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Abstract

G protein-coupled receptors (GPCRs) are transmembrane proteins with important func-

tions in signal transduction and often serve as therapeutic drug targets. With increasing

availability of protein sequence information, there is much interest in computationally pre-

dicting GPCRs and classifying them to indicate their possible biological roles. Such pre-

dictions are cost-efficient and can be valuable guides for designing wet lab experiments to

help elucidate signaling pathways and expedite drug discovery. There are existing compu-

tational tools for GPCR prediction and classification that involve statistical and machine

learning approaches such as principal component analysis, support vector machines, hid-

den Markov models, etc. These tools use protein sequence derived features including amino

acid and dipeptide compositions and other autocorrelation descriptors of physicochemical

properties. While prediction accuracies of over 90% were generally reported for their own

test data, no direct performance comparison of the different tools has been conducted using

a unified test dataset. Furthermore, their abilities in distinguishing GPCRs from trans-

membrane non-GPCRs have not been measured, and none of the existing tools has the

capability of fully classifying a general GPCR down to the subtype level.

In this dissertation, I proposed two new methods, the penalized multinomial logistic re-

gression (Log-Reg) algorithm and the multi-layer perceptron neural network (MLP-NN) to

address this multilayer problem of GPCR prediction and classification using 1360 sequence

features. Training and testing were conducted uniformly with a test dataset containing 2016

confirmed GPCRs, and 3100 negative examples including transmembrane non-GPCRs. To

assess our new methods, their performance were compared with two available tools, GPCR-

pred and PCA-GPCR. Both Log-Reg and MLP-NN substantially reduced the false posi-

tive rates in distinguishing GPCRs from transmembrane non-GPCRs. They also produced

highly accurate GPCR classification results down to the subtype level with average ac-

curacies in the 96-99% range. Furthermore, we applied feature reduction techniques to

v



generate a non-redundant feature set to increase the computational efficiency for Log-Reg

and MLP-NN with little impact on accuracy. These algorithms have been implemented as

Python programs and are being incorporated into the web server gpcr.utep.edu, which can

be accessed by GPCR researchers worldwide.
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Chapter 1

Introduction

In biology and biochemistry the term “receptor” refers to a class of cellular macromolecules

that are specifically or directly involved in chemical signaling between and within cells

[Cooper et al., 2000]. As a receptor, it does not only recognize the particular molecules

that activate it [Venkatakrishnan et al., 2019] but also responds by stimulating the cellu-

lar pathways. Therefore, the interaction of a hormone, neurotransmitter, or intracellular

messenger with its receptor(s) may lead to a change in cellular activity.

Among the cell surface receptors, the G protein-coupled receptors (GPCRs) occupy a

special place of importance as they are a large protein family sharing a unifying signal

transduction mechanism. The number of identified GPCRs has been increasing rapidly.

It is estimated that more than a thousand different GPCRs exist in mammals, thus con-

stituting one of the largest protein families in nature [Hauser et al., 2017]. A wide range

of neurotransmitters, neuropeptides, polypeptide hormones, inflammatory mediators, and

other bioactive molecules transmit their signals to the intracellular environment by specific

interactions with GPCRs that would in turn couple with GTP-binding proteins (G protein)

for activation of intracellular effector systems [Tuteja, 2009].

1.1 GPCR characteristics and classification

GPCRs have a seven-helix-bundled structure embedded in the cell membrane. A GPCR

molecule consists of a single polypeptide chain of variable length that traverses the lipid

bilayer seven times as shown in figure 1.1, forming characteristic transmembrane helices

and alternating extracellular and intracellular sequences [Ulloa-Aguirre et al., 2014].
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Figure 1.1: G-protein-coupled receptor with ligand [C. Vines, Personal Communi-
cation, December 2017]

GPCRs regulate many important physiological processes including automatic nervous

system transmission, sense of smell, and regulation of immune system activity. They are

the largest known class of cell surface receptors [Strader et al., 1994] and represent 1%

of the total mammalian genes [Barreda-Gomez et al., 2010]. GPCRs can thus play roles

in secretion, proliferation, chemotaxis, heart rate, and neuro-transmission [Spiegel et al.,

1992]. GPCR upon activation by a ligand/agonist undergoes a conformational change and

then activate the heterotrimeric G proteins (Gα, Gβ and Gγ) which makes the Gα subunit

to exchange guanine diphosphate (GDP) for guanine triphosphate (GTP) [Tuteja, 2009].

This results in the dissociation of Gβ/Gγ dimer from the Gα, initiating the intracellular

signaling responses [Tuteja, 2009]. The binding interactions of these receptors with G

proteins have been investigated by means of structural bioinformatics [Chou 2005a].

Since GPCRs are a very large family, classifying them hierarchically into smaller groups

would be very helpful in understanding their individual biological roles and functional path-

ways. One of the most frequently used systems is IUPHAR (International Union of Basic

and Clinical Pharmacology) classification [Horn et al., 2003] that divide GPCRs into six

major categories named Class (Family) A, B, C, D, E, and F based on sequence homol-

ogy and functional similarity. Then subclasses (or subfamilies) are assigned using Roman

2



number nomenclature [Attwood and Findlay 1994; Kolakowski, 1994]. The IUPHAR clas-

sification is designed to cover all GPCRs in both vertebrates and invertebrates. However,

some families, namely Class D and Class E do not exist in humans. This is why the GRAFS

classification system, designed towards mammalian species, has been devised. The GRAFS

system clusters GPCRs in five main families that we term glutamate (G), rhodopsin (R),

adhesion (A), frizzled/taste2 (F), and secretin (S). [Fredriksson and Lagerstrom 2003].

In this work, I have combined IUPHAR and GRAFS systems to form a 5-level classi-

fication system for any given protein. At Level 1 (highest level) of this combined system,

a protein is classified to be in the GPCR superfamily or not. If it is a GPCR, it is fur-

ther classified into eight separate families at level 2. Each family is further divided into

subfamilies at the third level, followed by the fourth and fifth levels of sub-subfamilies and

subtypes.

1.2 GPCR prediction and classification tools

With the advances in next generation sequencing technologies, protein sequence data is

becoming abundantly available, but the understanding of each protein’s biological roles

is lagging behind. Developing computational approaches for predicting whether a protein

sequence is a GPCR and classifying GPCRs based only on their amino acid sequence infor-

mation have become a research area of great interest because GPCR classification plays a

crucial role in identifying the specific functions of GPCRs. As each GPCR subtype has its

own characteristic ligand-binding property, coupling partners of trimeric G-proteins, and

interaction partners of oligomerization [Kristiansen 2004], prediction of GPCRs at the sub-

type level becomes significant in the effort to decipher the functions of individual GPCRs.

GPCR classification, however, is a challenging task. It involves five levels and except for

Level 1 (Superfamily), each level presents a multinomial classification problem. Fortu-

nately, as more confirmed GPCR sequences are being accumulated, it becomes possible to

tackle this multi-level multinomial classification problem as my dissertation research.
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A number of web-based tools have been developed by different groups from various

computational methods for GPCR prediction and classification, including GPCRTm [Rios

et al., 2015], GPCRpred [Bhasin et al., 2004], PCA-GPCR [Peng et al., 2010], PredGPCR

[Papasaikas et al., 2004], SVMProt [Cai et al., 2003], GPCRGIA [Lin et al., 2009] and

GPCRCA [Xiao et al., 2009].

However, there are several major limitations and shortcomings that need to be overcome:

1. These programs generally show high false positive rates in identifying GPCRs when

tested with a collection of transmembrane proteins containing a mixture of GPCRs

and transmembrane non-GPCRs.

2. Many algorithms are published but the actual programs are either not currently

available, or cannot be used for large scale testing [Karchin et al., 2002; Cai et al.,

2003; Peng et al. 2010].

3. No direct comparison of different algorithms with the same test dataset has been con-

ducted. The tools listed above each used their own datasets for accuracy assessment.

1.3 Research objectives

The overall goal of my research is to analyze the discriminative power of the existing

methodologies for GPCR prediction and classification, and to devise accurate and efficient

algorithms that can be widely used by scientists for GPCR research. After reviewing current

literature of computational algorithms for GPCR prediction and classification in Chapter

2, I will describe the work done to accomplish the following specific aims in the subsequent

chapters of this dissertation.

1. Identify optimal computational approaches for GPCR prediction

By surveying the performance, in terms of both accuracy and efficiency, of current

state-of-the-art statistical and machine learning algorithms, I identified optimal com-
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putational approaches suitable for analyzing GPCRs with the aim of utilizing them

to address the GPCR classification problem below.

2. Address the multi-level GPCR classification problem

Existing GPCR prediction and classification tools are generally not able to accurately

classify protein sequences all the way from Level 1 (superfamily) to Level 5 (subtype).

This is likely caused by the biased data used in training the classification algorithms,

as the vast majority of GPCR sequences are in Class A while examples in Classes D

and E are scanty. Using the optimal computational approaches identified in Objective

1 above and the data collection in the GPCR-PEnDB developed by our group [Begum

et al., 2020, http:// gpcr.utep.edu/], I developed new methods to handle such data

imbalance issues in order to improve the GPCR classification accuracies and enhance

the computational efficiency by reducing the feature set through the use of ranked

based methods.

Finally, I investigated the possibilities of further improving the classification accura-

cies and execution time by reducing the feature set through the use of ranked based

methods.

3. Software implementation and distribution.

The final classification methods were then developed into software packages and will

be incorporated into our GPCR-PEn webserver (https:// gpcr.utep.edu) and dis-

tributed via the UTEP bioinformatics data repository so that it can be accessed

by GPCR researchers worldwide. The source code of my program will also be de-

posited in GitHub (https://github.com/fayivor/Prediction tools) so that it can be

downloaded and modified by other computational scientists for further improvements

or adapted for other purposes.
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Chapter 2

Literature Review

This chapter accounts for the various approaches and algorithms related to the classification

of GPCRs into different levels. The initial sections highlight an overview of GPCRs and

their derived features. This is followed by a discussion of computational algorithms which

use machine learning and statistical approaches for the classification and prediction. It also

entails the accuracies by the various algorithms. The final part covers the combination of

different methods.

2.1 Overview of GPCRs and their classification

GPCRs as membrane proteins, are very difficult to crystallize and most of them will not

dissolve in normal solvents [Xiao et al., 2009]. Contrary to that, the amino acid sequences

of about 3200 confirmed GPCRs are known with the rapid accumulation of new protein

sequence data produced by high-throughput sequencing technology.

GPCR proteins can be grouped in hierarchical structure with five levels (Figure 2.1).

The figure shows the combined IUPHAR and GRAFS systems used in this work to form a

5-level [Begum et al., 2020] classification system.

6



Figure 2.1: The hierarchical classification structure for GPCRs.
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The family A, known as rhodopsin-like receptors, comprise 80% of all the GPCRs

and can transduce a range of stimuli including peptide hormone, light, nucleotides, and

chemokines [Bryson-Richardson et al., 2004]. The human non-olfactory receptors of rhodopsin-

like class bind peptides and biogenic amines [Fridmanis et al., 2006]. There are 11 unique

subfamilies, 61 unique sub-subfamilies and 287 unique subtypes under A. This means there

are 287 uique groups for Class A GPCR [GPCRdb].

Family B1 GPCR (secretin-like receptors) is composed of 1 subfamily (peptide), 5 sub-

subfamilies and 15 subtypes. This implies that, there are 15 unique members [GPCRdb]

and it includes important receptors such as vasoactive intestinal peptide receptors (VPAC),

pituitary adenylyl cyclase activating peptide receptor (PAC1R), secretin receptor (SECR),

growth hormone releasing factor receptor (GRFR), glucagon receptor (GCGR), glucagon

like-peptide 1 and 2 receptors (GLPR), gastric inhibitory peptide receptor (GIPR) [Labur-

the et al., 2007]. They represent very important targets for the development of drugs having

therapeutical impact on many diseases such as diabetes, chronic inflammation, stress, neu-

rodegeneration, and osteoporosis. These GPCRs also interact with a few accessory proteins

which play a role in cell signaling, receptor expression and/or pharmacological profiles of

receptors [Couvineau et al., 2012a].

Family B2 consists of a large number of family-B GPCRs with long extracellular amino

termini, containing diverse structural elements, linked to the core 7TM motif. Members

of this family have been given various names: EGF-TM7 receptors, to reflect the presence

of epidermal growth factor (EGF) domains within the amino-terminal regions of many of

these proteins [McKnight et al., 1996]; LN-TM7 receptors, denoting seven-transmembrane

proteins with a long amino terminus [Zendman et al., 1999]; and LNB-TM7 receptors, to

denote ‘long amino terminus, family B’ [Stacey et al., 2000]. There is 1 unique subfamily

known as Adhesion, 9 unique sub-subfamilies and 33 subtypes. In short, there are 33 unique

members under this family [GPCRdb].

The characteristic feature of all family-B GPCRs (B1/ B2) is the 7TM motif, which is

distantly related to comparable regions of some other GPCR families but much more highly

8



conserved within family B. Conserved cysteine residues within extracellular loops EC1

and EC2 probably form a disulphide bridge, by analogy with family-A GPCRs, in which

this feature is also conserved [Palczewski et al., 2000]. In contrast to family-A GPCRs,

however, many of which appear to rely on internal hydrophobic sequences for targeting

to the plasma membrane, most family-B GPCRs appear to have an amino-terminal signal

peptide [Harmar et al., 2001].

Family C GPCRs have nutrients like amino acids, ions and sugar molecules as their

endogenous agonists. This family consists of eight metabotropic glutamate (mGlu) recep-

tors, a calcium-sensing receptor (CaR), two γ-aminobutyric acidB (GABAB) receptors, the

promiscuous L-α-amino acid receptor GPRC6A, families of taste and pheromone receptors,

and five orphan receptors [Bettler et al., 2004]. The family C GPCRs are also involved in

important physiological processes throughout the body, the mGlu receptors being localised

almost exclusively in the CNS, whereas the other family C receptors are expressed both cen-

trally and in peripheral tissues [Bräuner-Osborne 2007]. The eight mGlu receptor subtypes

cloned to date are divided into three subgroups based on amino acid sequence similarity,

agonist pharmacology and G-protein coupling property: group I being comprised of mGlu1

and mGlu5, group II of mGlu2 and mGlu3, and group III containing the remaining four

subtypes [Jensen 2004].

Fungal pheromone mating factor receptors form a distinct family of GPCRs and are

also known as Class D GPCRs. The STE2 and STE3 receptors of Class D are integral

membrane proteins that may be involved in the response to mating factors on the cell

membrane [Nakayama et al., 1985]. For example, in the widely used model yeast Saccha-

romyces cerevisiae, mating is controlled by GPCR-mediated perception of both peptide

pheromones and nutritional status. Pheromone receptors are a small class of GPCRs used

for chemical communication by the organisms and play a role in controlling interactions

between individuals of a single species [Martini et al., 2001]. Fungal GPCRs are extremely

diverse in the environmental signals that they detect, including hormones, proteins, nutri-

ents, ions, hydrophobic surfaces and light [Kochman, 2014]. Fungal GPCRs do not belong
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to any of the mammalian receptor classes, making them fungal-specific targets to intervene

in fungal disease and mycotoxin contamination [Dijck, 2009].

Family E, cyclic AMP (known as cAMP) receptors contribute towards chemotactic sig-

naling system of slime molds [Prabhu et al., 2006]. In Dictyostelium discoideum, the cyclic

AMP receptors coordinate aggregation of individual cells into a multicellular organism, and

regulate the expression of a large number of developmentally-regulated genes.

Family F, are called the Frizzled/Smoothened proteins. Smoothened in humans is

encoded by the SMO gene. Smoothened is a component of the hedgehog signaling pathway

and is conserved from flies to humans. It is the molecular target of the natural teratogen

cyclopamine [Ruiz-Gómez et al., 2007]. Frizzled [Malbon CC, 2004] also serves as receptors

in the Wnt signaling pathway and other signaling pathways. When activated, Frizzled

leads to activation of Dishevelled in the cytosol. There are 11 unique subtypes which are

FZD1-FZD10 and SMO.

Family Taste 2 receptors (T2R) function as chemoreceptors that interact with taste

stimuli to initiate an afferent signal transmitted to the brain, which results in taste percep-

tion. Because many taste ligands do not easily permeate cell membranes, taste receptors

are believed to be a part of the taste receptor cells (TRC) membranes. This family has a

distant relationship with the rhodopsins but the ligand information is not known hence it

is classified within the Orphan and other 7TM receptors according to IUPHAR [Alexander

et al., 2017] as well. There are 25 unique subtypes.

2.2 Protein features commonly used in GPCR predic-

tion and classification.

In the basic composition of life, proteins play a central role in most cellular functions such

as gene regulation, metabolism and cell proliferation [van der Knaap et al., 2016]. As

a classification problem, statistical and machine learning algorithms for protein sequence
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class prediction involve three main steps: i) protein feature representation; ii) algorithm

selection for classification; iii) optimal feature selection [Li et al., 2014]. Among the three

steps, protein feature representation (feature extraction) is the most critical factor for the

success of protein structural class prediction.

Feature extraction means how to extract features from protein sequences so that each

protein is represented as a fixed-length numerical vector [Peng et al., 2010]. The commonly-

used feature extraction methods for proteins are based on amino acid composition [Chou et

al., 2004] and dipeptide composition [Qao et al., 2006], with more complicated ones include

Chou’s pseudo amino acid composition [Lin et al., 2006], the cellular automaton image

approach [Xiao et al., 2009], profile hidden Markov models [Papasaikas et al., 2003], fast

fourier transform [Guo et al., 2006], wavelet-based time series analysis [Gupta et al., 2008]

and Fisher score vectors [Karchin et al., 2002].

Among the above feature extraction methods used in the above mentioned studies, I

collected 1360 descriptor values (features) which can be divided into four groups. Each

group has been used as an independent descriptor (set of features) for predicting proteins

and peptides of various profiles by using statistical or machine learning methods. The first

group includes two descriptors, the amino acid composition and dipeptide composition,

with 20 and 400 descriptor values respectively [Shepherd et al., 2003]. The second group

contains 30 pseudo amino acid composition descriptor values. The third group contains

two sequence-order descriptors [Chou et al., 2000]: sequence-order-coupling number with

60 descriptor values, and the other is quasi-sequence-order with 100 descriptor values. The

fourth group contains three different sets of autocorrelation features: normalized Moreau-

Broto autocorrelation [Reczko et al., 1994], Moran autocorrelation [Horne et al., 1998] and

Geary autocorrelation [Soka et al., 2006], each set having 240 descriptor values.

Amino acid and dipeptide composition are simple descriptors of protein sequence fea-

tures [Shepherd et al., 2003], which have been used for predicting protein fold and structural

classes [Grassmann et al., 1999], functional classes [Bhasin et al., 2004] and subcellular loca-

tions [Hua et al., 2001] at accuracy levels of 72%-95%, 83-97%, and 79-91% respectively.
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Amino acid composition is the fraction of each amino acid type in a sequence. A total

of 20 descriptor values are computed for the 20 types of amino acids. Likewise, dipeptide

composition is the fraction of the different dipeptides observed in the amino acid sequence.

A total of 400 descriptor values are computed for the 20 × 20 amino acid combinations

[Bhasin et al., 2004].

Autocorrelation features describe the level of correlation between two objects (protein or

peptide sequences) in terms of their specific structural or physicochemical property [Broto

et al., 1984] which are defined based on the distribution of amino acid properties along the

sequence [Kawashima et al., 2000]. There are eight amino acid properties used for deriving

these autocorrelation descriptors. The first is hydrophobicity scale derived from the bulk

hydrophobic character for the 20 types of amino acids in 60 protein structures [Cid et al.,

1992]. The second is the average flexibility index derived from the statistical average of

the B-factors of each type of amino acids in the available protein X-ray crystallographic

structures [Bhaskaran et al., 1988]. The third is the polarizability parameter computed

from the group molar refractivity values [Charton et al., 1982]. The fourth is the free

energy of amino acid solution in water [Hutchins harton et al., 1982]. The fifth is the

residue accessible surface areas taken from average values from folded proteins [Chothia

et al., 1976]. The sixth is the amino acid residue volumes measured by Fisher [Bigelow et

al., 1967]. The seventh is the steric parameters derived from the van der Waals raddi of

amino acid side-chain atoms [Charton et al., 1981]. The last one is the relative mutability

obtained by multiplying the number of observed mutations by the frequency of occurrence

of the individual amino acids [Dayhoff et al., 1978].

In Chapter 3 we will describe more details about how these protein features or descriptor

values are calculated based on the physicochemical properties of an amino acid sequence

and how these are used for GPCR prediction and classification.
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2.3 Computational algorithms

In view of the extremely unbalanced state, it is vitally important to develop a computational

method that can quickly and accurately predict the structure and function of GPCRs from

sequence information. Many predictive methods have been developed, which in general,

can be roughly divided into three categories. The first one is proteochemometric approach

developed by Lapinsh [Lapinsh et al., 2005]. However, the methods need structural in-

formation of organic compounds. The second one is based on similarity searches using

primary database search tools (e.g. BLAST, FASTA) and such database searches coupled

with searches of pattern databases (PRINTS) [Lapinsh et al., 2002].

However, they do not seem to be sufficiently successful for comprehensive functional

identification of GPCRs, since GPCRs make up a highly divergent family, and even when

they are grouped according to similarity of function, their sequences share strikingly little

homology or similarity to each other [Inoue et al., 2004]. The third one is based on statistical

and machine learning methods, including support vector machines (SVM) [Karchin et al.,

2002], hidden Markov models (HMMs) [Qian et al., 2003 ], covariant discriminant (CD)

[Chou et al., 2002], nearest neighbor (NN) [Gao et al., 2006] and other techniques.

The machine learning algorithms can be categorized into supervised and unsupervised

learning methods. Supervising a machine learning model means to observe and direct the

model, by training it with some data from a labeled data set. In unsupervised learning,

we do not supervise the model, but let the model work on its own to discover information

that may not be visible to the human eye. That is, unsupervised model provides unlabeled

data that the algorithm tries to make sense of by extracting features and patterns on its

own.
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2.3.1 Supervised machine learning algorithms

Support vector machines (SVMs)

SVMs are a set of related supervised learning methods used for classification, regression and

novelty detection [Vapnik, 1995]. They belong to a family of generalized linear classifiers

and are all about decision boundaries so do not provide posterior probabilities. A special

property of SVMs is that they simultaneously minimize the empirical classification error and

maximize the geometric margin; hence they are also known as maximum margin classifiers.

For a two-class classification problem, one can use linear models of the form

y(x) = wTφ(x) + b (2.1)

where φ(x) denotes a fixed feature-space transformation, and the bias parameter b

is explicit. Note that to avoid working explicitly in feature space a dual representation

expressed in terms of kernel functions is used. The training data set comprises N input

vectors x1, ..., xN , with corresponding target values t1, ..., tN ∈ {−1, 1}, and new data points

x are classified according to the sign of y(x).

Assume for the moment that the training data set is linearly separable in feature space,

so that by definition there exists at least one choice of the parameters w and b such that a

function of the form (2.1) satisfies y(xn) > 0 for points having tn = +1 and y(xn) < 0 for

points having tn = -1, so that tny(xn) > 0 for all training data points. The SVM approaches

the problem of multiple solutions (all classify the training data set exactly) through the

concept of the margin, which is defined to be the smallest distance between the decision

boundary and any of the samples [Hastie et al., 2009].

In SVMs the decision boundary is chosen to be the one for which the margin is maxi-

mized. A simple insight into the origins of maximum margin has been given by Tong and

Koller (2000) who consider a framework for classification based on a hybrid of generative
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and discriminative approaches. They first model the distribution over input vectors x for

each class using a Parzen density estimator with Gaussian kernels [Cohen et al., 2008;

Duda et al., 2000] having a common parameter σ2. Together with the class priors, this

defines an optimal misclassification-rate decision boundary. However, instead of using this

optimal boundary, they determine the best hyperplane by minimizing the probability of

error relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane is

shown to be the one having maximum margin. The intuition behind this result is that as

σ2 is reduced, the hyperplane is increasingly dominated by nearby data points relative to

more distant ones. In the limit, the hyperplane becomes independent of data points that

are not support vectors.

