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Abstract

Classification of the subalgebras of the familiar algebra of all n× n real matrices over the

real numbers can get quite unwieldy as all subalgebras are of dimension ranging from 1 to

n2. Classification of the subalgebras of the algebra of all 2 × 2 real matrices over the real

numbers is an interesting first start.

Since M2(R) is of dimension 4 then its possible subalgebras are of dimension 1, 2, 3,

or 4. The one-dimensional subalgebra and four-dimensional subalgebra need little to no

attention. The two-dimensional and three-dimensional subalgebras however turn out to be

of significance.

It turns out there is only one one-dimensional subalgebra and one four-dimensional

subalgebra of M2(R). The former being fairly simple and the latter being trivial. The

investigation of the two-dimensional and three-dimensional subalgebras is not as brief.

Therefore, the goal of this thesis is to answer the following question:

Up to an isomorphism, how many distinct two-dimensional and three-dimensional

subalgebras of M2(R) are there?

We show here that up to an isomorphism there are three distinct two-dimensional subal-

gebras and one distinct three-dimensional subalgebra.

v
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Chapter 1

Introduction

This chapter is intended to ease us into the real-algebra of n×n real matrices. We begin with

some familiar definitions that are immediately called upon in the definition of an algebra

over a ring, or later simply called an algebra. Then to better understand isomorphisms

between algebras we go over needed homomorphisms. Finally an algebra is defined and

then follows that, for a given n, the set of all n × n real matrices is easily equipped to be

a real-algebra.

1.1 Ring Definition

First we adopt a familiar definition of a ring in anticipation of the algebra definition.

Definition 1 A ring is a set R together with two binary operations

+: R×R→ R

and

· : R×R→ R

satisfying the following properties (as is customary we write a + b in place of +(a, b) and

write ab in place of ·(a, b) for all a, b ∈ R):

• (R,+) is an abelian group

• (R, ·) is a monoid

• a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c ∈ R.

1



If in addition (R\{identity for +}, ·) is an abelian group then R is called a field.

Naturally a subset S ⊂ R is said to be a subring of R if (S,+) is a subgroup of the group

(R,+) and also (S, ·) is a submonoid of the monoid (R, ·).

It is of particular importance that (R, ·) is a monoid so that a ring indeed contains unity,

call it 1 ∈ R.

1.2 Vector Space Definition

Once more in anticipation of the algebra definition, we now define a vector space.

Definition 2 Let F be a field.

A vector space over F (or vector space if F is fixed for a particular discussion) is an abelian

group G (with binary operation +) together with a scalar multiplication map

· : F×G→ G

that satisfy the following properties for all a, b ∈ F and m,n ∈ G (as is customary we write

am in place of ·(a,m) for all a ∈ F and m ∈ G):

• a(m+ n) = am+ an

• (a+ b)m = am+ bm

• (ab)m = a(bm)

• 1m = m.

A subset H ⊂ G is said to be a vector subspace of G (or subspace of G, or a subspace if

G is fixed for a particular discussion) if H is a subgroup of the group G that is also closed

under the scalar multiplication on G.

2



1.3 Homomorphisms

In anticipation of algebra isomorphisms we now define ring and vector space homomor-

phisms.

Definition 3 Let R and S be rings.

A function f : R→ S is a ring homomorphism if for all a, b ∈ R

• f(a+ b) = f(a) + f(b),

• f(ab) = f(a)f(b), and

• f(1R) = 1S where 1R is the unity in R and 1S is the unity in S.

Definition 4 Let G and H be vector spaces over a field F.

A function f : G→ H is a vector space homomorphism if

• f(m1 +m2) = f(m1) + f(m2) for all m1,m2 ∈ G, and

• f(am) = af(m) for all a ∈ R and for all m ∈ G.

1.4 Algebra Definition

We now define an algebra over a field. Briefly, an algebra is both a vector space and a ring

such that the scalar multiplication and ring multiplication interact in a pleasing way.

Definition 5 Let F be a field.

An abelian group G together with a scalar multiplication map

· : F×G→ G

and a binary operation

∗ : G×G→ G

is a F-algebra (or algebra if F is fixed for a particular discussion) if the following hold:

3



• (G, ·) is a vector space over F

• (G, ∗) is a ring, with the ring addition being the same as the vector space addition

• For all r ∈ F and m,n ∈ G the scalar multiplication and ring multiplication satisfy

the following identity:

r(mn) = (rm)n = m(rn).

A subset H ⊂ G is said to be a subalgebra of G if H is a subspace of G and also a subring

of G.

1.5 Isomorphic Algebras

As we are prone to sort together like algebras, we now explicitly interpret said effort. In

short, two algebras are the same if they only differ by name.

Definition 6 Two algebras A1 over F and A2 over F are isomorphic, or A1
∼= A2, if there

exists a bijective function f : A1 → A2 that is both a vector space homomorphism and ring

homomorphism. That is, f satisfies:

• f(am1 + bm2) = af(m1) + bf(m2) for all a, b ∈ F and for all m1,m2 ∈ A

• f(m1m2) = f(m1)f(m2) for all m1,m2 ∈ A

• f(1A1) = 1A2 where 1A1 is the unity in A1 and 1A2 is the unity in A2.

1.6 Mn(R)

We now briefly introduce some needed notation for real matrices.

Definition 7 R denotes the field of real numbers.

4



Definition 8 Fix a positive integer n. Denote the n × n matrix with a single one in the

(i, j) entry and zeroes elsewhere by Eij.

Examples for n = 2 and n = 3 respectively:

E21 =

0 0

1 0

 , E12 =


0 1 0

0 0 0

0 0 0

 .

Then for an arbitrary n× n matrix M where mij ∈ R is the (i, j) entry we have

M =
n∑

i=1

n∑
j=1

mijEij.

This representation of M as a linear combination of the Eij’s is unique and later serves a

particular importance. For readability we have the following.

Definition 9 Mn(R) denotes the set of all n× n real matrices. That is, an n× n matrix

M is an element of Mn(R) if and only if mij ∈ R for all 1 ≤ i, j ≤ n. I denotes the n× n

identity matrix whose (i, j) entry is 1 whenever i = j and 0 whenever i 6= j.

Definition 10 Let M ∈ Mn(R) The (i, j) entry of the matrix M is denoted as (M)ij or

mij.

