
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Open Access Theses & Dissertations 

2020-01-01 

Development Of Advanced Statistical Methods For Multivariate Development Of Advanced Statistical Methods For Multivariate 

Classification Classification 

Mario Cardenas Jr 
University of Texas at El Paso 

Follow this and additional works at: https://scholarworks.utep.edu/open_etd 

Recommended Citation Recommended Citation 
Cardenas Jr, Mario, "Development Of Advanced Statistical Methods For Multivariate Classification" 
(2020). Open Access Theses & Dissertations. 2940. 
https://scholarworks.utep.edu/open_etd/2940 

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open 
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information, 
please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/2940?utm_source=scholarworks.utep.edu%2Fopen_etd%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


DEVELOPMENT OF ADVANCED STATISTICAL METHODS FOR MULTIVARIATE 

CLASSIFICATION 

 
 

 

MARIO CARDENAS JR 

Master’s Program in Physics 

 

 

APPROVED: 

 

 

 

Marian Manciu, Ph.D., Chair 

Felicia Manciu, Ph.D. 

Giulio Francia, Ph.D. 

 

 

 

 

 

 

Stephen L. Crites, Jr., Ph.D. 

Dean of the Graduate School 

  



 

 

 

 

 

 

 

 

Copyright © 

 

by 

MARIO CARDENAS JR 

2020 

 

 

 

  



DEVELOPMENT OF ADVANCED STATISTICAL METHODS FOR MULTIVARIATE 

CLASSIFICATION 

 

by 

 

MARIO CARDENAS JR 

 

 

THESIS 

 

 

Presented to the Faculty of the Graduate School of  

The University of Texas at El Paso 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

MASTER OF SCIENCE 

 

 

Department of Physics  

THE UNIVERSITY OF TEXAS AT EL PASO 

May 2020 



iv 

Table of Contents 

Table of Contents ........................................................................................................................... iv 

List of Tables ...................................................................................................................................v 

List of Figures ................................................................................................................................ vi 

Chapter 1: Introduction ....................................................................................................................1 

Chapter 2: Multivariate Methods .....................................................................................................4 

2.1 Principal Component Analysis .........................................................................................4 

2.2 Linear Discriminant Analysis .........................................................................................12 

2.3 Linear Support Vector Machines ....................................................................................16 

2.4 Random Forest ................................................................................................................19 

Chapter 3: Proposed Classification Method ..................................................................................22 

3.1 Overview of Method .......................................................................................................22 

3.2 Experimental Design .......................................................................................................23 

3.3 Experimental Results ......................................................................................................25 

Chapter 4: Accurate classification of normal/disease sample using Raman Confocal 

Microscopy ...........................................................................................................................29 

4.1 Motivation .......................................................................................................................29 

4.2 Preliminary data analysis ................................................................................................30 

4.3. Results and Discussion ..................................................................................................31 

Chapter 5: Conclusions ..................................................................................................................42 

References ......................................................................................................................................43 

Vita 45 

 



v 

List of Tables 

Table 3.1: GDS4336 dataset ......................................................................................................... 25 
Table 4.1. Confusion matrix for single spectrum LDA classification (4 variables). .................... 38 
Table 4. 2. Confusion matrix for single spectrum LSVM classification (~300 variables). .......... 38 
Table 4.3. Confusion matrix for 11 spectra classification. ........................................................... 41 

 



vi 

List of Figures 

Figure 2.1: Plot of words found in a dictionary. Here the number of words has been graphed vs. 

the number of lines in the definition of said words. ....................................................................... 7 
Figure 2.2: Example of a Scree graph found in Jolliffe, 2002. ....................................................... 9 
Figure 2.3: Plot of 50 observation vs two component .................................................................. 10 
Figure 2.4: Plot of 50 observations with respect to principal components ................................... 11 

Figure 2.5: Is an example of two classes exhibiting an overlap along the axes X1 and X2 axis, but 

full separation along the discriminant function, [18]. ................................................................... 15 
Figure 2.7: Example of a decision tree [19]. ................................................................................. 20 

Figure 3.1: Plot containing the first two principal components for 𝑖 = 1 .................................... 26 

Figure 3.1: Plot containing the first two principal components for 𝑖 = 4 .................................... 27 

Figure 3.1: Plot containing the first two principal components for 𝑖 = 10 .................................. 28 

Figure 4.1: Integral Raman spectra (each averaged over 22500 spectra with the background 

individually subtracted) of 7 samples (three "Normal" and four "ROD") .................................... 32 
Figure 4.2a: Ratio 2 of the individual Raman spectra vs. Ratio1. ................................................ 33 

Figure 4.2b: Ratio 4 of the individual Raman spectra vs. Ratio3. ................................................ 34 
Figure 4.3a: Values of Ratio 2 vs. Ratio 1 for individual spectra. ................................................ 35 

Figure 4.3b: Values of Ratio 4 vs. Ratio 3 for individual spectra. ............................................... 36 
Figure 4.4: Distribution of scores for "Normal" and "ROD" individual spectra; classification 

assumes a score of less than one for "Normal" and larger than one for "ROD" samples. The 

complete details of the confusion matrix and related parameters for individual spectra are 

provided in Table 4.1. ................................................................................................................... 37 

Figure 4.5: Probability of type I and type II errors vs. the number of randomly chosen spectra 

employed in classification............................................................................................................. 40 



1 

Chapter 1: Introduction 

Research into the diagnosis and treatment of a variety of diseases has been a longstanding 

area of interest. The use of biomarkers is one way in which this area is explored. Biomarkers have 

several potential clinical applications some of which include treatment response predictions, risk 

assessment, and class identification [3]. A biomarker is defined as “any substance, structure, or 

process that can be measured in the body or its products and influence or predict the incidence of 

outcome of disease” [5]. Biomarkers are also used to track disease progression, serve as surrogate 

clinical endpoints, and measure and detect the effects of a drug [1,2]. Thus, biomarkers have the 

potential to improve the early detection of a disease present in a subject and lead to an improved 

life expectancy. As an example, the early detection of the presence of a disease may lead to shorter 

treatment response and may ultimately result in a lower mortality rate [2]. Another example of 

where lower mortality can occur is with risk assessment. If a risk assessment can be made based 

on biomarkers, a patient can take certain actions to reduce their risk of developing a particular 

disease by taking preventive measures, like that of a lifestyle changes [3]. 

