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Abstract

Financial and seismic data, like many other high frequency data are known to exhibit

memory effects. In this research, we apply the concepts of Lévy processes, Diffusion Entropy

Analysis (DEA) and the Detrended Fluctuation Analysis (DFA) to examine long-range

persistence (long memory) behavior in time series data. Lévy processes describe long

memory effects. In other words, Lévy process (where the increments are independent and

follow the Lévy distribution) is self-similar. We examine the relationship between the Lévy

parameter α characterizing the data and the scaling exponent of DEA (δ) and that of DFA

(H ) characterizing the self-similar property of the respective models. We investigate how

close this model is to a self-similar model and prove the numerical relationship.
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8.1.1 Lévy Flight Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.1.2 Detrended Fluctuation Analysis (DFA) . . . . . . . . . . . . . . . . 31

8.1.3 Diffusion Entropy Analysis (DEA) . . . . . . . . . . . . . . . . . . 34

8.2 Geophysical Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . 37
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Chapter 1

Introduction

The detrended fluctuation analysis (DFA) invented by Peng et al. (1993) and the diffusion

entropy analysis (DEA) are very important methods for detecting long-memory behavior

in time series. They have been applied to diverse fields of interest including economic

time series, weather recordings, cloud structure, DNA, traffic analysis, bioengineering etc.

[1]. The DFA, similar to the Hurst rescaled-range analysis, is based on the random walk

theory [2, 3]. It permits the detection of intrinsic self-similarity embedded in a seemingly

non-stationary time series. The DEA, on the other hand, can be used to determine if the

characterization of a time series follows a Gaussian or Lévy distribution, as well as establish

the existence of long-range correlations in the time series. We also study truncated Lévy

flight distributions and self-similarity. For the set of financial market data and data from

recordings of volcanic eruptions used in this paper, we compare and quantify the scaling

and long-range persistence in time series using DFA and DEA. From the resulting scaling

parameters, we conclude that the time series exhibits long-range correlations (or long-

memory behavior) if 0.5 < H, δ < 1, and anti-persistent if 0 < H, δ < 0.5.

1.1 Our Result

We will show that a relationship exists between the Lévy parameter α characterizing the

data and the resulting H or δ parameters of the DFA and DEA characterizing the self-

similar property respectively. Finally, we will show analytically the relations we obtain

from numerical simulations between the Lévy model, DFA and the DEA.
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Chapter 2

Literature Review

Self-Similar Models: How close the Diffusion Entropy Analysis and the De-

trended Fluctuation Analysis are from other models: A Literature Review

In the 1960s, Benoit B. Mandelbrot described the phenomenon of self-similarity, begin-

ning with his article, ”How Long is the Coast of Britain? Statistical Self-Similarity and

Fractional Dimension,” published in Science (1967). In this article he introduced fractals

as part of the solution to a problem that had occupied his attention for some time: How to

measure a curve as complex as a geographic coastline? Geographical curves are so involved

in their detail that their lengths are often infinite or, rather, undefinable. However, many

are statistically ”self-similar,” meaning that each portion can be considered a reduced-scale

image of the whole.

He discussed two salient characteristics of fractals that applied to this problem: self-

similarity and ”fractional” dimensionality.

Self-similarity referred to the persistence of patterns as an observer zoomed in or out of

the visualization of a fractal set. Fractional geometry described the quality these sets had

mathematically of being ”fuzzier” than a line but never completely filling a plane.

In 1975, Mandelbrot coined the term ”fractal” to describe such mathematical sets.

Over the course of time, scholars were encouraged to investigate the application of fractal

geometry to fields ranging from engineering and medicine to finance, climate study, and

art.

This study is not different as we apply fractals and self-similarity to data from financial

markets and volcanic eruptions.

2



Below is an overview of scholarly materials on the Lévy flight model and the scaling

methods, Detrended Fluctuation Analysis (DFA) and Diffusion Entropy Analysis (DEA).

2.1 Lévy Flight Model

The Lévy flight is a random walk in which the step-lengths have a probability distribution

that is heavy-tailed. Today, researchers have extended the use of the term ”Lévy flight”

to include cases where the random walk takes place on a discrete grid rather than on a

continuous space. [14][15] Meanwhile, the particular case for which Mandelbrot (1982, p.

294) used the term ”Lévy flight” is defined by the survival function of the distribution (par-

ticularly Pareto distribution) of step-sizes. For general distributions of step-sizes, satisfying

the power-like condition, the distance from the origin of the random walk approximates

to a stable distribution after a large number of steps. This enables many processes to be

modeled using Lévy flights and this is particularly as a result to the generalized central

limit theorem.