In an experiment conducted by Rachel et al. (2002) to classify protein sequences of

the GPCR superfamily [Watson and Arkinstall, 1994], the authors specifically aimed to

recognize small subfamilies of GPCRs that bind the same ligand. This requires extension

of the two-class problem to a multi-class problem. They chose the simplest approach to

multi-class SVMs by training k (>2) one-to-rest classifiers. An initial step was required

in which each protein sequence was transformed into a fixed-length feature vector. Next a

two-class SVM was trained for each GPCR subfamily.

Each of these SVMs learns to distinguish between subfamily members and non-members

by making several passes through training set and using the kernel function to compute

a weight for each sequence. In the results of a two-fold cross-validation experiments that

compared multi-class SVMs with two popular classification methods: BLAST [Altschu et

al., 1990] and profile HMMs, it was found that one of the methods performed better than

SVMs at the superfamily level. However, SVMs made significantly fewer errors than the

other methods when applied to discriminating subfamilies of GPCRs. SVM was computa-

tionally expensive [Bhasin & Raghava M. 2004] when compared to BLAST [Altschu et al.,

1990] and hidden Markov models [Durbin et al., 1998] .
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Covariant-discriminant algorithm

Linear and Quadratic Discriminant analysis (LDA/QDA) are common tools for classifica-

tion problems [Srivastava S., et al., 2007; Anagnostopoulos et al. 2012]. For these methods

we assume observations are normally distributed within group. We estimate a mean and

covariance matrix for each group and classify using Bayes theorem. With Linear discrimi-

nant analysis, we estimate a single, pooled covariance matrix, while for QDA we estimate

a separate covariance matrix for each group [Hastie et al., 2009]. Rarely do we believe in

a homogeneous covariance structure between groups, but often there is insufficient data to

separately estimate covariance matrices.

Consider the usual two class problem: the data consists of n observations, each obser-

vation with a known class label ∈ {1, 2}, and p covariates measured per observation. Let y

denote the n-vector corresponding to class (with n1 observations in class 1 and n2 in class

2), and X, the n by p matrix of covariates. We would like to use this information to classify

future observations.

We further assume that, given class y(l), each observation, xl, is independently normally

distributed with some class specific mean µy(l) ∈Rp and covariance
∑

y(l), and that y(l) has

prior probability π1 of coming from class 1 and π2 from class 2. From here we estimate the

two mean vectors, covariance matrices, and prior probabilities and use these estimates with

Bayes theorem to classify future observations. A number of different methods have been

proposed to estimate these parameters. The simplest is QDA, which estimates parameters

by their maximum likelihood estimates.

πk =
nk
n

(2.2)

µ̂k =
1

nk

∑
y(l)=k

xl (2.3)
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and

L̂k =
1

nk

∑
y(l)=k

(xl − µk)(xl − µk)T (2.4)

To classify a new observation x, one finds the class with the highest posterior probability.

This is equivalent in the two class case to considering

D(x) = log(
π1
π2

)− 1

2
(x− µ1)

TL−11 (x− µ1) +
1

2
(x− µ2)

TL−11 (x− µ2) + log detL
−1/2
1 L

1/2
2 (2.5)

and if D(x) > 0 then classifying to class 2, otherwise to class 1.

Linear Discriminant Analysis (LDA) is a similar but more commonly used method. It

estimates the parameters by a restricted MLE — the covariance matrices in both classes

are constrained to be equal. So, for LDA

L̂1 = L̂2 =
1

n

∑
y(l)=k

(xl − µy(l))(xl − µy(l))T (2.6)

While one rarely believes that the covariance matrices are exactly equal, often the

decreased variance from pooling the estimates greatly outweights the increased bias.

In the study on correlation of G-protein-coupled receptors types with amino acid compo-

sition, a QDL type algorithm was used by Chou and Elrod (1999) to classify the rhodopsin-

like amine GPCRs (according to the GPCRDB [Horn et al., 1998]) into six groups (acetyl-

choline, adrenoceptor, dopamine, histamine, serotonin and octopamine) based on their

amino acid compositions. The overall Jackknife test (sequentially deleting one observation

in the dataset, then recomputing the desired statistic to estimate its bias) was applied to

a dataset of 167 GPCRs and the accuracy was 83.23%. This suggested that the types

of GPCR were predictable to considerably accurate extent if a complete or quasi-training

dataset could be established.
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K-nearest neighbor (KNN)

The KNN algorithm is a robust and versatile classifier that is often used as a benchmark

for more complex classifiers such as artificial neural networks (ANN) and SVM.

Let x denote a feature ( predictor, attribute) and y denote the target ( label, class) we

are trying to predict. KNN falls in the supervised learning family of algorithms. Informally,

this means that we are given a labelled dataset consisting of training observations (x, y)

and would like to capture the relationship between x and y. More formally, our goal is

to learn a function h:X7→Y so that given an unseen observation x, h(x) can confidently

predict the corresponding output y.

The KNN classifier is also non parametric which means it makes no explicit assump-

tions about the functional form of h, avoiding the dangers of mismodeling the underlying

distribution of the data. As an instance-based learning algorithm meaning, KNN does not

explicitly learn a model, instead it chooses to memorize the training instances which are

subsequently used as “knowledge” for the prediction phase.

In the classification setting, the KNN algorithm essentially boils down to forming a

majority vote between the K most similar instances to a given “unseen” observation. Sim-

ilarity is defined according to a distance metric between two data points. A popular choice

is the Euclidean distance given by

d(x, x′) =
√

(x1 − x′1)2 + (x2 − x′2)2 + ...+ (xn − x′n)2 (2.7)

but other measures, including the Manhattan, Chebyshev and Hamming distances

[Mafteiu-Scai, 2013], can be more suitable for certain given settings.

More formally, given a positive integer K, an unseen observation x and a similarity

metric d, KNN classifier performs the following two steps:

• It runs through the whole dataset computing d between x and each training obser-

vation. We’ll call the K points in the training data that are closest to x the set A.
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Note that K is usually odd to prevent tie situations.

• It then estimates the conditional probability for each class, that is, the fraction of

points in A with that given class label. (Note I(x) is the indicator function which

evaluates to 1 when the argument x is true and 0 otherwise)

P (y = j|X = x) =
1

K

∑
i∈A

I(y(i) = j) (2.8)

Finally, the input x gets assigned to the class with the largest probability.

KNN was used to discriminate GPCRs from non-GPCRs and subsequently classify

GPCRs at four levels on the basis of amino acid composition and dipeptide compo-

sition of proteins [Gao et al., 2006]. The prediction performance was evaluated on a

non-redundant dataset consisted of 1406 GPCRs for six families and 1406 globular

proteins using the Jackknife test. A high overall accuracy has been achieved in each

step using dipeptide-based method. Moreover, comparisons with existing methods in

the literature show that their method achieves great competitive performance.

Classification tree

Tree-based methods for regression and classification [James et al., 2013] involve stratifying

or segmenting the predictor space into a number of simple regions. In order to make a

prediction for a given observation, we typically use the mean or the mode of the training

observations in the region to which it belongs. There are several tree construction algo-

rithms, such as CART classification and regression Tree) , OC1, ID3 and C4.5 [Breiman et

al., 1984; Quinlan, 1993; Salzberg et al., 1998]. An advantage of the tree-based classifica-

tion algorithm is its relative ease of interpretation, which can help the user to understand

and improve the classification rules.

Classification tree is a useful qualitative-response prediction algorithm that has been
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used in many areas of bioinformatics, such as gene finding, tumor classification, etc.

[Salzberg et al., 1998; Zhang et al., 2001; Dudoit et al., 2002]. We predict that each

observation belongs to the most commonly occurring class of training observation in the

region to which it belongs.

In interpreting the results of a classification tree, we are often interested not only in

the class prediction corresponding to a particular terminal node region, but also in the

class proportions among the training observations that fall into that region. Since we plan

classification to assign an observation in a given region to the most commonly occurring

class of training observations in that region, the classification error rate E is simply the

fraction of the training observations in that region that do not belong to the most common

class:

E = 1−max
k

(p̂mk) (2.9)

where p̂mk represents the proportion of training observations in the mth region that are

from the kth class. However, it turns out that classification error is not sufficiently sensitive

for tree-growing, and in practice two other measures are preferable.

The Gini index, which is a measure of total variance across the K classes, is defined by

G =
K∑
k=1

p̂mk (2.10)

There is also the cross entropy index [Kingsford et al., 2008]. Both the Gini index and

the cross-entropy will take on a small value if the mth node is pure. Either of these indices

can be used to evaluate the quality of a particular split, since they are more sensitive

to node purity than is the classification error rate. Any of these three approaches might

be used when pruning the tree, but the classification error rate is preferable if prediction

accuracy of the final pruned tree is the goal.

The use of tree based algorithm for prediction and classification is very effective and
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is used to address several classification problems. Huang et al. (2004) described a bag-

ging classification tree [Breiman, 1996] for classifying GPCRs into subfamilies and sub-

subfamilies based on the amino-acid composition. The C4.5 algorithm was used to gen-

erate the decision tree. In total 4395 sequences were classified into sub-families and 4036

sequences were classified into sub-sub-families with an accuracy of 91.1% and 82.4% re-

spectively.

The C4.5 algorithm uses a divide-and-conquer approach to growing decision trees. This

algorithm selects a feature (amino acid composition) to split the training data into subsets

(nodes of the decision tree). The default criterion used by C4.5 for feature selection is

‘information gain ratio’, a measure based on information theory [Shannon, 1948]. This

measure can quantify how well a given feature separates the training data. At each node

the training dataset will be further divided until some stopping criteria are satisfied. Then

each terminal subset (leaf node) is assigned to a class label (receptor type). After generating

the maximal classification tree, a pruning technique is used to simplify the classification

tree and avoid over-fitting. Pruning a tree consists of replacing a whole sub-tree by a leaf

node. The replacement takes place if the expected error rate in the subtree is greater than

that in the single leaf. Aside from GPCR classification, the C4.5 algorithm has also been

applied to genomic sequence annotation and protein phosphorylation sites identification

[Kretschmann et al., 2001; Muggleton et al., 2001; Berry et al., 2004].

2.3.2 Unsupervised machine learning algorithms

Principal component analysis (PCA)

PCA refers to the process by which principal components are computed, and the subsequent

use of these components in understanding the data [Jolliffe, 1989]. PCA is an unsupervised

approach since it involves only a set of features X1, X2, ..., Xp and no associated response

Y . PCA finds a low-dimensional representation of a data set that contains as much as

possible of the variation. Each of the dimensions found by PCA is a linear combination of

21



the p features. Principal components (PCs) allow us to summarize large set of correlated

variables with a smaller number of representative variables that collectively explain most

of the variability. PCs are directions in feature space along which original data are highly

variable and also define lines and subspaces that are as close as possible to the data cloud.

The first principal component of a set of features X1, X2, ..., Xp is the normalized linear

combination of the features.

Z1 = φ11X1 + φ21X2 + ...+ φp1Xp (2.11)

that has the largest variance. By normalized, we mean that
∑p

j=1 φ
2
ji = 1 where the

φ11, ..., φp1 are the loadings of the first principal components.

Given a n×p data set X, how do we compute the first PC? Since we are only interested

in variance, we assume that each of the variables in X has been centered to have mean zero

(that is the column means of X are zero). We then look for the linear combinations of the

sample feature values of the form ;

zi1 = φ11Xi1 + φ21Xi2 + ...+ φp1Xip (2.12)

that has the largest sample variance, subject to the constraints that
∑p

j=1 φ
2
ji = 1

In other words, the first PC loading vector solves the optimization problem

max
φ11,...,φp1

1

n

n∑
i=1

z2i1 (2.13)

subject to

p∑
j=1

φ2
ji = 1 (2.14)

Since 1
n

∑n
i=1 xij = 0, the average of z11, ..., zn1 will be zero as well. Hence the objective

of maximizing (2.13) is just the sample variance of n values of zi1.
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Peng et al. (2010) proposed a method called PCA-GPCR for predicting and classifying

GPCRs into family, sub-family, sub-sub-family, subtype from a large dataset. The study

was done on 1497 sequence derived features which was further reduced into 32-dimensional

feature vectors using the PCA. By the first level classifier a new protein sequence is pre-

dicted to be either a GPCR or a non-GPCR. If it is predicted to be a GPCR, it will be

further classified into one of the four families, which is done by the second-level classifier.

The third-level classifiers hence determine which subfamily the protein belongs to. For

some subfamilies, the fourth-level classifiers are used to determine the sub-subfamily of the

protein. Finally, the fifth-level classifiers determine the subtypes of the protein, if any.

Jackknife tests showed that the overall accuracies of PCA-GPCR are 99.5%, 88.8%, 80.47%,

80.3%, and 92.34% for the five levels, respectively.

2.3.3 Supervised statistical methods

Logistic regression

A logistic regression model [Hastie et al., 2009] is defined as:

h(x) = w1x1 + w2x2 + w3x3 + ...+ wnxn (2.15)

where x1, x2, x3..., xn are input features whereas w1, w2, w3, ..., wn denote the regression

coefficients.

Thus, the probability of the input to belong to a certain class can be defined as:

f(X) = (1 + eW
TX)−1 (2.16)

where the variable X and W denote the vector of input features [x1, x2, x3, ..., xn] and

of the regression coefficients [w1, w2, w3, ..., wn], also termed weights, respectively. Regular-

ization is an essential technique in machine learning to counter over-fitting, which logistic

regression implements in two forms: l1 and l2. Both have a λ parameter that is directly
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proportional to the penalty of finding complex or over-fitted models. The regularization

term (i) in the l1 form is the product of λ and the sum of the weights, while (ii) in the

l2 form (used here) it is the product of λ and the sum of the squares of the weights. The

target value is expected to be a linear combination of the features considered.

Logistic regression has not been used for GPCR protein sequence prediction and clas-

sification which led us to do extensive research on its performance. In this work, I have

developed a logistic regression as a proposed method for protein sequence prediction that

will be described later in subsequent chapter. While not directly related to the GPCR

classification problem, it should be mentioned that logistic regression was used to predict

GPCR coupling [Singh G. et al., 2019], which goes further to; (i) predict GPCRs coupling

probabilities to individual G-proteins; (ii) visually analyze the structural features and pro-

tein sequence that accounts for a particular coupling; and finally to (iii) suggest mutations

based on predetermined coupling features to rationally design artificial GPCRs with new

coupling properties . A tool was developed from this called PRECOG which was built

by using experimental binding affinities of 144 human Class A GPCRs for 11 chimeric G-

proteins obtained through TGFα shedding assay. From their work, a set of sequence and

structure-based features were also derived that were statistically associated with each of 11

G-proteins, and could be used to devise predictive models.

Family specific motif

Due to the significant roles of GPCR acting both as receptors for outside ligands (ligands

range from photons inducing sight to small peptides inducing neurological effects) and

actuators for internal processes, it is very important to be able to distinguish which ligands

that a specific GPCR interacts with and which parts of the sequence have a particularly

important role. As a result, there were two presiding goals for computational methods in

GPCR research: to classify GPCR sequences with respect to subfamilies within Class A

which contains more than 80 percent of human GPCRs, and to identify the key ligand-

interacting sites using the sequence alone.
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In response to the above needs, Cobanoglu et al., (2011) developed a classification

technique that also pinpoints ligand-receptor interaction sites. Their pro- posed technique

involved identifying the frequent residue triplets in the sequence using sequence-derived

motifs, calculating their distinguishing power among the subfamilies by the Distinguishing

Power Evaluation (DPE) technique, and deducing rules from this information.

The classifier proposed here was called GPCRBind. It is a rule extraction method,

and while training takes time on the order of hours, classification of a sequence takes mil-

liseconds. This property of GPCRBind makes it suitable for being used as a classification

server. The GPCRBind method, requires random partitioning. Due to this randomness the

results of two successive runs are not identical. Therefore, they repeated the whole method

100 times and reported the average accuracy. They implemented the proposed methods

and tested them on real data sets. The results were compared with the state-of-the-art

GPCR classification techniques. Experiments showed that GPCRBind outperformed the

state-of-the-art classification techniques.

Binary topology pattern (BTP)

In a paper by Inoue et al., (2004), they proposed a novel and simple (i.e., fast) method

for the functional classification and identification of mammalian-type GPCRs based on

the TM topology patterns [Poluliakh et al., 2000; Sugiyama et al., 2003], instead of using

techniques based on functional domain detection or sequence similarity searches.

In their method, each loop length is expressed as ‘1’ for a long loop or ‘0’ for a short

loop, and the TM topology pattern was expressed as a string of binarized loop lengths.

The BTP method was expected to even identify and classify GPCRs with low amino acid

sequence similarities, that sequence similarity searches such as BLAST [Altschul et al., 1990]

cannot easily identify or classify, e.g., searching for mammalian-type GPCRs in invertebrate

organisms. Comprehensive functional classification and identification of mammalian-type

GPCRs were carried out by applying the BTP method to 10 different eukaryotic species
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(H. sapiens, M. musculus, F. rubripes, C. intestinalis, A. thaliana, D. melanogaster, A.

gambiae, C. elegans, P. falciparum, S. cerevisiae) for which the complete genome sequences

or draft sequences have already been released.

BTP is a stepwise method where the first step works with three unified functional

groups, (i) Class A and Non-GPCR, (ii) Class B + Class C and (iii) Frizzled/Smoothened,

with a certain threshold value assigned. In the next step, it works with classifying Class

B and Class C, and in step three, Class C is divided into three functional groups followed

by Step four, five and six determining the rest of the functional groups along with the

identification of the mammalian-type GPCRs. The accuracy is 100% for three groups, and

more than 80% for four groups.

Statistical encoding method

In a work by Iqbal et al., (2016), a statistical distance-based encoding method is used to

represent a variable length lower similarity protein sequence with a fixed size vector. The

protein sequences of three GPCRs families were investigated in the experiments due to

their importance in the pharmaceutical industry. The sequences belong to the families of

GPCRs having very weak sequence similarity which exhibits difficulties in classifying them

into different classes. Each phase of their proposed framework was employed to perform a

specific task of classifying protein sequences into their corresponding families/subfamilies.

The classification results obtained were the average results of various rounds of the

classifier. Different performance measurement metrics such as accuracy, true positive rate

(TPR), false positive rate (FPR), specificity, sensitivity, recall, F-measure and Mathews

Correlation Coefficient (MCC) were investigated for performance evaluation of the protein

sequence classification technique. The best accuracy results on Datasets 1 and 2 were in

the range of 94% to 97.9%, which shows some improvement from the accuracy results which

were in the range of 90.7% to 95% in the previous studies [Zhou et al., 2010 and Cobanoglu

et al., 2011].
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Structural regional lengths

In the study by Sahin et al. (2014), they proposed a method named GPCRsort, which

determines the class of a GPCR using its structural properties. Specifically, they used the

lengths of the transmembrane and loop regions of the GPCR structure. The method first

determined the transmembrane regions of GPCRs, and constructs feature vectors using the

lengths of the regions.

Random Forest [Breiman, 2001] classifier is employed in the learning and decision parts

of the method. The method can predict GPCRs at every level of the GPCR class hierarchy

tree. This shows the generality of GPCRsort, as the other techniques are inadequate to

make the exact classification. The experimental results show that GPCRsort is very effec-

tive and outperforms the then known techniques for GPCR classification. Highest accuracy,

97.3%, is achieved with GPCRsort method when compared to the other techniques under

the same experimental conditions. Besides these advantages, GPCRsort was shown to be

a faster prediction algorithm among others.

2.3.4 Combination of tools

Genetic ensemble

Naveed and Khan (2012) introduced GPCR-MPredictor which predicts and classifies GPCRs

into five levels (family, subfamily, sub-subfamily, subtype) including the prediction. In or-

der to handle the dimesionality problem of the dipeptide compositions, they used genetic

algorithm (GA)-based feature selection to reduce the dimensionality and to improve the

classification accuracy.

Their approach is an ensemble approach where individual classifiers like KNN, SVM,

probabilistic neural networks, J48, Adaboost and Naive Bayes classifiers have been used.

Also, different thresholds in CD-Hit is used on the datasets downloaded from GPCRdb,

that is 0.4, 0.7, 0.8, and 0.9 for the family, subfamily, sub-subfamily, and subtype levels

respectively. However, they observed that SVM performs better on dipeptide composition
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among all of these classifiers. Amino acid composition, pseudo amino acid composition and

dipeptide composition are the three features used to predict and classify GPCRs.

The proposed method is compared with the PCA-GPCR approach (Peng et al., 2010).

The predictive performance of their approach is comparatively higher than that of PCA-

GPCR at all levels of GPCRs. The GPCR-MPredictor yields an accuracy of 99.75%,

92.45%, 87.80%, 83.57% and 96.17% at the five levels, respectively. Their research shows

that the smaller the number of training sequences, the less reliable the classifier might be

which is evident in the decline in accuracies in levels 2, 3 and 4 but since a less strict CD-HIT

threshold was applied in fifth level it results in a larger number of training sequences.

Fast Fourier transform with SVM

Guo et al. (2006) introduced a Fast Fourier transform based SVM method to classify

GPCRs and Nuclear Receptors (NRs) based on the hydrophobicity of proteins. The three

principal properties of hydrophobicity represented by hydrophobicity model, electron-ion

interaction potential model and c-p-v model are used to transform the protein sequences

into numerical sequences. Three hydrophobicity scales were selected for the optimization as

hydrophobicity can vary due to different experimental conditions, different organic solvents

and computing approaches. The Jackknife test was used for performance measurements as

well as for prediction quality, accuracy, total accuracy and Matthew’s correlation coefficient

were evaluated. Higher accuracy is achieved with the hydrophobicity scale than c-p-v or

electron-ion interaction potential model.

SVM with different approaches

Yabuki et al. (2005) have described a system called GRIFFIN (G-Protein and Receptor

Interaction Feature Finding Instrument) which uses Support Vector Machines and Hidden

Markov Model to predict GPCR and G-Protein coupling selectivity along with a hierar-

chical SVM classifier including the feature vectors to predict Class A GPCRs. For the

other type of families (Opsins, Olfactory subfamilies of Class A, Class B, Class C, friz-
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zled and smoothened) HMM is used for predicting the coupling selectivity with G-proteins

which is outside the scope of my work. As BLAST and FASTA uses sequence similarity for

predicting the protein, yet it is not clear to predict GPCRs based on sequence similarity

relationship. This system is unique as it uses information from GPCR ligand information

and GPCR sequence. SwissProt and TrEMBL databases are used as both ligand and se-

quence information are present. In total, they have used twenty-four features for ligands

and GPCRs.

Karchin et al. (2002) have used a simple nearest neighbor approach like BLAST, a

hidden Markov model (HMM) and SVMs to constitutue a group of statistical algorithms

for recognizing superfamilies and the small subfamilies of GPCRs that bind the same ligand.

The work is focused on comparing different methods with SVMs to observe which one is

better computationally. For the classification of GPCRs, the primary sequence information

is used which required the extension of the two-class problem to a k-class problem. Karchin

et al. (2002) have used the simplest approach to multi-class SVMs by training k one-to-rest

classifiers. SVM is computationally expensive but it has significantly less Minimum Error

Point (MEP) than the other methods especially in the case for classifying subfamilies. It is

also observed that the higher classification with good approximation can be achieved using

SVMtree method. The future work is focused on classifying the subfamilies based on the

suitable feature selection for the subfamilies along with the biological knowledge of each

subfamily’s transmembrane topology.

Li et al. (2010) proposed a three-layer classifier for GPCRs based on the combination

of SVM with feature selection method. The method holds high accuracy for classifying

into superfamily, family and subfamily of GPCRs. In every level, minimum redundancy

maximum relevance (mRMR) [Peng et al., 2005] is utilized to pre-evaluate features with

discriminative information. After that, to further improve the prediction accuracy and to

obtain the most important features, genetic algorithms (GA) [JH 2005] is applied to feature

selection.

Finally, three models based on SVM are constructed and used to identify whether a
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query protein is GPCR and which family or subfamily the protein belongs to. The pre-

diction quality evaluated on a non-redundant dataset by the jackknife cross-validation test

exhibited significant improvement compared with published results. Higher accuracy is ob-

served with the proposed method named GPCR-SVMFS than GPCR-CA and GPCRPred.

