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LÉVY PROCESSES: CHARACTERIZING VOLCANIC AND FINANCIAL TIME

SERIES

PETER KWADWO ASANTE

Master’s Program in Computational Science

APPROVED:

Maria C. Mariani, Ph.D., Chair

Thompson Sarkodie-Gyan, Ph.D.

Granville Sewell, Ph.D.

Elsa Villa, Ph.D.

Stephen Crites, Ph.D.
Dean of the Graduate School



c©Copyright

by

Patrick Kahl

1996



to my

Wife, Parents and Siblings

with love
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Abstract

In this work, we use the Diffusion Entropy Analysis (DEA) to analyze and detect the

scaling properties of time series from both emerging and well established markets as well

as volcanic eruptions recorded by a seismic station, both financial and volcanic time series

data are known to have high frequencies (i.e they are collected at an extremely fine scale).

The objective is to determine the characterization i.e whether they follow a Gaussian or

Lévy distribution. If they do follow a Lévy distribution we are then interested in finding if

they are characterized by a Lévy walk which has a finite second moment or a Lévy flight

which has an infinite second moment. We also seek to establish the existence of long-

range correlations in these time series.That is we seek to determine if both time series are

persistent (i.e have long-range correlation), anti-persistent or random.

The results obtained from the DEA technique are compared with the Hurst R/S analysis

and Detrended Fluctuation Analysis (DFA) methodologies. We conclude that given the

scaling exponents δ derived from the DEA and H, α derived from the Hurst R/S analysis

and DFA respectively, if 0.5 < H,α, δ < 1 the time series is said to exhibit long-range

correlations and if 0 < H,α, δ < 0.5 the time series is said to be anti-persistent. Also for

characterization, if δ is related to H or α by the relation δ =
1

3− 2(H,α)
, the time series

is characterized by a Lévy walk. If δ = (H,α), the time series may be characterized by

Fractional Brownian Motion (FBM) (i.e the time series is random), and finally if δ 6= (H,α),

the time series cannot be characterized by an FBM and this implies that the time series

has an infinite second moment and is thus characterized by a Lévy flight.

v
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Chapter 1

Introduction

The collection and analysis of time series data is a very important area of research. Infer-

ences drawn from these data sets have helped in forecasting as well as various industrial

product improvements. One important inference usually sought for is whether the time

series exhibits persistence (long-range correlations), randomness or anti-persistence. Long-

range correlations (also refered to as Long-memory effects or Long-range dependence (these

would be used interchangeably)) refers to the slow decay of the temporal or spatial corre-

lation function defined as

γxy(δ) = 〈X(t)Y (t+ δ)〉. (1.1)

A time series data which exhibits long-range correlations implies that the evolution of

the system is affected by previous system states over long periods of time ([1],[2]-[5]). This

makes the need to determine long-range correlations in time series data very important

for various fields. However to determine the existence of long-range correlations using the

formula in equation 1.1 poses challenges due to its sensitivity to noise. This in addition

to other factors has pushed research into the development of a number of scaling methods

([6]-[11],[12]-[15],[2]-[5]).

Various scaling methods exist and have been utilized by many researchers in detecting

the persistence or anti-persistence in time series. Most notable applications are in financial

and geophysical time series . Some examples of these scaling methods are the Rescaled

Range Analysis (R/S), the Detrended Fluctuation Analysis (DFA), the Relative Disper-

sion Analysis (RDA) and the fairly recent Diffusion Entropy Analysis (DEA) which was
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developed by Scafetta ([6]-[8]). Scafetta used the DEA to detect the scaling behavior of

DNA sequences. The R/S, DFA, and RDA are examples of variance scaling methods and

their scaling exponent is called the Hurst exponent, named after Hurst who first studied it

in hydrology while the DEA on the other hand is a pdf scaling method.

The variance scaling methods however encounter various challenges when faced with

time series data that exhibit anomalous behaviors. The R/S analysis in particular is usu-

ally unable to detect correctly the scaling exponent of non-stationary time series data while

the DFA is known to overestimate the scaling exponent. Thus two short comings of these

variance scaling methods are their inability to detect the exact value of the exponent though

they may be able to detect the scale invariance and their unavailability for processes with

infinite variances like the Lévy flight [6].

This is what makes the DEA, our main focus of this paper an important method in

detecting the scaling exponent within a time series data. The DEA detects the scaling pa-

rameter δ using the pdf of the diffusion process derived from the time series. The advantage

of DEA over the variance scaling methods is that it is able to establish the possible exis-

tence of scaling in time series data with normal or anomalous properties efficiently without

any data alteration due to detrending as well as being available for processes with infinite

variances ([6]-[8], [16]). Thus the DEA overcomes the shortcommings of the variance based

methods.

Knowing the characterization is important in helping us understand the scaling be-

havior determined by a scaling method due to a possibility of wrong conclusion based on

some underlining assumptions that may be present in the model. If the time series follows

a Gaussian distribution, then the traditional Scaling methods are able to get the correct

scaling due the the underlining Gaussian assumption in their models. If it follows a Lévy

walk, then the traditional methods may produce correct conclusion with regards to long-

2



range dependence but would not get the correct scaling exponent [4]. And Finally if the

time series follow a Lévy flight, then the traditional methods are neither able to get correct

scaling or conclusion due to the fact that Lévy flights have infinite variances [6].