The definition of a Lévy flight stems from chaos theory and is useful in stochastic mea-

surement and simulations for random or pseudo-random natural phenomena. Researchers,

after analyzing over 12 million movements recorded from 14 ocean predator species in the

Atlantic and Pacific Oceans, discovered that when sharks and other ocean predators can-

not find food, they abandon Brownian motion, the random motion seen in swirling gas

molecules, for Lévy flight - a mix of long trajectories and short, random movements found

in turbulent fluids. The data showed that Lévy flights interspersed with Brownian motion

can describe the animals’ hunting patterns [16][17][17][18][19]. Also, other animals (includ-

ing birds and humans) when searching for food follows paths that have been modeled using

Lévy flight [20][21][22].

Lévy Flight model, since then, has been applied to several fields including earthquake

data analysis, financial mathematics, cryptography, signals analysis as well as many appli-

cations in astronomy, biology, and physics.

3



2.2 Detrended Fluctuation Analysis (DFA)

Detrended Fluctuation Analysis (DFA) is a method for determining the statistical self-

similarity of a signal in stochastic processes, choas theory and time series. It comes in

handy when analysing time series that exhibit long-memory behavior. DFA is related to

estimates based on spectral techniques like autocorrelation and Fourier transform.

To represent an extension of the fluctuation analysis (FA) which is affected by non-

stationarities, Peng et al (1994) introduced DFA in a paper. Except the fact that DFA

may be applicable to signals whose underlying statistics are non-stationary (changing with

time), the scaling exponent obtained is similar to the Hurst exponent.

Researchers have applied the DFA to numerous systems including DNA sequences,

[23][24] neural oscillations, [25] speech pathology detection, [26] and heartbeat fluctuation

in different sleep stages.[27]

2.3 Diffusion Entropy Analysis (DEA)

Diffusion Entropy Analysis (DEA) is a method based on the numerical evaluation of vari-

ance for determining the scaling exponent of a complex dynamic process described by a

time series. It focuses on the scaling exponent evaluated through the Shannon Entropy of

the diffusion generated by the fluctuations of time series. N. Scafetta in 2003, argued the

DEA is the only method that correctly quantifies the scaling exponent of the time series of

a complex process.[28]

Discussion and Conclusion

These methods of scaling have been used to perform analysis on time series data from

several fields throughout the years. For this reason, we believe they produce consistent

scaling parameters in the analysis of the financial market data and geophysical (volcanic)

time series data.

4



Chapter 3

Self - Similarity

In this chapter, we provide a brief introduction to the theory of self-similarity and provide

the definition necessary to accurately describe what we mean when we say that a model is

self-similar.

In mathematics, a self-similar object is exactly or approximately similar to a part of

itself. For instance, coastlines, snow flakes and several objects in the real world are sta-

tistically self-similar: parts of them show the same statistical properties at many scales.

Self-similarity is a typical property of fractals. Fractals exhibit similar patterns at increas-

ingly small scales.

Self-similar processes are types of stochastic processes that exhibit the phenomenon of

self-similarity. They can exhibit long-range dependency, also called long-memory behavior.

A phenomenon is usually considered to have long-range dependence if the dependence

decays more slowly than an exponential decay, typically a power-like decay.

3.1 Definition

A stochastic process X(t) is said to be self-similar if there exists a constant H > 0 such

that for any scaling factor a > 0, the process {Xat}t≥0 and {aHXt}t≥0 have the same law

in the sense of finite dimensional distributions. The constant H is called the self-similarity

exponent of the process X.

5



Chapter 4

Lévy Flight Model

Lévy and Khintchine [4] solved the problem of determining the functional form that all

the stable distribution must follow. They found that the most general representation is

through the characteristic functions ϕ(q), that are defined by the following equation:

ln(ϕ(q)) = iµq − γ | q |α
[
1− iβ q

| q |
tan
(πα

2

)]
(4.1)

if α 6= 1, and

ln(ϕ(q)) = µq − γ | q |
[
1 + iβ

q

| q |
2

π
log(q)

]
(4.2)

if α = 1,

where 0 < α ≤ 2 (i.e., the same parameter mentioned before) is called the scaling exponent;

γ is a positive scale factor, µ is a real number, called the location parameter and β is an

asymmetry parameter ranging from -1 to 1, that is called the skewness parameter. Also,

the µ is observed as the mean and that γ2 will coincide with the variance σ2.

The analytical form of the Lévy stable distribution is known only for a few values of α

and β.

We consider the symmetric distribution (β = 0) with a zero mean (µ = 0). In this case the

characteristic function takes the form:

ϕ(q) = exp (−γ | q |α) (4.3)

Since the characteristic function of a distribution is Fourier transform, the stable dis-

tribution of index α and scale factor γ is

PL(x) =
1

π

∫ ∞
0

exp (−γ | q |α) cos(qx)dq (4.4)

6



The stable Lévy processes (Lévy flight) have independent increments but are designated

as long memory processes [5]. In order to avoid the problems arising in the infinite second

moment (i.e. the fact that stable Lévy processes with α < 2 have infinite variance),

we consider a stochastic process with finite variance that follows scale relations called

Truncated Lévy Flight (TLF) (Mantegna and Stanley (1994)).