Another algorithm has been developed by [Liao, Ju, & Zou, 2016] which uses the features

from SVM-Prot [Y. H. Li et al., 2016] and Random forest algorithm to identify GPCRs

from non-GPCRs with an accuracy of 91.61%.
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Chapter 3

Materials and Methods

In this chapter we describe the construction of the dataset that includes GPCRs and non-

GPCRs. This is followed by a description of the features extracted from these protein

sequences for predicting and classifying the GPCRs and how the features have been ana-

lyzed. The last section is the description of the algorithms used.

3.1 Data collection

For training and evaluating the GPCR prediction and classification algorithms, I con-

structed a non-redundant dataset consisting of full-length GPCRs that had been catego-

rized to their subtype level by GPCRdb as well as all the non-GPCR protein sequences

queried from the GPCR Prediction Ensemble database (GPCR-PEnDB) developed by our

research team [Begum et al., 2020] and accessible at gpcr.utep.edu. The non-GPCRs in

my dataset included both transmembrane and non-transmembrane sequences that are not

GPCRs. These were selected from Uniprot with a CDHIT of 90%. A CDHIT of x% es-

sentially produces a subset of protein sequences that are no more than x% similar to one

another. The entire data collection contains 2016 positive examples of confirmed GPCRs,

and 3100 non-GPCRs of which 1898 are transmembrane proteins. All these sequences were

saved in a FASTA format file.
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3.2 Feature extraction

In order to predict and classify GPCRs, different sets of features are used by different

algorithms to measure the accuracies of the methods as well as the importance of those

features for increasing performance. It is therefore imperative to have the capability of

extracting a large variety of features from each (sequence) in the dataset. The objective

here is to identify distinctive features used in different studies and later generate them

uniformly for all sequences in our dataset using the programming language Python. A

Python 3 script was written (see Appendix A1, A2) to generate a CSV (comma separated

values) file that contains the sequence IDs and feature values.

The sequence-derived structural and physicochemical properties, such as hydrophobic-

ity scales, average flexibility indices, polarizability parameter, etc., are highly useful for

representing and distinguishing proteins or peptides of different structural, functional and

interaction profiles that are essential for the successful application of statistical learning

methods irrespective of sequence similarity [Han et al., 2004]. Recently, these structural

and physicochemical features of proteins and peptides are routinely used in chemogenomics

studies to characterize target proteins in therapeutic drug–target pairs and predict new

drug–target associations to identify potential drug targets [He et al., 2010].

Several programs for computing protein structural and physicochemical features have

been developed [Du et al., 2012; Holland et al., 2008; Li et al., 2006]. However, they are

not comprehensive and not easily accessible.

Cao et al. (2013) published a selection of sophisticated protein features and provided

them as a package called propy for the free and open source software environment Python.

The original propy package was implemented in python 2 but I converted it to Python

3. The usefulness of the features covered by propy for computing structural and physic-

ochemical features of proteins and peptides was already tested by a number of published

studies (e.g., see Peng et al., 2010, Karchin et al., 2002, Bock et al., 2001), which reported

prediction performance with sensitivity and specificity in the range of 82.1–99.9%. Because
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of the use of these structural and physicochemical features, these statistical and machine

learning classification systems do not rely on sequence similarity, clustering or profiles for

predicting protein functional classes, and they have been found to be particularly useful

for facilitating the prediction of novel proteins.

In this dissertation, I used propy to compute 1360 protein features, grouped into four

sets of descriptors with greater details in the subsections below, based on the structural and

physicochemical properties listed in Table 3.1. Numerical values reflecting the properties

of the amino acids were obtained from the physicochemical numerical indices in AAindex

database [Kawashima et al., 2000]. These numerical values help capture as much informa-

tion of the protein sequences as possible and they were used to compute the feature values

for each protein in our dataset. The range of values for all the physicochemical properties

are also shown in Table 3.1.

Table 3.1: The physicochemical properties of the amino acids
Order Physicochemical property Range of property

1 Hydrophobicity scales [-1.14, 1.81]
2 Average flexibility indices [0.295, 0.544]
3 Polarizability parameter [0, 0.409]
4 Free energy of solution in water [-2.24, 4.91]
5 Residue accessible surface area in tripeptide [75, 255]
6 Residue volume [36.3, 135.4]
7 Steric parameter [0, 1.02]
8 Relative mutability [18, 134]

Propy package description

The propy package [Dong-Sheng et al., 2013] is one of the tools used for computing

commonly-used structural and physicochemical features of proteins and peptides from

amino acid sequence [Dong-Sheng et al., 2013]. From the propy package, I used four groups

of descriptors, each of which has been independently predicting protein and peptide-related

problems by using machine-learning methods.

I wrote python scripts that call the various propy modules to extract required descriptors
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either by providing a fasta file of sequences (offline script, see Appendix A2) or a csv file that

contains the protein ids for the sequences to be downloaded from the uniprot website (online

script, see Appendix A1). The online script has the disadvantage of being interrupted by

bad internet connection so it’s always better to manually download the protein sequences

in fasta format and use the offline script (see Appendix A2) to generate the descriptors.

Both scripts skips sequences with special characters (X, B, Z, J, φ, ω, ψ, π, ζ, +, -). So

manually downloading the fasta file helps in removing those characters before using the

propy.

3.2.1 Amino acid and dipeptide compositions

Amino acid composition (AAC) and dipeptide composition (DC) are the simplest descrip-

tors of protein sequence-derived features [Shepherd et al., 2003], that have been used for

predicting protein fold [Grassmann et al., 1999] and structural classes [Reczko et al., 1994],

functional classes [Bhasin et al., 2004] and subcellular locations [Hua et al., 2001] at accu-

racy levels of 72–95%, 83–97% and 79–91%, respectively.

AAC is defined as the occurrence frequencies of 20 amino acids in a protein sequence.

That is,

fA(i) =
nA(i)

L
, (3.1)

where each i = 1, 2, ..., 20 corresponds to a distinct amino acid and nA(i) is the number

of amino acid i occurring in the protein sequence of length L. AAC was widely used

to transform GPCR sequences into 20-dimension numerical vectors [Chou et al., 1999].

However, the sequence order information would be completely lost. In order to address

this issue, DC was proposed to represent GPCR sequences by 400-dimension vectors, which

capture local-order information and have been reported to improve classifications.

Similarly, DC [Bhasin et al., 2004] is defined as the occurrence frequencies of the 400
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dipeptides (i.e., 400 amino acid pairs). That is,

fD(i) =
nD(i)

L− 1
, (3.2)

where each i = 1, 2, ..., 400 corresponds to one of the 400 dipeptides and nD(i) is the

number of dipeptide i occurring in the sequence.

3.2.2 Autocorrelation descriptors

Autocorrelation descriptors (ADs) are a class of topological descriptors, also known as

molecular connectivity indices. They describe the level of correlation between two ob-

jects (protein or peptide sequences) in terms of their specific structural or physicochemical

property [Broto et al., 1984], which are defined based on the distribution of amino acid

properties along the sequence.

There are three ADs – normalized Moreau-Broto autocorrelation descriptor, Moran au-

tocorrelation descriptor and Geary autocorrelation descriptor. They are all defined based

on the value distributions of the eight physicochemical properties of amino acids (see Ta-

ble 3.1) along a protein sequence. The measurement values of these properties are first

centralized and standardized before proceeding to calculate the autocorrelation descriptor.

The standardization is performed as follows;

P (i) =
P0(i)− P̄0

σ
(3.3)

where P0(i) are the property value of the amino acid i,

P̄0 =
1

20

20∑
i=1

P0(i), σ =

√√√√ 1

20

20∑
i=1

(P0(i)− P̄0)2 (3.4)

The normalized Moreau-Broto autocorrelation (NMBA) descriptor is defined as:
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NMBA(d) =
MBA(d)

L− d
d = 1, 2, 3, ..., 30 (3.5)

where

MBA(d) =
L−d∑
i=1

P (Ri)P (Ri+d), (3.6)

Ri and Ri+d are the amino acids at position i and i+ d along the protein sequence, respec-

tively. NMBA has been used for predicting transmembrane protein types [Feng et al., 2000]

and protein secondary structural contents [Lin et al., 2001] at accuracy levels of 82–94%

and 91–94%, respectively.

The Moran autocorrelation (MA) descriptor [Moran 1950] is defined as:

MA(d) =
1

L−d
∑L−d

i=1 (P (Ri)− P̄ )(P (Ri+d)− P̄ )
1
L

∑L
i=1(P (Ri)− P̄ )2

d = 1, 2, 3, ..., 30 (3.7)

where P̄0 = 1
L

∑L
i=1 P (Ri) is the average value of the property of interest along the sequence.

This has been applied for predicting protein helix contents at an accuracy level of 85%

[Horne et al., 1988].

The Geary autocorrelation (GA) descriptor [Geary, 1954] which has been used for an-

alyzing allele frequencies and population structures [Sokal et al., 2006] is defined as:

GA(d) =

1
2(L−d)

∑L−d
i=1 (P (Ri)− P (Ri+d))

2

1
L−1

∑L
i=1(P (Ri)− P̄ )2

d = 1, 2, 3, ..., 30 (3.8)

MBA uses the property values as the basis for measurement, MA utilizes property

deviations from the average values, and GA utilizes the square-difference of property values

instead of vector-products (of property values or deviations). The MA and GA descriptors
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measure spatial autocorrelation, which is the correlation of a variable with itself through

space [Ong et al., 2007].

3.2.3 Pseudo-amino acid composition

The pseudo-amino acid composition (PseAAC) descriptor contain a set of sequence features

originally developed by Chou K.C. (2001) . They have been used widely to predict outer

membrane protein [Cai et al., 2003], nuclear receptors [Gao et al., 2006], and protein

structural classes [Xiao et al., 2005]. PseAAC helps to avoid completely losing the sequence-

order information [Chou, 2001, 2005] in calculating the AAC and is a good indicator for

subcellular localizations [Chou 2000, Shengli et al., 2017] of protein.

Given a protein sequence P with L amino acid residues, i.e.,

P = [R1, R2, R3, ..., RL], which can then be formulated as

P = [p1, p2, p3, ..., p20, p20+1, ..., p20+λ]
T , (λ < L). Here we take λ to be 30.

Finally, the Chou’s pseudo amino acid composition descriptor is defined as:

PseAAC(i) =


fA(i)∑20

j=1 fA(i)+ω
∑30
d=1 θ(d)

1 ≤ i ≤ 20

ωθ(i)∑20
j=1 fA(i)+

∑30
d=1 θ(d)

21 ≤ i ≤ 50

(3.9)

where ω is a weighting factor (default ω = 0.1) and θ(d) the dth-tier correlation factor

that reflects the sequence order correlation between all the dth most contiguous residues

as formulated by

θ(d) =
1

L− d

L−d∑
i=1

Θ(Ri, Ri+d), d = 1, 2, ..., 30 (3.10)

where Θ(Ri, Ri+d) is the dth-tier correlation factor that reflects the sequence order
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correlation between all the most contiguous residues along a protein chain. It is defined as:

Θ(Ri, Ri+d) =
1

3

3∑
k=1

[Hk(Ri)−Hk(Ri+d)]
2 (3.11)

where H1(Ri), H2(Ri) and H3(Ri) are the hydrophobicity, hydrophilicity, and side-chain

mass of amino acid, respectively [Chou, 2001]. Their original values are standardized.

3.2.4 Sequence-order descriptors

The sequence-order (SD) descriptors include sequence-order coupling numbers and quasi

sequence-order. They have been used for predicting protein subcellular locations at ac-

curacy levels of 72.5–88.9% [Chou, 2000]. In deriving the sequence-order descriptors, we

depend on two distance measures for amino acid pairs which are the Grantham chemical

distance matrix [Grantham, et al., 1974], and the other called Schneider-Wrede physico-

chemical distance matrix [Chou, KC 2000, Schneider et al., 1994].

Then, the jth-rank sequence-order coupling number is defined as:

τ(j) =

L−j∑
i=1

(d(Ri, Ri+j))
2, j = 1, 2, ..., 30 (3.12)

where d(Ri, Ri+j) is one of the above distances between the two amino acids Ri and

Ri+j located at position i and i+ j, respectively.

The quasi-sequence-order descriptors are defined as:

QSO(i) =


fA(i)∑20

j=1 fA(j)+ω
∑30
j=1 τ(j)

1 ≤ i ≤ 20

ωτ(i)∑20
j=1 fA(j)+

∑30
j=1 τ(j)

21 ≤ i ≤ 50

(3.13)
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where ω is a weighting factor (default ω = 0.1). We end up with 90 sequence-order-coupling

numbers and 100 quasi-sequence-order descriptor values. In total, there are 190 features

extracted from the sequence-order descriptors.

3.3 Methods

In this section, the various methods applied to obtain the sequence-derived features are

outline. The first part is the feature selection method followed by how the imbalance

nature of the data in some levels were handled. Then we look into the classifiers, and

finally consider the performance metrics.

3.3.1 Feature selection

There is this saying by Mills (1993) about data that goes, if you torture your data long

enough, they will tell you whatever you want to hear. In contrast to other different di-

mension reduction techniques like those based on projection (e.g., principal component

analysis) or compression (e.g., using information theory), feature selection (FS) do not

modify the original representation of the variables, but rather select a subset of them [Song

et al., 2017]. Thus, the original semantics of the variables are preserved thereby providing

the advantage of easy interpretation by an expert in the domain.

The use of all available descriptors likely results in the inclusion of partially redundant

information, some of which might become noise that interferes with the prediction results

or obscures relevant information. Based on the results of previous studies, it is possible

that applying FS methods for selecting the optimal set of descriptors will help to improve

prediction accuracy as well as computing efficiency.

Importantly FS allows us to avoid overfitting and improve prediction performance, pro-

vide faster and more cost-effective models, and gain a deeper insight into the underlying

processes that generated the data. I have surveyed various feature selection methods like

f-score [Chen et al., 2003] and FDA-score [Song et al., 2017] but finally settled with the
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univariate filter function known as f-classif because its selected features produced better

results. This method assesses the relevance of the features by looking only at the intrinsic

properties of the data by implementing the ANOVA test on each feature. A feature rele-

vance score and the low scoring features are removed (that is the best ones are selected).

The f-classif function is in scikit-learn library [Pedregosa et al., 2011] and it works by com-

puting the ANOVA F-value for the provided sample. Scikit-learn library in python (also

known as sklearn) is an algorithmic library with machine learning tools built on two sci-

entific computing libraries (NumPy and SciPy) and one visualization library (Matplotlib).

f-classif takes two arguments which are the feature sets and the response variable.

3.3.2 Handling imbalance data

An imbalanced dataset is when the classes are approximately unequally represented. In

the superfamily level, there are 1084 more negative examples than the positive examples

in our dataset. Similarly, in the family level, Class A is atleast six times as many as the

T2R (second largest class within this family). In order to deal with such data imbalance,

we introduced the Synthetic Minority Oversampling Technique (SMOTE) [Chawla et al.,

2002] to be used with any of the classifiers on levels 1 [Liao et al., 2016] and 2 of which

the proposed ones were used. With SMOTE, the minority class in the training set is

over-sampled by creating “synthetic” examples. Its detailed operation is as follows:

For each sample x in the minority class, search its k (usual value 5) nearest neighbors,

if the sampling rate is N , then randomly select N samples without replacement from the k

nearest neighbors, denoted as y1, y2, . . . , yN . Random linear interpolation is performed

on the line segments formed by x and yi (i = 1, 2, ..., N) to obtain a new positive sample

znew, as shown in the following equation:

znew = x + rand [0, 1] × (yi − x)

where rand(0,1) means to generate a random number between 0 and 1. Add these

newly synthesized samples to the original positive sample and form a new, more balanced

dataset. After performing SMOTE, we can have a more balanced dataset, where minority
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and majority examples are similar in numbers, to be fed into the classifier.

In python, the class imblearn.over sampling contains the SMOTE function with several

parameters like sampling strategy, random state, k neighbors etc. The sampling strategy

can be “auto” equivalent to not majority, “all” equivalent to resampling all classes but the

majority class, “not minority” equivalent to resampling all classes but the minority class

and “minority” equivalent to resampling only the minority class. The k neighbors can be

any integer preferably odd number. In this work, SMOTE was applied in the family level

and the default parameters were maintained ( sampling strategy=‘auto’, k neighbors= 5).

3.3.3 Classifiers

Four different classifiers were considered, the first two are established algorithms already

used for GPCR sequence classification [Peng et al., 2010, Bhasin & Raghava 2004] and the

last two are new methods developed in my research. I will describe all four methods here

and their performance of these methods will be compared using the performance measures

presented later in Section 3.4.

• Principal component analysis & intimate sorting (PCA-ISA)

• Support vector machine (SVM)

• Penalized multinomial logistic regression (Log-Reg)

• Multi-layer perceptron neural network (MLP-NN)

SVM, Log-Reg and MLP-NN were implemented with scikit-learn library to build models

using the training set which has the same 1360 features but different rows across the levels.

The parameters that were implemented within these classifiers were fine tuned and the

optimal ones selected.
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PCA-ISA

PCA [Jolliffe, 1989] is a statistical procedure that uses an orthogonal transformation to

convert a set of observations of possibly correlated variables (entities each of which takes

on various numerical values) into a set of values of linearly uncorrelated variables called

principal components (PCs). PCA finds a low-dimensional representation of a dataset that

contains as much as possible of the variation. Each of the dimensions found by PCA is a

linear combination of the all features. Peng et al. (2010) used PCA to reduce the dimension

of their GPCR data and then apply the intimate sorting algorithm (ISA) [Chou et al. 1999]

as the classifier used after retrieving the PCs. ISA algorithm is easy to implement and does

not need to set any parameters as some other algorithms (e.g., support vector machines).

Suppose that a training set consists of N proteins P1, P2, ..., PN , each of which Pi is a

λ-dimension vector, Pi= (pi,1, pi,2, . . ., pi,λ)
T . The classes of these proteins are already

known, and each protein belongs to exactly one of the µ classes. The intimate sorting

algorithm aims to place a query protein P= (p1, p2, . . ., pλ)
T into one of the µ classes

based on the information from the N proteins in the training set.

To this end, a measure of similarity score between P and Pi is defined as

Φ(P, Pi) =
P · Pi
||P ||||Pi||

, i = 1, 2, ..., N

where P ·Pi=
∑λ

j=1 pj · pi,j and ||P ||=
√∑λ

j=1 p
2
j . When P ≡ Pi, it can be easily seen

that Φ(P, Pi)= 1, meaning that they belong to the same class. In general, we have -

1≤Φ(P, Pi)≤1. The higher the Φ(P, Pi) value, the more likely two proteins belong to the

same class. Among the N proteins in the training set, the one with the highest score with

the query protein P is picked out, which we denote by Pk, k ∈ [1, N ]. If there is a tie,

we would randomly select one of them. In the final step, the intimate sorting algorithm

simply assigns P into the same GPCR class as Pk.

In this work, PCA was implemented using the sklearn library. During the model prepa-

ration stage, where the data is partitioned as training and test, it works by accepting the
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minimum number between sample size and feature size as the maximum PCs required. A

“ValueError” traceback results when PCs higher than the sample size is used as a param-

eter. And since all the levels have the same feature size (1360), it is the sample sizes that

were changed across the levels meaning PCs cannot be more than the sample size. It was

noticed after several trials that PCs that produced a total variation of between 80% and

97% resulted in optimal results. That is, the exact number of sample size (100% total vari-

ation) was not used. The resulting PCs were then fed into ISA which I implemented from

scratch in python using NumPy library because the original Peng’s code is not available.

PCA-ISA code can be found in Appendix C.

SVM

An SVM [Vapnik, 1995] constructs a hyperplane or set of hyperplanes in a high dimensional

space, which can be used for classification, regression or other tasks. We implemented the

SVM in scikit-learn using the support vector classifier (SVC) module. Intuitively, a good

separation is achieved by the hyperplane that has the largest distance (so-called functional

margin) to the nearest training data points of any class. In general the larger the margin

the lower the generalization error of the classifier.

For simplicity, imagine that a 1-dimensional dataset. This means we have one feature X.

As it is not linearly separable we can transfer it into a 2-D space. For e.g, you can increase

the dimension of the data by mapping x into a new space using a function with output x

and x2. We are now in 2-D space after the transformation from 1-D, the hyperplane is a

line dividing a plane into two parts where each class lays on either side. The axes are the

range of values of the two features.

Given training vectors xi ∈ i = 1, ..., n in two classes, and a vector y ∈ {−1, 1}n, SVC

solves the following primal problem:

min
w,b,ζ

(
1

2
wTw + C

n∑
i=1

ζi) (3.14)
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subject to yi(w
Tφ(xi) + b) ≥ 1 - ζi,

ζi ≥ 0, i = 1, ..., n

It’s dual

min
α

(
1

2
αTQα− eTα)

subject to yTα = 0

0 ≤ αi ≤ C i = 1, ..., n

where e is the vector of all ones, C > 0 is the upper bound, is an n by n positive

semidefinite matrix.

Qij = yiyjK(xi, xj) where K(xi, xj) = φ(xi)
Tφ(xj) is the kernel. Here training vectors

are implicitly mapped into a higher (maybe infinite) dimensional space by the function φ.

The decision function is:

sgn(
n∑
i=1

yiαiK(xi, x) + ρ)

The advantages of SVM are:

• Accurate in high-dimensional space.

• Use a subset of training points in the decision function so it’s also memory efficient.

The disadvantages are:

• It is prone to over-fitting if the number of features is much greater than the number

of samples.

• Do not directly provide probability estimates, which are desirable in most classification

problems.

In our work, after several testing of various parameters based on performance and ef-

ficiency, radial basis function (RBF) was used as the kernel and the stochastic gradient

descent (SGD) as the optimizer. Also in terms of multi-class classification, the “one-

against-one” approach for multi-class classification was adopted. That is, if n is the num-
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ber of classes, then n×(n−1)/2 classifiers are constructed and each one trains data from two

classes. To provide a consistent interface with other classifiers, the “decision function shape”

parameter allows to monotonically transform the results of the “one-against-one” classifiers

to a decision function of shape (n samples, n classes).

Log-Reg

The basic logistic regression model [Hastie et al., 2009] for binary classification with m

samples and n features is defined as:

h(x) = β1x1 + β2x2 + β3x3 + ...+ βnxn (3.15)

where x1, x2, x3, ..., xn are input features whereas β1, β2, β3, ..., βn denote the regression

coefficients, also called weights. The prediction probability of a query is then taken to be

p(X) = P (Y = 1|X) = φ(βTX) =
exp(βTX)

1 + exp(βTX)
(3.16)

where the X and β denote the vector of input features [x1, x2, x3, ..., xn] and of the

weights [β1, β2, β3, ..., βn], respectively. The objective is to find a model that best estimates

the actual labels. Finding the best model means finding the best weights for that model

by minimizing the cost function through an iterative optimization approach.

With more than two classes, we use an extension of (3.16) called multinomial model,

which, given K classes for the outcome Y , takes the form:

P (Y = 1|X) =
exp(βT1 X)

1 +
∑K−1

j=1 exp(βTj X)
(3.17)

P (Y = 2|X) =
exp(βT2 X)

1 +
∑K−1

j=1 exp(βTj X)
(3.18)
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•

•

•

P (Y = K − 1|X) =
exp(βTK−1X)

1 +
∑K−1

j=1 exp(βTj X)
(3.19)

P (Y = K|X) =
1

1 +
∑K−1

j=1 exp(βTj X)
(3.20)

Regularization is an essential technique in machine learning to counter (or penalize)

over-fitting, which can be implemented with a λ parameter that is directly proportional

to the penalty of finding complex or over-fitted models. In a commonly used form of

regularization, called l2, the penalty term is the product of λ and the sum of squares of the

weights. The target value is expected to be a linear combination of the features considered.

The cost function represents the total error of the model which is the difference between

the actual and the models predicted values.

Given a model ŷ and actual label y = 1 or 0, a cost function of a single data point is

defined as:

Cost(ŷ, y) =
1

2
(φ(βTX)− y)2 (3.21)

so the total cost function for the training set is:

J(β) =
1

m

m∑
i=1

Cost(ŷ, y) (3.22)

In general, it is difficult to calculate the derivative of the cost function so -log of the

model is used. That is, in a case that desirable y = 1, the cost can be calculated as -log(ŷ)
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and in the case that desirable y = 0, the cost can be calculated as -log(1− ŷ). Now plugging

into (3.22), we get

J(β) =
1

m

m∑
i=1

yi log(ŷ) + (1− yi) log(1− ŷ) (3.23)

which becomes the logistic regression cost function.

