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Abstract 

 Research on the ecology and evolution of rattlesnakes has been sporadic over the past 

80 years, but has seen recent expansion into the diverse fields of physiology, physiological 

ecology, life history, behavioral ecology, ethology, reproductive biology, chemical ecology, 

venom biochemistry and medicine, conservation, and many other subdisciplines. The 

development of small, implantable VHF radiotransmitters in the 1980s revolutionized research 

in the field of behavioral ecology for rattlesnakes, which are uniquely suited for radiotelemetry 

studies because they possess several morphological, physiological, and behavioral 

characteristics that are unique among terrestrial vertebrates. The widespread application of 

radiotelemetry by the mid-1980s advanced the model organism status of rattlesnakes for 

classes of questions that were difficult to address with other taxa. Radiotelemetry has been 

responsible for notable insights into several areas of rattlesnake behavioral ecology, including 

movement and habitat associations, predation and sensory ecology, defensive behavior, and 

rattlesnake socioecology. Ultimately, research in these areas of rattlesnake behavioral ecology 

is necessary in order to guide informed conservation plans for this ecologically important group 

of organisms. Thus, the following research attempts to accomplish the following objectives: 1) I 

utilized radiotelemetry to determine movement patterns of C. ornatus on the Indio Mountains 

Research Station, including the estimation of home range sizes, identification of core use areas, 

and examining seasonal and sexual patterns in movement metrics; 2) I used data collected 

during radiotelemetry to determine seasonal and sexual patterns of habitat and microhabitat 

use of C. ornatus; and 3) I presented naive young snakes with aqueous extracts from the 
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integument of known and suspected prey items to determine innate prey preferences of C. 

ornatus. 

 Recently, accelerated rates of taxonomic change have outpaced the subsequent 

ecological research that is necessary to inform conservation objectives for newly described or 

revalidated species. Black-tailed rattlesnakes in the southwestern United States are an 

example, with Crotalus ornatus, which was recently revalidated, occurring east of the 

Continental Divide, and C. molossus occupying the range west of the Continental Divide. This 

created a void in our ecological knowledge about C. ornatus because historical research on 

black-tailed rattlesnakes in the United States was mostly conducted at study sites west of the 

Continental Divide. Thus, radiotelemetry was used to monitor C. ornatus on Indio Mountains 

Research Station (IMRS) in the Trans-Pecos ecoregion of Texas for at least one active season 

from May 2015 through August 2018. Mean (±1 SE) home range size for all individuals was 

22.84 ± 4.49 ha, mean movement frequency was 0.73 ± 0.03, and mean daily movement rate 

was 9.28 ± 0.93 m/day. Male snakes had larger home range sizes, larger core use areas, higher 

movement frequencies, and higher movement rates than female snakes. Female movement 

rates peaked in June, although movement rates were statistically similar for all months. Male 

movement rates were significantly greater during August, with slight peaks in July and June that 

were approaching significance. Multinomial logit models were used to analyze habitat use 

patterns, while controlling for subject, habitat availability, and season. Models predicted that 

snakes were most likely to be found in arroyo and rocky slope habitats, despite the limited 

availability of these habitats within snake home ranges. Microhabitats were also used non-

randomly, with C. ornatus preferring areas composed primarily of rock and vegetative ground 
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cover and seeking refuge in rocky structure or under dense vegetation. This study presents the 

first detailed information about habitat and microhabitat use, along with patterns of movement 

and home range size for C. ornatus. 

 Chemical signals are left behind as organisms move throughout the environment. 

Chemical eavesdropping is the use of these signals by other organisms to gain information 

about the animals that they share the ecosystem with. There are two main avenues of chemical 

eavesdropping: 1) prey species using the signals to avoid predation by gaining information 

about potential predators, and 2) predators using the signals to gain information about prey 

species and identify fertile hunting areas. Despite its utility for predators, chemical 

eavesdropping has usually been examined from the perspective of potential prey items. Thus, 

the final goal of this study was to determine if C. ornatus differentiates among chemical cues 

from potential prey items when choosing ambush spots. Naive neonate snakes were raised in 

captivity, then placed in an arena where they were presented with aquatic extracts from the 

integument from 10 known and suspected prey items and a tap water control, after which their 

reactions to the chemical extracts were recorded, and they were given a tongue-flick-ambush 

score (TFAM) based on their behavior towards the chemical cue. Ten neonate C. ornatus were 

put through each of the 11 trials, and based on TFAM scores, snakes differentiated among the 

chemical cues (Fdf=9, df=10 = 19.149, P < 0.001). Snakes showed preference for native small 

mammal and lizard prey over larger native mammals, native amphibians, native invertebrates, 

and non-native small mammals. The snakes used in this study have never been exposed to wild 

prey stimuli in their native ecosystem and have fed exclusively on non-native mammalian prey 
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in captivity, thus their preference for native small mammals and lizards indicates an innate basis 

for prey preference.  
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Chapter 1: An introduction to the behavioral ecology of rattlesnakes 

1.1: Introduction 

 During the past 80 years, studies on the ecology and evolution of rattlesnakes have 

been sporadic, with a few noteworthy landmark publications (Gloyd 1940, Klauber 1972, 

Campbell and Lamar 1989, Campbell and Brodie 1992, Campbell and Lamar 2004, Hayes et al. 

2008, Schuett et al. 2016, Dreslik et al. 2017). This literature reflects the recent expansion of 

rattlesnake research into diverse fields such as physiology, physiological ecology, life history, 

behavioral ecology, ethology, reproductive biology, chemical ecology, venom biochemistry and 

medicine, conservation, and many other subdisciplines. The aim of this review is to provide the 

groundwork of the behavioral ecology of rattlesnakes, which guide the research objectives in 

the following chapters.  

Behavioral ecology is a broad and integrative field utilizing diverse studies of movement, 

habitat use, sensory ecology, defense, and socioecology, among other areas (Beaupre and 

Duvall 1998). The development of small implantable very high frequency (VHF) 

radiotransmitters in the 1980s revolutionized snake ecology (Beaupre 2016). Rattlesnakes 

possess several morphological, physiological, and behavioral characteristics that are unique 

among terrestrial vertebrates, which have made them ideal candidates for radiotelemetry 

studies, resulting in their suitability and contributions to the fields related to behavioral ecology 

(Reinert and Cundall 1982, Reinert 1992, Beaupre and Duvall 1998). Refinement of implantation 

techniques facilitated the widespread application of radiotelemetry by the mid-1980s (Reinert 

and Cundall 1982, Weatherhead and Anderka 1984, Hardy and Greene 1999, Hardy and Greene 
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2000, DeNardo 2012), which advanced the model organism status of rattlesnakes for classes of 

questions that were difficult to address with other taxa (Beaupre and Duvall 1998). Ironically, 

the characteristics of rattlesnakes that made them ideal candidates for VHF radiotransmitters 

now limit our ability to utilize more modern advances in animal tracking, leaving VHF 

radiotelemetry as the preferred method for ongoing behavioral ecology research (Beaupre 

2016).  

1.2: Movements and Habitat Associations 

Understanding how animals move within the ecosystem is critical to developing an 

informative ecological body of knowledge to guide conservation efforts. Animal movements 

may be thought of as a tradeoff between the need to acquire resources and factors that restrict 

those movements (Bronmark et al. 2008). Consideration of this tradeoff is particularly 

important for species that face additional movement constraints, such as the length of the 

active season, which constrains the movement of ectotherms in temperate climates, including 

many rattlesnake species (Bauder et al. 2017). Important resources, including prey, potential 

mates, thermoregulatory sites, and hibernacula often vary spatio-temporally in distribution, 

influencing animal movements (McIntyre and Wiens 1999, Klaassen et al. 2006, Filipa-Loureiro 

et al. 2007, Noyce and Garshelis 2011). These movements may also be constrained by other 

factors, such as size and vagility, energetic requirements, predation, abiotic conditions, habitat 

composition and configuration, and anthropogenic disturbances (Daltry et al. 1998, Johnston 

and Frid 2002, Alerstam et al. 2003, Fortin et al. 2005, Coulon et al. 2008, Shepard et al. 2008, 

Bartelt et al. 2010, Cushman et al. 2011). Species whose movements are strongly constrained 

by natural factors may also be more susceptible to the negative effects of anthropogenic 
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disturbance, such as restricted movement along small corridors, preventing access to resources 

within those corridors, thereby reducing dispersal, and leading to an overall decrease in 

population viability (Epps et al. 2007, Sawyer et al. 2009, Bauder et al. 2017). 

Because of their large size, relatively slow pace of movement, and their easy 

observability, rattlesnakes are ideal candidates for VHF radiotelemetry studies, which allow for 

detailed analysis of movement and habitat associations. The population-specific databases 

produced by these studies are invaluable for creating sound management policies and have 

contributed to an increased understanding of animal movement and habitat utilization. Studies 

have utilized descriptive statistical methods to illuminate nonrandom habitat associations in 

multiple species (Sistrurus catenatus, Agkistrodon contortrix, and Crotalus horridus) and have 

revealed that single species can show seasonal and geographic differences in habitat 

associations (S. catenatus). In addition, these studies have shown that the potentially 

competitive species A. contortrix and C. horridus may reduce competition by separating 

themselves in space, with C. horridus utilizing complex structural components out of proportion 

to their availability (Reinert 1993). 

Macartney et al. (1988) found that seasonal movements to and from overwintering 

refugia, or dens, may be extensive and dramatic. However, they are not always extensive, as 

some taxa undergo “ranging” movements, in which the animals never move very far away from 

dens, but rather simply come and go as the season progresses. When the movements away 

from dens are dramatic, animals may migrate over 5 km from dens to specific habitat units 

along fixed-bearing paths (Duvall et al. 1985, King and Duvall 1990). Some species, such as S. 

catenatus and C. horridus, demonstrate successive activity centers as they travel (Brown et al. 
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1982, Reinert and Zappalorti 1988). The activity centers are small units of habitat, in which 

individuals may search for prey, seek temporary refugia to undergo ecdysis, seek conspecifics or 

potential mates, or utilize microhabitat for optimal thermoregulatory characteristics. King and 

Duvall (1990) defined these bouts of movement between successive habitat units in time and 

space as “functionally dedicated episodes of activity.” For example, C. viridis has been shown to 

have one episode of activity dedicated to the location of prey patches (Duvall et al. 1990) and 

another episode of activity where male snakes exhibit mate searching behavior (Duvall and 

Schuett 1997). The identification of discreet episodes of activity makes it possible to combine 

successive episodes of movement, resulting in the construction of activity budgets that 

encompass entire seasonal migrations. This provides the opportunity for bioenergetic and cost-

benefit analyses to input data directly into microevolutionary models and address multivariate 

selection in progress (Duvall et al. 1992, Duvall et al. 1993, Arnold and Duvall 1994). Thus, 

constructing seasonal activity budgets has opened the doors for the study of proximate and 

ultimate causation in behavior (Duvall and Beaupre 1998). 

