
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2020-01-01

A Survey Of The Current State Of The Practice In Bridging The Gap A Survey Of The Current State Of The Practice In Bridging The Gap

Between Engineering Ontologies And Modeling Profiles For Between Engineering Ontologies And Modeling Profiles For

Engineering Applications Engineering Applications

John Artus
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Artus, John, "A Survey Of The Current State Of The Practice In Bridging The Gap Between Engineering
Ontologies And Modeling Profiles For Engineering Applications" (2020). Open Access Theses &
Dissertations. 2923.
https://scholarworks.utep.edu/open_etd/2923

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F2923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.utep.edu%2Fopen_etd%2F2923&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/2923?utm_source=scholarworks.utep.edu%2Fopen_etd%2F2923&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

A SURVEY OF THE CURRENT STATE OF THE PRACTICE IN BRIDGING THE GAP

BETWEEN ENGINEERING ONTOLOGIES AND MODELING PROFILES FOR

ENGINEERING APPLICATIONS

JOHN GERARD ARTUS

Master’s Program in Systems Engineering

APPROVED:

Jose F. Espiritu, Ph.D., Chair

Heidi A. Taboada, Ph.D.

Tzu-Liang (Bill) Tseng, Ph.D.

Virgilio Gonzalez, Ph.D.

Stephen Crites, Ph.D.
Dean of teh Graduate School

A SURVEY OF THE CURRENT STATE OF THE PRACTICE IN BRIDGING THE GAP

BETWEEN ENGINEERING ONTOLOGIES AND MODELING PROFILES FOR

ENGINEERING APPLICATIONS

by

JOHN GERARD ARTUS, BSEE

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

 MASTER OF SCIENCE

Department of Industrial Manufacturing & Systems Engineering

THE UNIVERSITY OF TEXAS AT EL PASO

May 2020

iii

Abstract

Model-Based Systems Engineering holds the promise of enhancing systems engineering

tasks and product quality through better, more efficient exchange of data across tools, personnel,

and departments, a higher quality of analysis resulting from greater access to cross-discipline

data, better coordination between engineering activities and those of program management, and

many other benefits. Yet, there is still no standardized method for achieving commonality of

architecture vocabulary across projects, across, companies, across industries such that entities

operating in the same domain produce products that speak the same technical language. Some

specialized domains, such as the Department of Defense (DoD), have developed Architecture

Frameworks (AF), such as the DoDAF, to establish a level of standardization through

enforcement of a profile on the architecture development activities. Still, for other industries,

there is no such standardization. Ontologies offer a possible solution to this problem by allowing

domain interests to collaborate to construct a domain ontology that can then be transformed into

a modeling profile to constrain architectural development activities to use a more common

vocabulary. This thesis examines the current state of the practice in industry towards developing

a standard methodology for transforming such standardized domain ontologies into modeling

profiles.

iv

Table of Contents

Page

Abstract .. iii

Table of Contents ... iv

List of Tables .. vii

List of Figures .. viii

1 Introduction .. 1

1.1 What is an Ontology? .. 3

1.2 Ontologies As the Source of this Knowledge in Engineering Architectures 4

1.3 Benefits of Using Ontologies for Architecture Development 4

1.4 What is Preventing the Use of Ontologies in Architectural Development? 5

1.5 Thesis Roadmap .. 6

2 Historical Background of Ontology Development ... 7

2.1 Vocabulary .. 9

2.2 Taxonomy.. 9

2.3 Ontology .. 10

2.4 State of Readiness in Ontology Development .. 12

3 Historical Background on Use of Ontologies in Engineering 18

3.1 Use of Ontologies in Engineering in General ... 18

v

3.2 Use of Ontologies in Systems Engineering and Manufacturing 19

3.3 Use of Ontologies Specifically in Software Engineering 21

3.4 Use of Ontologies Specifically in Systems Engineering 27

4 Constructing Ontologies ... 38

4.1 Design Criteria .. 38

4.2 Ontological Formalisms .. 40

4.3 Methods for Modeling Ontologies .. 40

4.4 Types of Ontologies .. 42

4.5 Languages for Building Ontologies .. 44

4.6 Ontology Development Tools ... 45

4.7 Ontology Development Methodologies .. 45

4.8 How Ontology Development Differs from Object-Oriented Design 47

4.9 Important Ontological Terms .. 47

4.10 Understanding Classes and Class Hierarchies ... 49

4.11 A Simple Knowledge-Engineering Methodology ... 61

4.12 Ontology Maintenance .. 70

5 Bridging the Gap Between Ontologies and Modeling Profiles 71

5.1 Modeling ... 71

5.2 Meta-Object Facility ... 73

5.3 UML Profile Extension Mechanism ... 75

vi

5.4 Model Driven Architecture ... 77

5.5 Ontology Definition Metamodel ... 80

6 Current State of the Practice ... 84

6.1 NASA JPL Integrated Model-Centric Engineering Initiative 84

6.2 NASA JPL View of Systems Engineering Landscape in the 2010 Timeframe .. 85

6.3 NASA JPL Use of Models as Information Structures .. 89

6.4 NASA JPL Use of Semantic Technologies ... 91

6.5 Embedding Ontologies in SysML Profiles ... 96

6.6 Embedding Ontologies in SysML Profiles ... 101

6.7 NASA JPL Conclusions and Future Work .. 105

7 Summary ... 107

8 Conclusion .. 110

References ...113

Curriculum Vita ..123

vii

List of Tables

Table 1: Core Skills Required of a Professional Ontologist ... 15

Table 2: Core Knowledge Required of a Professional Ontologist 16

Table 3: Elective Skills of a Professional Ontologist ... 16

Table 4: Elective Knowledge of a Professional Ontologist .. 17

Table 5: Ontology Standard Used at JPL .. 92

Table 6: Ontology Technologies Used at JPL .. 92

Table 7: Relative Utility of Semantic Web Technologies and UML/SysML 93

Table 8: OWL Ontologies for Systems Engineering .. 95

viii

List of Figures

Figure 1: Thesis Roadmap .. 6

Figure 2: CAEX Plant Models Validation Process Using OWL 33

Figure 3: Relation Among Modeler-Model-Interpreter .. 71

Figure 4: Representation of Figure 3 in Modeling Language ... 72

Figure 5: Syntax and Semantics of Metamodel .. 73

Figure 6: Meta-Object Facility Metamodel Hierarchy ... 74

Figure 7: SE Lifecycle Phases Mapped to MDA .. 80

Figure 8: Semantic Web Architecture... 81

Figure 9: Ontology Modeling in the Context of MDA and the Semantic Web 83

Figure 10: Example Type Classification Hierarchy .. 90

Figure 11: Relationships are Also Properties.. 91

Figure 12: Transformation of UML/SysML Models to Ontologies 97

Figure 13: Reification in UML/SysML .. 99

Figure 14: OWL2 Property Chain Example ... 100

Figure 15: Example UML/SysML Reification ... 103

Figure 16: Example OWL2 Reification .. 103

1

 1 Introduction

Ontologies are built for the purpose of capturing knowledge about objects and their

relations to each other so that this knowledge can be reused in multiple activities. The primary

emphasis on application of ontologies today is in the development of the Semantic Web. The

Semantic Web “has the potential for semantically richer representations of things … and should

provide us with more intelligent services.” (Gasevic, Djuric, & Devedzic, 2006)

The study and use of ontologies in modern engineering practices has only recently come

to the attention of systems engineers. An ontology defines the basic terms and relations

comprising the vocabulary of a topic area as well as the rules for combining terms and relations

to define extensions to the vocabulary. (Neches, et al., 1991) The most effective use of

ontologies in systems engineering thus far has been in the area of requirements engineering.

(Bernardi, Rabello, & Cervi, 2016) Most of the progress has been made in the areas of 1) mining

domain knowledge from Natural Language requirements text documents to construct ontologies

that support other requirements engineering activities, 2) requirements analysis using a domain

ontology to reduce requirements ambiguity and promote completeness, and 3) requirements

specification development using the domain ontology to layout the structure of the document.

(Siegemund, 2014) The activity identified in 1) above holds promise for contributing to a

domain-specific ontology that could also serve the purpose of architecture development.

To deliver a quality architectural description of a solution, the architect faces a task that

requires substantial knowledge about the domain of the problem space that the solution is

intended to address. This thesis examines the state of the practice of using the domain knowledge

captured in an ontology that is then transferred to a modeling profile. The modeling profile can

then be used to represent the captured knowledge about the given domain in the development of

2

system architectures, which form the basis for the conceptual description of engineered systems.

The knowledge transferred from an ontology to a modeling profile includes primarily a

description of the individual domain objects and their relationships to each other. To derive

maximum usability from an ontology selected to support architecture modeling activities, the

ontology should meet certain basic criteria:

• Expressive Power – Does the ontology communicate the domain knowledge

effectively to the modeling profile?

• Understandability – Can the architect understand the contents and meaning of the

ontology as represented in the profile?

• Accessibility – Can the needed knowledge be easily extracted from the ontology

for use in the modeling profile? (Fikes & Tom, 1985)

Satisfaction of some of these criteria are influenced by the translation mechanism going

from the selected ontology to the modeling profile. But having a quality ontology selected at the

start solves much of the problem.

However, the problem is not restricted to selecting and ontology and applying it to the

task of architectural development. Two additional problems exist in the landscape of ontology

applications to architecture. One problem is the lack of sufficient domain ontologies of concern

to architects of complex engineered systems. In order for more engineering-related ontologies to

become available, engineering organizations involved in design activities should begin

contributing to the development of an open repository of general-purpose ontologies in various

engineering fields of study. However, this requires that engineers who understand the complex

nature of the subsystems involved in these specialized engineering domains become involved in

the actual construction of ontologies. This leads to the second problem to be dealt with.

3

According to Boyce & Pahl, the tools currently available require a degree of expertise that does

not favor the generation of ontologies by people who are experts in a particular subject area but

not practiced in ontological engineering. Currently, a joint effort by domain experts and ontology

engineers is necessary for ontology development. To see the widespread development of domain

ontologies would require availability of ontological tools for creating ontologies from scratch, or

to enrich pre-existing ontologies with minimal human intervention. (Boyce & Pahl, 2007)

1.1 What is an Ontology?

There are many interpretations of the meaning of ontology depending on the perspective

of the user (philosophical, conceptual, logical, etc), the degree of formality required, and whether

the need is for a domain-specific application or something more generalized. For the purpose of

this thesis, which focuses on the practical engineering use of an ontology for developing

architectures, the following definition (Neches, et al., 1991) suits the need well: “An ontology

defines the basic terms and relations comprising the vocabulary of a topic area as well as the

rules for combining terms and relations to define extensions to the vocabulary.” It is the

identification of key architectural elements and the defining of relationships among those

elements that interest the architect the most. The primary relationships of interest include

classification (type casting), generalization-specialization (is-a-kind-of), and whole-part (is-a-

part-of). (Graves, Integrating Reasoning with SysML, 2012) Together, the defined elements and

their relationships allow the architect to establish the principle features of the architecture,

including the components, subcomponents, assemblies, roles, functions, interfaces, ports,

connectors, data exchange items, etc. This task is enhanced by the availability of a modeling

profile that represents community knowledge of a particular domain, thereby promoting efficient

4

use of pre-existing knowledge, and consistency of the product architecture with other

architectures within the domain community.

1.2 Ontologies as the Source of this Knowledge in Engineering Architectures

While the interest in using ontologies to support the development of modeling profiles in

system architecture practice is growing, the actual state of current practice is that most

architecture development efforts do not take advantage of ontologies, nor of the domain profiles

built from recognized domain ontologies. As a result, the identification of architectural elements

and their relationships end up being parochial activities sponsored by individual organizations

such as companies or departments, with little-to-no knowledge sharing or commonality with

other organizations. Users of the architectures discover that terminology normally accepted as

common, in the end has multiple interpretations. The architectures thus produced have limited

transference outside of the organization without the user of the architectural description having

to inquire about the definition of the fundamental terms used to describe the various elements of

the architecture. This situation produces misinterpretations of the architecture and is an

especially important consideration with system architectures because they represent a

conceptualization of a product solution, and thus, to some degree, represent a product of the

mind on the part of architects constructing the architecture. These conceptualizations can be

difficult to precisely define if not well documented, and thus easily misinterpreted by users of the

architecture not familiar with the frame of mind of the architects constructing the architecture.

The only solution is to include definitions of terms as a part of the architectural description.

1.3 Benefits of Using Ontologies for Architecture Development

The use of modeling profiles generated from ontologies that have been built and accepted

by a domain community is that the terms become standardized within the community, the

5

definitions of all the elements of the architecture no longer need to be embedded within the

architecture, and chance of misinterpretation of the architecture is vastly reduced.

With almost every architectural development activity undertaken, a new architectural

database must be built from scratch. The cost of duplicating the effort of previous architecture

development projects without reuse remains one of the major costs in system development

activities. The cost of this duplication of effort will become prohibitive as larger architectural

projects are undertaken. To overcome this waste of effort, ways of preserving existing

knowledge bases and of sharing, reusing, and building on them must be developed. Ontologies

provide the basis for building, storing, and sharing reusable knowledge for a variety of uses, not

just for architectural development. Thus, ontologies will provide sources of information that

serve the same functions as traditional text-based databases, such as books, and reports. Yet, they

are more flexible, easier to update, and easier to query. Ontologies will make it possible for end

users to tailor large systems to their needs by assembling knowledge bases and services rather

than developing architectures from scratch. (Neches, et al., 1991)

1.4 What is Preventing the Use of Ontologies in Architectural Development?

The availability of ontologies for engineering use in particular domains is extremely low

due to 1) the nascency of this specific application of ontologies, 2) the fluid nature of standards

development in this area, and 3) the lack of tools to facility the transformation of ontologies into

modeling profiles. This thesis examines the current state of practice in the construction of

modeling profiles from existing ontologies and recommends steps to be taken to improve the

process such that it becomes more readily available for architects to employ.

6

1.5 Thesis Roadmap

The roadmap for this thesis, illustrated in Figure 1, is intended to summarize the

development of the theme of this thesis and walk the reader down the path of understanding the

value and potential of the use of ontologies to understanding how ontologies can be of value to

architects when developing system architecture, to finally understanding the current state of the

practice in transforming ontologies into useful profiles for modeling systems architectures.

Figure 1: Thesis Roadmap

7

2 Historical Background of Ontology Development

Ontology development spawns from the human desire to provide structure and meaning

to our universe. Ontology development has its origins with the Ancient Greeks with their study

of Philosophy. Parmenides is generally recognized as the first to discuss the ontological

categorization of existence. The etymology of the term ontology points to Greek origins that

refer to ontology as “the study or theory of being or that which is.” (Roe, 2012) However, it is

not the ancient purpose and use of ontology that interests us in engineering today.

Since the times of the Ancient Greeks, the modern use of ontology in the sciences has its

origins with the research activities into Artificial Intelligence (AI) in the 1970s and 1980s.

During the 1990s, interest in ontology moved from the AI laboratories to the desks of domain

experts who saw the potential of the organized classification of information to help solve

practical real-world problems. (Noy & McGuinness, 2001) The modern application of ontology

is better defined as “a technical term denoting an artifact that is designed for a purpose, which is

to enable the modeling of knowledge about some domain, real or imagined.” (Gruber, Ontology,

2009) The overall concept of ontology and its application in a diverse set of fields of study has

sparked a debate over its precise meaning for different applications.

Developing an ontology is not an end in itself. Noy and McGuinness identified five

reasons why people would have interest in developing ontologies. These are 1) to share a

common understanding of the structure of information among people or software agents, 2) to

enable reuse of domain knowledge, 3) to make domain assumptions explicit, 4) to separate

domain knowledge from the operational knowledge, and 5) to analyze domain knowledge. (Noy

& McGuinness, 2001) The interest of this thesis lies in the second reason – to enable and foster

greater sharing of common knowledge among domain practitioners in the area of system

8

architecture, so that the definition of system elements, interrelationships, behavior, etc., are

reused from other domain contributors and not developed afresh for each undertaking.

In (Pahl & Holohan, 2004), Pahl and Holohan identified four purposes for developing

knowledge spaces. These are:

• Vocabulary – To collect terms along with their definitions with no specific

defined relationships among the elements of the vocabulary.

• Taxonomy – To establish terminology definition and classification as the central

issues. It supports browsing and retrieval of educational resources.

• Thesaurus – To identify relationships between terms are the central issues. It

constrains the use of a vocabulary.

• Conceptual Model – As a formal model of some domain that supports modeling

of the subject area and technical aspects, and often uses more than simple

classification-oriented relationship types.

• Logical Theory – To reason and infer on a given problem. It combines knowledge

representation with logic and, thus, supports reasoning within a knowledge

domain.

One objective of developing an ontology is to establish a firm understanding of the

terminology used within a domain. Thus, it is appropriate when studying ontologies to be

familiar with terms surrounding the development of ontologies. Here, we examine the difference

between the terms vocabulary, taxonomy, and ontology.

9

2.1 Vocabulary

Simple vocabularies are human-oriented, as opposed to having structure that a machine

could easily interpret. However, there can be vocabularies that have some organization and

structure that aids in their interpretation, although the structure may not be optimized for

machine interpretation and the interpretations are often subjective and ambiguous. Types of

vocabularies include 1) controlled vocabulary, such as a catalog, which provides a finite list of

terms together with an unambiguous interpretation of those terms, 2) glossary which provides a

list of terms and their meanings in a natural language, and 3) thesaurus which provides some

semantics in the form of synonym relationships between terms that greatly reduces ambiguity.

However, none of these vocabularies provide explicit term hierarchies. (Gasevic, Djuric, &

Devedzic, 2006)

2.2 Taxonomy

A taxonomy is a hierarchical categorization or classification of entities within a domain.

(Gasevic, Djuric, & Devedzic, 2006) A taxonomy is used to classify or categorize a collection of

concepts within a hierarchical structure. This is a treelike structure that places the most general

concept as the root of the tree. Each node of the tree represents some object in the real world that

the designer has decided should be modeled based on the stated purpose of the taxonomy. Each

link between two nodes in the taxonomy represents a “subclassification-of” relation or a

“superclassification-of” relationship. (Boyce & Pahl, 2007)

Taxonomies illustrate more structure than do vocabularies in that they describe

supertype/subtype relationships among entities where a child only has a single parent and a

parent can contain one or more children. Taxonomies allow the classification of the members of

a population into groups and subgroups within subgroups, where every sibling set under a parent

10

node (class) enables the division of the parent population into mutually exclusive and

collectively exhaustive subsets. However, they suffer from not having sufficient range of entity

relationship characterization to fully describe a domain. According to David Hay, a major issue

with taxonomies for organizing knowledge is that “most of our knowledge is not hierarchical. To

cram a body of knowledge into a hierarchical structure leads to all kinds of problems.”