Now introducing the l2 penalty and minimizing the results we then end up with:

min
β

(
1

2
βTβ + J(β))

In this work, the “LogisticRegression” function in scikit-learn library was used and the

tuning was done on “multiclass”, “penalty”, “tol”, and “solver” parameters. The best

model was obtained when the parameters used were multinomial (one vs rest) multiclass,

l2 penalty and the lbfgs (limited broyden fletcher goldfab-shannon) solver as minimization

technique with a tolerance (stopping criteria) of 0.01.

MLP-NN

MLP-NN, also available, in scikit-learn is a supervised learning algorithm that learns a

function f(.) : Rm 7→ Rp by training on a dataset, where m is the number of dimensions

for input and p is the number of dimensions for output.

Given a set of features X = x1, x2, ..., xm and a target y, it can learn a non-linear

function approximator for either classification or regression. It is different from logistic

regression, in that between the input and the output layer, there can be one or more

non-linear layers, called hidden layers.

The leftmost layer, known as the input layer, consists of a set of neurons {xi|x1, x2, ..., xm}

representing the input features. Each neuron in the hidden layer transforms the values from

the previous layer with a weighted linear summation w1x1 + w2x2 + ... + wmxm, followed

by a non-linear activation function g(.) : R 7→ R - such as the logistic sigmoid function
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(“logistic”), no-op activation (“identity”), and hyperbolic tangent function (“tanh”). The

output layer receives the values from the last hidden layer and transforms them into output

values. The Class function MLPClassifier in scikit-learn library was used to implement

the multi-layer perceptron neural network (MLP-NN) algorithm.

The advantage of using MLP-NN is its capability to learn non-linear models in real-

time (on-line learning). The disadvantages are that hidden layers have a non-convex loss

function where there exists more than one local minimum. Therefore different random

weight initializations can lead to different validation accuracy. It also requires tuning a

number of hyperparameters such as the number of hidden layers, neurons and iterations.

MLP-NN is sensitive to feature scaling.

Several combinations of parameters of the MLPClassifier were tuned to choose those

that produce the best accuracy and efficiency. In the end, I found out one hidden layer

with 50 neurons, the tanh as the activation function and lbfgs solver as the optimizer were

parameters that gave the best results in terms of accuracy and efficiency. When more

hidden layers are used, it takes too much time to produce results and might even lead to

overfitting (unstable results).

3.4 Performance measures

To evaluate the generalization of the classification algorithms, all the data are partitioned

randomly into 70% training and 30% test sets. The experiment is repeated 5 times and

the average is taken which serves as the main classification accuracy used to assess the

general performance. At each level of classification, there are different number of samples

and classes but same set of features were used. The prediction accuracy (ACC) for each

class and the overall classification accuracy (OACC) at a given level are then measured by

the following formulas:

ACC(i) = C(i)
Tot(i)

× 100%, i = 1, 2, ..., µ

OACC =
∑µ
i C(i)∑µ
i Tot(i)

× 100%, i = 1, 2, ..., µ
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where Tot(i) is the total number of sequences in class i, C(i) the number of correctly

predicted sequences of class i, and µ the total number of classes at the level under consid-

eration.

Table 3.2: Categories of superfamily classification results
Predicted

GPCR Non-GPCR

Actual
GPCR True Positive (TP) False Negative (FN)
Non-GPCR False Positive (FP) True Negative (TN)

At the superfamily level, we have µ = 2 with the GPCRs as class 1, and the non-GPCRs

as class 2. In this setting, ACC(1) was the true positive rate (TPR) or sensitivity, which

measured the fraction of true positives (actual GPCRs predicted correctly). ACC(2) was

the true negatives rate (TNR) or specificity, which measured the fraction of true negatives

(actual non-GPCRs predicted correctly). Refer to Table 3.2 for the meaning of the notations

TP, FP, TN and FN in the superfamily level of GPCR classification.

As we are particularly interested to find out about the capabilities of the different algo-

rithms in terms of distinguishing GPCRs from other non-GPCR transmembrane proteins,

we also measured the false positive rates among transmembrane non-GPCRs (TmFPR) in

addition to the overall false positive rates (FPR) among non-GPCRs, noting that FPR =

1 - TNR.
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3.4.1 Accuracy assessment procedure

In assessing the accuracy, the data is randomly partitioned into different sets for training

and testing within a for-loop, in which the algorithms are being run and the accuracy

measured based on the results produced for each test set. At each step of the loop, the

training set and test set were randomly chosen to be 70% and 30% of the data sequences

respectively. The average overall accuracy across the 5 different randomly partitioned test

sets is recorded.

3.5 Platform Used

All the algorithms used were tested and implemented on a Dell Inspiron 7586 laptop with

Intel core i7-8565U CPU @ 1.80GHz and 16GB RAM. The time module in python was

used to record the execution times.

50



Chapter 4

Results and Discussion

In this chapter, we deal with the datasets, features collected and results of the model

performance of the proposed methods and other state-of-the-art algorithms.

4.1 Dataset

There are a total of 2016 GPCRs in my dataset and are distributed into their eight major

classes: A (rhodopsin), B1 (adhesion), B2 (secretin), C (glutamate), D (fungal pheromone),

E (cAMP receptor), F (Frizzled) and T2R (Taste2 receptors). More details of this classifi-

cation of GPCRs can be found in [Begum et al. 2020] . They are highly dominated by class

A which contains about 70% of all the GPCRs collected, followed by T2R with about 10%.

The least represented is class E, constituting only 0.4%. The non-GPCRs are made up

of two parts: the transmembrane (Tm) non-GPCRs and other proteins that are not Tm.

Table 4.1 shows the numbers of proteins in our dataset separated into these categories.

The raw data for GPCRs are stored in eight different fasta files according to their families

where as all non-GPCRs in one fasta file.
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Table 4.1: Number of collected proteins in different classes
Proteins Family Number of sequences

Class A 1387
Class B1 90
Class B2 113

GPCR Class C 112
Class D 13
Class E 11
Class F 79
Class T2R 211

Tm non-GPCRs 1898
Non-Tm non-GPCRs 1202

Total 5116

Figure 4.1: Distribution of GPCRs among eight different classes at the family level.
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4.2 Features extracted and normalized

A list of 1360 features were computed using propy for each protein in our dataset. Table

4.2 displays the feature groups and their descriptors, along with number of features and

range of values for the descriptors.

Table 4.2: Feature groups and number of descriptors
Feature groups Descriptors No. of

features
Range of val-
ues

Sequence compositions Amino acid composition (AAC) 20 [1 - 15%]
Dipeptide composition (DPC) 400 [0 - 2%]

Pseudo amino acid Pseudo amino acid (PseAAC) 30 [0.5 - 6%]
Sequence order Sequence order coupling number

(SOCN)
90 [200, 500]

Quasi-sequence order descriptors
(QSO)

100 [1e−5 - 0.05 ]

Autocorrelation Normalized Moreau-Broto auto-
correlation (NMBA)

240 [-0.3 - 0.3]

Moran autocorrelation (MA) 240 [-0.3 - 0.3]
Geary autocorrelation (GA) 240 [0.1 - 1.2]

The processed data has the features of each sequence and GPCRs are stored in CSV

formats categorized according to the family, subfamily, sub-subfamily and subtypes being

considered. The non-GPCRs has only one CSV file. The full set of features were used to

train the models for all the algorithms considered.

From Table 4.2, we notice that descriptors have different range of values and have to

be made uniform and consistent by normalizing them. By making the ranges consistent

between variables, normalization enables a fair comparison between different features mak-

ing sure they have the same impact and also important for computational reasons. The

standard scaler function from scikit-learn.preprocessing module was used to standardize

the columns by subtracting the mean and scaling to unit variance. The standard score of

sample x is calculated as z = (x−u)/s where u is the mean and s is the standard deviation.
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4.3 Classification accuracies

The tables in this section are the results from all four algorithms for part of the GPCR

classification cycle shown in Figure 4.2, which shows the details of each level of classification

for class A (rhodopsin family). The entire collection of the classification tables are in

Appendix Q. All the accuracy measurements reported are the average of 5 test runs using

30% of the entire data as testing sets.

Figure 4.2: GPCR classification cycle to its subtypes level.
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4.3.1 Classification at superfamily level

We begin with the superfamily (Level 1) classification, which is a binary classification

process to distinguish GPCRs from non-GPCRs. All four classifiers (PCA-ISA, SVM,

Log-Reg, MLP-NN) described in Section 3.3.3 are used. For each run, the train test split

function in sklearn randomly splits the entire data into the specified testset size of 30%

representing 1535 examples which includes both GPCRs and non-GPCRs. The average

prediction accuracies ACC(1) and ACC(2), which are respectively equivalent to TPR and

TNR as described in section 3.4, along with the overall prediction accuracy OACC are

displayed in Table 4.3. While all classifiers gave excellent performance with OACC above

95%, it is particularly important to assess their capabilities of discriminating GPCRs from

the structurally similar Tm non-GPCRs. The fourth column of numbers in Table 4.3 are

the average percentages of Tm non-GPCRs that are mistakenly classified as GPCRs. Note

that they are, as expected, uniformly higher than the FPRs for the non-Tm non-GPCRs

(last column).

Table 4.3: ACC and OACC (both in %) of GPCR classification at superfamily level
PCA-ISA SVM Log-Reg MLP

TPR 97.6 98.5 98 98.5
TNR 94.5 98.0 97.0 98.5
OACC 95.4 97.8 97.2 98.1
FPR(Tm) 9.5 3.4 5.3 2.0
FPR(NTm) 2.3 0.7 1.2 0.3

With overall OACC over 98%, MLP-NN outperforms the rest of the classifiers in dis-

criminating GPCRs from other proteins. Furthermore, it has the smallest overall type 1

error (FPR) of 1.5% with 2.0% and 0.3% among Tm and non-Tm non-GPCRs respectively.

This means it has the largest chance of identifying Tm non-GPCRs as non- GPCRs.
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4.3.2 Classification of GPCRs at family level

Table 4.4. gives the Level 2 average classification accuracies for each of the eight families of

GPCRs together with the overall accuracies by the four classifiers. There are 605 GPCRs

which have been classified under these families

Table 4.4: ACC and OACC (both in %) of GPCR classification at family level
Family PCA-ISA SVM Log-Reg MLP-NN
A 100.0 100.0 100.0 99.6
B1 97.6 99.0 100.0 99.2
B2 97.4 90.4 97.8 97.8
C 94.8 84.2 96.6 97.8
D 35.0 20.0 42.4 77.4
E 83.0 0 80.0 92.0
F 87.2 93.0 97.4 97.8
T2R 100.0 100.0 100.0 100.0
OACC 98.6 97.6 99.1 99.1

Log-Reg and MLP-NN outperform the rest with an OACC of 99.1% as against 98.6%

and 97.6% by PCA-ISA and SVM respectively. Here we see class D, which contains only

13 GPCR examples, has the lowest ACC compared to other classes. However, MLP-NN

still performs better than the rest. Class E also has few examples, only 11. We notice that

SVM fails to classify any of the class E GPCRs correctly. Yet MLP-NN produced the best

ACC of 92%. At this level, we experience the phenomenon of imbalance classes and one

remedy to this is using SMOTE. In Table 4.22, we see the best performance when it is

applied with Log-Reg.
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4.3.3 Classification of GPCRs at subfamily level

Table 4.5 outlines the classification accuracies of the subfamilies (Level 3) under Class A,

together with the overall accuracies, by all the classifiers. There are 417 testing examples

in this family, that has subfamily classification information available.

Table 4.5: ACC and OACC (both in %) of GPCR classification of Class A family
at subfamily level

Class A subfamilies PCA-ISA SVM Log-Reg MLP-NN
Alicarboxylic acid 96.0 43.0 100.0 100.0
Aminergic 100.0 98.2 100.0 99.8
Lipid 94.6 92.2 98.2 90.4
Melatonin 100.0 93.4 100 83.8
Nucleotide 96.8 93.2 96.8 92.0
Orphan 95.2 92.8 94.6 93.0
Peptide 96.8 98.8 98.0 97.8
Protein 100.0 98.4 99.4 98.6
Sensory 100.0 95.2 98.0 97.6
Steroid 100.0 59.0 99.2 100.0
OACC 97.3 95.8 97.9 96.3

We notice again from Table 4.5 that Log-Reg outperforms the rest with an OACC of

97.85% as against 97.33% and 95.75% by PCA-ISA and SVM respectively.

Class B1 with 90 sequences (both training and testing) has only one type of subfamily

called Peptide, B2 also with one subfamily called Adhesion, C with four different subfami-

lies, F with one and finally D & E has none.

4.3.4 Classification of GPCRs at sub-subfamily level

Tables 4.6 - 4.10 give the classification accuracies of five Class A GPCR subfamilies (ali-

carboxylic acid, aminergic, lipid, nucleotide, and protein) into their sub-subfamilies (Level

4) by the four classifiers.
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Table 4.6: ACC and OACC (both in %) of GPCR classification of Class A sub-
family Alicaboxylic at sub-subfamily level

Alicaboxylic PCA-ISA SVM Log-Reg MLP-NN
Hydroxicarboxylic acid 100 100 100 100
Oxoglutarate receptors 100 100 100 100
Succinate receptors 100 100 100 100
OACC 100 100 100 100

Table 4.7: ACC and OACC (in %) of GPCR classification of class A subfamily
Aminergic at sub-subfamily level

Aminergic PCA-ISA SVM Log-Reg MLP-NN
5-Hydroxytryptamine 98 95.4 96 99.2
Acetylcholine 95.8 94.2 100 100
Adrenoceptors 92.8 98 100 98.2
Dopamine 98.2 100 100 96.4
Histamine 93.2 90 97.2 100
Trace amine 100 100 100 90
OACC 95.83 96.39 98.61 98.21

Table 4.8: ACC and OACC (both in %) of GPCR classification of class A sub-
family Lipid at sub-subfamily level

Lipid PCA-ISA SVM Log-Reg MLP-NN
Cannabinoid 100 93.4 100 100
Free fatty acid 92 100 100 100
GPR18 - GPR55 68.4 61.4 76 100
Leukotriene 75 87 100 85.6
Lysophospholipid (LPA) 95 100 100 100
Lysophospholipid (S1P) 100 88.6 93.4 86.4
Platelet-activating factor 100 100 100 100
Prostanoid 97.5 100 100 100
OACC 92.56 93.02 97.67 96.74
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Table 4.9: ACC and OACC (both in %) of GPCR classification of class A sub-
family Nucleotide at sub-subfamily level

Nucleotide PCA-ISA SVM Log-Reg MLP-NN
Adenosine 100 100 100 100
P2Y 96.4 100 100 100
OACC 97.78 100 100 100

Table 4.10: ACC and OACC (both in %) of GPCR classification of class A sub-
family Protein at sub-subfamily level

Protein PCA-ISA SVM Log-Reg MLP-NN
Chemerin 100 99 100 100
Chemokine 98 100 100 100
Glycoprotein homorne 100 100 100 100
Prokineticin 100 100 100 100
OACC 99.07 99.08 100 100
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In all the sub-subfamily level classifications, Log-reg once again outperformed the rest.

Even with its least performance among Lipid (under class A), it has an OACC of 97.67%

as against 93.02% and 92.56% by SVM and PCA-ISA. In general, it produces an average

OACC of approximately 99% as against 97% and 96% by SVM and PCA-ISA in this level.
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4.3.5 Classification of GPCRs at Subtype level

The tables give the classification accuracies of the sub-subfamilies of class A GPCRs into

its subtypes at fifth level together with the overall accuracies by the three classifiers.

Table 4.11: ACC and OACC (both in %) of GPCR classification of family A
subfamily Alicaboxylic sub-subfamily 5-hydroxytryptamine at subtype
level

5-hydroxytryptamine PCA-ISA SVM Log-Reg MLP-NN
5-HT1A 100 100 100 100
5-HT1B 100 100 96 76
5-HT1D 100 80 100 100
5-HT1E 50 60 60 76
5-HT1F 100 90 66.8 88.4
5-HT2A 78.4 95 96.6 76
5-HT2B 81.8 40 60 40
5-HT2C 100 100 100 100
5-HT4 100 60 100 100
5-HT5A 100 80 100 100
5-HT7 100 65 100 100
OACC 94.54 91.82 96.51 96.36

Table 4.12: ACC and OACC (both in %) of GPCR classification of family A sub-
family Aminergic sub-subfamily Acetylcholine at subtype level

Acetylcholine PCA-ISA SVM Log-Reg MLP-NN
M1 91.75 100 93.40 100
M2 93.40 96.60 95 86.80
M3 88.40 86.80 100 93.40
M4 100 50 100 100
M5 100 100 100 100
OACC 90.91 89.09 94.54 94.54
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Table 4.13: ACC and OACC (both in %) of GPCR classification of family A sub-
family Aminergic sub-subfamily Adrenoceptors at subtype level

Adrenoceptors PCA-ISA SVM Log-Reg MLP-NN
α1A 100 100 100 100
α1B 100 93.40 100 100
α1D 100 100 100 100
α2A 80 100 70 90
α2B 100 100 100 73.40
α2C 100 60.80 100 100
β1 83.40 91 100 85
β2 100 100 100 85
β3 100 100 100 100
OACC 96.19 91.43 97.14 93.33

Table 4.14: ACC and OACC (both in %) of GPCR classification of family A sub-
family Aminergic sub-subfamily Dopamine at subtype level

Dopamine PCA-ISA SVM Log-Reg MLP-NN
D1 100 100 100 100
D2 100 100 100 100
D3 100 100 100 100
D4 100 100 100 100
D5 100 100 100 100
OACC 100 100 100 100

Table 4.15: ACC and OACC (both in %) of GPCR classification of family A sub-
family Aminergic sub-subfamily Histamine at subtype level

Histamine PCA-ISA SVM Log-Reg MLP-NN
H1 100 90 100 83.40
H2 100 100 100 100
H3 95 85 100 100
H4 94 75 100 100
OACC 97.14 85.71 100 94.29
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Finally, in the subtype level, we again notice Log-Reg having the largest OACC of

96.51% followed closely by MLP-NN with 96.36% as against 94.1% and 91.82% by PCA-

ISA and SVM.
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4.4 Performance improvement by feature selection

Results from the previous sections indicated that Log-Reg and MLP-NN achieves better

overall accuracies than the others using the full set of 1360 sequence features. We, therefore,

use the f classif function on these two proposed GPCR classifiers to see if we can further

improve their performance by reducing the feature set. Our goal is to reduce the execution

time while still maintaining similar or attaining even better accuracies.

4.4.1 Selected features

Table 4.16 indicates the average marginal contributions to the OACC across all the levels

when some number of features were selected by the ANOVA FS technique described in

Section 3.3.1 using results from the full set as reference.

Table 4.16: The contributions by features on Log-Reg and MLP-NN

Number of features selected Average marginal contributions (%)

< 400 ≤ - 10
[400, 499] [−9,−6]
[500, 599] [−5,−3]
[600, 699] [−2,−1]
[700, 799] [+0.8,+1]
[800, 899] [+0.2,+0.7]
[900, 999] [+0.05,+0.1]
≥ 1000 [+0.0,+0.04]

Now since the largest marginal increase was seen in the range with 700-799 features, I

sought to identify which group of descriptors really had the majority of these features that

contributed positively to accuracy improvement. It was found that those features belonged

to DPC, QSO, PseAAC, Geary, and AAC (not in ). This led to using each group of

descriptors independently as main features to check the model performance (see Table 4.17

and Figure 4.3). Then extensive testing of various descriptor combinations were performed

to see which combinations of these descriptors produced the best accuracies.
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Table 4.17: The contributions by features on Log-Reg and MLP-NN

Descriptors Average performance
(%)

Extraction time per sequence
(secs)

DPC 94.39 0.014
AAC 94.31 0.003
QSO 94.40 0.017
SOCN 81 0.013
GA 90.58 0.027
MA 90.97 0.022
NMBA 82 0.019
PseAAC 93.98 2.47
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Figure 4.3: Descriptors performance.

4.4.2 Execution time

In order to optimize the classification performance, which means not only accuracies but

also the efficiency or speed of execution, we look into the feature set. Table 4.18 also

displays the time it takes to extract a feature set from a submitted sequence. Among those

descriptors that had better performances, some had to be discarded based on the extraction

time. After considering better performance both in terms of computational efficiency and

accuracy, I ended up with four descriptors, DPC, QSO, GA, and AAC, which together

form the reduced set of features. PseAAC provided a good performance but it had the

worst time in the feature extraction stage so it was discarded. The final reduced group of

descriptors has a vector with a length of 760 (=400 + 240 + 100 + 20) features, which falls

within the desirable range of 700 - 799 features.
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Now we compare the execution time for a given number of queries (unknown protein

sequence(s)) to be predicted right from user submission through feature extraction to model

classification stage between full set of 1360 features and the reduced set of 760 features under

the descriptors DPC, QSO, GA, and AAC using the Log-Reg and MLP-NN. The times are

the averages (µ) over five runs with its standard deviations (σ) in parentheses.

Table 4.18: Average and standard deviation of the execution times (secs) for Log-Reg

No. of proteins Reduced set time µ (σ) Full set time µ (σ)

1 25.17 (0.03) 42.93 (2.45)
50 26.88 (0.088) 212.25 (3.79)
100 34.89 (0.76) 586.34 (14.78)
200 46.99 (1.51) 1387.72 (10.91)
300 50.66 (1.09) 1989.62 (49.69)
400 55.83 (0.92) 2278.78 (93.41)
500 61.18 (3.46) 2745.14 (86.27)
1000 92.84 (1.31) 11559.3 (646.36)
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Figure 4.4: Execution time for Log-Reg.
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Table 4.19: Average and standard deviation of the execution times (secs) for MLP-NN

No. of proteins Reduced set time µ (σ) Full set time µ (σ)

1 26.86 (0.47) 31.402 (0.20)
50 29.08 (0.61) 210.34 (3.04)
100 33.4 (0.96) 554.44 (8.87)
200 46.85 (0.96) 1378.11 (18.72)
300 51.03 (0.56) 1755.41 (18.71)
400 53.43 (0.61) 2229.68 (33.33)
500 63.59 (1.72) 2704.74 (11.60)
1000 95.08 (1.45) 11619.30 (15.50)

Figure 4.5: Execution time for MLP-NN

Let’s consider only the execution time of reduced set of features using just Log-Reg

classifier when over 10000 sequences are being submitted. It can be observed from Table

4.20 and Figure 4.6 that it takes less than 2 hrs for 80000 sequences to be classified by
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Log-Reg and MLP-NN. If the full set of features had been used, the runtimes would be

around two weeks.

Table 4.20: Average execution time (mins) of reduced set for Log-Reg & MLP-NN

No. of proteins Log-Reg time µ (σ) MLP-NN time µ (σ)

10000 10.96 (11.91) 12.14 (10.54)
20000 21.85 (11.83) 24.76 (11.90)
40000 44.97(14.93) 47.54 (16.67)
80000 88.87 (15.16) 94 (18.33)

Figure 4.6: Execution time for Log-Reg & MLP
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4.5 Results from SMOTE & Log-Reg

Table 4.22 represents results from combining synthetic minority oversampling technique

(SMOTE) with penalized multinomial logistic regression (Log-Reg). The reported pre-

diction accuracies from Table 4.4 for families D and E are generally lower than those of

other families. Using this method then upsamples the minority classes to create a balanced

dataset then we apply the Log-Reg as a classifier.

Table 4.21: ACC and OACC classification of GPCR at family level
Family SMOTE + Log-Reg
Class A 100
Class B1 100
Class B2 100
Class C 98.9
Class D 97.5
Class E 99
Class F 99
Class T2R 100
OACC 99.6

Also, it has been noticed that when the original features were reduced by leaving out

redundant and irrelevant ones, there was an improvement in the overall performance and

in the over all execution time (as seen in figures 4.4 and 4.5) . That is, when informative

features were been used, computational efficiency improves significantly. This gives us

insight of how the existence of noise affects the general performance. Again, we notice

that using SMOTE to handle minority classes helps to generate a balanced set for the best

performance to be achieved.
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4.6 Discussion

Classification results from other families to their various subtypes performed similarly with

MLP-NN and Log-Reg outperforming the rest of the algorithms as shown in the appendix.

