]. In 2017 Billah presented the results of his experimentation using two types of 

electrically conductive ink. The first type was E1660 (Ecron) ink, which is made on a flake-based 

silver particle. The second ink type was CB102 (Dupont), which is made of nano silver particles. 

These two inks were chosen specifically because they passed NASA’s requirements for low 

outgassing. Billah tested both inks under a thermal ambient analyzing the conductivity results from 

these two types of ink under temperature ranging from -150 ºC to 350 ºC. Then Billah used a 

thermal vacuum chamber to simulate outer space pressure and temperature and analyzed the 

behavior of these two inks under these conditions. According to his results, both inks could work, 

but the best option for this project was to use Ecron ink. 

 Also, at a certain point of the OF2 project, the need for using a slave microcontroller in 

the payload became urgent. The OBC did not have enough general-purpose input-output (GPIO) 

ports for peripherals to run the conductivity test, which is the primary mission of the CubeSat. 

Actually, the OBC did not have any GPIO peripheral. It only had GPO pins, so it was not able to 

do a conductivity test. After some research it was found that Felker used an MSP430FR4133 

microcontroller [5].  In 2018 Felker presented a project about the development of the first CubeSat 
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from Rowan University. The mission of this satellite was to compare resistive memory against 

non-resistive memory such as dynamic random-access memory (DRAM) and electrically erasable 

programmable read only memory (EEPROM) under the effects of solar radiation including single 

event upsets. The payload microcontroller chosen for this mission was an MSP430FR4133, which 

is responsible for accumulating sensor and single event upset (SEU) data. The MSP430FR4133 

will then search two types of memory, conductive-bridging random access memory and Flash, for 

SEU-induced bit flips. Felker used and MSP430FR4133 because this microcontroller family 

includes an architecture that is radiation-tolerant. After checking the specification sheet of this 

microcontroller, a 64-pin version was available for the OF2 PCB. This microcontroller resulted 

compatible to this project needs, not only because of its radiation tolerance, but because of the 

number of pins that it has. This microcontroller also solved the GPIO problem in the OBC. 

In addition, to checking how ink spreads over the experimental printed circuit board (PCB), 

a small camera was considered for inclusion in the payload. However, it could not have been a 

high-power consumption camera, it just needed to have enough resolution to analyze the results of 

conductive ink deposition. Finally, when it was needed to decide which type of cameras were 

going to be used in the project, Khurshid's survey resulted helpful [6]. In 2013, the CubeSat 

Program of Pakistan’s Institute of Space Technology (IST) was going to launch their first CubeSat 

ICUBE-1. The objective of this project was to familiarize IST students with a satellite imaging 

system with image capture, analysis, compression, storage and retrieval. Khurshid, a member of 

ICUBE-1 project, presented that year a survey comparing CMOS vs. charged-coupled device 

(CCD) cameras.  Based on his survey, CCD cameras consume more power and are likely to have 

more errors than CMOS cameras. However, CMOS-camera data fetching is slower than CCD’s. 

Based on Khurshid's survey of nine different cameras, the MicroCAM TTL camera was the best 
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fit for OF2 needs. MicroCAM TTL features include low power consumption, JPEG compression, 

a UART serial interface, adjustable resolution, and a small size. The OF2 final decision was to use 

this serial CMOS camera mainly because of its good resolution and low power consumption.  

In 2019, Perla Perez presented her thesis based on her work in the OF2 project [7], which 

focused on mechanical design of the payload.  

 
Figure 2.1: OF2 Payload CAD design, courtesy of Perla Perez. 

 

 

Following this philosophy, this project is a little contribution to the vast world of 

engineering – hoping that the reader can get guidance from the experiments and conclusions that 

this thesis presents. 

 

 

 



8 

Chapter 3: Fundamental Theory and Principles 

The fundamental theory and principles for this project are based on microcontroller 

applications. Microcontrollers are nowadays used for many different applications that include 

some form of computation. They can be used to solve a variety of real-life problems. For instance, 

microcontrollers are at the core of applications in the Internet of things (IoT) [8]. In this project, 

the purpose of the use of microcontrollers is to solve a real-life problem that is crucial for space 

exploration. As an illustration, when an ISS electronic device gets broken, an astronaut needs to 

fix it or replace it. A good example of such devices are solar cells, sometimes they get damaged in 

space and they cannot generate enough power to drive their electric system load. Thus, the idea of 

implementing a microcontroller to run an experiment that potentially could fix a solar cell in space 

could save a lot of time spent on repair. Moreover, this could open the doors for space exploring 

satellites to survive more time in space.  

3.1 Embedded Systems 

A microcontroller is a control unit (CU) that can be reprogrammed. Because of this, and 

using different data processing methods, a microcontroller can do different tasks without the need 

for fixed-hardware digital design. This enables the user to spend more time on developing the 

software and testing the system. When a microcontroller is programmed and implemented in a 

system, this system is referred to as an embedded system. There are different data processing 

techniques that can be applied in most microcontrollers. Basic techniques used in this project are 

presented in the next sections of this chapter. 

3.2 General Purpose Input and Output 

In embedded systems, general purpose input and output (GPIO) is the simplest data 

processing technique. It consists of reading a logical zero (0) for voltages between 0 volts (V), or 
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ground, and 0.7 volts. To read a logical one (1), the voltage range is between 2.5V and 3.3V. This 

leaves a gap of 1.8 volts between logical 0 and logical 1.  

 
Figure 3.1: Example of a logic 1. 

 

Depending on the 0s and 1s that are read, the microcontroller can execute different tasks 

from acting like a logic gate to more complex systems such as manipulating data sent from a 

satellite in space to a specific ground station on earth. 

 
Figure 3.2: Example of a logic 0. 

 

3.3 Pulse Width Modulation  

Pulse width modulation (PWM) is a technique to manipulate DC power transmission with 

a microcontroller. Basically, PWM consists of an alternation of logical 0s and 1s in a certain 

amount of time. For instance, let’s assume a microcontroller uses GPIO to transmit a signal every 

millisecond. During this millisecond, for five hundred microseconds the GPIO signal is a 1, while 

the other 500 microseconds the GPIO signal is a zero. If this signal keeps repeating this process 
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every millisecond the frequency of the signal results in 1KHz and the percentage of the modulation 

is 50 percent because half of the period the signal is one, and the other half of the period the signal 

is zero. If a DC voltmeter is connected to the signal, it will be observed that the output is half of 

the voltage supplied by a 1. In this case, assuming that 1 is 3.3V the voltage read would be 1.65V. 

In the same way, if the percentage is changed to ten percent, which is one hundred microseconds 

as a 1 and nine hundred microseconds as a zero, the voltmeter would read 330 millivolts. This 

technique is good for controlling the power of any output device that works using DC and is not 

adversely affected by the PWM signal frequency. 

 

3.4 Analog to Digital Conversion  

Most of the sensors in the electronics field work in an analog way. This means producing 

different continuous voltage levels that correlate with a physical measurement that is being read. 