The TLF distribution is defined by

T (x) = cP (x)χ(−l,l)(x) (4.5)

with P (x) a symmetric Lévy distribution. The TLF distribution is not stable, but it has

finite variance. However, convergence may be slow depending on the size of the cut off

length parameter l.(Mantegna and Stanley (1994)). If the parameter l is small (so that the

convergence is fast) the cut that it presents in its tails is very abrupt. In order to have

continuous tails, the author in Koponen (1995) considered a TLF in which the cut function

is a decreasing exponential characterized by a parameter l. The characteristic function of

this distribution is defined as:

ϕ(q) = exp

[
c0 − c1

(q2 + 1/l2)α/2

cos(πα/2)
cos(α arctan(l | q |))

]
(4.6)

with scale factors:

c1 =
2π cos(πα/2)

αΓ(α) sin(πα)
At (4.7)

and

c0 =
l−α

cos(πα/2)
c1 =

2π

αΓ(α) sin(πα)
Al−αt (4.8)

We obtain T = N∆t if we discretize in time with steps ∆t. Thus, we must calculate the

sum of N stochastic variables that are independent and identically distributed (i.i.d) at

each interval.

For small N the probability will be very similar to the stable Lévy distribution. The

model can be improved by standardizing if the variance is given by:

σ2 = −∂
2ϕ(q)

∂q2
|q=0 (4.9)

7



we have that

−∂
2ϕ(q/σ)

∂q2
|q=0= −

1

σ2

∂2ϕ(q)

∂q2
|q=0= 1 (4.10)

Therefore, the standardized model is:

lnϕs(q) = lnϕ
( q
σ

)
= c0 − c1

((q/σ)2 + 1/l2)
α/2

cos(πα/2)
cos

(
α arctan

(
l
| q |
σ

))
(4.11)

=
2πAl−αt

αΓ(α) sin(πα)

[
1−

(
(q/σ)2 + 1

)α/2
cos

(
α arctan

(
ql

σ

))]
. (4.12)

This equation represents the normalized Lévy model applied in this study. In the

numerical simulations, we adjust the values of A, the arbitrary scale parameter l and the

characteristic exponent α to best fit the cummulative function.

8



Chapter 5

Scaling Methods

There are several methods used to estimate scaling exponents of time series data. In

this study, we limit ourselves to Detrended Fluctuation Analysis (DFA) and the Diffusion

Entropy Analysis (DEA) methods. We compare the DFA and the DEA scaling exponents in

the case of Lévy statistics and generate a relation between α characterizing the normalized

Lévy distribution and (H, δ) characterizing the DFA and DEA respectively.

5.1 Detrended Fluctuation Analyis (DFA)

The Detrended Fluctuation Analysis (DFA) method is an important technique in revealing

long range correlations in non-stationary time series.

The advantages of DFA over conventional methods are that, it permits the detection of

intrinsic self-similarity embedded in a seemingly non-stationary time series (i.e. time series

whose means, variances and covariances change over time.), and also avoids the spurious

detection of apparent self-similarity, which may be an artifact of extrinsic trends. Thus, the

obtained exponents of the DFA is similar to the Hurst exponent, except that DFA may also

be applied to signals whose underlying statistics (such as mean and variance) or dynamics

are non-stationary (changing with time).

The numerical procedure to estimate the DFA exponent is presented below.

Let N be the length of time series (y1, y2, y3, ..., yN). The logarithmic ratio of the time

series is obtained. The length of the new time series M(t) will be N − 1.

M(t) = log

(
yt+1

yt

)
(5.1)

9



for t = 1, 2, ..., N − 1

The absolute value of M(t) is integrated:

y(t) =
t∑
i=1

|M(i) | (5.2)

Then the integrated time series of length N is divided into m boxes of equal length n

with no intersection between them. As the data is divided into equal length intervals, there

may be some left over at the end. In order to take account of these leftover values, the

same procedure is repeated but beginning from the end, obtaining 2N/n boxes. Then, a

least squares line is fitted to each box, representing the trend in each box, thus obtaining

yn(t). Finally the root mean square fluctuation is calculated by using the formula:

F (n) =

√√√√ 1

2N

2N∑
t=1

[y(t)− yn(t)]2 (5.3)

This computation is repeated over all box sizes to characterize a relationship between

the box size n and F (n). A linear relationship between the F (n) and n (i.e. box size) in

a log-log plot reveals that the fluctuations can be characterized by a scaling exponent H,

the slope of the line relating logF (n) to log n. This generates the mathematical relation:

F (n) ∝ nH (5.4)

For data series with no correlations or short-range correlation, H is expected to be 0.5.