Competition with sympatric snake species and subsequent partitioning of resources is 

another important factor influencing rattlesnake movement and habitat use. Differential 

resource use in the form of niche partitioning allows ecologically similar species to coexist 

(Gause 1934, Schoener 1974, Pfenning et al. 2006, Dugan and Hayes 2017). Niche partitioning 

typically occurs along four major niche axes: 1) spatial separation; 2) temporal avoidance; 3) 

dietary differentiation; and 4) differential use of thermal resources (Shoener 1974, Luiselli 

2006). The current view for snakes, including vipers, is that extensive niche partitioning occurs, 

with sympatric species primarily partitioning food resources, which is atypical among 
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vertebrates (Toft 1985). However, Luiselli (2006) found that, while many snake families 

partition food resources, sympatric viperids usually partition space, suggesting that prey 

availability may not be a source of exploitive interspecific competition (Reichenbach and 

Dalrymple 1980). Studies among viperids of the southwestern United States, although limited, 

seem to support the theory of habitat partitioning by sympatric viper species (Luiselli 2006, 

Steen et al. 2007, Dugan et al. 2008, Martinez-Freiria et al. 2008), including among sympatric 

populations of C. atrox, C. molossus, and C. scutulatus in the Sonoran Desert (Pough 1966, 

Reynolds and Scott 1982, Mendelson and Jennings 1992) and among sympatric C. atrox, C. 

molossus, and C. tigris in Arizona (Beck 1995). Additionally, ecological niche modeling indicates 

that the range of C. pyrrhus is limited by C. stephensi through competition (Lawing et al. 2012). 

Dugan and Hayes (2017) suggest that differential niche use between C. ruber and C. helleri in 

southern California has likely resulted from non-competitive mechanisms, and that resources 

within their study system are not sufficiently limited to promote competition. They hypothesize 

that, if competitive niche portioning exists, it probably occurs subtly on multiple niche axes, but 

likely more so via differential habitat use.  

1.3: Predation and Sensory Ecology 

 Rattlesnake sensory ecology and behavior demonstrated while in ambush posture 

within prey patches has received most of the research attention, while studies on how snakes 

locate specific prey patches has been largely neglected. The ability to detect electromagnetic 

radiation in the infrared region of the spectrum through paired heat-sensing facial pits allows 

rattlesnakes to respond to prey and other stimuli, in addition to visual prey detection and 

stimuli response. Based on the sensitivity and arrangement of the pits, it is thought that small, 
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warm-bodied mammals and local thermal habitat features create a three-dimensional heat 

image seen by rattlesnakes (Beaupre and Duvall 1998).  

 Nasal and vomeronasal olfaction are powerful chemical senses that play an important 

role in the predatory ecology of rattlesnakes (Chiszar et al. 1983, Kardong 1986, Ford and 

Burghardt 1993). Many field studies across numerous species, including C. atrox, C. cerastes, C. 

horridus, C. oreganus, C. ruber, and C. scutulatus, have documented the basic behavioral 

pattern of relatively short bouts of chemosensory searching followed by long periods of waiting 

in stereotyped ambush coils (Reinert and Cundall 1982, Reinert et al. 1984, Clark 2006, 

Wittenberg 2012, Putman et al. 2016, Clark 2016).  The rattlesnake relies on these sensory 

mechanisms to trail envenomated prey accurately after the strike, envenomation, and release 

of the prey item (Golan et al. 1982). Post-envenomation, some pitviper species have shown the 

ability to differentiate between envenomated and non-envenomated prey items, often 

preferring envenomated prey over non-envenomated prey (Greenbaum et al. 2003, 

Greenbaum 2004). Greenbaum et al. (2003) found that A. contortrix could also differentiate 

between prey that was envenomated by conspecifics from different geographic regions, and 

some individuals differentiated between prey envenomated by other sympatric pitviper species 

(A. piscivorus and Sistrurus catenatus). Additionally, C. viridis and S. miliarus respond to the 

odors of common prey species by adopting ambush coils, both in the laboratory and the field 

(Duvall et al. 1990, Roth et al. 1999b, Theodoratus and Chiszar 2000, Bevelander et al. 2006). 

Neonate C. horridus raised in captivity have been shown to discriminate among chemical cues 

from potential prey items, showing preference for those from their native prey (Clark 2004b). 

Additionally, ontogenetic shifts in prey chemical cue discrimination have been observed, as 
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captive C. helleri adopt ambush coils towards lizard chemical cues as juveniles and shift their 

preference to rodent prey chemical cues as adults (LaBonte 2008). Captive C. viridis also 

demonstrated this ontogenetic shift, tongue flicking more towards lizard chemical cues as 

juveniles, shifting their preference to rodent chemical cues as adults (Saviola et al. 2012). There 

is also evidence that prey preference seems to be an innate development, not dependent on 

body size or experience. Saviola et al. (2013) found that individuals with stunted growth 

showed prey responses typical of their chronological age, not size. Greenbaum (2004) found 

that A. contortrix from population with different staple diets (small mammals, frogs, and 

lepidopteran larvae) all preferred small mammal prey in behavioral trials. Furthermore, Holding 

et al. (2016) demonstrated that 5-year old captive S. miliarus preferred chemical cues from 

native lizard prey, despite being raised exclusively on a diet of laboratory mice. 

 In addition to using chemical cues from prey to inform predation strategies, it is likely 

that rattlesnakes can integrate chemical information from other sources as well. It is possible 

that individuals pay attention to conspecific-derived chemical cues and use this as a source of 

environmental information (Clark 2007). Other vertebrate species have been shown to use 

conspecific information to assess their environment (Valone 2007, Bonnie and Earley 2007), 

and small mammals can use social cues to transmit food preferences (Posadas-Andrews and 

Roper 1983). Chemical cues are used by snakes in the genus Thamnophis to assess the body 

condition of conspecifics during courtship (Shine et al. 2003). Thus, given their sensitivity to 

conspecific cues during mating and courtship, it is likely that rattlesnakes can integrate 

conspecific chemical cues in assessing local prey resources as well (Clark 2016). 



8 
 

 Research has shown that chemical cues are sufficient for selecting ambush sites, but 

visual cues are also likely to be important. However, data examining the role of vision in snake 

predatory behavior are limited. When presented with chemical and/or visual cues from live 

mice, C. enyo, C. viridis, and S. catenatus only exhibited elevated tongue-flicking when the live 

mouse was visible, and the rate of tongue-flicking increased if both visual and chemical cues 

were present (Chiszar et al. 1991). In captivity, Duvall et al. (1990) found that C. viridis will 

adopt ambush coils next to soiled bedding from mice (chemical cue), but their responses were 

much stronger when presented with a live mouse residing in the bedding (chemical and visual 

cue). Hennessy and Owings (1988) concluded that visual cues from live squirrels were probably 

an important component of ambush site selection after observing C. oreganus hunting Ground 

Squirrels. 

1.4: Defense 

 The tail rattling and antagonistic behavior that rattlesnakes often exhibit for defense is 

often misinterpreted as aggression (Duvall et al. 1985). The significance, complexity, and 

sequential escalation of stereotypical rattlesnake defense behavior was first described in detail 

by Klauber (1972).  Rattlesnakes incorporate passive elements, such as crypsis, as an immobile 

defense tactic, and active elements of defense, such as the stereotyped defense coil posture 

combined with tail rattling. These behaviors occur sequentially, covarying predictably with 

ecological and social context, and the intensity of the predator threat (Duvall et al. 1985). 

Additionally, rattlesnake defense behavior has been shown to vary based on reproductive 

status and body temperature (Goode and Duvall 1989, Graves 1989).  
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 Striking with envenomation typically occurs only when a rattlesnake is at maximum 

defensive escalation (Duvall et al. 1985, Goode and Duvall 1989). Free-ranging C. viridis that 

were threatened vigorously, but were not contacted physically, only struck out in defense less 

than 2% of the time, and were more likely to hide their head under a coil of the body (6% of the 

time) than attempt a self-defense bite. However, when the snakes were grasped gently and 

repeatedly with foam covered tongs, the percentage of defensive bites rose to approximately 

39% (Duvall et al. 1985).  

 When presented with painted wooden models of Lampropeltis getula that were coated 

with skin chemicals extracted from the kingsnakes, C. tigris and C. mitchellii demonstrated a 

consistent defense behavior in retaliation to the potential ophidian predator, suggesting that 

rattlesnake defensive behavior is highly evolved and context specific. The active defense display 

included the lifting of mid-body coils from the substrate, referred to as “body bridging,” and 

elevated body temperature (Beaupre and Duvall 1998).   

1.5: Socioecology 

 As a group, rattlesnakes have long been thought to be non-gregarious, with large 

aggregations, including more than 500 individuals, occurring only in denning aggregations 

(Graves and Duvall 1990, Graves and Duvall 1995). However, despite these large aggregations, 

it has been reported that rattlesnakes do not engage in complex social or cooperative social 

interactions (Gregory 1982). There is still very little information on the individual-based social 

interactions that occur at these communal dens (Repp 1998, Amarello 2012, Clark et al. 2012). 

Most of the knowledge base for these communal dens concerns the environmental conditions, 
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such as temperature, and geologic features, rather than the individual snakes (Sexton et al. 

1992, Hamilton and Nowak 2009, Gienger and Beck 2011). There are only limited long-term 

data on ingress, egress, and social activities of individual snakes at these den sites because of 

limited long-term, highly detailed studies on the social interaction of individual snakes in nature 

(Sexton et al. 1992, Amarello 2012, Clark et al. 2012, Clark et al. 2014). However, the field of 

rattlesnake socioecology is ever expanding, and as more studies are conducted, it seems that all 

snakes, including rattlesnakes, communicate, are social, and have culture (Doody et al. 2013). 