In biospectroscopy one can make use of multivariate and univariate methods for biomarker 

identification [2]. The field of biospectroscopy provides a wide range of spectra data via techniques 

like IR Spectroscopy, Fourier-transform IR, and Raman Spectroscopy.  Raman spectroscopy uses 

Raman scattering where one measures the vibrational energy of chemical bonds present in cell or 

tissue samples. Here, a beam of monochromatic light is directed at a sample of interest typically 

within the mid-Infra-red range (λ=5-25 μm). During this process, the incident photons are 

polarizing the present molecules’ electron cloud and promote them into excited states. These states 

lie above the molecule's ground state and are considered unstable or short-lived. Because of the 

instability of this virtual state, the incident photons are quickly scattered (re-emitted) and then 



2 

captured using a detector. Whereas most of the scattering is elastic (and therefore carries no 

information about the scattering material), Raman spectroscopy is concerned with the inelastic 

scattering, which provides information about the chemical structure of the scatterer [1]. Raman 

Confocal Microscopy is an experimental imaging technique, which provides individual Raman 

spectra on a (usually) 250x250 map, where this spectra is employed for the image reconstruction.  

In this process and other similar techniques typically result in large data sets providing ample 

information regarding the molecular composition of the sample measured. For example, Raman 

measurement discussed in the last part of the thesis contains 250x250x1024 data points. To analyze 

such large data sets, one can turn to principal component analysis, linear discriminant analysis, 

and other multivariate analysis methods to aid in the extraction of information [3]. The 

combination of biospectroscopy and multivariate methods can result in cell type identification, 

biomarker identification, and other information regarding the measured sample(s). Methods like 

principal component analysis are of particular interest because of their dimensionality reduction 

capabilities which can reduce the computation power required used to analyze them. 

With the help of microarray technology, gene expression profiles, like spectra data sets, 

can be used for disease classification. In fact, an important aspect of microarray analysis is cancer 

classification. This is because cancer may be a genetic disease, and so the analysis of gene 

mutations may lead to the identification of the gene(s) responsible for cancer [4]. Gene expressions 

data sets typically consist of low sample (observations) size in the order of tens and a high number 

of genes (variables), in the order of ~104. The dimensionality of the data sets presents researchers 

with a problem commonly referred to as the “curse of dimensionality”. This can lead to data 

overfitting in microarray cancer classification [4]. 
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Class prediction (classification) and feature selection are two important types of analysis 

employed when analyzing gene expressions. In feature or gene selection the analysis focuses on 

finding the most informative genes. To do this, three types of approaches can be used: the filter, 

wrapper, and hybrid approach. The filer approach uses techniques like that of Random Forest 

Ranking, where features are ranked based on decision trees. The wrapper approach typically 

involves bio-inspired algorithms like the Genetic Algorithm, Ant Colony Optimization, and others. 

Finally, the hybrid method combines the two mentioned approaches by reducing the features 

present in a data set followed by feature optimization of the reduced data set or subset. In 

classification, supervised learning techniques can be used by creating classifiers based on learning 

data sets. A classifier can then be used for class prediction when applied to other data sets not used 

in the training phase. Some examples of algorithms currently used include Support Vector 

Machines, Neural Networks, K Nearest Neighbor, and others [4].  

 In the following chapter, I will give a brief description of the commonly used supervised 

and unsupervised learning techniques which will serve as an overview of the novel method 

proposed in Chapter 3 for the classification of data sets. Chapter 4 details another novel alternative 

classification method, which was shown to provide an unprecedented accuracy for the 

classification of a particular disease, using a reduced set of data points [paper]. 
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Chapter 2: Multivariate Methods 

2.1 Principal Component Analysis 

Principal Component Analysis (PCA) is an unsupervised statistical data analysis tool 

commonly used to process genomic datasets [2]. This is due to the high dimensionality of the 

matrices obtained when, for example, you measure the gene expression levels for a given cell or 

tissue sample. This dimensionality reduction technique used in the field of multivariate analysis 

where one can benefit from reducing the computational cost or time of analysis. PCA analysis a 

dataset via orthogonal transformations using Singular Value Decomposition (SVD).  

Singular Value Decomposition provides us with a manner to calculate the Principal 

Components of a matrix without having to compute the covariance matrix [14]. Using Singular 

value decomposition to find the Principal Components of a matrix has been regarded as the best 

computational approach to finding Principal Components [12].  Finding Principal Components of 

a given matrix, as well as the covariance matrix, serve a very important role in multivariate 

classification which I will briefly describe in the following pages. 

Here matrices will be denoted in bold upper-case letters and the transpose of said matrices 

with an upper case T superscript. Elements of a matrix will be denoted by the lowercase letter of 

the corresponding matrix uppercase letter with subscripts defining the element index. The matrix 

that is to be processed, matrix A, will be separated into three main matrices when subjected to 

Singular Value Decomposition: 

A= SVD^T 

Where A represents an (n x p) matrix composed of n observations and p variables. S is an (n x r) 

matrix referred to as the left singular matrix, V is an (r x r) matrix referred to as the diagonal 

matrix, and D is a (p x r) matrix referred to as the right singular matrix. The diagonal matrix D is 
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of particular interest because it contains the square root of the eigenvalues of the matrix A^TA. 

The singular values lie on the diagonal elements of the matrix D with zeroes on the remaining 

elements or the off-diagonal elements. 

 The columns of matrix S contain eigenvectors computed from the AA^T matrix and the 

columns of the D matrix eigenvectors of the A^TA matrix [14]. With the left and right singular 

matrices, one can compute the coefficients and standard deviation of the principal components of 

the covariance matrix.  

To find the principal component scores we multiply A by D (Note that we are multiplying 

the original matrix by D not the transpose of D) as follows: 

P = AD = (SVD^T)D = SV   

Where D^TD = I which is an identity matrix with dimensions (r x r). P is then a matrix whose 

columns contain the Principal Component scores, or loadings, with dimensions (n x r). The row 

elements on the P matrix contain the projection scores of each of the n variables along each of the 

Principal Components.  

 The Principal Component scores are a measure of the variance of the matrix A. The 

geometrical interpretations is that when a matrix is subject to Principal Component Analysis 

procedure the original matrix is rotated in such a manner that the variance is maximized. This is 

seen when analyzing the Principal components of the processed matrix. The resulting projection 

scores obtained from the P matrix are the projections of the n variables onto an rth dimensional 

space in which each of the r axes spans the space corresponding to the new set of r Principal Axes. 