1.7 The Algebra Of Real Matrices

At last we now realize a particular collection of real matrices as a real-algebra.

Let Mn(R) be the set of all n× n real matrices. Now it is easy to verify the following:

• Mn(R) is closed under the standard addition of matrices

• Mn(R) is closed under the standard scalar multiplication of matrices

• Mn(R) is closed under the standard matrix multiplication.

Consequently, with little effort we have the following real-algebra of matrices.

5



Theorem 1 Mn(R) together with the standard scalar multiplication, matrix addition, and

matrix multiplication is a R-algebra.

Proof. Clearly Mn(R) together with the standard addition of matrices and standard scalar

multiplication of matrices is a vector space over R. Also clear, Mn(R) together with the

standard addition of matrices and standard matrix multiplication is a ring with unity I.

Then for all r ∈ R and A,B ∈Mn(R)

(r(AB))ij = r

(
n∑

k=1

aikbkj

)
=

n∑
k=1

r(aikbkj) =
n∑

k=1

(raik)bkj = ((rA)B)ij

and

(r(AB))ij = r

(
n∑

k=1

aikbkj

)
=

n∑
k=1

r(aikbkj) =
n∑

k=1

aik(rbkj) = (A(rB))ij.

Hence, r(AB) = (rA)B = A(rB). �

6



Chapter 2

Subalgebra As A Subspace

In this chapter we now concern ourselves with subalgebras of Mn(R) as vector subspaces

of Mn(R). We first recall that subalgebras over a field are vector subspaces and so, in

anticipation of Mn(R) being a finite-dimensional vector space, we readily make use of

the standard definitions and results about finite-dimensional vector spaces. Next, we seek

vector subspaces of Mn(R) containing the identity matrix that are closed under matrix

multiplication and then conclude that these subspaces are indeed subalgebras. Finally we

conceive a method for constructing vector subspaces of M2(R) that are in fact subalgebras.

2.1 Finite-Dimensional Vector Space

This section provides a brief overview of a finite-dimensional vector space and its basis and

dimension. Only what is needed for our purposes is recorded here but further detail on the

standard results mentioned in this section and later used can be revisited in an elementary

Linear Algebra text. We only consider finite-dimensional vector spaces as it will become

apparent that Mn(R) itself is finite-dimensional.

Definition 11 Let V be a vector space over F. A finite set of vectors {w1, . . . , wn} in V

spans W ⊂ V if

span(w1, . . . , wn) =

{
n∑

i=1

aiwi : ai ∈ F

}
= W.

Recall that span(w1, . . . , wn) is itself a vector subspace. Now follows the definition of a

finite-dimensional vector space.

7



Definition 12 A vector space V is finite-dimensional if some finite set of vectors in V

spans V.

A basis is a linearly independent set and so we must define linearly independent. We define

linearly independent in the following way as to simplify our future investigations.

Definition 13 Let V be a vector space over F. A finite set of vectors {v1, . . . , vn} in V

is linearly independent if the only choice of a1, . . . , an ∈ F that makes the sum
∑n

i=1 aivi

equal to the identity vector is a1 = · · · = an = 0.

Equivalently, vectors v1, . . . , vn are linearly independent if each vector v ∈ span(v1, . . . , vn)

has a unique representation as a linear combination of the vectors v1, . . . , vn. We remind

of this result in passing as overture for the following definition.

Definition 14 A basis of a vector space V is a finite set of vectors {v1, . . . , vn} in V that

is linearly independent and spans V. The vectors v1, . . . , vn are called basic vectors.

Recall that every finite-dimensional vector space has a basis and that all bases have the

same cardinality. It now follows the definition of dimension.

Definition 15 Let V be a finite-dimensional vector space. The dimension of V is the

cardinality of any basis of V.

Recall that an algebra over a field is a vector space. For clarity in the future we define the

dimension of an algebra over a field as its dimension as a vector space.

Definition 16 Let A be an algebra over a field. The dimension of the algebra A is the

dimension of the vector space A.

Some standard results that are of particular importance we state here for record.

Lemma 1 Every subspace of a finite dimensional vector space is finite dimensional.

Lemma 2 Every finite dimensional vector space has a basis.

Lemma 3 Every linearly independent set of a finite-dimensional vector space can be ex-

tended to a basis of the vector space.

8



2.2 Foundation

We now start with some important groundwork for finding subalgebras of Mn(R) by way

of finding vector subspaces that are also subalgebras. Then at the end of this section

we realize that beginning to characterize all subalgebras of Mn(R) by first finding vector

subspaces that are also subalgebras seems particularly formidable given the dimension of

Mn(R).

First note that if a vector subspace of Mn(R) is closed under matrix multiplication

then the needed property for an algebra involving the scalar and ring multiplication will

automatically be satisfied as it holds in Mn(R). Then regarding the ring structure for an

algebra we are only maybe missing the identity matrix I for the ring multiplication. We

now record this in the following lemma.

Lemma 4 Let V be a vector subspace of Mn(R) containing I that is closed under the usual

matrix multiplication. Then V is a subalgebra.

Proof. The needed ring multiplication properties hold in Mn(R) and so hold in V. There-

fore, V is a subring. Let A,B ∈Mn(R) and r ∈ R. Then r(AB), (rA)B,A(rB) ∈ V and

the identity

r(AB) = (rA)B = A(rB)

holds in Mn(R) and therefore in V. �

Note that not every vector subspace is closed under matrix multiplication. Consider the

vector subspace V of M3(R) with basis


1 0 0

0 1 0

0 0 0

 ,


0 0 0

0 0 1

0 1 0


 .

Then 
0 0 0

0 0 1

0 1 0


2

=


0 0 0

0 1 0

0 0 1

 /∈ V.

9



In this example, the identity matrix is not even an element of the subspace V. This feature

immediately discounts V as a subalgebra and brings us to our next point.

Every subalgebra must have unity. Namely, every subalgebra of M2(R) must contain

the identity matrix. Therefore with every vector subspace we are considering we can begin

with a basis including the identity matrix and consequently focus on the remaining basic

vectors. This leads us to the following.

Theorem 2 The only one-dimensional subalgebra of M2(R) is the subalgebra
a 0

0 a

 |a ∈ R

 ∼= R.

Proof. Any one-dimensional subalgebra of M2(R) must contain the identity matrix. Then

trivially extend the linearly independent set {I} to a basis. An isomorphism is given by

f :

a 0

0 a

 7→ a.