Additionally, for almost 20 years, researchers have argued that snakes have complex 

communication systems and live complex social lives (Greene et al. 2002, Amarello 2012, Clark 

et al. 2012, Clark et al. 2014, Lillywhite 2014), however there remains no detailed review of 

social behavior in reptiles (Doody et al. 2013).  

 Communication is broadly defined as the transfer of information from one individual to 

another (Carpenter 1977), in which selection favors both the production of the initial 

communication signal and the reception of that signal by a receiver (Lewis and Gower 1980). All 

sociality in snakes must involve communication, including sensory modalities such as vision, 

touch, vibration, and chemosensation, primarily via the vomeronasal sense organs, with 

olfactory and taste systems (Halpern and Martinez-Marcos 2003, Filaramo and Schwenk 2009, 

Mason and Parker 2010, Lillywhite 2014). In pitvipers and other lineages of snakes with infrared 

detection organs, thermal information is also likely to be a source of communication (Lillywhite 

2014). Additionally, snakes may use mechanoreceptors and free nerve endings in the 

integument to communicate and process social information (Lillywhite 2014). Other sensory 
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modalities, such as hearing, seem to be of secondary importance (Gillingham 1987, Young and 

Aguiar 2002, Young 2003, Lillywhite 2014).  

 The phenomenon of communal denning has been covered at length (Klauber 1972, 

Sexton et al. 1992, Graves and Duvall 1995), but nearly all reports lack details of social behavior 

at the level of the individual (Clark 2004c, Amarello 2012, Clark et al. 2014). Gregory (1984) 

proposed three mutually inclusive hypotheses regarding communal denning: 1) Availability of 

suitable den sites low; 2) Enhancement of thermoregulation from high numbers of individuals 

(thermal inertia); and 3) Increased opportunities for mating success from having individuals in 

close proximity.  

Most publications only address the use of communal dens by rattlesnakes as 

hibernacula. However, there are several western species, such as C. cerberus and C. concolor, 

that use communal dens as birthing rookeries (Graves and Duvall 1995, Amarello et al. 2011) or 

nurseries for newly born rattlesnakes (Amarello et al. 2011, Parker et al. 2013). One to two 

months prior to parturition, gravid C. viridis are known to aggregate in small groups at 

microhabitat units that are called birthing rookeries or creches. The individuals that make up 

these aggregations had a more uniform, higher body temperature than solitary conspecifics. 

This thermal inertia may facilitate more rapid embryo development and reduce developmental 

anomalies in neonates. This behavior may constitute mutualistic thermoregulatory cooperation, 

which represents one of the simplest forms of social cooperation known in nature (Graves and 

Duvall 1995). Furthermore, observations suggest that prey availability, such as lizards, may keep 

young-of-the-year and juvenile rattlesnakes at den sites for a period of up to several years 
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(Schuett et al. 2016). Also, adult rattlesnakes, particularly females, may occupy den sites year-

round when undergoing gestation (Graves and Duvall 1995, Schuett et al. 2016).  

Group living (i.e. denning) has both costs and benefits (Hamilton 1964, Alexander 1974, 

Wittenberger 1981). Benefits include increased vigilance, predator defense, access to mates, 

and control over other resources (Wittenberger 1981). Costs include limited resource use and 

the close proximity of individuals facilitates the spreading of parasites and disease 

(Wittenberger 1981, Alcock 1998, Dugatkin 2009). Inclusive fitness theory predicts that the 

benefits of group living will be greater when they are composed of kin rather than unrelated 

individuals (Hamilton 1964). Clark (2004c) demonstrated that pairs of female siblings in the 

species C. horridus were more likely to associate with each other than non-related females. 

Males, both related and not, were less gregarious. Subsequently, kin-based aggregations were 

identified in natural populations of C. horridus (Clark et al. 2012). Females and juvenile snakes 

were found to aggregate with related individuals under certain conditions, but notably showed 

no kin preference in winter denning, although previous studies on the same species have 

shown that individuals occupying the same den have a higher degree of relatedness than those 

from neighboring winter dens (Bushar et al. 1998). A high degree of philopatry has also been 

documented with C. horridus, in which individuals born at or near a particular den often return 

to that identical site throughout their lives (Brown 1993). However, when Clark et al. (2008) 

examined the genetic structure of this species at specific dens, they found significant gene flow 

between most dens, with approximately 30% of paternity assignment involving individuals 

between dens, indicating that gene flow largely occurs through dispersal of males during the 

late summer and early fall mating season. Selection of den sites by C. atrox in the Suizo 
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Mountains in Arizona seems to be by social choice, kin-based, or a combination of the two. The 

dens are a mix of kin-based groups and non-kin groups, characterized by low genetic 

relatedness, but nonetheless strongly connected individuals that associate at certain times of 

the year (Clark et al. 2014).  

1.6: Conservation 

 Ultimately, more research on the behavioral ecology of rattlesnakes is needed to create 

informed management objectives in order to guide the conservation of rattlesnakes and the 

ecosystems in which they inhabit (Dodd 1993, Dodd 2016). Rattlesnakes are threatened by 

habitat loss, urbanization, persecution, disease, introduction of invasive exotic species, and 

climate change, all of which is compounded by human indifference and intolerance resulting 

from ophidiophobia (Gibbons et al. 2000, Burghardt et al. 2009, Nowak and Greene 2016, Funk 

et al. 2017, Spear et al. 2017, Stengle et al. 2017). For example, in the United States there is 

continued sanctioning of rattlesnake roundups, which are clearly detrimental to the long-term 

stability of this group of snakes, especially C. adamanteus, C. atrox, and C. horridus (Fitzgerald 

and Painter 2000).  This is especially concerning given how important rattlesnakes are to desert 

food webs, often serving as top predators in these ecosystems (Fitch 1982, Reynolds and Scott 

1982, Greene 1997, Nowak et al. 2008, Loughran et al. 2014). Additionally, they are of cultural 

importance, notably appearing in folklore and literature left behind by indigenous inhabitants 

of the southwestern United States (Klauber 1972, Dilworth 1996, Nabhan 2003, Silko 2010, 

Sasaki et al. 2011). Venomous snakes also provide direct utility to humans from the wealth of 

pharmacological research on snake venoms, which to date has developed several novel drugs 

that are used to treat common human ailments, including defibrinogenating agents derived 
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from the venoms of Callesolasma rhodestoma, Bothrops atrox, and C. adamanteus, pain 

relievers from the venoms of Ophiophagus hannah, C. durissus, and Naja kaouthia, and anti-

cancer treatments from the venom of Agkistrodon contortrix (Vonk et al. 2011). However, 

declines in snake populations have not received the same level of attention as the declines in 

other groups of herpetofauna, such as amphibians and sea turtles (Norris 2007, Ernst and 

Lovich 2009). 

1.7: Primary Objectives 

 The above summary only scratches the surface of the current research on the 

behavioral ecology of rattlesnakes, but highlights many of the principles that guide the research 

objectives in the following chapters. With that in mind, the following chapters will address 

three primary research objectives: 

1) Utilize radiotelemetry to determine movement patterns of C. ornatus at the Indio 

Mountains Research Station, including the estimation of home range sizes, identification 

of core use areas, and examining seasonal and sexual patterns in movement metrics. 

2) Using data collected during radiotelemetry, determine seasonal and sexual patterns of 

habitat and microhabitat use of C. ornatus. 

3) Present naive young snakes with aqueous extracts from the integument of known and 

suspected prey items to determine innate prey preference of C. ornatus. 
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Chapter 2: Movement, home range size, and habitat use of Eastern Black-tailed Rattlesnakes 

(Crotalus ornatus) in the northern Chihuahuan Desert 

 

2.1 Abstract 

 

 Despite its wide distribution throughout the northern Chihuahuan Desert, very little is 

known about the ecology or behavior of the Eastern Black-tailed Rattlesnake (Crotalus ornatus). 

The body of knowledge was largely based on research conducted on the former conspecific (C. 

molossus), thus the revalidation of C. ornatus widened the void in our understanding of the 

species. The aim of this study was to elucidate movement patterns, space use, and habitat use 

by C. ornatus in the northern Chihuahuan Desert of far west Texas. Radiotelemetry was used to 

monitor individual snakes for at least one active season from May 2015 through August 2018. 

Mean (±1 SE) home range size for all individuals was 22.84 ± 4.49 ha, mean movement 

frequency was 0.73 ± 0.03, and mean daily movement rate was 9.28 ± 0.93 m/day. Male snakes 

had larger home range sizes, larger core use areas, higher movement frequencies, and higher 

movement rates than female snakes. Although female movement peaked in June, overall 

monthly movement rates were similar. Male movement peaked during August, with lesser 

peaks in movement, although not statistically significant, in July and June. Multinomial logit 

models were used to analyze habitat use patterns of C. ornatus, while controlling for subject, 

habitat availability, and season. Despite limited availability within snake home ranges, most 

observations of snakes occurred in arroyos or on rocky slopes. Microhabitat was also used non-
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randomly, with snakes seeking cover in rocky refugia or under dense vegetation, rather than 

areas containing high proportions of gravel or plant litter. This study presents the first detailed 

information about habitat and microhabitat use, along with patterns of movement and home 

range size for the recently revalidated C. ornatus. 

  

2.2 Introduction 

 

Movement patterns and habitat use represent fundamental aspects of snake biology 

and ecology, reflecting individual responses to spatio-temporal fluctuations in the distribution 

of resources in the environment (Plummer and Congdon 1994, Johnson 2000, Smith et al. 

2009). Detailed knowledge of species’ spatial requirements is critical for developing appropriate 

management strategies when the need for conservation initiatives arise (Dodd 1993, Webb and 

Shine 1997, Fitzgerald et al. 2002, Dodd 2016), particularly for species that occur within 

suboptimal habitats (Parent and Weatherhead 2000, Lomas et al. 2015) or are the targets of 

direct human persecution, such as many snakes (Maritz et al. 2016). The utilization of 

radiotelemetry to study snake behaviors (e.g., Reinert 1992, Greene 1997, Gardiner et al. 2013) 

has previously provided insights into the impacts of sex, body size, and seasons on habitat use 

and movement (Whitaker and Shine 2003, Roth 2005, Blouin-Demers et al. 2007, Glaudas and 

Rodrıguez-Robles 2011). However, there is a dearth of information regarding the spatial and 

behavioral ecology of many snake species.  
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 Crotalus ornatus, a wide ranging, medium-sized (762–1067 mm snout-vent length) 

rattlesnake species found in the northern Chihuahuan Desert, was recently reinstated as a valid 

species by Anderson and Greenbaum (2012). Historically, ecological research on black-tailed 

rattlesnakes in the United States has been conducted on populations in Arizona (Beck 1995, 

Hardy and Greene 1999a, Nowak 2009), which are now recognized as a different species (C. 

molossus), leaving only limited ecological information available for C. ornatus. At its current 

pace, the rate of taxonomic change has exceeded the rate at which ecological information has 

been gathered for newly described or revalidated species, and the inability of ecological 

research to keep up with taxonomic change greatly hampers conservation efforts in a rapidly 

changing world (Garnett and Christidis 2017). Therefore, my objective was to provide a detailed 

assessment of the movement patterns, estimate home range size, and examine habitat and 

microhabitat use by C. ornatus in the Trans-Pecos ecoregion of west Texas, near the border 

between the United States and Mexico.  