In demonstrating the superiority in performance, we made comparisons with a number

of existing online web-servers which were trained from datasets different from what I used.

A balanced independent dataset was used to test the performance of these web-servers and

the results showed that;

1. For GPCRpred, the overall accuracy at level 1, was found to be less than 90% with

FPR of 36.83% among the transmembrane non-GPCRs. Levels 2 and 3 were between

80% - 90%.

2. For PCA-GPCR, FPR among transmembrane non-GPCR was 70+% with the lowest

overall accuracy of 83% even though it had the best TPR (99%) compared to the

other servers. All other levels were between 85% and 92%.

3. And for GPCR-CA, the overall accuracy at level 1 was 88.68% with a FPR of 27.92%

among transmembrane non-GPCRs. But at level 2, had an accuracy of 91.30%.
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Chapter 5

Web-server

There are existing GPCR protein sequence prediction web-servers for most of the machine

learning algorithms except few ones like Log-Reg and MLP-NN. Even with those available

ones some of which are, PCA-GPCR, GPCRPred, SVMProt, GPCR-CA etc still have

some limitations. The user is not required to have any knowledge of machine learning to be

able to use this. This chapter highlights the web-server developed from the two proposed

algorithms with the aim of tackling the limitations associated with the existing tools.

5.1 GPCR-PEn web-server

GPCR-PEn, which represents GPCR Prediction Ensemble, is an easy to use pipeline de-

veloped by our team with software tools which includes a database and prediction tools to

facilitate the prediction and classification of GPCRs.

The web-server based on python, apache and webpy. Apache (cross-platform web-

server software) interacts with the web.py using Web Server Gateway Interface (WSGI).

The webpy gpcrSubmitServer script then creates a parameter file and then calls a gpcr

command line script to process the sequences. The site then checks the log file to see if the

analysis is completed. Once it is completed, the webpy then reads the csv of the command

line script to generate the table on the results page.

The associated database tool, GPCR-PEnDB, is a relational database which has data for

GPCR and non-GPCR protein sequences including their source organisms, their accession

IDs, the various levels they belong to and their functions. These data can be collected and

used as a useful training and testing dataset for various analysis.
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5.2 Prediction tools

There are four existing tools that have been locally installed and implemented in the

pipeline by our research team and they are Blast, PFAM, GPCRpred and GPCRTm. These

tools have various pitfalls and that resulted in proposing the logistic regression (Log-Reg)

and multi-layer perceptron neural network (MLP-NN) which. I have incorporated, PCA-

ISA was also included since its existing web-server (PCA-GPCR) is no longer functional.

In total, the pipeline now has seven prediction tools with different algorithm each. But

in terms of performance, the three new additions out-performs the rest. They also classify

the GPCRs to its lowest level which is the subtype whereas the others do not.

The algorithms utilize sequence similarity, transmembrane structure, and sequence de-

rived features such as amino acid composition, dipeptide composition, autocorrelations and

order coupling number to determine if a protein sequence is a GPCR. Below is a table of

the tools and their respective features and algorithms;

Figure 5.1: The Pipeline Prediction tools .
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5.2.1 How the proposed tools work

Anytime a query is being submitted, the following is a flow of how the tools work.

The text data is first converted to fixed-length of features which are the reduced set of

features known as DPC, QSO, GA, and AAC then the saved model from the algorithm on

a training set with same features is applied for prediction. This process happens in the

background, the only thing the user sees is the output of results. A schematic diagram of

the workflow is shown below;

Figure 5.2: Protein Sequence Workflow
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5.2.2 How to use it

The user has the option to either upload a fasta file or or pasting a fasta sequence into the

text with any number of sequences to be analyzed. Once they have been uploaded, any of

the tools can then be selected but to get an optimized results, it’s recommended to select all

tools then majority votes can be implemented on the results produced. Then the “process

sequence” button is clicked to process the uploaded sequences which could take couple of

minutes depending on the number of sequences. Below, in Figure 5.3, is the user-friendly

graphical user interface of the prediction tool page from GPCR-PEn pipeline;

Figure 5.3: The submission page.
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An image of the processing page is found below;

Figure 5.4: The processing page.
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After which a display page shows the output in a table as shown below;

Figure 5.5: The results page.

The columns of the output page are;

Index: Number of sequences submitted

Protein: Accession ID

Protein Type: Full length or partial length (fragment)

Prediction Count: Number of tools out of total selected that classified as GPCR

Models selected for sequence classification

Sequence: Protein Sequence

This web-based tool is currently under beta-testing on the website accessible within the

UTEP (VPN) virtual private network at http://biolinux19.bioinformatics.utep.edu/fayivor.

It will be part of the major upgrade of our GPCR-PEn web-server that will be made public

by August 2020.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The experimental results show that MLP-NN and SVM have, on average, the lowest false

positive rate with the best overall performances at the superfamily level then followed

closely by Log-Reg. At the family level, MLP-NN and Log-Reg outperforms the rest

with the same overall accuracy. But from the sub-family, sub-subfamily to subtype levels,

Log-Reg produces the best performance which is closely followed by MLP-NN then SVM.

This shows that, both MLP-NN and Log-Reg are two important classifiers that can most

accurately classifying GPCRs to the subtype level. Furthermore, during the prediction

and testing processes, we were able to determine the contribution and importance of the

descriptors in accurately classifying GPCRs. The top four descriptors are QSO, DPC,

AAC, and PseAAC in decreasing order of importance. As it was necessary to implement

several new codes in order to perform the analyses on our local computer network, several

improvements over existing GPCR prediction and classification tools have been observed.

First, the new PCA-ISA program has a major advantage over the existing PCA-GPCR

tool that uses a similar algorithm. PCA-ISA has very high capabilities of distinguishing

GPCRs from transmembrane non-GPCRs with a much lower FPR of 10% compared to

70+% by PCA-GPCR. Second, the results from SMOTE further buttress the success in

achieving better classification accuracy from large balanced training data. Finally, with

the incorporation of the rank-based feature selection method, a non-redundant feature set

has been obtained for developing a web-server that can take over 10,000 sequence queries

at one time and efficiently produce results within seconds of submission, a substantial
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improvement over existing tools.

6.2 Future research goals and proposed approaches

While this dissertation project resulted in a web-based tool that can accurately and effi-

ciently classify GPCRs from superfamily level to subtype level using only protein sequence

information, it can be extended in several directions:

1. Incorporate 3D structural features to the sequence-derived features to further reduce

the false positive rates and help produce a good model for classifying other types of

transmembrane proteins.

2. Survey and assess other deep learning algorithms, such as convolutional neural net-

works, which may produce better performance than that of MLP-NN. Delving more

into these deep learning algorithms [Li M. et al., 2018] can be of immense importance

in improving the accuracy to almost 100%.

3. Further analysis on the feature selection step can be done by considering other rank-

based methods and just using subsets of features within the descriptors. For example,

instead of using all 20 features from the amino acid composition descriptor, we can

just select a few most significant ones. The same applies to all other descriptors. This

helps in reducing the computational time for the classification process so that very

big datasets can be handled at one time.

4. Identification of ligand binding residues is important for understanding the biolog-

ical functions of GPCRs. As GPCRs are popular therapeutic drug targets, these

computational methods might be extended and used as sequence-based methods for

predicting GPCR-ligand binding residues. Using these same combination of descrip-

tors for GPCRs, some attributes from protein ligands can be extracted then the

classifiers applied.
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I anticipate that these future investigations will result in highly effective computational

tools that can be conveniently disseminated to the GPCR research community worldwide

via our web server at gprc.utep.edu.
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in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov.

2017; 16:829–842.

[54] Hebert,T.E. and Bouvier,M. (1998) Structural and functional aspects of G protein-

coupled receptor oligomerization. Biochem Cell Biol. 76, 1-11

87



[55] Horn, F. (2003). GPCRDB information system for G protein-coupled receptors. Nu-

cleic Acids Research, 31(1), 294–297. https://doi.org/10.1093/nar/gkg103
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Appendix A1 - Online Script for Extracting various descriptors

import pandas as pd

from propy . GetProteinFromUniprot import GetProteinSequence as gps

from propy . PyPro import GetProDes

data = pd . r ead c sv ( ’ Final correected GPCR TransNOnGPCR . csv ’ )

p r o t e i n i d = data [ ’ ID ’ ]

p r o t e i n i d l i s t = l i s t ( p r o t e i n i d )

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

f o r idx , p ro id in enumerate ( p r o t e i n i d l i s t ) :

p r i n t ( idx )

p ro t e in s equence = gps ( p ro id )

d e s c r i p t o r = GetProDes ( p ro t e in s equence )

t ry :

PAAC= d e s c r i p t o r .GetPAAC( )

#SOCN=d e s c r i p t o r .GetSOCN( )

#PAAC = d e s c r i p t o r .GetPAAC( lamda=5, weight =0.1)

except Exception as e :

# r a i s e e

p r i n t ( ’ Error occurred f i n d i n g the p ro t e in

d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (PAAC)

p r o t e i n i d = p r o t e i n i d . drop ( l a b e l s=p r o t e i n i d e r r o r i n d e x ) .

r e s e t i n d e x ( )
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pd . concat ( [ p r o t e i n i d , pd . DataFrame ( r e s u l t ) ] , a x i s =1).

drop ( l a b e l s =[ ’ index ’ ] , a x i s =1). t o c s v ( ’GPCR TRANS PAAC. csv ’ )

pd . DataFrame ({ ’ P r o t e i n i d e r r o r ’ : p r o t e i n i d e r r o r i n d e x } ) .

t o c s v ( ’GPCR TRANS PAACerror1 . csv ’ )

Appendix A2 - Offline Script for Extracting various descriptors

import sys

from propy . PyPro import GetProDes

import pandas as pd

import time

s t a r t t i m e = time . time ( )

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

p r o t e i n i d = [ ]

# n u m b e r o f i t e r a t i o n = 5

# Tota l t ime = [ ]

with open ( ’ un ipro t 201 300 . f a s ta ’ , ’ r ’ ) as P r o S e q f i l e :

t ex t = P r o S e q f i l e . read ( )

#de f s e q u e n c e e x t r a c t i o n ( t ext ) :

t e x t l i s t = text . s p l i t ( ’> ’)

f o r idx , l s in enumerate ( t e x t l i s t ) :

sub = l s . s p l i t (”\n” , 1)

i f idx==0:

cont inue
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pro id = sub [ 0 ]

#pro id = sub [ 0 ] . s p l i t ( ” | ” ) [ 1 ]

p r o t e i n i d . append ( p ro id )

p ro t e in s equence = ’ ’ . j o i n ( sub [ 1 ] . s p l i t (”\n ”) )

d e s c r i p t o r = GetProDes ( p ro t e in s equence )

t ry :

ALL= d e s c r i p t o r . GetReduced ( )

except Exception as e :

# r a i s e e

p r i n t ( ’ Error occurred f i n d i n g the p ro t e in d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (ALL)

#pr in t ( pro id , ’ : ’ ,ALL)

p r o t e i n i d = pd . S e r i e s ( p r o t e i n i d )

p r o t e i n i d = p r o t e i n i d . drop ( l a b e l s=p r o t e i n i d e r r o r i n d e x )

. r e s e t i n d e x ( )

#pd . concat ( [ p r o t e i n i d , pd . DataFrame ( r e s u l t ) ] , a x i s =1)

. drop ( l a b e l s =[ ’ index ’ ] ,

a x i s =1). t o c s v ( ’ uniprot TAS2R . csv ’ )

df1= pd . concat ( [ p r o t e i n i d , pd . DataFrame ( r e s u l t ) ] , a x i s =1).

drop ( l a b e l s =[ ’ index ’ ] ,

a x i s =1)

array = df1 . va lue s

X tes t = array [ : , 1 : ]
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Appendix B - UFS, PCA & ISA

import pandas as pd

import numpy as np

import random as rand

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

from sk l e a rn . decomposit ion import PCA

from random import cho ice , seed

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest , f c l a s s i f

from sk l e a rn . f e a t u r e s e l e c t i o n import ch i2

##datase t = pd . r ead c sv ( ’ gpcr nongpcr new . csv ’ , header=None )

np . random . seed (75)

datase t = pd . r ead c sv ( ’ GSE4115 . csv ’ , header=None , sk iprows =1)

# The main datase t to be s p l i t i n to t r a i n i n g and t e s t

#X = datase t . i l o c [ : , : − 1 ]

#1165 446 1357

array = datase t . va lue s

X = array [ : , 1 : −1 ]

Y = array [ : , −1 ]

#X = datase t . i l o c [ : , 1 : 1 3 5 6 ]

#y = datase t . i l o c [ : , −1 ]

# t r a i n i n g s e t , t e s t s e t , t r a i n i n g l a b e l s , t e s t l a b e l s =

t r a i n t e s t s p l i t (X,Y , t e s t s i z e =0.3 ,

100



#

random state =42)

# #pr in t ( t e s t s e t )

# # Saving the t r a i n i n g s e t and t e s t s e t

# pd . concat ( [ t r a i n i n g s e t , t r a i n i n g l a b e l s ] , a x i s =1). t o c s v

( ’ Tra in ing Set . csv ’ , header=0)

# pd . concat ( [ t e s t s e t , t e s t l a b e l s ] , a x i s =1).

t o c s v ( ’ Test Set . csv ’ , header=0)

# Feature Extract ion with Univar ia te S t a t i s t i c a l Tests

( Chi−squared f o r c l a s s i f i c a t i o n )

# load data

# array = dataframe . va lue s

# X = array [ : , 0 : 8 ]

# Y = array [ : , 8 ]

# f e a t u r e e x t r a c t i o n

t e s t = SelectKBest ( s c o r e f u n c=f c l a s s i f , k=700)

f i t = t e s t . f i t (X, Y)

# summarize s c o r e s

np . s e t p r i n t o p t i o n s ( p r e c i s i o n =3)

p r i n t ( f i t . s c o r e s )

f e a t u r e s = f i t . t rans form (X)

#f t=np . concatenate ( ( f e a tu r e s ,Y, a x i s =1)

# summarize s e l e c t e d f e a t u r e s

p r i n t ( f e a t u r e s [ 0 : 5 , : ] )
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np . savetxt ( ’ f e a t u r e s s e t . csv ’ , f e a tu r e s , ’% s ’ , ’ , ’ )

#randomly generate the rows to pick out f o r the t r a i n i n g s e t

and the r e s t are used f o r the t e s t s e t

t r a i n i n g s e t , t e s t s e t , t r a i n i n g l a b e l s , t e s t l a b e l s =

t r a i n t e s t s p l i t ( f e a tu r e s ,Y , t e s t s i z e =0.3 ,

random state =75)

# #pr in t ( t e s t s e t )

# # Saving the t r a i n i n g s e t and t e s t s e t

t r a i n i n g l a b e l s = np . reshape ( t r a i n i n g l a b e l s ,

( t r a i n i n g l a b e l s . shape [ 0 ] , 1 ) )

t e s t l a b e l s = np . reshape ( t e s t l a b e l s , ( t e s t l a b e l s . shape [ 0 ] , 1 ) )

np . savetxt ( ’ Tra in ing Set . csv ’ , np . concatenate (

( t r a i n i n g s e t , t r a i n i n g l a b e l s ) , a x i s =1) , ’%s ’ , ’ , ’ )

# the f i r s t column o f t h i s f i l e conta in s the i n d i c e s

showing how random the rows were s e l e c t e d

np . savetxt ( ’ Test Set . csv ’ , np . concatenate (

( t e s t s e t , t e s t l a b e l s ) , a x i s =1) ,

’%s ’ , ’ , ’ )

# convert the two da ta s e t s ( dataframe ) in to numpy ar rays

t e s tAr rays = t e s t s e t

t ra in ingAr rays = t r a i n i n g s e t

#f e a t u r e s c a l i n g

sc=StandardSca ler ( )

t r a in ingAr rays=sc . f i t t r a n s f o r m ( t ra in ingAr rays )

#pr in t ( t ra in ingAr rays )

t e s tAr rays=sc . trans form ( te s tArrays )
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#apply ing pca

pca = PCA( n components =95)

t ra in ingAr rays = pca . f i t t r a n s f o r m ( t ra in ingAr rays )

#pr in t ( t ra in ingAr rays )

t e s tAr rays = pca . trans form ( te s tArrays )

e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o

#pr in t ( e x p l a i n e d v a r i a n c e )

p r e d i c t e d c l a s s l i s t = [ ]

f o r index , testRow in enumerate ( t e s tArrays ) :

# keeps t rack o f the s i m i l a r i t y s c o r e s f o r each row

( the row in the t e s t datase t )

s i m i l a r i t y s c o r e l i s t = [ ]

f o r row in t ra in ingAr rays :

norm = np . l i n a l g # c l a s s to a c c e s s norm−2

# c a l c u l a t e s the s i m i l a r i t y s co r e

s i m i s c o r e = np . d i v id e (np . dot ( testRow , row ) ,

np . mul t ip ly (norm . norm( testRow ) , norm . norm( row ) ) )

s i m i l a r i t y s c o r e l i s t . append ( s i m i s c o r e )

index maxvalue = s i m i l a r i t y s c o r e l i s t .

index (max( s i m i l a r i t y s c o r e l i s t ) )

c la s s maxva lue = t r a i n i n g l a b e l s [ index maxvalue ]

# ge t s the c l a s s o f the maximum s i m i l a r i t y s co r e

p r e d i c t e d c l a s s l i s t . append ( c las s maxva lue )
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# pr in t ( ’\nThe t e s t p ro t e in [ ’ , index +1 , ’ ]

be longs to : ’ , c l a s s maxva lue )

# This adds the pr ed i c t ed c l a s s e s to the l a s t

#column in the te s tArrays

t e s tAr rays = np . concatenate ( ( tes tArrays , t e s t l a b e l s ,

np . array ( p r e d i c t e d c l a s s l i s t ) ) , a x i s =1)

# Checking the accuracy

t r u e p o s i t i v e s = 0 # v a r i a b l e to hold the

number o f occurances where

ac tua l i s equal to p r ed i c t ed

p r e d c l a s s e s c o u n t d i c t = {}

t e s t c l a s s e s c o u n t d i c t = {}

f o r i in range ( l en ( t e s t l a b e l s ) ) :

t e s tLabe l = s t r ( t e s t l a b e l s [ i ] ) . s t r i p ( ) . lower ( )

# count the c l a s s e s in t e s t

i f t e s tLabe l in t e s t c l a s s e s c o u n t d i c t . keys ( ) :

t e s t c l a s s e s c o u n t d i c t [ t e s tLabe l ] += 1

e l s e :

t e s t c l a s s e s c o u n t d i c t [ t e s tLabe l ] = 1

i f t e s tLabe l == s t r ( p r e d i c t e d c l a s s l i s t [ i ] ) . s t r i p ( ) . lower ( ) :

t r u e p o s i t i v e s += 1

# count the pred i c t ed c l a s s e s

i f t e s tLabe l in p r e d c l a s s e s c o u n t d i c t . keys ( ) :

p r e d c l a s s e s c o u n t d i c t [ t e s tLabe l ] += 1
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e l s e :

p r e d c l a s s e s c o u n t d i c t [ t e s tLabe l ] = 1

f o r key , va lue in p r e d c l a s s e s c o u n t d i c t . i tems ( ) :

p r i n t ( ’ The Accuracy o f c l a s s [ ’ , key , ’ ] , i s : ’ ,

p r e d c l a s s e s c o u n t d i c t [ key ] /

t e s t c l a s s e s c o u n t d i c t [ key ] ∗ 100)

p r i n t ( ’ The Overa l l Accuracy i s : ’ , t r u e p o s i t i v e s /

l en ( t e s tArrays ) ∗ 100)

# save the p r e d i c t i o n s made to a f i l e

np . savetxt ( ’ Te s t Se t p r ed i c t ed VI . csv ’ , te s tArrays , ’%s ’ , ’ , ’ )
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Appendix C - PCA & ISA

’ ’ ’ Af ter s u c c e s s f u l running o f t h i s code the accuracy i s pr in ted

to the conso l e

and three f i l e s named as :

1 . ’ Tra in ing Set . csv ’

2 . ’ Test Set . csv ’

3 . ’ T e s t S e t p r e d i c t e d . csv ’ are produced ’ ’ ’

import pandas as pd

import numpy as np

import random as rand

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

from sk l e a rn . decomposit ion import PCA

from random import cho ice , seed

np . random . seed (75)

datase t = pd . r ead c sv ( ’ GSE4115 . csv ’ , header=0)

# The main datase t to be s p l i t i n to t r a i n i n g and t e s t

#X = datase t . i l o c [ : , : − 1 ]

#1165 446 1357

X = datase t . i l o c [ : , : − 1 ]

y = datase t . i l o c [ : , −1 ]

#randomly generate the rows to pick out f o r the t r a i n i n g s e t

and the r e s t are used f o r the t e s t s e t

t r a i n i n g s e t , t e s t s e t , t r a i n i n g l a b e l s , t e s t l a b e l s =
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t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.3 ,

random state =75)

np . savetxt ( ’ Tes t Set check . csv ’ , t e s t s e t , ’% s ’ , ’ , ’ )

#pr in t ( t e s t s e t )

# Saving the t r a i n i n g s e t and t e s t s e t

pd . concat ( [ t r a i n i n g s e t , t r a i n i n g l a b e l s ] , a x i s =1). t o c s v

( ’ Tra in ing Set . csv ’ , header=0) # the f i r s t column o f t h i s f i l e

conta in s the i n d i c e s showing how random the rows were s e l e c t e d

pd . concat ( [ t e s t s e t , t e s t l a b e l s ] , a x i s =1).

t o c s v ( ’ Test Set . csv ’ , header=0)

# convert the two da ta s e t s ( dataframe ) in to numpy ar rays

t e s tAr rays = t e s t s e t . i l o c [ : , 1 : ] . va lue s

t ra in ingAr rays = t r a i n i n g s e t . i l o c [ : , 1 : ] . va lue s

#f e a t u r e s c a l i n g

sc=StandardSca ler ( )

t r a in ingAr rays=sc . f i t t r a n s f o r m ( t ra in ingAr rays )

#pr in t ( t ra in ingAr rays )

t e s tAr rays=sc . trans form ( te s tArrays )

#apply ing pca

pca = PCA( n components =400)

t ra in ingAr rays = pca . f i t t r a n s f o r m ( t ra in ingAr rays )

#pr in t ( t ra in ingAr rays )

t e s tAr rays = pca . trans form ( te s tArrays )

e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o
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#pr in t ( e x p l a i n e d v a r i a n c e )

# t h i s l i s t ho lds the p red i c t ed c l a s s e s f o r the t e s t p r o t e i n s

p r e d i c t e d c l a s s l i s t =[ ]

f o r index , testRow in enumerate ( t e s tAr rays ) :

# keeps t rack o f the s i m i l a r i t y s c o r e s f o r each row ( the row in

the t e s t datase t )

s i m i l a r i t y s c o r e l i s t = [ ]

f o r row in t ra in ingAr rays :

norm = np . l i n a l g # c l a s s to a c c e s s norm−2

# c a l c u l a t e s the s i m i l a r i t y s co r e

s i m i s c o r e = np . d i v id e (np . dot ( testRow , row ) ,

np . mul t ip ly (norm . norm( testRow ) , norm . norm( row ) ) )

s i m i l a r i t y s c o r e l i s t . append ( s i m i s c o r e )

index maxvalue = s i m i l a r i t y s c o r e l i s t .

index (max( s i m i l a r i t y s c o r e l i s t ) )

c la s s maxva lue = t r a i n i n g l a b e l s . i l o c [ index maxvalue ]

# ge t s the c l a s s o f the maximum s i m i l a r i t y s co r e

p r e d i c t e d c l a s s l i s t . append ( c las s maxva lue )
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# This adds the pr ed i c t ed c l a s s e s to the l a s t

# column in the te s tAr rays

t e s t s e t r o w = t e s t s e t . i l o c [ : , 0 ] . shape [ 0 ]

t e s tAr rays = np . concatenate ( ( tes tArrays , t e s t l a b e l s .

