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Abstract 

In November 2016, a 2-D and 3-D seismic survey was performed around Old Faithful 

Geyser in the southeastern portion of the Upper Geyser Basin in Yellowstone National Park. The 

survey consisted of 521 3-component seismic receiver locations including 39 receivers on a 

~1km NE-SW trending line crossing Old Faithful Geyser. A 5.4kg sledgehammer striking a 

metal plate was our source with a dominant frequency of ~40Hz. Our 2-D line crosses Old 

Faithful in a NE-SW direction with station spacing at 25-30m with ~100m spacing on either side 

of Old Faithful and a total length of 1024m. Our 3-D seismic grid is an array of 521 receivers 

and 343 shots covering an area of ~4km2 with an average station spacing of 22m. We create 

tomographic profiles and velocity models in 2-D to visualize the subsurface structure 

surrounding Old Faithful in an attempt to visualize the main reservoir body of OFG. We recover 

a low velocity anomaly SW of Old Faithful which may be a reservoir feeding into the plumbing 

system. Our receivers were deployed at any given location for at least 1 or 2 days making this 

data set viable for passive source modeling as well. We explore the effectiveness of using the 

H/V ratio to study the subsurface at Old Faithful. This study provides new insight into the 

subsurface structure of Old Faithful Geyser and the southern portion of The Upper Geyser Basin. 
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Seismic Modeling of Old Faithful Geyser 

Introduction  

The Yellowstone hotspot is the volcanic hotspot responsible for large scale volcanism 

that created the 0.63 Ma Yellowstone Caldera and hydrothermal features observed in 

northwestern Wyoming, USA (Figure 1) (Huang et al., 2015; Farrell, et al., 2014; Smith et al., 

2009). The mantle plume generates melts at depths of ~60km which rise buoyantly and 

eventually heat hydrothermal fluids that rise through steeply dipping faults at ~5km to shallow 

reservoirs (Foley et al., 2014; Huang et al., 2015). Geysers are formed when the unique 

combination of subsurface cracks and hydrothermal fluids create a system to expel groundwater 

at the surface (Ardid et al., 2019). The Yellowstone hotspot has created the largest concentration 

of geysers on Earth. Within Yellowstone National Park, the Upper Geyser Basin (UGB) hosts the 

park’s highest concentration of hydrothermal features as well as one of the largest subsurface 

hydrothermal systems (Foley et al., 2014). This study is being conducted to better understand the 

hydrothermal plumbing system beneath Old Faithful Geyser (OFG) and constrain a proposed 

relatively large reservoir body SW of OFG (Wu et al., 2017) using a shallow active source 

seismic refraction study. Old Faithful is located adjacent to historic park infrastructure, and part 

of the goal of this project is to identify locations with hydrothermal activity in the subsurface to 

inform future park building projects and renovations. Furthermore, we will be exploring what 

information about the subsurface we may gain by calculating H/V spectral ratios (i.e., the ratio 

between the Fourier amplitude spectra of the horizontal and vertical component seismic 

recordings) in an active hydrothermal field.   

 The sight of an OFG eruption has attracted visitors for almost 150 years. Although the 

time intervals between eruptions are regular on a day to day timescale, the OFG system is 
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delicate and has changed over time (Foley et al., 2014). The time interval between eruptions can 

change after large earthquakes and the time between eruptions has increased by ~50 minutes 

since it was first recorded (Foley et al., 2014, Hurwitz & Lowenstern., 2014). Therefore, it is 

important to understand the elements of the system which are critical to eruptions. By 

constraining the proposed reservoir SW of OFG we may better understand how the system works 

(Wu et al., 2017).  

Geologic Background 

OFG is situated in the Firehole River Valley where the geology around OFG is 

predominantly glacial deposits, siliceous sinter, and igneous flows (Foley et al., 2014; Fenner, 

1936; Honda & Muffler 1970; Keith et al., 1978; Lynne et al., 2018; Muffler et al., 1982). In 

1929 the Carnegie Institute drilled a research hole, C-1, ~400 m southwest of Old Faithful 

providing insight into the subsurface lithology (Fenner, 1936). The location of the C-1 hole can 

be seen in figure 2. The drill hole went through sinter until reaching a mixture of rhyolitic 

pebbles at 2.1m which increased in percent of rhyolite until 12.2m (Fenner, 1936). At 12.2m the 

hole penetrated gravel cemented with opaline silica & secondary quartz (Fenner, 1936). From 