(Hoberman, 2008) A properly structured taxonomy separates the entities into mutually exclusive,

unambiguous groups and subgroups that, taken together, include all possibilities. (Gasevic,

Djuric, & Devedzic, 2006)

2.3 Ontology

Ontologies are a formal way of organizing information using categories, and relating one

category to another. Ontologies include a taxonomy along with additional data that provides a

full specification of the domain of interest. (Gasevic, Djuric, & Devedzic, 2006) They offer a

simplification of something complex in our environment described by using a standard set of

symbols. Ontologies identify a variety of types of relationships among elements, not just

hierarchical classification of types of entities as in a taxonomy. (Hoberman, 2008)

Ontologies are used by people, databases, and applications to share terms used to

describe an area of knowledge in a given domain of interest. Thus, ontologies assist in resolving

a prevalent problem in the data-centric world today – that of data and information that is heavily

siloed, having been collected to service very specific and narrowly-focused local needs within

the context of specific applications. This poorly managed data capture/location scheme makes it

very difficult to reuse data. (Neuhaus, et al., 2011) Ontologies can be used in applications

requiring computer-usable definitions of basic concepts in a domain and the relationships among

those concepts. Certain applications need ontologies with a significant degree of structure. This

11

applies to an architectural description of a complex engineered system. These architectures need

to specify descriptions for the following kinds of concepts:

• Classes (general things) in the many domains of interest.

• The relationships that can exist among things.

• The properties (or attributes) those things may have.

Ontologies are expressed in a logic-based language, so that accurate and meaningful

distinctions can be made among the classes, properties, and relations. (Boyce & Pahl, 2007)

The view that humans take of the world around them is affected by the natural order of

things, and by man’s impulse to organize the world around him. Whether studying the natural or

man-made order of things, the complex interweaving of dependence connections and forms of

independence among the many items of which systems are composed becomes apparent to the

observer and can become the subject of the attempt to record the discovered elements and

relations among them. Through examination of natural and man-made systems, a list of objects

can be identified. These objects can be categorized generally as independent items and dependent

items. Independent items are those that exist naturally on their own. They are not the result of

any intervention on the part of humans. The independent items can be further categorized as real

and ideal. The real items being real physical elements we see around us, such as mountains. The

ideal elements being abstract objects that are a result of human representation of relations among

real concepts by various formalisms in the various sciences, such as sets. Further, the dependent

items can also be categorized by real items and ideal items. The real dependent items do not

necessarily exist naturally in the world, but are created through human activity, such as a

handshake. The ideal dependent elements being abstract objects that are a result of human

representation of relative concepts among the real dependent items, such as color. (Poli, 2003)

12

2.4 State of Readiness in Ontology Development

This section addresses the current state of readiness of institutions and industry to train

the workforce needed to take on ontology development tasks. The information provided here is

derived from the Joint Communiqué of the Ontology Summit 2010. The 2010 Ontology Summit

was devoted to the education of ontologists under the heading “Creating the Ontologists of the

Future”. (Neuhaus, et al., 2011)

2.4.1 Current State of Need for Trained Ontologists

There already exists a great demand for trained ontologists in research and industry. This

demand is expected to increase over time as new uses for ontologies are identified and their

successful applications proven. As the world becomes more data-centric, the need to characterize

and process that data becomes more urgent. Ontologies can assist in efficiently processing this

data. Ontologist skilled in these methods will need to become available to meet the growing

demand. These ontologists will be employed in research to develop new ontological theories,

methods, and tools that are then used by ontologists in industry to create ontologies, use them to

manipulate data, and evaluate the results. (Neuhaus, et al., 2011)

2.4.2 Current State of Ontologist Training

The communique reported the following findings regarding the educational opportunities

available. (Neuhaus, et al., 2011)

2.4.2.1 Demand for Ontologists Increasing

The demand for ontologists is expected to rise considerably. It is expected that 5% of

information system and software engineering professionals will be required to have some degree

of ontology education or training.

13

2.4.2.2 Gap Between Educational Needs and Education Availability

There exists a large gap between educational needs and education availability.

Unfortunately, our educational system and industry training mechanism are not suited for

delivering trained ontologists at the rate needed in research and industry. Institutions are finding

it difficult to locate skilled ontologists. There exists no professional organization chartered to

certify skilled ontologists. There are few educational institutions that offer courses in ontology,

let alone degrees in the field. As of 2011, only 21 educational programs were identified that

offered courses in ontology. And of those, only one was identified as being devoted to education

in applied ontology. As a result of the lack of training opportunities for aspiring ontologists,

graduates often do not meet the needs of organizations seeking skilled professionals. New

educational organizations and new educational methods need to be identified and developed to

train the ontologists needed today and into the future. Due to the lack of educational

opportunities in this field, those that consider a career in a field involving ontology development

or use must rely on becoming self-taught or seek out on-the-job training.

2.4.2.3 Demand for Training Opportunities Increasing

Significant demand for training opportunities for working professionals exists. The

communique reported finding that most training opportunities were as a result of formal

educational opportunities, as few as there are. Thus, training opportunities outside of formal

education are essentially non-existent. People that indicated an interest in ontology education

were found to have developed that interest from exposure to the topic through work assignments.

While these subjects are often part of the typical college curriculum, they often are not found in

industry training programs. Thus, there is a significant demand for training at work; and not just

to become familiar with the subject area, but rather to develop significant technical competence.

14

2.4.2.4 Important Subjects are Absent

Important subjects are absent from existing curricula. Workforce professionals who have

to staff and manage those entering career ontologist positions have identified technical subject

areas related to ontology development that are not covered by the educational curriculum taken

by candidates filling the positions.

2.4.2.5 Ontology is Interdisciplinary

The research, development, and application of ontologies is seen by those practicing the

skill as being a very interdisciplinary occupation. Since ontology engineering is seen much as a

service that supports multiple domains, practitioners suggest a curriculum that includes

contributions from a variety of fields that can benefit from the product of ontological

engineering. Educational programs should be designed to attract students with varied

backgrounds and interests.

2.4.2.6 Qualified Ontologists not Recognizable by Industry

Employers cannot easily recognize qualified ontologists. Due to the fact that educational

programs have such few opportunities for those interested in fields directly or indirectly related

ontological engineering to engage in courses that relate to the field, organizations requiring that

skill find it difficult to identify qualified candidates. Further, there exists no professional

certification or qualification organization established to certify professionals who have the

requisite skills for performing the tasks in an industrial setting. This makes it very difficult for

employers to identify candidates that have proven specialty skills in ontology.

2.4.3 Required Knowledge and Skills for Development and Application of Ontologies

In order to be an effective professional in the field of ontology development and

application, the ontologist must command a specific set of skills. The Communiqué identified

15

three sets of knowledge and skills that a candidate would need to display to qualify for

performing tasks associated with the development and application of ontologies in research and

industry. The three knowledge and skill sets identified in the Communiqué are 1) Core skills, 2)

Core knowledge, and 3) Elective knowledge and skills. The Communiqué recommends that

educational institutions interested in training the next generation of ontologist should consider

providing course content and career path opportunities that emphasize these skills and

knowledge areas. According to the Communiqué, in order to be prepared for a career involving

ontology development or application, a student should be required to gain competence in all of

the core areas and some of the elective skills and knowledge. The three skill sets that the

Communiqué developed are reproduced in Tables 1-4, with an assessment by the author of this

thesis as to which of these skills would be of particular use in developing ontologies that serve

the purpose of transferring knowledge to modeling profiles used to develop system architectures.

The Communiqué indicates that many of these skills are not developed through course lecture

alone. Practical, hands-on experience with developing ontologies that help solve real-world

issues is important to developing the requisite knowledge and skills. (Neuhaus, et al., 2011)

Table 1: Core Skills Required of a Professional Ontologist (Neches, et al., 1991)

Required Core Skill Service to Architectural Development

Clarify the purpose of an ontology High

Analyze data for relevancy to a project High

Judge the kinds of ontologies useful to a project High

Managing ontologies across the lifecycle Medium

Using software tools for ontology development High

Choosing a representation language Low

Selecting the appropriate level of detail Medium

Identify existing content resources High

Assemble an ontology from reusable modules High

Using different representation languages Low

Identify ontological entities and relationships High

Evaluate and improve ontologies Medium

16

Document ontologies Medium

Support distributed development of ontologies Medium

Use one or more modern programming language Low

Table 2: Core Knowledge Required of a Professional Ontologist (Neuhaus, et al., 2011)

Required Core Knowledge Service to Architectural Development

Basic terminology of ontology High

Theoretical foundations of ontology

First-order logic Low

Set theory Low

Basic notions of philosophical ontology Medium

Philosophy of language Low

Conceptual modeling High

Representation languages (RDF, OWL, Common

Logic)

Low

Building/editing ontologies

Application of classification principles High

Software tools High

Addressing interoperability issues High

Ontology evaluation strategies High

Ontology methodologies

Upper-level ontologies Medium

Mid-level domain-spanning ontologies Medium

Domain-specific ontologies High

Applications of ontologies

As controlled vocabulary High

To solve interoperability problems Low

For reasoning Low (at this time)

To improve search and retrieval Low

For natural language processing Low

For decision support Low

Web Applications

General foundations (URIs, XML, etc.) Low

Semantic Web initiatives Low

Publishing, annotation, curation Low

Table 3: Elective Skills of a Professional Ontologist (Neuhaus, et al., 2011)

Elective Skills Service to Architectural Development

Coordinate ontology development efforts High

Creating visualizations of ontologies Medium

17

Training people in the use of ontologies Low

Table 4: Elective Knowledge of a Professional Ontologist (Neuhaus, et al., 2011)

Elective Knowledge Service to Architectural Development

Advanced logic Low

Advanced philosophical ontology Low

Computer science

Formal languages Low

Automated reasoning Low

Database theory Low

Artificial intelligence Low

Logic programming Low

Linguistic/cognitive sciences

Syntax, semantics, pragmatics Medium

Natural language processing Low

Cognitive theories of categorization High

Representation languages (SWRL, RIF, SKOS,

OBO Format, UML, IKRIS)

High (for UML, SysML)

Ontology content acquisition (data mining) High

Ontology interoperability Medium

Building ontology repositories Medium

Usability and user interface issues Low

Knowledge of application domain High

As can be seen by the large variety of topics that the ontologist must have either have some

familiarity with or develop significant knowledge of, there remains a good deal of work required

of educational institutions to identify and develop a quality curriculum for those seeking careers

as ontologists. The field of ontology research, and application is still a very young discipline.

There is, as the Communiqué points out, no widely agreed upon body of shared knowledge,

established methodologies or common terminology. Instead, multiple terminologies are used in

the different subfields of ontology, for example, deriving from specific programming

environments, from database design and the conceptual modeling community, or from traditional

philosophical ontology. (Neuhaus, et al., 2011)

18

3 Historical Background on Use of Ontologies in Engineering

3.1 Use of Ontologies in Engineering in General

Globa, et al. provide a set of considerations for usage of ontologies in engineering

applications. The objective of their work is to help establish answers to the following questions

in order to properly scope the ontology development effort:

• Which domain will be the subject of the ontology?

• What questions should the knowledge representation in the ontology address?

• Who will use and maintain the ontology?

They suggest the development of four separate ontologies to support engineering

activities. These are 1) an engineering activity ontology, 2) an engineering knowledge ontology,

3) an engineering computations ontology, and 4) a subject domain ontology. The purpose of the

engineering activity ontology is to capture concepts related to the business organization of

engineering activities, such as the people, organizations, tasks, etc related to accomplishing the

engineering objectives within the business. The purpose of the engineering knowledge ontology

is to capture the meta-concepts that specify structures to describe the problem, such as the

methods, objects, results, and equipment used in research activities that provide the knowledge to

support the engineering activities. The purpose of the engineering computations ontology is to

capture the classes that describe calculation abilities needed to support the conversion of data to

knowledge, such as the kinds of calculations, services, service parameters, interfaces, etc.,

needed. (Globa, Novogrudska, Koval, & Senchenko, 2018)

19

3.2 Use of Ontologies in Systems Engineering and Manufacturing

Systems engineering and system manufacturing have both seen an increase in the

importance and popularity of the use of ontologies to solve critical problems. Ontology and

semantic technologies have been adopted by the engineering community as a promising

approach to solve several of these issues such as information modeling, data integration, data

analysis, data exchange, system interoperability, etc. For example, in product design, ontologies

are used 1) for modeling the product structure and taxonomy, 2) for design automation using

existing engineering knowledge, and 3) for requirements engineering. In manufacturing,

ontologies are used 1) for the control of production processes for dynamic orchestration, 2) for

factory automation, and 3) for the mapping of data sources to Manufacturing Execution Systems

functions. (El Kadiri, et al., 2015) El Kadiri, et.al. describe three specific FP71 European projects

that exemplify the use of ontologies in engineering applications.

3.2.1 LinkedDesign Project

The goal of the LinkedDesign project is to collect product manufacturing data from

factory floor work stations to feed operational efficiency analysis, future product design Life

Cycle Cost (LCC) analysis, and to respond to changing customer requirements with speed. In

order to collect and process manufacturing data from a variety of work stations reporting such

data in a variety of formats, locations, and times, etc, the team defined a common semantic

model that enables common interpretations of data and information exchanged between people

and systems that have no common recognition of data type or relationships. Analysis of the LCC

across the enterprise allows the factory configuration to be selectively optimized to meet LCC

1 FP7 refers to the Seventh Framework Programme of the European Union

20

requirements. Thus, various LCC options can be presented to the customer to enhance the

available selection. To enable advanced control of products design and maintenance, three

groups of rules were created: 1) rules for enforcing customer requests that select workstation

configurations that meet customer LCC requirements, 2) rules for inheritance of properties from

part to product such that if the configuration of a part drives LCC, that property is inherited by

the workstation processing the part, 3) rules to alert service teams when the production line is not

functioning at optimal performance. (El Kadiri, et al., 2015)

3.2.2 VFF Project

The goal of the Virtual Factory Framework (VFF) project was to develop an integrated

collaborative virtual environment intended to synchronize factory floor production operations

with various simulations of those operations for near-real time optimization of factory

operations. Distribution, modeling integration, and reasoning of data was accomplished using

Semantic Web technologies, in particular, an ontology-based data model, named Virtual Factory

Data Model (VFDM). The VFDM model allows seamless data exchange between disparate

software tools provided they employ a software connector that transforms data from the ontology

format to the proprietary data structures of the tools, and vice-versa. (El Kadiri, et al., 2015)

3.2.3 FLEXINET Project

The goal of this project is to “provide decision support on how to best design and

facilitate Global Production Networks (GPN)”. GPNs consist of a set of diverse and divergent

facilities, personnel, and organizations over vast geographical areas. FLEXINET is intended to

provide the ability to reconfigure the configuration and operation of these networks in order to

accommodate the introduction of new manufacturing technologies thereby reducing costs, risk,

and/or improving production rates. To accomplish this, FLEXINET employs a reference

21

ontology that provides a consistent data-set of production information and knowledge from

across the entire span of facilities that support the GPN. The resulting process helps identify the

optimal arrangement of in-sourcing, out-sourcing, partnerships, logistics, etc. to achieve

manufacturing and LCC goals. (El Kadiri, et al., 2015)

3.3 Use of Ontologies Specifically in Software Engineering

Software Engineering shares a common legacy with Knowledge Engineering from which

the current interpretation of what ontology means emanates. However, despite this common

legacy, both communities have developed along different paths and mostly live in their own

worlds. The aim of Software Engineering has been toward achieving a higher degree of

abstraction through 1) modeling that places greater emphasis on development activities based on

the modeling of objects and procedures, and 2) higher-level programming languages.

Meanwhile, Knowledge Engineering has been focused on realizing the vision of the Semantic

Web, which has spawned the development of new technologies and tools for ontology

representation, machine-processing, and ontology sharing. This makes their adoption in real-

world applications much easier placing ontologies in the position to enter mainstream use. While

there are movements to build commonality among the two disciplines, little work is being done

to develop specific guidelines for practicing engineers to employ. As a result, each discipline

continues to develop their own core concepts, thus making it increasingly difficult for one

community to engage with the other. Nevertheless, there are opportunities for ontologies to

bridge the gap between the two communities. (Happel & Seedorf, 2006)

Happel and Seedorf have defined a set of concrete approaches for using ontologies in the

context of Software Engineering, presented here in the order of appearance in the Software

Engineering lifecycle.

22

3.3.1 Analysis and Design

3.3.1.1 Requirements Engineering

In this phase of the lifecycle, the objective is to gather the desired system functionality

from customers. It is important for all participants in the process to have a shared understanding

of the problem domain. Ontologies can be used to describe the requirements specification

documents and to formally represent requirements knowledge. Requirements are normally stated

in terms of natural language. However, ontologies can play a role here through the use of formal

specification languages which are generally more precise than natural language. This higher

level of precision can lead more directly and more effectively towards the production of formal

system specifications. The use of ontologies offers several improvements to traditional

Requirements Engineering: 1) requirements ontologies, if properly architected, support

automated requirements consistency checking and validation, 2) serve as prerequisites to realize

model-driven approaches in the design and implementation phases. (Happel & Seedorf, 2006)

3.3.1.2 Component Reuse

Reuse implies the use of previously designed and developed components when

implementing functionality in order to reduce costs by avoiding rework. Most reuse repositories

rely on plain syntactical key-word-based search which suffers from low precision (due to

homonyms) and low recall (due to synonyms). Ontologies can help due to their more convenient

and powerful querying capability made possible by a knowledge representation formalism for

describing the functionality of components sought for reuse. Thus, ontologies can help to

combine information isolated in several separate component description repositories. Ontologies

can also provide background information that allows non-experts to query the repository in

23

search of reuse components from their point of view, using terminology that may not be exactly

aligned with the terminology used in the components sought after. (Happel & Seedorf, 2006)

3.3.2 Implementation

3.3.2.1 Integration with Software Modeling Languages

Modern software development practices follow the Model-Driven Architecture approach

which provides an architecture for creating models based on metamodels, and which defines the

transformations between those models, and managing metadata. MDA-based languages do not

yet have a knowledge-based foundation to enable reasoning. So, there exists interest in

integrating MDA-based information representation languages, such as UML and SysML, with

ontology languages, such as RDF/OWL. These two language bases are regarded as two distinct

technological spaces. However, it is possible to discover synergies between them that can be

realized by defining bridges between them, such as the Ontology Definition Metamodel (ODM).