va lue s . reshape

( [ l en ( t e s t l a b e l s ) , 1 ] ) ,

np . array ( [ p r e d i c t e d c l a s s l i s t ] ) . T, t e s t s e t . i l o c [ : , 0 ] .

va lue s . reshape

( [ t e s t s e t r o w , 1 ] ) ) , a x i s =1)

# Checking the accuracy

t r u e p o s i t i v e s = 0 # v a r i a b l e to hold the number o f occurances

where ac tua l i s equal to p r ed i c t ed

p r e d c l a s s e s c o u n t d i c t = {}

t e s t c l a s s e s c o u n t d i c t = {}

f o r i in range ( l en ( t e s t l a b e l s ) ) :

t e s tLabe l = s t r ( t e s t l a b e l s . i l o c [ i ] ) . s t r i p ( ) . lower ( )

# count the c l a s s e s in t e s t added s t r in l i n e 119 and 112

i f t e s tLabe l in t e s t c l a s s e s c o u n t d i c t . keys ( ) :

t e s t c l a s s e s c o u n t d i c t [ t e s tLabe l ]+=1

e l s e :

t e s t c l a s s e s c o u n t d i c t [ t e s tLabe l ]=1

i f t e s tLabe l== s t r ( p r e d i c t e d c l a s s l i s t [ i ] ) . s t r i p ( ) . lower ( ) :

t r u e p o s i t i v e s +=1

# count the pred i c t ed c l a s s e s
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i f t e s tLabe l in p r e d c l a s s e s c o u n t d i c t . keys ( ) :

p r e d c l a s s e s c o u n t d i c t [ t e s tLabe l ]+=1

e l s e :

p r e d c l a s s e s c o u n t d i c t [ t e s tLabe l ]=1

f o r key , va lue in p r e d c l a s s e s c o u n t d i c t . i tems ( ) :

p r i n t ( ’ The Accuracy o f c l a s s [ ’ , key , ’ ] , i s : ’ ,

p r e d c l a s s e s c o u n t d i c t [ key ] / t e s t c l a s s e s c o u n t d i c t [ key ]∗100)

p r i n t ( ’ The Overa l l Accuracy i s : ’ ,

t r u e p o s i t i v e s / l en ( t e s tAr rays )∗100)

#save the p r e d i c t i o n s made to a f i l e

np . savetxt ( ’ T e s t S e t p r e d i c t e d s i m i . csv ’ , te s tArrays , ’% s ’ , ’ , ’ )
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Appendix D- PCA & Random Forest

#import ing the l i b r a r i e s

import numpy as np

import pandas as pd

import matp lo t l i b . pyplot as p l t

#import the data s e t

np . random . seed (75)

datase t=pd . r ead c sv ( ’GPCR TransNOnGPCR. csv ’ , header=0)

X=datase t . i l o c [ : , 1 : − 1 ] . va lue s

y=datase t . i l o c [ : , − 1 ] . va lue s

#s p l i t t i n g the datase t in to the Train ing s e t and t e s t s e t

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

X train , X test , y t ra in , y t e s t=

t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.3 , random state =75)

#f e a t u r e s c a l i n g

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

sc=StandardSca ler ( )

X tra in=sc . f i t t r a n s f o r m ( X tra in )

#pr in t ( X tra in )

X tes t=sc . trans form ( X tes t )
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#apply ing pca

from sk l e a rn . decomposit ion import PCA

pca = PCA( n components = 75)

X tra in = pca . f i t t r a n s f o r m ( X tra in )

p r i n t ( X tra in )

X tes t = pca . trans form ( X tes t )

e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o

p r i n t ( e x p l a i n e d v a r i a n c e )

# F i t t i n g RandomForst C l a s s i f i e r to the Train ing s e t

from sk l e a rn . ensemble import RandomForestClass i f i e r as RFC

c l a s s i f i e r = RFC( n e s t imato r s =1000 , c r i t e r i o n =’entropy ’ , 7 5 )

c l a s s i f i e r . f i t ( X train , y t r a i n )

# Pred i c t i ng the Test s e t r e s u l t s

y pred = c l a s s i f i e r . p r e d i c t ( X tes t )

# Making the Confusion Matrix

from sk l e a rn . met r i c s import con fu s i on mat r ix

cm = con fus i on mat r ix ( y t e s t , y pred )

p r i n t (cm)
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Appendix D- Logistic regression - Model Testing (Binary)

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus i on mat r ix accuracy sco re , roc curve , r o c a u c s c o r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

import pandas as pd

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from sk l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

from sk l e a rn import l i n ea r mode l

import s t a t i s t i c s as s t

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se l ec tFpr

import numpy as np

from sk l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from imblearn . over sampl ing import SMOTE

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectFromModel

from sk l e a rn . f e a t u r e s e l e c t i o n import RFE

from sk l e a rn . met r i c s import matthews corrcoe f

# The main datase t to be s p l i t i n to t r a i n i n g and t e s t

datase t = pd . r ead c sv ( ’GPCRdb GPCR NonGPCR. csv ’ , header=0)

#datase t1 = pd . r ead c sv ( ’ Trans id . csv ’ , header=0)

datase t . head ( )
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array = datase t . va lue s

X = array [ : , 1 : −1 ]

p r i n t (X. shape )

Y = array [ : , −1 ]

t e s t = SelectKBest ( s c o r e f u n c=f c l a s s i f , k=795)

#t e s t = Se lec tFpr ( s c o r e f u n c=f c l a s s i f , a lpha =0.01)

f i t = t e s t . f i t (X, Y)

f e a t u r e s = f i t . t rans form (X)

#pr in t ( f e a t u r e s . shape )

# # Et = E x t r a T r e e s C l a s s i f i e r ( n e s t imato r s =60)

# # Et = Et . f i t (X, Y)

# # model = SelectFromModel (Et , p r e f i t=True )

# # X new = model . t rans form (X)

#

# c l f = E x t r a T r e e s C l a s s i f i e r ( n e s t imato r s =750)

# c l f = c l f . f i t (X, Y)

# model = SelectFromModel ( c l f , p r e f i t=True )

# X new = model . t rans form (X)

n u m b e r o f i t e r a t i o n = 5

o v e r a l l a c c u r a c i e s = [ ]

overall TmFPR mean =[ ]

overall NTmFPR mean =[ ]

f o r i t e r p o i n t in range ( n u m b e r o f i t e r a t i o n ) :

p r i n t (”\ n I t e r a t i o n po int : %d” % i t e r p o i n t )
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X train , X test , y t ra in , y t e s t =

t r a i n t e s t s p l i t ( f e a tu r e s , Y, t e s t s i z e =0.3)

#pr in t ( y t e s t . shape ( ) )

X tra in = X tra in [ : , 0 : ]

X t e s t i d s = l i s t ( s e t ( X tes t [ : , 0 ] ) )

X t e s t i d s = X tes t [ : , 0 ] . reshape ( X tes t . shape [ 0 ] , 1)

X tes t = X tes t [ : , 0 : ]

# # Applying s y n t h e t i c oversampl ing technique

# sm = SMOTE( )

# X res , y r e s = sm . f i t r e s a m p l e ( X train , y t r a i n )

# from c o l l e c t i o n s import Counter

#

# pr in t ( so r t ed ( Counter ( y r e s ) . i tems ( ) ) )

# pr in t ( l en ( y r e s ) )

# Feature Sca l i ng

sc = StandardSca ler ( )

X tra in = sc . f i t t r a n s f o r m ( X tra in )

X tes t = sc . trans form ( X tes t )

# Applying s y n t h e t i c oversampl ing technique

sm = SMOTE( random state =0)

X res , y r e s = sm . f i t r e s a m p l e (np . asar ray ( X tra in ) ,

np . asar ray ( y t r a i n ) )

from c o l l e c t i o n s import Counter
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pr in t ( so r t ed ( Counter ( y r e s ) . i tems ( ) ) )

p r i n t ( l en ( y r e s ) )

c l f = L o g i s t i c R e g r e s s i o n ( m u l t i c l a s s=”mult inomial ” ,

pena l ty =’ l2 ’ , t o l =0.1 , s o l v e r =’newton−cg ’ )

c l f 1 = c l f . f i t ( X train , y t r a i n )

y pred = c l f 1 . p r e d i c t ( X tes t )

### When determining the f a l s e p o s i t i v e r a t e s

y t e s t = np . reshape ( y t e s t , ( y t e s t . shape [ 0 ] , 1 ) )

y pred = np . reshape ( y pred , ( y pred . shape [ 0 ] , 1 ) )

p r i n t ( X tes t . shape )

p r i n t ( y t e s t . shape )

p r i n t ( y pred . shape )

t e s tAr rays = np . concatenate (

( X t e s t i d s , y t e s t , y pred ) , a x i s =1)

All Non GPCRs = tes tArrays [ t e s tArrays [ : , −2]

== ’NonGPCR’ ]

# e x t r a c t s the l a s t but 2 columns from t e s t a r r a y s e t

All Non GPCRs = All Non GPCRs [ : , 0 ]

All Non GPCRs IDs = l i s t ( s e t ( All Non GPCRs ) )

Number of Nongpcr = len ( All Non GPCRs IDs )
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False Non GPCRs = tes tArrays [ ( t e s tAr rays [ : , −2]

== ’NonGPCR’)\& ( te s tArrays [ : , −1] == ’GPCR’ ) ]

False Non GPCRs ids = False Non GPCRs [ : , 0 ]

d a t a s e t i d s = l i s t ( s e t ( False Non GPCRs ids ) )

# pr in t ( ’ d a t a s e t i d s : ’ , d a t a s e t i d s )

# pr in t ( d a t a s e t i d s )

d a t a s e t 1 i d s = datase t1 . i l o c [ : , 0 ] . t o l i s t ( )

# # pr in t ( ’ d a t a s e 1 i d s : ’ , d a t a s e t 1 i d s )

#

s i m i l a r i d s = l i s t ( s e t ( d a t a s e t i d s )

\& s e t ( d a t a s e t 1 i d s ) )

s i m i l a r i d s 2 = l i s t ( s e t ( X t e s t i d s )

\& s e t ( d a t a s e t 1 i d s ) )

Numer Tm = len ( s i m i l a r i d s )

Numer NTm = len ( d a t a s e t i d s ) − Numer Tm

denom Tm = len ( s i m i l a r i d s 2 )

denom NTm = Number of Nongpcr − denom Tm

#pr in t ( ’ Fa l se p o s i t i v e ra t e among Tms= ’ ,

Numer Tm / denom Tm)

overall TmFPR mean . append (Numer Tm / denom Tm)

overall NTmFPR mean . append (Numer NTm / denom NTm)

overall TmFPR mean . append (Numer Tm / denom Tm)

overall NTmFPR mean . append (Numer NTm / denom NTm)

np . savetxt ( ’ L o g i s t i c T e s t A r r a y s %d . csv ’ % i t e r p o i n t ,

tes tArrays , ’%s ’ , ’ , ’ )

# #Computing f a l s e and true p o s i t i v e r a t e s
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matt corr=matthews corrcoe f ( y t e s t , y pred )

p r i n t (” matt corr= ” , matt corr )

p r i n t ( con fu s i on mat r ix ( y t e s t , y pred ) )

p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , y pred ) )

p r i n t ( a c cu ra cy s co r e ( y t e s t , y pred ) )

o v e r a l l a c c u r a c i e s . append ( ac cu ra cy s co r e

( y t e s t , y pred ) )

p r i n t (”\nThe average accuracy and standard dev i a t i on a f t e r %d

i t e r a t i o n are %f and %f ” %(number o f i t e r a t i on ,

sum( o v e r a l l a c c u r a c i e s )/ number o f i t e r a t i on ,

s t . s tdev ( o v e r a l l a c c u r a c i e s ) ) )
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Appendix E- Logistic regression - Model Testing (Multiclass)

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , accuracy sco re , roc curve , r o c a u c s c o r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

import pandas as pd

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from sk l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

from sk l e a rn import l i n ea r mode l

import s t a t i s t i c s as s t

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se l ec tFpr

import numpy as np

from sk l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from imblearn . over sampl ing import SMOTE

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectFromModel

from sk l e a rn . f e a t u r e s e l e c t i o n import RFE

from sk l e a rn . met r i c s import matthews corrcoe f

datase t = pd . r ead c sv ( ’GPCRdb GPCR NonGPCR. csv ’ , header=0)

#datase t1 = pd . r ead c sv ( ’ Trans id . csv ’ , header=0)

datase t . head ( )
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array = datase t . va lue s

X = array [ : , 1 : −1 ]

p r i n t (X. shape )

Y = array [ : , −1 ]

t e s t = SelectKBest ( s c o r e f u n c=f c l a s s i f , k=795)

#t e s t = Se lec tFpr ( s c o r e f u n c=f c l a s s i f , a lpha =0.01)

f i t = t e s t . f i t (X, Y)

f e a t u r e s = f i t . t rans form (X)

#pr in t ( f e a t u r e s . shape )

n u m b e r o f i t e r a t i o n = 5

o v e r a l l a c c u r a c i e s = [ ]

overall TmFPR mean =[ ]

overall NTmFPR mean =[ ]

f o r i t e r p o i n t in range ( n u m b e r o f i t e r a t i o n ) :

p r i n t (”\ n I t e r a t i o n po int : %d” % i t e r p o i n t )

X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t

( f e a tu r e s , Y, t e s t s i z e =0.3)

#pr in t ( y t e s t . shape ( ) )

X tra in = X tra in [ : , 0 : ]

X t e s t i d s = l i s t ( s e t ( X tes t [ : , 0 ] ) )

X t e s t i d s = X tes t [ : , 0 ] . reshape ( X tes t . shape [ 0 ] , 1)
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X test = X tes t [ : , 0 : ]

# Feature Sca l i ng

sc = StandardSca ler ( )

X tra in = sc . f i t t r a n s f o r m ( X tra in )

X tes t = sc . trans form ( X tes t )

# Applying s y n t h e t i c oversampl ing technique

sm = SMOTE( random state =0)

X res , y r e s = sm . f i t r e s a m p l e (np . asar ray ( X tra in ) ,

np . asar ray ( y t r a i n ) )

from c o l l e c t i o n s import Counter

p r i n t ( so r t ed ( Counter ( y r e s ) . i tems ( ) ) )

p r i n t ( l en ( y r e s ) )

c l f = L o g i s t i c R e g r e s s i o n ( m u l t i c l a s s=”mult inomial ” ,

pena l ty =’ l2 ’ , t o l =0.1 , s o l v e r =’newton−cg ’ )

#l i b l i n e a r , saga , newton−cg , l b f g s , sag and saga

#c l f 1 = r f e . f i t ( X train , y t r a i n )

#c l f 1 = c l f . f i t ( X res , y r e s )

c l f 1 = c l f . f i t ( X train , y t r a i n )

y pred = c l f 1 . p r e d i c t ( X tes t )
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### When determining the f a l s e p o s i t i v e r a t e s

# #Computing f a l s e and true p o s i t i v e r a t e s

matt corr=matthews corrcoe f ( y t e s t , y pred )

p r i n t (” matt corr= ” , matt corr )

p r i n t ( con fu s i on mat r ix ( y t e s t , y pred ) )

p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , y pred ) )

p r i n t ( a c cu ra cy s co r e ( y t e s t , y pred ) )

o v e r a l l a c c u r a c i e s . append ( ac cu ra cy s co r e (

y t e s t , y pred ) )

p r i n t (”\nThe average accuracy and standard dev i a t i on a f t e r %d

i t e r a t i o n are %f and %f ” %(number o f i t e r a t i on ,

sum( o v e r a l l a c c u r a c i e s )/ number o f i t e r a t i on ,

s t . s tdev ( o v e r a l l a c c u r a c i e s ) ) )
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Appendix F- Logistic regression - Web-server design testing

import sys

from propy . PyPro import GetProDes

import pandas as pd

import time

s t a r t t i m e = time . time ( )

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

p r o t e i n i d = [ ]

# n u m b e r o f i t e r a t i o n = 5

# Tota l t ime = [ ]

with open ( ’ un iprot 100000 . f a s ta ’ , ’ r ’ ) as P r o S e q f i l e :

t ex t = P r o S e q f i l e . read ( )

#de f s e q u e n c e e x t r a c t i o n ( t ext ) :

t e x t l i s t = text . s p l i t ( ’> ’)

f o r idx , l s in enumerate ( t e x t l i s t ) :

sub = l s . s p l i t (”\n” , 1)

i f idx==0:

cont inue

p ro id = sub [ 0 ]

#pro id = sub [ 0 ] . s p l i t ( ” | ” ) [ 1 ]

p r o t e i n i d . append ( p ro id )

p ro t e in s equence = ’ ’ . j o i n ( sub [ 1 ] . s p l i t (”\n ”) )

d e s c r i p t o r = GetProDes ( p ro t e in s equence )

123



t ry :

ALL= d e s c r i p t o r . GetALL( )

except Exception as e :

# r a i s e e

p r i n t ( ’ Error occurred f i n d i n g the p ro t e in

d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (ALL)

#pr in t ( pro id , ’ : ’ ,ALL)

p r o t e i n i d = pd . S e r i e s ( p r o t e i n i d )

p r o t e i n i d = p r o t e i n i d . drop ( l a b e l s=

p r o t e i n i d e r r o r i n d e x ) . r e s e t i n d e x ( )

#pd . concat ( [ p r o t e i n i d , pd . DataFrame ( r e s u l t ) ] , a x i s =1). drop (

l a b e l s =[ ’ index ’ ] , a x i s =1). t o c s v ( ’ uniprot TAS2R . csv ’ )

df1= pd . concat ( [ p r o t e i n i d , pd . DataFrame ( r e s u l t ) ] , a x i s =1). drop (

l a b e l s =[ ’ index ’ ] , a x i s =1)

array = df1 . va lue s

X tes t = array [ : , 1 : ]

#pr in t(”−−− %s seconds −−−” % ( time . time ( ) − s t a r t t i m e ) )

#pd . DataFrame ({ ’ P r o t e i n i d e r r o r ’ : p r o t e i n i d e r r o r i n d e x } ) .

t o c s v ( ’ propy error uniprot TAS2R . csv ’ )

import pandas as pd

# # df = pd . r ead c sv ( ’ wine . data . csv ’ , header=None )
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from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

#import pandas as pd

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from sk l e a rn . decomposit ion import PCA

from sk l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

from sk l e a rn import l i n ea r mode l

import s t a t i s t i c s as s t

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se lectFpr , chi2 , Se lectFdr , SelectFwe

import numpy as np

from sk l e a rn . met r i c s import j a c c a r d s i m i l a r i t y s c o r e

from imblearn . over sampl ing import SMOTE

from sk l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from sk l e a rn . f e a t u r e s e l e c t i o n import RFE

#UFS PCA ISA

##datase t = pd . r ead c sv ( ’ gpcr nongpcr new . csv ’ , header=None )

df = pd . r ead c sv ( ’ GPCRPenDb All . csv ’ , header=0)

array = df . va lue s

X tra in = array [ : , 1 : −1 ]
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#X imp=X[ : , imp feat ]

#pr in t ( X imp )

#pr in t ( X imp )

Y = array [ : , −1 ]

sc=StandardSca ler ( )

t r a in ingAr rays=sc . f i t t r a n s f o r m ( X tra in )

#pr in t ( t ra in ingAr rays )

X tes t =sc . trans form ( X tes t )

#pr in t (X)

# Feature Sca l i ng

sc = StandardSca ler ( )

#X = sc . f i t t r a n s f o r m ( X tes t )

model = L o g i s t i c R e g r e s s i o n ( m u l t i c l a s s=”mult inomial ” ,

pena l ty =’ l2 ’ , t o l =0.1 , s o l v e r =’ l b f g s ’ )

#l i b l i n e a r , saga , newton−cg , l b f g s , sag and saga

model = model . f i t ( t ra in ingArrays , Y)

p r e d i c t i o n s = model . p r e d i c t ( X tes t )

d f l i s t = pd . S e r i e s ( p r e d i c t i o n s )

#d f l i s t . t o c s v ( ’ r e s u l t s a d a b o o s t . csv ’ )

#d f l i s t . t o c s v ( ’ r e s u l t s l o g i s t i c l b f g s . csv ’ )
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pr in t ( p r e d i c t i o n s )

#d f l i s t =pd . S e r i e s ( p r e d i c t i o n s )

#d f l i s t . t o c s v ( ’ r e s u l t s p c a−i s a . csv ’ )

#pr in t ( d f l i s t )

f o r seq in p r e d i c t i o n s :

i f seq == ’CNT’ :

p r i n t ( ’ I t i s a non−GPCR but ’ , seq , ’\ n \n ’ )

e l i f seq == ’CN’ :

p r i n t ( ’ I t i s a non−GPCR but ’ , seq , ’\n \n ’ )

e l i f seq [ 0 ] == ’G’ :

f = seq . s p l i t ( ’ ’ )

p r i n t ( ’ I t i s a {0} pro t e in and be longs to ;

\n fami ly : {1} \n subfami ly : {2} \n subsubfami ly : {3} \n

subtype : {4} \n \n ’ . format ( f [ 0 ] , f [ 1 ] , f [ 2 ] , f [ 3 ] , f [ 4 ] ) )

#f i n a l t i m e = time . time ( ) − s t a r t t i m e

#pr in t ( f i n a l t i m e )

#Tota l t ime . append ( f i n a l t i m e )

p r i n t(”−−− %s seconds −−−” % ( time . time ( ) − s t a r t t i m e ) )
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Appendix G- Logistic regression - Web-server final Algorithm

de f Log−reg ( f i l ename ) :

import sys

from propy . PyPro import GetProDes

import pandas as pd

from Config import DB ROOT

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

p r o t e i n i d = [ ]

with open ( f i l ename , ’ r ’ ) as P r o S e q f i l e :

t ex t = P r o S e q f i l e . read ( )

t e x t l i s t = text . s p l i t ( ’> ’)

f o r idx , l s in enumerate ( t e x t l i s t ) :

sub = l s . s p l i t (”\n” , 1)

i f idx==0:

cont inue

p ro id = sub [ 0 ]

p r o t e i n i d . append ( p ro id )

p ro t e in s equence = ’ ’ . j o i n ( sub [ 1 ] . s p l i t (”\n ”) )

p r i n t ( p ro t e in s equence )

d e s c r i p t o r = GetProDes ( p ro t e in s equence . upper ( ) )

t ry :

ALL= d e s c r i p t o r . GetALL( )
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except Exception as e :

# r a i s e e

p r i n t ( ’ Error occurred f i n d i n g the p ro t e in

d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (ALL)

df1 = pd . DataFrame ( r e s u l t )

array = df1 . va lue s

X tes t = array [ : , : ]

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

from sk l e a rn . neura l network import MLPClass i f i e r

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

import pandas as pd

import numpy as np

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

import s t a t i s t i c s as s t

# UFS PCA ISA

##datase t = pd . r ead c sv ( ’ gpcr nongpcr new . csv ’ , header=None )
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df = pd . r ead c sv ( ’ GPCRPenDb All . csv ’ , header=0)

array = df . va lue s

X tra in = array [ : , 1:−1]

# X imp=X[ : , imp feat ]

# pr in t ( X imp )

# pr in t ( X imp )

Y = array [ : , −1]

sc = StandardSca ler ( )

t r a in ingAr rays = sc . f i t t r a n s f o r m ( X tra in )

# pr in t ( t ra in ingAr rays )

X tes t = sc . trans form ( X tes t )

# pr in t (X)

# Feature Sca l i ng

sc = StandardSca ler ( )

# X = sc . f i t t r a n s f o r m ( X tes t )

c l f= L o g i s t i c R e g r e s s i o n ( pena l ty =’ l2 ’ , t o l =0.01 , s o l v e r =’saga ’ )

model = model . f i t ( t ra in ingArrays , Y)
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p r e d i c t i o n s = model . p r e d i c t ( X tes t )

p r i n t ( p r e d i c t i o n s )

d f l i s t =pd . S e r i e s ( p r e d i c t i o n s )

f o r seq in p r e d i c t i o n s :

i f seq == ’CNT’ :

#l a b e l 1 . append ( ’{} i s a non−GPCR but {}

\n \n ’ . format ( id , seq ) )

re turn ’−\t−\t−\t−’