12.2m to 18.9m the well went through hydrothermally altered sediments until reaching dacitic 

bedrock with interbedded obsidian at 67.1m (Fenner, 1936). The well saw no major change in 

lithology from 67.1m to 123.7m and was filled with cement at 123.7m (Fenner, 1936). The 

sedimentary layers of sandstone and conglomerate penetrated were likely deposited as outwash 

from the early waning stages of the Pinedale Glaciation (Honda & Muffler 1970). The C-1 drill 

hole report gave us an initial idea of the lithologies present in the subsurface which were used to 

create starting velocity models. 
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The surficial geology around Old Faithful is predominantly sinter with rhyolite exposed 

northeast of the geyser across the Firehole River with glacial deposits to the south and west 

(Muffler et al., 1982). Altered glacial deposits and igneous flows create zones of saturated media 

in the subsurface. The surficial geology and our 2-D line are shown in figure 2a. Understanding 

the geologic system at OFG allows for more detailed assessment of areas in the subsurface that 

are critical to remaining undisturbed by human activity (Foley et al., 2014).  

Hydrogeologic Background 

The hydrothermal system feeding the UGB is heated by the rhyolitic upper crustal 

magma reservoir at ~5-15km (Foley et al., 2014; Huang et al., 2015; Farrell et al., 2014). 

Chemical thermometry studies have found that the waters erupted at Old Faithful rise from ~5km 

in the subsurface from a deep reservoir (Foley et al., 2014). Fracture networks created from 

ongoing seismic activity and hydrothermal alteration of the lithology in the area have created 

plumbing conduits in which ground water is brought to the surface from deeper reservoirs (Foley 

et al., 2014). Hydrothermal fluids follow steep faults and cracks to shallower reservoirs at ~170-

210m (Foley et al., 2014). From this recharge zone the fluids migrate through a ~35m vertical 

conduit to an inferred bubble trap then migrate laterally ~20m before rising vertically to the 

surface (Wu et al. 2017; Vandemeulebrouck et al. 2013).  Two of the current models of Old 

Faithful Geyser’s plumbing system can be seen in figure 3 (Wu et al., 2017; Wu et al., 2019; 

Vandemeulebrouck et al., 2013). A combination of deep and near-surface hydrothermal activity 

is responsible for the incredible geyser field in the UGB. Understanding the structure of the 

conduit that feeds Old Faithful is important because it will show us which areas in the subsurface 

have active geothermal activity.  
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 Working in a hydrothermal field presents challenges to interpreting seismic data, in part 

due to the seismic background ‘noise’ related to the fluid movements in the subsurface. The 

constant activity of bubbling and fluid migration introduces high-amplitude background seismic 

noise to the active source data which occur around ~5-20Hz (Kedar et al., 1998; Wu et al., 2017; 

Vandemeulebrouck et al., 2013). Our source has a dominant frequency of ~40Hz; therefore, we 

use a bandpass filter to remove some of the noise from the data.  

Relevant Geophysical Studies 

Old Faithful plumbing structure investigation via source localization. Utilizing a dense 

seismic network of 96 receivers, beamforming techniques were applied to track bubble collapse 

in the Old Faithful Geyser plumbing system (Vandemeulebrouck et al., 2013). This study 

reported a cavity southwest of Old Faithful’s main vent and ~15m below the surface 

(Vandemeulebrouck et al., 2013). Collapsing bubbles in Old Faithful Geyser’s plumbing system 

produces seismic signals at frequencies between ~5-10Hz (Vandemeulebrouck et al., 2013). 

Furthermore, as the bubbles rise to the near surface (~10m below the surface) there is an increase 

in amplitude in the resulting seismic signal (Vandemeulebrouck et al., 2013).  

Cross Correlation Function Study of Old Faithful Geyser. Wu et al. (2017) used a dense 

three-component array of nodal seismometers to extract Rayleigh wave seismic signals between 

1 and 10 Hz using seismic waves excited by active hydrothermal features in order to examine the 

subsurface structure of Old Faithful Geyser (Wu et al., 2017). The seismic array utilized in that 

study consisted of 133 3-component 5Hz nodal seismometers that were deployed over the course 

of 12 days (11/02/2015-11/14/2015) with an average spacing of ~50 m with a radial coverage of 

about 1 km (Wu et al., 2017). Wu et al. (2017) performed spectral whitening and then calculated 

cross-correlation functions between all station pairs (Wu et al., 2017). They observed coherent 
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signals in the cross-correlation functions between a station on Geyser Hill and all other stations 

across the array and used those functions to measure Rayleigh wave phase velocities by applying 

standard frequency-time analysis (Wu et al., 2017). A Rayleigh wave phase velocity increase of 

~40% in the northeast was observed for frequencies of 3.33 Hz and interpreted as the higher 

velocity rhyolitic flows compared to the lower velocity glacial sediments to the southwest (Wu et 

al., 2017). Another major result relevant to this study is that Wu et al. (2017) observed a low 

velocity zone starting 100m to the southwest of Old Faithful at a depth of about 22m with an 

estimated diameter of ~200 m (Wu et al., 2017). The Rayleigh wave phase velocities were 

observed to be reduced by ~70% in the low velocity zone relative to the surrounding glacial 

deposits. The low velocity zone is interpreted as a fractured and porous media which acts to 

recharge the waters which erupt from Old Faithful. It is believed that this deeper fractured zone 

allows water to fill into a shallower reservoir through vertical and horizontal conduits connecting 

reservoirs (Wu et al, 2017; Vandemeulebrouck et al, 2013). The model proposed by Wu et al. 

