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Abstract

This work is devoted to the study of modeling high frequency time series including extreme

fluctuations. As the high frequency data are collected at extremely fine scales, the fluctua-

tions can capture the dynamics of data that evolve over time. A class of volatility models

with time-varying parameters is used to forecast the volatility in a stationary condition at

different lags. The modeling of stationary time series with consistent properties facilitates

prediction with much certainty.

A large set of high frequency financial returns, closing prices of stock markets, high

magnitudes of seismograms generated by the natural earthquakes, and the mining explo-

sions is studied. The Generalized Autoregressive Conditional Heteroscedasticity (GARCH),

Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH) and Stochas-

tic Volatility (SV) models are used to predict the data volatility. The data involving statis-

tical noise and inaccuracies are continuously changing over time. Thus a filtering technique

is performed to estimate the time-varying parameters by minimizing their variance. It is

shown that the stochastic volatility (SV) is a better forecasting tool than GARCH (1, 1)

and APARCH models, since it is less conditioned by autoregressive past information. We

forecast one-step-ahead log volatility that is able to detect the extreme fluctuations of high

frequency data.

A new approach is proposed to simulate the special case of high frequency data that do

not fit always with the SV model. As the data reflect stochastic nature of most measure-

ments over time, a stochastic differential equation with Ornstein-Uhlenbeck process has

been applied in this case. This analysis helps to achieve the higher accuracy and fidelity

for estimating the time-varying parameters of data volatility via Maximum Likelihood Es-

timation.
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Chapter 1

Introduction

This chapter discusses on the literature review and research problems of this work. Some ba-

sic tools and definitions are briefly presented to facilitate the understanding of the method-

ologies in the application to the high frequency datasets.

1.1 Background & Research Problem

The forecasting of time series with estimation of time-varying parameters is very impor-

tant in modeling the dynamic evolution of data volatility. It is assumed that a model

that attracts the attention of investors can potentially be used to predict key variables, for

instance, returns, volatility, and volume of stock market. It is to be noted that the devel-

opment of forecasting methodologies in geophysics helps us to identify the type of source

that generates a recorded seismic signal. This type of methodologies is generally applied to

various fields, such as finance, geophysics, and safety of power system [1]. A reliable tech-

nique of forecasting, including the related time information, is essential to construct less

risky portfolios or to make higher profits without the loss of generality and computational

cost.

Financial time series manifests typical non-linear characteristics, and they involve volatil-

ity clustering where the returns indicate their dynamism. In this study, we develop a

volatility forecasting method in which the logarithm of the conditional volatility follows an

autoregressive time series model. R. F. Engle’s paper introduced the Autoregressive Con-

ditional Heteroskedasticity (ARCH) model to express the conditional variance of available

returns as a function of previous observations [2]. Few years later, S. Bollerslev modi-
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fied this concept and generalized the ARCH (GARCH) model that allows the conditional

variance to depend on the previous conditional variance as well as on the squares of pre-

vious returns [3]. In other words, the system volatility in GARCH model is driven by the

observed values in a pre-deterministic fashion. In fact, over the past few decades, a con-

siderable amount of deterministic models has been suggested to forecast the observations,

noise, and data volatility [4], [5], [6]. The reason is that they are simple and help to account

for clustered errors and non-linearity issues. In the present study, we propose GARCH (1,

1) and asymmetric power ARCH (APARCH) models in a stationary way that is useful in

the analysis of high frequency financial time series.

It is now widely believed that the measurements of a sequence of geophysics and finance

are stochastically dependent on the time needed. In other words, there is a correlation

among the numbers of data points at successive time intervals. In Ref. [7], [8], and [9],

the authors used stochastic models to describe a unique type of measurement dependence

in geophysical and financial data. It has been observed that the high frequency data may

follow different behaviors over time, for instance, the mean reversion or extreme fluctua-

tions. Such observations are unlike those of the classical modeling foundations. But the

concept of time-dependent observations suggests that the current information needs to be

evaluated on the basis of its past behavior [10]. This behavior of time series makes it possi-

ble to effectively forecast volatility and to obtain some stylized facts, namely, time-varying

volatility, persistence, and clustering.

A distinctive feature of the high frequency time series is that the deterministic model

and other volatility models do not show for a full statistical description of volatility [11].

When there are extreme fluctuations in the time series, the GARCH (1, 1) model predicts

the volatility arbitrarily since it cannot capture the high volatile nature of the data [8]. It

is because the volatility is not directly observable from the data. If the volatility is low at

any data point, it does not imply that the risk of seismic events or financial markets is low

too. The reason is that the volatility can be low while the probability distributions of data

contain fat tails. So a dataset with low volatility can have much more extreme outcomes
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compared to another dataset with higher volatility [12]. In this work, a stochastic model

with filtering technique is proposed as a way to estimate the time-varying parameters for

data volatility. A continuous-time stationary sequences corresponding to finiancial returns,

seismograms of natural earthquakes, and mining explosions are studied to forecast the

stochastic volatility by using estimated parameters. These stationary sequences are very

effective to capture the characteristic of time-varying parameters in an appropriate way [13].

The adequacy and stationarity of the data are determined by computing the estimated

standard error and some powerful tests respectively, which will be discussed in chapter

3. The main difficulty of SV model is to fit it into the high frequency data with higher

accuracy. The reason is that their likelihood estimations involve numerical integration over

higher dimensional intractable integrals [14], whose maximization is rather complex. In

this case, a recursive filtering technique with initial parameters has been used to estimate

the time varying parameters via Maximum Likelihood Estimation (MLE).

Another difficulty of high frequency data is that it contains noisy observations like the

values of zeroes for financial returns and seismograms of geophysical time series. The high

frequency data follows log-normal distribution that allow us to use log-squared observations

to forecast the volatility. However, the high frequency data does not always fit into SV

methodology due to the log-squared observations and convergence of MLE is not always

guaranteed [7]. In order to solve this problem, a new approach has been developed to

simulate the data and then forecast the stochastic volatility, which are discussed in chapter

4. The data aspects and their related properties are now briefly discussed to understand

the methodologies when they are fit to the datasets.

1.1.1 High Frequency Data and Volatility

High Frequency data is measured at extemely fine scales like monthly, weekly, daily, hourly,

minutely, and second (then divide seconds into fractions) [15]. As the frequency of data

appears very quickly, so the movement of such time series cover specific reasons for the

fluctuations. Most of the times, the changes in time series variables with high frequency

3



observations behave very differently than the normal time series fluctuations. For example,

the stock prices which are today recorded at seconds or less frequency and investors are

creating tools which determine the prediction of next movement and flow of such data to

decide whether to invest in stock A vs. Stock B in Market X vs. Market Y .

The volatility of high frequency data shows how much observations move with a con-

dition. The conditional volatility measure the uncertainty about a variable given model

and the information. The volatility of high frequency data changes dramatically at a short

interval and the periods of high volatility are sometimes correlated. This establishes that

the volatility itself is very volatile. The fluctuations of data typically exhibit the volatil-

ity clustering [12]. That is to say, small changes in the price tend to be followed by small

changes, and large changes by large ones. The volatility clustering suggests that the current

information is highly correlated with past information at different levels.

1.2 Stochastic & Deterministic Modeling

Stochastic modeling is an interesting and challenging area of probability and statistics. Let

us consider the daily closing prices of stock exchanges as a sequence of random variables,

S1, S2, S3, · · ·, where the random variable S1 denotes the value taken by the series at the

first time point, the variable S2 denotes the value for the second time point, S3 denotes the

value for the third time point, and so on. In general, a collection of random variables, St,

indexed by t is known as a stochastic process. This process describes the characteristics of

the data that seemingly fluctuates in a random fashion over time [16].

Stochastic models can be contrasted with deterministic models. A deterministic model

is specified by a set of equations that describe exactly how the system will evolve over time

[17]. In a stochastic model, the evolution is at least partially random and if the process is

run several times, it will not give identical results. Different runs of a stochastic process

are often called realizations of the process.

Deterministic models are generally easier to analyze than stochastic models. However,

4



in many cases, stochastic models are more realistic, particularly for problems that involve

small observations at different time level. For example, suppose we are trying to model

the management of a rare species, looking at how different strategies affect the survival of

the species. In this case, the deterministic models will not hold good as the prediction will

show either “definitely extinct” or “definitely survives”. In a stochastic model, there will

be a probability of extinction that studies how this is affected by management practices.

1.2.1 White Noise

A time series εt is called a white noise, if εt is a sequence of independent and identically

distributed (i.i.d) random variables with a mean of zero, finite variance, and no serial

correlation [18]. In other words, it has the following properties:

1. Zero mean: E(εt) = E(εt−1) = 0

2. Constant variance: E(ε2t ) = E(ε2t−1) = σ2 = V ar(εt)

3. Uncorrelated in time: E(εtεt−i) = E(εt−jεt−i−j) = · · ·· = 0 = Cov(εt−jεt−i−j),∀ i 6= j.

Here, the property 2 is called as Conditional Homoscedasticity. In particular, if the white

noise follows a Normal distribution then it is known as Normal or Gaussian white noise.

1.2.2 Autoregressive (AR) Models

A time series is a sequence of measurements of the same variable(s) made over time. In

other words, in an autoregressive model, a time series is regressed on previous values of

the same time series [19]. For example, if the value of yt depends on the value of yt−1, the

AR(1) model is defined as:

yt = β0 + β1yt−1 + εt (1.1)

where εt is a white noise. In general, the AR(p) model is defined as:

yt = c+

p∑
i=1

φiyt−i + εt. (1.2)

5



where φ1, φ2, · · ·, φp are the parameters of the model and c is a constant.