For data series with long-range power law correlations, H would lie between 0.5 and 1 and

for power law anti-correlations H would lie between 0 and 0.5. This method is used to

measure correlations in financial market time series and in the daily evolution of some of

the most relevant indices.

Next we discuss the Diffusion Entropy Analysis (DEA).

5.2 Diffusion Entropy Analyis (DEA)

The DEA is another common method used to analyze and detect the scaling properties

of time series. Using the DEA, one can determine if the characterization of a time series

10



follows a Gaussian or Lévy distribution, as well as establish the existence of long-range

correlations in the time series.

A function Φ(r1, r2, ...) is said to be invariant to scale changes if it fulfills the property:

Φ(r1, r2, ...) = γaΦ(γbr1, γ
cr2, ...). (5.5)

This equation shows that if we scale all coordinates r with an appropriate choice of

exponents a, b, c, ..., then we always recover the original function. In the case of a time

series we can interpret the sequence of the numbers that form it as the generators of a

diffusion process and, therefore, to study the relevant probability distribution function

ρ(x, t) where x denotes the variable that collects the fluctuations of the diffusive process.

If the time series is stationary, the scale property takes the shape

ρ(x, t) =
1

tδ
F
( x
tδ

)
, (5.6)

where the δ is the scaling exponent.

It is relatively easy to determine the exponent using the following procedures:

• Transform the series into a diffusion process.

• Calculate Shannon’s entropy of the said process.

S(t) = −
∫ ∞
−∞

ρ(x, t) ln [ρ(x, t)] dx (5.7)

Suppose that ρ(x, t) satisfies the scale condition (5.6) , replacing it in the previous

equation we obtain (after a few simple steps)

S(t) = A+ δ ln(t) (5.8)

where

A = −
∫ ∞
−∞

F (y) ln[F (y)]dy (5.9)

11



Equation (5.8) describes the fact that the entropy grows linearly with ln(t) and that

the slope of the linear function is the scaling coefficient.

Below is the algorithm of Diffusion:

Consider a sequence of M numbers

εi, i = 1, ...,M (5.10)

The purpose of the DEA algorithm is to establish the possible existence of scalability

in an efficient way without altering the series with any form of detrending. To do this we

do the following:

1. Select an integer l such that 1 ≤ l ≤M . This integer will be our ”weather”.

2. For each time we can find M − l + 1 subseries of length l defined such that

εsi ≡ εi+s, i = 1, ..., l (5.11)

with s = 0, ...,M − l.

3. For each subseries we construct a distribution diffusion path by the position

x(s)(l) =
l∑

i=1

εsi =
l∑

i=1

εi+s (5.12)

We can imagine this position as the Brownian path, at regular intervals of time, of

which has jumped towards forward and back according to what is determined by each

subseries.

4. We are now in a position to assess the entropy of the diffusion. For this we partition

the x− axis into size η(l) cells and we tell how many parts there are in each of them

at a time l dice. Let us call this number Ni(l).

12



5. With N(l) we determine the probability pi(l) that the particle is find in the i-th cell

in time l.

pi(l) =
Ni(l)

M − l + 1
(5.13)

6. The entropy of the diffusion process at time l is given by

Sd(l) = −
∑
i

pi(l) ln[pi(l)] (5.14)

The sub-index d wants to sign that the entropy evaluation was made from a discrete

process.

7. A good starting point for choosing the size of the cell η(l) is to assume independence

of l and determine it as a suitable fraction of the square root of the variance of the

fluctuation εi.

The DEA technique is able to determine the correct scaling exponent even when the sta-

tistical properties of the time series, as well as the dynamic properties, are anomalous.
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Chapter 6

Data

In this study, we use data from two (2) different fields namely Financial Stock Markets and

Geophysics.

6.1 Financial Market Data

The financial data used for the analysis in this paper was obtained from yahoo finance. All

data points collected are daily close values. Below are the names of countries or cities where

data was collected as well as the respective start and end dates of data collection: Mexico

(MXX), from November 8 1991 to October 22 2001; Brazil (BOVESPA), from April 27

1993 to June 24 2005; Argentina (MERVAL), from October 8 1996 to June 24 2005; Hong

Kong (HSI), from January 2 1991 to June 24 2005; Phillipines (PSI), from 1997 to 2001;

Thailand (SETI), from 1997 to 2001; New York (SP500) from January 3 1950 to June 23

2005; SPC, from 1991 to 2001 and USA (NASDAQ), from 1997 to 2001.