For instance, the TMP36 integrated circuit is a common temperature sensor. This sensor can 

measure temperatures from negative 25ºC up to 125ºC. This sensor outputs a voltage that changes 

10 millivolts for every 1ºC of temperature change. These changes in voltage could not be read 

using GPIO because of the digital voltage levels that GPIO uses. The solution for this problem is 

to use analog to digital conversion (ADC), where the microcontroller represents the voltage or 

current in a specific continuous range with an integer number. The accuracy of the number read 

depends on the resolution of the conversion and the voltage range. As an example, if a 

microcontroller has a range from 0 volts to 3.3 volts and a precision of conversion of 214 bits, this 

means that the integer number will be represented with the numbers from 0 to 16,383 (214-1) for 0 

to 3.3 volts respectively. In this case 1.5 volts or 1,500 millivolts would be represented with the 

integer number 7,446. 
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3.5 Universal Asynchronous Receiver Transmitter  

Universal Asynchronous Receiver Transmitter (UART) is a serial communication mode 

that does not need clock synchronization. Instead of a synchronization clock, devices have the 

same baud rate, which is the number of bits that are transmitted per second. The most common 

baud rate is 9600 bits per second. Nevertheless, some devices can go up to three million (3000000) 

bits per second. 

 

 
Figure 3.3: UART Connection. 

 

When the communication is half-duplex, data can be sent bidirectionally but not 

simultaneously. When there is no data transmission, the transmitter sends a 1 constantly, which 

means the channel is idle. The standard protocol consists in the transmitter starting the transmission 

by sending a start bit, which is a zero. After the start bit, a data package is sent which consists of 

a byte (eight bits). To finish the transmission a stop bit is sent, which is a logical 1, thereafter the 

receiver goes back to idle mode. Also, an extra bit can be sent between the last data bit and the 

stop bit. This is called a parity bit and is used to ensure robust communication by detecting wrong 

packages received with a single bit error. 

 

3.6 Inter-Integrated Circuit 

Inter-integrated circuit (I2C) is a serial bus for communication where a master can 

communicate with different slaves. The bus consists of two lines, one for source clock 
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synchronization (SCL), and one for data transmission (SDA). When the clock line starts to 

oscillate, the data line sends a one-byte packet. Every time that a byte has been sent in the data 

line, the clock stops oscillating for a small amount of time and this separates every packet that is 

being sent from other packets. Every slave has its own address, which is a seven-bit address where 

the least significant bit is a signal for the slave to know if it will receive or transmit data. If this 

last bit is a 0 from the master, this means transmit to the slave. On the other hand, if the last bit 

received from the master is a 1, this means receive from the slave. 

 

 
 

Figure 3.4: I2C Connection. 

 

 

For instance, assuming that the address of a slave is 1011 110x in binary and the 

master starts to transmit data to this slave and writes 1011 1100, this means that after an 

acknowledge signal from the slave, the master is going to transmit one byte to the slave. On 

the other hand, if the master writes 1011 1101, this means that the master is expecting to 

receive a byte from the slave after the acknowledge signal. 
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3.7 Serial Peripheral Interface 

Serial Peripheral Interface (SPI) is a synchronous communication approach that can 

communicate a master with different slaves. The difference between I2C and SPI is that SPI does 

not use addresses to communicate, but it uses a GPIO signal that enables the slaves that the master 

needs to communicate with. There are two signals to send data, namely, Master Out Slave In 

(MOSI) and Master In Slave Out (MISO). When the master wants to communicate with a slave it 

sends a 0 using GPIO to select the slave. After this, the clock starts to oscillate and MOSI starts to 

send data from master to slave. If the slave needs to send data to the master, MISO starts to send 

data. A disadvantage when SPI is used is the number of connections that are needed. If there are 

seven different slaves, seven different GPIO lines are needed for slave selection. A decoder would 

be a good option to reduce the number of output pins from the master. However, it is needed to 

connect every output of the decoder to the slave selection inputs.  

 
 

Figure 3.5: SPI Connection. 
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3.8 Software Development in C 

C is a programming language developed as a tool for programmers working in Bell Labs 

in 1972 by Dennis Ritchie and Ken Thompson [9]. Nowadays C is one of the most common 

programming languages used both by the hobbyist and the professional programmer. C language 

results very useful for microcontrollers when programming at the register lever because it enables 

the programmer to interact directly with memory and registers. Also, C language is directly related 

to assembly language, which is the lowest abstraction layer between hardware and software. This 

helps the programmer to understand what is going on inside of the microcontroller as the 

instructions in C are being written. Microcontrollers used in this project have been programmed 

employing C language using different integrated development environments (IDE), which resulted 

helpful for debugging and behavior analysis. 

 

3.9 FreeRTOS 

FreeRTOS is a real-time operating system with a set of libraries for microcontrollers that 

simplify the development of a real time embedded system. A disadvantage of programming using 

this tool is that access to the microcontroller registers is partially limited. However, both the kernel 

and the threads are easy to manipulate and the use of libraries for all the functions result in a more 

convenient experience for the software engineer. The OBC was provided by EnduroSat and it 

included a code base with a FreeRTOS library. Due to this situation, the software for the OBC was 

written in C using FreeRTOS. 
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Chapter 4: System Design 

To have a working embedded system, two things are necessary: hardware and software. 

Hardware relates to the physical part of the system while software refers to the instructions 

implementing algorithms to be executed inside the central processing unit (CPU). This chapter 

begins with section 4.1 introducing the hardware provided by EnduroSat, the CubeSat hardware 

vendor, because they provided the OBC and the software that controls it. The rest of the chapter 

covers all of the software and hardware designed for the OF2 payload, which are the basis of this 

thesis. In addition to meeting functional requirements, the design of payload subsystems aimed at 

reducing the probability of failures. The main hardware and software subsystems that comprise 

the OF2 payload are shown in Figure 4.10 as part of the system data flow and call graph. 

 

4.1 Hardware 

Some modules in this project were provided by Eurostat while some others were designed 

in-house specifically for OF2. In the next sections, hardware modules are presented. 

 

4.1.1 On-Board Computer (OBC)  

Due to lack of time before the launch, an OBC was bought from EnduroSat, which is a 

company specialized in CubeSat products. The OBC contains a detumbling controller, an attitude 

determination controlling system, a diagnostic module, and power management. These control 

units are manipulated using complex drivers. Peripheral devices provided in the embedded system 

are two three-axis gyroscopes, two three-axis accelerometers, three magnetometers, five sun 

sensors connected to solar panels, and an SD card. The microcontroller uses different data 

transmission techniques to communicate with the drivers like GPIO, UART, I2C, and SPI. The 

microcontroller provided is an STM32F42IIT6 and the IDE used to program this microcontroller 

is System Workbench, containing a FreeRTOS C library. This made coding easier for the mission. 

Even though some libraries were provided for basic communication, new libraries had to be built 
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since the payload was designed, tested and assembled using different commercial off-the-shelf 

(COTS) products. 