Thus knowing the characterization of the time series may help in making informed

decisions pertaining to the choice of forecasting models one would use for the purpose of

future analysis.

Researches focused on long-range correlations have made it possible to gain more in-

sight into long range evolution patterns of complex and chaotic occurrences both in nature

(geophysical time series) and other equally important fields including financial markets,

traffic analysis, bioengineering, and others. The results from these researches have pro-

vided various approaches to minimize risk and forecast or predict future dynamical trends

([6]-[9], [25]).

In this study we consider several financial time series data as well as some geophysical

time series data and analyze their long-range correlations using R/S analysis, the DFA and

the DEA. The continuous time-varying Lévy process is effective for capturing the stochastic

volatility (SV) and fat tails of data distribution. It is known that the volatilities of high

frequency data are correlated, and they vary stochastically over time. We seek to determine

the characterization of the time series data (i.e whether it follows the Gaussian or Lévy

distribution) by comparing the relation between the scaling exponent derived with the

R/S and DFA against that of the DEA. This Thesis is organized as follows: Chapter one

introduces the subject matter, a review of relevant literature is presented in chapter 2, in

chapter 3 we introduce the R/S and DFA scaling methods and give a detailed background

of the DEA with the procedure used to detect the scaling exponent (δ) for both a stationary

and non-stationary time series data. In chapter 4 we present the data used for analysis and

look at it’s stationarity. Numerical results are shown in chapter 5 and chapter 6 presents

our conclusions and future work. Figures obtained are presented in the appendixes.

3



Chapter 2

Lévy Processes And Scaling Methods

Applied To Time Series

In this section a review of some existing scaling methods are given as well as some areas of

research in which these methods have been applied. Also we look at some similarities and

differences of the Lévy walk and the Lévy flight in bounded domains.

2.1 Lévy Walks and Lévy Flights

We begin this section with a definition of the Lévy process. We further lay out some

similarities and dissimilarities of the Lévy flight and the Lévy walk. As this work explores

the characterization of time series analysis using scaling methods, we would soon observe

that the characterization of the time series gives an idea as to why some scaling methods

explored in this work perform in certain ways when applied to a particular time series data.

Definition 2.1.1. A Lévy process is a stochastic process {Xt : t ≥ 0} on Rn if the following

conditions are satisfied.

1 For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn, the random variables Xt0,

Xt1 −Xt0, Xt2 −Xt1, ..., Xtn −Xtn−1 are independent. The process has independent

increments.

2 X0 = 0

3 The distribution of Xs+t − Xs does not depend on s therefore the process has the

stationary increments.

4



4 It is stochastically continuous.

5 There is a Ω0 ∈ F(σ − algebra) with P[Ω0] = 1 such that for every ω ∈ Ω0, Xt(ω) is

right-continuous on t ≥ 0 and has left limits in t > 0

Lévy flights and Lévy walks serve as two paradigms of random walks resembling common

features but also bearing differences [29]. They are two well known stochastic models that

have been shown to exhibit anomalous diffusion. By analyzing two models of stochastic

motion in bounded domains, Bartlomiej et al., [29] showed that both Lévy flights and Lévy

walks assume a random walker performs long-jumps distributed according to a heavy-tailed

power law-density. However Lévy walks showed continuous trajectories and finite velocity

while Lévy flights showed discontinuous trajectories and infinite propagation velocity. This

show’s some common features as well as fundamental differences between the two.

Though Lévy walks and Lévy flights were shown to have such fundamental difference it

was further found that Lévy flights can serve as an approximation to Lévy walks with an

improper prediction of the moments of the jump length distribution.

2.2 Some Applications

In this section we look at some example areas where Lévy walks and Lévy flights have been

applied in recent researches.

2.2.1 Volcanic Eruptions

We now present a research work on Volcano-seismic data using Lévy flights and Wavelet

techniques.

Overview

In this work Beccar-Varela et al. looked at the α scaling parameter of Volcano-seismic data

collected from a seismic station. The aim of this work was to detect the scaling properties

5



of the volcanic eruptions by looking at the scaling exponent α. An α value less than 2.0

indicates the evolution of the released energy exhibits long-range dependence [5].

Conclusion

Based on the results obtained from the analysis made, the α exponents for each volcanic

eruption was found to be less than 2.0 which indicated that the evolution of the released

data exhibited long-range dependence. This result implies that current information is

highly correlated with past information at different levels, thus helping in the prediction of

future volcanic activity in that region.

2.2.2 Transportation

Overview

It is by no means a surprise that there is ongoing research on transportation and how it

can be improved owing to the fact that it has become an integral part of society. Whether

you walk, take public transport or drive a personal car, you are prone to seek for the best

possible means to arrive on time with less stress and delays.

Pavement maintenance is thus an issue that many government agencies and consulting

companies must deal with.