1.2.3 Autocorrelation

The coefficient of correlation between two values in a time series is called the autocorrelation

function (ACF) [19]. For example, the ACF for a time series yt is given by:

Corr(yt, yt−k).

where the value of k is called a lag or time gap. The lag 1 autocorrelation (i.e., k = 1)

is the correlation between values that are one time period apart. In general, a lag k

autocorrelation is the correlation between values that are k time periods apart. In time

series analysis, the ACF is a way to measure the linear relationship between an observation

at time t and the observations at previous times. If we assume an AR (k) model, then

we may wish to only measure the association between yt and yt−k and filter out the linear

influence of the random variables that lie in between (i.e., yt−1, yt−2, · · ··, yt−(k−1)), which

requires a transformation on the time series.

1.2.4 Long Memory Technique

The long memory technique describes the higher order correlation structure of a time series.

If a time series yt follows a long-memory process, it implies that there is a persistent tempo-

ral dependence between the observations widely separated in time. This technique can also

be regarded as a fractionally integrated process, i.e., an intermediate phase between sta-

tionary and unit root process [20], [21]. Considering an Auto-regressive Integrated Moving

Averages (ARIMA) model, the long memory process may be represented as follows:

∇λyt = (1− L)λyt = εt, (1.3)

where λ is a fractional difference parameter, εt is a white noise with variance σε and L

is a lag operator. The parameter λ identifies a process as the short memory or the long
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memory. When the parameter is less than 0.5, the process is long memory. In this study,

the estimated parameter λ showed that the datasets follow long memory approach. For

details of the algorithm and estimation, the reader is referred to [22].

1.2.5 Filtering Approach

The state space model is defined by a relation between the m-dimensional observed time

series, yt, and the n-dimensional state vector (possibly unobserved), xt [23]. An observed

(space) equation is driven by the stochastic process as follows:

yt = Hxt + υt (1.4)

where Ht is a m×n observation matrix which is stationary and noiseless connection between

the state vector and the measurement vector, xt is a state vector of n × 1, and υt is a

Gaussian error term (υt ∼ (0, R)).

The unobservable vector xt is generated from the transition equation which is defined as:

xt = Φxt−1 + ωt, (1.5)

where Φ is a n × n transition matrix and ωt ∼ (0, Q). We assume that the process

starts with a Normal vector x0. From Eqs. (1.4) and (1.5), the estimation is made for the

underlying unobserved data xt from the given data Ym = {y1, . . . , ym}. When m = t, the

process is called filtering. In this study, a recursive filtering technique is analyzed to filter

out the unnecessary information (noise) for finding the “best estimate” from noisy data.

1.2.6 Kalman Filtering

The kalman filtering procedure is used for parameter estimation of a stochastic model. The

kalman filtering is advantageous as it is a recursive optimal estimation tool that cleans up

the measurements inaccuracies and projects these measurements onto the state estimate

[24], [25]. So, the filter keeps track of the estimated state of the system and the variance

or uncertainty of the estimate.
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In order to estimate the system’s state, an average of multiple measurement is taken

into account. At initial stage, it is assumed that the estimate x̂t,t would be the average of

all previous measurements (zt) at time t:

x̂t,t =
1

t
(z1 + z2 + · · ·+ zt)

=
1

t

t∑
t=1

zt

=
1

t

(
(
t−1∑
t=1

zt) + zt

)
= (

1

t

t−1∑
t=1

zt) +
1

t
zt

=
1

t

t− 1

t− 1

t−1∑
t=1

(zt) +
1

t
zt

=
t− 1

t

1

t− 1

t−1∑
t=1

(zt) +
1

t
zt

=
t− 1

t
x̂t,t−1 +

1

t
zt

= x̂t,t−1 −
1

t
x̂t,t−1 +

1

t
zt

= x̂t,t−1 +
1

t
(zt − x̂t,t−1)

where xt is the true value of the observation; zt is the measurement value of observation at

time t; x̂t,t is the estimate of x at time t; x̂t,t−1 is the previous estimate of x that was made

at time t− 1. Thus,

x̂t,t = x̂t,t−1 +
1

t
(zt − x̂t,t−1) (1.6)

where (zt − xt,t−1) is a measurement residual (innovation) that contains new information.

Now the above equation can be expressed as:

x̂n,n =
1
n
(z1+ z2 + .....+ zn ) 	

																
= x̂n,n +

1
n
(zn − x̂n,n−1) 	

	
	
	

	
	
	
	
	
	
	

	

=
pn,n−1

pn,n−1+ rn
	

	
The	above	Equation	gives	us	

x̂n,n = x̂n,n−1+ Kn (zn − x̂n,n−1) 	
	

							
= (1− Kn ) x̂n,n−1+ Knzn 	

Estimate	of	
current	state		

Predicted	
value	of	the	
current	state		

	
Factor	

	
Measurement	
		

Predicted	
value	of	the	
current	state		

																						Kalman	gain		=	 !"#$%&'("&) !" !"#$%&#'
!"#$%&'("&) !" !"#$%&#' ! !"#$%&'("&) !" !"#$%&"!"'( 	

( )= + -*
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where the factor, 1
t
, is defined as a Kalman Gain in the filtering technique. We denote

this Kalman Gain as Kt that explains how much we want to change our estimate by a

given measurement. The subscript t indicates that the Kalman Gain keeps changing with

every iteration based on the uncertainty in estimate and uncertainty in measurement. The

equation of Kalman Gain is given as follows:

Kalman Gain (Kt) =
uncertainty in estimate

uncertainty in estimate + uncertainty in measurement

=
pt,t−1

pt,t−1 + rt

where pt,t−1 is the extrapolated estimate uncertainty, rt is the measurement uncertainty.

From the above equation, it is clear that the Kalman Gain is a number between 0 and 1

(0 ≤ Kt ≤ 1). Now the Eq. (1.6) can be rewritten as follows:

x̂t,t = x̂t,t−1 +Kt(zt − x̂t,t−1) (1.7)

= (1−Kt)x̂t,t−1 +Ktzt (1.8)

As we can see the Kalman Gain (Kt) is the weight that is used for the measurement

and (1 − Kt) is the weight that is used for the estimate. When the uncertainty in the

measurement is very large and the uncertainty in the estimate is very small, the Kalman

Gain is close to zero. So a big weight is given to the estimate and a small weight to

the measurement. On the other side, when the uncertainty in the measurement is very

small and the uncertainty in the estimate is very large, the Kalman Gain is close to one.

So we give a small weight to the estimate and a big weight to the measurement. If the

measurement uncertainty is equal to the estimate uncertainty, then the Kalman gain equals

to 0.5. We now present an algorithm of Kalman filtering as follows [26]:

1. STEP 0: Initialization

• Initial System Estimate: x̂1,0

• Initial System Uncertainty: p1,0
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2. STEP 1: Measurement

• Measurement System Estimate: yt

• Measurement Uncertainty: rt

3. STEP 2: State Update

• Input: z1,0, rt, x̂t,t−1, pt,t−1

• Kalman Gain: Kt =
pt,t−1

pt,t−1+rt

• State Update: x̂t,t = x̂t,t−1 +Kt(zt − x̂t,t−1)

• Covariance Update: pt,t = (1−Kt)pt,t−1

• Output: x̂t,t, pt,t

4. STEP 3: Prediction

• Dynamic Model (State Space Model):

x̂t+1,t = Fx̂t,t +Gût,t

• Covariance Update: pt+1,t = Fpt,tF
T +Q

where, F is a state transition matrix of coefficients, G is a control matrix, u is an input vari-

able, and Q is a process noise uncertainty. In the prediction step, we see that the Kalman

filter produces estimates of the current state variables, along with their uncertainties. It

is assumed that the errors terms of this algorithm are Gaussian. Once the outcome of the

next measurement (necessarily involved with some amount of error and random noise) is

observed, these estimates are updated using a weighted average.

1.2.7 Likelihood Approximation

Let ϕ denote the parameters of the state space model, which are embedded in the system

matrices Ht,Φ, υt and ωt. These parameters are typically unknown, but estimated from

the data Y = y1, . . . , ym.
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The likelihood L(ϕ
∣∣Y ) is a function that assigns a value to each point in the parameter

space ∆ which suggests the likelihood of each value in generating the data [7]. However,

the likelihood is proportional to the joint probability distribution of the data as a function

of the unknown parameters. The maximum likelihood estimation means the estimation of

the value of ϕ ∈ ∆ that is most likely to generate the vector of the observed data yt [27].

The likelihood can be represented as:

ϕ̂MLE = max
ϕ∈∆

L(ϕ
∣∣Y ) = max

ϕ∈∆
LY (ϕ) = max

ϕ∈∆

m∏
t=1

f(yt
∣∣yt−1;ϕ) (1.9)

where ϕ̂ is the maximum likelihood estimator of ϕ. Since the natural logarithm function

increases on (0,∞), the maximum value of the likelihood function, if it exists, occurs at

the same points as the maximum value of the logarithm of the likelihood function. The

log-likelihood function is defined as:

ϕ̂MLE = max
ϕ∈∆

lnL(ϕ
∣∣Y ) = max

ϕ∈∆
lnLY (ϕ) = max

ϕ∈∆

m∑
t=1

lnf(yt
∣∣yt−1;ϕ). (1.10)

Since this is a highly non-linear and complicated function of the unknown parame-

ters, we first consider the initial state vector x0 and develop a set of recursions for the

log-likelihood function with its first two derivatives [28]. We then use Newton-Raphson

algorithm [29] successively until the negative of the log-likelihood is minimized to obtain

the MLE.
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Chapter 2

Data Background

This chapter focuses on the background of data arising in finance and geophysics. We

analyzed the high frequency data that includes some extreme fluctuations. In fact, it is the

dynamic behavior of the data that encourages us to apply our methodology in this paper.

