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Abstract

Identifying location mentions in speech is important for many information retrieval and

information extraction tasks; here I explore the use of prosody for location spotting. While

previous work has explored the use of prosody for spotting named entities, including loca-

tions, the specific value of prosody for finding locations in spontaneous speech has not been

measured. Using the Switchboard corpus and LSTM modeling I obtain results indicating

that prosody is useful in spotting location mentions. Further, I identify specific prosodic

features that tend to mark locations in American English.
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Chapter 1

Introduction

1.1 The Problem

Location spotting is of practical importance for many tasks, including information retrieval,

information extraction, question answering, summarization and translation. For example,

there is a practical motivation in finding mentions of occuring disasters and the location

at which the disaster took place in radio broadcasts [22]. Location finding is important

to machine translation. For example, in a rule-based approach to machine translation, if

you spot a set of words to be a location, then rules specific to locations can be applied.

For the purpose of summarization, spotting locations and adding them to the summary is

important because locations tend to carry a lot of semantic information.

Besides being of practical importance, locations are convenient for a study of semantic-

class prosody for two reasons. First, locations are a well-defined semantic category, and

thus suitable for a big-data study. Second, location mentions can occur in any language,

so it is a suitable topic for cross-language investigation. Languages having shared prosodic

patterns in the cross-language investigation I conduct would allow for location spotting in

languages with similar prosodic patterns.

1.2 The State of the Art and Its Limitations

For speech, the usual method for location spotting is to use a speech recognizer and a

gazetteer. A speech recognizer will turn speech to text, and the gazetteer (a list of locations)

will tell you if the word is a location.
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The usual method of using a speech recognizer and a gazetteer is not always applicable

and effective. First, for many low-resource languages there are no good recognizers, or

no recognizers at all [4]. Second, the gazetteer may be missing locations, such as lesser

known locations like rivers or mountains not included in the gazetteer. Third, even when

good speech recognizers exist, many locations will be out-of-vocabulary, making the speech

recognizer unable to find the location. Even without speech recognition, it can be useful

to identify likely location mentions, either to send them to a human for transcription and

lookup, or for special processing. For example, since location names tend to be pronounced

similarly across languages —for example Texas in English and Tekisasu in Japanese—

cross-language speech recognizers using acoustic models trained on other languages [25],

and gazetteers in other languages may be effective.

1.3 Proposed Technique: Prosody

Prosody includes the intonation, rhythm, and stress of how something was said. I hypoth-

esize that prosody will be a useful alternative to using a speech recognizer because words

of different classes and with different functions may have different typical prosodic forms,

which could apply to locations. Previous work has examined such tendencies, but generally

regarding either specific words, or with respect to broad lexical categories such as content

words, fillers, and backchannels. In this work, I instead investigate the prosodic aspects of

a specific semantic category: locations.

With a prosody-based algorithm, you may have the advantage of being able to find

locations in a way that does not require you to supply a list of locations. Using prosody

to get locations will exploit you information on how something was said instead of what

was said. Because both speech recognizer and prosody methods can fail at times, it may

be important to have both methods to have an increased confidence.

For these reasons I am interested in ways to find locations without use of speech recog-

nition. Casual observation suggests that across languages, introductory mentions of new

2



entities, including locations, may share common prosodic features, such as late pitch peak.

To the extent that locations are mentioned in certain specific contexts and associated with

certain specific pragmatic functions, for example, introducing new topics or grounding, it

makes sense that certain specific prosodic patterns may co-occur. Thus it may be possible

to identify such general patterns, and then leverage this information across languages.
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Chapter 2

Related Work

In this chapter, I survey related work on spotting named entities. I also define important

terminology.

2.1 Semantic Classes

Words can be put into two semantic categories: being a content word or a function word.

Content words carry semantic information with them; some examples of content words

are nouns, verbs, adjectives, and most adverbs. Functional words have a functional role

with little semantic information. They are very common in speech, and examples include

articles, prepositions, pronouns, auxiliary verbs, and conjunctions. A named entity (NE)

is a subset of content words, and is a real-world object that can be denoted with a proper

name. Examples include person names, organizations, and locations. All named entities

are content words, while a non-NE could be a content word or a function word. Spotting

NEs is vital to speech understanding since they carry a lot of semantic information. There

are three research papers most relevant to my work. Similarly, they investigate speech

using prosody, but in contrast, they look into spotting NEs.