This work focused on the ability to maintain an in-service pavement structure in an accept-

able condition from the structural and functional points in relation to many factors which

often are not explicit and change over time [32].

In this work Mariani et al. applied the normalized truncated Lévy walk (TLW) to flexible

pavement performance so as to forecast the change in serviceability level offered by the

structure of pavements together with traffic and climate conditions.

6



Results and Conclusion

The numerical results obtained by the authors in this work showed that the TLW offered

an alternative in representing pavement serviceability trends. They concluded that the

TLW function parameters and time gaps could be tailored to represent the stochastic

characteristics of the factor interaction determining pavement degradation, maintenance

policies, and recurring maintenance programs [32]. Such information could then be used to

describe lifelong responses of pavement structures by using larger data sets collected over

longer periods of time.

2.3 Scaling Methods

Evidence of long-range dependence has been shown to be strong in many time series data

collected from various fields. Being able to detect this phenomenon is a result of the

application of scaling methods on these time series. Hurst was a pioneer in this field of

scaling detection and as such it is no surprise that the exponent of scaling was named after

him by another well known figure in this field, Mandelbrot.

In this section we present a brief history of long-range dependence and the emergence of

scaling methods as well as some interesting applications to some time series data from

various fields.

2.3.1 Brief history

In the wake of the industrial revolution in the nineteenth century, there arose a need to

build large scale reservoirs formed by damming of river valleys. The natural solution to

this problem was the a dam that will never overflow or empty. Rippl (1883) gave a com-

pelling solution to this problem, however this was compromised by a requirement to know

or assume the future variability of the river flows [30]. Hazen (1914) discovered the break-

through which brought about the birth of stochastic hydrology by using the simplest model

7



which happens to be iid Gaussian process.

In 1965, Hurst introduced a method for studying fractal properties in his book, Long-

Term Storage:An experimental study. He developed this method as he studied the water

storage of the nile river in order to design a reservoir which never overflows or empties

given the record of observed discharge. Mandelbrot and Wallis, 1969 will later coin the

word ”Ideal Dam” for such a reservoir. Hurst’s work would usher in a wave of interest

as well as controversy. Mandelbrot later introduced his first stationary model-fractional

Gaussian noise (FGN), which could explain Hursts phenomenon after almost a decade

of controversy [30]. Long-range dependence was later then incorporated via a fractional

differencing parameter d, into the traditional ARMA(p,q) models, through Hosking and

Granger’s ARFIMA(p,d,q) model [30].

2.4 Some aplications of Scaling Methods

This section presents some applications of scaling methods in various fields. We present

some research works, both recent and old and briefly discuss the result and conclusion from

the work.

2.4.1 Hydrology

Overview

Hurst (1951) in this study used a method similar to Rippl’s. In his method Hurst analysed

a particular statistic of the cumulative flows of rivers overtime called the ”adjusted range”,

R.

8



Conclusion

After examining 690 different time series, covering 75 different geophysical phenomena

spanning varying quanties as river levels, rainfall, temperature, atmospheric pressure, tree

rings, mud sediment thickness and sunspots, Hurst found out that in each case the statistic

behaved as R/S(n) ∝ nk.

He then estimated the variable k and found it to be to be approximately normal with mean

0.72 and standard deviation 0.006. His estimation approach for k was however found to be

derived from an inappropriate analysis, namely by assuming a known constant of propor-

tionality which was the assymptotic law that R/S(n) = (n/2)k .This was later addressed

by Mandelbrot when he dropped the fixed point assumption by Hurst and performed a

two-parameter log regression to obtain slope parameter k [30].

Hursts work showed that under the independent Gaussian assumption the exponent k = 0.5,

which implied that contemporary hydrological models did not agree with empirical evi-

dence. The value of the exponent k which Hurst derived was greater than 0.5, and suggested

”long-range dependence” of the time series thereby sparking a debate in the hydrology com-

munity owing to the implication’s it had on Hazen’s model which assumed an iid Gaussian

process. The discrepancy detected in Hurst’s work with regards to the available theory at

that time and his empirical result would later be known as the ”Hurst Phenomenon” [30].

2.4.2 Stock Markets/Finance

Overview

In past years there have been recordings of stock market crashes in which the behavior

of the market prior could not predict it, an example being the infamous global financial

recession in 2008. This increased the interest in researches aimed at providing approaches

to predict potential crushes based on past and current data.

Assuming normal market conditions, we expect all participating agents to have diverse

views which translates to pricing processes not exhibiting long-memory effects. It is known

9



though that under normal market conditions when working with high-frequency data the

price process is far from the log-normal specification [31].

In this work Barany et al. used scaling methods to detect market crashes by analysing

long-range dependence using high-frequency data collected minute by minute for several

stock markets. In addition they looked at the relationship between the Lévy parameter α

and the resulting H parameter characterizing the self-similar property. Data used in this

work was collected from stock markets in the areas of entertainment, technology, retail, oil

and financial sectors.