2.1 High Frequency Data with Extreme Fluctuations

2.1.1 Financial Time Series

A large set of daily closing prices for both developed and emergent stock markets is studied.

The emergent market indices are studied from two countries: Brazil (BOVESPA), from 04-

27-1993 to 10-22- 2001; Thailand (SETI), from 07-02-1997 to 10-25-2001. For developed

markets the National Association of Securities Dealers Automated Quotations (NASDAQ)

and the Standard and Poor′s 500 (S&P 500) stock exchanges from USA are analyzed.

A good perspective on the trending direction or risk management of the high frequency

returns of stock markets as shown in Fig. 2.1. The financial crisis that occurred is evident

in the large spikes in the figure.

We then analyzed two financial crashes data that are useful in analyzing their effects

and forecasting their stochastic volatilities. The financial crashes cause huge looses in the

stock market. For example, the great recession of 2008 had considerable effects on the U.S.

and global economy. The financial market around the world suffered great disruptions in

asset and credit companies, massive erosions of wealth and innumerable bankruptcies. The

high frequency market data (minute by minute) employed in this study are obtained from
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Figure 2.1: The closing prices of daily trading observations from the NASDAQ stock ex-

change.

the Lehman Brothers collapse and Flash Crash event, which occurred in 2008 and in 2010

respectively. So we analyze the high frequency returns from stock companies that were

affected by these events. The companies are as: Citi Bank, Bank of America, ExxonMo-

bil corporation (XOM), Walmart Retail company (WMT), Verizon Communications Inc.

(VZ), United Technologies Corporation (UTX), McDonalds corporation (MCD) etc. Now

the background of Lehman Brothers collapse and the Flash Crash events financial crashes

are briefly discussed [30].

The Lehman Brothers collapse

Lehman Brothers, one of the biggest financial services firm in the world, was brought down

by the collapse of the subprime mortgage market. The company was established by Henry

Lehman with a general store that sold utensils, dry goods and groceries to cotton farmers

in Montgomery, Alabama. Later, his brothers Emanuel and Mayer joined in the business

and shifted it from dealing with commodities to merchant banking in New York. In the

beginning, the company did pretty well in both domestic and international market, and it

played an important role in the subprime market. It expanded into loan origination, gaining

five mortgage lenders between 2003 and 2004, including some specializing in subprime
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mortgages.

These mortgages were provided to the borrowers with low credits. In 2003, the company

made $18.2 billion in loans and ranked third in lending. However, due to its significant ex-

posure to the US subprime mortgage and real estate markets, highly-leveraged, risk- taking

business strategy supported by limited equity; culture of excessive risk-taking and among

others reasons, the company filed for Chapter 11 bankruptcy protection on September 15,

2008. At that time, Lehman Brothers was the fourth largest investment bank in U.S.A and

employed over 25,000 people across the globe. But it had $639 billion in assets and $619

in debt. So it was the largest victim of the subprime mortgage crisis that made a huge

financial crash in the stock market. We refer to [31] and references therein for more details.

Figure 2.2: The high frequency returns sample (generated per minute) of DISCOVER after

Lehman Brothers Collapse.

The Flash Crash

The Flash Crash is an event in electronic securities markets where the sudden withdrawal

of stock orders quickly increases price declines. This results in the swift sell-off of securities

that can happen over a few minutes, resulting in sudden declines. The Flash Crash event

occurred on May 6, 2010, was a trillion-dollar financial crash which lasted for about 36
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minutes. The magnitude of the crash was intensified as traders reacted to irregularities

in the market, for example, the heavy selling in one or many securities and automatically

begin selling large volumes at a very fast pace to avoid losses. During this period, the Dow

Jones Industrial Average (DJIA) lost trillions of dollars in the value of stocks and shares.

In a report by Nanex LLC [32], high-frequency traders are said to be largely responsible

for flash crashes. The rapid and aggressive sale of the E-mini contracts took out several

levels of market depth and caused an explosion of quotes and traders in Exchange traded

funds, equities and options with a delay of approximately 20 micro seconds (see [33]). The

large amount of quotes strained the system, causing prices to sharply decline.

Figure 2.3: The high frequency returns sample (generated per minute) of INTEL after

Flash Crash Event.

2.1.2 Geophysical Time Series

This subsection deals with the background of geophysical data including high magnitudes

and extreme fluctuations. The data contains information about the date, time, longitude,

latitude, the average distance to seismic events, average azimuth and the magnitude of each

seismic event in the region. For details of the background, the readers are refered to [13].

In this study, we used four datasets of natural earthquakes (EA1-EA4) and four datasets of

mining explosions (EX1-EX4) in order to forecast their volatilities. The dynamic behavior

of these data are shown in the following subsection:

15



Natural Earthquakes Data

The earthquakes used in this study correspond to a set of aftershocks of the June 26,

2014, magnitude M=5.2 intraplate earthquake. It occurred far from any active tectonic

boundary, located between the states of Arizona and New Mexico in the USA. We collected

the seismograms containing the seismic waves from two nearby seismic stations: IU.TUC

and IU.ANMO, that are located between 150 and 400 km from the seismic events. Fig. 2.4

shows examples of the seismograms recorded by the IU.TUC station from one earthquake.
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Figure 2.4: The arrival phases from an earthquake as recorded by IU.TUC seismic station.

Mining Explosions Data

The human made mining explosions cataloged with similar magnitudes as the earthquakes

(M=3.0-3.3) are studied. These seismic events are located in the same region within a radius

of 10 km where a large surface copper mine triggered off several explosions forming part of

quarry blasts activities. The broadband seismograms are downloaded from the Incorporated

Research Institutions for Seismology Data Management Centers (IRIS DMC). The Seismic

Analysis Code (SAC) software was employed to preprocess the data. The displacement of
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the ground (in nm) in the vertical (Z-component) direction of sesimograms are used in this

analysis. Figure 2.5 shows the arival phases of explosion seismograms recorded by IU.TUC

station [34].
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Figure 2.5: The arrival phases from an explosion as recorded by IU.TUC seismic station.

In Fig. 2.4 & 2.5, it is observed that the frequency components change from one interval

to another in earthquake or explosion as long as they last. The mean of the series appears

to be stable with an average magnitude of approximately zero. This dynamic behavior

illustrates the time evolution of the magnitude with its volatility. The volatility changes

with time and it is high at a certain intervals, but low at another intervals. The volatility

clustering reflects its time varying nature, as well as the mean reversion characteristics of

the data.

2.2 Stationary Behavior of High Frequency Data

The stationary time series follow some statistical properties that are independent of time.

If a time series xt is stationary, then its second-order behavior, namely, mean, variance and

covariance do not change with time t. A stationary series is relatively easy to predict and

defined as follows:

1. E(x2
t ) <∞,
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2. E[x(t)] = µ,

3. Cov x(s, t) = Cov x(s+ h, t+ h),∀s, t, h ∈ Z

So xt must have three features to be a stationary form: finite variation, constant first

moment, and the constant variance. In this study, the stationarity of financial, earthquake

and mining explosion time series are analyzed by using unit root test. A unit root test

provides a way to test whether an autoregressive process is a random walk as opposed to a

stationary process. The test-statistics of data are computed by using two unit root tests,

namely, the Augmented Dickey Fuller (ADF) [35] and the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) tests [36]. These two tests are powerful and capable of handling complex

models.

2.2.1 ADF test

The ADF test is an augmented version of the Dicky Fuller test, that is used for large and

complicated set of time series models. The ADF test statistic is a negative number. The

more negative it is, the stronger the rejection of the hypothesis that there is a unit root

at some levels of confidence. It takes into account the basic autoregressive unit root test

to accommodate general Autoregressive Moving Average (ARMA) (p, q) models with un-

known orders and non-zero lagged values. The summary statistics of this test are given

below when the tests are applied to the high frequency data:

Test interpretation:

H0 : There is a unit root for the time series.

Ha : There is no unit root for the time series, i.e., the series is stationary.

Since the computed p-values in Tables 2.1 and 2.2 are lower than the significance level

α = 0.05, the null hypothesis H0 is rejected that has a unit root. So the alternative

hypothesis Ha is accepted that the data are stationary time series.
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Table 2.1: ADF t-statistics test for financial data

Events
Daily data Minute Data

Test statistics p-value Test statistics p-value

Discover -11.92 0.01 -12.85 0.01

Microsoft -12.95 0.01 -14.90 0.01

Walmart -12.87 0.01 -13.56 0.01

JPM Chase -13.38 0.01 -12.80 0.01

Table 2.2: ADF t-statistics test for geophysical data

Events Test statistics p-value Events Test statistics p-value

EA1 -42.01 0.01 EX1 -40.30 0.01

EA2 -41.40 0.01 EX2 -36.35 0.01

EA3 -37.39 0.01 EX3 -40.83 0.01

EA4 -39.09 0.01 EX4 -41.94 0.01
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2.2.2 KPSS test

The KPSS test are used for testing a null hypothesis that an observable time series is

stationary against the alternative of no unit root. The major difference between KPSS and

ADF tests is that the the KPSS test is able to check stationarity around a deterministic

trend. The deterministic trend suggests that the slope of the trend in the series does not

change permanently. Therefore, if the series goes through a shock at any time point, the

series tends to regain its original path over time. The summary statistics for the results of

the KPSS test are displayed in Tables 2.3 and 2.4 respectively.