(2017) is compared with our models derived from P-wave seismic refraction. 

 Seismic and resistivity study of the Obsidian Pool Thermal Area (OPTA). This 2016 

survey of the OPTA imaged shallow hydrothermal degassing (Pasquet et al., 2016). The authors 

used Poisson’s ratio (calculated from a combination of seismic refraction and surface-wave 

surveys) and electrical resistivity to characterize zones of anomalous velocity relating to fluid 

saturation in order to study degassing (Pasquet et al., 2016). This study found that larger values 

of Poisson’s ratio correlate well to zones of high saturation in hydrothermal fields (Pasquet et al., 

2016). While this study is not directly related to the Upper Geyser Basin, they also used a 

hammer seismic refraction survey to study a geothermal area.  

Hydrogeology, geochemistry, and geomorphology study of the Upper Geyser Basin 
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 Blackwood et al. (2018) investigated the origin, function, and evolution of the Old 

Faithful Geyser system (Blackwood et al., 2018). This study suggests that the dome-like 

structure of the shallowest reservoir may be due to condensation corrosion (Blackwood et al., 

2018; Wu et al., 2017; Vandemeulebrouck et al., 2013). Condensation corrosion widens vents 

and conduits which may be responsible for the increased eruption interval times since the 1950’s 

(Blackwood et al., 2018). Blackwood et al., 2018 also theorized that geysers situated near one 

another may share common reservoirs to extinct and extant geysers (Blackwood et al., 2018).    

Objectives 

The aim of this study is to determine the shallow structure of a proposed large reservoir, 

described by Wu et al. (2017), related to the hydrothermal plumbing system of OFG. Furthermore, 

we test how effective the H/V ratio is when applied to studying the shallow subsurface of OFG. 

Understanding the shallow extent of this proposed reservoir structure is useful in preserving and 

understanding the OFG hydrothermal systems as well as protecting nearby human infrastructure. 

Data & Methods 

From 11/7/2016 to 11/16/2016, dense 2-D and 3-D seismic arrays were deployed around 

a ~4km2 area around OFG (figure 2). During those 10 days, we collected active source seismic 

data on 8 of those days with ~160 receivers and ~55 shots per day. Our 2-D line was collected on 

11/08/2016 consisting of 39 receivers and 39 shot locations with a length of ~1020m crossing the 

OFG orifice in a NE-SW orientation (figure 2).  The 2-D line has a station spacing of ~20-30m 

and ~100m gap with no stations on either side of the geyser. Our full 3-D array consisted of 521 

receiver locations and 343 shot locations (figure 2). Multiple (5-7) strikes from a 5.4kg 

sledgehammer at each shot location allows us to stack our shots in the same location to amplify 

the signal and increase the signal to noise ratio. Stacked shot records from three different 

locations along our 2-D line are shown in figure 4. To study the structure of the reservoir body 
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SW of OFG we invert manually picked first arriving P-waves to create P-wave velocity (Vp) 

profiles using the Tomo2D software described by Korenaga et al. (2000). Tomographic Vp 

models are a practical method for this study, providing greater shallow resolution of the reservoir 

body over a broader area than previous studies.  

Data Preparation & Picking 

Tomographic profiles generated from inversions of first arriving waves allow us to model 

changes in the Vp velocity in the subsurface which likely relates to saturation, hydrothermal 

reservoirs, and hydrothermal alteration. We used Python scripts to convert the data from SAC to 

SEG-Y format and to stack the shots done in the same location. Next, we processed the data by 

performing trace muting and bandpass filtering to isolate the dominant source frequency. We 

applied an Ormsby minimum phase bandpass filter, with corner frequencies of 5-25-50-100Hz, 

to increase the signal and damp the low frequency signals of the OFG bubble collapse. First 

arriving P-waves were then picked manually. We observe these picks in the Z-component. First 

arriving waves can be picked further from the source in the northeastern side of our line on 

average and have a higher velocity (figure 5). This is likely due to the lithological change from 

glacial deposits in the SW to rhyolites in the NE (figures 2 & 3) (Muffler et al., 1982; Wu et al., 

2017). The maximum offset we pick first arrivals is ~300 meters. On average we pick arrivals 

from the shot to 12 stations, and at maximum we track the arrival to 22 stations. In total we have 

477 picks for the 39 shots. Furthermore, we do not observe many rays crossing the gap from one 

side of Old Faithful Geyser to the other (figure 5).  