ODM is an effort to standardize the mappings between knowledge representation and conceptual

modeling languages. (Happel & Seedorf, 2006)

3.3.2.2 Ontology as Domain Object Model

In order to promote broad acceptance and use of ontologies in software development

projects, it is imperative that automated means for object-oriented software developers to access

ontologies be developed to avoid the need for building special knowledge by the developers to

gain that access. This is accomplished by automating the mapping of the domain model to code

in order to enable the dynamic use by other components and applications. This can be achieved

by ontology tools that generate an API from the ontology, by mapping concepts of the ontology

to classes in an object oriented language. The generated domain object model can then be used to

manage models, and for inferencing and querying. The automated end-to-end use of ontologies

24

in analysis and design, as well as implementation, is highly desirable for rapid application

development. (Happel & Seedorf, 2006)

3.3.2.3 Coding Support

Some Integrated Development Environments (IDEs) like Eclipse use the documentation

of Application Programming Interfaces (APIs) to enhance developer productivity by providing

autocompletion of method calls. New approaches to IDE environment programming suggest

enriching APIs with semantic information provided by ontologies. The needed annotations could

be stored in a public web service to enable collaborative knowledge acquisition. This approach

could also be used to automatically generate a suitable sequence of method calls to achieve a

desired goal state (like getting a database result set). The main advantage of ontologies is that

they provide a globally unique identifier for concepts. An ontology enables developers to

annotate API elements with an unambiguous concept. (Happel & Seedorf, 2006)

3.3.2.4 Code Documentation

Programming languages are poorly suited for software maintenance tasks such as

documentation. They describe knowledge in a procedural way and are not well suited for the

querying of knowledge required to pull knowledge to support documentation activities. The use

of applied description logics provides a data environment that consists of programming-language

independent descriptions of software structures and an ontology that describes the problem

domain of the software. Both can be manually connected to allow the querying of code features

dealing with a certain domain object. (Happel & Seedorf, 2006)

25

3.3.3 Deployment and Run-Time

3.3.3.1 Semantic Middleware

In modern three-tier architectures for software systems, the middleware layer lies in the

focus of attention. Sophisticated middleware infrastructures shield a lot of complexity from the

application developer, but creates challenging tasks for other tasks. Ontologies can be used to

support the formal description of concepts from component-based and service-oriented

development. The ontology provides a precise, formal definition of some ambiguous terms from

Software Engineering as well as structures supporting the formalization of middleware

knowledge by modeling the dependencies of libraries, licenses etc. (Happel & Seedorf, 2006)

3.3.3.2 Business Rules

Today’s business environment requires that companies react to rapidly-changing market

conditions necessitating frequent adjustments to business rules. Often, the business logic of a

company is hard-coded in programming languages. Thus, changes to the business logic of a

software system require modifications to the source code, triggering the normal compilation and

deployment cycle. As a result, companies are looking for solutions that support a quick

propagation of new business rules into the core software systems by disconnecting business logic

from processing logic. Rule engines are a possible solution to this problem. The business logic is

modeled declaratively with logical statements and processed by a rule engine. Similar to a

reasoner, the rule engine applies inference algorithms to derive new facts on a knowledge base.

Business rule engines can be regarded as "ontology-based" approaches since they run declarative

knowledge on a special middleware. Business rules can be changed more easily, because they are

explicitly stated in a formal language that can be presented in a user friendly way for editing.

(Happel & Seedorf, 2006)

26

3.3.3.3 Semantic Web Services

Web services enable developers to combine information from different sources to new

services. Offering data and services via well-defined interface descriptions in the web is the core

idea of web services. However, it is often difficult for developers to find appropriate services,

since most industry standards are purely syntactical, lacking semantical meaning. Thus, an

algorithm cannot find out whether the output of one service is appropriate as an input to another

service. Semantic web services add a semantic layer on top of the existing web service

infrastructure. Input parameters, functionality and return values are annotated semantically,

allowing automatic discovery, matching, and composition of service-based workflows.

Ontologies can ensure discovery and interoperability in cases that were not anticipated by the

initial developer, since semantic descriptions can be extended over the course of time. Even

mediation among services that have been developed independently and annotated with different

ontologies could interoperate by defining mappings between the services that is then interpreted

by the ontology language. (Happel & Seedorf, 2006)

3.3.4 Maintenance

3.3.4.1 Project Support

In software maintenance workflows such as bug fixing, several kinds of related

information exist without an explicit connection. This is problematic, since a unified view could

avoid redundant work and speed up problem solving. Ontologies help to connect the electronic

communication (via forums and mailing lists) of the developers with bug-reports and the affected

areas in the source code. Central concepts are the community (e.g. developers), their interactions,

and content (e.g. emails). The knowledge is codified in three kinds of ontologies: 1) content

ontologies that describe the structure of artefacts, 2) an ontology of interactions that describes the

27

communication flow among the developers, and 3) a community ontology that defines the roles

that are involved in the problem solving process. Ontologies thus provide a layer to integrate data

from different sources into a unified semantic model. The combined data can then be used to

derive additional information that was not stated explicitly in any one of the single sources

before. (Happel & Seedorf, 2006)

3.3.4.2 Testing

Software testing is an important part of quality assurance. However, the writing of test

cases is an expensive endeavor that does not directly yield business value. Furthermore, the

derivation of suitable test cases demands a certain amount of domain knowledge. Ontologies

could help to generate basic test cases since they encode domain knowledge in a machine

processable format. Ontologies may not be the first candidate for such a scenario, since there are

formalisms like Object Constraint Language (OCL) at are specialized for such tasks. However,

once domain knowledge is available in an ontology format, it might be feasible to reuse that

knowledge. (Happel & Seedorf, 2006)

3.4 Use of Ontologies Specifically in Systems Engineering

There exist many possible applications of ontologies in systems engineering activities.

The trend is growing to investigate newer such applications. Hennig, et al. in 2011 surveyed a set

of reported applications to assess their type and usefulness as exemplars of the application of

ontologies in systems engineering projects. While somewhat dated, the survey illustrates the

types of applications that organizations see as having solutions by using ontologies. Nine of the

surveyed projects are summarized here to describe the application of the ontologies that the

organization implementing them had in mind.

28

3.4.1 Domain Knowledge Acquisition Process

In (Sarder & Ferreira, 2007), Sarder and Ferreira (2006) describe their Domain

Knowledge Acquisition Process (DKAP) to capture a systems engineering functional domain

ontology, with plans to use the developed systems engineering ontology to further develop a

system of systems (SoS) engineering ontology. In order to serve the interest of SoS projects, they

acknowledge that it is important to resolve the differing semantics and standards used by the

many and varied system types that make up a SoS and the varied disciplines and backgrounds of

the engineers performing the SE tasks on such projects. The authors see as a solution the

development of a SoS ontology that consolidates and resolves differences among the individual

system ontologies. The authors surveyed several techniques and tools for developing ontologies

and selected the IDEF5 elaboration language as the means for developing ontologies in their

project. The authors also surveyed methodologies for developing ontologies and selected the

DKAP method for their project. The authors described the DKAP process and used the process

to identify the major entities of the systems engineering domain, which were then presented as a

taxonomy. It should be noted that the entities shown in the resulting taxonomy are of the systems

engineering “process”, not of any given systems engineering “project.” The work is concluded

by indicating that the authors intend to also apply the DKAP methodology to develop a System

of Systems Engineering (SoSE) ontology. (Sarder & Ferreira, 2007)

3.4.2 Knowledge Modeling Framework

In (Chourabi, Pollet, & Ben Ahmed, 2008), Chourabi, et al. describe a layered set of

ontologies intended to capture knowledge items used in the systems engineering process in order

to record engineers’ ideas and reasoning processes, and facilitate their reuse. They propose a

Knowledge Modeling Framework for systems engineering projects consisting of a SE General

29

Ontology and an ontological framework organized into four semantic layers used to capture

knowledge. The SE General Ontology three description facets: 1) Domain Facet - contains a set

of ontologies that capture basic concepts and relations used to describe the content of engineered

systems on a high semantic level, 2) Product Facet – contains concepts and relations representing

a system by formally relating modeling elements to domain concepts to provide a systematic and

semantic description of an engineering solution, 3) Process Facet - contains concepts and

relations that formally describe engineering activities, tasks, actors, and design rationale. The

Multi-layered ontologies for SE knowledge modeling are subdivided into several levels of

abstraction, thus separating general knowledge from knowledge about particular domains,

organizations and projects. These four layers are 1) General Layer - to describe super-concepts

that are the same across all domains, it corresponds to the SE General Ontology, 2) Domain

Layer - defines specializing concepts and semantic relations for a specific systems engineering

domain , 3) Application Layer - presents specialized concepts that act as a systematized

representation for annotating engineering knowledge on a particular project, 4) Instance Layer –

defines all instances of engineering ontology concepts, defining a conceptual vocabulary from

the application layer.

3.4.3 Combining Metamodel-Based Models with Ontology-Oriented Implementation

In (Ernadote, 2015), Ernadote proposes the use of ontologies to fulfill several objectives:

to enhance the communications between domain specialists and modelers, to enhance the

communications among specialist in different domains, facilitate the collection of system

information to be used in modeling, to create new perspectives on existing models, and to

generate documentation using those perspectives. Ernadote suggests a new modeling approach

which is a combination of metamodel-based models with ontology-oriented implementation. In

30

Erandote’s view, metamodel-modeling fails to fully address the communication problems project

that spans multiple domains since modelers have to agree in advance on the meaning of the data

they are creating in the models. And while ontology-oriented approaches are seen as properly

addressing multi-domain projects, Erandote nevertheless feels there remain several

disadvantages of ontology-oriented modeling. These are: without the benefit of a metamodeling

tool (and modelers) stakeholders now have the responsibility of binding an ontology to existing

system data, the visualization in ontology authoring tools is difficult for end-user to understand,

domain-specific languages and tool are time-consuming to use and lack flexibility. The solution

Erandote proposes is a combined metamodel-ontology, or “mixed” approach. The advantages of

this approach over the others is that all the advantages of metamodeling apply while only

modelers need to know the particulars of constructing the metamodels. Erandote proceeds to

describe the use of Category Theory as a means for mapping the ontology to the metamodel.

3.4.4 Decision Support System

In (Thakker, Dimitrova, Cohn, & Valdes, 2015) Thakker, et al. describe a prototype

application of ontologies in a systems engineering Decision Support System (DSS) project to

capture and preserve tacit knowledge from domain experts involved in the inspection of a

railway tunnel network in France. The project turned to knowledge systems for assistance due to

the complexity of the inspection process which is prone to subjectivity and scales poorly across

cases and domains. The Pathology Assessment and Diagnosis of Tunnels (PADTUN) project

assist tunnel experts in “making decisions about a tunnel’s condition with respect to its disorders

and diagnosis influencing factors.” The system consists of two main components: the Pathology

Assessment and Diagnosis component, and the Ontology component. The Pathology Assessment

and Diagnosis component is designed using a three-tier architecture of Presentation (User

31

Interface) Layer, a Processing (Application) Layer, and a Data Layer. The Data Layer contains a

relational database for storing inspection data supplied by the domain experts. The Data Layer

also contains a semantic repository (triple store) that stores the domain knowledge in the form of

an ontology, and performs reasoning on the inspection data. The Processing Layer consists of

three subcomponents: 1) the Pathology Inferencing component that uses the stored ontologies to

infer a list of pathologies when provided with observed tunnel inspection disorders, 2) a Regions

Of Interest (ROI) component uses the output of the Pathology Inferencing component together

with stored ontologies to infer aggregate tunnel portions that are susceptible to the same types of

pathologies – a process which traditionally has been done by experts in an intuitive fashion, and

3) a Data Management component that stores inspection data as per the schema dictated by the

ontologies. The conceptualization of the domain by experts was converted into OWL ontologies.

The PADTUN ontologies were designed based on the knowledge of domain experts and were

developed using the METHONTOLOGY methodology. The ontologies were designed for the

purpose of capturing the existing decision process used in diagnosing tunnel pathologies, and to

provide a context for automated decision support on the part of inspectors so as to result in a

more consistent and reliable pathology assessment. In a comparison of ROI inferencing between

the new ontology-based system and traditional methods the new system produced results which

were in “almost perfect agreement.” (Thakker, Dimitrova, Cohn, & Valdes, 2015)

3.4.5 Knowledge Base from SysML Block Definition Diagrams

In (Graves, Integrating SysML and OWL, 2009), Graves describes a method for

constructing a system design Knowledge Base (KB) based on information transformed from

SysML Block Definition Diagrams (BDD). Such a KB could represent detailed information of a

system design, such as the number of occurrences of a part and interconnections between parts.

32

The objective would be to take advantage of ontological reasoning tools to analyze the system

design. Graves argues that SysML BDDs have sufficient expressiveness to represent these

detailed designs. Accordingly, if the SysML BDDs are restricted to include only associations and

no operations, then these diagrams can be translated into OWL2 to provide the degree of system

description being sought. In this approach, design KBs can be developed in engineering design

tools using SysML and then exported to OWL tools for analysis while preserving the intended

semantics of the SysML BDD. A larger goal would be to use formal reasoning tools in product

development that takes full advantage of the expressivity provided in the SysML. However, this

would require a formal semantics for a much richer subset of SysML, for example, including

ports with their interfaces, and including SysML operations. (Graves, Integrating SysML and

OWL, 2009)

3.4.6 Computer Aided Engineering Exchange

In (Abele, Legat, Grimm, & Muller, 2013), Abele, et al. a solution is sought for the

problem of exchanging and validating manufacturing plant engineering models. In particular, a

data exchange mechanism is needed to transform data among models using the XML-based data

format called Computer Aided Engineering Exchange (CAEX) which is part of the

AutomationML (AML) language specification. CAEX was specially developed to meet the

requirements of the manufacturing engineering domain. It is currently the most recognized

standard data exchange tool for plant engineering data. A proposed solution to these data

exchange issues is presented which includes the automated validation of CAEX plant models by

means of their transformation into Web Ontology Language (OWL) ontologies, and subsequent

application of reasoning mechanisms to perform the validation process. The engineering process

33

using the CAEX standard consists of three major steps, as illustrated in Figure 2. (Abele, Legat,

Grimm, & Muller, 2013)

Figure 2: CAEX Plant Models Validation Process Using OWL (Abele, Legat, Grimm, &

Muller, 2013)

In the first step of the process, the roles to be used in the respective domain are defined.

This is accomplished by defining the user-specific roles for system elements as specializations of

standard roles defined in the AML standard libraries. Since multiple domain experts may be

working on the engineering model concurrently, different system elements representing the same

physical component might possibly be created. To support the consistency of the model, a

validation activity must be developed to identify multiple instances of the same physical element

in the model. In the second step, the defined roles are used for selecting suitable components

34

from vendor-specific product catalogues. After manually selecting a suitable component from the

catalogues, it is assigned to the previously defined system elements. Due to the manual

component selection process, it is possible that a component not fully meeting the role

requirements might be assigned. Therefore, another validation activity must be developed to

check for improper assignment of catalogue component to system elements in the model. In the

third step, the system elements are connected by interfaces representing the plant-specific inter-

component connections. Due to the complexity of a plant model, interfaces might be incorrectly

place between the wrong system elements. Therefore, another validation activity must be

developed to check for such inconsistencies. The transformation from CAEX to OWL captures

the basic design decisions of representing CAEX plant models in OWL ontologies. The Semantic

Web querying and reasoning technologies incorporated into OWL are used to perform three

validation consistency checks of the CAEX process. These are 1) performing a query to identify

all system elements with the same name to determine whether they were intentionally assigned

the same name, 2) performing a query to ensure that components selected from vendor-specific

product catalogues match the defined roles to which they are being assigned, and 3) performing a

query to check that all interfaces are properly aligned according to the standard definition of

interfaces provided in the AML standard libraries. (Abele, Legat, Grimm, & Muller, 2013)

3.4.7 State Analysis Methodology

In (Wagner, et al., 2012), Wagner, et al. present the State Analysis methodology as a

means for architecting, designing and documenting complex control systems. In this project,

State Analysis is performed using the Systems Modeling Language (SysML). To make use of the

SysML capabilities, it is necessary to provide ontological definitions of the concepts and

relations in State Analysis. This is accomplished through a mapping of State Analysis into a

35

practical extension of SysML. The ontology provides the formal basis for verifying compliance

of the system model developed in SysML with State Analysis semantics including architectural

constraints. This is accomplished by first applying stereotyped relations in the SysML model so

that it can be analyzed to compare the semantics and constraints expressed in the stereotype

definitions with the details of the model, and thereby verify that the model conforms to the

semantics of the domain expressed in the ontology. The State Analysis domain is constructed as

an ontology in OWL2 using an ontology editing tool. Thus, by using a model transformation

from OWL2, meaningful domain-specific stereotypes are defined and applied in a SysML

modeling tool to construct a system model. Then, the system model is exported to OWL in order

to enforce semantic consistency rules established by the principles of State Analysis and verify

the correctness properties in the model. While the focus of this work was to illustrate the use of

State Analysis in the design of control systems for large, complex enterprises, the value of this

work to the author of this thesis is the process used for mapping of the ontologies into SysML to

define the ontological concepts and relationships as SysML stereotypes that can be applied to

appropriate modeling entities. Wagner, et al. only say that success in this endeavor is due to

“some advanced model transformations developed by JPL’s Integrated Model-Centric

Engineering team.” This hint prompted the author of this thesis to investigate activities at JPL

further to discover the nature of the JPL advanced model transformations. Of all the applications

of the ontologies to systems engineering, this project showed the most promise for describing a

practical approach to populating profiles for use in architectural development, which is the

concern of this thesis. The further works of NASA JPL toward this goal are described in Section

6 of this thesis. (Wagner, et al., 2012)