6.2 Geophysical Time Series Data

The Bezymianny Volcano Campaign Seismic Network (PIRE) collected the volcanic data

at different eruption times at two different seismic stations namely BEZB and BELO. Data

used in this paper were requested for 10 days before and 5 days after the published time of

the volcanic eruptions. Volcanic eruptions 1 and 2 were from BEZB and Volcanic eruptions

3-8 were from BELO.
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6.3 Stationarity Test of Data

The term ‘stationary’ is a fundamental part of time series analysis. It is imperative to

check for stationarity of the data before any model is applied especially when using time

series data for empirical financial research . A time series is said to be stationary if its joint

probability, mean and variance do not change over time and it does not follow any trend.

We use the Augmented Dickey-Fuller (ADF) test to examine the stationarity of both the

returns of the financial market data and volcanic eruption data.

Before performing stationarity test on the data, we take a closer look at how the data

looks like on graphs.

6.3.1 Financial Market Data

Figure 6.1: Plots of trading days closings and actual returns of BVSP and SPC
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Figure 6.2: Plots of trading days closings and actual returns of HSI and IGPA

Figure 6.3: Plots of trading days closings and actual returns of MERV and MXX
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Figure 6.4: Plots of trading days closings and actual returns of Nasdaq and PSI

Figure 6.5: Plots of trading days closings and actual returns of SETI and SP500
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6.3.2 Geophysical Time Series Data

Figure 6.6: Plots of volcanic eruption numbers 1 and 2

Figure 6.7: Plots of volcanic eruption numbers 3 and 4
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Figure 6.8: Plots of volcanic eruption numbers 5 and 6

Figure 6.9: Plots of volcanic eruption numbers 7 and 8
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6.3.3 Augmented Dickey-Fuller (ADF)

The ADF statistic tests the null hypothesis that the time series has a unit root against

the alternative that it is stationary with the assumption that the data exhibits an Auto-

Regressive Moving Average (ARMA) structure.

H0 : A unit root is present in a time series data.

Ha : Time series is stationary.

Market Test statistic Lag order p-value

BVSP -16.571 12 0.01

SPC -19.992 13 0.01

HSI -18.937 13 0.01

IGPA -10.87 9 0.01

MERV -13.298 10 0.01

MXX -12.496 13 0.01

Nasdaq -7.4649 10 0.01

PSI -10.207 10 0.01

SETI -8.4743 10 0.01

SP500 -30.856 24 0.01

Table 6.1: ADF test results for returns of various financial markets
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Station Eruption Test statistic Lag order p-value

BEZB
1 -3.155 7 0.10

2 -1.946 7 0.60

BELO

3 -3.188 8 0.09

4 -3.181 8 0.09

5 -3.342 8 0.07

6 -3.366 7 0.06

7 -2.784 7 0.25

8 -2.092 7 0.54

Table 6.2: ADF test results for different eruption times of Volcano at the two seismic

stations

Comments

The test statistics are used to compute the p-values in the tables above. The p-values

suggest whether the null hypothesis that the time series has unit root is acceptable or not,

at the specified lag parameters estimated from the data.

We observe that, at a significant level of α = 5%, the p-values of returns of the finan-

cial market data is less than the significance level, so we reject the null hypothesis that the

time series has a unit root and conclude that the returns of financial market is stationary.

We also observe that the p-values are greater than the significant level of α = 5% for

the volcanic eruption data, so we fail to reject the null hypothesis that the time series has

a unit root and conclude that the volcanic eruption data is non-stationary.
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Chapter 7

Results

7.1 Numerical Results

Below are table of resuts for both the financial markets data and volcanic eruption data.

There are six (6) columns in each table where the first column indicates the particular

financial market or volcanic eruption numbers, the second - fourth columns show the scaling

exponents of the DFA and the DEA as well as the best Lévy parameter α characterizing

the data. The last two columns are basically product of the respective scaling exponents

and the Lévy parameter α.
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7.1.1 Financial Market Data

Markets DFA (H ) DEA (δ) Lévy (α) H.α δ.α

BVSP 0.72 0.57 1.34 0.96 0.76

SPC 0.62 0.60 1.40 0.87 0.84

HSI 0.70 0.60 1.40 0.98 0.84

IGPA 0.65 0.53 1.40 0.91 0.74

MERV 0.62 0.56 1.40 0.87 0.78

MXX 0.66 0.59 1.34 0.90 0.79

Nasdaq 0.72 0.56 1.12 0.96 0.66

PSI 0.71 0.55 1.40 0.99 0.77

SETI 0.70 0.54 1.34 0.94 0.72

SP500 0.66 0.65 1.40 0.92 0.91

Table 7.1: Scaling exponents of various financial markets
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7.1.2 Geophysical Time Series Data

Seismic Station Eruption Number DFA (α) DEA(δ) Lévy (α) H.α δ.α

BEZB
1 0.74 0.68 1.12 0.83 0.76

2 0.92 0.68 1.34 1.23 0.91

BELO

3 0.85 0.68 1.12 0.95 0.76

4 0.66 0.68 1.40 0.92 0.95

5 0.76 0.68 1.12 0.85 0.76

6 0.67 0.68 1.34 0.90 0.91

7 0.81 0.68 1.40 1.13 0.95

8 0.75 0.68 1.34 1.01 0.91

Table 7.2: Scaling exponents of Volcanic Data from the two seismic stations

7.1.3 Remarks on the Table of Numerical Results

Empirical evidence presented in Tables 6.1 and 6.2 show that:

δ ≈ 1

α
(7.1)

H ≈ 1

α
(7.2)
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7.2 Analytical Relations

In this section, we prove analytically the numerical relations obtained from the previous

section.