Tomographic Modeling 

First arriving picks are input into Tomo2D tomographic inversion software (Korenaga et 

al., 2000) along with an initial model which influences the inversion. Initial models were created 
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based on previous research and geologic models (figure 6a & 6b) (Fenner 1936; Muffler et al., 

1982; Wu et al., 2017). Final models were highly sensitive to the initial model inputs and would 

often not converge to a final model. The outcomes of bad initial models were either unrealistic or 

physically impossible containing velocity nodes with non-positive values. We present two 

models which were most successful from the inversion having relatively low RMS error, 

stability, and relatively good ray coverage.  

 Tomo2D allows the user to generate sheared velocity meshes that can be finely edited 

with anomalous velocity zones and options for statistical analysis on the velocity meshes 

(Korenaga et al., 2000). Velocity meshes are used to calculate forward travel times followed by 

travel time inversions (Korenaga et al., 2000). The mesh spacings we used are defined in the 

horizontal direction as the distance between stations. We used a hanging mesh from this surface 

with 1m spacing between mesh nodes in the vertical direction to 100m below the surface. The 

velocity mesh used for this study can be seen in figure 7. Bilinear interpolation is used to 

determine the velocity of a point between nodes in the velocity mesh (Korenaga et al., 2000). 

Inversions are done using a damped and smoothed least squares regression algorithm (Korenaga 

et al., 2000). The travel time inversions are performed iteratively 20 times updating the model 

with the result of previous inversions at each iteration resulting in better models at each iteration 

(Korenaga et al., 2000). To stabilize the inversion and save computing resources, 1-D smoothing 

constraints are applied to both the horizontal and vertical directions independently (Korenaga et 

al., 2000). We used smoothing and damping parameters ranging from ~6-16 (figure 8). The 

smoothing parameter was chosen by performing inversions on our 1-D model (figure 6a) with 

changing smoothing parameters from 1 to 50 incrementing by 0.1. Final models were analyzed 

based on how large of a change (if any) occurred from the original model, and how reasonable 
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that change is. Changing final model outcomes from an initial 1-D model with varying 

smoothing parameters can be seen in figure 8.  The damping parameter, which controls the level 

of percent velocity change, was chosen by using the lowest value possible that would result in a 

stable inversion.  

Understanding the size of structures that can be recovered in velocity models is critical 

for accurate interpretation. To test the resolution of our models we perform checkerboard tests 

with three varying sizes of anomalies (figure 9). The size of the anomalies added are 60mx10m, 

100mx10m, and 200mx30m. We do these tests by taking the preferred starting model (figure 6b) 

and adding ±0.3km/s in alternating layers forming a checkerboard pattern. We then create 

synthetic data from the checkerboard model. Lastly, we invert the original model with no 

anomalies and observe how well our final model can recover the anomalies. The results from this 

process are shown in figure 9. From our checkerboard tests we appear to be recovering the 

horizontal locations of the anomalies well, but the vertical extents are not recovered. The 

minimum size of a structure that we can resolve horizontally appears to be about 80m (figure 9). 

This means that we have better horizontal resolution compared to vertical resolution which 

seems to agree with our inversion results from figure 6 where we do not see many vertical 

structures mainly just horizontal structures.   

Calculating H/V Spectral Ratios Workflow 

We explore what information can be gained about the subsurface from H/V spectral ratio 

calculations in a shallow hydrothermal setting. The H/V ratio is the ratio of the Fourier amplitude 

spectra of the horizontal to the vertical component of the seismic recording. H/V ratios highlight 

potential amplifications in Rayleigh waves due to discontinuities and can be useful for 

determining the level of relative compaction and rigidity of the underlying lithology (Nakamura, 
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2008). Generally, the higher the H/V ratio, the less rigid the subsurface is relative to the 

surrounding area (Nakamura, 2008). Variations in the H/V ratio over time may indicate fluid 

movement because the horizontal component is relatively stable regardless of the presence of 

fluids, but the vertical component will increase with fluids present (Lontsi et al., 2019). H/V 

analysis is a good addition to our tomographic models and provides information over a broader 

spatial area than our 2-D profiles. Furthermore, H/V analysis allows for temporal monitoring as 

well.  

The H/V ratio method is highly dependent upon select frequency ranges and is typically 

used to determine the resonant frequencies at locations for site effects studies (Rincon et al., 

2016). However, in this study we explore the broadband H/V ratio over a time window before 

and after OFG eruptions. In future work we will calculate the resonant frequencies at each station 

to better understand how the frequency dependence changes spatially across our array.  