Conclusion

The results of this work showed that most of the stock market data studied exhibited long

memory effects, of particular interest was the fact that on normal trading days devoid

of major events the data exhibited long-memory effects. However in the presence of a

stock market crash, the parameter estimating the long-range dependence seems to increase

and approach a random behavior during the crash. The results further found that after

the crash the processes return to exhibiting long-range dependence[2]. This was a very

interesting finding by the authors of this work which evidently made it possible to predict

a possible crash of a market by looking at the behavior of the crash parameter.

2.4.3 DNA Sequencing

Overview

The recent progress in experimental techniques of molecular genomics has made available

a wealth of genome data [8]. In this work Scafetta et al. sought to address the problem

of the statistical analysis of a time series generated by complex dynamics using Diffusion

Entropy Analysis (DEA) a fairly recent scaling method introduced by Scafetta which unlike

the traditional scaling methods uses the Shannon entropy of the diffusion process derived

from the time series to estimate the correct scaling exponent.
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They looked at time series data derived from DNA sequences, considering both coding and

non-coding sequences. Since pioneer papers focused on the controversial issue of whether

the property of long-range dependence was shared by both coding and non-coding se-

quences.

This controversy could be attributed to the limitations of the traditional methods, which

made it unable to detect the right scaling for time series that exhibited anomalous be-

haviours [8]. This paper thus sought among other things to show that the DEA unlike the

traditional scaling methods is able to detect the correct scaling of a time series regardless

of anomalous behavior.

Conclusion

The application of the DEA in conjunction to the traditional methods showed that the tra-

ditional methods were prone to produce misleading conclusions and that both the coding

and non coding DNA sequences generate Lévy statistic in the long-time limit.

The results obtained in this work proved to be ground breaking, essentially revealing the

reason behind the controversy concerning coding and non coding DNA sequences and pro-

viding a way to characterize time series.

This is what motivates the current research being done with financial and volcanic time

series, by taking it further to determine if the time series characterized by a Lévy process

is in particular characterized by a Lévy flight or a Lévy walk since there is a fundamental

difference in these two forms of random walk as mentioned above.

2.5 Time Series data Characterization: Gaussian or

Lévy (Lévy flight or Lévy walk)

In the past sections we have looked at the Lévy walk and Lévy flights with some applications

as well as some interesting applications of scaling methods. It is clear how important Lévy

11



processes are in various researches in time series analysis of data and it’s forcasting.

Since the traditional scaling methods have an underling Gaussian assumption it presents

a possiblility of drawing wrong conclusions when used to derive the scaling exponents of

time series that are characterized by a Lévy distribution. This is what motivated Scaffeta

to introduce the Diffusion Entropy Analysis (DEA).

What we seek to address in this work is that for time series that have Long-memory effects

and follow Lévy distribution are they characterized by a Lévy walk or a Lévy flight. This

question is important to answer since the Lévy walk is known to have a finite second

moment while the Lévy flight has an infinite second moment.
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Chapter 3

Methods For Determining

Long-Range Correlations In Time

Series

3.1 Variance Scaling Methods

In this section we briefly introduce the Rescaled Range Analysis and the Detrended Fluc-

tuation Analysis. The Diffusion Entropy Analysis is then discussed with more detail.

3.1.1 Rescaled Range Analysis

The idea of the Rescaled-Range analysis (R/S) was presented by Hurst in the framework of

his study on the long-run variations of the water level of the Nile river [17]. It has become

very popular since then, and has been applied to a wide range of disciplines, including

traffic analysis, bioengineering, physics, geology, biology and geophysics.

The name H for the parameter derived from this technique was coined by Mandelbrot

in tribute to the hydrologist Hurst and the mathematician Holder. The parameter H also

known as index of dependence represents the relative trend of a time series and always lies

between 0 and 1, it is equal to 1
2

in the case of processes with independent increments. Of

particular interest for our work is the case in which 0.5 < H < 1 since it is an indicator of

long-range correlations.
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3.1.2 Detrended Fluctuation Analysis

In order to study the self-similarity and long-range dependence of time series Peng et.al

[18] proposed the Detrended Fluctuation Analysis (DFA) while examining a series of DNA

nucleotides. From the moment it was proposed to date, DFA has become a widely used

method for the determination of fractal scaling properties and the detection of long-range

correlations in non-stationary time series. It has been applied for example in biology,

meteorology, geophysics and economics ([18]-[24]).

The principal advantage of the DFA lies in its ability to differentiate the intrinsic auto-

correlations of the time series from those imposed by non-stationary external trends. That

is, the method focuses on the intrinsic structure of the correlations of market fluctuations

at different time scales, leaving aside non-stationary trends.

The application of the DFA method allows obtaining a scale exponent α from estimating

the slope of function F (s) that measures the mean square deviation from an optimal linear

approximation around the trend signal in segments of length s. The fluctuation function

vs s behaves as a power law. Therefore it is possible to compute the value of the exponent

α from the slope of the function in a log-log scale plot of F (s) vs s. The DFA exponent α

and the Hurst parameter H are related by

H =

α if 0 < α < 1

α− 1 if α = 1

(3.1)

However, due to its sensitivity to abnormal values in the series, the rescaled range

analysis method is not suitable for analyzing long-range auto-correlation for non-stationary

series.