�

Theorem 2 along with Lemma 4 is the foundation of our method of finding subalgebras of

M2(R).

Finally note that Mn(R) is finite-dimensional and of dimension n2 since clearly the set

{Eij : 1 ≤ i, j ≤ n} of n2 vectors is linearly independent and spans Mn(R). Now a vector

subspace will have dimension not exceeding the dimension of the vector space. Hence,

subalgebras of Mn(R) can be particularly abundant as they will be of dimension ranging

from 1 to n2. So finding subalgebras of Mn(R) by constructing vector subspaces that are

thereafter subalgebras can get quite unwieldy. This inspires us to begin with characterizing

subalgebras of M2(R).

2.3 Subalgebra From Subspace

We now describe our method for finding subalgebras of M2(R) by way of first considering a

vector subspace containing the 2×2 identity matrix and then forcing it to be a subalgebra.

10



Recall from the previous section that a subspace of M2(R) containing the identity matrix

that is closed under the matrix multiplication is a subalgebra. Therefore we only need to

check that the product of any two basic vectors of the subspace is contained in the subspace

in order to verify that the subspace is closed under matrix multiplication. In short, this

verification is our method.

Suppose we have a vector subspace V of M2(R) that contains the 2×2 identity matrix.

Then for some positive integer d at most 4 we have a basis of V, say {v1 = I, . . . , vd} of d

matrices in V. We then want the subspace to be closed under the matrix multiplication.

In other words, we want that for all matrices M1,M2 ∈ V the product M1M2 is contained

in V. For M1,M2 ∈ V, we have that

M1 =
d∑

i=1

aivi

for some constants a1, . . . , ad and

M2 =
d∑

i=1

bivi

for some constants b1, . . . , bd. Then we have the product

M1M2 =

(
d∑

i=1

aivi

)(
d∑

j=1

bjvj

)
.

So

M1M2 =
d∑

i=1

d∑
j=1

aibjvivj.

The terms of the sum involving the products I2, Ivi, and viI for 2 ≤ i ≤ d are all trivially

contained in V. Now if the remaining terms involving products vivj for 2 ≤ i, j ≤ d were

all contained in V then all these terms too would be contained in V. Then, as V is closed

under matrix addition, having the product M1M2 equal to a sum of matrices in V gives us

M1M2 ∈ V.

So in finding a d-dimensional subalgebra of M2(R) we will start with a basis of d

matrices including the identity matrix and suppose the product of any two basic vectors is

11



equal to a linear combination of the basis vectors. We then solve for the constants of these

linear combinations. These constants then might restrict what the basis vectors can be in

order to allow d-dimensional subalgebras of M2(R).

12



Chapter 3

Two-Dimensional Subalgebras Of

M2(R)

In this chapter we begin our search for subalgebras of M2(R) beginning with the two-

dimensional ones. We digress for a brief moment with the Cayley-Hamilton Theorem for

M2(R). Then we quickly realize that the Cayley-Hamilton Theorem effectively concludes

that any two-dimensional subspace of M2(R) containing the 2×2 identity matrix is in fact

a two-dimensional subalgebra.

3.1 Preliminaries

In this section we go over some standard definitions and some of their relating results

that are in order for the statement and proof of the Cayley-Hamilton Theorem for M2(R).

Although the contents of this section could be expressed in terms of Mn(R), for simplicity

we only express the contents of this section in terms of M2(R) as we are only concerned

with M2(R). We first define the adjugate, determinant, and trace of a 2× 2. Then follows

a standard result immediately suggesting their relevance. Lastly, the familiar definition of

the characteristic equation for a 2×2 matrix is led by the standard definitions of eigenvalue

and eigenvector.

Definition 17 Let M ∈ M2(R) be given by M =
(
a b
c d

)
where a, b, c, d ∈ R. Define the

adjugate of M as the following matrix

adjM =

 d −b

−c a

 .

13



Define the determinant of M as the following value

det(M) = ad− bc.

Define the trace of M as the following value

tr(M) = a+ d.

Theorem 3 If M ∈M2(R) then

M(adjM) = (adjM)M = det(M)I.

Hence M is invertible iff det(M) 6= 0.

Proof. Let M =
(
a b
c d

)
. Then

M(adjM) =
(
a b
c d

)(
d −b
−c a

)
=
( det(M) 0

0 det(M)

)
=
(

d −b
−c a

)(
a b
c d

)
= (adjM)M

The rest immediately follows. �

The sudden presence of complex numbers may be alarming but is immediately justified

with the characteristic equation that follows. In short, the eigenvectors are dependent

on the eigenvalues and the eigenvalues are roots of a polynomial. Then of course real

eigenvalues, and consequently real eigenvectors, may not exist.

Let C denote the field of complex numbers.

Definition 18 Let M ∈M2(R). Let v be a nonzero vector in C2 such that

Mv = λv

for some λ ∈ C. Then v is called an eigenvector of M with corresponding eigenvalue λ.

14



In search of eigenvalues the above equation can be rewritten as

(M − λI)v = 0.

Then we are concerned with when M−λI is not invertible since otherwise v = 0. Therefore

by previous we find λ such that det(M − λI) = 0. Let M =
(
a b
c d

)
and we have that

0 = det(A− λI)

= (a− λ)(d− λ)− bc

= λ2 − (a+ d)λ+ (ad− bc)

= λ2 − tr(M)λ+ det(M).

This is precisely the characteristic equation we wish to highlight.

Definition 19 Let M ∈M2(R). The characteristic polynomial of M is the polynomial

f(x) = det(M − xI)

= x2 − tr(M)x+ det(M).

The characteristic equation of M is the equation

x2 − tr(M)x+ det(M) = 0.

Solutions are the eigenvalues of M .

Consequently, it is clear that eigenvalues can be complex and eigenvectors thereafter found

to be complex as well. Also, note that since the characteristic equation is quadratic then

eigenvalues of a real 2× 2 matrix are either both real or both complex.

3.2 The Cayley-Hamilton Theorem

From here on out, when suitable, we freely write 0 to denote the 2× 2 zero matrix whose

entries are all the real number 0. We leave to context the distinction between the zero

matrix 0 and the real number 0.

We are now able to state and prove the Cayley-Hamilton Theorem for M2(R).
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Theorem 4 Every matrix M ∈M2(R) satisfies its characteristic equation. That is,

M2 − tr(M)M + det(M)I = 0.