We calculate two North-South East-West arrays and the full 3-D array for H/V ratio 

values for a time window of 90 minutes relative to the time of the eruption. We calculate the H/V 

ratios for 60 minutes before the eruption and 30 minutes after the eruption. An example of the 

raw data recorded on station 553 over this 90-minute time interval is shown in figure 10. A 

sliding time window of 20s with an increment of 1s is used to calculate the H/V spectral ratio. 

The eruption times came from the website ‘geysertimes.org’. Our two East-West and North-

South arrays were deployed on 11/09/2016 and 11/11/2016. We chose these arrays because the 

array deployed on 11/09/2016 crosses the OFG orifice and the array deployed on 11/11/2016 

crosses the proposed reservoir location. The locations of stations used for these two lines are 

shown in figures 11 & 12.  The full 3-D array is utilized by averaging the H/V ratio values for 

the 90-minute interval around the eruption over each station on each day. Then, once the H/V 
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ratio values have been calculated for each station on multiple days we took the average of the 

H/V ratios over the 90-minute time window for each station. Finally, we extract H/V ratios for 4 

unique times relative to the eruption: -55, -25, 5, & 20 minutes where negative time indicates it is 

before the eruption. We use the H/V ratio at these time values to create a 2-D contour plot of the 

H/V ratio values changing with time (figure 13). Examining the H/V ratio in 1-D and 2-D 

provides insight into what kind of information we can gain from this method at an active 

hydrothermal field.  

Results  

Our results show features which provide insight into the hydrothermal plumbing system 

beneath OFG. The active source seismic refraction study allows us to visualize velocity changes 

in the upper ~50m of the subsurface based on the ray penetration (figure 6). We supplement the 

tomographic profiles with H/V ratio calculations which give us insight into subsurface rigidity 

which could correspond to zones of saturation (Nakamura. 2008). The velocity profiles we 

generate may be useful for determining horizontal extent of subsurface structures.  

Tomographic Profiles 

Generating tomographic P-wave velocity profiles in media that is highly attenuating is 

challenging due to the limited ray coverage over the whole model. This makes the inversion 

process unstable (Aster et al., 2013). Due to this challenge it is important to utilize as much prior 

geologic knowledge about the region as possible in order to get the inversions to converge to a 

final model. We tried many different initial velocity models, but present only two initial velocity 

models here based on previous geologic models (figure 6b), and a 1-D velocity gradient with 

velocity increasing as a function of depth (figure 6a) (Fenner., 1936; Foley et al., 2014; Muffler 

et al., 1982; Wu et al., 2017). The velocity model based on previous research (figure 6b) was 
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created with two velocity zones increasing with depth and grading into one another. Model 6b 

was designed to model the generalized cross sections presented by Wu et al. (2017) and Foley et 

al. (2014). Figure 6 shows the initial and final velocity profiles for the models. The 1-D gradient 

model converges to something that is similar in structure to the other model but has significantly 

different velocities.  

 The velocity profiles in figure 6a & 6c show the starting and final profile made with the 

1-D velocity gradient. This model was made with a Vp on the surface of ~2.8km/s increasing at 

regular intervals to 100m below the surface with a Vp of ~4.5km/s. The final model has good ray 

coverage NE of the OFG orifice to depths of ~50m below the surface. The ray coverage SW of 

the OFG orifice is fair, but only penetrates ~20-25m below the surface. We observe one 

interesting velocity discontinuity in this final model which we will refer to as ‘Q’ (figure 6c). 

Velocity discontinuity ‘Q’ begins ~150m SW of OFG where our stations are present and extends 

laterally ~140m. The narrow zone of decreased velocity lowers the velocity gradient from the 

area to the SW ~10m vertically. This zone has roughly a 20% velocity reduction compared to the 

surrounding area. Aside from this low velocity zone we do not observe any other significant 

changes from the background model aside from the velocities decreasing from the initial model.  

 The next profile we will consider is the one shown in figure 6b & 6d. This tomographic 

profile has higher velocities in the NE and lower velocities in the SW to model the transition 

from rhyolites to glacial deposits. This inversion was done with a smoothing parameter of 5 and 

a damping parameter of 15. These parameters were chosen because they gave the model enough 

‘freedom’ to change but did not allow it to change to an unreasonable extent. After the inversion 

process was performed we see a slight velocity pullup near a transition from lower to higher 

velocities. This pullup is beneath the label ‘R’ in figure 6d. This pullup could mark the transition 
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from glacial deposits to rhyolites. From our resolution tests (figure 9), we should be able to 

resolve a lateral transition zone such as this. In the final model we observe the average velocity 

where we expect glacial deposits to be around 1.5-1.8km/s. In the rhyolite units the velocity 

ranges from ~2.2-3.8km/s. Again, in this model, ray coverage is more robust with deeper 

penetration in the NE than it is in the SW. We recover another interesting velocity structure 

labeled ‘Q’ on figure 6d. The ‘Q’ anomaly is located ~150m SW of OFG and extends ~280 SW 

of OFG which is roughly the same location as ‘Q’ in figure 6c. This anomaly has a velocity 

ranging from ~1.15-1.4km/s and has good ray coverage in the region that the anomaly is present. 