Test interpretation:

H0 : The series is trend stationary.

Ha : The series is non-stationary

Table 2.3: KPSS t-statistics test for financial data

Events
Daily data Minute Data

Test statistics p-value Test statistics p-value

Discover 0.1633 0.1 0.1731 0.1

Microsoft 0.1980 0.1 0.1297 0.1

Walmart 0.1037 0.1 0.0599 0.1

JPM Chase 0.1719 0.1 0.1059 0.1

Table 2.4: KPSS t-statistics test for geophysical data

Events Test statistics p-value Events Test statistics p-value

EA1 0.0017 0.1 EX1 0.0013 0.1

EA2 0.012 0.1 EX2 0.0014 0.1

EA3 0.0013 0.1 EX3 0.0012 0.1

EA4 0.0012 0.1 EX4 0.0017 0.1
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As the computed p-values are greater than the significance level α = 0.05, the null

hypothesis H0 is accepted for all data sets. Thus the time series used in this paper are

stationary time series.
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Chapter 3

Methodology

3.1 Volatility Models

This chapter describes the methodologies that are used to forecast the volatility of high

frequency financial and geophysical data. Three types of volatility models and filtering

techniques are analyzed to estimate the time-varying parameters of data. It is also shown

that how the connection is established between SV model and superposed OU-type models

that help to forecast the volatility for special case of high frequency data.

3.1.1 GARCH Volatility Model

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model ([2], [3]),

was introduced in order to model the fluctuations of the variances of financial data. It is

conditional, because the nature of subsequent volatility is conditioned by the information

of current period. Heteroscedasticity refers to non-constant volatility. The observations yt

of high frequency financial time series used in this paper may be represented as:

yt = σtηt, (3.1)

where σt is volatility of the observations and {ηt}t∈N is a Gaussian white noise sequence,

independent of {σt}t∈N and {yt}t∈N. This equation can be interpreted as the observation

equation of a state space model (see subsection 1.2.5), whereby the state equation is a

recursive formula for the state σt:

σ2
t = a0 + a1y

2
t−1 + b1σ

2
t−1, (3.2)
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where a0, a1, b1 ≥ 0, so that σ2
t > 0 for any values of yt. Eqs. (3.1) and (3.2) admit a

non-Gaussian ARMA (1,1) model [37] for the squared process as:

y2
t = a0 + (a1 + b1)y2

t−1 + φt − b1φt−1, (3.3)

where φt = σ2
t (η

2
t − 1). In order to compute the variance at time t, we follow the

standard GARCH (m,n) model which is of the form:

σ2
t = a0 +

m∑
j=1

ajy
2
t−j +

n∑
j=1

bjσ
2
t−j. (3.4)

If n = 0 then the GARCH model changes into an ARCH (m) model.

The parameters a0, ai and bj are estimated by MLE (subsection 1.2.7) using the likeli-

hood function. Taking into account the Normal probability density function, the conditional

likelihood in Eq. (1.10) is obtained from the product of Normal (N(0, σ2
t )) densities with

σ2
t . Using the estimated parameters, we obtain one-step-ahead prediction of the volatility

(σ̂2
t ), that is,

σ̂2
t = â0 +

m∑
j=1

âjy
2
t+1−j +

n∑
j=1

b̂jσ̂
2
t+1−j. (3.5)

We can analyze the residuals and squared residuals to test the Normality using some

statistical tests, for instance, Jarqua-Bera test [38], Shapiro-Wilk test [39], Ljung-Box test

[40] and LM-Arch test [41].

3.1.2 APARCH Volatility Model

The asymmetric power ARCH (APARCH) model is also used for estimating the data volatil-

ity. We see that the above standard GARCH model (Eq. 3.4) estimate volatility (σt) based

on the past values of y2
t , for example, Eq. (3.4) is a function of y2

t−1. But the model does

not take into account whether the past values of yt are positive or negative. It is known

that the function of y2
t−1 is symmetric in yt−1. In this case, APARCH model uses a flexible

class of non-negative functions instead of square function. It also offers more flexibility
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compared to GARCH model by modeling σδt , where δ > 0 is another parameter. The

APARCH (p, q) model for the conditional standard deviation is as follows:

σδt = α0 +

p∑
j=1

αj(|yt−j| − γjyt−j)δ +

q∑
j=1

βjσ
δ
t−j (3.6)

where δ > 0 and −1 < γj < 1, j = 1, · · ·, p. Here, if δ = 2 and γ1 = · · · = γp = 0, it will

be a form of standard GARCH model.

3.1.3 Stochastic Volatility Model

This subsection focuses on the stochastic volatility (SV) model used in this paper. The

SV technique implies that the volatility is driven by an innovation sequence, that is, in-

dependent of observations [42]. It causes the volatility through an unobservable process

that allows it (volatility) to vary stochastically. From Eq. (3.1), the observations yt can be

expressed as:

yt = σtηt, (3.7)

where σt is the data volatility and {ηt}t∈N is a Gaussian white noise sequence.

To develop the SV model, we use the log-squared observations of the time series in Eq.(3.7):

logy2
t = logσ2

t + logη2
t

which can be rewritten as:

mt = ht + logη2
t , (3.8)

where mt = logy2
t and ht = logσ2

t . Thus the observations mt are generated by two com-

ponents namely, the unobserved volatility ht and the unobserved noise logη2
t . Considering

the autoregression, the first term on the right hand side of Eq.(3.8) i.e. ht can be expressed

as:

ht =0 +α1ht−1 + ωt, (3.9)

where ωt is a white Gaussian noise with the variance σ2
ω. Eqs. (3.8) and (3.9) constitute

the stochastic volatility model by Taylor [43]. To compute the observation noise, we take
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into account the mixtures of two Normal distributions with one centered at zero. Thus we

have:

yt = β + ht + γt, (3.10)

where β is the mean of log-squared observations and γt = Btzt0 − (Bt − 1)zt1, which

fulfills the following conditions:

zt0 ∼ i.i.d N(0, σ2
0),

zt1 ∼ i.i.d N(µ1, σ
2
1),

and Bt ∼ i.i.d Bernoulli (p),

where p is an unknown mixing probability and i.i.d implies independently and identically

distributed. The time-varying probabilities are defined as Pr{Bt = 0} = p0 and Pr{Bt =

1} = p1, where p0 + p1 = 1. The SV model has a characteristic function that describes

the probability density function of the model. In particular, the high frequecy data in our

study seems to have a Normal distribution but not exactly, sometimes there is a little skew

on one tail (see the density plot in Figs. 4.4 and 4.5). So, we typically keep the ARCH

Normality assumption on εt [2]. In this study, our approach is to estimate the parameters

α0, α1, σω, σ0 and σ1 and then predict future observations yn+m from n observations.

3.2 Estimation Procedure

In this subsection, a general estimation procedure for estimating time-varying parameters

of SV model are discussed. We will estimate xt with its error term: et = x̂t − xt and

begin the estimation procedure with state space model described in chapter 1, where the

assumptions [44] are as:

yt = Hxt + υt (3.11)

xt+1 = Φxt + ωt (3.12)

where Φn×m is a stationary transition matrix from the state at t to the state at t+ 1; ωt

is the associated white noise process with known covariance; H is the noiseless connection
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between the state vector and the measurement vector; υt is the associated measurement

error. The covariances of the two noise terms are assumed as stationary over time and

computed as: Q = E[ωtω
T
t ] and R = E[υtυ

T
t ]. The aim is to find the optimal filter that

minimizes the mean squared error, E(e2
t ), which is equivalent to Pt (the error covariance

matrix at time t):

Pt = E[ete
T
t ] = E[(xt − x̂t)(xt − x̂t)T ] (3.13)

The x̂t
′ is assumed as the prior estimate of x̂t which is obtained from the system. Now

we can write the state update equation for the new estimate, combining the old estimate

with measurement. Eq. (1.7 indicates,

x̂t = x̂t
′ +Kt(yt −Hx̂t′) (3.14)

where Kt is the Kalman gain and (yt−Hx̂t′) is the innovation or measurement residual.