In a sense, the rth dimensional coordinate space spanning the original matrix is rotated to that of 

the one provided by the new set of orthogonal Principal Axes corresponding to the Principal 

Components. The new set of axes are ordered such that the first Principal Axes corresponds to that 
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of the highest variance in the matrix A. This means that the first few principal components contain 

the most variance. Often one can find that the first three principal components are sufficient to 

describe the majority of the variance, containing up to 99% of the variance of the matrix or dataset 

[2]. Figure 2.1 [15], displays a plot of words found in a dictionary relating the number of letters in 

a word (vertical axis, red) vs the number of lines in the definition (horizontal axis, red). The green 

axes labeled one and two correspond to the first and second principal components of the data, 

respectively. The second set of axes has been superimposed to demonstrate the geometrical 

meaning of an orthogonal rotation of the matrix.  

Whenever necessary, one can determine the number of principal components required to 

properly represent the amount of variance needed for classification. This amount is, of course, 

arbitrary as the amount of variance per principal component can vary. By determining the 

appropriate number of components required to describe the variance of A, we can then reduce the 

dimensionality of the matrix or data set we need to analyze the data set. The following three 

methods have been proven to work and have a good intuitive standing [12].  
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Figure 2.1 Words on a dictionary 

 

 

 

 

Figure 2.1: Plot of words found in a dictionary. Here the number of words has been graphed vs. 

the number of lines in the definition of said words. 

 

Cumulative Percentage of Total Variation: Given that the sum of the variances of the 

elements of A is the sum of the variances of the principal components in P, we can simply sum the 

column elements of Z to find the amount of variance held by each principal component. Once the 

degree of variance is determined, the following task is then to determine the amount of variance 

desired and to choose the set of principal components required to match that degree. The degree 

of variance chosen can be determined based on the characteristics of each dataset with an 

appropriate analysis of the principal components. Namely, identifying the source of variation per 

principal component then choosing the appropriate set of components.  

The second method utilized is that which evaluates the Size of Variances of Principal 

Components. Here the relevant principal components are determined by how close the variance 
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held by each component is to a value of one. In a matrix where all the elements of A are 

independent of each other, i.e. uncorrelated, the principal components will contain a variance of 

one. This means that those components whose variance is less than that hold very little information 

regarding the matrix and is of no interest to the classification process. This is condition is referred 

to as Kaiser’s rule, where only the components having a variance greater than one are chosen. In 

general, only a single principal component will be retained per variable group. 

The Scree Graph and the Log-Eigenvalue Diagram: In this method, we make use of 

graphing utilities by plotting the eigenvalues of the matrix AA^T vs the principal component 

number. A line is then drawn joining each eigenvalue to the following eigenvalue corresponding 

to the next principal component. 

Because the eigenvalues are ordered according to their component number one can see that 

the ‘steepness’ of the lines tends to diminish from left to right. The component number at which 

the slope begins to level-off determines the number of components that should be retained. This 

point is referred to as the ‘elbow’ in the graph. A similar procedure is employed for a Log-

Eigenvalue Diagram, where the logarithm of the eigenvalues are plotted against their component 

number and joining the log of the eigenvalues as in the Scree Graph. The number of components 

retained will also be determined by the component at which the slopes approach a straight line. 

The advantages of the dimensionality reduction of a dataset can also be appreciated when 

using graphical representations of the principal components. Due to the majority of the variance 

being held along the first three principal components, the data set can be represented in a two or 

three-dimensional plane [12]. This allows for additional visual aids when interpreting the variance 

of a dataset or matrix. 
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Figure 2.2 Scree Graph Example 

 

 

Figure 2.2: Example of a Scree graph found in Jolliffe, 2002. 

 

In figure 2.3 [12], a plot is made of 50 observations and two variables displayed with high 

amounts of correlation along each axis. However, one can see that on the second component the 

variables are more dispersed. Figure 2.4 [12], is a graph where the observations are plotted with 

respect to their principal components. Here the variance is more expressed along the first 

component on account of this first component having the most variance as mentioned earlier. 

Principal Component Analysis is a helpful tool when a dimensionality reduction is desired, 

and an unsupervised technique is of interest. One can see why it is amongst the most popular 

multivariate statistical technique [15]. 
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Figure 2.3 Observations vs components 

 

 

Figure 2.3: Plot of 50 observation vs two component 
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Figure 2.4 Principal components two-dimensional plot 

 

 

Figure 2.4: Plot of 50 observations with respect to principal components 

 

  



12 

 2.2 Linear Discriminant Analysis 

Linear Discriminant Analysis is another technique used for data classification and 

dimensionality reduction. However, this technique is a supervised learning technique, as opposed 

to principal component analysis which is unsupervised [19]. Linear Discriminant Analysis has two 

basic objectives: Discrimination and Classification. When undergoing the task of discrimination, 

a learning data set containing multivariate observations are used to build a classifier. This classifier 

obtains the largest separability between a set of n predefined or known classes. This defines this 

method as a supervised learning technique. Once the classifier is obtained we can use it to predict 

or classify a new set of observations for which we have no prior class knowledge. To do this we 

must construct a linear discriminant function or in case n = 2, Fisher’s linear discriminant function 

[19]. This function is derived via a linear combination of the learning set. The application of the 

linear discriminant function is regarded as a linear transformation of some data set D. 

There are two transformations that a data set can undergo when determining the linear 

combination of a training set, a class-dependent, and a class-independent transformation. The 

former maximizes the ratio between-class variance to within-class variance, therefore obtaining 

the optimal class separability. The latter maximizes the overall variance within-class variance, 

forgoing class identity when performed [16] [20]. To make use of either transformation, a data set, 

or in our case a matrix, must be supplied for each of the classes that are to be analyzed. That is, 

the data set supplied must be separated into individual subsets according to class type which they 

belong to. The classes, in this case, must be known before discriminant analysis is used.  

𝑫 = [𝑺𝟏, 𝑺𝟐, . . , 𝑺𝒏] 
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Where D is the data set that is to be analyzed and 𝑺𝟏, 𝑺𝟐, . . , 𝑺𝒏 the sets for each of n classes 

all in matrix form. The mean 𝑚𝑛 of each data set is then computed individually for each class data 

sets and an additional mean 𝑚𝑎𝑙𝑙is computed for the entire dataset D. 