This anomaly has a ~25% velocity reduction compared to the surrounding area and a ~50% 

velocity reduction compared to the rhyolites in the NE. The model shown in figure 6d is our 

preferred final velocity model because it has good ray coverage throughout the model and seems 

to be the most realistic when compared to previous studies (Foley et al., 2014, Wu et al., 2017). 

The RMS error of this model is 0.04 seconds.  

H/V Ratio Calculations 

We calculated the H/V ratio at stations crossing N-S and E-W of the OFG orifice and 

stations crossing N-S and E-W ~150m SW of OFG (figures 11 and 12). Calculations were done 

over an interval of 90 minutes around the eruption of OFG. Calculations were done using a 

sliding window of 20s which incremented by 1 second each iteration.  

The H/V calculations done on the N-S & E-W arrays crossing the OFG orifice are shown 

in figure 11. On the line trending N-S we observe a trend where the H/V ratio is generally lower 

closer to OFG. Stations 552, 553, 556, 557, & 555 show a decrease in H/V ratio values 

immediately following the eruption whereas station 554 shows an increase immediately after the 

eruption. Stations 552, 553, 554, & 556 return to their pre-eruption H/V values 3-5 minutes after 
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the eruption. Stations 557 & 555 rise to higher H/V ratios than before the eruption 3-5 minutes 

after the eruption before falling to relatively low values ~15 minutes after the eruption then 

rising again to a relatively constant value (figure 11). On the line trending E-W we observe 

station 548 rise in H/V ratio value ~1 minute before the eruption and decrease ~1 minute after 

the eruption whereas stations 568 & 583 show the opposite behavior. Stations 548, 568, 554, & 

555 show an increase in H/V ratio until ~35 minutes before the eruption before decreasing until 

the eruption. It is notable that these are the four closest stations to the OFG orifice (figure 11a). 

The other stations on the E-W line also show that the H/V ratio is lower closer to the OFG 

orifice. Observing H/V ratios on lines crossing over the OFG orifice give us a rough idea of how 

the lithological properties may be changing in the subsurface.  

Our N-S E-W array shown in figure 12a crosses ~170m SW of OFG which is roughly on 

top of the proposed reservoir location (Wu et al., 2017). The stations used were recording on 

11/11/2016 and the H/V ratio calculations are shown in figure 12. The N-S line shows that 

stations closer to the center of the line display a higher H/V ratio than those further North or 

South. On the E-W line we observe no distinguishable pattern for the stations before the eruption 

regarding their location from East to West. Stations 001, 325, 331, & 312 all show a slight drop 

in H/V ratio value ~16 minutes after the eruption before quickly returning to their average 

values. It is notable that our stations from the arrays crossing the proposed reservoir location 

have a higher H/V ratio on average than our stations crossing the OFG orifice (figure 11 & 12). 

It is useful to consider the uncertainty in our H/V ratio values. The uncertainty in our H/V 

ratio calculations was determined by calculating the mean and standard deviation of each of the 

H/V ratio values at a particular station for each of the 90-minute time windows. On average the 

standard deviation for the H/V ratio at any station is ~0.06. The maximum standard deviation in 
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the H/V ratio at any station is ~0.1. Therefore, we are confident that our H/V ratio calculations 

are accurate within ±0.1. 

The results from the H/V ratios calculated for all stations at 2 time intervals before and 

after the eruption are shown in figure 13. The times that were used for the H/V ratios in figure 13 

are: -55, -25, 5, & 20 minutes where negative time indicates it is before the eruption. From this 

figure we observe only one location, labeled ‘S’ in figure 13 that shows a significant change over 

the 4 time intervals. The area labeled ‘S’ is right on the surface location of the OFG orifice and 

we observe a decrease in the H/V ratios calculated at this location 5 minutes after the eruption 

(figure 13c). The other areas which may be significant are labeled ’U’, and ‘D’ in figure 13a & 

13c. Both ‘U’ and ‘D’ show much lower H/V ratios than the surrounding region. The zones of 

high and low H/V ratios shown on figure 13 provide insight into the subsurface properties 

beneath our full seismic array.  

 Our results from tomographic profile modeling and H/V calculations provide useful 

insight into the structure of the OFG hydrothermal plumbing system. We can more precisely 

characterize the lateral extent of the proposed reservoir described by Wu et al. (2017) in the 

subsurface due to the resolution of P-wave travel time tomography. Furthermore, we are 

exploring how the H/V ratio technique can be applied to study the subsurface in active geyser 

fields. 