We now substitute yt from Eq. (3.11) into Eq. (3.14) as:

x̂t = Hx̂t
′ +Kt(Hxt + υt −Hx̂t′) (3.15)

At this point, we compute the the error-covariance matrix using Eq. (3.13) as:

Pt = E[[(I −KtH)(xt − x̂t′)−Ktυt][(I −KtH)(xt − x̂t′)−Ktvt]
T ] (3.16)

Here, xt− x̂t′ is the error of the prior estimate which is uncorrelated with the measure-

ment noise, thus the above equation can be written as:

Pt = (I −KtH)E[(xt − x̂t′)(xt − x̂t′)T ](I −KtH) +KtE[υtυ
′
t]K

T
t (3.17)

⇒ Pt = (I −KtH)P T
t (I −KtH)T +KtRK

T
t (3.18)

which is a error-covariance update equation and P ′t is the prior estimate of Pt. Now

the mean squared error (MSE) can be obtained by computing the trace of following matrix

(Pt):

Pt =


E[et−1e

T
t−1] E[ete

T
t−1] E[et+1e

T
t−1]

E[et−1e
T
t ] E[ete

T
t ] E[et+1e

T
t ]

E[et−1e
T
t+1] E[ete

T
t+1] E[et+1e

T
t+1]

 (3.19)
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So the MSE can be minimized by minimizing the trace of Ptt. The Eq. (3.17) can be

furnished as follows:

Pt = P ′t −KtHP
′
t − P ′tHTKT

t +Kt(HP
′
tH

T +R)KT
t (3.20)

The trace of Pt is given as:

tr([Pt]) = tr([P ′t ])− 2tr([KtHP
′
t ]) + tr([Kt(HP

′
tH

T +R)KT
t ]) (3.21)

To minimize the tr([Pt]), we differentiate it with respect to Kt and set it to zero as:

dtr[Pt]

dKt

= −2(HP ′t)
T + 2Kt(HP

′
tH

T +R) = 0 (3.22)

Solving for Kt gives as:

Kt = P ′tH
T (HP ′tH

T +R)−1 (3.23)

which is a Kalman gain equation. The Eq. (3.20) is now updated for the error covariance

matrix with this optimal gain. So the updated Pt is as follows:

Pt = P ′t − P ′tHT (HP ′tH
T +R)−1HP ′t

= P ′t −KtHP
′
t

= (I −KtH)P ′t

(3.24)

which is the update equation for the error-covariance matrix with optimal gain. The

three Eqs. (3.15), (3.23) and (3.25) develop an estimate of the variable xt. The state

projection can be obtained as:

x̂′t+1 = φx̂t

At the same time, we also project the error covariance matrix into the next time interval

t+ 1 as:

e′t+1 = xt+1 − ˆx′t+1 = (φxt + ωt)− φx̂t = φet + ωt (3.25)

So the corresponding error-covariance matrix (using Eq.(3.13)) is computed as:

P ′t+1 = E[e′t+1e
′T
t+1] = E[(φet + ωt)(φet + ωt)

T ]
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We know that et and ωt have zero cross-correlation because the noise ωt actually accu-

mulates between t and t+ 1. So P ′t+1 can be written as:

P ′t+1 = φPtφ
T +Q

which shows that it is a recursive filter that gives minimum MSE.

3.2.1 Parameter Estimation of SV Model

This subsection describes the estimation of time-varying parameters of SV models. In this

case, we used the above filtering technique by three steps namely, forecasting, updating,

and parameter estimation [8]. In the first step, we forecast the unobserved state vector ht

on time series observations as follows:

htt+1 = α0 + α1h
t−1
t +

1∑
j=0

ptjKtjηtj, (3.26)

where the predicted state estimators ht−1
t = E(ht|y1, . . . , yt−1). The corresponding error

covariance matrix is defined as:

P t
t+1 = α2

1P
t−1
t + σ2

ω −
1∑
j=0

ptjK
2
tj

∑
tj
. (3.27)

At this point, the innovation covariances are given as
∑

t0 = P t−1
t + σ2

0 and
∑

t1 =

P t−1
t + σ2

1, where P t−1
t = ΦP t−1

t−1 Φt + V , P 0
0 =

∑
0,
∑

t = var(ηt), and V = var(wt).

Furthermore, we use Kalman filter to measure the estimates precision, which may be shown

as:

Kt0 = α1P
t−1
t /(P t−1

t + σ2
0) and Kt1 = α1P

t−1
t /(P t−1

t + σ2
1). (3.28)

The second step deals with updating results while we have a new observation of yt at

time t. The prediction errors of the likelihood function are computed using the following

relations:

ηt0 = yt − β − ht−1
t and ηt1 = yt − β − ht−1

t − µ1. (3.29)
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For estimating the parameters, we complete the updating step by assessing the time-

varying probabilities (for t = 1, . . . ,m):

pt1 =
p1d1(t|t− 1)

p0d0(t|t− 1) + p1d1(t|t− 1)

and pt0 = 1− pt1,

where dj(t|t − 1) is considered to be the conditional density of yt, given the previous

observations y1, . . . , yt−1.

Since the observation noise of this model is not fully Gaussian, it is computationally

difficult to obtain the exact values of dj(t|t − 1). Hence, we use a good approximation

of dj(t|t − 1) that provides Normal density which is: N(ht−1
t + µj,

∑
tj), for j = 0, 1 and

µ0 = 0.

Finally, we estimate the parameters (Θ = (α0, α1, σw, β, σ0, µ1, σ1)′) by maximizing the

expected likelihood, where the MLE is represented as:

lnLY (Θ) =
m∑
t=1

ln
( 1∑
j=0

pjdj(t|t− 1)
)
. (3.30)

3.3 The Superposed Ornstein-Uhlenbeck Process

This subsection deals with a stochastic differential equation arising from the superposition

of independent Ornstein–Uhlenbeck processes driven by a Γ(a, b) process. Superposition

of independent Γ(a, b) Ornstein-Uhlenbeck processes offers analytic flexibility and provides

a class of continuous time processes capable of exhibiting long memory behavior. The

methodology is applied to the high frequency data in order to simulate them [7].

A process is an Ornstein-Uhlenbeck process if it is cádlág (i.e. it is right continuous

and has a left limit at every point) and satisfies the stochastic differential equation,

dSt = −λStdt+ dZλt, S0 > 0, λ ∈ R+. (3.31)

where St is a continuous and non-negative stochastic process, Z = {Zλt}t≥0 is a Lévy
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process and the rate parameter λ is a positive number. The process Z = {Zλt}t≥0 is termed

the background driving Lévy process (BDLP).

If we consider the unusual timing in the BDLP, the solution to Equation (3.31) is

St = e−λtS0 +

∫ t

0

e−λ(t−q)dZ(λq). (3.32)

In order to obtain the analytic flexibility and to ensure correlation structures for the

process St, we consider the sum of two independent Ornstein-Uhlenbeck processes in Eq.

(3.32), where each component process is an independent Ornstein–Uhlenbeck process with

rate parameters λ1 and λ2:

St = w1S1e−λ1t +

∫ t

0

w1e−λ1(t−q)dZ(λ1q)

+ w2S2e−λ2t +

∫ t

0

w2e−λ2(t−q)dZ(λ2q), t ≥ 0.

(3.33)

The approach adopted in this work specified a parametric form for the marginal distri-

bution of Eq. (3.33) and then work out the corresponding distribution of BDLP. We will

do this by specifying a distribution for the Lévy process and simulate the data via BDLP.

3.3.1 Parameter Estimation

A stochastic process S = {St, t ≥ 0} with parameters u and v is a Gamma process if it

fulfills the following conditions:

1. X0 = 0.

2. The process has independent increments.

3. The process has stationary increments.

4. For m < t, the random variable Sm − St has Γ(a(t−m), b) distribution.

Recall that a random variable S has a Gamma distribution Γ(u, v) with rate and shape

parameters u > 0 and v > 0 respectively, if its density function is given by:

fS(s;u, v) =
vu

Γ(u)
su−1e−vs, ∀ s > 0, (3.34)

30



where Γ denotes the Gamma function. The Γ(a, b) process has a Lévy density given

by u(x) = ax−1e−bx, x 6= 0. The Γ(a, b) distribution is known to be self-decomposable.

Therefore, taking into account the BDLP, Z has a Lévy density given by

w(x) = uve−vx, x 6= 0

and the associated cumulative function is given as:

k(m) =
uv

v +m
(3.35)

So it is concluded that the BDLP for the Γ(a, b) process is a compound Poisson process

which jumps a finite number of times in every compact time interval. Now a proposition

is followed as:

Suppose that {Zt}t≥0 is a Lévy process such that E(Z(1)) = µ < 1 and Var (Z(1)) = σ2 < 1.

Assume that λ1, λ2 > 0, then the followings are true:

1. E(X0) = µ

2. Var (X0) = σ2

2

From this proposition, the parameters µ and σ2 can be expressed as related to a and b:

a =
2µ2

σ2
and b =

2µ

σ2

Now the intensity parameter λ1 is estimated by taking into account the autocorrelation

function of (3.33) i.e.,

ρ(k) = w1e−λ1|k| + w2e−λ2|k|, (3.36)

where w1 + w2 = 1 for any k ∈ R+.

From (3.36), λ1 can be computed by assuming λ1 = λ2 and k = 1. This results in

λ1 = −log(ρ̂(1)) (3.37)

where ρ̂(1) denotes the empirical autocorrelation function of lag 1 based on the time

series data sets. Once λ1 is estimated, λ1 is adjusted to obtain λ2 in order to fit the
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superposed Γ(u, v) Ornstein-Uhlenbeck model. Then the data is simulated the based on

the parameters u, v, λ1, λ2 that are estimated from the original data. For the details of the

methodology, the readers are referred to [8] and references therein.
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Chapter 4

Results & Discussion

This chapter focuses on the analysis of volatility models and a simulation technique that

are applied to the high frequency datasets contained extreme fluctuations. The estimates

of time-varying parameters and one-step ahead predicted volatility are presented to detect

the extreme fluctuations. The analyses were performed by R and Python programs.