 

 
Figure 4.1: Layers for the OBC’s components, courtesy of EnduroSat. 

 

4.1.2 Accelerometers 

Two three-axis linear accelerometers are included in the OBC unit. These two 

accelerometers are facing opposite sides of the printed circuit board (PCB). Accelerometers can 

be used to measure the non-gravitational forces acting on the CubeSat. However, this could not be 

implemented due to the lack of time with respect to the launch. Both accelerometers were tested 

and they operate fine. Accelerometer communicate with the OBC via I2C. 
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4.1.3 Magnetometers 

Two magnetometers are included in the OBC unit. In the same way as the accelerometers, 

these two magnetometers are placed facing opposite sides of the PCB. The function of the 

magnetometers is to read the magnetic field that is being exerted on the small satellite in space and 

activate magnetorquers using PWM to make a detumbling system. This helps to avoid the Doppler 

effect that would be generated if the satellite is spinning while it is orbiting around the earth. These 

accelerometers communicate to the OBC via I2C and they are integrated in the system. 

Nevertheless, a detumbling algorithm was not implemented due to lack of time before the launch. 

 

4.1.4 Diagnostic Module 

The diagnostic module collects data and manages data and an SD card connected to the 

OBC via SPI. This diagnostic module keeps different text files for the most important modules, 

namely, the modules for the Electric Power System (EPS), OBC, Payload, Solar Panels, and UHF. 

Diagnostic values of the EPS have a one- or two-byte number for every register status that 

can be decoded using Eurostat’s reference sheet. As an example, register one has a 12-bit ADC 

conversion that refers to the battery voltage status. A number read from that register needs to be 

multiplied times 0.0023394775 and the result is the actual voltage stored in the batteries from the 

EPS in volts. 

Diagnostic values of the OBC give an update of the actual time that is being read by the 

real-time clock (RTC) and an update of status for the magnetometer sensors. 

The diagnostic values of the solar panels give an update of the temperature of every solar 

panel and the status of five photodiodes, each one connected to one axis of the CubeSat except for 

the one that does not have a solar panel. 

Diagnostics of the UHF module give a two-byte status register that can be decoded using 

the user manual. This register can be used to determine if the antennas were deployed correctly, 
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the frequency of receiving and transmitting, the time period for beacon signals, and the number of 

resets that the UHF module has performed. 

Text files can be accessed and read sending a specific instruction ping (+2%) from the 

ground station. This instruction is discussed in detail in table 4.5. 

 

4.1.5 Power Management 

All of the power management is controlled using an electric power system (EPS) designed 

by EnduroSat. This system has two Li-Po battery packs encapsulated inside an aluminum box. The 

capacity of these battery packs can go up to 20.98 Wh. The EPS has a system protection against 

overvoltage, overcurrent, and overtemperature. Moreover, the system has a low power mode 

algorithm that shuts down the battery bus when the raw voltage in the batteries goes below 3.05 

volts. Once the batteries reach a voltage of 4.65 volts or above, the algorithm turns on the battery 

bus again. Also, the EPS has two latch-up voltage switches that turn off the power supply for 5 

volts and 3.3 volts. When the current exceeds 2 amperes, these latch up switches can be turned off 

sending an instruction via I2C from the OBC. Also, the EPS system has 52 registers that can be 

read to check the status of different modules. The system also has six connections for the solar 

panels, so that it can get charged once the satellite is in space. Finally, the system has six general 

purpose output (GPO) pins that can be accessed using the OBC. Some of these GPO pins have a 

pre-assigned function, like turning on the OBC, UHF module, or SBAND module. Every GPO pin 

has a diode connected to avoid reverse current flow, this is for safety purposes of the whole 

CubeSat. 

  

4.1.6 File System 

 The OBC has an SD card system to store data to be transmitted to earth. This storage uses 

a FATS file system. The library implemented to send commands to the SD card using C is called 

FATS FS. This is a multi-microcontroller file system that resulted useful. 
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4.2 Payload 

Even though the payload can be considered hardware, it was decided to cover it in an 

independent section. The purpose of this is to describe in more detail how the payload was 

designed, tested, improved, retested, assembled, and included in the OF2 CubeSat. Every part of 

the payload was designed and tested in UTEP by different team members of the OF2 project. In 

the next sections a description of the printer is presented focusing in its electronics and sensors. 

 

 
 

Figure 4.2:  Payload module before being placed in the CubeSat. 

 

4.2.1 Early Design 

The primary mission for this CubeSat is to deposit a special ink that cures in space and 

becomes conductive. At the beginning of the project, the ink was being released from a nozzle 

using a nylon wire that was burned using electricity. The heat generated by the burned wire melted 

wax on the tip of the nozzle. Using a motor driver and a stepper motor connected to a one-axis rail, 

the ink could be spread over a PCB. The ink was tested in a vacuum chamber. After three minutes 
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the ink cured. Then it was taken out of the vacuum chamber and conductivity was tested using a 

voltmeter to prove that indeed the cured ink was conductive. 

 

 
 

Figure 4.3: Early design of the nozzle using nylon wire. 

 

During this early experimentation, an Arduino processor was used. The OBC could not be 

used for the experiments because it needed to control at least four GPIO peripherals. Due to the 

lack of GPIO peripherals in the OBC, the Arduino processor became an early solution. However, 

it was not a good idea to use an Arduino because it was not for sure at all that this device could 

survive being exposed to space radiation. Another solution that was tested was to use a field 

programmable gate array (FPGA). However, during the SETS Symposium in 2019, a presentation 

about OF2 was given [10] and there was a recommendation to use a radiation-tolerant 

microcontroller. Following these exchanges, the option of using an FPGA was discarded.  

After looking for different options for the payload microcontroller and reviewing Felker 

document [5] as mentioned in chapter 2, a Texas Instruments MSP430FR4133 microcontroller 
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was chosen as the OBC slave for payload control. This microcontroller was chosen specifically 

because its architecture is proven to work under radiation. This microcontroller has an IC version 

with 64 pins. This model fitted completely the specification needed for running the experiment. 

For testing conductivity, twenty-six GPIO pins were used, ten pins would deliver signals, while 

sixteen pins would read voltage in different areas of a PCB. If the ink cured properly, all of the 

input pins in the PCB would be set resulting in a successful conductivity proof. The number of the 

pins reading voltage and their result would be stored in the OBC’s SD card with a two-byte number 

representing the number of pins that resulted positive after the conductivity test. 

 

Time Measurement Batt. Voltage. Batt. Current Ext. Volts Ext. Current 

 
 

Figure 4.4: Power analysis while the motor was running. 

 

4.2.2 Power Analysis 

After power analysis while the experiment was running, some modifications were needed 

because the payload was consuming too much power. The current supplied to burn the wire was 

between two and three amperes. Also, the stepper motor was consuming about 0.8 amperes for 

ninety seconds when it was moving the nozzle around the rail. As can be seen in Figure 4.4, the 
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first column shows the timestamp, the second column shows the number of them measurement, 

the third column shows voltage supplied in the battery bus in volts, the fourth column shows the 

current consumed from the battery bus in milliamperes, the fifth column shows the external battery 

voltage, and the last column shows the external battery current in milliamperes. 