𝑚𝑎𝑙𝑙 =  ∑  𝑝𝑖 ∙ 𝑚𝑖

𝑛

𝑖=𝑖

 

Where 𝑝𝑖 is the a priori probability of the 𝑖𝑡ℎ class. For both transformations, we define the 

class separability using the within-class and between-class scatter as follows: 

𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑐𝑙𝑎𝑠𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟: 𝑺𝑤 =  ∑ 𝑝𝑖 ∙ (𝑫 − 𝑚𝑖) ∙

𝑛

𝑖=1

(𝑫 − 𝑚𝑖)
𝑇 

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑐𝑙𝑎𝑠𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟: 𝑺𝑏 =  ∑ 𝑝𝑖 ∙ (𝑚𝑖 − 𝑚𝑎𝑙𝑙)(𝑚𝑖 − 𝑚𝑎𝑙𝑙)𝑇

𝑛

𝑖=1

 

With this, we can define the criteria to optimize the class-dependent and class-independent 

transformation by transforming the scatters to set of numbers as follows [16][20]: 

 

𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: 

𝑪𝑐−𝑑 =  ∑ 𝐶𝑖

𝑛

𝑖=1

=  [(𝑫 − 𝑚𝑖) ∙ (𝑫 − 𝑚𝑖)
𝑇]−1 × 𝑺𝑏 

 

𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 − 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: 

𝐶𝒄−𝒊𝒏𝒅 =  [𝑺𝑤]−1 × 𝑺𝑏 

 

The linear discriminant functions are then, 

 

[𝑼𝑐−𝑑]𝑖 =  𝑪𝑐𝑑
𝑇 × 𝑺𝑖  
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[𝑼𝑐−𝑖𝑛𝑑]𝑖 =  𝑪𝑐−𝑖𝑛𝑑
𝑇 × 𝑺𝑖 

 

Where 𝑼𝑐𝑑  and 𝑼𝑐−𝑖𝑛𝑑 correspond to the discriminant function for class-dependent and 

class-independent transformation criteria, respectively. These transformations result in 

discriminant scores which when applied to a specific 𝑺𝑖 data set. These scores are then used to 

determine the amount of separation obtained using the discriminant function, typically displayed 

as a Gaussian distribution. 

As an example of this classification procedure, suppose we have two data sets 𝑺𝐴 and 𝑺𝑏 

whose between-class separation we wish to optimize. We follow the procedure above using the 

class-dependent criteria to obtain the linear transformation 𝑺𝐴 and 𝑺𝐵 and use a Gaussian 

distribution to display the linear transformation for each class along the new axis defined by the 

discriminant function. A plot of the two example data sets is provided below, where both classes 

are projected along 𝑋1 and 𝑋2 axes using Gaussian distributions, Figure 2.5. We can see a 

considerable amount of overlap along each of the axes. However, the projection score obtained 

from the linear discriminant function is exhibiting a larger separation. 
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Figure 2.5 Two class LDA 

 

 

Figure 2.5: Is an example of two classes exhibiting an overlap along the axes X1 and X2 axis, but 

full separation along the discriminant function, [18]. 

 

With this discriminant function, we can calculate the projections score for a test dataset, 

𝑫𝑡𝑒𝑠𝑡 for which we have no prior knowledge of classification status.  

[𝑼𝑐−𝑑]𝑖 =  𝑪𝑐𝑑
𝑇 × 𝑫𝑡𝑒𝑠𝑡  

 

In this manner, the linear discriminant function obtained from our optimized class 

separation can be used to determine which class the elements of 𝑫𝑡𝑒𝑠𝑡 belong to according to their 

scores. We can also note that our system is no longer described in two dimensions 𝑿1 and 𝑿2. 

Instead, it is described in one, along that of the discriminant function. 
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 2.3 Linear Support Vector Machines 

Support Vector Machines is a method used in Machine Learning classification. The goal 

of support vector machines is to establish a hyperplane or line that separates a set of n classes. The 

quality of the separation is obtained by maximizing the margin of separation between classes [21]. 

This method requires the use of a training set to establish the classification parameters, making it 

a supervised learning technique [21] [22]. Two cases of interest serve as an introduction: the 

Separable Case and the Non-Separable case (for this thesis, I will focus on the separable case). 

The Separable case also referred to as the Maximal Margin Classifier, establishes the condition 

that variables must lie on one side or the other of the hyperplane. To show this we begin by 

obtaining a training sample S. This sample must be known to be linearly separable to train the 

classifier. The training set must take the following form: 

𝑆 =  {(𝒙𝑖, 𝒚𝑖)}  where 𝑖 = 1, … , 𝑙 

Here 𝒙𝑖 represents a p-dimensional vector or a variable with p-observations. 𝒚𝑖 is the 

assigned class or “truth” and will take the value of either 1 or -1 [22]. To define the hyperplane 

that best separates the two classes, namely class 1 and -1, we first define the point lying on the 

hyperplane, 𝐻, with the following condition: 

𝒘 ∙ 𝒙 + 𝑏 = 0 

Where 𝒘 is the vector normal to the hyperplane and the distance from the hyperplane to 

the origin is defined as 
|𝑏|

‖𝒘‖
. We now define the margin of this hyperplane as the minimal distance 

between the hyperplane and the closest set of 𝒙𝑖. If, for example, we denote a set of variables 𝒙𝑖 

as +𝒙 corresponding to 𝑦 = 1, −𝒙 corresponding to 𝑦 = −1, we can assign them a corresponding 

distance +𝑑 and – 𝑑 from the hyperplane. With this, we can then define the margin as (+𝑑) +
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(−𝑑). The margin results in two additional hyperplanes 𝐻1 and 𝐻2. The first hyperplane is found 

by the following condition:  

𝒙𝑖 ∙ 𝒘 + 𝑏1 = 1 where 𝑏1 =  
|1−𝑏|

‖𝒘‖
 

Similarly, for the second hyperplane we have: 

𝒙𝑖 ∙ 𝒘 + 𝑏2 = −1 where 𝑏2 =  
|−1−𝑏|

‖𝒘‖
 

Notice that both hyperplanes 𝐻1 and 𝐻2 are parallel to 𝐻. The margin can then be defined 

as 
2

‖𝒘‖
 which can be maximized by minimizing ‖𝒘‖. The training data is then assumed to be subject 

to the following constraint: 

𝒙𝑖 ∙ 𝒘 + 𝑏 ≥ 1 for 𝒙𝑖 values corresponding to 𝑦𝑖 = 1 

𝒙𝑖 ∙ 𝒘 + 𝑏 ≤ −1 for 𝒙𝑖 values corresponding to 𝑦𝑖 = −1 

We are now left with the task of minimizing ‖𝒘‖, this can be done with the use of Lagrange 

multipliers in the following fashion [21][22]: 

𝐿 =
1

2
‖𝒘‖2 −  ∑ 𝛼𝑖𝑦𝑖(𝒙𝑖 ∙ 𝒘 + 𝑏) 

𝑙

𝑖=1

+ ∑ 𝛼𝑖

𝑙

𝑖=1

 

The derivative is then taken with respect to 𝒘 and 𝑏, resulting in the two conditions below. 