36

3.4.8 Integrating Reasoning with SysML

In (Graves, Integrating Reasoning with SysML, 2014), Graves addresses the need to

perform in-depth reasoning on engineering tasks by embedding a model of the system under

analysis as an axiom set within a suitable logic. By taking this approach, engineering questions

translate into questions about axiom sets. Automated reasoning can then be used to answer these

questions. Graves illustrates techniques for embedding the class diagram fragment of SysML

into OWL, and then extending that approach to cover other SysML constructs. Graves then

illustrates how reasoning can be integrated with SysML to answer engineering questions, with

three examples. These examples relate a variety of engineering questions to axiom set questions

that are then formulated as model queries. The first example illustrates how an advertised system

capability can be verified using reasoning. The second two examples illustrate design

consistency can be maintained by verifying the consistency of design changes. Examples are

given to, and illustrate how formal reasoning can be exploited to answer these questions. The

examples presented illustrate the semantic embedding of a Block Definition Diagram (BDD)

fragment of SysML into a type theory logic. Other important SysML language constructions,

such as the Internal Block Diagram (IBD) cannot be embedded within OWL. To overcome this

issue, Graves suggests that SysML be reengineered to use an engineered version of type theory

as its foundation. Graves states that “Type theory provides the language extensions suggested by

the examples with a formal semantics well adapted for use with inference engines.” (Graves,

Integrating Reasoning with SysML, 2012)

3.4.9 Managing Inconsistencies in Models

In (Feldmann, et al., 2015), Feldmann et al. address the challenges related to managing

inconsistencies in models of systems from the domain of automated production systems. These

37

inconsistencies arise out of the collaborative nature of a variety of stakeholders from different

disciplines employing a variety of modeling languages, formalisms, and tools. Three challenges

to consistency management are identified as needing to be resolved: 1) heterogeneity of models

causes issues such as misinterpretation of parameters among those that specify a required

attribute, and those that reveal the current state of an attribute for analysis, as well as

fundamentally different formalisms, varying abstraction levels, and terminology relevant to a

particular application domain, 2) semantically overlapping models marked by the presence of

either duplicate, or related information, referred to as semantic overlaps, 3) lack of automated

inconsistency management techniques. The proposed solution to manage inconsistencies is the

use of a knowledge-based system composed of two parts: a knowledge base and an inference

mechanism. The Resource Description Framework (RDF) is proposed for use as a knowledge

representation formalism. RDF allows for statements to be made about entities the form of

subject-predicate-object triples and therefore is similar to conceptual modeling approaches such

as class or entity relationship diagrams. Use of the SPARQL Protocol and RDF Query Language

are proposed as the means to retrieve and manipulate information represented in RDF. The

process of using these tools first involves an expert identifying a-priori the specific types of

inconsistencies anticipated to be encountered. The application of this approach is illustrated with

two examples of inconsistency queries that result in successful identification of inconsistencies,

while passing on valid consistency checks. A technology demonstrator was then exercised to

evaluate the technical feasibility and viability of the conceptual approach. (Feldmann, et al.,

2015)

38

4 Constructing Ontologies

The process of building or engineering ontologies for use in information systems remains

an arcane art form, which must be transformed into a rigorous engineering discipline in order to

be viewed as a useful and reliable resource for engineering applications, particularly for

developing architectural descriptions of complex engineered systems. (Guarino & Welty, 2002)

This section provides guidance on best practices for constructing ontologies.

4.1 Design Criteria

In the words of Tom Gruber, “an ontology is an explicit specification of a

conceptualization.” That conceptualization consists of the entities that exist in the domain being

described as well as the relationships among those entities. It is said that an ontology is

“committed” to the conceptualization, meaning that the design of the ontology accurately

represents the conceptualized view of the domain. The set of entities represented in such an

ontology is called the “universe of discourse” for that domain. These are the classes, functions,

relations, and other objects declared to represent the domain. The ontology includes definitions

associated with the names of all the entities in the universe of discourse. The definitions include

human-readable text describing what the names mean as well as formal axioms that constrain the

possible interpretations of the defined terms. (Gruber, A Translation Approach to Portable

Ontology Specifications, 1993)

In order for an ontology to be an accurate description of the conceptualized domain, it

needs to be designed as such. This implies that the process for designing ontologies comes with

design criteria. Tom Gruber defined five design criteria for constructing ontologies. The first of

these is clarity. Definitions of terms should be complete, objective, and written in natural

language. Definitions should be independent of social or computational context. Formalism

39

promotes this independence. To achieve formalism in the definition, logical axioms should be

used to define the terms. Completeness implies the use of a predicate defined by necessary and

sufficient conditions. This is preferred over a partial definition which is defined only by

necessary or sufficient conditions. (Gruber, A Translation Approach to Portable Ontology

Specifications, 1993)

The second criterion is coherence. This applies to both the formal and informal elements

of the definition. At the least, the defining axioms should be logically consistent. If the axioms

infer a sentence that contradicts an informal definition, then the ontology is incoherent. (Gruber,

A Translation Approach to Portable Ontology Specifications, 1993)

The ontology should be extendable monotonically in order to be reusable for multiple

purposes or tasks without requiring revision of the existing definitions. (Gruber, A Translation

Approach to Portable Ontology Specifications, 1993)

The ontology should exhibit minimal encoding bias. An encoding bias results when

design choices are made purely for the convenience of notation or implementation of the

encoding. Minimization of such bias is necessary since knowledge-sharing agents may be

implemented in different representation systems. (Gruber, A Translation Approach to Portable

Ontology Specifications, 1993)

Finally, the ontology should require minimal ontological commitment sufficient to

support the intended knowledge-sharing activities. This allows parties who are committed to

using the ontology the freedom to specialize and instantiate the ontology as needed. Such

minimization can be achieved by defining only the terms that are essential to the communication

40

of knowledge consistent with the weakest theory of the domain. (Gruber, A Translation

Approach to Portable Ontology Specifications, 1993)

4.2 Ontological Formalisms

Ontologies are often categorized according the degree of restriction on the semantics used

to express the ontological terms. As such, ontologies are broken into two major groups: 1)

lightweight ontologies, which are mainly taxonomies, and 2) heavyweight ontologies, which

provide more restrictions on domain semantics in order to model the domain in a deeper way.

Within these groups, ontologies are also categorized according to the level of formality

incorporated into their design and definition. The classifications according to formalism are: 1)

1) highly informal - if expressed in natural language; 2) semi-informal - if expressed in a

restricted and structured form of natural language; 3) semi-formal - if expressed in an artificial

and formally defined language; and 4) rigorously formal - if they provide meticulously defined

terms with formal semantics, theorems and proofs of properties. (Gómez-Pérez, Fernández-

López, & Corcho, 2004)

4.3 Methods for Modeling Ontologies

This section describes several popular methods employed to develop ontology models. It

is important to note that the selection of the formalisms used to model domain knowledge and

the languages that implement the modeling techniques limit the kind of knowledge that can be

modeled and implemented. For example, to model formal axioms either as independent

components in the ontology or embedded in other components, the use of Artificial Intelligence

(AI) formalisms are required. AI-based languages and ontology markup languages are better

candidates for representing and implementing ontologies than other non AI approaches. Another

41

important note is that simply because an ontology is written using a language specifically

designed for constructing ontologies does not mean that the result constitutes an ontology.

4.3.1 Frames and First Order Logic

In (Gruber, A Translation Approach to Portable Ontology Specifications, 1993), Gruber

suggested modeling heavyweight ontologies by using frames and first order logic. In this

approach, Gruber used five kinds of modeling components: classes, relations, functions, formal

axioms, and instances. (Gómez-Pérez, Fernández-López, & Corcho, 2004)

4.3.2 Description Logics

Description Logics (DL) is a kind of logical formalism theory which is divided into two

parts: the TBox and the ABox. The TBox contains the definitions of concepts and roles built

through declarations that describe general properties of domain concepts. These are expressed as

intensional (terminological) knowledge in the form of a terminology. The ABox contains the

definitions of individuals (instances) which is specific to the individuals of the discourse domain.

These contain extensional (assertional) knowledge. (Gómez-Pérez, Fernández-López, & Corcho,

2004)

4.3.3 Ontology Modeling Using UML/SysML

The UML (Unified Modeling Language) and SysML (Systems Modeling Language) can

both be used for modeling ontologies. UML is commonly used in the software engineering

community, and SysML in the systems engineering community, and therefore modeling of

lightweight ontologies is a task easily picked up by engineers using either of these two methods.

Resulting models can be enriched by adding Object Constraint Language (OCL) expressions to

add axioms to these models. (Gómez-Pérez, Fernández-López, & Corcho, 2004) These are the

42

methods of interest in this thesis, and will be explored further in Sections 5 and 6. (Gómez-Pérez,

Fernández-López, & Corcho, 2004)

4.3.4 Ontology Modeling Using Database Technology

This modeling technique primarily involves the use of Entity/Relationship (ER) diagrams

and their extensions, as well as other types of databases, such as object-oriented database models

or deductive database models. Though, it is not possible to model heavyweight ontologies with

the extended ER diagrams commonly used. Other extended ER notations or complementary

notations would be needed. Only those ER diagrams that have been agreed upon could be

considered ontologies. It is highly desirable that ontologies be machine-readable since many

Computer-Aided Software Engineering (CASE) tools are set up for this purpose. (Gómez-Pérez,

Fernández-López, & Corcho, 2004)

4.4 Types of Ontologies

Gómez-Pérez, et al. assembled a type characterization of developed ontologies according

to the subject of their conceptualization. The result is captured in the following subsections.

These are not meant to be exhaustive lists.

4.4.1 Knowledge Representation Ontologies

The most well-known of these Knowledge Representation (KR) ontologies are the Frame

Ontology (Gruber, A Translation Approach to Portable Ontology Specifications, 1993) and the

Open Knowledge Base Connectivity (OKBC) Ontology. They provide formal definitions of the

representation primitives used mainly in frame-based languages and thus permit building other

ontologies by means of frame-based conventions. Other KR ontologies include the RDF KR

Ontology, RDF Schema KR Ontology, OIL KR Ontology, DAML+OIL KR Ontology and OWL

KR Ontology. (Gómez-Pérez, Fernández-López, & Corcho, 2004)

43

4.4.2 General or Common Ontologies

These are used to represent common sense knowledge that can be reused across all

domains. These ontologies capture very general vocabularies related to subjects common to all

ontologies, such as things, events, time, space, causality, behavior, function, mereology, etc. The

Mereology Ontology is a good example of a general ontology. It defines the Part-Of relation that

can be used to state how devices are formed by the assembly of components, each of which

might also be decomposed into subcomponents. This ontology defines the principle properties

that any decomposition should have. (Gómez-Pérez, Fernández-López, & Corcho, 2004)

4.4.3 Top-level Ontologies Or Upper-level Ontologies

These ontologies describe very general concepts to which all root terms in existing

ontologies should be linked. There exist several top-level ontologies that differ on the criteria

followed to classify the most general concepts and therefore create some confusion about the

manner in which domain ontologies should link to them. To solve work is being performed to

develop a Standard Upper Ontology (SUO) that is intended to give a structure and a set of

general concepts from which domain ontologies could be constructed. (Gómez-Pérez,

Fernández-López, & Corcho, 2004)

4.4.4 Domain Ontologies

These kinds of ontologies may be reusable in a given specific domain, such as medical,

pharmaceutical, engineering, etc. They provide vocabularies that describe the concepts within a

domain and their relationships, as well as the activities that take place in the domain. There is a

clear boundary that separates the domain from the upper-level ontologies. The domain concepts

are established by specializing off of concepts defined in top-level ontologies. (Gómez-Pérez,

Fernández-López, & Corcho, 2004)

44

4.4.5 Task Ontologies

Task ontologies describe the vocabulary related to a generic task or activity that can be

found in most modern organizations today. They provide a vocabulary of terms used with tasks

that may or may not belong to the same domain. (Gómez-Pérez, Fernández-López, & Corcho,

2004)

4.4.6 Domain-Task Ontologies

These ontologies are reusable in a given domain, but not across domains, and therefore

are application-independent. (Gómez-Pérez, Fernández-López, & Corcho, 2004)

4.4.7 Method Ontologies

These ontologies define the concepts and relations that can be used to specify a reasoning

process that is designed to achieve a particular task, for example. (Gómez-Pérez, Fernández-

López, & Corcho, 2004)

4.4.8 Application Ontologies

These are application-dependent ontologies that contain all the definitions needed to

model the knowledge required for a particular application. They extend and specialize the

vocabulary of the domain and of task ontologies for a given application. (Gómez-Pérez,

Fernández-López, & Corcho, 2004)

4.5 Languages for Building Ontologies

In (Gómez-Pérez, Fernández-López, & Corcho, 2004), Gómez-Pérez, et al. provide a

comprehensive overview of the languages used by ontologists to construct ontologies. This

section will quickly summarize those languages identified, simply for reference purposes. The

authors break the grouping of languages into two types: traditional languages and markup

45

languages. For traditional languages, the authors identified KIT, LOOM, OKBC, OCML, and

FLogic. For ontology markup languages, the authors identified SHOE, XOL, RDF and RDF

Schema, OIL, DAML-OIL, and OWL. (Gómez-Pérez, Fernández-López, & Corcho, 2004) Any

further discussion of the particular languages is beyond the scope of this thesis. Further research

is needed to identify the pros and cons of each language and to determine which type of language

and which language in poarticular might be used to develop ontologies that establish the basis for

modeling profiles used to build system architectures. (Gómez-Pérez, Fernández-López, &

Corcho, 2004)

4.6 Ontology Development Tools

Likewise, with ontology development tools, Gómez-Pérez, et al. provide a listing of tools

commonly used in the ontology engineering field. The language-dependent tools identified are

hese tools are characterized by their tight association with an ontology language. These are the

Ontolingua Server, OntoSaurus, WebOnto, and OilEd. The extensible language-independent

tools are easily extensible and can easily be integrated with other applications. These are

Protégé-2000, WebODE, OntoEdit, and KAON. The ontology merging tool identified is

PROMPT. The ontology-based annotation tools are COHSE, MnM, OntoMat-Annotizer and

OntoAnnotate, SHOE Knowledge Annotator, and UBOT AeroDAML. (Gómez-Pérez,

Fernández-López, & Corcho, 2004)

4.7 Ontology Development Methodologies

Gómez-Pérez, et al. also provide a comprehensive listing of ontology developmewnt

methodologies and the pros and cons of each, focussing on the following methodoologies: the

Cyc method, the Uschold and King’s method, the Grüninger and Fox’s methodology, the

KACTUS approach, METHONTOLOGY, the SENSUS method, and the On-To-Knowledge

46

methodology. (Gómez-Pérez, Fernández-López, & Corcho, 2004) However, in this thesis the

author would like to focus on a recent methodology outlined by Noy and McGuinness in (Noy &

McGuinness, 2001) which provides a concise, step-by-step description of their recommended

approach, summarized here.

 Before beginning an ontology development effort, the designer needs to carefully

consider the various aspects of the development process that will impact the final product. These

considerations include deciding what the ontology is going to be used for, deciding how

important is it for the ontology to be intuitive, extensible, maintainable, etc. The developer must

also keep in mind that the ontology is a model of the real world, and the concepts in the ontology

must reflect that reality. Afterall, the goal of building the ontology is not the ontology itself, but

the best use of the ontology in a particular application or practice. (Noy & McGuinness, 2001)

The ontology engineer should not seek to identify all the possible information about the

domain. There is often no value added to specializing (or generalizing) more than is needed for

the intended application of the ontology. The farthest extent that an ontology development

activity should go is at most one extra level each way (towards specialization and

generalization.) Similarly, the ontology engineer should not try to capture all the possible

properties of and distinctions among classes in the hierarchy. (Noy & McGuinness, 2001)

As far as methodologies for developing ontologies are concerned, there are many

proposed methodologies, and they all have their pros and cons depending on the purpose of the

ontology and the way in which the ontology will be used. This thesis describes a general

approach to ontology development as suggested by Noy and McGuinness.

47

4.8 How Ontology Development Differs from Object-Oriented Design

Since ontologies are closely related to software products such as editors, readers,

processors, interpreters, etc., software developers may be involved in some aspect of the

ontology development or use. It is important to emphasize the difference between ontology

development and the design of classes and objects in object-oriented programming. When

developing object-oriented programming, a software developer normally gives primary

consideration to the operational properties of a class, whereas with ontology development, the

primary consideration is that of the structural properties of a class. As a result, the class structure

in an ontology and the relations among the various classes of the ontology are different from the

structure designed in an object-oriented program, for the same or similar domain of interest.

(Noy & McGuinness, 2001)

4.9 Important Ontological Terms

The following terms defined by Noy and McGuinness and elsewhere are used in the

development of frame-based ontologies and will be used throughout this discussion.

• Ontology – A formal explicit description of concepts (aka classes) in a domain of

discourse

• Class – Represents a concept in a domain of discourse

• Superclass – Represents a concept that is more general than the subclass that is

derived from it

• Subclass – Represents a concept that is more specific than the superclass from

which it is derived

• Is-A Relation (aka Is-A-Kind-Of Relation) – A taxonomic relation in which a

subclass is related to a superclass

48

• Direct Subclass – A subclass that is directly subordinate to its superclass

• Direct Superclass – A superclass that is directly superior to its subclass

• Indirect Subclass – A subclass that has an intervening class between it and a

superior superclass

• Indirect Superclass – A superclass that has an intervening class between it and an

inferior subclass

• Instance – Individual implementation of a concept (a class)

• Disjoint Classes – Two classes that cannot have any instances in common

• Slots (aka Roles) – Properties of each concept describing various features and

attributes of the concept

• Slot Value – A slot value that is fixed for all instances and cannot be changed

• Range of a Slot – The classes of the Instances to which a slot is attached (that a

slot describes)

• Domain of a Slot - The classes to which a slot is attached (that a slot describes)

• Facets (aka Role Restrictions) – Restrictions on slots, such as cardinality

• Inverse Relation – A situation in which the value of one slot depends on the value

of another slot (example: “produces” versus “produced by”)

• Knowledge Base – An ontology together with a set of instances of classes

There exists a fine line between the point at which an ontology ends and a knowledge

base begins. This can be equated with the idea of a database structural template that has no actual

data loaded (no practical use other than a template) and that of a fully populated database that

can be used to load, process, analyze, and report database results. In the case of an ontology, it

49

begins to serve practical use as a knowledge base when individual instances are defined with

associated slot and facet information. (Noy & McGuinness, 2001)

4.10 Understanding Classes and Class Hierarchies

Before taking on the task of constructing an ontology, it is important to ensure that the

authoring engineer has a good understanding of the concept of class and of class hierarchies. A

hierarchy of classes is established by what is termed an “is-a” or “is-a-kind-of” relation among

two classes. Formally, these relations are known as hyperonymy and hyponymy. Hyperonymy is

the semantic relation between a more general word and a more specific word. Example: “tree” is

a hyperonym of “oak.” Hyponymy is the semantic relation between a more specific word and a

more general word. Example: “oak” is a hyponym of “tree.” This process is also known as

subsumption. Example: “A canoe is a kind of boat.” Here, the Canoe class is a subclass of class

Boat. So, in a hierarchy, the Boat class would exist at a higher level than the Canoe class.