 Based on patterns of other rattlesnake species in the southwestern United States, I 

predicted that male C. ornatus will have larger home range sizes, move more frequently, and 

have higher movement rates than female snakes. Space use has been recently documented for 

the other rattlesnake species present in the study area (Mata-Silva et al. 2018, DeSantis et al. 

2019), so based on body size, I hypothesized that C. ornatus would have larger home range 

sizes than C. lepidus, and smaller home range sizes than C. atrox. No previous studies reported 

estimates of home range size or movements for C. ornatus, so I made general comparisons with 

its former conspecific C. molossus, which is thought to occupy a similar niche west of the 

Continental Divide (Werler and Dixon 2000, Ernst and Ernst 2012, Persons et al. 2016). 
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Additionally, I compared space use of C. ornatus with the other two rattlesnake species present 

at the study area, C. lepidus and C. atrox. Only general information is known for C. ornatus 

habitat use patterns, but individuals are typically encountered in rock dominated habitats, such 

as rocky hillsides with numerous crevices, stony ridges, rock-slides, and dry rocky streambeds 

(Werler and Dixon 2000, Ernst and Ernst 2003, Campbell and Lamar 2004, Dixon and Werler 

2005, Persons et al. 2016). I, therefore, predicted that C. ornatus at Indio Mountains Research 

Station (IMRS) would favor rocky habitats (i.e., rocky slopes and alluvial rocky slopes) and 

microhabitats characterized by rock and gravel substrates over other available habitat and 

microhabitat features. 

 

2.3 Methods 

 

2.3.1 Study Area 

 

The study was conducted at the Indio Mountains Research Station (IMRS; centered on 

30.75°N, 105.00°W; datum = WGS84), a 16,000-ha parcel of the northern Chihuahuan Desert 

that is overseen by the University of Texas at El Paso. IMRS headquarters is ~40 km southwest 

of Van Horn, Texas, in southeastern Hudspeth County (Fig. 2.1). Relevant characteristics of 

IMRS can be found below, and a detailed description of the study site can be found in 

Worthington et al. (2020). 
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The Indio Mountains run from north to south, resulting in primarily east- and west-

facing slopes. Substrates are primarily composed of intermittent conglomerate, limestone, 

sandstone, and igneous rock, or combinations of the above in areas where they adjoin. Flat 

alluvial fans radiate from the steeper mountainous terrain that are transected by large and 

small arroyos, which drain the mountainous areas into the Green River to the east and the Rio 

Grande to the south and southwest. During the active season for C. ornatus (March–October) 

within the study period (May 2015–August 2018), mean daily temperature was 25.5°C, with a 

mean daily maximum and minimum of 32.3°C and 18.4°C, respectively. Average annual 

precipitation on IMRS is 235 mm, most of which is rainfall during the June-October summer 

monsoon season. 

The vegetation on IMRS is typical Chihuahuan Desert scrubland, dominated by Creosote 

Bush (Larrea tridentata), White-thorn Acacia (Vachellia constricta), Catclaw (Senegalia greggii), 

Honey Mesquite (Prosopis glandulosa), Desert Christmas Cactus (Cylindropuntia leptocaulis) 

and Engelmann’s Prickly-pear (Opuntia engelmannii) on alluvial flats and along arroyos. Rocky 

slopes and outcrops are characterized by Lechuguilla (Agave lechuguilla), Pitaya (Echinocereus 

enneacanthus), Ocotillo (Fouquieria splendens), Sotol (Dasylirion leiophyllum), Torrey’s Yucca 

(Yucca treculeana), Eve’s Needle (Yucca faxoniana), and Purple Prickly Pear (Opuntia 

macrocentra). Grasses such as Black Gramma (Bouteloua eriopoda), Arizona Cottontop 

(Digitaria californica), and Tanglehead (Heteropogon contortus) are found scattered throughout 

the above associations. 
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Figure 2.1: Map showing the location of the Indio Mountains Research Station, Hudspeth 

County, Texas. 

 

2.3.2 Study Subjects and Transmitter Implantation 

 

 Data were collected for this study from May 2015 through August 2018. Active searches 

for rattlesnakes were conducted over the course of 2–4 days per week from March through 

October. In total, 25 individuals (10 females and 15 males) suitable for telemetry were found 

during active searches, which consisted of walking transects of ~4 km through suitable habitat, 



21 
 

primarily during morning (0600–1000h) and evening (1900–2400h). Of these 25 monitored 

individuals, only 15 contributed data for statistical analyses. One male was killed by an 

unknown predator shortly after release, 1 female never exited her overwintering refuge and 

was presumed dead, and 8 individuals (2 females and 6 males) experienced premature 

transmitter failure before sufficient data had been collected. Individuals were considered 

suitable based on size (≥100 g), with small individuals (100–200 g) being implanted with 5 g 

radiotransmitters, and large individuals (>200 g) being implanted with 10 g radiotransmitters 

(Holohil Systems Ltd., Models SB-2T and SI-2T). Suitable size was determined so that 

transmitters weighed ≤5% of the body mass of the snake at the time of implantation. 

Implantation procedures followed those of Reinert and Cundall (1982) and Hardy and Greene 

(1999b, 2000). Post-surgery, snakes were released at the site of original capture within 24–48 h 

of transmitter implantation. 

 

2.3.3 Home Range and Movement Patterns 

 

 To allow for recovery and acclimation, data collection began one week after release for 

each snake. Relocations occurred every two to three days during the active season (March–

October) and biweekly during the inactive season (November–February) using R-1000 

telemetry receivers and a RA-150 Yagi directional antenna (Communication Specialists Inc.). 

Locations were recorded in Universal transverse Mercator (UTM) with a hand-held global 

positioning system (Garmin: eTrex 30x).  
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 For each month of the active season, daily movement rate was calculated (m/day = total 

distance moved by an individual divided by the number of days monitored; Beaupre 1995). For 

this study, I selected a suite of commonly presented home range estimators, including the 

100% Minimum Convex Polygon (MCP) (Row and Blouin-Demers 2006) and 50% fixed-kernel 

Utilization Distribution (UD; core use areas) with the plug-in bandwidth matrix (Bauder et al. 

2015, Bauder et al. 2016). I selected the plug-in bandwidth matrix for UD home ranges because 

it was demonstrated to be robust to variation in sampling with spatial data collected on a 

congener of C. ornatus (C. oreganus) (Bauder et al. 2015). Movement metrics and home range 

sizes were calculated in R using the packages adehabitat, adehabitatHR, and adehabitatLT 

(Calenge 2006, Program R v3.6.3, R Core Team 2020). 

 

2.3.4 Habitat and Microhabitat Use 

 

 The following dominant topographic features were used to define habitat types (Fig. 

2.2): alluvial flats, alluvial slopes, alluvial rocky slopes, rocky slopes, and arroyos. Alluvial flats 

and alluvial slopes are primarily gravel and sand dominated habitats almost completely lacking 

rocky substrates and large rocks (>50 mm diameter); alluvial rocky slopes are eroding slopes 

with a mixture of loose gravel (<50 mm diameter) and rocky substrates; rocky slopes are 

represented by steep hillsides with rimrock, exposed bedrock, and frequent rock outcroppings; 

and arroyos are temporary watercourses that drain the mountainous terrain with dense stands 

of shrub vegetation extending ~5 m in diameter on each side of the bare ground at the arroyo 



23 
 

bottom. Plant associations within habitat types follows Henrickson and Johnston (1983) and 

Diamond (1993).  

 To test whether the patterns of habitat use by snakes were associated with availability 

of each habitat type within individual home ranges, I used a subject-random sampling method 

by pairing 407 used locations with 407 random locations across all C. ornatus home ranges. 

Random sites were obtained by moving a random distance at a random bearing from the 

location of the subject (Sperry and Taylor 2008). The range of random distances was based on 

the observed range of typical daily movement distances made by C. ornatus during the study 

(10–300 m), and random distances and bearings were obtained using a random number 

generator (http//www.random.org). 

 Microhabitat type was classified during all snake relocations. I also quantified ground 

cover composition in a 1-m2 area centered at each of the locations (Reinert 1984). Ground 

cover elements that were factored into the composition (%) included vegetation, rocks, gravel, 

sand, and vegetation litter. However, sand was not included in analyses of ground cover 

composition because it accounted for <1% of the ground cover types. A photograph was taken 

of each microhabitat and used for detailed inspection of structural attributes and ground cover 

composition. I used the same 407 subject–random paired sites to compare ground cover 

composition between used and available microhabitats. Locations used more than once by a 

snake were only included once in the analyses, and sites that snakes were actively crossing 

when encountered were not included in analyses (Reinert 1984; Blouin-Demers and 

Weatherhead 2001). 
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Figure 2.2: Representative photographs of habitat classifications at Indio Mountains Research 

Station, Hudspeth County, Texas: (A) alluvial flat, (B) alluvial slope, (C) alluvial rocky slope, (D) 

rocky slope, (E) arroyo. 

 

2.3.5 Statistical Analyses 

 

All statistical tests were performed using R statistical software (v3.6.3; R Core Team 

2020), with α set at 0.05. Because of the relatively small sample of Crotalus ornatus (n = 15), I 

analyzed the data using both parametric and nonparametric tests. A one-way analysis of 

variance (ANOVA) was used to test for differences in movement rates, movement frequency, 

and home range sizes as a function of sex. A repeated-measures ANOVA was used to test for 

monthly differences in movement rates for each sex. A repeated-measures multivariate ANOVA 

and Wilk’s lambda were used to test for differences among and between ground cover 
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composition at used and random sites. To investigate patterns of habitat use while accounting 

for dependencies attributable to repeated measures and the availability of each habitat type 

within snake home ranges, I examined multinomial logit models with maximum likelihood 

estimation with two predictor variables: (1) habitat availability and (2) season (spring = March–

May; summer = June–October). Snake ID was input as a random factor. The reference level for 

habitat was ‘‘arroyo,’’ and for season it was ‘‘summer.’’ I used the Akaike Information Criterion 

(AIC) for model selection with a forward stepwise selection process based on minimum AIC 

criteria. Model results are reported using model-based odds ratios and associated profile 

likelihood confidence limits. All habitat use analyses were conducted using the multinom 

function in the nnet package (Venables and Ripley 2002). 