𝒘 =  ∑ 𝛼𝑖𝑦𝑖𝒙𝑖 
𝑙
𝑖=1  and   ∑ 𝛼𝑖𝑦𝑖 = 0𝑙

𝑖=1  

With this, we can make use of Karush-Kuhn-Tucker's complementary conditions to find 

the solutions. There will exist a Lagrange multiplier for each 𝒙𝑖. However, the support vector will 

be characterized as those whose 𝛼𝑖 > 0 which lie on one of the hyperplanes 𝐻1 or 𝐻2 [22]. In the 

image that follows a solid line black line denotes the hyperplane 𝐻, and the dashed lines 

hyperplanes 𝐻1 and 𝐻2. The points whose Lagrange multiplier is greater than zero are circle. 
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Figure 2.6 Example of LSVM for a Seperable Case 

 

 

Figure 2.6: An example of a linearly separable data set. Here the support vectors have are 

denoted by a circle around them [22]. 

 

It is important to note that no point lies between the hyperplanes 𝐻1 and 𝐻2, this is due to 

the conditions set forth by the Maximal Margin Classifier.  

 Similarly, we use a training data set for a Non-Separable Case. This time, however, 

the constraints will change as follows: 

𝒙𝑖 ∙ 𝒘 + 𝑏 ≥ 1 −  𝜀𝑖 for 𝒙𝑖 values corresponding to 𝑦𝑖 = 1 

𝒙𝑖 ∙ 𝒘 + 𝑏 ≤ −1 +  𝜀𝑖 for 𝒙𝑖 values corresponding to 𝑦𝑖 = −1 

Here, 𝜀𝑖 corresponds to an error made at 𝒙𝑖, This allows for some misclassification that is 

to be determined by the user. The Non-Separable case is also referred to as a Soft Margin Classifier 

because of 𝜀𝑖 that was introduced [21] [23].  

Linear Support Vector Machines are known to be effective classifiers with an additive 

advantage of being able to handle high dimensionality data [4]. To test such a classifier we are 
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only left with determining on which side of the hyperplane 𝐻 (or decision boundary, our test data 

is on. It should also be noted that the Non-Separable case or the use of Non-linear Support Vector 

Machines are more likely to be used in real-world applications [21][22]. 

 

 

 2.4 Random Forest 

Random Forest is yet another common method used for classification and regression, 

within the realm of supervised statistical learning (for this thesis I will focus on classification). A 

random forest is constructed by a set of random decision trees or classification trees. A 

classification tree is “grown” by asking a series of ordered questions, where each successive 

question depends on the answers to the previous question. Decision trees begin with a root node 

containing the entire set of variables found in the learning set 𝐿. Nodes can take the form of a 

terminal or nonterminal node. For a nonterminal node, a binary split can occur when the Boolean 

question is used to determine if the condition is satisfied or not.  

Example of Boolean question: is 𝑥𝑖 ≤ ∝𝑖? 

Where ∝𝑖 is some threshold value determined by the user. The binary split then results in 

two daughter nodes. A terminal node, on the other hand, is a node that cannot be split and results 

in a classification label. An example of a classification tree is given below, Figure 2.7, where the 

terminal nodes (5) are marked with 𝜏1 −  𝜏5. 
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 Figure 2.7 Decision Tree map 

 

 

Figure 2.7: Example of a decision tree [19]. 

 

These decision trees are obtained taking bootstrapped training samples from the learning 

set, as in the Bagging technique [11]. This method, however, improves upon the Bagging method 

by the decorrelation and averaging of the decision trees [26]. The general outline for the 

implementation of a random forest is to first obtain a bootstrap sample from the learning set 𝑳. 

From this sample, a tree classifier is grown using a set of 𝑚 randomly chosen predictors [19] [11]. 

For classification purposes, 𝑚 takes the value of √𝑝 or a minimum of one, where 𝑝 is the number 

of inputs. For regression, 𝑚 takes the value of 
𝑝

3
 or a minimum of five [26]. The predictors serve 

as split candidates from which one is chosen to split the node or tree. It is important to note that 

when the set of 𝑚 values is selected they are not removed from the learning set. This means that 

the 𝑚 value (determined according to the intended purpose of classification or regression) remains 

constant throughout the process [18]. From the 𝑚 candidates, the best spit is determined by the 
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Gini or entropy index. A series of random vectors 𝒗𝑖 is generated from each classification tree 

which is independent of previous vectors. This independence is a result of using the entire learning 

set to generate the trees (𝑚 values chosen are not removed from 𝐿). A classifier ℎ(𝒙, 𝒗𝑖) is then 

generated by the vector 𝒗𝑖, where 𝒙 is an observation. The set of tree-like structures {ℎ(𝒙, 𝒗𝑖) } is 

called a random forest, which determines the class assigned to 𝒙. To complete the random forest, 

the Out-of-Bag error is estimated by averaging the error frequency found for observations 

predicted using the trees. This out-of-bag error is regarded as an internal validation because, in 

principle, not all the variables chosen from the learning set were also used to create the trees [29]. 

Once the forest is grown to the desired size and the out-of-bag error is determined, it can be applied 

to test data for classification. 
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Chapter 3: Proposed Classification Method 

 3.1 Overview of Method 

Here I will propose an unsupervised “observation” reduction technique intended for the 

classification of two classes. This method relies on the systematic “observation” or subject 

reduction in a data set based on variance held by the principal components of a matrix.  

I begin with some data set 𝑨, consisting of n observations and p variables.   Then 

decompose this matrix using singular value decomposition, as described in the previous chapter, 

to compute the principal components of this matrix. Then extract m principal components that 

contain approximately 90% of the variance in the matrix. 

Once the first m principal components have been extracted, the components are then sorted 

in descending order while simultaneously indexing them. Performing the indexing along the rows 

of 𝑷 because they correspond to the subjects or observations, meaning that the observations with 

the highest variance would be at the top of the sorted matrix and the observations with the least 

variance at the bottom. This is a critical point in the analysis as I propose that the observation(s) 

with the least amount of variance should be removed from the dataset to improve the classification. 