“Canoe” is subsumed by “Boat.”

4.10.1 Is-A Overloading in Subsumption

Guarino warns against overloading of the “is-a” mechanism for subsumption. Many

ontology development efforts suffer from “is-a overloading” by using the subsumption

relationship for many different kinds of associations. To help avoid some of these issues with the

“Is-A” relationship, Boyce and Pahl suggest using an its inverse relation, which they called the

‘HasSubtype’ relation. The use of the ‘HasSubtype’ relationship makes it easier to avoid the

pitfalls associated with the ‘Is-A’ relation, while remaining analogous to it. (Boyce & Pahl,

2007)

50

4.10.1.1 Confusion of Senses

This is a case in which a subclass is identified in an ontology as a child of two or more

different superclasses. For example, “crane” is a kind of “bird”, while “crane” is also a kind of

“lifting device.” While the two uses of “crane” are phonetically the same, it is not appropriate in

an ontology to make them equivalent.

4.10.1.2 Reduction of Sense

In this usage, the superclass does not represent a sufficiently complete aspect of the child.

For example, it would be inappropriate to place “computer” and a kind of “calculator.” While

computers can certainly perform calculations, their primary functionality provide much more

capability than mere calculation.

4.10.1.3 Overgeneralization

In this usage, the superclass is many levels above the child, such that, while true, the

specialization of the child seems too far removed from the parent. For example, “computer” is a

kind of “physical object.” While true, several levels of specialization have been skipped to go

from “physical object” to “computer.”

4.10.1.4 Suspect Type-to-Role Link

This is a case where there exists confusion whether the child class is actually as a concept

or a role. For example, “apple” is a kind of “fruit.” This is a proper subsumption of “apple” by

“fruit.” But, were we to say the “apple” is a king of “food,” then this suggests a role for the apple

to play (as food) and not a classification of the apple (as a subclass.)

51

4.10.1.5 Confusion of Taxonomic Roles

In this case, ontological engineers tend to express all the unary properties of a certain

class of entities in terms of superclasses to inherit from. For example, with a general list of

quality attributes, such as accessibility, adaptability, flexibility, testability, etc., there is no

distinction between the classes representing a major organizational role in the taxonomy, and

those that simply express a particular property. (Guarino, Formal Ontology and Information

Systems, 1998)

4.10.2 Concept Metaproperties

Guarino and Welty developed the OntoClean methodology to provide guidance on the

kinds of ontological decisions that need to be made by an ontological engineer when developing

the structure of an ontology based on rules of subsumption. OntoClean also describes approaches

that can be taken to evaluate the decisions made when choosing a construct for representing a

concept. Guarino and Welty identified several formal notions to define a set of metaproperties

used to characterize relevant aspects of the intended meaning of the properties, classes, and

relations that make up an ontology. These metaproperties are used to impose several constraints

on the taxonomic structure of an ontology, which help in evaluating the structural choices made

when constructing the ontology. (Guarino & Welty, 2002)

4.10.2.1 Essence

A property of an entity is essential to that entity (has essence) if the property must hold

for the entity to be properly characterized. This is a stronger notion than one of permanence.

Whether an entity has a property that is permanent or not, does not make that property essential

to its characterization. For example, magnets have the property that they are magnetic. This a

property which is essential to magnets when used in application such as electric motors.

52

However, if a common nail is magnetized and therefore takes on that property whether

permanently or not, does not make it a property which is essential to its characterization as a nail.

4.10.2.2 Rigidity

Rigidity is a special form of essence that describes the strictness with which the property

applies to all the instances of the class having the property. Guarino and Welty identify three

types of rigidity. These definitions are restricted to meaningful properties (not necessarily true

nor necessarily false), so trivial cases are excluded. (Guarino & Welty, 2002)

• Rigid – a property that is essential to all instances of a class. Example: all magnets

are magnetic; therefore, magnetism is a rigid property of magnets.

• Non-Rigid (or Semi-Rigid) – a property that is not essential to all instances of a

class. Example: common nails could possibly be magnetic; therefore, magnetism

is a non-rigid property of common nails.

• Anti-Rigid – a property that is not essential to any instances of a class. Example:

brass nails could never be magnetic; therefore, magnetism is an anti-rigid property

of brass nails.

Rigidity is an important notion, every property in an ontology should be labeled as rigid,

non-rigid, or anti-rigid. In addition to providing more information about what a property is

intended to mean, these metaproperties impose constraints on the subsumption relation, which

can be used to check the ontological consistency of taxonomic links. One of these constraints is

that class with anti-rigid properties cannot subsume classes with rigid properties. (Guarino &

Welty, 2002)

53

4.10.3 Identity and Unity

Identity and unity are the most important philosophical notions used in the OntoClean

methodology. They are different notions, although strictly related and often confused with each

other. (Guarino & Welty, 2002)

4.10.3.1 Identity

Identity refers to one of the most common decisions that must be made in ontological

analysis, that of being able to recognize individual entities (concepts) in the world as being the

same or different. This concerns circumstances in which something that is seen as one entity is

actually two or more. Examining situations involving time provides a way of interpreting

identity. Is a person the same person even if their appearance has changed over time? The

problem can be evaluated also by considering the identity criteria at a single point in time. How

can a time interval (from a start time to an end time) be related to a time duration (a measured

length of time?) One approach is to make time interval a kind of (subclass of) time duration,

since all time intervals could be seen as time durations. While this makes intuitive sense, since

two durations of the same length are the same duration, two intervals occurring at the same time

are the same, but two intervals occurring at different times, even if they are the same length, are

different. Therefore, the two example intervals given would be different intervals, with the same

duration. This creates a contradiction in which two time intervals that have the same duration,

even if they occur at different times, are the same kind of (subsumed by) time duration, while

two intervals that have the same duration, but do not occur at the same time, cannot be identical

because they occur at two different times. This situation is brought on through common

confusions of natural language and can be avoided by realizing that duration is a component

54

(property) of an interval, but it is not the interval itself. Therefore, the relationship cannot be

modeled as a subclass. (Guarino & Welty, 2002)

4.10.3.2 Unity

Unity refers to property that identifies and describes all the parts that form an individual

entity and the way that parts of an object are bound together, such that we know in general what

is part of the object, what is not, and under what conditions the object is a whole. Unity can tell

us a lot about the intended meaning of properties or classes based on whether class instances are

parts or wholes. (Guarino & Welty, 2002)

4.10.3.3 Whole Entities

For some classes, all their instances are wholes, for others, none of their instances are

wholes. For example, “water” cannot conveniently be identified as an isolated entity as can

“ocean;” therefore, “water” is not commonly represented as a “whole” entity. On the other hand,

“ocean” for which “Atlantic Ocean” can be identified as an instance, is an identifiable whole

entity. This leads to another problem with subsumption in that “ocean” might be established as a

subclass of “water,” since all oceans are made up of water. But this raises an inconsistency since

instances of “water” are never wholes, yet instances of “ocean” always are. This presents a

contradiction since oceans are not “kinds of” water; they are instead composed of water. This is a

distinction that must be carefully thought through when constructing an ontology. (Guarino &

Welty, 2002)

4.10.3.4 Part Entities

It is also important to analyze the conditions that must hold among the parts of an entity

in order to consider it a whole. These conditions are called unity criteria. With suitable

55

metaproperties, these criteria distinguish the classes that carry a common unity criterion for all

their instances (such as “ocean”) from those that do not (like “water”). (Guarino & Welty, 2002)

4.10.4 Subsumption

The subsumption relation that is the most commonly used and the most commonly

misused structuring primitive used in constructing ontologies. Guarino and Welty have

established a set of heuristics (below) which can be used to guide the ontological engineer in

making the correct decision regarding subsumption of classes into an ontological hierarchy.

Deciding whether one property should subsume another is one of the most important ontological

decisions a modeler must make in building an ontology, and providing a formal foundation for

evaluating these decisions has proved an important milestone in the practice of conceptual

modeling. (Guarino & Welty, 2002)

4.10.4.1 Subsumption is not Instantiation

Subsumption is not the same as instantiation. The subsumption relationship is often used

when instantiation was actually intended.

4.10.4.2 Subsumption is not a Meta Principle

“Rigidity” is considered a metaproperty in that rigidity is a property of properties, and not

a property of objects in the world. It may be tempting to create a class called “rigid class” and

have it subsume all classes that are rigid, such as Human. But, instances of “rigid class” are

classes and these identity criteria cannot be applied to the instances of Human, so being rigid is a

metaproperty of the class Human. Therefore, it is improper to establish Human as a subclass of

“rigid class.”

56

4.10.4.3 Subsumption is not a Part Property

Confusion here is due to the fact that subclass is analogous to subset, and a subset of a set

is a part of it. This confusion can be overcome when it is realized that the difference between the

parts of a set and the parts of its members. For example, while “engine” is a part of a “car”,

“engine” is not a kind of “car.”

4.10.4.4 Subsumption is not Disjunction

An often-used “work-around” to the part property problem is creating artificial classes

representing different levels of decomposition, such as a class for “car parts” of which “engine”

would be a subclass along with a restriction or axiom requiring that all the parts of cars be

subclasses of “car parts.” This work-around amounts to using subsumption to create a disjunction

of classes in order to accommodate a type restriction. Rigidity analysis can be used to expose the

difficulty. There is no instance of a car part that is of necessity by itself always a car part. For

example, the engine could be removed and used in another application such as in a power boat.

Therefore, the car part class would be anti-rigid. The class engine is rigid, since an engine is and

always will be characteristically an engine. This violates the rule that an anti-rigid class cannot

subsume a rigid one. Since most modeling systems do not provide for disjunction, modelers

believe they are justified in using this kind of work around.

4.10.4.5 Subsumption is not Polysemy

The most common misuse of subsumption in linguistics is to represent the multiple

meanings (polysemy) of a term. This may have some linguistic motivations, but is incorrect from

the ontological point of view. To see how this is incorrect, we can usefully employ identity or

unity analysis. The term “book” can refer to a physical item that has weight, size, position in

space, etc. “Book” can also refer to abstract notion of a work written by an author that has a title,

57

etc. Bound volumes are identified by their location in space/time, so that two bound volumes

cannot occupy the same space at the same time. The abstract notion of book is independent of

space and time, being identified by other criteria. No instance can meet both of these identity

criteria; they belong to two different classes of entity, though there is a close relationship

between them. No “book” is both a bound volume and an abstract entity.

4.10.4.6 Subsumption is not Constitution

Another common misuse of subsumption is to use it to represent the fact that one thing is

constituted of another. It is important to understand that one class of entities mat be constituted

by entities in the other class, but it may not be subsumed by it. For example, a company might be

constituted by a group of people, but a group of people are not (necessarily) a kind of company.

4.10.5 Choosing Classes and Class Names

When constructing ontology hierarchies in this fashion, it is important to avoid making

the mistake of including both a singular and a plural version of the same concept in the hierarchy

making the former a subclass of the latter. For example, avoid creating a class Boat that is a

subclass of Boats. To avoid this issue, remain consistent throughout the hierarchy by using only

either singular class names or plural class names.

It is also important to recall that classes represent concepts. No matter what name is

chosen for the class, the concept remains the same. The name of a class in a hierarchy might

change depending on the use of the ontology, but the concept, and its relation to other concepts

(other classes) must remain the same. An example is the use of the same idea (concept) in

different languages, or different applications, such as different services of the military. Do not

create two classes for the same concept simply because two similar terms (synonyms) exist in the

58

common vocabulary of the domain. If it is important to identify synonyms, then include a list of

synonyms in the ontology documentation.

Avoid creating class cycles in the ontology hierarchy in which one class (A) is a subclass

of another class (B), while class B is also a subclass of class A. This is the same as saying that

class A and class B are equivalent.

Sibling classes should be at the same level of generality compared to the parent class. For

examples, classes Canoe, Skiff, Yacht, Schooner are all siblings of class Boat, and are all at the

same level of generality. The exception to this rule is at the highest possible level of an ontology

where the immediate children of the most general class may represent major divisions of the

domain and therefore may not be similar concepts.

A superclass should not have only one subclass. Such a situation would indicate that

further development of the superclass is warranted. To maintain a good structure of the hierarchy

it is recommended that a given superclass have between two and a dozen direct subclasses.

However, to best reflect the natural world it is better to not force a specific number of subclasses.

If a large number of subclasses exist in the natural world, then the ontology should reflect that

natural order. The rule of between two and a dozen subclasses is to be used when additional

ontology development can be afforded without violating the natural order of the reality within

the domain.

Guarino and Welty recommend beginning the class hierarchy construction with a

“backbone taxonomy” consisting of all the rigid properties in the ontology, organized according

to their subsumption relationships. It represents a view of the ontology showing all the most

important properties—those that cover the entire universe of discourse. Every entity in the

59

backbone taxonomy must have identity criteria and must have a rigid property that describes

those criteria. Backbone properties are the most important to analyze first—those that represent

the invariant, essential aspects of the domain. Guarino and Welty identify three benefits to

constructing a backbone taxonomy: 1) it jump starts to the integration process since every entity

in the resulting ontology must instantiate at least one property in the backbone taxonomy, 2) it

allows for the discovery of inconsistencies in the use of subsumption among the classes of the

backbone taxonomy, 3) it can serve as the common backbone when comparing the rigid

properties for two different ontologies that must be merged together, trying to establish a basic

set of stable properties within the merged domain. (Guarino & Welty, 2002)

4.10.6 Whether to Introduce A New Class

When developing an ontology, it is not uncommon to come across a situation in which it

is difficult to decide whether a concept should be established in the ontology as a new class or as

a property value of an existing class. Noy and McGuinness identify a few rules of thumb for

helping to determine which approach to take.

4.10.6.1 Subclasses Have Additional Properties

Subclasses of a class usually (1) have additional properties that the superclass does not

have, or (2) have restrictions different from those of the superclass, or (3) participate in different

relationships than the superclasses. So, only introduce a new class in the hierarchy when there is

something that can be said about this class that cannot be said about the superclass. In practical

terms, each subclass should either have new slots added to it, or have new slot values defined, or

override some facets for the inherited slots.

60

4.10.6.2 Subclasses in Terminological Hierarchies

Sometimes it may be useful to create new classes even if they do not introduce any new

properties. Classes in terminological hierarchies do not have to introduce new properties. This

type of classification may be just a hierarchy of terms, without properties (or with the same set of

properties). In that case, it is still useful to organize the terms in a hierarchy rather than a flat list

because it will (1) allow easier exploration and navigation and (2) enable a user to choose easily

a level of generality of the term that is appropriate for the situation.

4.10.6.3 Concepts which have Specific Distinction

Another reason to introduce new classes without any new properties is to model concepts

among which domain experts commonly make a distinction even though it may have been

decided not to model the distinction itself. Since ontologies are used to facilitate communication

among domain experts and between domain experts and knowledge-based systems it would be

good to reflect the expert’s view of the domain in the ontology.

4.10.6.4 Importance of the Concept within the Domain

Whether to establish the concept as a class or a property value of an existing class

depends on the scope of the domain and the task at hand. It depends on how important is the

concept within the domain. If the concepts with different slot values become restrictions for

different slots in other classes, then a new class should be created to emphasize the distinction.

Otherwise, represent the distinction in a slot value. For example, if it appears that whether a type

of boat is powered or not is becoming an important distinction in the ontology, then perhaps this

requires that two subclasses be established under the Boat class; one for Powered Boats and one

for Unpowered Boats.

61

4.10.6.5 Importance of a Distinction within the Domain

If a distinction is important in the domain and if the objects with different values for the

distinction are viewed as different kinds of objects, then a new class should be created for the

distinction. For example, if it is important to distinguish unpowered boats that can hold no more

than two people, such as dinghies, canoes, and pirogues, then perhaps a new class should be

established for these types of objects.

4.10.6.6 Consideration of Individual Instances

Considering the potential individual instances of a class may also be helpful in deciding

whether or not to introduce a new class. A class to which an individual instance belongs should

not change often.

4.11 A Simple Knowledge-Engineering Methodology

Noy and McGuinness offer a methodology for ontology development that addresses the

general concerns that apply to most ontology development activities. They emphasize the

importance of observing a few fundamental rules to ontology development:

• There is no correct way to model a domain. The approach taken depends strongly

on the ultimate application of the ontology and any extensions that are anticipated

to be added to the ontology through lessons learned as a result of use of the

ontology.

• Ontology development is necessarily an iterative process. They start the process

with a rough first pass, followed by practical application, and review by experts,

after which subsequent passes are made to continually refine the ontology.

• Concepts in the ontology should be closely related to objects (nouns) and their

relationships (verbs) as observed in the domain of interest.

62

4.11.1 Step 1 – Determine the Domain and Scope of the Ontology

It is understood that anyone constructing an ontology would already have determined the

domain of interest for which the ontology is being built. The question should really be whether

the domain is fully understood in relation to the intended use of the ontology. Noy and

McGuinness suggest that the following topics be addressed to narrow and focus the scope of the

ontology to be built. (Noy & McGuinness, 2001)

• Competency of the ontology – The ontology should be competent with regard to

the issues that the user intends to address. In order to determine whether the

ontology is competent enough, the kinds of questions that the target user would

ask should be posed against the ontology to determine whether the ontology is

sufficiently suitable to address those questions.

• Use of the ontology – No matter what the domain of interest, users in any given

domain will have some particular interest in using the ontology to address some

concern. Depending on that concern, an ontology in any given domain could be

suitable to address the concerns or not. It is important to understand those

concerns to ensure that the ontology addresses the user’s issues.

• Queries the ontology is intended to address – With the understanding of who is

going to use the ontology and for what purpose, it is now important to focus on

the specific questions those users will ask of the ontology to ensure that the

ontology will be capable of providing the answers to those questions.

• Maintenance of the ontology – No ontology will be able to achieve competency

over the long term without maintenance, since the kinds of problems to address

will likely change over time. It is important to anticipate the kinds of changes that

63

are likely to occur to ensure that the ontology will be designed in a way to allow

for maintenance of the ontology that will preserve its competence.