7.2.1 Detrended Fluctuation Analysis (DFA)

From (5.4), we obtain a mathematical relation that reveals a linear relationship between

the root mean square fluctuation F (n) and the box size n in a log-log plot. i.e.

logF (n) = logK +Hlog(n) (7.3)

where K is a positive constant of proportionality.

logF (n)− logK = Hlog(n) (7.4)

property 1: Given a random variable X, if we denote with Law(X) its probability den-

sity function (for example, for a Gaussian random variable, we write Law(X) = N(µ, σ2))

then we will say that the random variable X is stable, or that it has a stable distribution

if for any n ≥ 2 there exists a positive number Cn and a number Dn so that:

Law(X1 +X2 + ...+Xn) = Law(CnX +Dn) (7.5)

where X1, X2, ..., Xn are independent random copies of X, this means that Law(Xi) =

Law(X) for i = 1, 2, ..., n. If Dn = 0, then X is said to be a strictly stable variable. It can

be shown (see Samorodnitsky and Taqqu (1994)) that

Cn = n1/α (7.6)

for some parameter α, 0 < α ≤ 2.

This implies that

logCn =
1

α
log n (7.7)
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Subtracting (7.3) and (7.7) gives the relation:

H ≈ 1/α

if

lim
n→∞

| logF (n)− logK − logCn
log n

| → 0 (7.8)

7.2.2 Diffusion Entropy Analysis (DEA)

From the PDF in (5.6), one can calculate the Shannon entropy [5, 7],

S(t) = -
∫
p(x, t)lnp(x, t)dx

Suppose the PDF satisfies (5.6), then after a few simple steps (Mariani et al [7]), we obtain

S(t) = A+ δln(t) (7.9)

where

A = −
∫
F (y)ln[F (y)]dy (7.10)

Since the Lévy distribution is stable, for any n ≥ 2 there exists a positive number (using

property 1) Cn and a number Dn such that:

Law(Xi) = Law(CnX +Dn) (7.11)

for i = 1, 2, ..., n and Law(X) denotes the probability density function of X. If Dn = 0,

then X is said to be a strictly stable variable. It can be shown(see Samorodnitsky and

Taqqu (1994)) that

Cn = n1/α (7.12)

for some parameter α, 0 < α ≤ 2.

Equation (7.9) becomes

S(t)− S(1) = δln(t) (7.13)
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Then, for some positive number Cn

|S(t)− S(1)− ln(Cn)| = 0, where t ≥ 2 (7.14)

such that

δ ≈ 1
α
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Chapter 8

Figures

Figures obtained from the numerical simulations of the various Financial markets and

Geophysical time series data are shown below.

8.1 Financial Market Data

8.1.1 Lévy Flight Model

(a) BVSP (b) HSI

Figure 8.1: Lévy model fits for BVSP and HSI
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(a) IGPA (b) MERV

Figure 8.2: Lévy model fits for IGPA and MERV

(a) MXX (b) Nasdaq

Figure 8.3: Lévy model fits for MXX and Nasdaq
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(a) PSI (b) SETI

Figure 8.4: Lévy model fits for PSI and SETI

(a) SP500 (b) SPC USA

Figure 8.5: Lévy model fits for SP500 and SPC USA
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8.1.2 Detrended Fluctuation Analysis (DFA)

(a) BVSP (b) HSI

Figure 8.6: DFA for BVSP and HSI

(a) IGPA (b) MERV

Figure 8.7: DFA for IGPA and MERV
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(a) MXX (b) Nasdaq

Figure 8.8: DFA for MXX and Nasdaq

(a) PSI (b) SETI

Figure 8.9: DFA for PSI and SETI
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(a) SP500 (b) SPC USA

Figure 8.10: DFA for SP500 and SPC USA
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8.1.3 Diffusion Entropy Analysis (DEA)

(a) BVSP (b) HSI

Figure 8.11: DEA for BVSP and HSI

(a) IGPA (b) MERV

Figure 8.12: DEA for IGPA and MERV
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(a) MXX (b) Nasdaq