The reasoning is as follows because a low variance is associated with poor separability, eliminating 

the observation(s) based on the principal components should, in turn, improve the separability and 

the classification of the data set. This results in the identification and elimination of outliers. 

Once the principal component(s) with the lowest variance is identified the indexing can 

then be used to determine what observation(s) should be removed from the original data set. This 

process is iterated until the improvement no longer occurs. 
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 3.2 Experimental Design 

The data set employed in the following analysis has been obtained from the Genome 

Expression Omnibus. Here one can find gene expression data on a variety of subjects and diseases. 

Data sets obtained from this database are MIAME and MINSEQ compliant, which means they 

contain experimentally relevant information about the subjects. Because of this, my initial task is 

to remove information that is not relevant for classification purposes. The gene expression data 

comes in a form of matrix arrays where the columns represent subjects or observable and the row 

contained the expressions which were measured. To verify the classification improvement, I chose 

a data set that included the subject’s or observable’s classification. For example, I would retain a 

“classification” row that stated whether the sample was a tumor or non-tumor tissue sample. I 

opted for a numerical representation of “1” and “0” for tumor and non-tumor classes, respectively. 

This is to simplify the identification of subjects when determining the classification accuracy. This 

row, however, is removed before the principal components are calculated so that this technique 

remains unsupervised. I will label this matrix as 𝑨′ to distinguish it from the matrix I will be 

processing. This matrix, 𝑨′, is an (𝑝 + 1) × 𝑛 containing n observables as columns and p variables 

as rows with the additional class row. 

Once the gene expression matrix is ready, I then proceed to import the matrix to MATLAB, 

the software I will be using to perform the numerical calculations. Before the matrix is processed 

I take the transpose of 𝑨′, which results in a 𝑛 × (𝑝 + 1) matrix which now has the form required 

by PCA. I then remove the column vector containing the observation’s class values resulting in 

the previously mentioned 𝑨 matrix. Now that the gene expression matrix is properly formatted I 

calculated the principal component matrix 𝑷, as described in the first section of Multivariate 

Methods using MATLAB. To determine the number of m principal components required to 
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describe the system I used the Cumulative Percentage of Total Variation method. Where my 

variance threshold was between 70 – 90% of variance as suggested by Jolliffe, 1986 [12]. This 

resulted value of m = 1 principal component(s), where the first principal component accounted for 

approximately 89.65% of the variance in the data set tested. With this principle component, I 

determined the observation(s) with the least amount of variance. I did this by extracting the first 

column of the matrix 𝑷 corresponding to the first component and sorting the column in descending 

order. When using the sorting command, I also included an indexing feature to identify the 

observation with the least amount of variance. Using the index value for the last principal 

component I then removed that observation from matrix 𝑨. I repeated this process until the 

classification is no longer improved.  

Sorting the 𝑷 matrix is a critical part of this proposed method as I argue that the 

observation(s) with the least amount of variance can be treated as outliers which if removed should, 

in turn, improve the separability of the data set and consequently improve the classification. 

To determine the validity of observation reduction I compared the classification results 

with the one provided by a standard Linear Support Vector Machine application found in 

MATLAB. Using the first two principal components of the 𝑷 matrix and the class column of the 

transposed matrix 𝑨′, I set up a new matrix 𝒁𝑖 for each iteration, 𝑖 = 1, 2, …., performed. Each 

matrix 𝒁𝑖 was classified using the application mentioned above to determine the accuracy 

improvement. This is was possible because the support vector machine application provides an 

accuracy score for each 𝒁𝑖. In the following section, I will provide my experimental results where 

an improvement can be seen after a certain number of iterations. 
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 3.3 EXPERIMENTAL RESULTS 

To test the validity of the method I have used the data set GDS4336 obtained from the 

Genome Expression Omnibus. This set contains the human gene expression profiles for 45 

matching pairs of Pancreatic Ductal Adenocarcinoma tumor and adjacent non-tumor tissue 

samples, for a total of 90 samples. Using the first 1,000 gene expressions, I set up a matrix 𝑨′ with 

dimensions (1001 × 90) in line with the experimental design described in the previous section. 

Using the procedure in the previous section, I iterated the process a total of 10 times and used 

Linear Support Vector Machines to determine the accuracy of the classification after each iteration. 

Throughout the iteration process, the first two principal components maintained an average 

variance of approximately 89.6%, maintaining 𝑚 = 1 value consistent throughout the observation 

reduction. Table 3.1 contains my findings. 

 

Table 3.1 GDS4336 

Table 3.1: GDS4336 dataset 

Iteration Accuracy 

1 81.1% 

2 84.3% 

3 85.2% 

4 87.4% 

5 86.0% 

6 87.1% 

7 85.7% 

8 84.3% 

9 85.4% 

10 85.2% 
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From the table, an improvement can be seen as the process is repeated until a maximum 

classification score is reached at iteration 4. When the process continues to be repeated there is 

fluctuation in the scores in a decreasing manner. The following three figures correspond to the 

first, fourth, and tenth iterations plotted using linear support vector machines. The axis labeled 

column_2 and column_3 correspond to the first and second principal components of each 

iteration respectively. 

Figure 3.1 LSVM plot for 𝒊 = 𝟏 

 

 

Figure 3.1: Plot containing the first two principal components for 𝑖 = 1 
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Figure 3.2 LSVM plot for 𝒊 = 𝟒 

 

 

Figure 3.1: Plot containing the first two principal components for 𝑖 = 4 
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Figure 3.3 LSVM plot for 𝒊 = 𝟏𝟎 

 

 

Figure 3.1: Plot containing the first two principal components for 𝑖 = 10 

Although not entirely appreciable in the figures above, the values of the elements of 𝑷 change 

after each iteration. This was expected as the variance in the system is altered as the observations 

are removed. 