4.1 Analysis of Volatility models

This section deals with the results of volatility models that are applied to the daily returns

of financial market data, emergent market data, developed market data, minute by minute

returns data, and some geophysical data. In chapter 2, Figs. 2.2-2.5 provide a good

perspective on the trending direction or risk management of the high frequency returns

of stock markets or extreme fluctuations of seismic events. The extreme fluctuations that

occurred is evident in the large spikes in the figures. We see that the volatility of data

changes dramatically at a short interval and that the periods of high volatility are sometimes

correlated. This establishes that the volatility itself is very volatile. The fluctuations of

stock returns or seismic events typically exhibit the volatility clustering that suggests that

the current information is highly correlated with past information at different levels.

4.1.1 Results of GARCH Model

The GARCH volatility model is used to predcit the volatiltiy of high frequency financial

market retruns in U.S.A. such as the Citi Bank, the Microsoft company, the Bank of Amer-

ica, the Discover Financial Services, the INTEL semiconductor manufacturing company,
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the IBM hardware company, the Walmart retail company, the IAG stock exchanges stock

markets and among others. In this dissertation, the estimated parameters, standard errors,

and forecasting behaviors of two stock companies: Citi Bank and Microsoft stock exchanges

are presented (see Tables 4.1-4.4 and Figs. 4.1-4.2). The results of other stock markets

data can be found in [22].

The estimates of the parameters a0, a1, and b1 of the GARCH (1, 1) model are stable,

as the GARCH-statistic shows (see Tables 4.1-4.4). Also, the estimated standard errors of

the parameters in most cases are small. The smaller p-values (< significance level) provide

strong evidence that the GARCH (1, 1) model with the specified parameters is a good fit for

our data. The volatility level of persistence can be determined by non-negative parameters

a1 and b1 from these tables. It is observed that the constraint (a1 + b1) is less than 1, which

allows for the existence of a stationary solution. This also supports the results of stationary

tests in subsection 2.2.

The standardized residuals (R) tests for the Citi Bank and the Microsoft stock exchanges

are summarized in Tables 4.3-4.4. The Jarque-Bera and Shapiro-Wilk tests of Normality

strongly reject the null hypothesis that the white noise innovation process ηt is Gaussian.

The p-values (> 0.05) of Ljung-Box test for squared residuals (at lag 10, 15, 20) and LM-

Arch test suggest that the model fits the data well, with the exception of the non-normality

of ηt. It is because the null hypothesis cannot be rejected at any reasonable level of

significance.

To facilitate the understanding of forecasting concepts, we superimpose the plot of one-

step-ahead predicted volatility with high frequency stock market data in Figs. 4.1-4.2. The

predicted log volatility is displayed as grey color across the original time series (blue color).

It visually shows how the values of predicted volatility differ over time and able to detect

the extreme fluctuations.
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Limitations

There are some limitations of GARCH (1,1) model itself in the application to the high

frequency financial datasets. It is evident that the positive and negative high frequency

returns have the same effect, because volatility depends on squared returns. The model

does not help to understand the source of variations of a financial time series. That is to say,

the cause of the variation in volatility is unknown. The model provides only a mechanical

way to describe the behavior of conditional variance. The grey lines during financial crashes

(in Figs. 4.1-4.2) indicate that the model tends to over predict the volatility, because it is

often restrictive due to the tight constraints on parameters (α0, α1, β1 ≥ 0).

Table 4.1: GARCH statistics for CITI Bank stock exchange

Parameter Estimate Error t-statistic p-value

a0 0.221 0.0216 10.216 < 2E-06

a1 1.104 0.0418 26.384 < 3.0E-05

b1 0.115 0.0289 3.989 6.6E-05

Table 4.2: GARCH statistics for the Microsoft stock exchange

Parameter Estimate Error t-value p-value

a0 0.019 0.0617 3.165 0.0015

a1 0.165 0.0372 4.439 9.04E-06

b1 0.845 0.0265 32.212 <2E-16
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Table 4.3: Standardized Residuals Tests for CITI Bank stock exchange

Residuals Tests Statistics p-value

Jarque-Bera Test R χ2 1404.85 0

Shapiro-Wilk Test R W 0.92670 0

Ljung-Box Test R2 Q(10) 83.5710 9.9E-14

Ljung-Box Test R2 Q(15) 121.130 0

Ljung-Box Test R2 Q(20) 134.161 0

LM-Arch Test R TR2 72.9724 8.8E-11

Table 4.4: Standardized Residuals Tests for Microsoft stock exchange

Statistics P-value

Jarque-Bera Test R χ2 2915.06 0

Shapiro-Wilk Test R W 0.86025 0

Ljung-Box Test R2 Q(10) 9.13460 0.51937

Ljung-Box Test R2 Q(15) 12.0977 0.6716

Ljung-Box Test R2 Q(20) 17.4958 0.6205

LM Arch Test R TR2 10.27118 0.59218
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Figure 4.1: One-step-ahead predicted volatility (grey color) with Citi Bank stock exchange

series (blue color).
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Figure 4.2: One-step-ahead predicted volatility (grey color) with Microsoft stock exchange

series (blue color).
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4.1.2 Results of APARCH Model

In this subsection, the results of APARCH model are discussed, which can solve a lim-

itation of GARCH model. The leverage effects states that the large negative returns of

high frequency data appear to increase volatility compared to positive returns of the same

magnitude. The reason is that the GARCH model estimates the volatility as a function

of squared past values, so the positive or negative returns have the same effect. We avoid

this issue by using APARCH model that replaces the square function with a flexible class

of non-negative functions. The estimation of time varying parameters and one-step-ahead

predicted volatility for Microsoft stock market is summarized in Table 4.5. We see that

the estimate of δ is 1.360 with a standard error of 0.488, so there is strong evidence that δ

is not 2, which confirms the APARCH condition (see subsection 3.1.2). Also, γ̂1 is −0.99

with a standard error of 0.109 and p-values of 2E-16, so we reject the null hypothesis that

γ̂1 = 0, and conclude that there is a statistically significant leverage effect in the process.

Fig. 4.3 shows the original high frequency returns (blue color) and corresponding predicted

log-volatility (grey color), where we conclude that the APARCH volatility has higher ability

to detect the extreme fluctuations compared to GARCH volatility.

Table 4.5: APARCH statistics for the Microsoft stock exchange

Parameter Estimate Error t-statistics p-value

a0 0.117 0.0300 3.920 8.8E-05

a1 0.037 0.0117 3.227 0.0012

b1 0.087 0.026 33.08 <2E-16

γ1 -0.999 0.109 -9.135 <2E-16

δ1 1.360 0.428 3.175 0.0015
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Figure 4.3: One-step-ahead predicted volatility (grey color) with Microsoft stock exchange

series (blue color).

4.1.3 Results of Stochastic Volatility Model

This subsection deals with the stochastic nature of high frequency data including extreme

fluctuations. The stochastic volatility model is analyzed on the Lehman Brothers collapse

data, Flash Crash events data, natural earthquakes, and mining explosions data. The

GARCH and APARCH models differ from the SV model in the sense that, unlike the

SV model, they do not have any stochastic noise. The SV model is characterized by

the fact that it invariably contains its probability density function. The histograms of

natural earthquakes and mining explosions data are presented in Fig. 4.4. The maximum

likelihood is computed by taking into consideration the conditional Normal distribution of

the datasets.

For the datasets described in this paper, the ARCH Normality assumption is kept on

volatility ηt. Therefore, the logη2
t is distributed as the logarithm of a chi-squared random

variable with one degree of freedom whose mean is -1.27 and variance is 4.93. In Fig. 4.5

(a, b), we see a clear representation of the density of log(χ2
1) and fitted Normal mixture of

financial time series. It is obvious that the density of financial time series is skewed with a

long tail on the left.
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Figure 4.4: The histograms of geophysical time series and the fitted Normal density (red

color).
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Figure 4.5: Density plot of log(χ2
1) (solid curves) and the fitted Normal mixture distribution

(dashed red curves) from (a) the JPMorgan Chase and (b) the Bank of America stock

exchanges.
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The parameters from time-varying Eqs. (3.9) and (3.10) were initialized in order to

observe the performance of the SV algorithms for each dataset described above. We set the

initial values to be α0 = 0, α1 = 0.95, σω = 0.5, σ0 = 1, µ1 = −3, σ1 = 2 and β (the mean

of the observations). In order to maximize the Eq. (3.30), the innovation processes for

Eqs. (3.9) and (3.10) were fitted to the data by taking into consideration this time-varying

probability (p1 = 0.5).

Tables 4.6-4.9 summarize the estimation of parameters (α0, α1, , σω, β, σ0, µ1 and σ1).

The estimated error in these tables makes two things evident: firstly, the estimates are

close to the true parameters; secondly, the algorithm of the SV model aligns with the

financial and the geophysical data. The variance σ2
w of the log-volatility process measures

the uncertainty about the future volatility of data. If the value of σ2
w is zero, it is not

possible to identify the SV model. The parameter α1 is considered as a measure of the

persistence of shocks to the volatility. Tables 4.6-4.9 indicate that α1 is less than 1, which

suggests that the latent volatility process and yt are stationary. This confirms the results

of section 2.2.

In these tables, we also notice that α1 is near to unity and σ2
w is different from 0, which

means that the evolution of volatility is not smooth over time. This also suggests that

the time series used in this paper could be heteroscedastic by nature, that is, there is a

non-constant conditional volatility over time. So, it is very useful to control the risk or

to mitigate the effect of hazards. Figs. 4.6-4.9 show forecasting behaviors of two stock

companies, one natural earthquake dataset and one mining explosion dataset. The original

high frequency data (blue color) are shown with corresponding log-predicted volatility (red

color) in these figures. It is clear the stochastic volatility is able to detect the financial

crashes or extreme fluctuations for both financial and geophysical data. For the results of

other datasets, the reader is referred to [34] and [22].
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Table 4.6: Summary statistics for the JPMorgan Chase stock exchange.