3.1.3 Diffusion Entropy Analysis

Based on the direct evaluation of the Shannon entropy ([6]-[8],[13],[14]), the DEA is a pdf

scaling method which perceives the numbers in a time series as the trajectory of a diffusion
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process [12].

The scaling property for the stationary time series takes the form

p(x, t) =
1

tδ
F (

x

tδ
). (3.2)

where x denotes the diffusion variable, p(x, t) is its probability density function (pdf) at

time t, and 0 < δ < 1 is the scaling exponent.

The scaling property for the non-stationary time series takes the form

p(x, t) =
1

tδ(t)
F (

x

tδ(t)
). (3.3)

As derived in ([6]-[7]), a diffusion process generated by Lévy walk is characterized by the

following relation:

δ =
1

3− 2(H,α)
(3.4)

If δ = (H,α), the time series can be characterized by Fractional Brownian Motion (FBM),

since the variance methods are based subtly on the Gaussian assumption ([1], [17]). How-

ever if δ 6= (H,α), and equation (3.4) holds true, the noise can be characterized by Lévy

statistics in particular a Lévy walk. (H,α) in Eq.( 3.4) refers to the scaling exponent de-

rived from the two variance scaling methods used in this work. Now if δ 6= (H,α) and

equation (3.4) does not hold, then the noise can be characterized by a Lévy flight.

3.1.4 Estimation Procedure

In this subsection, we describe the estimation technique for the scaling exponent, δ. We

first present a brief background on the Shannon Entropy that is used for estimating δ.

The Shannon Entropy

The concept of entropy was developed by Rudolph Clausius in 1865, a few years after he

stated the laws of thermodynamics ([25] -[26]). The entropy is an indicator of the lack of
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information about the measure of an event that occurs with propability p [25].

Other types of entropies are the Kolmogorov-sinai entropy, the Renyi entropy and the

Tsallis entropy ([6]- [8], [25]). The Shannon entropy measures information of a probability

distribution as follows:

S(t) = −
N∑
1

pi log pi (3.5)

The summation is replaced by the integral in the case of continuous probability distribu-

tions. The above equation is used to derive the log equation that will be used to determine

the DEA δ scaling. We present below the process for estimating δ:

• The time series data is first transformed into a diffusion process.

• Shannon’s entropy of the diffusion process is calculated. A log-linear equation or

log-quadratic equation is derived from the Shannon entropy by substituting equation

3.2 and 3.3 respectively. Simplifying the result from the substitutions, we have the

following relation for stationary time series:

S(t) = A+ δln(t) (3.6)

For the non-stationary series, the relation is as follows:

S(t) = A+ δ(t)τ (3.7)

where δ(t) = δ0 + η log(t) and τ = log(t) with η log(t) < 1− δ0. After some simplifi-

cations, equation 3.7 becomes

S(t) = A+ (δ0 −K) log(t) + (1− δ0)(log(t))2 (3.8)

where K < 0 and δ0 ≡ δ from the stationary pdf. Thus, by fitting a log-quadratic

model in the non-stationary series and a log-linear model in the stationary series we
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are able to determine the δ (δ0) scaling. At t = 1, it is clear that the constant A in

both equations 3.6 and 3.7 is given by S(1).

Thus δ (or δ0) is derived by an estimation of the slope of the above linear-log equation

or by the coefficients from the quadratic-log equation. For details of the algorithm

used when transforming the series into a diffusion process, we refer the reader to [6].
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Chapter 4

Time Series Data

In this work we have applied two variance scaling methods (R/S analysis and DFA) and a

pdf scaling method (DEA) on financial and volcanic time series data. This section gives a

brief background of the data sets used and also presents the stationarity tests. Augmented

Dickey Fuller test (ADF) was used for checking the stationarity of the time series [27].

4.0.1 Financial time series

The financial data used was taken from: Mexico (MXX), from November 8, 1991 to October

22, 2001; Brazil (BOVESPA), from April 27, 1993 to June 24, 2005; Argentina (MERVAL),

from October 8, 1996 to June 24, 2005; Hong Kong (HSI), from January 2, 1991 to June 24,

2005; Phillipines (PSI), from 1997 to 2001; Thailand (SETI), from 1997 to 2001; New York

(SP500) from January 3, 1950 to June 23, 2005; USA (SPC), from 1991 to 2001; Turkey

(XU100) from 1997 to 2001 and USA (NASDAQ), from 1997 to 2001.

4.0.2 Volcanic time series

The Volcanic data used was recorded by seismic stations belonging to the Bezymianny

Volcano Campaign Seismic Network (PIRE). Data was requested for 10 days before and

5 days after the published time of the volcanic eruptions. The seismic stations used were

BEZB and BELO. Volcanic eruptions 1 and 2 were from BEZB and Volcanic eruptions 3-8

were from BELO.
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4.0.3 Stationarity of the Financial and Volcanic time series

In this section the stationarity of the Financial and Volcanic data is determined by using

the Augmented Dickey-Fuller test (ADF). We implemented the method in R and Python

for comparison.