 

2.4 Results 

 

2.4.1 Home Range and Movement Patterns 

 

From May 2015 to August 2018, 15 Crotalus ornatus (seven female, eight male) were 

radiotracked during at least one active season (March through October). The duration of 

tracking ranged from 266 to 599 d (Table 2.1), with the number of locations ranging from 33 to 

77 (𝑥̅𝑥 ± 1 SE = 54.1 ± 4.12). Mean home range size was 22.84 ± 4.49 ha for all individuals and 

ranged from 0.72 to 60.3 ha. Home range size was significantly larger for males (n = 8), with a 

mean home range size of 33 ± 6.26 ha, compared to female snakes (n = 7) with a mean home 

range size of 11.2 ± 2.5 ha (Fdf1, df14 = 9.469, P = 0.00882; Fig. 2.3). The mean 50% KD area was 
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also significantly larger for males than females (7.74 ± 2.32 compared to 1.06 ± 0.57 ha; Fdf1, df14 

= 6.876, P = 0.0211). For all individuals, the mean 50% KD area was 4.62 ± 1.51 ha. All snakes 

overwintered in rock piles or crevices on rocky slopes within their home range. Most snakes 

became active by early to mid-March, with two individuals becoming active in February. 

Individuals typically reached winter refugia by mid-November, with a single instance of a snake 

remaining active until early-December.  

Mean movement frequency for all snakes was 0.73 ± 0.03 (Table 2.1), with males 

moving more frequently than females (0.79 ± 0.04 and 0.66 ± 0.03 respectively; Fdf1, df14 = 7.532, 

P = 0.0167; Fig. 2.3). Males also exhibited a higher movement rate than females, moving 11.63 

± 0.79 m/d compared to 6.66 ± 1.11 m/d for female snakes (Fdf1, df14 = 16.7, P = 0.00128). For all 

individuals, the mean movement rate was 9.28 ± 0.93 m/d. Female movement rates were 

highest in June and July, but were statistically similar across all months (Fdf7, df39 = 0.8004, P = 

0.5924). For males, monthly movement rates varied significantly (Fdf7, df47 = 4.9164, P < 0.001), 

with the highest movement rates being observed in August (P = 0.0036). Following August, 

movement rates in June (P = 0.06787) and July (P = 0.052) were approaching significance, but 

still did not differ statistically from other months of the active season. Movement rates for both 

sexes were lowest during the month of September (Fig. 2.4). 
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Table 2.1: Sex, morphometrics, size of home range and core use area, and movement measures 

for Eastern Black-tailed Rattlesnakes (Crotalus ornatus) radiotracked at Indio Mountains 

Research Station, Hudspeth County, Texas, from May 2015 through August 2018. Body size is 

reported as total body length (TBL), and size of home range and core use areas are based on 

minimum convex polygon (MCP) and 50% kernel utilization distribution (KD) estimators. 
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Figure 2.3: Movement and home range size comparisons between the sexes of Eastern Black-

tailed Rattlesnakes (Crotalus ornatus; reported as mean ± 1 SE) at Indio Mountains Research 

Station, Hudspeth County, Texas: (A) movement frequency (Fdf1, df14 = 7.532, P = 0.0167), (B) 

movement rate (m/day; Fdf1, df14 = 16.7, P = 0.00128), (C) 100% minimum convex polygon home 

range estimate (ha; Fdf1, df14 = 9.469, P = 0.00882), (D) 50% kernel utilization distribution 

estimation (ha; Fdf1, df14 = 6.876, P = 0.0211). 
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Figure 2.4: Monthly movement rates of female (Fdf7, df39 = 0.8004, P = 0.5924) and male (Fdf7, df47 

= 4.9164, P < 0.001; August [*]: P = 0.0036) Eastern Black-tailed Rattlesnakes (Crotalus ornatus) 

at Indio Mountains Research Station, Hudspeth County, Texas. 

 

2.4.2 Habitat and Microhabitat Use 

  

 Crotalus ornatus were more likely to be found in arroyo or rocky slope habitat, despite 

these being the least expansive of the habitat types available within their home ranges. Snakes 

were observed using arroyo habitat 182 times (44.7%) and rocky slope habitat on 179 occasions 

(44%), which together accounted for over 88% of total observations. Crotalus ornatus was 

observed on alluvial slopes 23 times (5.6%), 20 times on alluvial rocky slopes (4.9%), and 3 

times (0.7%) in alluvial flat habitat (Table 2.2). Conversely, alluvial rocky slopes were estimated 

as the most expansive habitat available within snake home ranges, followed by alluvial flat and 
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alluvial slope habitats, with rocky slope and arroyo habitats being predicted as the least 

available habitats. The best fitting multinomial logit model was the random slopes and 

intercepts model, controlling for snake ID (AIC = 636.98), and only included a single predictor 

variable: habitat availability within snake home ranges (Table 2.3). Because of the extremely 

low number of observations, the best fitting model excluded alluvial flat habitat. Overall, snakes 

were observed using arroyo and rocky slope habitat more frequently than would be expected 

based on the estimated availability of these habitat types within snake home ranges. 

Conversely, alluvial rocky slope was the most expansive habitat, but observations of snakes 

were infrequent here. Alluvial slope habitat was largely avoided by C. ornatus on IMRS. 

 

Table 2.2: Number of observed and random points used in subject-random pairings for each 

habitat type at Indio Mountains Research Station, Hudspeth County, Texas. 
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Table 2.3: Output by habitat type (reference level = arroyo) for the best fitting multinomial logit 

model (random slopes and intercepts model, controlling for snake ID; AIC=636.98) of habitat 

use by Eastern Black-tailed Rattlesnakes (Crotalus ornatus) at Indio Mountains Research 

Station, Hudspeth County, Texas, when accounting for habitat availability within snake home 

ranges. The best fitting model excluded alluvial flat habitat. 

 

 

Radiotracked snakes were observed in 17 microhabitat types, with the majority of 

locations being under plants (under succulents = 17%, under shrub = 16%) or concealed in rocky 

refugia (in crevice = 17%, under rock = 13%; 𝑥𝑥2 = 652.9, df = 16, P < 0.001; Table 2.4). Male 

snakes (N = 8) were observed in 15 different microhabitat types, most frequently being found 

under succulent vegetation (20%) and in crevices (16%), with locations under rock (14%) and 

under shrubs (13%; 𝑥𝑥2 = 314.71, df = 14, P < 0.001) occurring at a slightly lower rate. Only male 

snakes were located more than 1 m off of the ground in shrubs and on grass; however, both 
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microhabitat categories accounted for less than 1% of observations. Female snakes (N = 7) were 

also observed in 15 microhabitats; however, most locations were under shrubs (20%) or in 

crevices (18%; 𝑥𝑥2 = 227.18, df = 14, P < 0.001). Observations of snakes on sand and on plant 

litter were unique to females, but each category accounted for less than 1% of observations. 

Ground cover composition (%) in 1-m2 plots at each point of relocation was primarily composed 

of vegetation (𝑥̅𝑥 = 39.83 ± 1.83%) and rock (35.12 ± 2.01%), with gravel and plant litter (9.93 ± 

0.73, and 9.84 ± 0.72%, respectively) being lesser components. When comparing used and 

random microhabitats, the repeated-measures MANOVA highlighted a difference in ground 

cover composition between the two categories (Wilk’s λ = 0.52, n = 406, Fdf1, df 810 = 188.78, P < 

0.001; Table 2.5). Snakes used microhabitats with a greater abundance of vegetation and rock 

relative to random microhabitats, which consisted mostly of gravel. When examined on a 

monthly basis, this same pattern was maintained (Fig. 2.5). Although gravel and plant litter 

were present at observed microhabitats, they always accounted for <25% of ground cover. 

 

2.5 Discussion 

 

2.5.1 Home Range and Movement Patterns 

 

 Although the lack of consistent protocols (e.g., differences in geographic location, 

sample size, location frequency, and tracking period) makes detailed comparisons difficult and 

likely contributes to the variability between studies (Gregory et al. 1987), I estimated home 

range sizes of Crotalus ornatus and present comparisons with former conspecific C. molossus, 
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which is thought to exhibit similar life history characteristics west of the Continental Divide. 

Although the literature is sparse, both sexes of C. molossus seem to exhibit smaller home range 

sizes than those demonstrated by C. ornatus at IMRS. In the Sonoran Desert of Arizona, Beck 

(1995) reported male C. molossus home ranges (0.93 and 3.41 ha) that were much smaller than 

male C. ornatus on IMRS, and a female home range (6.41 ha) that was slightly smaller than the 

mean for female C. ornatus on IMRS. Hardy and Greene (1999a) reported that C. molossus of 

both sexes in the Chiricahua Mountains of southeast Arizona have smaller home ranges (male = 

21 ha, female = 3.75 ha) than C. ornatus on IMRS. In the Peloncillo Mountains of southwestern 

New Mexico, Smith et al. (2001) also reported a home range size (<0.1 ha) for C. molossus that 

is much smaller than those of C. ornatus on IMRS. At Tonto National Monument in Arizona, 

Nowak (2009) reported home range sizes (18.05 ha) for male C. molossus that were smaller 

than male C. ornatus, and a female that had a home range (6.33 ha) slightly smaller than those 

used by C. ornatus on IMRS. 