  



29 

Chapter 4: Accurate classification of normal/disease sample using Raman Confocal 

Microscopy 

 4.1 MOTIVATION  

 In a recent paper, our group showed that the bone samples of patients with renal 

osteodystrophy (ROD) exhibit an overall increase in phenylalanine and a decrease in calcium 

content, mineral to matrix and carbonate to matrix ratios, which can be measured by proper ratios 

of the area of individual Raman spectra [28]. Although one Raman spectra is clearly not sufficient 

to assign at statistically significant levels the samples as being either "Normal" or "ROD", the 

peculiarity of Raman Microscopy to collect many independent spectra from the same sample 

(~22500)  allowed us to identify the samples with excellent accuracy (p < 10-300 ). Power analysis 

showed that using one suitable ratio, a relatively low number of spectra  (of the order of 20-50) is 

required to identify the ROD samples at the typically desired level of accuracy (p=0.05). The main 

goal of the work presented in this chapter is to show that the simultaneous use of all four ratios 

mentioned (the ones proportional with phenylalanine and calcium content, mineral to matrix and 

carbonate to matrix) for each individual spectra, as well as the classification methods developed 

by us, allows one to classify the sample at a good accuracy from only a few spectra, which raises 

the possibility to of in vivo detection of ROD, with a biosensor formed by a cluster of optical fibers 

with multiplexed Raman signal detection.  The single spectra classification is performed initially 

by a standard Linear Discriminant Analysis with 10-fold cross-validation, and a score for each 

spectra is attributed based on a logit transform. The resulting confusion matrix shows that the 

probability of correct assignment (Normal or ROD) from a randomly selected spectra is about 

80%. Statistical analysis shows that by employing only a reasonably small number of randomly 

selected spectra from any sample (i.e., spectra recorded at different positions from the same 



30 

sample) the classification of the sample as "Normal" or "ROD" can be obtained at any desired 

degree of accuracy.  The advantage of this procedure is that it takes into account explicitly the 

known physical differences between the "Normal" and "ROD" samples, and the classification is 

performed using only four variables, which reduce the potential impact of multicomparison 

correction analysis (e.g., Bonferoni [] or Hochberg-Israeli  [] )  on the final p-value. Finally, all the 

information contained in the spectra is used in the classification using a statistical learning 

algorithm; the dimensionality is reduced using Principal Component Analysis and 20 directions of 

most variations are classified via Support Vector Machines algorithm implemented in MATLAB. 

The later classification, although employing much more information (1024 variables), it is only 

marginally superior to the 4-variables approach.     

 

 4.2 PRELIMINARY DATA ANALYSIS 

 Each spectra has a linear background individually subtracted  (between 377 cm -1 
 and 1720 

cm-1) and is normalized to the laser line ( each of the laser lines is normalized to have the same 

integral area for all the spectra after the background subtraction). The integral intensity of the 

relevant bands are calculated as follows: between 395 and 469 cm-1  for the   2PO4
3 band centered 

at about 430 cm-1, between 907 and 990 cm-1  for the   1PO4
3 band centered at about  960 cm-1,  

between 970 and 1040 cm-1  and also between 1574 and 1543 cm-1  for the two phenylalanine bands 

centered at 1005 and 1609 cm-1, respectively, between 395 and 469 cm-1  for the   2PO4
3 band 

centered at about 430 cm-1.     
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 The four ratios involved in the analysis are calculated for each of the individual bone 

samples (three corresponding to "Normal" cells and four corresponding to "ROD"). A common 

supervised learning statistical analysis, Linear Discriminant Analysis using logit classification is 

performed for each spectra. Alternatively, all the information contained in spectra is performed by 

dimensionality reduction to the most relevant 20 variables, using Principal Component Analysis, 

followed by Linear Support Vector Machine classification using 10 fold validation.  The reason 

for the prior dimensionality reduction is to reduce the computing time devoted to the SVM 

algorithm.   

 

 4.3. RESULTS AND DISCUSSION 

 The integral spectra (after background subtraction and laser line normalization) for the 

"Normal" and "ROD" samples are presented in Figure 4.1. Although differences (particularly in 

the spectral region corresponding to phenylalanine) can be observed, it should be noted that each 

integral spectra is an average over 22500 individual spectra measured for each sample and 

therefore have excellent statistics.  
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Figure 4.1 Integral Raman Spectra 

 

Figure 4.1: Integral Raman spectra (each averaged over 22500 spectra with the background 

individually subtracted) of 7 samples (three "Normal" and four "ROD") 

 

 

 The situation can be understood easier from the Figure 4.2a and 4.2b, in which the average, 

as well as 1-sigma ellipsoids, are plotted for the Ratio 1 vs Ratio 2, and Ratio 3 vs Ratio 4, 

respectively. It is clear that the average over 22500 spectra (the filled circles) can be easily used 

for the discrimination between "Normal" and "ROD" samples, particularly when looking at 

phenylalanine Ratio 4; however, by using only individual spectra, the classification is much 

poorer.  
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Figure 4.2a Ratio 2 vs. Ratio 1 

 

Figure 4.2a: Ratio 2 of the individual Raman spectra vs. Ratio1. 

 

 Ratio 1 is the ratio between the integral areas of the bands centered around 960 cm-1 (  1PO4
3 ) 

and 1660 cm-1 (amide I) respectively, shown to be associated with the mineral-to-matrix content 

of the samples. Ratio 2 is the ratio between the integral areas of the bands centered around 1074 

cm-1 (carbonate)   and 1660 cm-1 (amide I), proportional to the carbonate-to-matrix-content of the 

sample, associated with bone modeling and turnover rate. The circles are the average values for 

each sample and the semi-axes of the ellipsoids are equal to one standard deviation.  
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Figure 4.2b Ratio 4 vs Ratio 3 

 

Figure 4.2b: Ratio 4 of the individual Raman spectra vs. Ratio3. 

 

 

 Ratio 3 is the ratio between the integral areas of the bands centered around 430 cm-1 (  2PO4
3 ) 

and 1275 cm-1 (amide III) respectively, shown to be associated with the calcium content of the 

samples. Ratio 4 is the ratio between the integral areas of the bands centered around 1005 cm-1 

and 1609 cm-1 (phenylalanine) and 1660 cm-1 (amide I), proportional with the phenylalanine 

content of the sample. The circles are the average values for each sample and the semi-axes of 

the ellipsoids are equal to one standard deviation.  
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 To visualize this difficulty, In Figures 4.3a and 4.3b the same ratios are plotted for 

individual spectra, and it is much more difficult to assign a spectra as belonging to a "Normal" or 

a "ROD" cell with reasonable accuracy. Therefore, whereas it is apparent that 22500 

measurements for each cell are more than enough to assign the cell to "Normal" or "ROD" status 

with excellent accuracy, the main focus of this work is to determine the minimum number of 

spectra required to have the sufficient (desired) accuracy.    

Figure 4.3a Ratio 2 vs Ratio 1 for individual spectra 

 

Figure 4.3a: Values of Ratio 2 vs. Ratio 1 for individual spectra. 
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Figure 4.3b Ratio 4 vs Ratio 3 for individual spectra 

 

Figure 4.3b: Values of Ratio 4 vs. Ratio 3 for individual spectra. 