Augmented Dickey-Fuller

The Augmented Dickey-Fuller test is a type of statistical test called unit root test. The null

hypothesis of the test is that if the time series can be represented by a unit root, thus it is

not stationary (has some time-dependent structure). The alternate hypothesis (rejecting

the null hypothesis) is that the time series is stationary.

Financial time series

After implementing the ADF tests to the financial data the following results were obtained

for p-values at α = 0.05.

Table 4.1: ADF test applied to the financial time series: p-values [33]

Market p-value
BVSP 0.015
SPC 0.034
HSI 0.033

IGPA 0.03
MERV 0.014
MXX 0.024

Nasdaq 0.04
PSI <0.01

SETI <0.01
SP500 <0.01
XU100 0.01
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Volcanic time series

After implementing the ADF test to the Volcanic time series the following results were

obtained for p-values at α = 0.05.

Table 4.2: ADF test applied to the Volcanic time series: p-values [33]

Eruption Number p-value
1 0.3568
2 0.6747
3 0.3024
4 0.095
5 0.2064
6 0.3271
7 0.2374
8 0.4059

The above tables summarize the results obtained for the two time series, it is clear from

the ADF test that the volcanic time series is non-stationary while the financial time series

is stationary.
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Chapter 5

Results And Discussion

5.1 Results

This section describes the analysis of financial indices and volcanic time series when our

models are applied to the data sets. Tables 5.1 and 5.2 show the scaling exponents derived

from applying the three scaling methods. The δ,H, and α exponents are used to obtain

δLevy(R/S) and δLevy(DFA). The Hurst analysis of financial indices and volcano time

series are shown in Figs. 1 - 5 and Figs. 8 - 9. The slope of the best straight line fitted on

the logarithmic plot of rescaled range (R/S) versus time is the Hurst exponent (see Table

5.1). Figs. 10 - 14 and Figs. 15 - 18 summarize the DFA analysis of financial indices and

volcanic eruption, showing the linear trend when plotting (n) and F (n) on a log-log scale.

A linear relationship on a double log graph indicates that there is a scaling or self-similarity

in the graph, and the fluctuations can be characterized by scaling exponent. Tables 5.1

- 5.2, Figs. 6 - 14, and Figs. 15 - 18 show that the scaling exponent (α) is less than 1,

which confirms the presence of long-range correlations, i.e.: the large values are likely to

be followed by large values and vice versa. So the DFA allows us to study the correlations

in data, without disturbance of seasonality or trend. In Figs. 19 - 23 and Figs. 24 -

27, we notice that there is a considerable difference between the DEA analysis of financial

indices and volcanic eruptions data. Unlike the financial indices, S(t)−S(1) of the volcanic

eruption data is increased almost exponentially with the logarithm of time scale.
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Table 5.1: Scaling exponents for emerging and established markets time series
[33]

Market R/S(H) DFA (α) DEA(δ) δLevy (R/S) δLevy (DFA)
BVSP 0.59 0.72 0.57 0.56 0.63
SPC 0.59 0.62 0.60 0.56 0.56
HSI 0.65 0.7 0.60 0.56 0.63

IGPA 0.74 0.65 0.53 0.63 0.56
MERV 0.62 0.62 0.56 0.56 0.56
MXX 0.64 0.66 0.59 0.56 0.56

Nasdaq 0.6 0.72 0.56 0.56 0.56
PSI 0.66 0.71 0.55 0.63 0.56

SETI 0.64 0.70 0.54 0.56 0.56
SP500 0.63 0.66 0.65 0.58 0.60
XU100 0.64 0.70 0.54 0.56 0.56

Table 5.2: Scaling exponents of Volcanic Data time series [33]

Eruption Number R/S(H) DFA (α) DEA(δ) δLevy (R/S) δLevy (DFA)
1 0.45 0.74 0.934 0.4756 0.6547
2 0.51 0.92 0.934 0.5093 0.8682
3 0.38 0.85 0.934 0.4472 0.7636
4 0.39 0.66 0.934 0.4509 0.5957
5 0.39 0.76 0.934 0.4513 0.6729
6 0.37 0.67 0.934 0.4433 0.6002
7 0.42 0.81 0.934 0.4634 0.7194
8 0.504 0.75 0.934 0.5018 0.6684

5.2 Discussion

For the financial series data all three scaling methods correctly detect the existence of

long-range correlations. Comparing δ with the relation in equation 3.4, we see that the

relation holds (with adjustments within the interval (0,0.06)) since equality is almost always

impossible by virtue of the fact that each scaling method derives it’s scaling exponent

through approximations. Thus we are able to deduce that the financial time series is

characterized by a Lévy walk. With the Volcanic data however the R/S analysis is unable

to correctly detect the existence of long-range correlations since the volcanic data is non-
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stationary. However the DEA and DFA correctly detects long-range correlations. Equation

3.4 is however not satisfied and clearly δ 6= (H,α). Hence the volcanic series can neither

be characterized by FBM nor Lévy walk. The volcanic time series is thus characterized by

a Lévy flight (i.e it has an infinite variance).
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Chapter 6