#pr in t ( ’ I t i s a non−GPCR but ’ , seq , ’\ n \n ’ )

e l i f seq == ’CN’ :

# l a b e l 2 . append ( ’{} i s a non−GPCR but {}

\n \n ’ . format ( id , seq ) )

re turn ’−\t−\t−\t−’

# pr in t ( ’ I t i s a non−GPCR but ’ , seq , ’\n \n ’ )

e l i f seq [ 0 ] == ’G’ :

f = seq . s p l i t ( ’ ’ )

r e turn ’\ t ’ . j o i n ( f [ 1 : 5 ] )

e l s e :

r e turn ’−\t−\t−\t−’
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Appendix H- Multi-layer perceptron - Model testing (Binary)

#

#

from sk l e a rn . neura l network import MLPClass i f i e r

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

import pandas as pd

import numpy as np

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

import s t a t i s t i c s as s t

from sk l e a rn . m o d e l s e l e c t i o n import c r o s s v a l s c o r e

from sk l e a rn . decomposit ion import PCA

from sk l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectFromModel

from sk l e a rn . f e a t u r e s e l e c t i o n import RFE

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se lectFpr , chi2 , Se lectFdr , SelectFwe

#

df = pd . r ead c sv ( ’ gpcrpendb GPCR NG . csv ’ , header=0)

datase t1 = pd . r ead c sv ( ’ Trans id . csv ’ , header=0)

#f f = f e a t u r e S e l e c t i o n ( df . i l o c [ : , 1 : ] )

#pr in t ( l i s t ( f f ) )

#pr in t ( f e a t u r e r a n k i n g ( f f ) )
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#imp feat=f e a t u r e r a n k i n g ( f f ) [ 0 : 6 5 0 ]

# imp feat = np . array ( imp feat )+1

# imp feat = np . i n s e r t ( imp feat , 0 , 0 )

array = df . va lue s

df . head ( )

array = df . va lue s

X = array [ : , 1 : −1 ]

#X imp=X[ : , imp feat ]

Y = array [ : , −1 ]

t e s t = SelectKBest ( s c o r e f u n c=f c l a s s i f , k=7)

# #t e s t = Se lec tFpr ( s c o r e f u n c=f c l a s s i f , a lpha =0.001)

f t = t e s t . f i t (X, Y)

f e a t u r e s = f t . t rans form (X)

# c l f = E x t r a T r e e s C l a s s i f i e r ( n e s t imato r s =900)

# c l f = c l f . f i t (X, Y)

# model = SelectFromModel ( c l f , p r e f i t=True )

# X new = model . t rans form (X)

#pr in t (X new . shape )

n u m b e r o f i t e r a t i o n = 5

o v e r a l l a c c u r a c i e s = [ ]

overall TmFPR mean =[ ]

overall NTmFPR mean =[ ]

f o r i t e r p o i n t in range ( n u m b e r o f i t e r a t i o n ) :

p r i n t (”\ n I t e r a t i o n po int : %d” % i t e r p o i n t )
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X train , X test , y t ra in , y t e s t =

t r a i n t e s t s p l i t (X, Y, t e s t s i z e =0.3)

X tra in = X tra in [ : , 1 : ]

#X t e s t i d s = l i s t ( s e t ( X tes t [ : , 0 ] ) )

X t e s t i d s = X tes t [ : , 0 ] . reshape ( X tes t . shape [ 0 ] , 1)

X tes t = X tes t [ : , 1 : ]

# Feature Sca l i ng

sc = StandardSca ler ( )

X tra in = sc . f i t t r a n s f o r m ( X tra in )

X tes t = sc . trans form ( X tes t )

# #apply ing pca

from sk l e a rn . decomposit ion import PCA

# pca = PCA( n components =800)

# X tra in= pca . f i t t r a n s f o r m ( X tra in )

# # pr in t ( t ra in ingAr rays )

# X tes t = pca . trans form ( X tes t )

# e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o

# pr in t ( e x p l a i n e d v a r i a n c e . sum ( ) )

c l f = MLPClass i f i er ( s o l v e r =’ l b f g s ’ , alpha=1e−5,

h i d d e n l a y e r s i z e s =(15 ,))

#r f e = RFE( c l f , 500) l b f g s

# c l f= L o g i s t i c R e g r e s s i o n ( pena l ty =’ l2 ’ ,

t o l =0.01 , s o l v e r =’saga ’ ) l b f g s sgd , adam ,
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#c l f 1 = r f e . f i t ( X train , y t r a i n )

c l f 1=c l f . f i t ( X train , y t r a i n )

y pred = c l f . p r e d i c t ( X tes t )

y t e s t = np . reshape ( y t e s t , ( y t e s t . shape [ 0 ] , 1 ) )

y pred = np . reshape ( y pred , ( y pred . shape [ 0 ] , 1 ) )

# pr in t ( X tes t . shape )

# pr in t ( y t e s t . shape )

# pr in t ( y pred . shape )

t e s tAr rays = np . concatenate ( ( X t e s t i d s ,

y t e s t , y pred ) , a x i s =1)

All Non GPCRs = tes tArrays [ t e s tArrays [ : , −2] ==

’NonGPCR’ ]

All Non GPCRs = All Non GPCRs [ : , 0 ]

All Non GPCRs IDs = l i s t ( s e t ( All Non GPCRs ) )

Number of Nongpcr = len ( All Non GPCRs IDs )

False Non GPCRs = tes tArrays [ ( t e s tAr rays [ : , −2] ==

’NonGPCR’ ) & ( te s tArrays [ : , −1] == ’GPCR’ ) ]

False Non GPCRs ids = False Non GPCRs [ : , 0 ]

d a t a s e t i d s = l i s t ( s e t ( False Non GPCRs ids ) )

# pr in t ( ’ d a t a s e t i d s : ’ , d a t a s e t i d s )

# pr in t ( d a t a s e t i d s )

d a t a s e t 1 i d s = datase t1 . i l o c [ : , 0 ] . t o l i s t ( )

# pr in t ( ’ d a t a s e 1 i d s : ’ , d a t a s e t 1 i d s )

s i m i l a r i d s = l i s t ( s e t ( d a t a s e t i d s )

& s e t ( d a t a s e t 1 i d s ) )

135



s i m i l a r i d s 2 = l i s t ( s e t ( X t e s t i d s )

& s e t ( d a t a s e t 1 i d s ) )

Numer Tm = len ( s i m i l a r i d s )

Numer NTm = len ( d a t a s e t i d s ) − Numer Tm

denom Tm = len ( s i m i l a r i d s 2 )

denom NTm = Number of Nongpcr − denom Tm

pr in t ( ’ Fa l se p o s i t i v e ra t e among Tms= ’ ,

Numer Tm / denom Tm)

overall TmFPR mean . append (Numer Tm / denom Tm)

overall NTmFPR mean . append (Numer NTm / denom NTm)

overall TmFPR mean . append (Numer Tm / denom Tm)

overall NTmFPR mean . append (Numer NTm / denom NTm)

np . savetxt ( ’ L o g i s t i c T e s t A r r a y s %d . csv ’

% i t e r p o i n t , tes tArrays , ’%s ’ , ’ , ’ )

p r i n t ( con fu s i on mat r ix ( y t e s t , y pred ) )

p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , y pred ) )

p r i n t ( a c cu ra cy s co r e ( y t e s t , y pred ) )

o v e r a l l a c c u r a c i e s . append ( ac cu ra cy s co r e

( y t e s t , y pred ) )

#np . save txt ( ’ NeuralNetTest Arrays %d . csv ’

% i t e r p o i n t , tes tArrays , ’%s ’ , ’ , ’ )

p r i n t (”\nThe average accuracy and standard dev i a t i on a f t e r

%d i t e r a t i o n are %f and %f ” %(number o f i t e r a t i on ,

s t . mean( o v e r a l l a c c u r a c i e s ) , s t . s tdev ( o v e r a l l a c c u r a c i e s ) ) )
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Appendix I- Multi-layer perceptron - Model testing (Multi-class)

from sk l e a rn . neura l network import MLPClass i f i e r

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

import pandas as pd

import numpy as np

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

import s t a t i s t i c s as s t

from sk l e a rn . m o d e l s e l e c t i o n import c r o s s v a l s c o r e

from sk l e a rn . decomposit ion import PCA

from sk l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectFromModel

from sk l e a rn . f e a t u r e s e l e c t i o n import RFE

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se lectFpr , chi2 , Se lectFdr , SelectFwe

#

df = pd . r ead c sv ( ’ gpcrpendb . csv ’ , header=0)

datase t1 = pd . r ead c sv ( ’ Trans id . csv ’ , header=0)

#f f = f e a t u r e S e l e c t i o n ( df . i l o c [ : , 1 : ] )

#pr in t ( l i s t ( f f ) )

#pr in t ( f e a t u r e r a n k i n g ( f f ) )

#imp feat=f e a t u r e r a n k i n g ( f f ) [ 0 : 6 5 0 ]

# imp feat = np . array ( imp feat )+1

# imp feat = np . i n s e r t ( imp feat , 0 , 0 )
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array = df . va lue s

df . head ( )

array = df . va lue s

X = array [ : , 1 : −1 ]

#X imp=X[ : , imp feat ]

Y = array [ : , −1 ]

t e s t = SelectKBest ( s c o r e f u n c=f c l a s s i f , k=7)

# #t e s t = Se lec tFpr ( s c o r e f u n c=f c l a s s i f , a lpha =0.001)

f t = t e s t . f i t (X, Y)

f e a t u r e s = f t . t rans form (X)

# c l f = E x t r a T r e e s C l a s s i f i e r ( n e s t imato r s =900)

# c l f = c l f . f i t (X, Y)

# model = SelectFromModel ( c l f , p r e f i t=True )

# X new = model . t rans form (X)

#pr in t (X new . shape )

n u m b e r o f i t e r a t i o n = 5

o v e r a l l a c c u r a c i e s = [ ]

overall TmFPR mean =[ ]

overall NTmFPR mean =[ ]

f o r i t e r p o i n t in range ( n u m b e r o f i t e r a t i o n ) :

p r i n t (”\ n I t e r a t i o n po int : %d” % i t e r p o i n t )

X train , X test , y t ra in , y t e s t =

t r a i n t e s t s p l i t (X, Y, t e s t s i z e =0.3)
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X tra in = X tra in [ : , 1 : ]

#X t e s t i d s = l i s t ( s e t ( X tes t [ : , 0 ] ) )

X t e s t i d s = X tes t [ : , 0 ] . reshape ( X tes t . shape [ 0 ] , 1)

X tes t = X tes t [ : , 1 : ]

# Feature Sca l i ng

sc = StandardSca ler ( )

X tra in = sc . f i t t r a n s f o r m ( X tra in )

X tes t = sc . trans form ( X tes t )

# #apply ing pca

from sk l e a rn . decomposit ion import PCA

c l f = MLPClass i f i er ( s o l v e r =’ l b f g s ’ , alpha=1e−5,

h i d d e n l a y e r s i z e s =(15 ,))

#r f e = RFE( c l f , 500) l b f g s

# c l f= L o g i s t i c R e g r e s s i o n ( pena l ty =’ l2 ’ , t o l =0.01 ,

s o l v e r =’saga ’ ) l b f g s sgd , adam ,

#c l f 1 = r f e . f i t ( X train , y t r a i n )

c l f 1=c l f . f i t ( X train , y t r a i n )

y pred = c l f . p r e d i c t ( X tes t )

y t e s t = np . reshape ( y t e s t , ( y t e s t . shape [ 0 ] , 1 ) )

y pred = np . reshape ( y pred , ( y pred . shape [ 0 ] , 1 ) )

# pr in t ( X tes t . shape )

# pr in t ( y t e s t . shape )

# pr in t ( y pred . shape )
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pr in t ( con fu s i on mat r ix ( y t e s t , y pred ) )

p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , y pred ) )

p r i n t ( a c cu ra cy s co r e ( y t e s t , y pred ) )

o v e r a l l a c c u r a c i e s . append ( ac cu ra cy s co r e

( y t e s t , y pred ) )

#np . save txt ( ’ NeuralNetTest Arrays %d . csv ’

% i t e r p o i n t , tes tArrays , ’%s ’ , ’ , ’ )

p r i n t (”\nThe average accuracy and standard dev i a t i on a f t e r

%d i t e r a t i o n are %f and %f ” %(number o f i t e r a t i on ,

s t . mean( o v e r a l l a c c u r a c i e s ) , s t . s tdev ( o v e r a l l a c c u r a c i e s ) ) )
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Appendix J- Multi-layer perceptron - Web-server testing

import sys

from propy . PyPro import GetProDes

import pandas as pd

import time

s t a r t t i m e = time . time ( )

#uniprot25

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

p r o t e i n i d = [ ]

with open ( ’ un iprot 20000 . f a s ta ’ , ’ r ’ ) as P r o S e q f i l e :

t ex t = P r o S e q f i l e . read ( )

#de f s e q u e n c e e x t r a c t i o n ( t ext ) :

t e x t l i s t = text . s p l i t ( ’> ’)

f o r idx , l s in enumerate ( t e x t l i s t ) :

sub = l s . s p l i t (”\n” , 1)

i f idx==0:

cont inue

p ro id = sub [ 0 ]

#pro id = sub [ 0 ] . s p l i t ( ” | ” ) [ 1 ]

p r o t e i n i d . append ( p ro id )

p ro t e in s equence = ’ ’ . j o i n ( sub [ 1 ] . s p l i t (”\n ”) )

d e s c r i p t o r = GetProDes ( p ro t e in s equence )

t ry :

ALL= d e s c r i p t o r . GetALL( )
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except Exception as e :

# r a i s e e

p r i n t ( ’ Error occurred f i n d i n g the p ro t e in

d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (ALL)

#pr in t ( pro id , ’ : ’ ,ALL)

p r o t e i n i d = pd . S e r i e s ( p r o t e i n i d )

p r o t e i n i d = p r o t e i n i d . drop ( l a b e l s=p r o t e i n i d e r r o r i n d e x )

. r e s e t i n d e x ( )

df1=pd . concat ( [ p r o t e i n i d , pd . DataFrame ( r e s u l t ) ] , a x i s =1)

. drop ( l a b e l s =[ ’ index ’ ] , a x i s =1)

array = df1 . va lue s

X tes t = array [ : , 1 : ]

import pandas as pd

# # df = pd . r ead c sv ( ’ wine . data . csv ’ , header=None )

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler
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from sk l e a rn . neura l network import MLPClass i f i e r

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

import pandas as pd

import numpy as np

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

import s t a t i s t i c s as s t

#UFS PCA ISA

##datase t = pd . r ead c sv ( ’ gpcr nongpcr new . csv ’ , header=None )

#GPCRPenDb All gpcr nongpcr DPC QSO Geary AAC

#GPCRPenDb All gpcr nongpcr f inal t r a i n i n g s e t

df = pd . r ead c sv ( ’ GPCRPenDb All . csv ’ , header=0)

# f f = f e a t u r e S e l e c t i o n ( df . i l o c [ : , 1 : ] )

# # #pr in t ( l i s t ( f f ) )

# # #pr in t ( f e a t u r e r a n k i n g ( f f ) )

# imp feat=f e a t u r e r a n k i n g ( f f ) [ 0 : 9 9 0 ]

# imp feat = np . array ( imp feat )+1

# imp feat = np . i n s e r t ( imp feat , 0 , 0 )

array = df . va lue s

X tra in = array [ : , 1 : −1 ]

#X imp=X[ : , imp feat ]

#pr in t ( X imp )
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#pr in t ( X imp )

Y = array [ : , −1 ]

sc=StandardSca ler ( )

t r a in ingAr rays=sc . f i t t r a n s f o r m ( X tra in )

#pr in t ( t ra in ingAr rays )

X tes t =sc . trans form ( X tes t )

#pr in t (X)

# Feature Sca l i ng

sc = StandardSca ler ( )

#X = sc . f i t t r a n s f o r m ( X tes t )

model = MLPClass i f i er ( s o l v e r =’ l b f g s ’ , alpha=1e−5,

h i d d e n l a y e r s i z e s =(15 ,))

# r f e = RFE( c l f , 500) l b f g s sgd , adam ,

# c l f= L o g i s t i c R e g r e s s i o n ( pena l ty =’ l2 ’ , t o l =0.01 , s o l v e r =’saga ’ )

# c l f 1 = r f e . f i t ( X train , y t r a i n )

#l i b l i n e a r , saga , newton−cg , l b f g s , sag and saga

model = model . f i t ( t ra in ingArrays , Y)

p r e d i c t i o n s = model . p r e d i c t ( X tes t )

d f l i s t =pd . S e r i e s ( p r e d i c t i o n s )

#d f l i s t . t o c s v ( ’ r e s u l t s a d a b o o s t . csv ’ )

#d f l i s t . t o c s v ( ’ r e s u l t s l o g i s t i c l b f g s . csv ’ )
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pr in t ( p r e d i c t i o n s )

#pr in t ( c l a s s i f i c a t i o n r e p o r t ( t e s t l a b e l s , p r e d i c t e d c l a s s l i s t ) )

#d f l i s t =pd . S e r i e s ( p r e d i c t i o n s )

#d f l i s t . t o c s v ( ’ r e s u l t s p c a−i s a . csv ’ )

#pr in t ( d f l i s t )

f o r seq in p r e d i c t i o n s :

i f seq == ’CNT’ :

p r i n t ( ’ I t i s a non−GPCR but ’ , seq , ’\ n \n ’ )

e l i f seq == ’CN’ :

p r i n t ( ’ I t i s a non−GPCR but ’ , seq , ’\n \n ’ )

e l i f seq [ 0 ] == ’G’ :

f = seq . s p l i t ( ’ ’ )

p r i n t ( ’ I t i s a {0} pro t e in and be longs to ; \n fami ly : {1}

\n subfami ly : {2} \n subsubfami ly : {3} \n subtype : {4}

\n \n ’ . format ( f [ 0 ] , f [ 1 ] , f [ 2 ] , f [ 3 ] , f [ 4 ] ) )

p r i n t(”−−− %s seconds −−−” % ( time . time ( ) − s t a r t t i m e ) )
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Appendix K- Multi-layer perceptron - Web-server Final Algorithm

de f MLP−NN( f i l ename ) :

import sys

from propy . PyPro import GetProDes

import pandas as pd

from Config import DB ROOT

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

p r o t e i n i d = [ ]

with open ( f i l ename , ’ r ’ ) as P r o S e q f i l e :

t ex t = P r o S e q f i l e . read ( )

t e x t l i s t = text . s p l i t ( ’> ’)

f o r idx , l s in enumerate ( t e x t l i s t ) :

sub = l s . s p l i t (”\n” , 1)

i f idx==0:

cont inue

p ro id = sub [ 0 ]

p r o t e i n i d . append ( p ro id )

p ro t e in s equence = ’ ’ . j o i n ( sub [ 1 ] . s p l i t (”\n ”) )

p r i n t ( p ro t e in s equence )

d e s c r i p t o r = GetProDes ( p ro t e in s equence . upper ( ) )

t ry :

ALL= d e s c r i p t o r . GetALL( )

except Exception as e :
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# r a i s e e

p r i n t ( ’ Error occurred f i n d i n g the p ro t e in

d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (ALL)

df1 = pd . DataFrame ( r e s u l t )

array = df1 . va lue s

X tes t = array [ : , : ]

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

from sk l e a rn . neura l network import MLPClass i f i e r

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

import pandas as pd

import numpy as np

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

import s t a t i s t i c s as s t

# UFS PCA ISA

##datase t = pd . r ead c sv ( ’ gpcr nongpcr new . csv ’ , header=None )

df = pd . r ead c sv ( ’ GPCRPenDb All . csv ’ , header=0)
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# f f = f e a t u r e S e l e c t i o n ( df . i l o c [ : , 1 : ] )

# # #pr in t ( l i s t ( f f ) )

# # #pr in t ( f e a t u r e r a n k i n g ( f f ) )

# imp feat=f e a t u r e r a n k i n g ( f f ) [ 0 : 9 9 0 ]

# imp feat = np . array ( imp feat )+1

# imp feat = np . i n s e r t ( imp feat , 0 , 0 )

array = df . va lue s

X tra in = array [ : , 1:−1]

# X imp=X[ : , imp feat ]

# pr in t ( X imp )

# pr in t ( X imp )

Y = array [ : , −1]

sc = StandardSca ler ( )

t r a in ingAr rays = sc . f i t t r a n s f o r m ( X tra in )

# pr in t ( t ra in ingAr rays )

X tes t = sc . trans form ( X tes t )

# pr in t (X)

# Feature Sca l i ng

sc = StandardSca ler ( )

# X = sc . f i t t r a n s f o r m ( X tes t )

from sk l e a rn . decomposit ion import PCA

pca = PCA( n components =500)

t ra in ingAr rays = pca . f i t t r a n s f o r m ( t ra in ingAr rays )
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#pr in t ( t ra in ingAr rays )

X tes t = pca . trans form ( X tes t )

e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o

p r i n t ( e x p l a i n e d v a r i a n c e . sum ( ) )

model = MLPClass i f i er ( s o l v e r =’ l b f g s ’ , alpha=1e−5,

h i d d e n l a y e r s i z e s =(15 ,))

# r f e = RFE( c l f , 500) l b f g s sgd , adam ,

# c l f= L o g i s t i c R e g r e s s i o n ( pena l ty =’ l2 ’ , t o l =0.01 , s o l v e r =’saga ’ )

# c l f 1 = r f e . f i t ( X train , y t r a i n )

# l i b l i n e a r , saga , newton−cg , l b f g s , sag and saga

model = model . f i t ( t ra in ingArrays , Y)

p r e d i c t i o n s = model . p r e d i c t ( X tes t )

p r i n t ( p r e d i c t i o n s )

#pr in t ( c l a s s i f i c a t i o n r e p o r t ( t e s t l a b e l s , p r e d i c t e d c l a s s l i s t ) )

d f l i s t =pd . S e r i e s ( p r e d i c t i o n s )

f o r seq in p r e d i c t i o n s :

i f seq == ’CNT’ :

#l a b e l 1 . append ( ’{} i s a non−GPCR but {}

\n \n ’ . format ( id , seq ) )

re turn ’−\t−\t−\t−’

#pr in t ( ’ I t i s a non−GPCR but ’ , seq , ’\ n \n ’ )

e l i f seq == ’CN’ :

# l a b e l 2 . append ( ’{} i s a non−GPCR but {}

\n \n ’ . format ( id , seq ) )

re turn ’−\t−\t−\t−’

149



# pr in t ( ’ I t i s a non−GPCR but ’ , seq , ’\n \n ’ )

e l i f seq [ 0 ] == ’G’ :

f = seq . s p l i t ( ’ ’ )

r e turn ’\ t ’ . j o i n ( f [ 1 : 5 ] )

e l s e :

r e turn ’−\t−\t−\t−’
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Appendix L- PCA-ISA- Web-server Final Algorithm

de f Pca Isa ( f i l ename ) :

import sys

from propy . PyPro import GetProDes

import pandas as pd

from Config import DB ROOT

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

p r o t e i n i d = [ ]

with open ( f i l ename , ’ r ’ ) as P r o S e q f i l e :

t ex t = P r o S e q f i l e . read ( )

t e x t l i s t = text . s p l i t ( ’> ’)

f o r idx , l s in enumerate ( t e x t l i s t ) :

sub = l s . s p l i t (”\n” , 1)

i f idx==0:

cont inue

p ro id = sub [ 0 ]

p r o t e i n i d . append ( p ro id )

p ro t e in s equence = ’ ’ . j o i n ( sub [ 1 ] . s p l i t (”\n ”) )

p r i n t ( p ro t e in s equence )

d e s c r i p t o r = GetProDes ( p ro t e in s equence . upper ( ) )

t ry :

ALL= d e s c r i p t o r . GetALL( )

except Exception as e :
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# r a i s e e

p r i n t ( ’ Error occurred f i n d i n g the p ro t e in

d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (ALL)

df1 = pd . DataFrame ( r e s u l t )

array = df1 . va lue s

X tes t = array [ : , : ]

import pandas as pd

import os

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

#import pandas as pd

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from sk l e a rn . decomposit ion import PCA

from sk l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

from sk l e a rn import l i n ea r mode l

#import s t a t i s t i c s as s t

import numpy as np
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from sk l e a rn . met r i c s import j a c c a r d s i m i l a r i t y s c o r e

from sk l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectFromModel

from sk l e a rn . f e a t u r e s e l e c t i o n import RFE

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se lectFpr , chi2 , Se lectFdr , SelectFwe