Distinguishing between content words and function words is an easier task than distin-

guishing between NE and non-NEs. This is because function words tend to have different

prosody, for example, tending to be shorter in length. Since all NEs are content words, if

you achieve a better than random chance at classifying content words from function words,

then you will get some value for the task of classifying NEs from non-NEs. A more difficult

task is to distinguish between NE and non-NE content words, as success in this task shows
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the ability to do more than just being able to tell content and function words apart.

2.2 Spotting Named Entities using Prosody

The prosodic properties of words and word classes have been studied in many ways. For

example, Lai showed the utility of prosody for spotting important words to include in

summaries [12]. Word-characteristic prosodic patterns and contextual prosodic tendencies

have also been exploited in language models [23, 7, 16]. More specifically relevant to

locations are studies of the value of prosodic information for named entity recognition.

Hakkani-Tur and colleagues did the first study of NE recognition using prosody in 1999

[9], motivated by the idea that name mentions would generally have “prominent” prosody.

For broadcast news, they reported only a modest performance benefit when adding prosody

to their entity tagger that used lexical information. In the study, they achieved a 69%

accuracy in distinguishing between NE and non-NE on a balanced dataset using a hidden

Markov model with only prosody. Removing function words from non-NE words showed

that the high accuracy was likely achieved from being able to distinguish content words

from function words. They noticed that the first mentions of named entities had more

“prominent” prosody so they tried training a model with only first mentions, but they did

not get better results from this model.

Rangarajan and Narayanan [14] obtained good results in 2006 by using prosody to detect

non-native person names by using a support vector machine. They were able to distinguish

non-native person names from content words that are non-NEs with an accuracy of 76% in

a balanced dataset. This was the first study that showed it possible to differentiate content

words from a NE type (non-native person names). Despite their good results, their task

was made much easier because the inputs were read speech, word boundaries were given,

all input sentences contained exactly one person mention, and all person names were from

a non-English language, but embedded in an English sentence.

Work by Katerenchuk and Rosenberg [11] in 2014 showed that acoustic (prosodic) cues
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can help detect NEs when used in combination with a speech recognizer. They trained their

speech recognizer on 78 hours of the English Wall Street Journal corpus. They mention

that commercial systems are trained with orders of magnitude more speech data. Using

five hours of CNN broadcast news as their test dataset, the speech recognizer got a word

error rate of 49% on the dataset, and an F1 measure of 39% for recognizing NEs. After

incorporating prosodic features, the F1 measure increased to 45%. They showed that in

ASR systems that are deployed rapidly and/or with limited resources, prosody is able to

help in detecting NEs.

Thus previous work has not shown whether prosody is useful for more than just enabling

a general discrimination between content and function words nor whether prosody is useful

for discriminating location mentions from NEs in general.
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Chapter 3

Task

This chapter presents my formalization of the task, the corpus chosen for analysis, and the

prosodic features selected.

3.1 Problem Description

My hypothesis is that prosody is informative for spotting location mentions. I formalize the

task as one of identifying places in speech where locations are likely being said. Classical

formulations of the task of named entity recognition assume that transcripts are available

and exact word boundaries are given [1], which is not realistic in general. Instead, I formu-

late the task as one of identifying speech frames that have location mentions. Specifically, I

aim to classify each fifty-millisecond frame of audio as including part of a location mention

(one) or not (zero). In real-world applications, such labels would probably be smoothed

or otherwise post-processed, however this task formulation is adequate for my aim here,

namely, to evaluate the pure ability of prosody to discriminate location mentions from all

other speech regions.

3.2 Data

3.2.1 Switchboard corpus

I used the Switchboard corpus of American English telephone conversations, as this is large

(around two hundred hours) and fully transcribed with exact word boundaries [8, 5]. The
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corpus consists of two-sided telephone conversations. For each conversation the speakers

are given a topic of discussion, and there were about seventy different topics given.

Models were trained with 1290 conversations, each about five to ten minutes long, in

total about 124 hours of data, and tested with about 26 hours of data.

3.2.2 SpaCy tagging

Location mentions are however not labeled in the transcripts. To find locations from the

transcripts, I used spaCy[10], a natural language processing library. SpaCy has multiple

downloadable neural network models that identify named entity types from text. I applied

spaCy to the transcripts and noted which words it classified as geopolitical entity (GPE) or

location (LOC). Across all the data spaCy found 9673 location mentions. These locations

as output by the spaCy model were not exact. For example, the word Dallas in the Dallas

Cowboys was tagged as a location mention. Although the word Dallas by itself is a location,

with the context of the surrounding words, it is not a location but part of the team name,

which is a named entity that is an organization. However, depending on the intended

purpose [13], spotting the word Dallas in this context as a location could still be useful.