Proof. By previous we have that

(M − xI)(adj(M − xI)) = det(M − xI)I.

Now adj(M −xI) has entries that are linear polynomials since M −xI has entries that are

linear polynomials. So for some matrix coefficients C1, C0 ∈M2(R) we have that

adj(M − xI) = C1x+ C0.

So

(M − xI)(C1x+ C0) = (x2 − tr(M)x+ det(M))I.

Comparing matrix coefficients by the powers of x we have

−C1 = I

MC1 − C0 = −tr(M)I

MC0 = det(M)I.

Multiplying these equations on the left by M2,M, I respectively gives us

−M2C1 = M2

M2C1 −MC0 = −tr(M)M

MC0 = det(M)I.

Then adding these equations up we get

0 = M2 − tr(M)M + det(M)I.

�
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3.3 Two-Dimensional Subalgebras

Returning to our pursuit of constructing subalgebras of M2(R), we know that a two-

dimensional subspace V of M2(R) with basis {I, A} such that I2, IA,AI,A2 ∈ V is, in

fact, a subalgebra. Hence, the only condition of concern is A2 ∈ V. Equipped with the

Cayley-Hamilton Theorem this is immediately addressed.

Theorem 5 Any two-dimensional subspace of M2(R) containing the identity is a subalge-

bra.

Proof. Let V be a two-dimensional subspace of M2(R) containing I. Extend the set {I}

to a basis {I, A}. Write the characteristic equation of A

x2 − tr(A)x+ det(A) = 0.

Then

A2 = −det(A)I + tr(A)A ∈ V.

�

In short, we now have that any two-dimensional subspace of M2(R) is a subalgebra as

long as it contains the identity matrix. This result is not to say that all two-dimensional

subalgebras of M2(R) have the same algebraic structure. That is, some two two-dimensional

subalgebras of M2(R) may not be isomorphic. The next chapter focuses on this issue.
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Chapter 4

Isomorphic Two-Dimensional

Subalgebras Of M2(R)

In this chapter we realize that not all the two-dimensional subalgebras of M2(R) are iso-

morphic. We recall the definitions of an idempotent matrix and a nilpotent matrix. The

presence of an idempotent matrix or a nilpotent matrix in a two-dimensional subalgebra

leads to some conditions on isomorphisms between subalgebras.

4.1 Idempotent And Nilpotent Matrices

The following definitions are often expressed in terms of Mn(R) but we only express them

in terms of M2(R) as we are only concerned with M2(R).

Definition 20 A matrix M ∈M2(R) is idempotent if M2 = M .

Generally for Mn(R) one might recall the notion of index for nilpotent matrices but for

M2(R) there is no need for the index. Therefore, we present nilpotent matrices in the

following way.

Definition 21 A matrix M ∈M2(R) is nilpotent if Mk = 0 for some positive integer k.

Lemma 5 For any nilpotent matrix M ∈M2(R) M2 = 0.

Proof. Let M ∈M2(R) be a nilpotent nonzero matrix. Let k be the smallest positive integer

such that Mk = 0. Note that det(M) = 0 since otherwise I = MM−1 = Mk(M−1)k = 0.

18



Then

M2 = −det(M)I + tr(M)M = tr(M)M.

Now tr(M) = 0 since otherwise

Mk = tr(M)Mk−1

gives us

Mk−1 = 0,

which is not true. We conclude that M2 = 0. �

4.2 Remarks

First note that an algebra isomorphism f between any two subalgebras of M2(R) must

satisfy f(I) = I by definition and f(0) = 0 since f(0) + f(0) = f(0 + 0). Then given an

algebra isomorphism f : V →W between two subalgebras of M2(R) where V is given by

the basis {I, A} we have that for any two matrices M1,M2 ∈ V

f(M1 +M2) = f(M1) + f(M2)

= f(a1I + a2A) + f(b1I + b2A)

= (a1 + b1)I + (a2 + b2)f(A)

and

f(M1M2) = f(M1)f(M2)

= f(a1I + a2A)f(b1I + b2A)

= a1b1I + (a1b2 + a2b1)f(A) + a2b2f(A)2

for some a1, a2, b1, b2 ∈ R. So given a basis where one basic vector is the identity matrix we

are primarily concerned with the image, under an isomorphism, of the basic vector that is
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not the identity matrix. Now the interest in idempotent and nilpotent matrices stems from

the fact that for an algebra isomorphism f we have f(M2) = f(M)2. So, if M ∈ M2(R)

is idempotent this becomes f(M) = f(M)2. On the other hand, if M is nilpotent then

0 = f(0) = f(M)2. This observation leads to some useful equations and results. Our

search for isomorphic two-dimensional subalgebras is led by the following lemmas.

Lemma 6 Let f : A1 → A2 be an algebra isomorphism between two subalgebras of M2(R).

If M ∈ A1 is idempotent then f(M) is idempotent.

Proof. If M ∈ A1 is idempotent then

f(M) = f(M2) = f(M)2.

Therefore f(M) is idempotent. �

Lemma 7 Let f : A1 → A2 be an algebra isomorphism between two subalgebras of M2(R).

If M ∈ A1 is nilpotent then f(M) is nilpotent.

Proof. If M ∈ A1 is nilpotent then

0 = f(0) = f(M2) = f(M)2

Therefore f(M) is nilpotent. �

4.3 Non-Isomorphic Two-Dimensional Subalgebras

Followed by this next lemma we have a case of two two-dimensional subalgebras of M2(R)

that are not isomorphic.

Lemma 8 Let f : A1 → A2 be an algebra isomorphism between two two-dimensional

subalgebras of M2(R). Let A1 be given by the basis {I,M} and A2 be given by the basis
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{I,M ′}. If M is idempotent and M ′ is nilpotent then f(M) = c1I + c2M
′ for c1 6= 0 and

c2 6= 0.

Proof. Let f(M) = c1I + c2M
′ for some c1, c2 ∈ R.

If c1 = 0 then M = 0 since

f(M) = f(M)2 = (c2M
′)2 = 0.

If c2 = 0 then M = I since

c1I = f(M) = f(M)2 = (c1I)2.

By contradiction we conclude c1 6= 0 and c2 6= 0. �

Notice that in the above proof we get that c2 6= 0 without the need for M ′ being nilpotent.