4.11.2 Step 2 – Consider reusing existing ontologies

Depending on the objective, consider whether any previous development efforts would

either serve as a starting point for the new ontology or would contribute in some way to its

development. This might be a consideration existing sources can be refined or extended for a

particular domain or task, or if the system for which the ontology is being built needs to interact

with other applications that have already committed to particular ontologies. Most modern

knowledge-representation systems have extensive import and export facilities, and therefore the

formalism in which an ontology is expressed often does not matter since the task of translating

an ontology from one formalism to another is usually not a difficult one. (Noy & McGuinness,

2001)

4.11.3 Step 3 – Enumerate important terms in the ontology

Since an ontology is first and foremost a domain vocabulary, it is important to identify

and capture the terms that the user operating in that domain will be interested in formulating

statements about or will be in need of an explanation. These terms will be used to formulate the

concepts that become classes in the class hierarchy of the ontology. It is important at this point to

consider not only the primary terms concepts that make up that hierarchy, but also related terms

that help fill out the domain of discourse the user will expect to require in usage of the ontology.

(Noy & McGuinness, 2001)

4.11.4 Step 4 – Define the class and the class hierarchy

The class hierarchy for a particular project within a particular domain will depend greatly

on the ultimate application of the ontology. One class hierarchy in a given domain can appear

64

quite different from another in the same domain. There is no single correct class hierarchy for

any given domain. The hierarchy depends on the possible uses of the ontology, the level of the

detail that is necessary for the application, personal preferences, and sometimes requirements for

compatibility with other models. (Noy & McGuinness, 2001) Noy and McGuinness identify

three approaches to defining the class hierarchy.

Top-Down – In this approach, the engineer starts by first identifying and defining the

most general concepts in the domain. This could be one single concept at the top of the domain

hierarchy, or several concepts under the domain title. From this point the engineer identifies

subsequent specialization of the principle concepts. By taking this approach, the engineer is

creating subclasses at increasingly lower levels of the hierarchy. In the process, the engineer is

identifying “is-a” type relations between levels of the hierarchy.

Bottom-up – This is the antithesis of the top-down approach in which the engineer starts

by first defining the most specific classes, those being the leaves of the hierarchy, and develops

grouping of the leaf-level concepts into higher-level groupings. The higher-level groupings

would be generalizations of the more specific lower-level concepts. This process is repeated for

each level until no higher generalizations can be identified, or until sufficient leaf-level

identification of concepts has been accomplished.

Combination – This approach is a combination of the top-down and bottom-up

approaches. Here, the engineer defines the more salient concepts first – those that represent the

mid-level concepts that best represent the more visible and identifiable concepts of the domain.

These concepts are then generalized (going higher into the hierarchy) and specialized (going

lower into the hierarchy) until the hierarchy is populated to the degree desired.

65

It is important to consider the structure of the ontology as it can be difficult to navigate a

poorly structured hierarchy. Ontologies that are either extremely nested with many extraneous

classes, or very flat with too few classes and too much information encoded in slots, are very

difficult to navigate. Finding the appropriate balance though is not easy.

Noy and McGuinness point out that the selection of which approach to take when

constructing an ontology depends on the personal perspective that the ontology engineer has of

the domain. If the engineer has a systematic, organizational view of the domain, then it may

make best sense to use the top-down approach. If the engineer normally operates at the low-level

of detail, is able to identify the majority of the leaf-level concepts, and is not fully cognizant of

how these lower-level elements roll-up into higher-level organization, then it may be best to start

at the bottom of the hierarchy. Most engineers are more aware of the mid-level concepts which

tend to be the more descriptive concepts in the domain. In this case, it is best to start where most

of the knowledge and experience exists, and work up/down from that point developing the upper

and lower levels of the hierarchy. (Noy & McGuinness, 2001)

Whichever approach is taken, the ontology engineer starts by defining the classes at the

chosen level starting with the list that was created in Step 3. It’s best to start by select the terms

from the list that describe objects having independent existence rather than terms that are

descriptive of other objects (whose identification is tied to other objects and are therefore

dependent on those other objects for meaning). The chosen terms will then be identified as

classes in the ontology. These first selected terms are key elements of the ontology and will serve

as anchors in the class hierarchy from which others elements will be supported. Once this initial

identification of related concepts is established, the classes are then organized into a hierarchical

taxonomy. This is accomplished by identifying super-class/sub-class relationships. One way of

66

accomplishing this task is by posing the following question: if by being an instance of one class,

will the object necessarily also be an instance of some other class (its superclass)? This would be

so for a valid super-class/sub-class relationship because if a class A is a superclass of class B,

then every instance of B is also an instance of A. In other words, class B represents a concept

that is a “kind of” A. In such a case, an instance of class B is also, by definition, an instance of

class A. (Noy & McGuinness, 2001)

4.11.5 Step 5 – Define the Properties of a Class (Slots)

With classes identified and located in the hierarchical structure, it is necessary to then

elaborate on the internal structure of the concepts represented by the class. This is done by

describing the class properties, known in ontological engineering as “slots”. This step can be

performed by either considering what are the properties of a class individually, or considering

which are domain properties and then assigning each of those properties to a particular class.

There are several types of object properties that can become slots in an ontology:

• Intrinsic properties – those which are natural or essential properties of the class

• Extrinsic properties – those which are not directly attributable to the class, but are

nonetheless closely related to it

• Part properties – if the class represents a structured object, then its parts are

defined as part properties; these can be both actual physical parts as well as

abstract (non-physical) parts

• Relationship properties – These are the relationships between individual members

of the class and other items

67

In order to promote the hierarchical concept of inheritance, a slot should be attached at

the most general class that can have that property. Thus, when a subclass for the superclass is

identified, it inherits all the properties of the superclass. (Noy & McGuinness, 2001)

When establishing relations between classes, avoid establishing relations among

strikingly different branches of the ontology simply because they make literal sense. While these

relations may be literally correct, they cause confusion within the ontology and the user of the

ontology may not understand the purpose for their existence.

Avoid storing the information for inverse slots “in both directions”. This constitutes

redundant information. An application using the knowledge base can always infer the value for

the inverse relation. Decide on which direction to keep. If this is a pattern throughout the

ontology, and if appropriate, choose one direction to describe the inverse relationship and

maintain that direction throughout the ontology.

4.11.6 Step 6 – Define the Facets of the Slots

With slots defined for the classes, it is time to identify the slot value features, known in

ontological engineering as facets. These include such items as the type of the values that the slot

can assume, the allowed values, the number of the values (the cardinality), and other features of

the values the slot can take on.

4.11.7 Slot Value Type

This describes the type of the values that can occupy a slot. Examples of the most

common value types are: string, number (integer and float), Boolean, enumerated, and instance-

type. Instance-type slots allow the definition of relationships between individuals. That is, which

68

other class instances can have a relation with this class instance. Slots with value type Instance

must also define a list of allowed classes from which the instances can come.

4.11.8 Slot Cardinality

Slot cardinality defines how many values a slot can have. Some systems distinguish only

between single cardinality (allowing at most one value) and multiple cardinality (allowing any

number of values). Some systems allow specification of a minimum and maximum cardinality to

describe the number of slot values more precisely. Minimum cardinality of N means that a slot

must have at least N values. Maximum cardinality of M means that a slot can have at most M

values. Sometimes it may be useful to set the maximum cardinality to 0. This setting would

indicate that the slot cannot have any values for a particular subclass.

4.11.9 Slot Domain and Range

The domain of a slot is the class to which a slot is attached or the class with the property

that the slot describes. The range of a slot identifies the allowed classes for slots of type Instance.

In the phrase “Wineries produce wines”, “produce” is the slot, “wineries” is the domain, and

“wine” is the range.

Noy and McGuinness identify several basic rules for determining a domain and a range

of a slot.

• When defining a domain or a range for a slot, find the most general classes or

class that can be respectively the domain or the range for the slots.

• On the other hand, do not define a domain and range that is overly general.

• All the classes in the domain of a slot should be described by the slot.

69

• Instances of all the classes in the range of a slot should be potential fillers for the

slot.

• Avoid choosing an overly general class for the range, but rather choose a class

that will cover all fillers. For example, avoid choosing “THING” for the range of

a slot. (THING is generally accepted as the uppermost possible element in any

ontology.) Instead of listing all possible wines that a winery can produce, simply

choose “wine” for the range. “THING” would be too general.

• More specifically, if a list of classes defining a range or a domain of a slot

includes a class and its subclass, remove the subclass.

• If a list of classes defining a range or a domain of a slot contains all subclasses of

a class A, but not the class A itself, the range or domain should contain only the

class A and not the subclasses.

• If a list of classes defining a range or a domain of a slot contains all but a few

subclasses of a class A, consider if the class A would make a more appropriate

range definition.

4.11.10Step 7 – Create Instances

The last step is creating individual instances of the classes defined in the hierarchy. To do

so, perform the following activities: 1) choose a class, 2) create an individual instance of that

class, and 3) fill in the slot values for that instance.

At times it can become difficult to decide whether a particular concept is a class in an

ontology or an individual instance. The answer often depends on what the potential applications

of the ontology are. Noy and McGuinness suggest taking the approach of deciding what is the

lowest level of granularity in the representation. This is determined by the intended application

70

of the ontology. Ask what are the most specific items that are going to be represented in the

knowledge base. The most specific concepts that constitute answers to competency questions are

very good candidates for individual instances in the knowledge base. (Noy & McGuinness,

2001)

For architectural development activities, the instances are more reasonably developed in

the actual architecture of the system and not in the ontology. In order for ontologies to remain

generally applicable to multiple projects within a domain, the identification of instances of

concepts should be left to the actual architectural description of the designed solution.

4.12 Ontology Maintenance

It is important to maintain the ontology over time. Concepts in a given domain can

change over time. Depending on the use of the ontology it may be necessary to periodically

review the ontology to ensure that it is up-to-date with the current vocabulary usage within the

given domain.

71

5 Bridging the Gap Between Ontologies and Modeling Profiles

Several technologies have been under development in the last couple of decades that have

accelerated the potential for bridging the gap for the transfer of knowledge between ontologies

and system modeling profiles, and thus into the system model architectures themselves. These

technologies are discussed in the following sections.

5.1 Modeling

Humans have been using models to describe the world around them for as long as the

need to convey information from one to another has existed. A model is simply a conceptual

representation of some entity in the real world, whether that entity actually exists at the point in

time that it is modeled, or simply exists as a vision of something that has existed in the past or

could exist in the future. By definition, a model is “a description of (part of) a system written in a

well-defined language. A well-defined language is a language with well-defined form (syntax)

and meaning (semantics), which is suitable for automated interpretation by a computer ”.

(Kleppe, Warmer, & Bast, 2003) In the realm of systems engineering, models are representations

of systems to be built to provide some capability that satisfies the needs of a stakeholder. This

arrangement of a modeler expressing an idea that a stakeholder would interpret is illustrated in

Figure 3. (Overbeek, 2006)

Figure 3: Relation Among Modeler-Model-Interpreter (Overbeek, 2006)

72

For our purposes, we are addressing system and software models as capturing

descriptions of system elements, their characteristics, behaviors, interfaces, etc. These modeling

elements are captured in a form that can be interpreted by stakeholders using industry standards

that define the syntax and semantics of the languages used to model the system. The idea of a

modeling language as being the means by which the expression of the model is captured is

illustrated in Figure 4. (Overbeek, 2006)

Figure 4: Representation of Figure 3 in Modeling Language (Overbeek, 2006)

A modeling language includes the syntax (the part of the language that defines the

notation) and the semantics (the part of the language that describes the meaning of the notation).

The syntax is further divided into a concrete syntax, which defines the physical notation of the

language observed by the user, and the abstract syntax, which describes the concepts in the

language, their characteristics, and interrelationships. The semantics describe the meaning of the

language in terms of concepts that are well-defined and understood. These concepts are

contained in the semantic domain which envelopes the whole of the concepts included in the

selected language used for modeling. The language used for describing models is called a

modeling language. (Overbeek, 2006)

73

The concepts of concrete syntax, abstract syntax, semantic domain and the mapping of

the elements to each other are represented in Figure 5, which describes a model of a language

used for modeling. This is also known as a language metamodel. (Overbeek, 2006)

Figure 5: Syntax and Semantics of Metamodel (Overbeek, 2006)

Recent advances in the practice of system and software modeling have led to the

popularity of object-oriented (OO) modeling, in which modeling elements are treated as objects

in an OO modeling paradigm. The popularity of OO modeling has led to the use of graphical

languages to describe the systems being modeled. The modeling solution for textual modeling

languages is well-developed in the form of the Backus Naur Form (BNF) notation. (Fuentes-

Fernández & Vallecillo-Moreno, 2004) However, for graphical modeling, as is commonly used

in software and systems engineering, a different mechanism is needed. The desire to use

graphical languages in modeling gave rise to the need to formalize the graphical modeling

process. As a result, the Object Management Group (OMG) has developed the Meta-Object

Facility (MOF) as one solution which has now become an accepted standard in the industry.

5.2 Meta-Object Facility

As suggested in the previous section a metamodel is a model of a model. In the case of a

modeling language, the language metamodel is a model that describes a language used for

modeling. Taking this concept a step further, a meta-metamodel is a specialized metamodel that

describes other metamodels. (Overbeek, 2006)

74

The purpose of the MOF is to create, store, and manipulate object schemas into the form

of a meta metamodel used for defining metamodels, like the Unified Modeling Language

(UML). The OMG has established a four-layer construct known as the OMG metamodel

hierarchy, in which the MOF is designed to occupy the top layer of the structure, as illustrated in

Figure 6. All the layers in this structure (M3 down to M0) employ a strict instance-of

relationship with layer above, down to the M0 layer. (Overbeek, 2006)

Figure 6: Meta-Object Facility Metamodel Hierarchy (Overbeek, 2006)

The four layers of the metamodel hierarchy are, namely:

M3 – Meta-metamodel layer – This layer represents the MOF, which is a language

specification layer. The purpose of this layer is to specify the language of the metamodel at the

M2 layer. This layer contains only one metamodel, which is the MOF. The MOF is what is

known as a recursive layer. In addition to specifying the language at the next lower level, a

75

recursive layer defines a representation of its own behavior and structure, so no additional

language is needed at a higher layer to describe the MOF. (Overbeek, 2006)

M2 – Metamodel layer – This layer is a language specification layer that specifies the

languages used to define those models. It is also a metamodel layer in that it is used to specify

models. The metamodels in this layer are more specific as compared with the meta-metamodel

layer. This layer can contain multiple metamodels. (Overbeek, 2006) It is within this layer that

modeling languages such as the Unified Modeling Language (UML) and the Systems Modeling

Language (SysML) are specified.

M1 – Model layer – The model layer is a specification layer available to the modeler to

develop models of the object of interest. This layer will contain a concrete definition of the data

created by the modeler to represent the system being modeled. This is the layer in which the

modeler uses modeling tools to create an architectural description of some system of interest to

stakeholders, for example. (Overbeek, 2006)

M0 – Run-time layer – In software engineering terms, the run-time layer contains the

objects instantiated out of the model which will be executed during run-time, and thus represent

the final products of the software engineering effort. (Overbeek, 2006) In systems engineering

terms, this might be termed the Real-world layer, in which the modeled systems are actually

produced and delivered to customers, and used in the real world to deliver value to stakeholders.

5.3 UML Profile Extension Mechanism

The Unified Modeling Language (UML) was established as a standardized modeling

language by the Object Management Group (OMG) in the mid-1990s, and has since enjoyed

widespread acceptance and usage. The UML is a general-purpose graphical and visual modeling

76

language used initially to specify the design of software engineering projects and products,

irrespective of the domain of the problem solution. The drawback of the general-purpose nature

of the UML is that there exists a lack of features that can be directly used to represent specific

characteristics of the domain of the problem space. The OMG accommodates this need for

additional features through two available mechanisms. (Overbeek, 2006)

The first of these involves using the MOF to create a new meta-model at the M2 layer to

describe a modeling language that provides the domain-specific features not found in a general-

purpose language like the UML. By taking this approach, the desired modeling characteristics of

the domain are defined into the syntax and semantics of the elements of the new language.

However, the result is a modeling language that is quite limited to applications within the domain

of discourse covered by the language syntax and semantics. Furthermore, the new language will

not observe UML semantics, and therefore the language will not be compatible with commercial

UML tools for drawing diagrams, generating code, etc. (Overbeek, 2006)

The second approach is that of the usage of a language extension profiling mechanism.

With language profiles, some elements of the language are specialized by imposing constraints

which more closely represent the characteristics of the elements in the domain of interest.

However, in order to retain the general-purpose nature of the UML, the profiling extension

mechanism continues to conform with the UML metamodel by leaving the original semantics of

the UML elements unchanged. (Overbeek, 2006)

The advantages of using the UML profile extension mechanism are 1) extend the

modeling terminology to cover domain-specific terminology, 2) extend the syntax of the

modeling language to include modeling concepts specific to the domain, 3) display a customized

set of graphical symbology more appropriate to the target application domain, 4) add semantics

77

that were left unspecified in the metamodel that defined the UML, 5) add semantics that do not

exist in the metamodel that defined the UML, 6) add constraints to the way the metamodel can

be used. (Overbeek, 2006) However, above all, the most important advantage to be gained by the

profile extension mechanism is that a domain profile can be developed that can then in turn be

reused on other projects within the same domain in order to establish a consistent domain-

specific modeling approach within an organization and across an industry.

5.4 Model Driven Architecture

Model Driven Architecture (MDA) was conceived out of the need to separate the

elements of software engineering activities that were driven by the desired functionality of the

system from those that were affected by the constraints of the computing hardware of the system.

(Truyen, 2006) This approach allows us to focus on model definition, leaving implementation

details until the end. Doing so makes the models more portable, more adaptable to new

technologies, and more interoperable with other systems, regardless of the technology they use.