Interpretation & Discussion 

Tomographic Profiles 

From our 2-D tomographic profiles shown in figure 6 we observe that we are recovering 

one major low velocity zone and possibly get some information about the subsurface location of 

the rhyolite-glacial deposit interface. The first anomaly we will consider, labeled ‘Q’, begins 
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~150m SW of the OFG orifice where our stations begin SW of OFG and extends laterally from 

that position ~140m shown in figure 6d. It is unclear whether this low velocity zone extends 

across the locations in our line where we don’t have ray coverage beneath OFG, but it appears 

that it does since a similar velocity profile is observed where we have stations to the NE. The Vp 

range in this zone is from 1.15km/s-1.5km/s which is consistent with a highly saturated and 

porous media. We believe that this zone corresponds to the fractured porous media described by 

Wu et al. (2017) that acts as a hydrologic reservoir where groundwater and previously erupted 

waters infiltrate and recharge the OFG plumbing system. Although we cannot constrain the depth 

of this reservoir we may be constraining the lateral extent to the SW. We observe a 25% Vp 

reduction between the reservoir and the surrounding area and a 50% Vp reduction between the 

reservoir and the rhyolites in the northeast which is different than what was reported in previous 

research where the Rayleigh wave phase velocity reduction was ~70% and ~40% respectively 

(Wu et al., 2017). The difference in velocity reduction between this study and previous research 

is likely because we are examining P-wave velocities whereas past research was examining 

Rayleigh wave phase velocities. We are able to laterally recover the main reservoir on our 2-D 

profiles, but are not able to recover other structures which have been discovered in source 

localization research due to the limited ray coverage on our 2-D profile (Vandemeulebrouck et 

al., 2013; Wu et al., 2019).  

The limitations in our ability to constrain the shape of smaller structures which contribute 

to the OFG plumbing system come from our source and receiver spacings being relatively large 

at 20-30m, our source not being large enough to propagate across the entire line, and having the 

~200m source and receiver gap over the top of OFG. Furthermore, our main target structure (the 

proposed reservoir ~150m SW of OFG) being a highly fractured surface also plays a role in 
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scattering and attenuating active source rays. These issues led to limited ray coverage in 2-D, and 

our difficulty resolving smaller structures was also likely related to attenuation caused by highly 

hydrothermally altered sediments, a highly fractured region, and a saturated subsurface. 

Constraining the lower limit of the reservoir is something we are not able to do with our 2-D 

tomographic profiles. We are also not able to recover smaller structures like those described by 

Vandemeulebrouck et al., 2013 and Wu et al., 2019. Since this area is highly hydrothermally 

altered the attenuation of the rays is high as well (Lynne et al., 2017). However, some of these 

limitations may be overcome by modelling in 3-D with denser source-station pairs, which is 

planned for future work.  

Another interesting structure observed on our 2-D line is located at the rhyolite-glacial 

deposits interface near the Firehole river labeled ‘R’ in figure 6d. We observe a velocity pull up 

near the rhyolite-glacial sand interface. Since we are getting good lateral resolution (figure 9) 

this pull up may mark the transition location from glacial deposits to rhyolites meaning that the 

boundary is located directly beneath the Firehole River.  

In figure 14 we overlay the results from our preferred final tomographic model (figure 

6d) with the generalized geologic cross section presented by Wu et al. (2017) which shows the 

proposed reservoir location. This overlay shows that we may be recovering the lateral extent of 

the top portion of the reservoir to the SW of the geyser. Although we cannot constrain the 

vertical extent of this reservoir we may be able to constrain the lateral extent with our 2-D 

tomographic profiles.   

The 2-D tomographic profiles created in this study allow us to obtain new information 

about the OFG plumbing system in the subsurface. Using active source seismic modeling in an 

active hydrothermal field is a viable method to study the subsurface. Densely spaced, well 
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coupled seismic arrays with powerful sources are likely needed to do reflection imaging in 

hydrothermal areas. However, P-wave refraction tomography can be done with less powerful 

sources and lower coupling to get useful velocity profiles. Our 2-D tomographic profiles created 

in this study furthers our understanding of the OFG hydrothermal plumbing system.  

H/V Ratio Calculations  

H/V ratio calculations of a seismic signal can lend insight into the relative rigidity of the 

subsurface (Nakamura, 2008). A more rigid subsurface will have amplitudes that are similar in 

the horizontal and vertical directions whereas less rigid subsurface lithologies will have greater 

amplitudes in the horizontal direction (Nakamura, 2008). Therefore, where H/V ratios are higher 

the subsurface is assumed to be less rigid (Nakamura., 2008). We may also be able to detect fluid 

movement using the H/V ratio since the horizontal component is generally unaffected by fluids 

and the vertical component will increase with fluid saturation (Lontsi et al., 2019).  