 

4.2.3 Improvements in Design 

The results of this analysis showed that a shutdown of the CubeSat could happen while the 

experiment was running. To avoid a possible shutdown, the whole payload was moved from the 

regular voltage bus to the LUP bus and to avoid the two-ampere consumption generated by burning 

the wire, an electric valve was implemented to open and close the nozzle. The specification sheet 

of this valve recommends to use it at a temperature above 10 ºC degrees, otherwise the valve could 

neither open nor close. Thus, a temperature sensor was connected to the valve. The first sensor 

tested was a DS18B20, a digital sensor that uses a one-wire protocol. Since this protocol was not 

included in the MSP430, this temperature sensor was exchanged for a TMP36, a temperature 

sensor that works using ADC. A spring was placed inside the valve to release the ink and a pressure 

sensor was tested to detect if the ink was being deployed. Nevertheless, this could not succeed 

because the spring was not strong enough to create a considerable change in the pressure sensor. 

Even with an amplifier, not too much change in the pressure sensor reading was detected. Thus, 

the pressure sensor had to be discarded from the payload. 
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Figure 4.5: Design of the nozzle using the valve. 

 

4.2.4 Commercial Off-The-Shelf Cameras 

To see how the ink spread around the payload, a small camera was going to be connected 

inside of the payload. For a secondary mission, another camera was going to be taking pictures of 

the earth. Some inexpensive cameras were found at Spinel Electronics. The camera chosen for 

earth pictures is a SC50MPA model. This is 5.0-megapixel camera. For internal pictures, not too 

much resolution was needed. Thus, an SC03MPA model was chosen. This is a 0.3-megapixel 

camera. Both cameras are built in the same fashion, the only difference is their resolution. They 

are one fourth CMOS color image sensors with JPEG compression. They have a UART serial 

interface at a baud rate of 115,200 bits per second. The communication protocol that these cameras 

use is VC0706, which consists in sending and receiving data for instructions. Cameras turn on and 

off using LUP buses and they were routed to the OBC bus using two pico-Molex connectors in the 

payload. The algorithm implemented to take pictures from the OBC is shown in Figure 4.6. 
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Figure 4.6: Algorithm implemented to take pictures. 
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First, when the camera is turned on, an initial set of bytes is sent. After these bytes are sent, 

an instruction is sent to set the resolution selected. The next step is to send an instruction to the 

camera to get an image. If the camera answers back with and image taken, the next step is to ask 

about data length of the image. Once the camera answers with the data length, this specific amount 

of data is asked to be sent from the camera. At this point, the beginning of the picture will start 

with 0xFFD8 because this is how the jpeg format starts. In the same way, the picture must finish 

with 0xFFD9. If this ending is not received, the picture may be corrupted. Data is received and 

stored in ASCII representing hex format, so once downloaded it needs to be converted from hex 

to jpeg to see the actual picture. All of the answers from the camera are revised by the OBC. At 

the end, the OBC creates an array with a report for any wrong answer from the camera during the 

execution of the algorithm. If any step is wrong, the picture taken will not be stored in the SD card.  

For internal pictures, two white LEDs were placed inside the payload board pointing to the 

conductivity test PCB. LEDs turn on using the MSP430 slave. It was expected that in every pass 

in space, the ground station would have between seven to nine minutes to download data from the 

CubeSat. A picture would need about thirty minutes to be downloaded completely. Also, some 

earth pictures may be completely black if the camera was pointing to space at the moment they 

were taken. The solution to this data problem was to make every camera to take two pictures. One 

with the lowest resolution possible and the second one with the full resolution. The lowest 

resolution pictures need about 10 minutes for transmission and could be downloaded in 2 passes. 

Cameras needed to be turned on only when they were taking pictures, so they are connected also 

to the LUP voltages to save power. When everything was tested in a FlatSat. A PCB for connecting 

everything in the payload was designed and tested. The MSP430FR4133 was debugged and coded 

using a spy-bi-wire connection. Instead of buying an MSP430 debugger, an MSP430FR4133 

Launchpad was bought and connected to the spy-by-wire pins of the IC in the PCB. After a few 

corrected versions of the PCB, the first picture taken by the payload and controlled by the OBC 

was taken, thus running a successful experiment. 
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Figure 4.7: Experiment picture taken by the payload. 

 

4.2.5 Assembly 

Finally, to have control of the position of the nozzle when the experiment is meant to start, 

a home-position switch was implemented using two screwdrivers that close a circuit when they 

are touching each other. A GPIO pin is connected to this circuit with a pull-down resistor to avoid 

static voltages. If the nozzle is not in home position at the beginning of the experiment, the nozzle 

will be moved towards home position.  
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            Figure 4.8: Poster used for presentation to NASA visitors in 2019 introducing a new 

payload design. 

 

When the experiment was run, sometimes the ink started to leak outside of the objective 

PCB board. If this could happen in space, there is a possibility for the ink to spread around critical 

components of the CubeSat creating a short circuit. To avoid this possibility the payload was 

wrapped in Kapton tape. 

 

 
Figure 4.9: Assembled Payload. 
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4.3 Software 

All the software for this project was written in C. The OBC has an 

STM32F42IIT6 microcontroller, which is based on the ARM Cortex M4 processor. The main 

clock frequency of this microcontroller can go up to 180 MHz and consumes typically 104 mA. It 

has 2MB for program memory and 256kB of RAM. EnduroSat provided basic code using 

FreeRTOS and libraries for the devices included in the OBC. The software development kit (SDK) 

used is System Workbench, which is an Eclipse-based platform. Even though basic libraries were 

provided by the OBC vendor, others had to be written to meet the needs of this mission. For the 

payload an MSP430FR4133 was used. This is a Texas Instruments mixed signal microcontroller 

with a 16-bit RISC architecture that can operate at 16 MHz. However, it was used at a frequency 

of 1MHz for this project. This microcontroller consumes 139 microamperes because it was 

programmed to be in low power mode when not in use. It has 15KB of program flash memory and 

2KB of RAM. The software development kit used for programming this microcontroller is Code 

Composer Studio provided by TI and it is also an Eclipse-based platform. The microcontroller was 

programmed at the register level using only the msp430.h header file. 

 

4.3.1 SCMPA Library 

The OBC has three UART channels available. One is used to communicate with the UHF 

antenna module, another one is used for ground-station communications, and the last one is 

intended to be used for payload. At the beginning, it was planned to use one camera to 

communicate using UART and the other one with SPI. However, after a few weeks this task 

resulted harder than expected. Then the option of using both cameras with UART was put on the 

table. The problem with this alternative was that the OBC only had one UART bus and both 

cameras used the same communication protocol. The baud rate could be changed in one of the 

cameras but this could cause a problem if the cameras get reset, because by default both have a 

baud rate of 115,200 bits per second. A decoder was another option, but in the end the 
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communication UART bus was tested and worked without any interruption in other tasks of the 

OBC. Every picture that is taken successfully is stored in the SD card in a text file with a unique 

identification number in the name of the file. In Table 4.1, the functions developed are presented 

with a brief description. 