Theorem 6 Let A1 and A2 be two-dimensional subalgebras of M2(R). Let A1 be given by

the basis {I,M} and let A2 be given by the basis {I,M ′}. Suppose M is idempotent and

M ′ is nilpotent. Then A1 and A2 are not isomorphic.

Proof. Suppose f : A1 → A2 is an isomorphism. Then for some c1 6= 0 and c2 6= 0 we have,

f(M) = c1I + c2M
′.

Now,

f(M) = f(M)2 = c21I + 2c1c2M
′ + c22M

′2

= c21I + 2c1c2M
′.

Then by linear independence of I and M we have,c1 = c21

c2 = 2c1c2.
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Hence, 1 = 2, a contradiction. �

As an example, we have that the two-dimensional subalgebra
a 0

0 b

 |a, b ∈ R


is not isomorphic to the two-dimensional subalgebra

a b

0 a

 |a, b ∈ R


since the former is given by the basis

1 0

0 1

 ,

1 0

0 0


and the latter is given by the basis

1 0

0 1

 ,

0 1

0 0


and

(
1 0
0 0

)
is idempotent while

(
0 1
0 0

)
is nilpotent.

In Theorem 6 M ′ being nilpotent played an important role. For a more general M ′

we only have the following necessary but not sufficient condition for isomorphisms of two-

dimensional subalgebras of M2(R) that are given by a basis {I,M} where M is idempotent.

Theorem 7 Let f : A1 → A2 be an algebra isomorphism between two two-dimensional

subalgebras of M2(R). Let A1 be given by the basis {I,M} and let A2 be given by the basis

{I,M ′}. Suppose M is idempotent. Then f(M) = xI + yM ′ for x, y ∈ R satisfyingx = x2 − y2det(M ′)

1 = 2x+ ytr(M ′).

Proof. Let f(M) = xI + yM ′. Note that y 6= 0. Now

f(M)2 = x2I + 2xyM ′ + y2M ′2

= x2I + 2xyM ′ + y2(−det(M ′)I + tr(M ′)M ′)

= (x2 − y2det(M ′))I + (2xy + y2tr(M ′))M ′.
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Now f(M) is idempotent and so f(M) = f(M)2. That is,

xI + yM ′ = (x2 − y2det(M ′))I + (2xy + y2tr(M ′))M ′.

Then the linear independence of I and M gives usx = x2 − y2det(M ′)

1 = 2x+ ytr(M ′).

�

Then with convenient bases we have the following corollaries.

Corollary 1 Let A1 and A2 be two-dimensional subalgebras of M2(R). Let A1 be given by

the basis {I,M} and A2 be given by the basis
{
I,
(
a b
c a

)}
. Suppose M is idempotent. Then

A1 and A2 are not isomorphic for bc ≤ 0.

Proof. Take
{
I,
(
0 b
c 0

)}
as a basis of A2. Then by Theorem 7, for an isomorphism

f : A1 → A2 we have that f(M) = xI + y
(
0 b
c 0

)
for x, y ∈ R satisfyingx = x2 + bcy2

1 = 2x.

Then y is a solution of

4bcy2 − 1 = 0.

So we must have that bc > 0. �

Corollary 2 Let A1 and A2 be two-dimensional subalgebras of M2(R). Let A1 be given

by the basis {I,M} and A2 be given by the basis
{
I,
(
a b
c d

)}
where a 6= d. Suppose M is

idempotent. Then A1 and A2 are not isomorphic for −bc
(a−d)2 ≥

1
4
.
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Proof. Take
{
I,
( 1 b

a−d
c

a−d
0

)}
as a basis of A2. Then by Theorem 7, for an isomorphism

f : A1 → A2 we have that f(M) = xI + y
( 1 b

a−d
c

a−d
0

)
for x and y satsifyingx = x2 − y2

(
−bc

(a−d)2

)
1 = 2x+ y.

Hence, x satisfies the quadratic equation

x2 − (1− 2x)2
(
−bc

(a− d)2

)
− x = 0.

Simplifying, we have the quadratic equation(
1 +

4bc

(a− d)2

)
x2 +

(
−4bc

(a− d)2
− 1

)
x+

bc

(a− d)2
= 0.

Now the equation has a real solution only provided that −bc
(a−d)2 6=

1
4

and the discriminant is

non-negative. That is, we require that

−bc
(a− d)2

6= 1

4

and (
4bc

(a− d)2
+ 1

)2

− 4

(
1 +

4bc

(a− d)2

)(
bc

(a− d)2

)
= 4

(
bc

(a− d)2

)
+ 1 ≥ 0.

So me must have that −bc
(a−d)2 <

1
4
. �

4.4 Isomorphic Two-Dimensional Subalgebras

A converse of sorts of Theorem 7 is true and is in order. The approach up until this section

has been to assume some isomorphisms exist between some particular subalgebras and

arrive at conclusions. In the previous section nearly identical results could have been found

artlessly interchanging the use of idempotent and nilpotent matrices in the antecedents and
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consequents. This section, instead, constructs some isomorphisms and ceases any interest

in rephrasing the previous section.

Suppose we have two two-dimensional subalgebras of M2(R) say A1 with basis {I, A}

and A2 with basis {I, B}. Creating a bijective function f : A1 → A2 that satisfies:

• f(c1M1 + c2M2) = c1f(M1) + c2f(M2) for all c1, c2 ∈ R and for all M1,M2 ∈ A1

• f(I) = I

is not the difficulty. To see this, an immediately suitable f is given by

f : c1I + c2A 7→ c1I + c2B.

But then wanting the f to be an algebra isomorphism we require that

f(M1M2) = f(M1)f(M2) for all M1,M2 ∈ A1.

Here the difficulty arises but is relieved with the condition that A and B are both idempo-

tent matrices or are both nilpotent matrices.

Suppose we have an f : A1 → A2 such that

f(c1M1 + c2M2) = c1f(M1) + c2f(M2)

for all c1, c2 ∈ R and for all M1,M2 ∈ A1 and

f(I) = I.

Let {I, A} be a basis of A1. We have that for some a1, a2, b1, b2 ∈ R

f(M1M2) = f((a1I + a2A)(b1I + b2A))

= f(a1b1I + (a1b2 + a2b1)A+ a2b2A
2)

= a1b1I + (a1b2 + a2b1)f(A) + a2b2f(A2)
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and

f(M1)f(M2) = f(a1I + a2A)f(b1I + b2A)

= (a1I + a2f(A))(b1I + b2f(A))

= a1b1I + (a1b2 + a2b1)f(A) + a2b2f(A)2.