(Fuentes-Fernández & Vallecillo-Moreno, 2004)

The MDA specification identifies three distinct viewpoints intended to emphasis this

separation of concerns. These are 1) the computation independent viewpoint, 2) the platform

independent viewpoint, and 3) the platform specific viewpoint. The computation independent

viewpoint considers the problem seeking a solution from the stakeholder perspective in which

the method of achieving the solution (the way the problem is solved) is independent from the

problem statement (what the problem is). The platform independent viewpoint focuses on the

functional and physical characteristics of the solution that allow it to meet its operational

objectives independent of how the solution will actually be implemented. The platform

dependent viewpoint provides the detailed information that describes how the platform

78

independent viewpoint will be implemented in a specific hardware configuration. The platform is

a set of software and hardware subsystems and technologies that provide a coherent set of

functionalities to provide the complete deliverable functionality which serves as a solution to

address the stakeholders’ problem space. Examples of platforms include operating systems,

programming languages, databases, user interfaces, middleware solutions, processors, interfaces,

etc. that service the platform independent elements of the MDA. (Truyen, 2006)

In order to realize these viewpoints, MDA defines three models of a system that

corresponding to the three MDA viewpoints: 1) Computation Independent Model (CIM), 2) the

Platform Independent Model (PIM), and 3) the Platform Specific Model (PSM). (Truyen, 2006)

The CIM is also referred to as the business or domain model since it uses a vocabulary

that is familiar to subject matter experts (SMEs) operating in the domain of discourse. It

describes the operational functionality and performance that the system is expected to deliver in

order to meet the stakeholders’ objectives. In the process of doing so, the CIM hides technology

related details to maintain independence from the system solution description. This independence

is critical so that the specification of the desires of the stakeholder are not influenced by any

particular technology solution. However, as the development proceeds, the CIM requirements

should be made traceable to the PIM and PSM constructs that implement them. (Truyen, 2006)

The independence of the PIM is an intentional characteristic in order for the PIM to be

developed such that it can be easily mapped to one or more platforms without impacting the

PIM. The mapping from PIM to PSM is then performed by defining a set of services in a way

that abstracts out the technical details of the mapping. Other models on the PSM side of the

mapping then realize these services in a manner specific to the platform on which the PIM will

be implemented. (Truyen, 2006) UML Profiles can be used to describe the platform model and

79

the transformation rules between models. Doing so guarantees that the transformed models will

be consistent with the UML. (Fuentes-Fernández & Vallecillo-Moreno, 2004) Note, that while

this application of UML Profiles is valuable, it is not the use of profiles that is being sought after

as a solution to the problem of incorporating ontologies into the systems modeling process.

The PSM then combines the specifications in the PIM with the details that describe how

the PSM is implemented on a particular platform. (Truyen, 2006)

Figure 7 (Alhir, 2003) illustrates the foundational concepts that constitutes the MDA. In

this figure, the Requirements Gathering process produces the Requirements Model (CIM) that

feeds the requirements specifications to the Analysis process. The Analysis process is actually

the beginning of the conceptualization of a solution to the problem through the architectural

design tasks that are included in the Analysis process in this figure. During the Analysis process,

the architecture that describes the platform independent functionality and performance of the

system is defined to produce the architectural description (PIM). The Analysis process is

performed as part of the architectural development by analyzing whether the architecture

developed will provide the needed functionality and performance to satisfy the stakeholder

requirements. The architectural description (PIM) is then passed to the Design process where the

detailed implementation plan is developed. From this point, the Design process produces the bill

of materials (PSM) which is then fed to the Implementation process. It is in the Implementation

process where the actual, realized product is constructed (System).

80

Figure 7: SE Lifecycle Phases Mapped to MDA (Alhir, 2003)

The most important advantage of this approach, and the main purpose for developing this

architectural approach, is so that software engineers are then able to define transformations that

automatically convert the PIM to a PSM. The PIM is supplied as an input to this process, along

with a description of the PSM to be used to implement the system. A set of transformation rules

are then used to implement the system in the most automated way possible. (Truyen, 2006)

5.5 Ontology Definition Metamodel

The Semantic Web represents the next logical step beyond the World Wide Web, and is

intended to enable machine-understandable data to be shared across the Net. Ontologies will give

the Semantic Web machine-understandable meaning to its data. These interoperable ontologies

will facilitate Web with the ability to “know” something. The Semantic Web architecture defines

three levels that incrementally introduce expressive primitives: metadata layer, schema layer and

logical layer. The Semantic Web ontology languages that support this architecture are depicted

in Figure 8. (Djuric, Gaševic, Devedžic, & Damjanovic, 2004)

81

Figure 8: Semantic Web Architecture (Djuric, Gaševic, Devedžic, & Damjanovic, 2004)

The Resource Description Framework (RDF) and the RDF Schema are used as general

languages for the description of metadata on the Web. OWL has been developed as a vocabulary

extension of RDF. OWL is a semantic markup language for publishing and sharing ontologies on

the WWW. OWL is designed to advance beyond simply presenting information to humans. It is

designed to provide the ability for applications to process information content. OWL facilitates

greater machine interpretability of Web content by providing additional vocabulary along with a

formal semantics. This capability goes beyond that which is supported by XML, RDF and RDFS

alone. To achieve common data interoperability in applications, XML is the preferred choice as

it supports syntax, while semantics is provided by RDF, RDF Schema, and mainly by OWL.

Through the use of OWL, developers can achieve unconstrained representation of the Web

knowledge and, at the same time, support calculations and reasoning. However, AI techniques

needed for ontology creation are relatively unknown to the wider software engineering

population. In order to overcome this gap, several proposals have been offered that suggest using

UML in ontology development. The drawback of some of these proposals is that UML does not

by itself satisfy the needs for representation of ontological concepts borrowed from description

logics, and included in Semantic Web ontology languages. (Djuric, Gaševic, Devedžic, &

Damjanovic, 2004)

82

Development activities have been underway, focused on to move ontology development

techniques toward taking advantage of the metamodeling approach offered by the OMG’s Model

Driven Architecture (MDA) technology. Toward this end, several metamodels and UML profiles

have been developed which are based on ontology representation languages such as RDF(S),

DAML+OIL, etc. However, none of these solutions use OWL. As a result, the Object

Management Group (OMG) has established an initiative aimed at defining a suitable language

for modeling Semantic Web ontology languages in the context of MDA. This initiative is known

as the Ontology Definition Metamodel (ODM). This initiative has been established in large part

due to the recognition that the Semantic Web and its XML-based languages are the main

enablers of future Web development. (Djuric, Gaševic, Devedžic, & Damjanovic, 2004)

Djuric, et al. propose to take advantage of the OMG’s Model Driven Architecture (MDA)

concept to create a language that is defined in a similar way that the UML is defined, using

metamodeling. Accordingly, they have developed a metamodel for an ontology modeling

language which is defined using the OMG Meta-Object Facility (MOF), and is based on the Web

Ontology Language (OWL). To facilitate use by the wider engineering community, they

developed a profile that supports ontology design, called the Ontology UML Profile (OUP). This

profile is a standard extension of UML, and is also based on MOF. To provide a usable ontology

development environment, several data mappings are required. Three two-way mappings are

required: 1) between OWL and ODM, 2) between ODM and the OUP, and 3) from the OUP to

other UML profiles. These mappings are impacted by the fact that they involve traversing

ontology languages based on different platforms (i.e. Semantic Web and MDA), and therefore

several tools are required to provide those mappings. One approach to this issue is to apply the

concept of technical spaces. The authors implemented an XSLT that transforms OUP ontologies

83

into OWL in order to provide suitable tool support. The needed transformations are illustrated in

Figure 8. (Djuric, Gaševic, Devedžic, & Damjanovic, 2004)

Figure 9: Ontology Modeling in the Context of MDA and the Semantic Web (Djuric,

Gaševic, Devedžic, & Damjanovic, 2004)

In the approach proposed by Djuric, et al., ODM encloses common ontology concepts by

using OWL, since it is the result of the evolution of existing ontology representation languages.

The position of OWL at the Logical layer of the Semantic Web architecture, on top of RDF

Schema (Schema layer) allows it to make use of graphical modeling capabilities of the UML.

Thus, ODM should have a corresponding UML Profile to enable the graphical editing of

ontologies using UML diagrams. The required two-way transformations between UML and

ODM can be accomplished using XSLT, since both models are serialized in the XMI format.

Another pair of XSLTs should be provided for the two-way mapping between ODM and OWL

since OWL also has representation in the XML format. Additional transformations can be added

to support the use of ontologies in the design of other domains and vice versa. This would allow

for the mapping of the Ontology UML Profile into other, technology-specific UML Profiles.

84

6 Current State of the Practice

As described in Section 3.4.7, NASA JPL has reported on a program that the institution

has been involved with to transform domain ontologies into system modeling profiles for use in

systems architecture development. This section delves deeper into the NASA JPL activities in

this area as reported during the period 2010-2019 to examine more closely the approach taken to

provide this capability. Towards the end of this period, a consortium of interests launched an

initiative known as the Semantics Technologies for Systems Engineering (ST4SE). This

initiative is taking the work of NASA JPL, as well as the results of other research activities into

the application of ontologies to solve systems engineering problems, to advance the state of the

art in this area. The ST4SE seeks to “promote and champion the development and utilization of

ontologies and semantic technologies to support system engineering practice, education, and

research.” (Jenkins, 2018) The author of this thesis intends to follow the activities of the ST4SE

group to keep abreast of advances made in this area of research.

6.1 NASA JPL Integrated Model-Centric Engineering Initiative

The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory

(JPL) is a national research facility that designs, develops robotic sensors, spacecraft, and surface

vehicles to perform Earth and interplanetary science missions. (About JPL, n.d.) JPL launched

the Integrated Model-Centric Engineering (IMCE) initiative for the purpose of advancing

enterprises practices from “the current document-centric engineering practices to one in which

structural, behavioral, physics and simulation-based models representing the technical designs

are integrated and evolve throughout the life-cycle, supporting trade studies, design verification

and system verification and validation.” The objective of the IMCE initiative is to “advance

engineering practice to a state in which descriptive and analytical models representing technical

85

designs and relating them to stakeholder concerns are developed and integrated throughout the

mission life cycle, from early concept through operations.” (Bayer, et al., 2011)

6.2 NASA JPL View of Systems Engineering Landscape in the 2010 Timeframe

The organization was experiencing the same issues with traditional system engineering

practices as has been reported in this thesis as being experienced by other organizations, those

being: managing growing system complexity, dealing with emergent system behavior, and

inability to fully test systems using traditional test methods, among others. The IMCE identified

four specific challenges to address: 1) JPL products were being designed around “off-the-shelf”

components, rather than through a mission-oriented architectural development activity, 2) there

was no effective mechanism to transfer knowledge from one project to the next, 3) the

programmatic activities and technical activities were managed separately resulting in poor

decision-making and increasing risk, 4) It is of value to examine these issues more closely as

they are more closely aligned with the architecture modeling issues this thesis is intending to

address. (Bayer, et al., 2011)

6.2.1 System Design Emerges from the Pieces

The issues raised here have to do with the tendency of an organization to pull system

components “off-the-shelf”, or in this case, to use equipment designed by laboratories to deliver

a particular capability, irrespective of the ability of those components to properly integrate into

the aggregate system. The IMCE identified the following challenges. (Bayer, et al., 2011)

• The role of the system architect is not an influential element of the engineering

process.

• The architecture is disproportionately driven by the design process of functional

decomposition.

86

• The management of ad-hoc, point-to-point interfaces becomes overwhelming.

• Extensive decomposition of models into simpler submodels can result in

conflicting conclusions from the submodels.

• The tendency to delineate fault protection from nominal functionality results in

systems that are brittle, difficult to operate, and less reliable.

• The abandonment of architectural principles to solve technical problems of the

day, whether those principles are spelled out in policy or not, make the system

brittle, difficult to operate, and increases risk.

• System designs are spread across many disconnected architectural description

artifacts requiring many meetings, emails, and conversations to resolve design

changes over months of effort.

• Weakly architected systems results in aspects of the design itself scattered over

system elements resulting in the execution of functionality with little high-level

oversight and coordination.

• The physics-based models of subsystem performance are not connected to each

other, resulting in “stove-piped” analysis (performing analysis separately for each

subsystem), and manually integrating the results. This extends the time necessary

to conduct an analysis or trade study and hides significant system-level

interactions which might later be exposed during testing, or during operations.

• Insufficient consideration for verification and validation during requirements

development can render aspects of the design untestable.

• The primary mission objective requirements are not adequately coordinated with

the practical infrastructure system requirements resulting in conflicts between

87

basic system operations and fulfilling the primary mission objectives. A side

result is that opportunities to reduce risk/cost/schedule or even enhance

performance are missed because of the disconnect between the two.

• Some desired system behaviors are difficult to express in textual specification

format, resulting in miscommunication between systems engineers and software

developers, and incorrect system behavior.

6.2.2 Knowledge and Investment are Lost Across Phases

There is no effective mechanism to transfer knowledge from one project to the next or

between phases within the same project. (Bayer, et al., 2011)

• The system modeling efforts performed during the conceptual phase are

abandoned when transitioning to the implementation phase. The new modeling

work is essentially started from scratch using non-model-based artifacts to kick-

start the activity.

• Inadequate configuration management (CM) during one phase results in

incomplete, or non-existent reuse of artifacts from one phase to another.

• Essential attributes of the system design, such as architectural principles,

assumptions, rationale, and explanatory narrative are not properly captured or

made available to engineers to take advantage of.

• Because the system design is so poorly captured in available artifacts, training

new team members requires locating key documents, and having lengthy

conversations with them in order to bring new personnel up to speed on the

system design, resulting in new engineers continuing to discover key attributes of

the design over a very extended period of time.

88

6.2.3 Technical and Programmatics are Poorly Coupled

This topic area addresses the fact that programmatic activities and technical activities are

managed separately resulting in poor decision-making and increasing risk. (Bayer, et al., 2011)

• Very little coupling exists between the technical aspects of the system design and

the programmatic aspects resulting in the inability to correctly determine the cost,

schedule, scope, and risk implications of a given set of requirements, science

objectives, components, and functions. This is due to the difficulty in transferring

information between disciplines and between the various tool types used.

• Systems engineers are often insufficiently knowledgeable about the programmatic

realities of a project and the impact of engineering decisions on programmatics.

The tools typically used by systems engineers do not support an integrated view

that includes consideration of programmatics. Trade studies seldom fully

incorporate programmatic considerations.

6.2.4 System Design Re-Use is Lacking

The lack of facilities to document and integrate the broad experience and knowledge of

engineers across a project makes it difficult, if not impossible, to train new systems engineers

who will need to absorb this broad knowledge quickly and deeply, and to make this knowledge

available as a legacy to future projects. Re-using system architectures and designs on subsequent

projects seldom happens because they are not well-captured. Institutional guidance documents

often do provide useful heuristics and lessons learned, but these resources often are not sufficient

to enable architecture re-use. (Bayer, et al., 2011)

89

6.3 NASA JPL Use of Models as Information Structures

In modern complex engineering systems, models can take various forms, such as

differential equations, simulations, or SysML drawings. The purpose of such models is to

organize concepts and properties into meaningful relationships. These concepts, properties, and

relationships can be unique to an individual model, insomuch as it concerns the description of the

elements of that particular model and their interrelationships, or they can be common to a family

of models. For models that share a common format or purpose, they can more easily be

compared, contrasted, and reused. This enables engineers to more effectively understand the

content of a model and what is intended to be communicated by a model without the need for

extensive explanation. Standardized model formats allow engineers to focus on understanding

and creating, not on explaining and cross-training. Having standardized formats does not restrict

an engineering team to only use those common formats. Unique situations can be handled by

model extensions. Ontologies can be used to support the definitions of system modeling

concepts, properties, and relationships by providing these definitions as inputs that are digested

by models in the form of modeling profiles. Ontologies can be used to make explicit the

knowledge about system elements that is often hidden, implied, or non-existent in a system

description, such as a modeling diagram. Part of the challenge to improving the approach to

designing modern systems is to devise a method by which model element information (the

description of some “thing” in the model) can be brought forth for use by the engineers

architecting a system design. This can be more easily solved by separating what the thing is

called (its assigned identity) from what kind of a thing it is (where it can be found in a controlled

vocabulary of concepts). This is the value that an ontology brings to system modeling. (Jenkins,

Ontologies And Model Based Systems Engineering, 2010) An example of organization of

90

concepts, properties, and relationships is shown in Figure 10, as developed by Jenkins in

(Jenkins S. , Ontologies And Model Based Systems Engineering, 2010).

Figure 10: Example Type Classification Hierarchy (Jenkins, Ontologies And Model

Based Systems Engineering, 2010)

Facts are expressed in “triples” of the form (subject, predicate, object). Facts such as

these that describe and relate system elements can then be expressed using these terms (as shown

in the above figures) and stored in a repository called a “triple store.” An example of a set of

triples for the NASA JPL project is shown in Figure 11. Here three triples are shown. One triple

can be stated as “The Component Performs a Function”.

91

Figure 11: Relationships are Also Properties (Jenkins, Ontologies And Model Based

Systems Engineering, 2010)

The stored facts can then be used to address simple questions like “What is the sensitivity

of the WhizBangMkIVStarTracker named ‘Star Tracker A’?” Further, if the repository can draw

inferences by using an inference engine, then we can ask things like “What is the sensitivity of

the StarTracker named ‘Star Tracker A’?” Also, to produce the master equipment list is a simple

matter of submitting a query to the database in the form: “Find all FlightHardwareComponents

and print their names and masses.” If the database is strategically designed, then these queries

become mission-independent procedures and can thus be reused from one project to another.

(Jenkins, Ontologies And Model Based Systems Engineering, 2010)

6.4 NASA JPL Use of Semantic Technologies

Many of the issues identified above by the IMCE initiative revolve around the

interrelatedness of all the elements of the systems engineering process employed within an

organization. According to JPL, achieving a high-level of interrelatedness requires standards for

naming and classification of model elements and properties (using ontologies) and the expression

of those standards in SysML-specific terms (modeling profiles). This is the focus of the current

activities at JPL and what is of interest to this thesis. The integration of Semantic Technologies

92

with SysML modeling is the approach that JPL is currently pursuing to accomplish their near-

term objectives. (Bayer, et al., 2011)

The concept of the Semantic Web was introduced in Section 5.5. NASA JPL uses the

term Semantic Technologies to refer to the theories, technologies, and practice of the Semantic

Web. In the 2010 timeframe, NASA JPL began examining the use of Semantic Web

technologies. These include the standards indicated in Table 5, and the technologies indicated in

Table 6. Since this is an active field of research, the technology and tools advance rapidly.

(Bayer, et al., 2010) Therefore, it is advisable to periodically check on the currency of these

technologies to determine whether they have rolled over into a new set over time. For example,

OpenRDF Sesame is now known as RDF4J.

Table 5: Ontology Standard Used at JPL (Jenkins, Ontologies And Model Based Systems

Engineering, 2010)

Ontology Standards Description

Resource Description Framework (RDF)
Statements of the form (subject, predicate, object)

Simple class hierarchies

Web Ontology Language (OWL) RDF vocabulary for formal logic

SPARQL Query Language for RDF Powerful language for querying RDF/OWL databases

Table 6: Ontology Technologies Used at JPL (Jenkins, Ontologies And Model Based

Systems Engineering, 2010)

Ontology Technology Types Example Technologies

Ontology Editors Protégé, TopBraid Composer, etc.