Figure 8.13: DEA for MXX and Nasdaq

(a) PSI (b) SETI

Figure 8.14: DEA for PSI and SETI
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(a) SP500 (b) SPC USA

Figure 8.15: DEA for SP500 and SPC USA
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8.2 Geophysical Time Series Data

8.2.1 Lévy Flight Model

(a) Volcanic Eruption 1 (b) Volcanic Eruption 2

Figure 8.16: Lévy model fit for Volcanic Eruptions 1 and 2

(a) Volcanic Eruption 3 (b) Volcanic Eruption 4

Figure 8.17: Lévy model fit for Volcanic Eruptions 3 and 4
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(a) Volcanic Eruption 5 (b) Volcanic Eruption 6

Figure 8.18: Lévy model fit for Volcanic Eruptions 5 and 6

(a) Volcanic Eruption 7 (b) Volcanic Eruption 8

Figure 8.19: Lévy model fit for Volcanic Eruptions 7 and 8
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8.2.2 Detrended Fluctuation Analysis (DFA)

(a) Volcanic Eruption 1 (b) Volcanic Eruption 2

Figure 8.20: DFA for Volcanic Eruption 1 and 2

(a) Volcanic Eruption 3 (b) Volcanic Eruption 4

Figure 8.21: DFA for Volcanic Eruption 3 and 4
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(a) Volcanic Eruption 5 (b) Volcanic Eruption 6

Figure 8.22: DFA for Volcanic Eruption 5 and 6

(a) Volcanic Eruption 7 (b) Volcanic Eruption 8

Figure 8.23: DFA for Volcanic Eruption 7 and 8
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8.2.3 Diffusion Entropy Analysis (DEA)

(a) Volcanic Eruption 1 (b) Volcanic Eruption 2

Figure 8.24: DEA for Volcanic Eruption 1 and 2

(a) Volcanic Eruption 3 (b) Volcanic Eruption 4

Figure 8.25: DEA for Volcanic Eruption 3 and 4
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(a) Volcanic Eruption 5 (b) Volcanic Eruption 6

Figure 8.26: DEA for Volcanic Eruption 5 and 6

(a) Volcanic Eruption 7 (b) Volcanic Eruption 8

Figure 8.27: DEA for Volcanic Eruption 7 and 8
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Chapter 9

Concluding Remarks

9.1 Significance of the Result

Now that we have shown that there exists an inverse relation between the Lévy Flight

model parameter and the parameters of the self-similar models, DFA and DEA, what does

it mean to the financial market and seismic data analysis community?

In the event where the scaling exponent of either of the parameter estimators is not

known or is difficult or expensive to estimate, we are able to approximate it using the

inverse relationship we generated in the numerical and analytical results in this study.

9.2 Future Work

Aims

Given the financial market data and geophysical time series, I seek to

1. investigate the robustness of the Detrended Fluctuation Analysis (DFA) and the

Diffusion Entropy Analysis (DEA). Given an additive time series model Yt, s.t

Yt = Tt + St + εt

where the time series can be decomposed into three (3) main components namely:

Trend = Tt, Seasonal = St and Random(or noise) = εt. The trend component of the
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series shows the general tendency of the data to increase or decrease during a long

period of time. I estimate the trend components using a Moving Average (MA) filter.

Seasonality, on the other hand, measures the presence of variations, contrasted with

cyclical patterns, that occur at specific regular intervals less than a year, such as

weekly, monthly, or quarterly. I compute seasonality by averaging over all periods

in the time series for each time unit and centering the observed values. Finally, by

removing both trend and seasonal components of the original time series Yt, I obtain

the random (error) component εt which is mostly noise.

Now, I estimate long-memory behavior of the time series by removing, one at a time,

the trends, seasonality and errors using the algorithms illustrated in Chapter 5, the

DFA and DEA

2. investigate intra and inter correlations between the volcanic eruption times and esti-

mate lead-lag effects in this geophysical time series using the Auto Correlation (ACF),

Cross Correlation (CCF) and Cross Co-variance (CCV) analyses. The CCF (X, Y )

is particularly affected by the structure of time series when the x-series and y-series

exhibit ”common” trends over some time period. This is when Pre-whitening is useful

to estimate the CCF correctly by first, determining the residuals from the x-variable

time series model. The estimated coefficients from the x-variable time series model

are then used to filter the y-variable series to obtain an ”estimated” y-variable series

based on the x-variable time series model. Finally, we investigate the CCF between

the residuals from the x-variable time series model and the filtered y-variable series.

I then examine whether one volcanic eruption time series is useful in forecasting

another by performing a statistical hypothesis called Granger Causality Test. The

Granger Causality Test estimates predictive causality based on the post hoc fallacy

assumption that: ”Since event Y followed event X, event Y must have been caused by

event X.” I will perform this analysis based on a series of t-tests and F-tests on lagged

values of X (including lagged values of Y), that those X values provide statistically
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significant information about future values of Y.