Then for f(A2) = f(A)2 we have that f is an algebra isomorphism. Naturally, we now

have the following theorem.

Theorem 8 Let A1 and A2 be two two-dimensional subalgebras of M2(R). Let A1 be given

by the basis {I, A} where A is idempotent(nilpotent). A1
∼= A2 iff there exists idempo-

tent(nilpotent) B ∈ A2 such that {I, B} is a basis of A2.

Proof. Suppose f : A1 → A2 is an algebra isomorphism. Then f(A) is idempotent(nilpotent).

Then {I, f(A)} is linearly independent and therefore a basis of A2. So we put B = f(A).

Conversely, let {I, B} be a basis of A2 where B is idempotent(nilpotent). Then an

isomorphism f : A1 → A2 is given by

f : c1I + c2A 7→ c1I + c2B.

�

Corollary 3 Let A1 and A2 be two two-dimensional subalgebras of M2(R). Let A1 be given

by the basis {I,M} and let A2 be given by the basis {I,M ′}. Suppose both M and M ′ are

idempotent(nilpotent). Then A1
∼= A2.

An example regarding idempotent matrices is the algebra of all diagonal matrices.

D2(R) =


a 0

0 b

 |a, b ∈ R

 ∼=

a+ b b

0 a

 |a, b ∈ R


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since the former is given by the basis
1 0

0 1

 ,

1 0

0 0


and the latter is given by the basis

1 0

0 1

 ,

1 1

0 0

 .

An example regarding nilpotent matrices is
a b

0 a

 |a, b ∈ R

 ∼=

a 0

b a

 |a, b ∈ R


since the former is given by the basis

1 0

0 1

 ,

0 1

0 0


and the latter is given by the basis

1 0

0 1

 ,

0 0

1 0

 .

The following theorems address the existence of an idempotent or nilpotent matrix in

a two-dimensional subalgebra of M2(R).

Theorem 9 Let A be a two-dimensional subalgebra of M2(R) given by the basis {I,M}.

Then A contains an idempotent matrix different from I iff tr(M)2 > 4det(M).

Proof. xI + yM 6= I is idempotent iff

xI + yM = (xI + yM)2

= x2I + 2xyM + y2M2

= x2I + 2xyM + y2(−det(M)I + tr(M)M)

= (x2 − y2det(M))I + (2xy + y2tr(M))M.
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Since I and M are linearly independent, we have that xI + yM 6= I is idempotent iffx = x2 − y2det(M)

1 = 2x+ ytr(M).

From the given system we have that

1− ytr(M)

2
=

(
1− ytr(M)

2

)2

− y2det(M).

So,

2− 2ytr(M) = 1− 2ytr(M) + y2tr(M)2 − 4y2det(M).

That is,

1 = y2(tr(M)2 − 4det(M)).

We can then conclude that xI + yM 6= I is idempotent iff tr(M)2 − 4det(M) > 0. �

Theorem 10 Let A be a two-dimensional subalgebra of M2(R) given by the basis {I,M}.

Then A contains a nilpotent matrix different from 0 iff tr(M)2 = 4det(M).

Proof. xI + yM 6= 0 is nilpotent iff

0 = (xI + yM)2

= (x2 − y2det(M))I + (2xy + y2tr(M))M.

Since I and M are linearly independent, we have that xI + yM 6= 0 is nilpotent iff0 = x2 − y2det(M)

0 = 2x+ ytr(M).

From the given system we have that

0 =

(
−ytr(M)

2

)2

− y2det(M).
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So,

0 = y2tr(M)2 − 4y2det(M).

That is,

0 = y2(tr(M)2 − 4det(M)).

We can then conclude that xI + yM 6= 0 is nilpotent iff tr(M)2 − 4det(M) = 0. �

An example of a two-dimensional subalgebra of M2(R) with neither an idempotent

matrix nor a nilpotent matrix is 
 a b

−b a

 |a, b ∈ R


given by the basis 

1 0

0 1

 ,M =

 0 1

−1 0


where tr(M)2 = 0 < 4 = 4det(M).

Theorem 11 Let A be a two-dimensional subalgebra of M2(R). Then one and only one

of the following is true

• A contains an idempotent matrix different from I

• A contains a nilpotent matrix different from 0

• A contains a matrix M such that M2 = −I.

Proof. Let A be given by the basis {I,M}. Without loss of generality assume tr(M) = 0

since otherwise M − tr(M)
2
I ∈ A and tr

(
M − tr(M)

2
I
)

= tr(M)− tr(M)
2
tr(I) = 0.

Now M2 = −det(M)I + tr(M)M = −det(M)I. If det(M) < 0 then

(
1√

−det(M)
M

)2

= I.

If det(M) = 0 then M2 = 0. If det(M) > 0 then

(
1√

det(M)
M

)2

= −I. That no two

statements are true at once is covered by Theorem 9 and Theorem 10. �
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Corollary 4 Up to an isomorphism there are only three two-dimensional subalgebras of

M2(R).

Proof. Let A1 and A2 be two two-dimensional subalgebras of M2(R). Let A1 be given by

the basis {I, A} and let A2 be given by the basis {I, B}. In view of Theorem 11, we need

only show that if A2 = B2 = −I then A1
∼= A2. Suppose A2 = B2 = −I. Then we claim

an isomorphism f : A1 → A2 is given by

f : c1I + c2A 7→ c1I + c2B.

Clearly

f(c1M1 + c2M2) = c1f(M1) + c2f(M2)

for all c1, c2 ∈ R and for all M1,M2 ∈ A1 and f(I) = I. Then as

f(A2) = f(−I) = −I

and

f(A)2 = B2 = −I

it follows that

f(M1M2) = f(M1)f(M2)

for all M1,M2 ∈ A1. We conclude A1
∼= A2 and we are done. �

30



Chapter 5

Three-Dimensional Subalgebras Of

M2(R)

In this chapter we search for three-dimensional subalgebras of M2(R). The approach of rep-

resenting products of basis vectors as linear combinations of basis vectors is treated slightly

different than as it was with two-dimensional subalgebras. Unlike with two-dimensional

subalgebras, the allowed basis vectors for a three-dimensional subspace to be a subalgebra

is not entirely clear. Ignoring the apparent need for conditions on the basis, a particular

suspicion leads to the result that all three-dimensional subalgebras of M2(R) are isomor-

phic.