 

 

Table 4.1: SCMPA library instructions. 
 

Function void take_picture(char cam); 

Brief Depending on the character received, the OBC will take an internal picture or an external 

picture. 

Param in char cam 

Return void 

 

Function void SC03MPA_TAKE_PICTURE(char s); 

Brief Depending on the character received, the internal camera will take a low-resolution picture 

or a high-resolution picture. 

Param in char s 

Return void 

 

Function void SC50MPA_TAKE_PICTURE(char s); 

Brief Depending on the character received, the external camera will take a low-resolution picture 

or a high-resolution picture. 

Param in char s 

Return void 

 

Function void SC50MPA_ON (void); 

Brief Send a specific set of bytes that turn on external camera. 

Param in void 

Return void 

 

Function int SC50MPA_GET_IMAGE (void); 

Brief Send the instruction to external camera to get an image. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 
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Function    int SC50MPA_READ_IMAGE_DATA_LENGTH (void); 

Brief Send the instruction to external camera to get the number of bytes of the image taken. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC50MPA_READ_IMAGE_DATA (char s); 

Brief Send the instruction to send the bytes of the picture and then save them in the SD card in a 
txt file. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC50MPA_RESOLUTION_SELECT (int Res); 

Brief Select the resolution for the picture to be taken 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC50MPA_STOP (void); 

Brief Stop taking pictures from external camera 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC03MPA_RESET (void); 

Brief Send a specific set of bytes that turn on internal camera. 

Param in void 

Return void 

 

Instruction int SC03MPA_GET_IMAGE (void); 

Brief Send the instruction to internal camera to get an image. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC03MPA_READ_IMAGE_DATA_LENGTH (void); 

Brief Send the instruction to internal camera to get the number of bytes of the image taken. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 
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Function int SC03MPA_READ_IMAGE_DATA (char s); 

Brief Send the instruction to send the bytes of the picture and then save them in the SD card in a 
txt file. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC03MPA_BAUD_RATE_SELECT (int Baud03); 

Brief Change the baud rate of the internal camera. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC03MPA_COMPRESS (int comp); 

Brief Change the compression ratio of the internal camera. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC03MPA_RESOLUTION_SELECT (int Res); 

Brief Change the resolution of the internal camera. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

Function int SC03MPA_STOP (void); 

Brief Stop taking pictures from internal camera. 

Param in void 

Return Answer from the camera following VC0706 communication protocol. 

 

4.3.2 Payload Library  

The payload is controlled by a TI MSP430F4133 microcontroller. However, this 

microcontroller only acts as a slave receiving instructions from the OBC master. Both 

microcontrollers interact using I2C. A custom application protocol was designed for 

communication of these two devices. This protocol is explained in detail in chapter 4 section 4.3.6. 

The OBC has three I2C buses, the one selected to communicate with the MSP430 is the payload 
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bus. The address of the MSP430 is 0xD0. The MSP430 is in low power mode and as soon as it 

gets an instruction from the OBC, it executes the instruction and goes back to low power mode. 

When the experiment was being tested, sometimes the EPS was shutting down the whole CubeSat 

because the batteries did not have enough power. To avoid this problem, a threshold voltage of 3.9 

volts was set at the beginning of the experiment. If there were a need to force the experiment 

avoiding the threshold voltage, a “force” variable is set to run the experiment. Once the experiment 

is done, the conductivity test results are stored in a file called “test.txt.” All of the functions needed 

to run the experiment by the OBC are in a file called “payload.c” and “payload.h”. Also, some 

functions were created to have an updated status of the most important modules which are EPS, 

UHF, OBC, Payload, and Panels. All of these files contain a timestamp based on the real-time 

clock inside the OBC. These functions are discussed in Table 4.2. 

 

 

Table 4.2: Payload library functions. 

Function uint8_t check_home(void); 

Brief Check if the nozzle is in home position. 

Param in void 

Return uint8_t 1 (true) or 0 (false) for home position. 

 

Function void move_nozzle(char position, int steps); 

Brief Move the nozzle towards (‘+’) home position or against (‘-’) home position the desired 

number of steps for the stepper motor. 

Param in char position, int steps 

Return void 

 

Function void deploy_ink(int force); 

Brief Open valve to deploy ink. 

Param in int force 

Return void 

 

Function int check_temperature (void); 
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Brief Check if temperature is above 10°C to open the valve. This function returns the temperature 

in an integer representing °C. 

Param in void 

Return int  

 

Function void LEDS_ON (void); 

Brief Turn on white LEDs from payload to take a picture of the experiment with the internal 
camera. 

Param in void 

Return 1 (true) or 0 (false) for home position. 

 

Function void LEDS_OFF (void); 

Brief Turn off LEDs from payload. 

Param in void 

Return 1 (true) or 0 (false) for home position. 

 

Function void enable_mux_read_demux (uint8_t test); 

Brief Run conductivity test and check conductivity in specific pin. 

Param in uint8_t test 

Return void 

 

Function void log_test(uint8_t I,uint8_t da); 

Brief Create log file to store the experiment result of specific pin. 

Param in uint8_t I, uint8_t da 

Return void 

 

Function void stop_ink(void); 

Brief Close the valve to not deploy ink anymore. 

Param in void 

Return void 

 

Function void I2C1_Reset(void); 

Brief Reset payload I2C to default settings. 

Param in uint8_t test 

Return void 
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Function void logger (char data[], char path[]); 

Brief General function that creates a file in a specific folder with the data requested. 

Param in char data, char path 

Return void 

 

Function void loggerEPS (void); 

Brief Create a file called “EPS.txt” storing all of the status register numbered from 0 to 52. This 
file can be also opened in excel. 

Param in void 

Return void 

 

Function void loggerUHF(void); 

Brief Create a file called “UHF.txt” which present the actual status of the UHF. This file can also 

be opened in excel 

Param in void 

Return void 

 

Function void loggerOBC(void); 

Brief Create a file called “OBC.txt” which present the last reads of the magnetometers and the 

accelerometers in the OBC. This file can also be open in excel. 

Param in void 

Return void 

 

Function void loggerPayload(void); 

Brief Create a file called “PAY.txt” which present the status of the Payload. 

Param in void 

Return void 

 

Function void loggerPanels(void); 

Brief Create a file called “PAN.txt” which present the last reads of the from the photovoltaic 

sensors and the temperature sensors in every solar panel. This file can also be open in excel. 