To judge whether the spaCy-generated tags would be adequate to support my experi-

ments, I did a small evaluation, in two parts. First, I hand-labeled the first one hundred

location mentions in sixteen Switchboard conversations. Of these, eighty-six were tagged

as locations, thus the recall was 86%. Of the fourteen locations that were misclassified,

spaCy classified five of them as person names and five as organizations. The other four

misclassifications were because the locations were mispelled in the transcripts, there were

mentions of Ruidoso being mispelled as “Riodosa”, the other mispelling was of LA (Los

Angeles) being written as “L A”. Second, in a sample of ninety-eight words tagged as loca-

tions by spaCy, I found twelve false positives, so the precision was 88%. Of the twelve false

positives, four were mentions of a cat breed, four were organizations, two were sport teams,

one was a car name, and the other was a person name. The F1-measure was 87%, thus

the labels were only slightly noisy, so I chose to use them uncorrected, both for purposes
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of training and evaluation.

3.3 Prosodic Features

I experimented with two models: linear regression, because it is easy to analyze what it

learns, and a Long Short Term Memory (LSTM) model, because it can learn temporal

patterns and has demonstrated good performance in numerous speech processing tasks

[20]. For the two models, described below, different featuresets were used.

The code for computing the prosodic features for both models is available open-source

in the Mid-Level Prosodic Feature Toolkit [17].

3.3.1 Linear regression features

For the linear regression model, I use a wide set of prosodic and associated features, in-

cluding not only track-normalized pitch, intensity, and duration, but also energy flux and

measures of the degree of creaky voice, lengthening, disalignment between intensity and

pitch peaks, and the voiced/unvoiced intensity ratio. These were designed to be robust, as

is necessary for spontaneous speech in general, and especially for Switchboard, given its var-

ied audio quality [18]. Like other feature sets [6], this feature set has been shown in previous

work to be informative regarding many semantic and pragmatic functions [18, 24, 19, 21].

Thinking that indications of location mention may be found not only on the word itself or

its immediate neighbors, I used prosodic features spanning a wide context, extending 3200

milliseconds before and after the frame to be classified. Thinking that the behavior of the

interlocutor may also be informative, I used prosodic features for both speakers. I computed

features over fixed-length windows, without concern for alignment to word, utterance, or

syllable boundaries, as we cannot in general assume that these will be available.

9



3.3.2 LSTM features

For the LSTM models I used a reduced feature set, since LSTMs are in general able to

learn temporal patterns, such as the dynamics of and relations among pitch and intensity.

LSTMs have been shown to require only a few frame-level prosodic features to achieve

good results [15]. For the LSTM, I accordingly used only five features per speaker, each

computed frame-by-frame, namely absolute pitch, z-normalized pitch, voicing, energy, and

cepstral flux (as an indicator for both speaking rate and phonetic reduction). Each frame

in the audio thus had ten (five + five) prosodic features.

10



Chapter 4

Training and Evaluation

In this chapter, I give details on the models I built, and describe the evaluation metrics.

For evaluation, I compare the models, further analyze the LSTM model, run a t-test to

find if the model is location specific, and I test across languages and genres.

4.1 Training and Testing

For both models, 15% of the data was used for testing, 15% for dev, and the rest was used

as training data. Since the predictions given by the models are continuous-valued, they

were converted to binary by using a threshold. The threshold was set to the value that

gave the highest performance on the dev dataset by the F1-measure. This threshold was

then used when processing the test set for evaluation.

4.1.1 Linear regression model

Location mentions are not that common: only one in 256 frames have locations in this data.

To enable learning in linear regression, I accordingly downsampled to have equal numbers

of positive and negative examples. Specifically, all frames that had a location mention are

used, and the negative frames were selected randomly from places where there is speech

but no location mention.

Linear regression is trained with the computed prosodic features and the binary labels

as targets. For evaluation, the predictions are converted to binary by thresholding.

11



Table 4.1: Model comparison on balanced datasets

Linear Regression LSTM

Threshold 0.329 0.033

Precision 53.2% 53.2%

Recall 95.0% 94.5%

F1-measure 68.2% 68.1%

4.1.2 LSTM model

Because LSTM models require sequence data, I prepared the training data differently.