In addition to comparing the home range sizes of Crotalus ornatus to those of a former 

conspecific, I compared them to the two other Crotalus species found on IMRS, C. lepidus and C. 

atrox. Mata-Silva et al. (2018) found that C. lepidus on IMRS had a smaller home range size 

(13.69 ha) and smaller core use area (2.83 ha) than C. ornatus. DeSantis et al. (2019) also found 

that both male and female C. atrox on IMRS have smaller home range sizes (male = 22.68 ha, 

female = 4.31 ha) and core use areas (male = 7.35 ha, female = 1.07 ha) than male and female C. 

ornatus. Although unclear at an interspecific level (Macartney et al. 1988), body size has been 

shown to positively correlate with space use within species (Blouin-Demers et al. 2007), which 

may explain why C. lepidus exhibits smaller space use metrics than C. ornatus. On IMRS, 
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DeSantis et al. (2019) demonstrated that some C. atrox utilize human-made earthen tanks as 

resource hotspots, decreasing the home range sizes and core use areas of the snakes in these 

areas, which explains why a larger-bodied species would use less space than C. ornatus. 

On IMRS, Crotalus ornatus usually became active for the year in early March, when they 

exited overwintering areas high on primarily south and west facing slopes. During this time, C. 

ornatus was often observed outside of refugia during the late morning (0900–1100h) and 

afternoon hours (1400–1800h). By late May, snakes shifted to primarily nocturnal behavior, 

leaving their refugia just before dusk, and returning by 0930 h the following morning. This shift 

in activity is likely tied to thermal constraints, as snakes typically retreated into shelters when 

ground temperatures exceeded 38°C, which is approaching the critical thermal maximum for 

many desert reptiles (~39–42°C; Brattstrom 1965). 

Overall, movement rates for Crotalus ornatus on IMRS increased through June and into 

July, before peaking in August (fig 2.4). Although not significant, female movement peaked in 

late June, which possibly reflects efforts by female snakes deposit lipid-based pheromone trails 

to attract males during the breeding season in the following months (Aldridge and Duvall 2002, 

Jellen and Aldridge 2014). Male movement rates increased in late June through July before 

peaking during the breeding season in August. This pattern is similar to the male mate-

searching behavior documented in other rattlesnake species (Duvall and Schuett 1997, Glaudus 

and Rodriguez-Robles 2011). All observations of mating behavior were in July through August, 

which indicates that C. ornatus on IMRS follows a unimodal reproductive pattern. Both of the 

other rattlesnake species present on IMRS also follow a unimodal pattern of reproduction 

(Mata-Silva et al 2018, DeSantis et al. 2019), and the pattern has been observed in other  
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Table 2.4: Microhabitat types, number of observations (M8:F7), and proportional use by 

Eastern Black-tailed Rattlesnakes (Crotalus ornatus) at Indio Mountains Research Station, 

Hudspeth County, Texas. 
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rattlesnake species in the southwestern United States, including C. molossus (Greene et al 2002, 

Schuett et al 2005), C. oreganus (Fitch and Gladding 1947), C. pricei (Prival et al 2002), C. 

pyrrhus (Klauber 1997, Goldberg 2000, Gartner and Reiserer 2003), C. ruber (Dugan et al 2008), 

and C. willardi (Holycross and Goldberg 2001). 

 

Table 2.5: Ground cover of microhabitats used by Eastern Black-tailed Rattlesnakes (Crotalus 

ornatus) and random sites within snake home ranges at Indio Mountains Research Station, 

Hudspeth County, Texas. Test statistic and P-values from repeated measures multivariate 

analysis of variance are included. 
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Figure 2.5: Monthly comparisons of microhabitat composition (reported as mean ± 1 SE) at sites 

used by Eastern Black-tailed Rattlesnakes (Crotalus ornatus; n = 632 observations) on Indio 

Mountains Research Station, Hudspeth County, Texas during the active season (March through 

October). 

 

2.5.2 Habitat and Microhabitat Use 

 

 I predicted that Crotalus ornatus would favor rocky habitats (rocky slopes and alluvial 

rocky slopes) at IMRS, and while rocky slope habitat was important, arroyo habitat accounted 

for a slightly higher proportion of observations. Both alluvial rocky slope and alluvial slope 

habitat were generally avoided by C. ornatus, despite being more expansive within snake home 

ranges. There was no association between availability and use of alluvial slopes and alluvial 

rocky slopes. The complete avoidance of alluvial flat habitat is likely driven by a lack of plant 
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diversity and structural complexity, which are important microhabitat features for C. ornatus on 

IMRS. Additionally, Mata-Silva et al. (2018) found that C. lepidus is also more likely to be found 

in arroyos than expected (55% of total observations), making arroyo habitat stand out as 

important to rattlesnakes at IMRS. It is assumed that habitats most often inhabited by 

rattlesnakes contain high prey densities (Beck 1995), which are associated with elevated hunting 

success. However, observations of foraging and feeding behavior were limited during this study, 

so this could not be determined as a driver of habitat selection. Other than prey presence, 

environmental factors and predator avoidance may play a role in habitat selection by 

rattlesnakes (Duvall et al. 1985, Reinert 1993). The Indio Mountains are comprised of mainly 

west facing slopes, thus C. ornatus may use arroyo and rocky slope habitats more frequently 

because the presence of ample refugia allows them to escape the extreme surface 

temperatures present on these slopes (Beck 1995).  

 Ground cover composition at used sites by C. ornatus on IMRS differed from random 

microhabitats. Vegetation and rock cover were the dominant ground cover composition at used 

microhabitats throughout the active season. Used sites also had gravel and vegetation litter as 

ground cover, but they were present in lesser proportions. My snakes were most frequently 

associated with “crevice” and “under succulent” microhabitats, with each accounting for 17% of 

total observations. After these microhabitats, “under shrub” (16%) and “under rock” (13%) 

were the most frequently used microhabitats. Most observations of male C. ornatus were 

“under succulent” (20%) or “in crevice” (16%), followed by “under rock” (14%) and “under 

shrub” (13%). Female snakes were most often observed “under shrub” (20%) and “in crevice” 

(18%), followed by “under succulent” (13%) and “under rock” (12%). It is likely that snakes were 
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able to find a wide range of climatic conditions using these refugia, allowing for proper 

thermoregulation, while concealing themselves from predators.  

 Crotalus ornatus has been reported in a variety of habitats in Texas and is most often 

thought to be associated with rocky highland habitats in areas dominated by talus slopes, rocky 

side canyons, crevices in outcrops, and rocky riparian zones (Werler and Dixon 2000, Ernst and 

Ernst 2012). These observations are consistent with those found for C. ornatus on IMRS, 

however, most of the information on C. ornatus is anecdotal in nature, because the species was 

recently revalidated by Anderson and Greenbaum (2012) and historical black-tailed rattlesnake 

research was primarily focused at sites in Arizona, making this the first detailed account on the 

spatial ecology of C. ornatus. To better inform conservation objectives, future studies on C. 

ornatus should be conducted at other study sites across the geographic range in New Mexico, 

other sites in Texas, and in Mexico. Additionally, studies with larger sample sizes and/or 

emphasizing the behavior of juvenile snakes would greatly improve our understanding of this 

species. Although it is not listed as a species of concern in Texas and has yet to be evaluated as a 

recognized species by the International Union for Conservation of Nature (IUCN), large portions 

of its habitat in the Chihuahuan Desert are under continuing pressure from anthropogenic 

alterations, such as those associated with ranching, mining, and urbanization (Curtain et al. 

2002, Hoyt 2002), in addition to the pressures of over-exploitation facing most rattlesnake 

species, such as persecution and unregulated take for events such as rattlesnake round-ups 

(Fitzgerald and Painter 2000). 
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Chapter 3: Eastern Black-tailed Rattlesnakes (Crotalus ornatus) innately discriminate among 

chemical cues from potential prey 

 

3.1: Abstract 

 

 Chemical eavesdropping is a critical tool used by organisms to gain information about 

their environment and mediate interactions with other organisms within it, such as prey gaining 

information about predators and vice versa. However, most chemical eavesdropping studies 

focus on information used by prey species, not predators. The goal of this study was to assess 

whether or not a desert ambush predator, the Eastern Black-tailed Rattlesnake (Crotalus 

ornatus), differentiates among chemical cues from potential prey items when choosing ambush 

spots. Naive neonate C. ornatus were raised in captivity and placed in an arena where they 

were presented with aquatic extracts from the integument from 10 known and suspected prey 

items and a tap water control. Their reactions to the chemical extracts were recorded, and they 

were given a tongue-flick-ambush (TFAM) score based on their predatory behavior towards the 

chemical cue. Ten naive neonate C. ornatus were put through each of the 11 trials, and based 

on TFAM scores, snakes differentiated among the chemical cues (Fdf=9, df=10 = 19.149, P < 0.001). 

Post hoc pairwise tests indicated that snakes preferred native small mammal and lizard prey 

over larger native mammals, native amphibians, native invertebrates, and non-native small 

mammals. The snakes used in this study have never been exposed to wild prey stimuli in their 

native ecosystem and have fed exclusively on non-native mammalian prey in captivity, and thus 
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their preference for native small mammals and lizards indicates an innate basis for prey 

preference in C. ornatus.  

 

3.2: Introduction 

 

 As organisms move through the environment, they leave chemical cues on the 

substrate, which can be used by prey to gain information about potential predators, and by 

predators to gain information about potential prey (Kats and Dill 1998, Burghardt 1990, Clark 

2004b). Despite being a common method for predators to locate prey, most of the research in 

this area has focused on the ability of prey species to detect potential predators (Kats and Dill 

1998, Clark 2004b).  

 Inadvertently leaving behind scent cues composed of chemicals resulting from the 

excretory process as prey animals move throughout the environment results in the unavoidable 

formation of scent trails. A variety of predators exploit these scent trails as sources of 

information about potential prey items. Most studies of chemosensory prey recognition have 

been conducted on active foraging species (Burghardt 1990, Stowe et al. 1995, Finelli et al. 

2000, Koivula and Korpimaki 2001) despite their utility for sit-and-wait predators (Downes 

1999, Roth et al. 1999a, Carroll 2000, Persons and Rypstra 2000, Clark 2004b). Because they 

seek to acquire different information when investigating scent trails, the behavior of ambush 

predators is likely to differ from that of active foragers.  
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 Ambush predators must be able to identify species-specific cues left behind in the 

environment in order to identify ambush sites that are likely to yield hunting success. Many 

species of actively foraging squamate species are born with the ability to utilize chemical cues 

to discriminate among prey species (Burghardt 1990). Typically, these studies present the snake 

with a cotton-tipped applicator impregnated with the chemical cue from a potential prey 

species, then document the tongue-flicking response and propensity to bite the applicator 

(Cooper 1998). These studies have shown that active foraging snakes and lizards demonstrate 

the ability to discriminate among different prey chemical cues, and that the preferences vary 

geographically (Arnold 1981, Clark 2004b). Preferential targeting of certain prey would be 

beneficial to species, allowing the predator to focus on prey that is abundant, susceptible to 

capture, or energy rich.  