#UFS PCA ISA

pr in t (DB ROOT)

df = pd . r ead c sv ( ’% s /GPCRPenDb. csv ’%DB ROOT, header=0)

p r i n t ( ’ a f t e r df ’ )

array = df . va lue s

X tra in = array [ : , 1 : −1 ]

Y = array [ : , −1 ]

sc=StandardSca ler ( )

t r a in ingAr rays=sc . f i t t r a n s f o r m ( X tra in )

#pr in t ( t ra in ingAr rays )

t e s tAr rays=sc . trans form ( X tes t )

#NMF

from sk l e a rn . decomposit ion import NMF
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#apply ing pca

pca = PCA( n components =500)

t ra in ingAr rays = pca . f i t t r a n s f o r m ( t ra in ingAr rays )

#pr in t ( t ra in ingAr rays )

t e s tAr rays = pca . trans form ( te s tArrays )

e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o

p r i n t ( e x p l a i n e d v a r i a n c e . sum ( ) )

p r e d i c t e d c l a s s l i s t = [ ]

f o r index , testRow in enumerate ( t e s tArrays ) :

s i m i l a r i t y s c o r e l i s t = [ ]

f o r row in t ra in ingAr rays :

norm = np . l i n a l g # c l a s s to a c c e s s norm−2

# c a l c u l a t e s the s i m i l a r i t y s co r e

s i m i s c o r e = np . d i v id e (np . dot ( testRow , row ) ,

np . mul t ip ly (norm . norm( testRow ) , norm . norm( row ) ) )

#s i m i s c o r e=j a c c a r d s i m i l a r i t y s c o r e ( testRow , row )

s i m i l a r i t y s c o r e l i s t . append ( s i m i s c o r e )

index maxvalue = s i m i l a r i t y s c o r e l i s t . index (

max( s i m i l a r i t y s c o r e l i s t ) )

c la s s maxva lue =Y[ index maxvalue ] # ge t s the c l a s s o f the

maximum s i m i l a r i t y s co r e
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p r e d i c t e d c l a s s l i s t . append ( c las s maxva lue )

p r i n t ( p r e d i c t e d c l a s s l i s t )

#pr in t ( c l a s s i f i c a t i o n r e p o r t ( t e s t l a b e l s , p r e d i c t e d c l a s s l i s t ) )

d f l i s t =pd . S e r i e s ( p r e d i c t e d c l a s s l i s t )

f o r seq in p r e d i c t e d c l a s s l i s t :

i f seq == ’CNT’ :

#l a b e l 1 . append ( ’{} i s a non−GPCR but {}

\n \n ’ . format ( id , seq ) )

re turn ’−\t−\t−\t−’

#pr in t ( ’ I t i s a non−GPCR but ’ , seq , ’\ n \n ’ )

e l i f seq == ’CN’ :

# l a b e l 2 . append ( ’{} i s a non−GPCR but {}

\n \n ’ . format ( id , seq ) )

re turn ’−\t−\t−\t−’

# pr in t ( ’ I t i s a non−GPCR but ’ , seq , ’\n \n ’ )

e l i f seq [ 0 ] == ’G’ :

f = seq . s p l i t ( ’ ’ )

r e turn ’\ t ’ . j o i n ( f [ 1 : 5 ] )

e l s e :

r e turn ’−\t−\t−\t−’
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Appendix M- Logistic regression Model Persistent Algorithm

\newpage

import pandas as pd

import matp lo t l i b . pyplot as p l t

import numpy as np

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se l ec tFpr

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

data = pd . r ead c sv ( ’ GPCRPenDb All . csv ’ , header=0)

array = data . va lue s

X = array [ : , 1 : −1 ]

y = array [ : , −1 ]

# Feature Sca l i ng

sc = StandardSca ler ( )

X tra in = sc . f i t t r a n s f o r m (X)

#X tes t = sc . trans form ( X tes t )

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . m o d e l s e l e c t i o n import GridSearchCV

from sk l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

from sk l e a rn . met r i c s import con fus ion matr ix ,
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p r e c i s i o n r e c a l l c u r v e , auc , r o c auc s co r e ,

roc curve , r e c a l l s c o r e , c l a s s i f i c a t i o n r e p o r t

from imblearn . over sampl ing import SMOTE

from sk l e a rn . e x t e r n a l s import j o b l i b

#random state=75

#X train , X test , y t ra in , y t e s t =

t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.3 , random state =0)

model = L o g i s t i c R e g r e s s i o n ( m u l t i c l a s s=”mult inomial ” ,

pena l ty =’ l2 ’ , t o l =0.01 , s o l v e r =’ l b f g s ’ )

model . f i t ( X train , y )

j o b l i b . dump( model , ’ mode l pe r s i s t GPCR log i s t i c . j o b l i b ’ )

#model = j o b l i b . load ( ’ mode l pe r s i s t GPCR log i s t i c . j o b l i b ’ )
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Appendix N- Support Vector Machine (SVM) Algorithm

import sys

from propy . PyPro import GetProDes

import pandas as pd

r e s u l t = [ ]

p r o t e i n i d e r r o r i n d e x =[ ]

p r o t e i n i d = [ ]

with open ( ’ un iprot25 . f a s ta ’ , ’ r ’ ) as P r o S e q f i l e :

t ex t = P r o S e q f i l e . read ( )

#de f s e q u e n c e e x t r a c t i o n ( t ext ) :

t e x t l i s t = text . s p l i t ( ’> ’)

f o r idx , l s in enumerate ( t e x t l i s t ) :

sub = l s . s p l i t (”\n” , 1)

i f idx==0:

cont inue

#pro id = sub [ 0 ]

p ro id = sub [ 0 ] . s p l i t ( ” | ” ) [ 1 ]

#p r o t e i n i d . append ( p ro id )

p ro t e in s equence = ’ ’ . j o i n ( sub [ 1 ] . s p l i t (”\n ”) )

d e s c r i p t o r = GetProDes ( p ro t e in s equence )

t ry :

ALL= d e s c r i p t o r . GetALL( )

except Exception as e :

# r a i s e e
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pr in t ( ’ Error occurred f i n d i n g the

p ro t e in d e s c r i p t o r s f o r ’+ pro id )

p r o t e i n i d e r r o r i n d e x . append ( idx )

cont inue

r e s u l t . append (ALL)

#pr in t ( pro id , ’ : ’ ,ALL)

p r o t e i n i d = pd . S e r i e s ( p r o t e i n i d )

p r o t e i n i d = p r o t e i n i d . drop ( l a b e l s=

p r o t e i n i d e r r o r i n d e x ) . r e s e t i n d e x ( )

df1= pd . concat ( [ p r o t e i n i d , pd . DataFrame ( r e s u l t ) ] , a x i s =1)

. drop ( l a b e l s =[ ’ index ’ ] , a x i s =1)

array = df1 . va lue s

X tes t = array [ : , 1 : ]

#pd . DataFrame ({ ’ P r o t e i n i d e r r o r ’ : p r o t e i n i d e r r o r i n d e x })

. t o c s v ( ’ propy error uniprot TAS2R . csv ’ )

import pandas as pd

# # df = pd . r ead c sv ( ’ wine . data . csv ’ , header=None )

from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t ,

con fus ion matr ix , a c cu ra cy s co r e

from sk l e a rn . p r ep r o c e s s i ng import StandardSca ler

#import pandas as pd
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from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from sk l e a rn . decomposit ion import PCA

from sk l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

from sk l e a rn import l i n ea r mode l

import s t a t i s t i c s as s t

import numpy as np

from sk l e a rn . met r i c s import j a c c a r d s i m i l a r i t y s c o r e

from imblearn . over sampl ing import SMOTE

from sk l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectFromModel

from sk l e a rn . f e a t u r e s e l e c t i o n import RFE

from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest ,

f c l a s s i f , Se lectFpr , chi2 , Se lectFdr , SelectFwe

from sk l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

##datase t = pd . r ead c sv ( ’ gpcr nongpcr new . csv ’ , header=None )

df = pd . r ead c sv ( ’ GPCRPenDb All . csv ’ , header=0)

# f f = f e a t u r e S e l e c t i o n ( df . i l o c [ : , 1 : ] )

# # #pr in t ( l i s t ( f f ) )

# # #pr in t ( f e a t u r e r a n k i n g ( f f ) )

# imp feat=f e a t u r e r a n k i n g ( f f ) [ 0 : 9 9 0 ]

# imp feat = np . array ( imp feat )+1

# imp feat = np . i n s e r t ( imp feat , 0 , 0 )

array = df . va lue s

X tra in = array [ : , 1 : −1 ]
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#X imp=X[ : , imp feat ]

#pr in t ( X imp )

#pr in t ( X imp )

Y = array [ : , −1 ]

sc=StandardSca ler ( )

t r a in ingAr rays=sc . f i t t r a n s f o r m ( X tra in )

#pr in t ( t ra in ingAr rays )

X tes t =sc . trans form ( X tes t )

#pr in t (X)

# Feature Sca l i ng

sc = StandardSca ler ( )

#X = sc . f i t t r a n s f o r m ( X tes t )

from sk l e a rn . svm import SVC

# params={ ’ kerne l ’ : ’ l i n e a r ’ , ’ c l a s s we i gh t ’ : ’ auto ’}

# s v c l a s s i f i e r = SVC( ke rne l =’ l i n e a r ’ , c l a s s w e i g h t ={ ’ C lass D’ : 0 . 5 } )

model= SVC( ke rne l =’ rbf ’ , d e c i s i o n f u n c t i o n s h a p e =’ovo ’ )

# r f e = RFE( s v c l a s s i f i e r , 500)
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# s v c l a s s i f i e r 1 = r f e . f i t ( t r a in ingAr rays , t r a i n i n g l a b e l s )

model = model . f i t ( t ra in ingArrays , Y)

p r e d i c t i o n s = model . p r e d i c t ( X tes t )

d f l i s t =pd . S e r i e s ( p r e d i c t i o n s )

#d f l i s t . t o c s v ( ’ r e s u l t s a d a b o o s t . csv ’ )

#d f l i s t . t o c s v ( ’ r e s u l t s l o g i s t i c l b f g s . csv ’ )

p r i n t ( p r e d i c t i o n s )

#pr in t ( c l a s s i f i c a t i o n r e p o r t ( t e s t l a b e l s , p r e d i c t e d c l a s s l i s t ) )

#d f l i s t =pd . S e r i e s ( p r e d i c t i o n s )

#d f l i s t . t o c s v ( ’ r e s u l t s p c a−i s a . csv ’ )

#pr in t ( d f l i s t )

f o r seq in p r e d i c t i o n s :

i f seq == ’CNT’ :

p r i n t ( ’ I t i s a non−GPCR but ’ , seq , ’\ n \n ’ )

e l i f seq == ’CN’ :

p r i n t ( ’ I t i s a non−GPCR but ’ , seq , ’\n \n ’ )

e l i f seq [ 0 ] == ’G’ :

f = seq . s p l i t ( ’ ’ )

p r i n t ( ’ I t i s a {0} pro t e in and be longs to ; \n fami ly :

{1} \n subfami ly : {2} \n subsubfami ly : {3} \n subtype :

{4} \n \n ’ . format ( f [ 0 ] , f [ 1 ] , f [ 2 ] , f [ 3 ] , f [ 4 ] ) )

#pr in t ( d f l i s t )
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Appendix O- Relabeling the Class Column for Final training set

import pandas as pd

import numpy as np

outF = open (” r e l a b e l l i n g a l l gpcrs new . csv ” , ”w”)

with open ( ’ g p c r p e n d b r e s u l t s a l l g p c r s e d i t ( e r r o r s reomoved )

. csv ’ , mode = ’ r ’ ) as vc f :

d = [ ]

f o r l i n e in vc f :

#i f l i n e == ”ID ” :

a = l i n e . s p l i t ( ’ , ’ )

c= a [ 1 ]

b = ”GPCR” + ’ ’ + a [ 1 0 ] + ” ” + a [ 1 1 ] + ” ” + a [ 1 2 ] + ” ” +

a [ 1 3 ]

outF . wr i t e (b )
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Appendix P- Screening for Differences in IDs Between Two Csv Files

import pandas as pd

df = pd . r ead c sv ( ’ SOCN list . csv ’ )

my l i s t = df [ ’ ID ’ ] . t o l i s t ( )

myl i s t2 = df [ ’ Pro te in id ’ ] . t o l i s t ( )

p r i n t ( my l i s t )

p r i n t ( myl i s t2 )

n e w l i s t = [ ]

f o r idx , id in enumerate ( myl i st , 2 ) :

f o r num in myl i s t2 :

# pr in t ( index )

i f idx == num:

p r i n t (” id =”, idx , id )

n e w l i s t . append ( id )

e l s e :

cont inue

p r i n t ( l en ( n e w l i s t ) )

pd . DataFrame ( n e w l i s t ) . t o c s v (” n e w 6 6 d i f f e r e n c e . csv ” ,

index = False )

p r i n t (” n e w l i s t =”, n e w l i s t )

n e w l i s t = l i s t ( s e t ( my l i s t ) − s e t ( n e w l i s t ) )

p r i n t ( n e w l i s t )

p r i n t (” l ength o f n e w l i s t =”, l en ( n e w l i s t ) )

de f l i s t d i f f ( l i s t 1 , l i s t 2 ) :
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out = [ ]

f o r e l e in l i s t 1 :

i f not e l e in l i s t 2 :

out . append ( e l e )

r e turn out

n e w l i s t 2 = l i s t d i f f ( myl i st , n e w l i s t )

p r i n t (” l ength o f o r i g i n a l f u l l l i s t = ” , l en ( myl i s t ) )

p r i n t (” n e w l i s t 2 =”, n e w l i s t 2 )

p r i n t (” l ength o f n e w l i s t 2 =”, l en ( n e w l i s t 2 ) )

pd . DataFrame ( n e w l i s t 2 ) . t o c s v (” n e w d i f f e r e n c e ” , index = False )
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Appendix Q- Classification Tables

Table 6.1: ACC and OACC (in %) of GPCR classification at superfamily level
Classifiers TPR TNR FPR(TM) FPR(NTM) OACC
PCA-ISA 97.6 94.5 9.5 2.3 95.41
Log-Reg 98 97 5.3 1.2 97.24
SVM 98.5 98 3.4 0.7 97.8
MLP-NN 98.5 98.5 2.0 0.3 98.08

Table 6.2: ACC and OACC (in %) of GPCR classification at family level
Family PCA-ISA Log-Reg SVM MLP-NN
A 100 100 100 99.6
B1 97.6 100 99 99.2
B2 97.4 97.8 90.4 97.8
C 94.8 96.6 84.2 97.8
D 35 42.4 20 77.4
E 83 80 0 92
F 87.2 97.4 93 97.8
T2R 100 100 100 100
OACC 98.6 99.1 97.6 99.1

Table 6.3: ACC and OACC (in %) of GPCR classification of Class A family at
subfamily level

Family A PCA-ISA Log-Reg SVM MLP-NN
Alicarboxylic acid 96 100 43 100
Aminergic 100 100 98.2 99.8
Lipid 94.6 98.2 92.2 90.4
Melatonin 100 100 93.4 83.8
Nucleotide 96.8 96.8 93.2 92.0
Orphan 95.2 94.6 92.8 93.0
Peptide 96.8 98 98.8 97.8
Protein 100 99.4 98.4 98.6
Sensory 100 98 95.2 97.6
Steroid 100 99.2 59 100
OACC 97.33 97.85 95.75 96.27
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Table 6.4: ACC and OACC (in %) of GPCR classification of Class A subfamily
Alicaboxylic at sub-subfamily level

Alicaboxylic PCA-ISA Log-Reg SVM MLP-NN
Hydroxicarboxylic acid 100 100 100 100
Oxoglutarate receptors 100 100 100 100
Succinate receptors 100 100 100 100
OACC 100 100 100 100

Table 6.5: ACC and OACC (in %) of GPCR classification of class A subfamily
Aminergic at sub-subfamily level

Aminergic PCA-ISA Log-Reg SVM MLP-NN
5-Hydroxytryptamine 98 96 95.4 99.2
Acetylcholine 95.8 100 94.2 100
Adrenoceptors 92.8 100 98 98.2
Dopamine 98.2 100 100 96.4
Histamine 93.2 97.2 90 100
Trace amine 100 100 100 90
OACC 95.83 98.61 96.39 98.21

Table 6.6: ACC and OACC (in %) of GPCR classification of class A subfamily
Lipid at sub-subfamily level

Lipid PCA-ISA Log-Reg SVM MLP-NN
Cannabinoid 100 100 93.4 100
Free fatty acid 92 100 100 100
GPR18 - GPR55 68.4 76 61.4 100
Leukotriene 75 100 87 85.6
Lysophospholipid (LPA) 95 100 100 100
Lysophospholipid (S1P) 100 93.4 88.6 86.4
Platelet-activating factor 100 100 100 100
Prostanoid 97.5 100 100 100
OACC 92.56 97.67 93.02 96.74
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Table 6.7: ACC and OACC (in %) of GPCR classification of class A subfamily
Nucleotide at sub-subfamily level

Nucleotide PCA-ISA Log-Reg SVM MLP-NN
Adenosine 100 100 100 100
P2Y 96.4 100 100 100
OACC 97.78 100 100 100

Table 6.8: ACC and OACC (in %) of GPCR classification of class A subfamily
Protein at sub-subfamily level

Protein PCA-ISA Log-Reg SVM MLP-NN
Chemerin 100 100 99 100
Chemokine 98 100 100 100
Glycoprotein homorne 100 100 100 100
Prokineticin 100 100 100 100
OACC 99.07 100 99.08 100

Table 6.9: ACC and OACC (in %) of GPCR classification of class B1 subfamily
Peptide at sub-subfamily level

Peptide PCA-ISA Log-Reg SVM MLP-NN
Calcitonin receptors 100 100 43 100
Corticotropin-rel. fct. 100 100 100 100
Glucagon receptor 100 100 100 100
Parathyroid hormone 100 100 83 100
VIP and PACAP 100 100 86 100
OACC 100 100 96.36 100
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Table 6.10: ACC and OACC (in %) of GPCR classification of family A subfamily
Alicaboxylic sub-subfamily 5-hydroxytryptamine at subtype level

5-hydroxytryptamine PCA-ISA Log-Reg SVM MLP-NN
5-HT1A 100 100 100 100
5-HT1B 100 96 100 76
5-HT1D 100 100 80 100
5-HT1E 50 60 60 76
5-HT1F 100 66.8 90 88.4
5-HT2A 78.4 96.6 95 76
5-HT2B 81.8 60 40 40
5-HT2C 100 100 100 100
5-HT4 100 100 60 100
5-HT5A 100 100 80 100
5-HT7 100 100 65 100
OACC 94.54 96.51 91.82 96.36

Table 6.11: ACC and OACC (in %) of GPCR classification of family A subfamily
Aminergic sub-subfamily Acetylcholine at subtype level

Acetylcholine PCA-ISA Log-Reg SVM MLP-NN
M1 91.75 93.40 100 100
M2 93.40 95 96.60 86.80
M3 88.40 100 86.80 93.40
M4 100 100 50 100
M5 100 100 100 100
OACC 90.91 94.54 89.09 94.54
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Table 6.12: ACC and OACC (in %) of GPCR classification of family A subfamily
Aminergic sub-subfamily Adrenoceptors at subtype level

Adrenoceptors PCA-ISA Log-Reg SVM MLP-NN
α1A 100 100 100 100
α1B 100 100 93.40 100
α1D 100 100 100 100
α2A 80 70 100 90
α2B 100 100 100 73.40
α2C 100 100 60.80 100
β1 83.40 100 91 85
β2 100 100 100 85
β3 100 100 100 100
OACC 96.19 97.14 91.43 93.33

Table 6.13: ACC and OACC (in %) of GPCR classification of family A subfamily
Aminergic sub-subfamily Dopamine at subtype level

Dopamine PCA-ISA Log-Reg SVM MLP-NN
D1 100 100 100 100
D2 100 100 100 100
D3 100 100 100 100
D4 100 100 100 100
D5 100 100 100 100
OACC 100 100 100 100

Table 6.14: ACC and OACC (in %) of GPCR classification of family A subfamily
Aminergic sub-subfamily Histamine at subtype level

Histamine PCA-ISA Log-Reg SVM MLP-NN
H1 100 100 90 83.40
H2 100 100 100 100
H3 95 100 85 100
H4 94 100 75 100
OACC 97.14 100 85.71 94.29
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Table 6.15: ACC and OACC (in %) of GPCR classification of Class A family at
subfamily level

Peptide PCA-ISA Log-Reg SVM MLP-NN
Ghrelin 96 100 100 100
Proteinase-activated receptors 100 100 98.2 99.8
Melanocortin receptors 97.6 98.2 92.2 90.4
Somatostatin receptors 100 100 99.4 83.8
Neurotensin receptors 96.8 98.8 97.2 98.0
Neuropeptide Y receptors 98.5 100 98.8 99.0
Galanin receptors 99.8 100 98.8 97.8
Cholecystokinin receptors 100 100 98.4 98.6
Formylpeptide receptors 100 100 98.4 100
Complement peptide 100 100 95.2 97.6
Gonadotropin-releasing hormone 98 99.5 100 100
Angiotensin receptors 99 100 100 100
Motilin receptors 99.8 100 100 100
Orexin receptors 99.7 99 98 99
Thyrotropin-releasing hormones 100 100 100 100
Bombesin receptors 100 100 100 100
Neuromedin U receptors 100 100 100 100
Endothelin receptors 97 99 97.8 98
Bradykinin receptors 99.7 100 99 100
Vaso Pressin & oxytocin 98 99.8 100 100
Tachikinin receptors 100 100 100 100
Apelin receptors 100 100 100 100
Opioid receptors 100 99.8 100 100
Neuropeptide W/B receptors 99.8 100 100 100
Urotensin receptors 96 98.3 97.8 98
Prolactin-releasing peptide recep-
tors

100 100 100 100

Peptide P518 receptors 100 100 100 100
Relaxin family peptide receptors 97.5 100 100 100
Neuropeptide S receptors 99.8 99.9 100 100
Melanin-concentrating hormone 97.7 99.8 98 99
Kisspeptin receptors 98 100 98 100
Neuropeptide FF/AF receptors 97 99 96 98
OACC 98.43 99.85 98.75 99.27
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Table 6.16: ACC and OACC (in %) of GPCR classification of family C at subfamily level
Class C PCA-ISA Log-Reg SVM MLP-NN
Amino Acid receptor 100 100 100 100
Ion receptor 100 100 100 100
Orphan receptor 100 100 100 100
Sensory receptor 100 100 100 100
OACC 100 100 100 100

Table 6.17: ACC and OACC classification of family C subfamily Amino acid at
sub-subfamily level

Amino Acid PCA-ISA Log-Reg SVM MLP-NN
GABAB receptors 100 100 100 100
Metabotropic glutamate recep-
tors

100 100 100 100

OACC 100 100 100 100

Table 6.18: ACC and OACC (in %) of GPCR classification of family C subfamily
Amino acid sub-subfamily MGluR at subtype level

MGluR PCA-ISA Log-Reg SVM MLP-NN
MGluR1 100 100 100 100
MGluR2 100 100 100 100
MGluR3 100 100 100 100
MGluR4 100 100 100 100
MGluR5 100 100 100 100
MGluR6 100 100 100 100
MGluR7 100 100 100 100
MGluR8 100 100 100 100
OACC 100 100 100 100
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Table 6.19: ACC and OACC (in %) of GPCR classification of family F subfamily
Protein receptor sub-subfamily Frizzled at subtype level

Frizzled PCA-ISA Log-Reg SVM MLP-NN
FZD1 100 100 100 100
FZD2 100 100 100 100
FZD3 100 100 100 100
FZD4 100 100 100 100
FZD5 100 100 100 100
FZD6 100 100 100 100
FZD7 100 100 100 100
FZD8 100 100 100 100
FZD9 100 100 100 100
FZD10 100 100 100 100
SMO 100 100 100 100
OACC 100 100 100 100
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