Parameter Estimate Standard Error

α0 -0.047 0.057

α1 0.961 0.014

σω 0.252 0.050

β -13.15 1.394

σ0 0.947 0.047

µ1 -2.348 0.083

σ1 1.050 0.055

Table 4.7: Summary statistics for Bank of America stock exchange.

Parameter Estimate Standard Error

α0 -0.018 0.057

α1 0.961 0.014

σω 0.228 0.042

β -14.06 1.451

σ0 0.952 0.046

µ1 -2.242 0.092

σ1 1.082 0.056
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Table 4.8: Summary statistics for Earthquake data from TUC station.

Parameter Estimate Standard Error

α0 0.032 0.021

α1 0.998 0.001

σω 0.428 0.034

β -11.97 1.720

σ0 0.642 0.038

µ1 -2.474 0.085

σ1 2.323 0.051

Table 4.9: Summary statistics for Explosion data from TUC station.

Parameter Estimate Standard Error

α0 0.021 0.051

α1 0.984 0.003

σω 0.693 0.017

β -10.14 1.935

σ0 2.2E-6 0.050

µ1 -2.300 0.073

σ1 2.062 0.045
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Figure 4.6: One-step-ahead predicted log-volatility with five hundred observations from

JPMorgan Chase stock.
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Figure 4.7: One-step-ahead predicted log-volatility with six hundred observations from

Bank of America stock.

44



Predicted log-volatility of Earthquake data

3800 3900 4000 4100 4200 4300 4400

-10
0

10
20

Time

Figure 4.8: One-step-ahead predicted log-volatility with sixteen hundred observations from

natural earthquake event.

Predicted log-volatility of Explosion data

600 800 1000 1200 1400 1600 1800

-10
-5

0
5

10

Time

Figure 4.9: One-step-ahead predicted log-volatility with fourteen hundred observations

from mining explosion event.
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4.2 A new approach for fitting SV model

This subsection deals with a new approach for fitting SV model, when the high frequency

data contain noisy observations. The stochastic volatility (SV) model described in section

4 is used to estimate the volatility of a log-squared observations via MLE. However, we

observed that the financial data does not always fit into SV methodology and so convergence

of MLE is not always guaranteed. It is because the high frequency data contain some

unusual observations and zero returns as well. Thus, the stochastic volatility model is not

always applicable to forecast data volatility. To avoid this problem, the model described

in section 3.3 is employed to simulate the data based on their dynamic behavior.

We first used the superposed Ornstein-Uhlenbeck model with the Lévy driven process.

The BDLP for the superposed Γ(u, v) Ornstein-Uhlenbeck model has been shown to be a

compound Poisson process ([7]). The data is simulated using the solution of the stochas-

tic differential equation via the BDLP. A Matlab program was developed to simulate the

process using different time steps. Table 4.10 summarizes the estimation of parameters

λ1, λ2, w1, w2 for NASDAQ, S&P 500, BVSP and SETI stock exchanges when the super-

posed Γ(u, v) Ornstein-Uhlenbeck model was applied to the data. We obtained λ2 by

adjusting λ1 in order to fit the superposed Γ(u, v) Ornstein-Uhlenbeck model.

Table 4.10: Simulation results for the developed and emergent market indices.

Stock Exchange λ1 λ2 w1 w2 RMSE

NASDAQ 0.003 8 0.47 0.53 1.34

S&P 500 3.2E-04 32 0.30 0.70 1.99

BVSP 0.0017 12 0.20 0.80 1.66

SETI 0.0074 38 0.30 0.70 0.32

The simulated data mimics the original financial time series data. This is observed from

the estimates and RMSE in Table 4.10. Also, the simulated data exhibits long memory

behavior which facilitate prediction using the SV model. In order to fit the SV model, the
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distribution of errors of the data are analyzed (Fig. 4.10). The following figures show that

the error terms follow almost normal distributions. So the ARCH Normality condition is

assumed on the basis of volatility ηt described in Eq. (3.1).

-10 -5 0 5 10

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

x

de
ns
ity

(a) NASDAQ

-10 -5 0 5 10

0.0
0

0.0
5

0.1
0

0.1
5

closing prices

de
ns
ity

(b) BVSP

Figure 4.10: Density plot of the fitted Normal mixture distribution from (a) NASDAQ and

(b) BVSP stock exchanges.

The above figures show that the density of financial time series is skewed with a little tail

on the left. Table 4.11 and Figs. 4.11 - 4.12 summarize the estimation of parameters (α0, α1,

σw, λ, σ0, φ1 and σ1) and predicted volatility with ±2 errors for NASDAQ and BVSP stock

market data. For the results of other stock market datasets, we refer the reader to [22]. The

advantage of this methodology is that the estimates obtained are stable around the true

value and also the low errors indicate that the estimation procedure is accurate, therefore

producing a higher forecasting accuracy. Thus, our estimation algorithm is feasible with

large data sets and have good convergence properties.
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Table 4.11: Summary statistics for the developed and emergent market indices.

Parameter S&P 500 Standard Error BVSP Standard Error

α0 9.53E-02 0.07950 8.906E-02 0.0227

α1 9.79E-01 0.00870 9.807E-01 0.0029

σω 0.01740 3.46E-02 7.845E-02 0.0041

β 5.54E+00 3.19750 1.405E+01 0.7599

σ0 1.863E-07 0.02150 5.119E-07 0.0036

µ1 8.490E-02 0.03890 -7.087E-02 0.1199

σ1 2.490E-01 0.03332 1.048E+00 0.0845
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Figure 4.11: One-step-ahead predicted log volatility (solid lines), with ±2 standard predic-

tion errors (dashed lines) for one hundred observations from NASDAQ stock exchange.
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Figure 4.12: One-step-ahead predicted log volatility (solid lines), with ±2 standard predic-

tion errors (dashed lines) for four hundred observations from BVSP stock exchange.
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Chapter 5

Other Researches

This chapter deals with our other researches on different types of data. The machine

learning (ML) techniques (supervised and upsupervised), Dynamic Fourier models, wavelet

models are studied on public health (e.g., breast cancer data, heart disease data, diabetes

data, autism spectrum disorder data), financial and geophysical time series. In this chapter,

we briefly discuss on the machine learning techniques when they are applied to the diabetes

and heart disease datasets. The readers are referred to [13], [30], [45] and [46] for the details

of data backgrounds, machine learning algorithms, Dynamic Fourier techniques, wavelet

models and the results of other datasets.

5.1 Machine Learning Algorithms

Machine learning (ML) techniques help to detect and classify chronological diseases like

cancer, heart disease, tumor, diabetes and so on. These techniques are useful to many

statistical, probabilistic, and optimization processes that allow computers to consider past

observations and to detect the pattern of the disease. Researchers have recently attempted

to use ML techniques (especially the supervised and unsupervised ones) in this case. The

reason is that the techniques help us to identify the sources and to order the variables in

terms of importance in causing chronological disease.

In this study, we first did the exploratory analysis to see the association, correlation and

frequency distribution of the features, which are very effective in capturing the characteristic

and patterns of data correctly. Then the data is randomly split into training set (67% for

building a predictive model) and test set (33% for evaluating the model). The prediction
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mean squared error (PMSE), miss-classification rate (MCR), and prediction accuracy using

the Receiver Operating Characteristic (ROC) curve are computed in order to validate the

fitted model with data. The analyses were performed by Python programs.

5.1.1 Analysis of Fitted models

The machine learning models are trained with data to accurately predict whether an indi-

vidual has been diagnosed with disease (breast cancer, heart disease, diabetes or Autism

spectrum disorder). The models used in this research are as: Logistic regression, Ridge

regression, Principal component regression, Random Forest and Support vector machine.

However, the problem of machine learning techniques is to fit them into the data due to over-

fitting, under-fitting, and bias-variance issues. In this case, the regularization technique

and cross-validation are used to estimate the tuning parameters of each model correspond-

ing to the low mean squared error. The adequacy and predictive ability of the data are

determined by computing sensitivity, specificity, accuracy and confidence interval. Now the

results of five ML algorithms are briefly presented when they are applied to diabetes and

heart disease datasets.

Results of Logistic regression

The logistic regression technique have been used for train data to build a predictive model.

In this case, the lasso regularization (L1 norm) is employed to obtain the tuning parameter

λ via cross-validation. The L1 penalty is used for both variable selection and shrinkage,

since it has the effect of forcing some of the coefficient estimates to be zero. Table 5.1

represents important predictors using the best predictive model with L1 penalty. It is clear

that number of times pregnant (preg), plasma glucose concentration (plas), body mass index

(mass), diabetes pedigree function (pedi), and age are important predictors for identifying

a diabetes patient and exercise induced angina (Exang), number of major vessel (Ca), the

slope of the peak exercise ST segment (Slope), thalassamia (Thal) , chest pain (Cp), and
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ST depression induced by exercise relative to rest (oldpeak) are important predictors for

identifying a heart disease patient. The test data is predicted using this predictive model

and evaluated the model using different metrics.