Concluding Remarks

In this study, we have used high frequency financial and volcanic time series to analyze their

scaling and dynamic behavior. We have implemented some scaling techniques, namely

Diffusion Entropy Analysis, Detrended Fluctuation Analysis and the R/S analysis that

incorporates exponential and Hurst parameters. The techniques allow us to characterize

the data distribution and their long-range correlations. To obtain a good fit for the data,

we first analyze their stationary behavior using unit root tests (see subsection 4.0.3). Tables

5.1 - 5.2 to confirm that the p-values are significant at all specified levels for financial data,

so the high frequency financial indices used in this paper are stationary. In subsection

4.0.3, we see that the volcano time series data shows non-stationary behavior. We fit three

scaling exponent techniques into our financial and geophysical data in order to estimate

the exponent parameters.

Tables 5.1 and 5.2 summarize the estimation of parameters α, δ, and H for financial and

volcano data, respectively. We see that the estimated values (α, δ, and H) fall between 0

and 1, which means that the high frequency stock market data and volcanic eruption data

show long memory behavior. The long memory supports that the present information is

highly correlated with past information at specified levels, which may facilitate prediction.

We conclude that for the high frequency stock market data, the Hurst coefficient is near to

0.65, Detrended fluctuation parameter is near to 0.65, and Diffusion entropy parameter is

near to 0.59. For the high frequency volcanic time series, the Hurst coefficient is near to 0.39

and Diffusion entropy parameter is 0.6837. In addition we have shown with a combination

of DEA and the variation scaling methods that the financial time series can be characterized

by a Lévy walk while the volcanic time series is characterized by a Lévy flight. The Lévy
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process is useful to detect a financial crash of the stock market or the risky seismic events.

Since the high frequency data follow almost log-normal distribution, for any finite-variance

Lévy process, randomizing time is equivalent to randomizing variance. Thus the time-

varying Lévy process generates stochastic volatility (SV) by randomizing time, which may

improve the forecasting performance. The reason is that the SV model takes into account

a stochastic component of the data volatility and estimates the time-varying parameters

using filtering techniques in order to predict future volatility [28].

6.1 Future Work

1 Based on the current work we are able to determine the characterization of a time

series data. Using this information we seek to classify efficiency of predictive fore-

casting models based on our the knowledge of the characterization of the time series

data. We consider in particular stochastic models such as the Simple Moving Aver-

age (MA), The Auto Regresive Moving Average (ARMA) and the Auto Regressive

Integrated Moving Average (ARIMA) models for this analysis.

2 We would like to explore other entropy measures besides the Shannon entropy in

the DEA methodology to see how we can improve on the precision of the δ scaling.

We will consider the Kolmogorov-Sinai entropy, the Renyi entropy and the Tsallis

entropy for this analysis.

3 We also explore the correlation between the rate parameters obtained from forecast-

ing different time series data from the same field by applying a system of stochastic

differential equations to them. We use here a system of superposed Ornstein Uh-

lenbeck models to model two different complex systems and determine if there is a

correlation between the rate parameters for both complex systems.
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6.2 Time line

April 2020- December 2020 First Future work

January 2021- August 2021 Second Future work

September 2021- February 2022 Third Future work
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Appendix A

This appendix presents the figures obtained from our numerical proceedure using the

Rescaled range analysis (R/S). Figures 1 - 5 are the plots obtained from the (R/S) ap-

plied to the various financial markets and figure 6-9 are the plots obtained from the (R/S)

applied to the various volcanic eruptions recorded at different times [33].
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(a) BVSP (b) HSI

Figure 1: R/S analysis for BVSP and HSI

(a) IGPA (b) MERV

Figure 2: R/S analysis for IGPA and MERV
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(a) MXX (b) Nasdaq

Figure 3: R/S analysis for MXX and Nasdaq

(a) PSI (b) SETI

Figure 4: R/S analysis for PSI and SETI

(a) SP500 (b) SPC USA

Figure 5: R/S analysis for SP500 and SPC USA
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(a) Volcanic Eruption 1 (b) Volcanic Eruption 2

Figure 6: R/S for Volcanic Eruptions 1 and 2

(a) Volcanic Eruption 3 (b) Volcanic Eruption 4

Figure 7: R/S for Volcanic Eruptions 3 and 4

(a) Volcanic Eruption 5
3

(b) Volcanic Eruption 6

Figure 8: R/S for Volcanic Eruptions 5 and 6
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(a) Volcanic Eruption 7 (b) Volcanic Eruption 8

Figure 9: R/S for Volcanic Eruptions 7 and 8
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Appendix B

This appendix presents the figures obtained from our numerical proceedure using the De-

trended fluctuation analysis (DFA). Figures 10 - 14 are the plots obtained from the (DFA)

applied to the various financial markets and figure 15-18 are the plots obtained from the

(DFA) applied to the various volcanic eruptions recorded at different times [33].