Still wanting to reduce the preponderance of negative frames, I selected for training only

sequences with at least one location mention. To minimize the imbalance, these should

be short, but to give the LSTM adequate context, they should be long. I chose as a

compromise a sequence length of ten seconds. These training sequences were selected to be

non-overlapping. Sequences of ten seconds without any location mentions were excluded

from training. This gave a positive:negative ratio of 1:14, which I felt was acceptable for

training.

In training, the sequences of prosodic features were fed to the model together with the

label sequences, of zero or one for every frame. The neural network was bidirectional,

so the output could depend on both the left context (past), and right context (future)

information. Based on informal experimentation on the training and dev sets, I chose

a network architecture with four hidden layers of sixteen, eight, eight, and four units

respectively, each a bidirectional LSTM layer. After the LSTM layers, there was a simple

dense feedforward layer. The input layer was the prosodic features and the output was the

location likelihood estimate. Cross-entropy was used as the loss function. L2 regularization

of 0.0001 was used. The code to train and evaluate the model is available on GitHub 1.

1https://github.com/gcervantes8/location-spotting-using-prosody
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Table 4.2: LSTM models compared with baselines

Random Speaking Content-Word LSTM

Baseline Baseline Baseline Model

Precision 7.2% 10.9% 16.5% 18.9%

Recall 43.2% 49.1% 49.9% 43.2%

F1-measure 12.5% 17.8% 24.8% 26.3%

4.2 Results

4.2.1 Comparison of models

Table 4.1 compares the performance of the linear regression and LSTM models. Both

were evaluated on evenly balanced data, and non-speech frames were excluded. However

the data was not exactly the same: the non-speech frames were different as they were

randomly selected with a different random seed, and in different ways, as follows. For

the linear regression model, I downsampled the negative frames, as described above. The

LSTM model had to be tested on ten-second segments, for which it made a prediction for

each frame, but before computing precision and recall I downsampled the negative-class

frames so that the data was balanced in this case also.

Both models have higher precision than baseline (0.50). The linear regression model

performs just slightly better than the LSTM model.

4.2.2 Comparison to baselines

To better understand the level of performance for the LSTM, I made three baselines as

shown in Table 4.2.

For the random baseline, the baseline predicted randomly at all time-points since I

wanted to find out if the model was doing better than a näıve model.

In the speaking baseline, I wanted to find out how a baseline would perform if the model

13



had knowledge of whether the user is speaking or not. This baseline predicts randomly

only when the user is speaking, as determined from the transcripts. This baseline perfectly

distinguishes speech timepoints from nonspeech timepoints since it uses the transcripts to

know when speech is being said.

The content word baseline used transcripts to be able to identify whether a content

word or a function word was being said. Similar to the speaking baseline, when they were

not speaking, the model predicted there was no location. If the word was a function word,

then the baseline predicted those times also as non-locations. A function word is used to

express grammatical relationships and cannot be a location mention. I defined them to be

the words on the NLTK stoplist. Thus this baseline only predicted randomly when there

were content words, according to the transcript, and predicted false otherwise.

For all baselines, the random predictions were done using an actual random number gen-

erator predicting either zero or one, then the precision and recall were computed. (However

a random number generator was not needed, because expected precision and recall can be

computed without it. Since the baseline predicts randomly at all timepoints where there is

a location, the recall must be 50%. The expected precision can be computed using the ratio

of number of locations to number of timepoints it will predict randomly in. For example,

since the data imbalance is one in fourteen, the random baseline will have an expected

precision of 7.1%.)

The results shown in Table 4.2 show that the LSTM outperformed all three baselines.

The model was able to spot location mentions better than the baseline model which can

perfectly separate function word and content words. Thus, prosody is indeed useful in

identifying locations in spontaneous speech.

Further, to evaluate whether the interlocutor-track features were informative, I built

another LSTM model using only one track, excluding features computed from the audio

track of the other speaker. I expected better performance for the two-track model because

it might enable the LSTM to learn to correct for the cross-track bleeding present in some

conversations, and because the interlocutor’s listening behavior and responses could be

14



Table 4.3: Single track LSTM model compared with a two track model

LSTM Single-Track

Model LSTM Model

Precision 18.9% 20.1%

Recall 43.2% 38.6%

F1-measure 26.3% 26.5%

informative. However as seen in Table 4.3, the performance of this single-track model was

slightly higher, this suggests that, contrary to expectation, considering interlocutor-track

features has no benefit for performance.