Variables Coefficients

preg 0.0323

plas 0.0250

pres 0

skin 0

insu 0

mass 0.0407

pedi 0.2950

age 0.0121

Table 5.1: Coefficients of important predictors using LGR (L1) model for Diabetes data.

Results of Ridge regression

The Logistic regression model with L2 penalty term (Ridge regression) is also studied on

the datasets. An advantage of L2 penalty is that it overcomes the multicollinearity issue

of the datasets. It has more power to reduce the over-fitting issue of data compared to

L1 regularization. The parameter λ is tuned (optimized) until we find a model that fits

well to the train data. In this case, the tuning parameter is selected by 10-fold cross

validation procedure. From Table 5.3, it is clear that the prediction mean squared error

and miss-classification rate of this model are very low for both diabetes and heart disease

data.

52



Variables Coefficients

Age 0

Sex 0

Cp 0.2847

Trestbps 0

Chol 0

Fbs 0

Restecg 0

Thalach -0.0073

Exang 0.4792

Oldpeak 0.1605

Slope 0.2172

Ca 0.4164

Thal 0.3021

Table 5.2: Coefficients of important predictors using LGR(L1) model for heart Disease data
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Results of Principal Component Regression

A dimension reduction tool, namely principal component regression (PCR) is studied to

reduce the set of predictors of datasets. An advantage of principal component analysis is

that it transforms the high dimensional correlated data into uncorrelated data with same

amount of variation. In this case, the entire dataset is transformed into three principal

components to build the predictive model. The first principal component contains most of

the variability in the data. PCR also overcomes the multicollinearity issue of the datasets

used in this study. We obtained a very good prediction accuracy on test data, which are

88.17% for heart disease data. The predictive performance of PCR compared to the other

methodologies are shown in Table 5.3.

Results of Random Forest

The Random forest model is fitted into train data with optimized number of trees. For

the heart disease dataset, the tuning parameters are 500 trees and 3 sampled variables at

each split. We obtained a very good prediction accuracy on test data, which are 74.80%

for diabetes disease. An important feature of random forest is that we made an order of

the predictors in terms of importance using Mean Decrease Accuracy and Mean Decrease

Gini indices [45]. From Fig. 5.1, it is clear that the plasma-glucose-concentration (plas)

is the most important variable and triceps-skin-fold-thickness (skin) is the least important

variable in causing diabetes.

Results of Support Vector Machine

Last, a support vector machine (SVM kernel) technique is studied to classify the disease

datasets. The reason of using SVM kernel function is that it maps the non-linear separable

dataset into a higher dimensional space where a hyperplane is able to separate the classes

(target variable) linearly. To fit the model, the dataset is first standardized and trained

with 10-fold cross-validation procedure. The model is evaluated with different cost levels
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Figure 5.1: Variable importance plot using Random Forest model for Diabetes data.
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Figure 5.2: Variable importance plot using Random Forest model for Heart-Disease data
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(C) in order to obtain the best predictive model with optimal cost. The highest accuracy

is achieved when γ is 0.01 for diabetes dataset and 0.1 for heart disease dataset. Table 5.3

summarizes the prediction mean square error (PMSE) for the predicted probabilities and

miss-classification rate (MCR) for both diabetes and heart disease datasets.

Table 5.3: Model Evaluation

Models
Diabetes Dataset Heart Disease Dataset

PMSE MCR PMSE MCR

LGR-L1 0.173 0.256 0.151 0.172

RGR 0.174 0.264 0.149 0.193

PCR 0.194 0.308 0.107 0.118

RF 0.169 0.252 0.145 0.172

SVM 0.169 0.240 0.144 0.162

5.1.2 Model Evaluation

This subsection presents the accuracy of our predictive models obtained from above analy-

sis. Tables 5.4 & 5.5 show the sensitivity, specificity, accuracy and confidence interval with

95% significance level for both diabetes and heart disease data. The sensitivity of models

measures the proportion of people with the disease (diabetes and heart disease) who will

have a positive result. So the highly sensitive test is one that correctly identifies patients

with a disease. For example, the Logistic regression (L1) test is 75.81% sensitive for diabetes

data, that is, the model classifies 75 individuals out of every 100 patient correctly who have

the diabetes (see Table 5.4). On the other hand, the specificity measures the proportion of

people without the disease (diabetes or heart disease) who will have a negative result. For

instance, the logistic regression (L1) for diabetes test is 70.31% specific, meaning that the

model identifies 70% of individuals correctly who do not have the diabetes (see Table 5.4).

We plotted the ROC curves between True Positive Rate (Y -axis) and False Positive Rate
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(X-axis) of our predictive models in Figs. 5.3 and 5.4. In these figures, the diagonal line

represents the threshold (0.5) of ROC curves. The areas under the curve are almost 0.8 for

all models fitted with diabetes data. For heart disease data, the area under the ROC curve

is 0.942 for principal component regression. Thus it is concluded that ML techniques have

good predictive ability on diabetes and heart disease data.

Table 5.4: Model Evaluation using ROC Curve for Diabetes data.

Models Sensitivity Specificity Accuracy Conf. Interval

(%) (%) (%) (%)

LGR-L1 75.81 70.31 74.44 (68.52 - 79.69)

RGR 85.19 60.87 74.00 (68.10 - 79.32)

PCR 87.50 40.00 70.40 (64.32 - 75.99)

RF 86.25 54.44 74.80 (68.94 - 80.06)

SVM 79.41 68.75 76.00 (70.21 - 81.16)

Table 5.5: Model Evaluation using ROC Curve for Heart Disease data.

Models Sensitivity Specificity Accuracy Conf. Interval

(%) (%) (%) (%)

LGR-L1 77.36 90.00 82.20 (73.57 - 89.83)

RGR 91.11 72.92 81.72 (72.35 - 88.92)

PCR 95.56 81.25 88.17 (79.82 - 93.95)

RF 78.43 88.10 82.80 (73.57 - 89.83)

SVM 78.00 86.05 81.72 (72.35 - 88.98)
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Figure 5.3: Model Evaluation using ROC Curve for Diabetes data.
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Figure 5.4: Model Evaluation using ROC Curve for Heart Disease data.
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Chapter 6

Concluding remarks

The dissertation deals with the predicting stochastic volatility for extreme fluctuations of

high frequency data arising in finance and geophysics. As the high frequency data appears

very quickly, the fluctuations of these data contain specific reasons for the dynamics of data.

In chapter 1, it is shown that the deterministic model does not encapsulate the full evolution

of volatility and some volatility models can not capture the financial crashes or extreme

fluctuations of seismic events. The deterministic approach often does not allow the level

of conservatism present to be quantified, often leading to over-conservatism or inadvertent

non-conservatism. In this case, a type of stochastic volatility models that incorporates time-

varying parameters are implemented with stationary conditions at different levels. The

stationary process is relatively easy to model the high frequency time series and facilitates

prediction with higher accuracy and fidelity.

The SV model is used with a kalman filtering technique to estimate the parameters

and standard errors. The kalman filtering is advantageous as it filters out unnecessary

information (noise) in the high frequency data. The MLE is computed to find the optimal

estimation of time-varying parameters in order to forecast the data volatility. The aims

of this research focused on analyzing three volatility models: the GARCH, the APARCH,

and the SV models in order to predict data volatility.

The parameter estimates of the GARCH (1, 1) and APARCH models indicate that

there exists a stationary solution in the conditional volatility of high frequency financial

returns (see subsections 4.1.1 and 4.1.2). But for the SV model, we were able to estimate

the volatility parameters of time series including extreme fluctuations. It is because the

one-step-ahead predictions along with the estimated standard error of stochastic volatility
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model do not show any limitations unlike the GARCH and APARCH models. We notice

that the APARCH model is able to solve the leverage effect of GARCH model. But the

GARCH and the APRACH both are more sensitive to noise or unexpected shocks compared

to stochastic volatility model. The reason is that the SV model takes into account a

stochastic component of the data volatility and estimates the time-varying parameters

using filtering techniques. The estimates obtained from SV model are stable around the

true value. In Figs. 4.1-4.2, it is clear that the stochastic volatility is able to detect the

financial crashes or extreme fluctuations for both financial and geophysical data.

From data background, it is observed that there are some noisy observations like the

values of zeroes in high frequency data which do not fit with the stochastic volatility model.

A new approach has been developed in order to fit the SV model with noisy data. In this

case, a stochastic differential equation has been used to first simulate the high frequency

data. We used the superposed Ornstein-Uhlenbeck model with the Lévy driven process and

simulated data via the solution of the stochastic differential equation. The high frequency

data aligns with this technique because of its stochastic behavior. The low estimated errors

(see Table 4.11) implies that the estimation procedure is accurate and capable of generating

a higher forecasting accuracy.

6.1 Future works

The summary of this work opens avenues for predicting the other high frequency data like

volcanic eruptions data, atmospheric data, other seismic events and financial crashes data

using SV models. For the noisy part of data, other types of simulation technique may

be applied, for example, systems of stochastic differential equations, machine learning and

deep learning algorithms. As we know, the high frequency data follow almost log-normal

distribution, for any finite-variance Lévy process, randomizing time is equivalent to ran-

domizing variance. Thus, the time-varying Lévy process generates stochastic volatility (SV)

by randomizing time, which may improve the forecasting performance. The methodologies
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can be used for market analysis, portfolio design or applied in other disciplines such as

geophysics, social sciences, medicine and other public health datasets. In particular, the

machine learning algorithms can be applied to analyze the novel COVID-19 disease.
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