 

 Linear discriminant analysis with 10-fold cross-validation of the training data was 

employed on all the individual spectra (using as variables the four mentioned ratios), and the 

prediction classification has been performed using a logistic score transformation (a score less 

than one is likely to correspond to a spectra from a "Normal" cell and larger than one to a spectra 

from an "ROD" cell". The histogram of the results is presented in Figure 4.4 and the confusion 

matrix with the usual parameters related to prediction ability (based on only one spectra selected 

at random) are shown in Table 1.  
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Figure 4.4 Distribution Score for “Normal” and “ROD” 

 

Figure 4.4: Distribution of scores for "Normal" and "ROD" individual spectra; classification 

assumes a score of less than one for "Normal" and larger than one for "ROD" 

samples. The complete details of the confusion matrix and related parameters for 

individual spectra are provided in Table 4.1. 

 

 

 

 

 

 

 



38 

 

Table 4.1. Confusion matrix for single spectrum LDA classification (4 variables). 

 
Condition 

Positive 

Condition 

Negative 

Prevalence 

57.14% 

Accuracy 

80.5% 

Prediction 

positive 
70470 11205 

Precision 

78.3% 

FDR 

(false discovery rate) 

16.6% 

Prediction 

negative 
19530 56295 

FOR 

(false omission rate) 

21.7% 

NPV 

(negative predictive value) 

78.3% 

 
Sensitivity 

78.3% 

Specificity 

83.7% 

FPR 

(false positive rate) 

16.6% 

FNR 

(false negative rate) 

38.9% 

 

 An alternative statistics approach is to employ a Support Vector Machine algorithm for 

classification (by employing all the variables contained in the Raman spectra, namely each photon 

counts recorded at all the frequency measured). The corresponding confusion matrix and the 

related probabilities are revealed in Table 4.2. Whereas this approach involves a number of 

independent variables larger by about two orders of magnitude that the preceding approach, the 

classification is only marginally improved, which point to the fact that the four variables chosen 

from physical reasoning contain most of the differences between "Normal" and  "ROD" spectra. 

 Table 4. 2. Confusion matrix for single spectrum LSVM classification (~300 

variables). 

 
Condition 

Positive 

Condition 

Negative 

Prevalence 

57.1% 

Accuracy 

87.5% 

Prediction 

positive 
70470 9112 

Precision 

88.3% 

FDR 

(false discovery rate) 

13.5% 

Prediction 

negative 
10530 58388 

FOR 

(false omission rate) 

11.7% 

NPV 

(negative predictive value) 

88.3% 

 
Sensitivity 

88.3% 

Specificity 

86.5% 

FPR 

(false positive rate) 

13.5% 

FNR 

(false negative rate) 

15.6% 
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 To examine the minimum number of spectra required to classify an unknown sample, we 

assume that N spectra are measured (with N being an odd integer); if n>N/2 spectra have a score 

larger than one, the sample is assigned to "ROD", and in the other case to the normal. Given the 

probability p1 than a "Normal" spectra has the score less than 1 and p2 than a ROD spectra has a 

score larger than 1 (see Table 4.1), the probabilities for Type I (rejection of a true null hypothesis, 

or false positive), QI (N), and Type II error (non-rejection of a false null hypothesis, or false 

negative) QII (N) can be calculated from: 

   

 𝑄1(𝑁) = 1 −  𝑃1(𝑁)    = ∑ (
𝑁
𝑘

) (1 − 𝑝1)𝑁−𝑘𝑝1
𝑘

𝑘<
𝑁

2
𝑘=0   (1) 

 

     𝑄2(𝑁) = 1 −  𝑃2(𝑁)    = ∑ (
𝑁
𝑘

) (1 − 𝑝1)𝑁−𝑘𝑝1
𝑘

𝑘<
𝑁

2
𝑘=0   (2) 

        

which represents the probability that a number of k=N, N-1, ...k< N/2 spectra obtained from a 

"Normal" sample are wrongfully assigned, respectively that the k=N, N-1, ...k< N/2 obtained 

from a "ROD" sample are wrongfully assigned.  

 In Figure 4.5, the probability of Type 1 and Type II assignment error are plotted as 

functions of the number of independent spectra recorded; whereas the large figure indicates that 

the probability of assignment error can be made as small as desired if a sufficient number of 

sampling point are used, the inset shows that for a typically desired precision, a number of about 

10 independent spectra are sufficient.   
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Figure 4.5 Probability of Type I and Type II erors vs. Number of Spectra 

 

Figure 4.5: Probability of type I and type II errors vs. the number of randomly chosen spectra 

employed in classification. 

 

In the inset, it is shown that a relatively small set of spectra measured at different positions of a 

sample is sufficient for classification with typical accuracy (e.g., p<0.05).  

 The confusion matrix and the related classification parameters for using 11 independent 

spectra (taken from different positions) are presented in Table 4.3.  
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Table 4.3. Confusion matrix for 11 spectra classification. 

 
Condition 

Positive 

Condition 

Negative 

Prevalence 

57.1% 

Accuracy 

98.8% 

Prediction 

positive 
98.3% 0.5% 

Precision 

98.3% 

FDR 

(false discovery rate) 

0.5% 

Prediction 

negative 
1.7% 99.5% 

FOR 

(false omission rate) 

0.0174% 

NPV 

(negative predictive value) 

98.3% 

 
Sensitivity 

78.3% 

Specificity 

99.5% 

FPR 

(false positive rate) 

0.5% 

FNR 

(false negative rate) 

2.3% 

 

 Since a sensor that can record such a small number of independent spectra is in principle 

feasible (e.g. by multiplexing the recorded Raman signal on a bunch of optical fiber), the present 

work supports the utility of creating such a sensor. 
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Chapter 5: Conclusions 

 The main goal of this work was to develop statistical approaches that improve the 

classification, particularly for low sample number data. In Chapter 3, it was shown that our method, 

to use a restricted set of vectors for orthogonal projections, has the ability to improve significantly 

over traditional PCA and  LDA analysis. The method has been extended and applied to classify  

Raman Confocal Microscopy data. It was shown that, whereas traditional methods can offer 

excellent classification for large sample numbers (of the order of 20000 spectra),  our method can 

provide a very good classification for a much smaller data set  (of the order of 10 spectra). This 

raises the possibility of constructing Raman sensors for accurate in vivo detection of various 

diseases.   
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