4.2.3 Locations and other entities

Previous work had not specifically shown the value of prosody for identifying location

frames, rather than identifying frames with entities in general. I therefore decided to test

the hypothesis that the prediction values for frames that were locations would tend to be

higher than the prediction values for other named entities. I wrote a script to gather all

capitalized words; these were in general names of people and organizations, and I used

this set, uncorrected, as the list of entities. This worked because capitalization in the

transcriptions was used only for proper names and titles, with sentence-initial words not

capitalized. For the LSTM, I then compared the prediction values at the location frames

to those at all the other (non-location) entity frames. The means were 0.146 and 0.127,

respectively, which were significantly different by a t-test (p < 0.0001).

Thus the model outputs higher likelihoods of being a location at frames with a location

than at frames with a named entity in general. This shows that locations are prosodically

different from other named entity types, and the model is able to utilize some of these

location-specific prosodic patterns.
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Table 4.4: Precision of trained English conversation model evaluated over different
datasets

English English Spanish Japanese

News Conversation Conversation Conversation

Speaking Baseline 2.5% 0.8% 0.9% 2.0%

Content-Word Baseline 3.0% – 1.0% 4.0%

Model 9.0% 3.0% 3.0% 0.0%

4.2.4 Generality across languages and genres

As a preliminary investigation of whether the model was specific to this language and this

data set, I did some very small-scale experimentation with other data sets.

Since I did not have timestamped transcripts for any of these, the evaluation was done

in a post hoc fashion, based on examination of timepoints for which the model had high

location estimates. I started from the highest likelihood frame and worked down the list.

However, as high-estimate frames tended to be clustered in time, to get a more diverse

sampling, I excluded frames within one second of those already examined. For each data

set, I examined the top one hundred timepoints the LSTM model predicted in this way

and computed the precision.

For comparison, I annotated randomly selected points in the audio until I found one

hundred random timepoints that had non-function words. For the speech-only baseline,

laughter, music and silence timepoints were excluded. In each case, the precision was

computed by dividing the number of locations found by the number of timepoints examined.

To enable comparison, I also examined one hundred predictions for the Switchboard corpus

in the same way.

The first comparison dataset was an English news broadcast dataset: six hours of local

news broadcasts data from different stations [21]. As these had only a single audio track,

I used the single track model as seen in Table 4.3. As seen in columns 1 and 2 of Table
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4.4, there appear to be many more locations in this data, and the model appears useful for

identifying them.

The other two datasets were Spanish [3] and Japanese [2] Callhome telephone conver-

sation corpora, approximately ten and fourty-nine hours respectively. As seen in Table 4.4,

the model performed above baseline for Spanish, but below for Japanese. Though very

small scale, this result suggests that prosody of locations in English could have similarities

with those of Spanish.
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Chapter 5

Further Analysis

In this chapter I present a further analysis of the results. I analyzed instances where the

model performs the best and the worst. I also performed a feature analysis to discover

which prosodic features are important in location spotting.

5.1 Failure Analysis

Seeking to learn more about how the model works and when it fails, I looked at its per-

formance in specific cases. First, I examined false alarms. I took twenty timepoints in the

data subset described in Section 4.2.2 from among those to which the model ascribed the

highest likelihoods of being locations, but which in fact were not. Of these twenty, seven

were very close, although not precisely within a location mention, for example, within the

underlined words of: in Texas, and Dallas uh. Two of them were mentions of sports teams,

Bears and Buccaneers, which for Americans are often metonymic for cities and regions.

Two of them had a location mention but in the other track, with the name spoken by the

interlocutor.

Second, I examined twenty misses (false negatives): timepoints where there was a lo-

cation, but the model ascribed very low likelihood there. There was no evident pattern in

these misses.

Third, I examined twenty of the strongest hits, timepoints to which the model ascribed

very high likelihood of being a location, and which were in fact locations. Seven of these

occurred in questions, and in five of these the location was the last word in the question, for

example live in Richardson? and in California?. Three of the twenty were found in answers
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Figure 5.1: Prosodic features best correlating with location mentions. Width indi-
cates strength of correlation. * is the frame being judged as a location
or not

to questions, for example uh Clareen County and from Indiana. Seven of the locations were

found in truly grounded location mentions, where the speakers were stating or confirming

where they were living, rather than, for example, discussing cities or states heard about in

the news. Success across these various dialog acts suggests that the model had successfully

learned the common properties of location prosody, regardless of superimposed prosodic

patterns conveying other pragmatic functions.