 However, ambush predators typically do not respond when presented with scent cues 

impregnated into a cotton-tipped applicator, including most iguanian and agamid lizards 

(Cooper 1995), and viperid snakes (Chiszar and Scudder 1980). This is likely because the scents 

are not presented in an ecologically relevant manner. Snakes that are primarily ambush 

predators move widely throughout the environment searching for chemical cues, which are 

then used in ambush site selection (Greene 1992). The use of chemical cues in the location of 

ambush sites has been demonstrated in the viperid species Crotalus horridus, C. viridis, and 

Sistrurus miliarius, and in the elapid species Hoplocephalus bungaroides (Duvall et al. 1990, 

Downes 1999, Roth et al. 1999a, Theodoratus and Chiszar 2000, Clark 2004b, Holding et al. 

2016). Given the importance of chemosensory information to snakes in general, the use of 
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chemical cues exhibited by these species is probably characteristic of most snakes that are sit-

and-wait predators. 

 There have been a limited number of studies that examine the ability of an ambush 

predator to discriminate among chemical cues when selecting an ambush site, especially 

regarding crotaline study species. With this study, I demonstrated that neonate Crotalus 

ornatus innately discriminate among environmental chemical cues when selecting ambush 

sites. Based on the limited information available on the diet of C. ornatus, I predicted that they 

will show preference for native small mammals, such as Dipodomys merriami, Chaetodipus 

intermedius, and Peromyscus eremicus, over native invertebrates (Scolopendra heros), 

amphibians (Anaxyrus punctatus), lizards (Cophosaurus texanus) and larger small mammals 

(Neotoma leucodon, Sigmodon hispidus, and Ammospermophilus interpres), and over non-

native mammal prey (Mus musculus). 

 

3.3: Methods 

 

 For this experiment, I obtained 10 neonate Crotalus ornatus born in the laboratory 

between July 2017 and August 2018 to four wild-caught females that were part of an ongoing 

radiotelemetry study being conducted at the Indio Mountains Research Station (IMRS) in 

Hudspeth County, Texas. The experiment was conducted between May 2019 and February 

2020. The snakes were maintained in the IMRS laboratory space and were kept with their 

mother until they underwent their natal shed, after which, they were housed individually in 



44 
 

appropriately sized latching tubs with a hide area, heat mat on one end of the tub, and a water 

dish. They were maintained at 21–26°C under a 12L:12D light cycle. The experimental 

methodology of this research follows that introduced by Clark (2004b). 

 Each of the 10 experimental subjects were tested once each on a series of aqueous 

extracts from the integument of 8 vertebrate and 1 invertebrate species, in addition to being 

presented with a tap water control. The aqueous extracts were prepared by placing a living, 

intact animal into a water bath in the proportion of 1 ml water per gram of body mass for 10 

minutes. Immediately following the water bath, extracts were separated into 10 ml units, and 

frozen until use.  

 Extracts were made from Scolopendra heros (Giant Desert Centipede), Anaxyrus 

punctatus (Red-spotted Toad), Cophosaurus texanus (Greater Earless Lizard), Chaetodipus 

intermedius (Rock Pocket Mouse), Dipodomys merriami (Merriam’s Kangaroo Rat), Neotoma 

leucodon (White-throated Woodrat), Sigmodon hispidus (Hispid Cotton Rat), 

Ammospermophilus interpres (Texas Antelope Squirrel), Peromyscus eremicus (Cactus mouse), 

and Mus musculus (House Mouse). All of the animals used to make the extracts were wild 

caught, except for M. musculus, which was captive bred. Species were chosen because they 1) 

have been documented in the natural diet of C. ornatus (C. intermedius, D. merriami, N. 

leucodon, and P. eremicus), 2) have not been documented in the diet of C. ornatus, but have 

been documented in the diet of other desert dwelling rattlesnake species (S. heros, A. 

punctatus, C. texanus, S. hispidus, and A. interpres), and 3) a species not sympatric with C. 

ornatus, but closely related to natural prey (M. musculus). 
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 For the experimental trials, snakes were placed in an open topped wooden enclosure 

(61 x 61 x 122 cm), lined with clean construction paper and containing a hide area, water dish, 

and 2 wooden blocks (4 x 7 x 20 cm; Fig. 3.1). Snakes were allowed to acclimate for 1 day prior 

to each trial. Clark (2004b) allowed snakes to acclimate for 3 days, but I conducted a pilot study 

indicating that 1 day was sufficient for C. ornatus. To begin each test, the wooden blocks were 

removed, and paper towels placed on each one. One paper towel, selected at random, was 

soaked in 10 ml of extract, while the other was soaked in 10 ml of tap water. Both wooden 

blocks were replaced in the enclosure and snakes were allowed to respond to the extracts for 2 

hours, after which the paper towels were removed, and the trial ended. When placed back into 

the enclosure, the wooden blocks were situated approximately equidistant from the subject. 

This method of presenting artificial chemical trails allows for the presentation of similar 

chemical cues from a broad range of species. Clark (2004b) found that snakes exhibited similar 

responses to chemical extracts made from aqueous extracts and more naturalistic trails created 

by allowing a potential prey item to run across the substrate surface several times. 

 Each of the subjects was tested in a different random ordering of the 10 conditions (9 

experimental and 1 control) and was tested no more than twice in a 30-day period, and at least 

21 days after being fed. Individuals that were undergoing ecdysis were not tested until after the 

shed cycle was completed. During radiotelemetry, C. ornatus has been observed in ambush 

during the day and at night, so all trials were conducted during the light half of the light cycle 

and were recorded using a portable video camera for scoring purposes. 

 Videos were coded and scored blindly. Clark (2004b) outlines the procedure used for 

scoring the videos. The first encounter with the chemical extract was defined as the time from 
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the initial encounter to the time that the snake removed its head from contact with the 

chemical extract for 60 seconds. The head of the snake did not have to contact the chemical 

extract for the entirety of the initial encounter as long as it was not out of contact for more 

than 60 seconds. I recorded the latency to encounter the chemical extract and the number of 

tongue-flicks that the snake delivered to the chemical extract during the encounter, where a 

tongue-flick was counted only if the tongue directly contacted the scent trail or was directly 

above the paper towel containing the extract. It was noted whether or not the snake adopted 

the stereotyped ambush posture response after contacting the chemical extract (Reinert et al. 

1984). This response is a stereotyped and readily apparent behavior, with the snake assuming a 

tight coil adjacent to the chemical extract, with the head and neck oriented towards the scent 

trail in a ready-to-strike position. To quantify this behavior, an ambush posture was defined as 

the snake not moving, with the head and anterior one third of its body in a recoiled position, 

oriented toward and within 15 cm of the chemical extract, adopted within 2 minutes of tongue 

flicking the chemical trail, and maintained for at least 5 minutes (Clark 2004b). In most cases, 

ambush posture was maintained for the remainder of the trial once initially adopted. 

 For statistical analysis, I used the modified scoring system for snakes that are ambush 

predators proposed by Clark (2004b), in which he modified the widely used scoring system 

initially suggested by Cooper and Burghardt (1990) for active foraging snakes. The method 

produces a tongue-flick-ambush score (TFAM), where TFmax is the maximum number of tongue 

flicks emitted during the initial encounter of the chemical extract by any individual in any trial, 

TL is the trial length in minutes, and latency is the latency in minutes to adopt the ambush 

posture toward the chemical extract: 
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TFAM = TFmax + (TL – latency) 

This composite measure assumes that an ambush posture indicates a stronger response to the 

chemical extract than any number of tongue flicks, and that the latency to ambush posture 

decreases with increasing response to the chemical stimulus.  

 The responses of the subjects were tested for normality and compared with a 

randomized block analysis of variance (ANOVA), with snake identity as the blocking factor and 

Tukey’s a posteriori test for pairwise comparisons (Program R v3.6.3, R Core Team 2020). 

 

Figure 3.1: Overhead photograph showing the configuration of the 61 x 61 x 121 cm 

construction paper lined arena in which trials were conducted, with hide area and water dish 
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(bottom), the two wooden blocks (one with a paper towel soaked with a scent cue and the 

other paper towel with tap water), and a neonate Crotalus ornatus in ambush position during a 

trial. 

 

3.4: Results 

 

 During trials, snakes exhibited the strongest tongue-flicking responses to chemical cues 

from Chaetodipus intermedius, Peromyscus eremicus, and Dipodomys merriami, whereas the 

weakest tongue-flicking rates occurred when presented with the tap water control (Table 3.1). 

Ambush posture was adopted at least once to all chemical cues, except for the tap water 

control, and was adopted most frequently to the chemical cues for C. intermedius (80% of trials) 

and P. eremicus (60% of trials; Table 3.1). Higher tongue-flicking rates and more assumptions of 

ambush posture were correlated with higher TFAM scores (Table 3.1).  

 The randomized block ANOVA used to compare average TFAM scores shows that snakes 

differentiated between treatments (Fdf=9, df=10 = 19.149, P < 0.001; Fig. 3.1). Tukey’s test for 

pairwise post hoc comparisons revealed that snake responses were stronger to chemical cues 

from C. intermedius, P. eremicus, D. merriami, Cophosaurus texanus, and Neotoma leucodon 

than to the tap water control, and chemical cues from Scolopendra heros, Anaxyrus punctatus, 

Sigmodon hispidus, Ammospermophilus interpres, and Mus musculus were similar to the tap 

water control. In general, the response to chemical cues from native small mammal and lizard 

prey was stronger than that to native invertebrate and amphibian prey, and non-native small 
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mammal prey, with the exceptions being the weaker responses shown to S. hispidus and A. 

interpres chemical cues (Table 3.2). 

Table 3.1: Tongue-flicks, length of encounter, latency to encounter, ambush postures assumed 

and tongue-flick-ambush scores (TFAM) by naive neonate Crotalus ornatus in response to 

chemical cues from potential prey items. 

 

 

3.5: Discussion 

 

 The results of this study demonstrate that Crotalus ornatus utilize chemical cues left in 

the environment by prey species when identifying suitable spots for ambush sites. Vipers are 

most often characterized as sit-and-wait predators. However, Greene (1992) reviewed field 

observations of venomous snakes, and found that, guided by chemosensory cues, they often 
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travel long distances until reaching a site where prey is abundant. Often, the snakes remain at 

these areas with concentrated prey for the remainder of the active season. He defined this 

technique as “mobile ambushing.” Another species of rattlesnake, C. viridis, is known to adopt 

ambush coils more readily when soiled bedding from potential prey is nearby (Duvall et al. 