5.1 Initial Approach

Suppose we have a three-dimensional subspace V of M2(R) with basis {I, A,B}. We

already know that A2, B2 ∈ V since M2 = −det(M)I + tr(M)M for any M ∈M2(R) and

so our primary concern is only of the products AB and BA. If AB,BA ∈ V then we obtain

a three-dimensional subalgebra. As is shown below, we only need AB ∈ V.

Lemma 9 Let V be a three-dimensional vector subspace of M2(R) given by the basis

{I, A,B}. If AB ∈M2(R) then V is a subalgebra of M2(R).
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Proof. By previous we know that M2 ∈ V for all M ∈ V. So (A+B)2, A2, B2 ∈ V. Then

BA = (A+B)2 − A2 −B2 − AB ∈ V.

�

In fact, if all the basis vectors of a three-dimensional subspace of M2(R) commute then

we have a subalgebra.

Lemma 10 Let V be a three-dimensional vector subspace of M2(R) given by the basis

{I, A,B}. If AB = BA then V is a subalgebra of M2(R).

Proof. By previous we know that M2 ∈ V for all M ∈ V. So (A+B)2, A2, B2 ∈ V. Then

AB =
(A+B)2 − A2 −B2

2
∈ V.

�

We now commence our approach, as before, to find three-dimensional subalgebras of

M2(R). Let V be a three-dimensional subspace of M2(R) given by the basis {I, A,B}.

Suppose AB ∈ V. We solve AB = c1I + c2A+ c3B for c1, c2, c3 ∈ R. From

c1I + c2A+ c3B = AB

=

a11b11 + a12b21 a11b12 + a12b22

a21b12 + a22b21 a21b12 + a22b22


we have the system 

c1 + c2a11 + c3b11 = a11b11 + a12b21

c2a12 + c3b12 = a11b12 + a12b22

c2a21 + c3b21 = a21b12 + a22b21

c1 + c2a22 + c3b22 = a21b12 + a22b22

.
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This system may have no solution. An example of a three-dimensional subspace of M2(R)

containing I that is not a subalgebra is the subspace given by the basis
1 0

0 1

 ,

1 0

0 0

 ,

0 1

1 0


since 1 0

0 0

0 1

1 0

 =

0 1

0 0

 /∈ V.

Of course there do exist three-dimensional subalgebras of M2(R), for example the set

of all upper-triangular matrices in M2(R) given by
a b

0 c

 |a, b, c ∈ R


is a subalgebra of M2(R) given by the basis

1 0

0 1

 ,

1 0

0 0

 ,

0 1

0 0

 .

Similarly the set of all lower triangular matrices too is a three-dimensional subalgebra of

M2(R).

5.2 Associativity

In this section we use associativity in another attempt at writing the needed product of

basis vectors as a linear combination of the basis vectors. Once more we get a system that

has no solution but it leads to a particular feature of one of the constants. We record this

attempt in the following lemma.

Lemma 11 Let A be a three-dimensional subalgebra of M2(R) given by the basis {I, A,B}.

Write

AB = c1I + c2A+ λAB
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and

BA = d1I + d2B + λBA.

for unique constants c1, c2, d1, d2, λA, λB ∈ R. Then λA is an eigenvalue of A and λB is an

eigenvalue of B. Furthermore, the eigenvalues of A and B are real.

Proof. Recall that for a matrix M ∈M2(R) we have the following characteristic equation

λ2 − tr(M)λ+ det(M) = 0.

We show that

λ2A − tr(A)λA + det(A) = 0.

and

λ2B − tr(B)λB + det(B) = 0.

From A(AB) = A2B we have that

c1A+ c2A
2 + λAAB = −det(A)B + tr(A)AB.

So

c1A+ c2(−det(A)I + tr(A)A) + λA(c1I + c2A+ λAB)

= −det(A)B + tr(A)(c1I + c2A+ λAB).

Rewriting both sides as linear combinations of I, A, and B we have

(c1λA − c2det(A))I + (c1 + c2λA + c2tr(A))A+ λ2AB

= c1tr(A)I + c2tr(A)A+ (λAtr(A)− det(A))B.

Since {I, A,B} is linearly independent we have the following system
c1λA − c2det(A) = c1tr(A)

c1 + c2λA = 0

λ2A = λAtr(A)− det(A)

.
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Hence

λ2A − tr(A)λA + det(A) = 0.

Since λA satisfies the characteristic equation of A, conclude λA is an eigenvalue of A. Since

λA ∈ R, we conclude that A has only real eigenvalues.

Then from B(BA) = B2A we have that

d1B + d2B
2 + λBBA = −det(B)A+ tr(B)BA.

So

d1B + d2(−det(B)I + tr(B)B) + λB(d1I + d2B + λBA)

= −det(B)A+ tr(B)(d1I + +d2B + λBA).

Rewriting both sides as linear combinations of I, A, and B we have

(d1λB − d2det(B))I + λ2BA+ (d1 + λBd2 + d2tr(B))B

= d1tr(B)I + (λBtr(B)− det(B))A+ d2tr(B)B.

Since {I, A,B} is linearly independent we have the following system
d1λB − d2det(B) = d1tr(B)

λ2B = λBtr(B)− det(B)

d1 + λBd2 = 0

.

Hence

λ2B − tr(B)λB + det(B) = 0.

We conclude λB is an eigenvalue of B and that B has only real eigenvalues. �
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5.3 Simultaneous Triangularization

A standard result in linear algebra is that any two matrices that commute and whose entries

are complex are simultaneously triangularizable1. This result, although not applicable here,

does inspire us. The proof of the result for 2 × 2 matrices solely relies on the fact that

the two matrices have an eigenvector in common. Upon imitating that proof we will be

able to define a particularly interesting isomorphism for any three-dimensional subalgebra

of M2(R).

We now recall simultaneous triangularization for M2(R) and elaborate on our interest

in this topic.

Definition 22 Matrices A and B in M2(R) are simultaneously triangularizable if there

exists an invertible matrix S ∈M2(R) such that S−1AS and S−1BS are both triangular(both

upper-triangular or both lower-triangular).