5.2 Feature Analysis

To get a rough idea of how prosody was enabling detection of locations, I inspected the

coefficients of correlation of the features with the presence or absence of a location frame

(one/zero). The first finding was that the correlations were time-dependent. For example,

intensity correlated positively with upcoming frames being locations, but negatively with

recent past frames being locations. Figure 5.1 shows all features whose correlation’s ab-

solute value was greater than 0.02, ordered by time: the times are the window starts and

ends relative to the frame being classified. All correlations shown were significant (p <
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10−12). Table A.1 in the appendix has fifteen correlations of the speaker with the smallest

p-values, the full list is available on GitHub, the link can be found in section 4.1.2.

All these features were of the speaker and not of the interlocutor, as no interlocutor

features had such high correlations. In location mentions there is usually a wide pitch at

the location being said, so I was not surprised that there was a tendency to wider range of

pitch at the frame being predicted. Before the frame being predicted I saw that there was

narrow pitch around 1600 to 400 milliseconds before the location frames. I also saw there

was a faster speaking rate before the frame being said. I found higher intensity correlation

before the frame being predicted and a lower intensity after the frame.
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Chapter 6

Concluding Remarks

6.1 Significance of the Results

I have shown that prosodic information is useful for spotting location mentions, and that

this ability is somewhat location-specific, beyond any generic benefit of being able to dis-

tinguish content words from function words, and even beyond any generic ability to spot

entity mentions.

The precision, while not high, is significantly better than baseline, and likely to be

useful in larger workflows.

Based on a very small sample, the performance of an English-trained model appears

respectable also for Spanish, and within English appears to generalize to the news genre.

6.2 Future Work

Future work might explore the possible value of partly shared network training and the

presence of possible universals. Future work might also run a larger scale cross-lanuage

study with different language location spotting models to find which languages share loca-

tion mention prosodic patterns. Future work should also quantify the extent to which the

information provided by prosody is a useful (non-redundant) complement to that provided

by speech recognition, for languages for which that technology is available.
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[6] Florian Eyben, Martin Wöllmer, and Björn Schuller. OpenSmile: the Munich versa-

tile and fast open-source audio feature extractor. In Proceedings of the International

Conference on Multimedia, pages 1459–1462, 2010.

[7] Siva Reddy Gangireddy, Steve Renals, Yoshihiko Nankaku, and Akinobu Lee.

Prosodically-enhanced recurrent neural network language models. In Interspeech, 2015.

[8] John J. Godfrey, Edward C. Holliman, and Jane McDaniel. Switchboard: Telephone

speech corpus for research and development. In Proceedings of ICASSP, pages 517–520,

1992.

[9] Dilek Hakkani-Tur, Gokhan Tur, Andreas Stolcke, and Elizabeth E. Shriberg. Com-

bining words and prosody for information extraction from speech. In Proc. Eurospeech,

vol. 5, pages 1991–1994, 1999.

22



[10] Matthew Honnibal and Ines Montani. spacy 2: Natural language understanding with

bloom embeddings, convolutional neural networks and incremental parsing. To appear,

2017.

[11] Denys Katerenchuk and Andrew Rosenberg. Improving named entity recognition with

prosodic features. In Interspeech, pages 293–297, 2014.

[12] Catherine Lai and Steve Renals. Incorporating lexical and prosodic information at

different levels for meeting summarization. In Fifteenth Interspeech, pages 1875–1879,

2014.

[13] Mónica Marrero, Julián Urbano, Sonia Sánchez-Cuadrado, Jorge Morato, and
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Appendix A

Additional Information

Table A.1: Feature correlations of the speaker sorted by p-value (smallest 15)

Feature Correlation p-value

Lengthening -200 to 0 ms -0.0262 0

Narrow pitch -1600 to -800 ms 0.0267 1.55E-32

Intensity 600 to 800 ms -0.0238 4.55E-31

Speaking rate -400 to -200 ms 0.0190 1.48E-29

Intensity -600 to -400 ms 0.0227 1.61E-29

Speaking rate 400 to 800 ms -0.0184 2.77E-29

Narrow pitch -800 to -400 ms 0.0241 3.67E-29

Narrow pitch 0 to 200 ms -0.0253 3.05E-28

Lengthening 800 to 1600 ms 0.0193 3.62E-28

Intensity -300 to -200 ms 0.0264 1.92E-27

Lengthening -400 to -200 ms -0.0187 1.69E-26

Pitch lowness 400 to 800 ms 0.0191 4.85E-22

Intensity 800 to 1200 ms -0.0189 4.59E-21

Lengthening -800 to -400 ms -0.0160 1.90E-20

Intensity 400 to 600 ms -0.0182 5.22E-17
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