36



(a) BVSP (b) HSI

Figure 10: DFA for BVSP and HSI

(a) IGPA (b) MERV

Figure 11: DFA for IGPA and MERV

(a) MXX (b) Nasdaq

Figure 12: DFA for MXX and Nasdaq
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(a) PSI (b) SETI

Figure 13: DFA for PSI and SETI

(a) SP500 (b) SPC USA

Figure 14: DFA for SP500 and SPC USA

(a) Volcanic Eruption 1 (b) Volcanic Eruption 2

Figure 15: DFA for Volcanic Eruptions 1 and 2
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(a) Volcanic Eruption 3 (b) Volcanic Eruption 4

Figure 16: DFA for Volcanic Eruptions 3 and 4

(a) Volcanic Eruption 5 (b) Volcanic Eruption 6

Figure 17: DFA for Volcanic Eruptions 5 and 6

(a) Volcanic Eruption 7 (b) Volcanic Eruption 8

Figure 18: DFA for Volcanic Eruptions 7 and 8
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Appendix C

This appendix presents the figures obtained from our numerical proceedure using the Dif-

fusion entropy analysis (DEA). Figures 19 - 23 are the plots obtained from the (DEA)

applied to the various financial markets and figure 24-27 are the plots obtained from the

(R/S) applied to the various volcanic eruptions recorded at different times [33].
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(a) BVSP (b) HSI

Figure 19: DEA for BVSP and HSI

(a) IGPA (b) MERV

Figure 20: DEA for IGPA and MERV
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(a) MXX (b) Nasdaq

Figure 21: DEA for MXX and Nasdaq

(a) PSI (b) SETI

Figure 22: DEA for PSI and SETI

(a) SP500 (b) SPC USA

Figure 23: DEA for SP500 and SPC USA
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(a) Volcanic Eruption 1 (b) Volcanic Eruption 2

Figure 24: DEA for Volcanic Eruptions 1 and 2

(a) Volcanic Eruption 3 (b) Volcanic Eruption 4

Figure 25: DEA for Volcanic Eruptions 3 and 4

(a) Volcanic Eruption 5 (b) Volcanic Eruption 6

Figure 26: DEA for Volcanic Eruptions 5 and 6
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(a) Volcanic Eruption 7 (b) Volcanic Eruptions 8

Figure 27: DEA for Volcanic Eruptions 7 and 8

44



Curriculum Vita

Peter K Asante was born on May 21, 1990. Currently, he is pursuing a Ph.D. degree in

Computational Science at The University of Texas at El Paso (UTEP) under the supervi-

sion of Prof. Maria C. Mariani. He had his Masters degree in the field of Mathematical

Sciences at Kansas State University, Manhattan,KS, where his focus was on applied Mathe-

matics and acquired a certificate in applied Mathematics in addition to his Master’s degree.

Prior to that, he had his Bachelor’s degree in Mathematics at the Kwame Nkrumah Uni-

versity of Science and Technology, Kumasi, Ghana. His experience with research as an

undergraduate student fuelled his interest in pursuing graduate studies in mathematics.

During his master’s program at Kansas State he realized he was more interested in apply-

ing mathematical concepts in a practical way to different fields and was impressed with

how mathematical models could provide a way to understand complex systems that oc-

cured both in nature and outside of nature. This led him to pursue his doctoral degree in

Computational Science where he seeks to apply and develop mathematical and stochastic

models to help understand naturally occuring systems as well as stochastic systems.

Currently his work involves the application of data analytics on Financial & Geophysical

time series, with particular interest in scaling models for time series, systems of stochastic

differential equation and entropy measures in detecting long-memory effects of time series

data. He began his Ph.D. program in the Spring of 2018. He worked as a Teaching Assistant

at KNUST after his Bachelor’s degree, at Kansas State University during his Masters degree

program and currently works as a PhD teaching assistant at the University of Texas at El

Paso.He has one publication as a co-author, one conference paper as a co-author and has

presented at two conferences. He is also a member of the Society for Industrial and Applied

Mathematics (SIAM) and Computational Science Students Association (CPSSA) where he

serves as the RSO.

45


	Lévy Processes: Characterizing Volcanic And Financial Time Series
	Recommended Citation

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	 Lévy Processes And Scaling Methods Applied To Time Series
	Lévy Walks and Lévy Flights
	Some Applications
	Volcanic Eruptions
	Transportation

	Scaling Methods
	Brief history

	Some aplications of Scaling Methods
	Hydrology
	Stock Markets/Finance
	DNA Sequencing

	Time Series data Characterization: Gaussian or Lévy (Lévy flight or Lévy walk)

	Methods For Determining Long-Range Correlations In Time Series
	Variance Scaling Methods
	Rescaled Range Analysis
	Detrended Fluctuation Analysis
	Diffusion Entropy Analysis
	Estimation Procedure


	Time Series Data
	Financial time series
	Volcanic time series
	Stationarity of the Financial and Volcanic time series


	Results And Discussion
	Results
	Discussion

	Concluding Remarks
	Future Work
	Time line

	References
	Appendix A
	Appendix B
	Appendix C
	Curriculum Vitae