Param in void 

Return void 
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4.3.3 EPS Library 

The EPS has its own microcontroller and some instructions can be sent to it to manipulate 

the GPIO of the OBC and check the voltage and current of different buses and batteries in the EPS 

module. The interface is via I2C and the address of the EPS module is 0x18, but it is a 7-bit address, 

so this address needs to be shifted one bit to the left in the OBC code. Some functions had to be 

developed for power analysis and debugging. Functions are in the files named “EPS.h” and 

“EPS.c”. The functions written in this file are presented in Table 4.3. 

 

Table 4.3: EPS library functions. 
 

Function void Read_EPS_Reg (uint8_t regNumber); 

Brief Reads a specific register of the EPS module and stores it in a global array. 

Param in uint8_t regNumber 

Return void 

 

Function float EPS_Battery_Voltage (void); 

Brief For debugging purposes. Reads register 1 which stores the voltage of the battery bus in 

ADC format. Then multiplies it by a constant and prints it out in the terminal. This function 

returns a float variable for the voltage in volts units with 2 decimals precision. 

Param in void 

Return float 

 

Function float EPS_Battery_Current (void); 

Brief For debugging purposes. Reads register 2 which stores the voltage of the battery bus in 
ADC format. Then multiplies it by a constant and prints it out in the terminal. This function 

returns a float variable for the current in milliampere units. 

Param in void 

Return float 

 

Function float EPS_Extern_Battery_Voltage (void); 

Brief For debugging purposes. Reads register 3 which stores the voltage of the raw battery in 

ADC format. Then multiplies it by a constant and prints it out in the terminal. This function 

returns a float variable for the voltage in volts units with 2 decimals precision. 

Param in void 

Return float 
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Function float EPS_Extern_Battery_Current (void); 

Brief For debugging purposes. Reads register 4 which stores the current of the raw battery in 
ADC format. Then multiplies it by a constant and prints it out in the terminal. This function 

returns a float variable for the current in milliampere units. 

Param in void 

Return float 

 

Function void Power_Analysis (void); 

Brief For debugging purposes. Creates a file called “POW.txt”. This file has 6 columns 

containing a timestamp, number of row, battery bus voltage read, battery bus current read, 

raw battery voltage read and raw battery current read. 

Param in void 

Return void 

 

Function void Enable_LUP (uint8_t v); 

Brief Enables LUP bus voltage for 5 volts (int 5) or 3.3 volts (int 3). 

Param in uint8_t v 

Return void 

 

Function void Disable_LUP (uint8_t v); 

Brief Disables LUP bus voltage for 5 volts (int 5) or 3.3 volts (int 3). 

Param in uint8_t v 

Return void 

 

 

4.3.4 UHF Library 

This CubeSat has two antennas for communication: a UHF antenna and an experimental 

SBAND antenna provided by Lockheed Martin Space. The primary antenna is a UHF antenna 

provided by EnduroSat. This antenna is set to communicate at a frequency of 435.04 MHz. By 

default, it uses a two-frequency shift key (2GFSK) modulation with a data rate of 9600 bits per 

second, and a frequency deviation of 2.4 KHz. The parameters and other options in the antenna 

can be configured using the UART. By default, the antenna is neither in beacon mode or pipe 

mode. Also, an instruction is necessary to be sent to the UHF module to deploy the antennas once 
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it is in space. A library was written to interact with the UHF antenna module. The files are named 

“UHF.h” and “UHF.c.” The functions inside this library are presented in Table 4.4. 

 

 

Table 4.4: UHF library functions. 
 

Function void UHF_On (void); 

Brief Turn on the GPO from the OBC to turn on the UHF. 

Param in void 

Return void 

 

Function void UHF_Pipe_Mode (void); 

Brief Make the UFH to work in pipe mode, so that data can be transmitted and received. 

Param in void 

Return void 

 

Function void UHF_Transmit(char *msg); 

Brief Once the UHF is in pipe mode, this function transmits the data contained in the variable 

“msg” in ASCII format. 

Param in char *msg 

Return void 

 

Function void UHF_Receive (uint32_t t); 

Brief Once the UHF is in pipe mode, this function runs a timer and keeps the OBC waiting for 

that amount of time to receive data using a DMA interrupt. 

Param in uint32_t t 

Return void 

 

Function void UHF_Beacon_Mode(void); 

Brief Changes the UHF from pipe mode to beacon mode. 

Param in void 

Return void 

 

Function void UHF_Automatic_Deploy_Enable(void); 

Brief Give the instruction to the UHF to deploy the antennas. 

Param in void 
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Return void 

 

Function void UHF_Check_Antenna(void); 

Brief Check if the antennas have been deployed. The answer is stored in a global variable called 

UHF_Ans. 

Param in void 

Return void 

 

Function void UHF_Stop_Transmission(void); 

Brief Disable UHF pipe mode. 

Param in void 

Return void 

 

Function char Check_Pipe_Mode (void); 

Brief Check if UHF is in pipe mode. 

Param in void 

Return char 

 

4.3.5 SBAND Library 

A secondary mission of this CubeSat is to test a patch antenna designed by Lockheed 

Martin Space. The antenna is connected to an S-Band module designed by EnduroSat and they 

made a library with all the functions needed to test it. Since this library was not developed in this 

project, it will not be documented here. 

 

4.3.6 Payload Software 

Since the MSP430FR4133 microcontroller is a Texas Instruments (TI) device, it was 

decided to develop software for it using TI’s integrated development environment (IDE). The 

MSP430FR4133 is an extension of the OBC used for different tasks. One task using GPIO is to 

detect if the printer is in its home position. Another GPIO task is to communicate with a motor 

driver that controls the printer’s valve and the stepper motor. GPIO is also used to check 
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conductivity test results and turn on LEDs to photograph ink deposition results. ADC is used for 

a temperature sensor, as below 10 ºC the printer valve would not be able to open. 

 

 
Figure 4.10: Payload data flow and call graph. 

 

When it is not performing a task, the microcontroller is in low power mode waiting on an 

interrupt to receive I2C data. Once the slave receives data representing an instruction, the task 

associated with the instruction will be executed and then the slave will return to low power mode. 

A protocol was designed to ensure communication between the OBC and the MSP430 slave. As 

can be seen in Figure 4.11, two registers designed for the protocol were implemented in the 

MSP430. To access these registers, the OBC first sends an update of the Payload Command 

Register (PCR) to the payload. Then the payload echoes back the command received from the 

OBC and, depending on the command received, the payload will do different tasks and modify its 

Status Register (SR). 

The PCR is a read and write, one-byte register with 6 different bit entries. The DIR entry 

defines the direction of the nozzle. If DIR is 0, the stepper motor will move the nozzle towards the 

home position one hundred steps; if DIR is 1, the stepper motor will move the nozzle away from 

the home position one hundred steps. The next entry is RUN and it controls the motor. When RUN 

is set, the stepper motor will run. On the other hand, if this entry is reset, the stepper motor will 
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not run. Next, the LED entry is used to turn on or off payload LEDs when it is 1 or 0, respectively. 