 We will begin by examining the H/V ratios calculated for the stations shown in figure 11 

which cross the OFG orifice. The four stations closest to the OFG orifice (548, 568, 554, & 555) 

show an increase in H/V ratio until ~35 minutes before the eruption before decreasing until the 

eruption. This pattern may correspond to fluids moving into reservoirs beneath the geyser 

making the subsurface more rigid than migrating closer to the orifice and causing the 

surrounding area to lose rigidity. Stations 556, 554, 552, 553, 583, 555, 557, & 568 show 

decreases in H/V ratio just as the geyser erupts which corresponds to the evacuation of fluids in 

the subsurface since the vertical component becomes more dominant without fluids present 

(Lontsi et al., 2019).  

 We will now examine the H/V ratios calculated for the stations shown on figure 12 which 

were recording on 11/11/2016. The stations shown in figure 12 cross the proposed reservoir 
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location in the N-S & E-W directions over the proposed reservoir location. These stations have a 

higher H/V ratio on average than the stations shown in figure 11. This could mean that the 

subsurface lithology around the proposed reservoir location is more rigid than the subsurface 

surrounding the OFG orifice. Stations 001, 325, 331, & 332 all show a slight drop in H/V ratio 

value ~16 minutes after the eruption before quickly returning to their previous values. This 

sudden drop could be from local fluid movement or local bubble collapse. The broadband H/V 

ratio values appear to only have significant variations after an eruption which is a dramatic fluid 

movement over a short period of time. Examining the frequency dependence of the H/V ratio in 

future work should provide more insight into the properties of the subsurface. 

 The plots in figure 13 show the H/V ratio values for each station at 2 time intervals 

before and after the eruption. We observe a few zones of lower H/V ratio than the surrounding 

areas, labeled ‘S’, ‘U’, and ‘D’ in figure 13. These zones of low H/V ratio indicate that there is 

likely a higher relative rigidity in the subsurface than the surrounding areas. Zone ‘U’ is close to 

the proposed reservoir location (figure 13a). The high H/V ratio values in this area may mean 

that the reservoir is more rigid than the surrounding region. Zone ‘S’ is surrounding the OFG 

orifice and decreases in H/V ratio significantly 5 minutes after the eruption (figure 13c). This 

signature may be due to the evacuation of fluids causing the vertical component to become more 

dominant (Lontsi et al., 2019). Zone ‘D’ is a single station with relatively few stations 

surrounding it (figure 13e) which could mean this area of low H/V is an outlier in the data. 

Conclusion 

 Utilizing both seismic refraction tomography and the H/V method to characterize the 

plumbing system of Old Faithful Geyser (OFG) is an effective approach to studying the OFG 

system. Our 2-D tomographic profiles provided new insight into how P-wave velocities vary 
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throughout the system. This has helped us constrain the lateral extent of what is believed to be a 

reservoir body feeding the OFG eruptive cycles. In future work we aim to improve upon the 

tomographic profiles shown here by utilizing the full 3-D seismic survey and creating tomographic 

models in 3-D. This should help us to constrain the upper and lower limits on the size of the 

reservoir we have recovered in the 2-D profiles with greater ray density around the proposed 

reservoir location. The H/V method is more ambiguous than tomographic modeling but provides 

meaningful insight into how the subsurface is changing over time before an eruption. By using the 

H/V method we were able to see which stations are more rigid than the surrounding area and which 

stations are most heavily affected by fluid movements. In future work with the H/V method we 

will analyze the frequency dependence of each station. Using both seismic refraction and the H/V 

method we understand the subsurface plumbing system related to OFG in greater detail than by 

using either method on its own. 
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List of Figures 

Figure 1: Location of Study Area. 
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Figure 2: Seismic Array and Geologic Map. 
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Figure 3: Synthesis of Previous Research. 

 

 

Figure 4: Example of Shot Gathers. 
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Figure 5: Picks Along 2-D Line. 
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Figure 6: Tomographic Models. 
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 Figure 7: Velocity Mesh Setup. 
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Figure 8: Smoothing Parameters. 
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 Figure 9: Resolution Tests. 
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Figure 10: Raw Seismogram of Data Recorded over 90-minute Interval Used for H/V 

Calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

Figure 11: H/V Ratio Calculations for Stations Recorded on 11/09/2016. 
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Figure 12: H/V Ratio Calculations for Stations Recorded on 11/1/2016. 
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Figure 13: H/V Ratios Calculated for all Stations. 
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Figure 14: Overlay of Previous Studies and Preferred Model. 
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