3. forecast long-memory behavior using one-step-ahead and two-step-ahead predictions

in ARFIMA models. I also propose using forecasting method based on spectral anal-

ysis which assumes that a model consists of combination of trigonometric functions

with a certain frequency. This is because many time series data including the ones

used in this study are often characterized by cyclical variations and random fluctua-

tions. I will characterize the time series data used in this study as a finite sum of time

series of different frequencies ω with corresponding oscillation periods τ = 2π
ω

using

Discrete Fourier Transforms (DFT). This allows you to identify significant peaks and

frequency components that explains the changes in the time series. Based on this, I

will construct a forecast for future time periods.

4. estimate the stochastic volatility using Generalized Auto Regressive Conditional Het-

eroskedasticity (GARCH) model and also try out other extensions including GARCH,

ARMA-GARCH, IGARCH to best fit the data used herein. I fit a GARCH(p, q)

model to the data where p and q denote the order of the fitted model, by comput-

ing the maximum-likelihood estimates of the conditionally normal time series model.

GARCH uses Quasi-Newton optimizer to find the maximum likelihood estimates.

The choice of extension model is dependent upon the type of model that the er-

ror variance in the time series data follow. These extensions are known to capture

some characteristics of time series and other spurious time series such as time-varying

volatility and volatility clustering.

5. perform a Bayesian estimation of stochastic volatility models via Markov Chain Monte

Carlo (MCMC) scheme. Bayesian approaches are known to offer attractive alterna-

tive to statistical estimation which enables small sample results, robust estimation,

model discrimination and model combination. In Bayesian analysis, the volatility

parameters and the white noise process are both unknown random quantities.

I assume parameter vector θ which denotes the vector of all the unknowns. I then
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start with a prior probability distribution for θ that provides a summary of all prior

knowledge about θ. The main Bayesian inference step is the use of Bayes’ theorem. It

necessary for combining the prior information about θ with that of the data by com-

puting the conditional distribution of θ given the data widely known as the posterior

distribution. I use the MCMC numerical simulation approach to compute the poste-

rior because it’s nearly impossible to compute analytically. The resulting simulated

data from the MCMC are used to compute the Bayesian estimates of our stochastic

volatility model.

I examine how well these results compare to estimators of other well-known calibration

methods of estimating stochastic volatility (SV) parameters including the GARCH

models that makes use of maximum likelihood estimation. I will then use Statistical

Information Criteria (such as AIC, AICc, BIC) to specify the best SV model for the

financial and geophysical data used in this study.
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Time Span Task

Aug. - Dec 2020 Investigate the robustness of the DFA and DEA by estimating long-memory

behavior of time series less trends, seasonal and random components.

Examine intra-and inter-correlations in the volcanic eruption times and estimate

lead-lag effects in the eruptions using ACF, CCF and CCV.

Examine causality in the different eruption times of the Bezymianny volcano

using the post hoc hypothesis test, Granger Causality test.

Jan. - May 2021 Forecast long-memory behavior using n-step-ahead predictions

in ARFIMA models.

Propose forecasting method based on spectral analysis that uses the Discrete

Fourier Transforms (DFT) which allows for the identification of significant

peaks and frequency components in the time series.

Estimate stochastic volatility of financial and geophysical time series using

GARCH(p,q) which uses Quasi-Newton optimizer to find the Maximum

Likelihood Estimates (MLE).

Aug. - Dec. 2021 Bayesian estimation of stochastic volatility (SV) models via MCMC numerical

simulation scheme.

Investigate Bayesian versus Maximum Likelihood Estimations of SV models.

Develop methodology for systems of stochastic volatility (SV) models.

Jan. - Feb. 2022 Apply Statistical Information Criteria to review the

model that best fit the financial and geophysical time series.

Mar. 2022 Submit first draft of dissertation

Apr. 2022 Revision of first draft of dissertation

May 2022 Dissertation defense, final revision and submission of dissertation.

Table 9.1: Table of tasks to undertake in the months leading up to dissertation defense
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[4] A. Y. Khintchine and P. Lévy, ”Sur les lois stables,” C.R. Acad. Sci., Paris, 1936, pp.

374–376.

[5] E. Barany and M. P. Beccar Varela and I. Florescu and I. Sengupta, ”Detecting market

crashes by analyzing long-memory effects using high-frequency data,” Quantitative

Finance, 2012, Vol. 12, No. 4, pp. 623–634.

[6] N. Scafetta and P. Grigolini, ”Scaling detection in time series: diffusion entropy anal-

ysis,” Phys Rev E Stat Nonlin Soft Matter Phys., 2002, pp. 66.

[7] M. C. Mariani and I. Florescu and M. P. Beccar Varela and E. Ncheuguim, ”Long
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