The DPY entry opens and closes the valve to deposit ink. When DPY is enabled, the valve will 

open; when it is disabled, the valve is closed. The STA entry indicates payload status. When the 

OBC sends an instruction and STA is set, the payload slave will reply with an update of the register 

submitted and an update of the status register. When STA is cleared, the OBC will just receive an 

echo of the instruction sent. The last entry is TST, which is a code to run the printer conductivity 

test. This code needs to be 0x07 to run the test. 

The Status Register (SR) is a 4-byte register that can only be accessed enabling the STA 

bit in the PCR. The SR has seven-bit entries or bit fields. The HME is set if the nozzle has reached 

the home position. In case the nozzle is not in its home position, HME is cleared. IPDY is set once 

the ink has been deployed. If IPDY is cleared, this means that the ink has not been deployed, yet. 

ERR is a set of bits. Two types of errors can be detected. If ERR is 00, no error has been detected. 

If ERR is 01, it specifies that the home switch is not working; 10 means that ink has been deployed 

before the experiment is run. Next, PS is a set of bits that specifies which output pins are working 

during the conductivity test. Every one of the four pins is directly related to one of the four PS bits. 

Next, TMP is a byte that stores the temperature inside of the payload, the values are in Celsius 

degrees and in integer format. Finally, RS is a set of sixteen bits that are directly related to the pins 

that are connected to the experiment PCB. In case any of these sixteen input pins detects a voltage, 

the bit referred to that voltage gets set. 
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Figure 4.11: Design of payload’s communication protocol and registers. 
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Chapter 5: Testing 

OF2 system testing, as opposed to unit and integration testing performed while modules 

were developed and integrated, was designed to be performed by testing the payload functions. 

For the tests, the OBC invoked all of the functions to be executed by the payload slave processor. 

A protocol was designed to ensure communication between processors and to have instructions 

from OBC performed by the MSP430 slave. These instructions, which were encoded in the data 

field 2 of the protocol, were tested in a laboratory environment to simulate how OF2 would behave 

in space.  

When the CubeSat was completely assembled, some critical bugs were found. To simulate 

the ground station a LimeSDR device was bought and EnduroSat provided a radio application that 

was able to send and receive data from the small satellite. The application uses GNU radio, which 

is a good tool to create your own radio applications with an inexpensive software-defined radio 

(SDR). Before using a radio, a terminal connected to the satellite simulated the radio. Also, the 

software was always running in debugging mode. When no critical errors were found, the software 

was uploaded to the small satellite and some instructions were sent to the CubeSat. Unfortunately, 

the CubeSat started to act buggy and the watchdog was resetting the whole system. Moreover, 

after execution of a few threads was tried, the only thread that was not causing trouble was the 

apptask. It was decided to move all of the threads to this one and transform the other threads into 

functions of the apptask thread. Later on, some functions using dynamic memory were causing 

some unexpected problems. For instance, when the program counter (PC) was trying to return from 

the functions called, the link register was pointing to another place and this was resulting in a reset 

from the whole system. Other weird behavior that was found in functions using dynamic memory 

is that when a string was made and another function was called inside this function, the data that 

was supposed to be sent was being changed to some corrupted data. Imagine having this type of 

troubles in important functions like log files that save the status of the system in an SD card. After 
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some debugging time, software defects were corrected and the OF2 started to communicate as 

expected with LimeSDR.  

The packet structure for communication between modules consists of 5 fields. The first 

field consists of a five-byte preamble and the data sent is 0xAAAAAAAAAA. The second field is 

the synchronization word, which is 0x7E. The third field is a byte that specifies the number of 

bytes that will be sent in the next data field, which is the one that contains the actual data. The last 

field is a cyclic redundancy check for data field 1 and data field 2. 

 

 
Figure 5.1: Packet structure for UHF courtesy of EnduroSat. 

 

It was established for the data field 2 to contain instructions. These instructions were tested 

in a laboratory environment having OF2 about 10 meters away from the LimeSDR using 30 dB 

attenuators. The purpose of this experiment was to see how successful it would be to communicate 

with OF2 once it was in space. An example of a satellite instruction is presented in Table 4.5 

 

 

Table 4.5: OF2 Instructions. 
 

 

Instruction +2% or +2~arg% 

Nickname Ping 

Task Answers “OF2 OK!” + last status update, arg is optional. Eg. +2~Hello% will make OF2 to 

answer back “OF2 Received: Hello”. 

Result Instruction is working with no problem found. 
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An interesting problem was found two days before the shipment to Nanoracks. It was found 

that after a software update provided by EnduroSat, the whole system was shutting down. And 

when the CubeSat started to get charged, perhaps the whole instructions were erased because the 

OBC started to act like it was running its sample code. During those two days, a power analysis 

was done and different solutions were tried, like moving the whole PC instructions from the OBC 

to the SD card or uploading the instructions to the OBC via the UHF module. Nevertheless, the 

CubeSat was still not responding. One day before the shipment, it was found that the problem was 

that LUP buses were being turned off in the main file. This was shutting down the EPS and the 

OBC. After moving these instructions to the apptask file, the OBC started to work as expected. 

After testing every instruction twice and checking their results, OF2 batteries were charged during 

the last day before turning it in. OF2 was turned in to Nanoracks on September 19, 2019. It was 

encapsulated with other small satellites and launched on a Northrop Grumman Antares rocket on 

November 2, 2019.  

 

 
Figure 5.2: Eduardo Macias Zugasti in Nanoracks’ clean room setting up OF2. 
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During this time, a presentation was given to ULA, giving an update about the status of 

OF2. In this presentation it was confirmed that OF2 has been successfully launched to space and 

it was waiting to be deployed to space. Also, preparations for future missions started, including 

the ULA-awarded deploy. Finally, OF2 was deployed from the CRS2 NG-12 (Cygnus) on January 

31, 2020. After that, OF2 started orbiting around the world. 

 

 
Figure 5.3: Poster used to present the OF2 project during ULA visit. 
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Chapter 6: Analysis 

 This section focuses on the ground station that was built to analyze the behavior of OF2 in 

space. Also, the results from communication with this CubeSat are presented. Up to now, no 

answer from OF2 nor a beacon signal has been received by UTEP’s ground station. However, it is 

known that the satellite is sending beacon signals because other ground stations around the world 

have received them. 

 

6.1 Ground Station 

While OF2 was in the International Space Station waiting to be deployed, UTEP started to 

build a ground station. Since this is the first satellite that was built by this University, it had no 

ground station. The facility for the ground station has been nicknamed cSPACE by the students 

and professors working on the project. The ground station was designed to establish 

communication with OF2. Moreover, the ground station was to track other satellites in the same 

range of frequency of OF2. The operation of the UHF antennas is in the range of frequencies 

between 420-450 MHz while the SBAND antenna operates in the frequency of 2.426 GHz.  