1990) and will more readily adopt ambush coils facing natural chemical trails left by the mice 

themselves (Theodoratus and Chiszar 2000). Additionally, Roth et al. (1999) found that free-

ranging Sistrurus miliarus were attracted to transects that had been treated with aqueous 

washes from preferred prey items. 

 

 

Figure 3.2: Mean tongue-flick-ambush scores (TFAM) by naive neonate Crotalus ornatus to 

chemical cues from potential prey items (Fdf=9, df=10 = 19.149, P < 0.001). 
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Table 3.2: Representative P-values of post hoc pairwise comparisons of tongue-flick-ambush 

scores (TFAM) using Tukey’s Test by naive neonate Crotalus ornatus in response to chemical 

cues from potential prey items (SCHE = Scolopendra heros, ANPU = Anaxyrus punctatus, COTE = 

Cophosaurus texanus, CHIN = Chaetodipus intermedius, DIME = Dipodomys merriami, NELE = 

Neotoma leucodon, SIHI = Sigmodon hispidus, AMIN = Ammospermophilus interpres, PEER = 

Peromyscus eremicus, MUMU = Mus musculus). 

  

 Although there is limited information available on the natural diet of C. ornatus, the 

results of this study parallel the published information. As predicted, snakes in this study 

showed a strong preference for native small mammal and lizard prey, notably for the small 

mammal species Chaetodipus intermedius, Peromyscus eremicus, and Dipodomys merriami. 

Likewise, when examining the stomach contents of individual C. ornatus in Chihuahua, Mexico, 

Reynolds and Scott (1982) found C. intermedius (25%), P. eremicus (16.7%), and D. merriami 
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(16.7%) to be the most frequently ingested prey items. Additionally, they found a large number 

of birds (16.7%) in the stomachs of C. ornatus, which were mostly ground-nesting species 

(Odontophoridae). Avian scent cues were not used as a part of this study but provide an 

interesting avenue for future research. Although published literature indicates a strong 

preference for native small mammal and avian prey, it is also likely that young C. ornatus feed 

on native lizards, as they are the right size and shape for a young individual to ingest with ease, 

and are abundant in the desert ecosystems inhabited by this species (Werler and Dixon 2000). 

This would explain the strong response to the Cophosaurus texanus scent cue in this study, 

which I did not predict prior to the experimental trials. Additional research in this area would be 

to repeat the experiment with different size classes of snakes to determine if any ontogenetic 

shifts in prey preference occur. Continuing annual trials on the same individual snakes used in 

this study would also demonstrate this shift in the absence of learning in a wild setting. Also, 

this study was conducted under diurnal conditions, whereas during radiotelemetry, C. ornatus 

was observed in ambush both diurnally and nocturnally, thus examining if any potential shifts in 

preference occur under nocturnal conditions would be informative. 

 This study also provides evidence that prey preference in C. ornatus is likely an innate, 

genetically determined characteristic. The individuals used in this study were captive raised for 

1 to over 2 years exclusively on a diet of the non-native mammalian species Mus musculus, and 

still showed no detectable difference in preference between the familiar M. musculus prey cue 

and the tap water control. They were born in captivity to wild caught mothers, so they also 

never had the chance to learn to target native prey species in a wild setting. Holding et al. 

(2016) found similar results when comparing S. miliarus raised for 5 years on native lizard prey 
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to those raised for 5 years on non-native mammalian prey. However, their study involved a 

rattlesnake species from a different genus than presented here, and there was a much wider 

taxonomic breadth between the native lizard prey and the non-native mammalian prey 

presented to their animals. The results here suggest a fine-tuned ability to innately differentiate 

between chemical cues from potential prey species belonging to the same taxonomic class by C. 

ornatus.  

In snakes, prey preference has been used as a trait to examine both the adaptive genetic 

divergence in behavior (Arnold 1981, Drummond and Burghardt 1983, Aubret et al. 2006) and 

the contexts under which phenotypic plasticity occurs as the result of experience (Clark 2004a, 

Aubret et al. 2006, Waters and Burghardt 2013). Diet exposure periods ranging from 1 week to 

1 year have shown evidence for phenotypic plasticity (Fuchs and Burghardt 1971) and genetic 

determination for prey preference (Burghardt and Hess 1968, Arnold 1977, Arnold 1981). 

Further research into this system could potentially provide both micro- and macroevolutionary 

perspectives on what determines variation in prey preference (Holding et al. 2016). Using 

comparative phylogenetic analyses could establish the plasticity of prey preference over 

evolutionary time, including identifying any broad ecological similarities of prey preference 

characteristics within lineages of snakes (Cooper 2008). Additionally, if paired with local 

estimates of prey availability and gene flow, population-level comparisons on the variation of 

prey preference within species would elucidate how geographic variation in selection dictates 

the evolution of plasticity (Arnold 1981, Golmulkiewicz et al. 2007). 
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Appendix 

Ethics statement: 

All methods were carried out in accordance with relevant guidelines and regulations, and all 

research protocols were approved for the entire study period by the University of Texas at El 

Paso Animal Care and Use Committee (Protocols: A-201405-1 and A-201806-1) and Texas Parks 

and Wildlife (Scientific Permit Number SPR-0290-019). 

 

R Code for Multinomial Logit Models for Habitat Use: 

 

Chapter 2 

 

#Multinomial Logit Models 

> summary(dat) 

> dat$H2=relevel(dat$Habitat,ref="Arroyo") 

> dat$Season2=relevel(dat$Season,ref="Summer") 

> m0=multinom(H2~A,data=dat) 

> summary(m0) 

> z=summary(m0)$coefficients/summary(m0)$standard.errors 
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> (p=(1-pnorm(abs(z)))*2) 

#mlogit version 

> m1=multinom(H2~A+ID+Season2,data=dat) 

> stargazer(m1,type="text",out="m1.rtf") 

> z=summary(m1)$coefficients/summary(m1)$standard.errors 

> (p=(1-pnorm(abs(z)))*2) 

> names(dat) 

> table(dat$H2) 

> dat2=mlogit.data(dat,choice="H2",alt.levels=levels(dat$H2),shape="wide",id="ID") 

> dat2$A=as.numeric(dat2$A) 

> dat2$A2=as.numeric(dat2$A*100) 

> summary(dat2$A2) 

> ml.0=mlogit(H2 ~  0 | A2 | 0, panel=FALSE,  data = dat2) 

> summary(ml.0) 

> exp(coef(ml.0)) 

> cl.mlogit(fm=ml.0,dat$ID) 
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> pnames=names(ml.0$coefficients) 

> rparArg=rep('n',length(pnames)) 

> names(rparArg)=pnames 

> ml.1=mlogit(H2 ~ 0|A2|0,rpar=rparArg,panel=TRUE,data = dat2) 

> summary(ml.1) 

> cl.mlogit(ml.1,dat$ID) 

> ml.2=mlogit(H2 ~ 0|A2|0,rpar=rparArg[1:4],panel=TRUE,data = dat2) 

> summary(ml.2) 

> cl.mlogit(ml.2,dat$ID) 

> lrtest(ml.0,ml.1,ml.2) 

> scoretest(ml.1,ml.2) 

#include residuals 

>pnames=names(ml.0$coefficients) 

>rparArg=rep('n',length(pnames)) 

>names(rparArg)=pnames 

#random slopes and intercepts 

>ml.1=mlogit(H2 ~ 0|A2|0,rpar=rparArg,panel=TRUE,data = dat2) 
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>summary(ml.1) 

>cl.mlogit(ml.1,dat$ID) 

#random intercepts 

>ml.2=mlogit(H2 ~ 0|A2|0,rpar=rparArg[1:4],panel=TRUE,data = dat2) 

>summary(ml.2) 

>cl.mlogit(ml.2,dat$ID) 

#other multinom mods 

>m1=multinom(H2~A+ID+Season2,data=dat) 

# weights:  25 (16 variable) 

>summary(m1) 

>stargazer(m1,type="text",out="m1.rtf") 

>z=summary(m1)$coefficients/summary(m1)$standard.errors 

>(p=(1-pnorm(abs(z)))*2) 

#odds-ratios for best fitting model 

> exp(coef(ml.1)) 
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Image of Crotalus ornatus subjected to radiotelemtry at Indio Mountains Research Station: 

  



87 
 

Vita 

James D. Emerson earned his B.S. in Wildlife Biology from West Texas A&M University 

(WTAMU) in 2010. He conducted research on snake communities in the Texas Panhandle while 

serving as a teaching assistant and mentoring undergraduates in wildlife biology at WTAMU 

from 2010–2013. James was an active member of The WTAMU Student Chapter of the Wildlife 

Society as an undergraduate and graduate student. He was also involved in public outreach 

during this time, presenting educational programs on native wildlife, herpetofauna, and 

biodiversity at local schools and youth organizations. During the summer of 2013, he initiated a 

project to examine the impacts of mineral development on native herpetofauna, including 4 

state threatened species for the Texas Parks and Wildlife Department at the Chaparral Wildlife 

Management Area. Directly following that, he enrolled at UTEP to begin his Ph.D. in August 

2013. While at UTEP, he was an assistant instructor for the department of biological sciences 

from 2013–2019, during which he mentored undergraduate students in order to get them 

experience biology and field biology. He received the Texas Public Educational Grant (2016–

2018), the UTEP Grant for Graduate Students (2017–2018), the UTEP Summer Grant for 

Graduate Students (2019) and was awarded the Graduate Excellence Fellowship from 2019–

2020. He has been first author or co-author on 16 presentations at professional conferences. 

James is currently a member of The Southwestern Association of Naturalists, The 

Herpetologists League, and The Wildlife Society. James’ research interests broadly include the 

behavioral ecology, conservation biology, community dynamics, and natural history of reptiles 

and amphibians.  

This dissertation was typed by James David Emerson. 


	Behavioral Ecology Of A Desert Ambush Predator: Assessing Movement Patterns, Habitat And Microhabitat Use, And The Innate Feeding Response Of Eastern Black-Tailed Rattlesnakes (Crotalus ornatus) In The Northern Chihuahuan Desert
	Recommended Citation

	tmp.1592933762.pdf.QzsbJ