Now suppose we have a three-dimensional subalgebra A of M2(R) given by the basis

{I, A,B} such that A and B are simultaneously triangularizable. We have an S such

that S−1AS and S−1BS are both triangular, say upper-triangular. Then for any M ∈ A

we have that for some c1, c2, c3 ∈ R

S−1MS = S−1(c1I + c2A+ c3B)S

= c1I + c2S
−1AS + c3S

−1BS

and therefore the product S−1MS is upper-triangular as well. Note that {I, S−1AS, S−1BS}

is linearly independent since {I, A,B} is linearly independent. Then an isomorphism from

A to the subalgebra of all upper-triangular matrices in M2(R) is given by

f : M 7→ S−1MS.

1See [2], Theorem 3.10.
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Clearly f(I) = I. Let M1,M2 ∈ A. Now for any c1, c2 ∈ R we have that

f(c1M1 + c2M2) = S−1(c1M1 + c2M2)S

= c1S
−1M1S + c2S

−1M2S

= c1f(M1) + c2f(M2).

Finally,

f(M1M2) = S−1M1M2S

= S−1M1SS
−1M2S

= f(M1)f(M2).

So if any A and B were simultaneously triangularizable then we could conclude that all

three-dimensional subalgebras of M2(R) are isomorphic.

Indeed, in the next section we show that any three-dimensional subalgebra A of M2(R)

is given by a basis {I, A,B} such that A and B are simultaneously triangularizable. Already

having that both the A and B have only real eigenvalues we are able to show that the A

and B have a real eigenvector in common. Subsequently little is left in the way.

5.4 Isomorphic Three-Dimensional Subalgebras

In this section we show that any three-dimensional subalgebra of M2(R) is isomorphic to

the subalgebra of all upper-triangular matrices in M2(R). We first begin by showing that

given a basis {I, A,B} of a three-dimensional subalgebra of M2(R), A and B have a real

eigenvector in common.

Lemma 12 Let A be a three-dimensional subalgebra of M2(R) given by the basis {I, A,B}.

Then A and B have a real eigenvector in common.

Proof. Write

AB = c1I + c2A+ λAB
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and

BA = d1I + d2B + λBA.

for unique constants c1, c2, d1, d2, λA, λB ∈ R. Let vA be an eigenvector associated with λA

and let vB be an eigenvector associated with λB. Then from B(AvA) = (BA)vA we have

that

B(λAvA) = (d1I + d2B + λBA)vA.

So

λABvA = d1vA + d2BvA + λBλAvA.

That is,

(λA − d2)BvA = (d1 + λAλB)vA.

Then from A(BvB) = (AB)vB we have that

A(λBvB) = (c1I + c2A+ λAB)vB.

So

λBAvB = c1vB + c2AvB + λAλBvB.

That is,

(λB − c2)AvB = (c1 + λAλB)vB.

Altogether we have the following equations:

• (λA − d2)BvA = (d1 + λAλB)vA

• (λB − c2)AvB = (c1 + λAλB)vB.

If λA 6= d2 then the eigenvector vA of A is an eigenvector of B. If λB 6= c2 then the

eigenvector vB of B is an eigenvector of A. Now if λA = d2 and λB = c2 then we have that

AB = c1I + λBA+ λAB

and

BA = d1I + λAB + λBA.
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So

AB −BA = c1I − d1I.

Then

0 = tr(AB −BA) = tr(c1I − d1I) = 2(c1 − d1).

So c1 = d1 and we get that AB = BA and therefore A and B have an eigenvector in

common2. We now conclude that A and B have a real eigenvector in common. �

We now show that any three-dimensional subalgebra of M2(R) is given by a basis

{I, A,B} such that A and B are simultaneously triangularizable.

Theorem 12 Let A be a three-dimensional subalgebra of M2(R) given by the basis {I, A,B}.

Then A and B are simultaneously triangularizable.

Proof. We construct a nonsingular matrix S ∈ M2(R) such that S−1AS and S−1BS are

both triangular. Let v1 be a vector of unit length in R2 such that

Av1 = λAv1 and Bv1 = λBv1.

Complete {v1} to a basis of R2, call it {v1, w2}. Then use the Gram-Schmidt process in

R2 with the standard inner product to construct an orthonormal basis. As v1 is already of

unit length we leave it alone. Then let v2 = w2−(w2,v1)v1
|w2−(w2,v1)v1| . So we have an orthonormal basis

{v1, v2}. Now let S be the matrix whose jth column is vj. Then S−1 = ST since

STS =

(v1, v1) (v1, v2)

(v2, v1) (v2, v2)


=

1 0

0 1


= I.

2See [2], Theorem 3.9.
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Then

S−1AS = S−1
(
λAv1 Av2

)
=

λA(v1, v1) v1Av2

λA(v2, v1) v2Av2


=

λA v1Av2

0 v2Av2

 .

Similarly,

S−1BS = S−1
(
λBv1 Bv2

)
=

λB(v1, v1) v1Bv2

λB(v2, v1) v2Bv2


=

λB v1Bv2

0 v2Bv2

 .

Therefore S−1AS and S−1BS are both upper-triangular and we are done. �

Finally as a corollary to Theorem 12 we have that all three-dimensional subalgebras of

M2(R) are isomorphic.

Corollary 5 All three-dimensional subalgebras of M2(R) are isomorphic to the subalgebra

of all upper-triangular matrices in M2(R).

Proof. Let {I, A,B} be a basis. Let S be a nonsingular matrix such that S−1AS and S−1BS

are real upper-triangular matrices. Then an isomorphism is given by f : M 7→ S−1MS. �
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Chapter 6

Conclusion

6.1 Significance of the Result

Now that we have characterized a great deal of subalgebras of M2(R), what can be taken

away from our venture? The quadratic nature of the characteristic polynomial of a 2 × 2

matrix in conjunction with the Cayley-Hamilton Theorem was particularly useful for most

of the work. The notion of eigenvalues and eigenvectors played a significant role in the

realization that all three-dimensional subalgebras of M2(R) are isomorphic.

6.2 Future Work

Naturally, we are left to wonder what can be said about subalgebras of Mn(R). Perhaps

there are analogous results for other n’s different from 2. Being able to characterize subal-

gebras of Mn(R), given any n, would certainly be a particularly enthralling enterprise.
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