 

During the first month of the ground station construction, satellites were tracked with a small 

antenna that is commonly used for amateur communications. Software used for tracking is 

SATPC32, which communicates with the antenna and changes the azimuth and degrees of position 

of the antenna. This results helpful when a satellite is being tracked and the antenna needs to be 

moved to point directly to the satellite. G-Predict is a software that calculates the position of a 

satellite and can predict the Doppler correction needed in Hertz to ensure communication with the 

satellite. Finally, GNURadio is a software that can be used with different software-defined radios 

(SDRs) to allow a ground station to receive data. It can be coded in python or in blocks. EnduroSat 

provided the GNURadio software that can communicate with their UHF. This software has been 

modified and used to communicate with OF2. G-Predict is updated every day with the newest TLE 
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files that determine the movement in space of OF2. When OF2 is in range, G-Predict transmits to 

SATPC32 the position that the antennas need to be in and they are updated every 0.5 degrees. 

SATPC32 is directly connected to the control unit of the antenna rotors, so they are placed pointing 

as accurately as possible to OF2. At the same time, G-Predict is transmitting to GNURadio the 

Doppler correction that is needed and GNURadio takes the Doppler correction and implements it 

in LimeSDR. When GNURadio is running, a waterfall of data can be observed. Also, a 

spectrogram of the received data is shown. Data transmitted can be seen and demodulated; data 

received is stored in a file. 

 

 
Figure 6.2: Operation room at cSPACE ground station. 

Later on, better antennas were acquired. A new 6-feet diameter dish antenna was connected 

for SBAND. Also, two new Yagi antennas were mounted in the SBAND antenna. Testing proved 

that these antennas have more accuracy than previous ones. Also, the team started using SDR 

Angel software to demodulate different types of data. For instance, after UHF antennas were 

connected to LimeSDR using SDR Angel, some radio stations could be tracked. Moreover, a DVB-

S2 video transmitter software was used for testing by simulating SBAND transmissions. After a 
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few demodulation attempts, SDR Angel was able to demodulate a broadcasting transmission from 

a PC. 

 

 
Figure 6.3: SBAND and UHF antennas. 

 

6.1 Communication 

From the first day of OF2 orbiting, cSPACE has been trying to communicate with it. 

Nevertheless, no answer has been received, nor a beacon signal has been demodulated. Sometimes, 

when OF2 passes over the ground station with an altitude above 20 degrees, some signals can be 

seen in the waterfall, but no signal has been demodulated. Some changes in the ground station 

have been made, such as connecting the power amplifiers as close as possible to the antennas and 
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implementing digital and analog filters for the exact frequencies needed for communications with 

the satellite. Unfortunately, none of this has resulted in a successful communication with the 

satellite. Also, the place of the ground station is not really favorable, because non-negligible noise 

has been detected in the exact frequency OF2 operates. Testing has started using a LimeSDR 

simulating OF2 transmissions from Scenic Drive, near the UTEP main campus, but no signal has 

been received. In Bulgaria, EnduroSat has tracked OF2 and received beacon signals with OF2’s 

unique id code. Also, CalPoly has been able to demodulate signals from OF2 decoding 

successfully the “Hello World” beacon signal from it. Moreover, amateur people from the 

SatNOGS community have reported receiving beacon signals from OF2 from different parts of the 

world including England, Switzerland, Mexico, Greece, Indonesia, and Holland. Results of these 

observations report that the satellite usually transmits beacon signals every 5 seconds. Then it waits 

for a minute and continues with beacon signals. This means that the code in the satellite is working 

properly. Unfortunately, the only ground station with the license to communicate with OF2 is 

cSETR. Until today the cSPACE team is still working on how to communicate with OF2. 
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Chapter 7: Conclusions and Future Work 

Development of the project is continuing. Due to the situation of the cSPACE ground 

station, the OF2 experiment has not been run. Also, no pictures have been taken of the experiment 

and the SBAND antenna has not been tested yet. However, updates will be done to the ground 

station until it is able to receive signals from OF2. As long as beacon signals are reported from 

OF2 around the world, there is still opportunity to communicate with it.  

Also, OF2 has created opportunities for different new projects. There is already a project 

nicknamed OF3 that will run a robotic arm in space. Also, there is another project nicknamed 

OFX-CG that consists of a 1U CubeSat that will be propelled using cold-gas pressure. And a more 

ambitious project is under way for a small satellite orbiting in geostationary transfer orbit (GTO) 

thanks to ULA. The OF2 project also provided a lot of experience to the team. Thanks to 

presentations given, more investors got interested in CubeSat projects from UTEP. The last lesson 

learned from a presentation was during a visit from CalPoly members. During a tour of the 

cSPACE ground station, one of the visitors recommended to have power amplifiers as close as 

possible to the antennas to reduce noise as much as possible. This greatly improved data received 

during operation. 

There is also plenty of lessons learned that will not be repeated in future projects. A good 

lesson learned is that it is necessary to have at least two CubeSats per project. An engineering unit, 

and a flight unit. The purpose of the engineering unit is to simulate and analyze the behavior of 

the flight unit on the ground to obtain better conclusions of the behavior of the satellite. Also, the 

ground station can be used to simulate transmissions from space adding attenuators to the small 

satellites. Another important lesson learned is that every part of the satellite needs to be tested in 

an environment that simulates as close as possible the actual environment that the satellite is going 

to confront. In 2016, NASA announced that almost every one of two small satellites failed [11]. 

Moreover, the probabilities of failure increase when it is the first satellite designed by a university.  
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           Figure 7.1: Poster used for presenting the OF2 project during a visit from CalPoly 

members. 

Once a presentation about OF2 was given to employees of Lockheed Martin. One of the 

guests said to the OF2 team that if its beacon signals were being received, the team can “pop up 

the champagne and celebrate,” because the probabilities were against the project. OF2 should be 

considered at least a partial success because it was an accelerated training experience for the team 

and third parties all over the world have received proofs that the satellite is working. Later on, 

when cSPACE is able to communicate with OF2, experiments may be run and additional 

successful results will be presented. 
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Figure 7.2: Members of OF2 team in clean room. 

 

 
Figure 7.3: Dr. Joel Quintana and Eduardo Macias Zugasti,  

two of the OF2 team members in Nanoracks. 
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Glossary 

CMOS   Complementary Metal Oxide Semiconductor 

COTS   Commercial-Off-The-Shelf 

CPU   Control Processing Unit 

cSETR   Center for Space Exploration and Technology Research 

DC   Direct Current 

EPS   Electric Power System 

FPGA   Field Programmable Gate Array 

GPIO    General Purpose Input Output 

GPO    General Purpose Output 

GPS   Global Positioning System 

IC   Integrated Circuit 

IDE   Integrated Development Environment 

ISS   International Space Station 

I2C   Inter-integrated circuit 

LUP   Latch Up 

MOSI   Master Out Slave In 

MISO   Master In Slave Out 

OBC   On-Board Computer 

OF2   Orbital Factory 2 

PCB   Printed Circuit Board 

RTC   Real Time Clock 
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RTOS   Real Time Operating System 

SCL   Source Clock 

SDA   Source Data 

SPI   Serial Peripheral Interface 

UART    Universal Asynchronous Receiver Transmitter 

UHF    Ultra-High Frequency 
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