Knowledge Repositories Sesame, Oracle Semantic Database, Mulgara, etc.

Application Frameworks Sesame, Jena, TopBraid Suite, OpenRDF Sesame,
RDF4J, etc.

The SysML specification (Object Management Group, 2019) includes definitions of

concepts that form a kind ontology, including concepts such as Block, Interface, Activity,

93

Requirement, etc. In order to build SysML models capable of a higher degree of

interchangeability, it is necessary to build additional ontological structure beneath these high-

level concepts. This includes concepts such as Work Breakdown Structure, Hardware, Software,

Stakeholder, Concern, etc., plus any specialized associations, such as: authorizes, represents,

specifies, etc. JPL is developing its ontologies using OWL2, which is more fundamental than

SysML, in terms of the interoperability it implies for the system model (more general, and

therefore applicable across multiple models.) These ontologies are then translated into SysML

conceptual models and profiles. The relative utility of Semantic Web technologies and

UML/SysML as seen by JPL are described in Table 7. (Jenkins, Ontologies And Model Based

Systems Engineering, 2010)

Table 7: Relative Utility of Semantic Web Technologies and UML/SysML (Jenkins,

Ontologies And Model Based Systems Engineering, 2010)

As is shown in the table above, and as noted in (Jenkins, Ontologies And Model Based

Systems Engineering, 2010), the emphasis of SysML is on notation, whereas OWL was founded

on formal logical principles. Consequently, OWL provides strong support for verification of

consistency and satisfiability, extraction of entailments, conjunctive query answering, etc.

SysML inherits a semantic foundation that provides for only limited reasoning and analysis,

94

which is a substantial impediment to developing high confidence in the soundness of any

conclusions drawn therefrom. For example, a number of foundation concepts from systems

engineering, such as work package, objective, environment, etc., do not explicitly appear in

SysML. (Jenkins & Rouquette, 2012)

OWL has had only limited adoption in systems engineering due to the absence of any

graphical notation conventions in the OWL standards. But, the complementary strengths and

weaknesses of SysML and OWL invite the possibility of combining strengths to provide a

capability that provides the easily editable graphical notation of SysML and the formal reasoning

of OWL. If the systems engineering ontologies are expressed in OWL, this makes them

amenable to formal validation. Formal reasoning techniques can then be used to ensure that

model syntax and semantics are consistent and satisfiable, and that reasoning operations remain

tractable since they are constrained within the bounds of Description Logic. (Jenkins &

Rouquette, 2012)

An additional IMCE objective is to develop the systems engineering ontologies to reflect

common systems engineering conventions such that they provide the formal unifying framework

for all systems engineering information in any language, in any tool, in any repository. These

systems engineering ontologies provide a common controlled vocabulary that can be used to

address a wide range of assertions about complex systems throughout their life cycles. Some of

the advantages of using controlled vocabularies in modeling, and enforcing rules for well-

formedness are that it enables durable information storage, lossless information interchange,

interdisciplinary information integration, and automated analysis and product generation.

(Jenkins & Rouquette, 2012)

95

The ontologies developed by JPL for these purposes are partitioned into three categories:

Foundation, Discipline, and Application. These categories are intended to group concerns

according to differing foci and objectives. The Foundation ontologies define concepts, and

properties that apply generally across all projects to establish an overall framework for systems

engineering. The Discipline ontologies define those concepts and properties that are pertinent to

a particular engineering discipline. This is accomplished primarily through the use of

specialization from the Foundation ontologies. The primary objective of using the discipline

ontologies is to provide for information interchange across all disciplines. In this way, all

systems engineering models, regardless of discipline, use a common vocabulary. This makes it a

simple matter of using the common vocabulary in a query to extract common properties of any

modeled component across all disciplines. Application ontologies define the concepts and

properties pertinent to a particular class of engineered system irrespective of discipline. A certain

subsystem ontology, for example, would draw from multiple discipline and foundation

ontologies to characterize components particular to that subsystem application. Multiple

individual ontologies have been developed within the Foundation and Discipline categories as

described in Table 8. (Jenkins & Rouquette, 2012)

Table 8: OWL Ontologies for Systems Engineering (Jenkins & Rouquette, 2012)

Ontology
Category

Ontology
Name

Description

Foundation

Base The base ontology defines a small number of general
concepts (e.g., container) and properties (e.g., contains) that
are refined in other ontologies.

Mission The mission ontology defines concepts and properties used
to describe the execution of a mission and its context:
objectives, performing elements, functions, interfaces,
requirements, etc.

96

Analysis The analysis ontology defines concepts and properties used
for qualitative and quantitative characterization of
individuals of any time.

Project The project ontology defines concepts and properties used
to describe the entities and endeavors involved in designing,
analyzing, acquiring, integrating, and testing the elements of
a mission: projects, programs, work packages, deliverables,
etc.

Discipline

Electrical Defines concepts and properties for current sources and
loads, signal types, conditioning and distribution equipment,
etc.

Mechanical Defines mass properties, mechanical interface types, etc.

Verification
and Validation

Defines process and analysis specializations to capture V&V
activities and results.

6.5 Embedding Ontologies in SysML Profiles

In order to build SysML profiles from domain ontologies, it is necessary to establish

formal relationships between the elements of the ontologies and their counterparts in

SysML/UML. These relationships cannot be established until the UML/SysML concepts and

properties are transformed into ontologies which can be reasoned over. Once these

transformations are performed and both sets of ontologies are available, the SysML/UML

concepts and properties can then be specified and reasoned about, providing the ability to

express relationships between domain ontologies and SysML using OWL axioms. (Jenkins &

Rouquette, 2012) The use of QVTo to perform the transformation from UML/SysML form to

ontological format in order to perform reasoning on the ULM/SysML elements is illustrated in

Figure 12.

97

Figure 12: Transformation of UML/SysML Models to Ontologies (Jenkins & Rouquette,

Progress on Integrating OWL and SysML, 2012)

6.5.1 Relate OWL Concepts to SysML Classes

Concept (class) relationships are established by declaring that some class defined in a

domain ontology is a subclass of some corresponding element in SysML, or vice versa, on a

concept-by-concept basis. This process is covered in detail in Step 2 of the Step-By-Step process

defined further below. (Jenkins & Rouquette, 2012)

6.5.2 Relate OWL Relationships to SysML Properties

Likewise, some properties defined in a domain ontology as relationships can be declared

as subproperties of some corresponding element in SysML, or vice versa. This process is covered

in detail in Step 3 defined further below. (Jenkins & Rouquette, 2012)

Unfortunately, the process of embedding of OWL relationships in SysML/UML

relationships is not as direct as with OWL classes. This is because there is no direct mechanism

to reify occurrences of object properties in OWL. To explain this requires some background of

the concept of reification. (Jenkins & Rouquette, 2012)

6.5.2.1 RDF Triples

RDF is intended to provide a simple way to make statements about the world. RDF is

based on the idea that the things being described have properties which have values, and that

98

resources can be described by making statements that specify those properties and values. RDF

uses a particular terminology for talking about the various parts of statements. Specifically, the

part that identifies the thing the statement is about is called the subject. The part that identifies

the property or characteristic of the subject that the statement specifies is called the predicate,

and the part that identifies the value of that property is called the object. (World Wide Web

Consortium, 2004) A statement is an object, predicate, subject triple. (World Wide Web

Consortium, 2006) The subject-predicate-object triple form a relationship described by the

predicate, between the source (subject) and the target (object.)

6.5.2.2 Reification in General

Reification is widely used in conceptual modeling primarily for the purpose of viewing a

relationship (such as an RDF triple) as an entity (a concept or class). The purpose of reifying a

relationship is to make it explicit (to create a class to represent the relationship explicitly), so that

additional information can be added to it. (Wikipedia, 2019)

6.5.2.3 Reification in UML/SysML

In UML/SysML, a relationship between two entities cannot be specified in an RDF

statement without reifying the relationship (creating a class to represent the relationship as a

concept or class.) In the example illustrated in Figure 13, the statement “The task is allocated to

a resource” cannot be mapped to an RDF triplet without creating a class called Allocation to

represent the relationship between the task and the resource. (Arlow & Neustadt, 2005)

99

Figure 13: Reification in UML/SysML (Arlow & Neustadt, 2005)

6.5.2.4 Reification in RDF

The RDF reification vocabulary is designed to talk about statements. (World Wide Web

Consortium, 2006) RDF applications sometimes need to describe other RDF statements using

RDF, for instance, to record information about when statements were made, who made them, or

other similar information (referred to as "provenance" information). (World Wide Web

Consortium, 2004) For example, consider a particular camping tent product

exproducts:item10245, offered for sale. A triple that describes the weight of the tent, is:

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

(World Wide Web Consortium, 2004)

It might be useful to record who provided that particular piece of information. RDF

provides a built-in vocabulary intended for describing RDF statements. A description of a

statement using this vocabulary is called a reification of the statement. The RDF reification

vocabulary consists of the type rdf:Statement, and the properties rdf:subject,

rdf:predicate, and rdf:object. However, while RDF provides this reification vocabulary,

care is needed in using it, because it is easy to imagine that the vocabulary defines some things

that are not actually defined. (World Wide Web Consortium, 2004)

100

6.5.2.5 Reification in OWL

There exists no mechanism in OWL1 to define properties as a composition of other

properties. So, the concept of an uncle as a brother of a father cannot be described in OWL1.

However, in OWL2, the construct ObjectPropertyChain in a SubObjectPropertyOf axiom allows

a property to be defined as the composition of several properties. (World Wide Web Consortium,

2012) An example code set for performing reification to define the “uncle” relationship is

illustrated in Figure 14.

Figure 14: OWL2 Property Chain Example (Passant, 2009)

As OWL2 provides mechanisms to define arbitrary classes and properties, there is no

difficulty with creating, for every object property p in some ontology, a corresponding class P to

represent occurrences of that property, as well as for the source and target properties that connect

the reified occurrence to the model elements that it relates. Having done so, then the OWL2

property chain mechanism that can be used to declare that the existence of the reified object

property occurrence of class P with source A and target B implies that A-p-B (a triple). The next

101

step, then, would be to supplement the system engineering ontologies with axioms that

implement this reification pattern for every object property in the ontologies. (Jenkins &

Rouquette, 2012)

According to Jenkins and Rouquette in (Jenkins & Rouquette, 2012) “reified

relationships are the key to a semantics-preserving mapping between UML and OWL. Without

reification, there are many possible combinations for mapping OWL classes and object

properties to UML classes, associations, association classes, properties and other relationships

(e.g., dependencies). The Object Management Group’s Ontology Definition Metamodel (ODM)

specification explains some of these possibilities but does not recommend a particular one. More

importantly, the ODM lacks a unifying pattern for handling the various ways in which

conceptual relationships are modeled as associations, dependencies, generalizations, ports, etc. A

generic reification pattern simplifies the UML/OWL mapping because it separates the problem

of modeling a conceptual relationship in OWL in terms of classes, object properties and property

chain axioms from the problem of choosing an adequate embedding of this conceptual

relationship in UML or in a profile extension of UML.” (Jenkins & Rouquette, 2012)

6.6 Embedding Ontologies in SysML Profiles

The steps identified in (Jenkins & Rouquette, 2012) and (Jenkins & Rouquette,

Semantically-Rigorous Systems Engineering, 2012) for performing this procedure are outlined

below.

6.6.1 Step 1 - Create OWL ontologies for SysML

Create OWL ontologies for SysML by 1) transforming the UML metamodel into a UML

ontology, and 2) transforming the SysML (as a profile of UML) into a SysML ontology. These

transformations are accomplished using the Operational Query/View/Transformation Language

102

(QVTo). The resulting transformed ontologies express certain features of SysML/UML in OWL,

including the UML/SysML class taxonomy.

6.6.2 Step 2 - Relate Domain Concepts to SysML

Relate domain concepts to the best match in SysML by writing embedding axioms that

define those relations. Embedding domain classes into SysML in this way is straightforward. In

the following examples, a system Component is defined as a subclass of a SysML Block, and a

system Requirement is defined as a subclass of a SysML Requirement.

• mission:Component owl:subClassOf SysML:Block

• mission:Requirement owl:subClassOf SysML:Requirement

6.6.3 Step 3 - Relate Domain Properties to SysML

Relate domain properties to the best match in SysML by writing embedding axioms that

define those relations. This is more complex than the same process for concepts (classes) the

uses the OWL2 Property Chain mechanism as described in Section 6.5.2.5.

• To use the owl:inverseOf relationship requires Extended MOF semantics (not

explained further in (Jenkins & Rouquette, Semantically-Rigorous Systems

Engineering, 2012).)

• As described in Section 6.5.2.5, occurrences of object properties are not reified in

OWL, so there is no way to represent “this requirement specifies the ‘performs’

relationship between this component and this function” because the particular

occurrence of ‘performs’ has no class defined, and therefore no identity

• Therefore (as described in Section 6.5.2.5) for a given object property, e.g.,

‘performs,’ create a corresponding reification class ‘Performs,’ corresponding

103

object properties ‘hasPerformsSource’ and ‘hasPerformsTarget’, and OWL

property chain axiom

• An instance of this reification class appears in Figure 15, as:

Figure 15: Example UML/SysML Reification (Jenkins & Rouquette, Semantically-

Rigorous Systems Engineering, 2012)

• By the effect of the OWL2 property chain axiom, illustrated in Figure 16, this

implies:

Figure 16: Example OWL2 Reification (Jenkins & Rouquette, Semantically-Rigorous

Systems Engineering, 2012)

• Which is what is needed for the SysML-to-OWL transformation

6.6.4 Step 4 – Test the Ontologies

Next, subject the ontologies (including embedding axioms) to a battery of tests.

• For Consistency

o Ensure that no axioms contradict other axioms

• For Satisfiability

o Ensure that every class can be nonempty

• For Well-Formedness

o Ensure that every class is correctly embedded in SysML

104

o Ensure that every property is correctly embedded in SysML

o Ensure that the domain and range of super/subproperty pairs are consistent

o Ensure that every object property has a reification apparatus

o Ensure consistent embedding of super/subclass pairs

6.6.5 Step 5 – Use a Continuous Integration System

Run these tests run under a continuous integration system such as Jenkins whenever one

of the ontologies changes

6.6.6 Step 6 – Load the Ontologies into a Repository

Load the ontologies into a Sesame repository and use SPARQL queries to generate

bundle digests that simplify profile construction by offload reasoning that’s much easier to do in

SPARQL than QVTo.

• Query for object property ranges after applying a range restriction

• Query for valid predicates for each subject class

• Query for valid object classes for each subject/predicate pair

6.6.7 Step 7 – Produce SysML Profiles

Perform a transformation in Operational Query/View/Transform (QVTo) to produce

SysML profiles

6.6.8 Step 8 – Produce User Interface Customizations

The QVTo transforms can also produce architecture-tool-specific user interface

customizations

• To assist the modeler in complying with profile rules

105

6.6.9 Step 9 –Transform SysML Models Back into OWL

Models with profiles applied can then be transformed from SysML back into OWL using

QVTo to extract the ontological commitments from the profiled model. The OWL representation

is then suitable for

• Validation of well-formedness

• Validation of adherence to local business rules, e.g.,

o Validate that every Component performs at least one Function

o Validate that every Function is performed by exactly one Component

o Validate that every ‘presents’ relationship is specified by at least one Requirement

• The OWL representation is also suitable for performing feature extraction and

transformation for specialized analysis tools, e.g.,

o Maple, Mathematica

• The OWL representation is also suitable for long-term archival and data warehousing

6.7 NASA JPL Conclusions and Future Work

NASA JPL has come to the following conclusions regarding their work to transform

domain ontologies into SysML profiles.

• Transforming SysML/UML specifications to OWL and then embedding

ontologies back into SysML profiles has proven to be a flexible process

• Pre-processing ontologies with SPARQL simplifies the profile generation code

• QVTo has proven to be powerful once some performance issues were addressed

• SPARQL and Sesame are powerful for analyzing and transforming SysML

models with the transformed profiles applied

106

NASA JPL has identified the following future work activities they plan to undertake as a

result of success with this ontology transformation approach.

• Add support for datatype properties

• Enhance the SysML-to-OWL transformation

• Develop analysis tooling in the OWL domain

• Develop discipline and application ontologies that extend foundation concepts,

such as electrical, mechanical, verification, etc.

107

7 Summary

Ontologies have been and are proving to be of value to engineering activities. This thesis

has reported on several fields in which ontologies have been developed and employed to enhance

the quality and effectiveness of engineering activities. These include 1) for modeling the product

structure and taxonomy, 2) for design automation using existing engineering knowledge, 3) for

requirements engineering, 4) for the control of production processes for dynamic orchestration,

5) for factory automation, and 6) for the mapping of data sources to Manufacturing Execution

Systems functions. (El Kadiri, et al., 2015) There are many possible uses on ontology, and as

more industries and organizations learn of the benefits of using ontologies, this field of

application will grow. These benefits include 1) more effective engineering knowledge openness

and diffusion, 2) faster sharing of product-related information and knowledge across the entire

value-chain, 3) more innovative mechanisms to enable new feedback, 4) provisioning of new

feed-forward mechanisms to deliver information to actors in downstream lifecycle phases, 5)

better decision-support tools, 6) innovative designs, and 6) realization of product-service

capability to support quick reaction to changing user requirements, among many other possible

benefits. (El Kadiri, et al., 2015)

El Kadiri, et.al. describe three specific projects that exemplify the use of ontologies in

general engineering applications. These were 1) for collecting product manufacturing data from

factory floor work stations to feed operational efficiency analysis, future product design Life

Cycle Cost (LCC) analysis, and to respond to changing customer requirements with speed, 2) to

develop an integrated collaborative virtual environment intended to synchronize factory floor

production operations with various simulations of those operations for near-real time

optimization of factory operations, 3) to provide decision support on how to best design and

108

implement facilities, personnel, and organizations over vast geographical areas. (El Kadiri, et al.,

2015)

Happel and Seedorf described several approaches for using ontologies in the context of

the Software Engineering Life Cycle in the areas of requirements engineering, component reuse,

integration with software modeling languages, ontology as domain object model, coding support,

code documentation, semantic middleware, business rules, semantic web services, project

support, and testing. (Happel & Seedorf, 2006)

In addition, various researchers have identified uses of ontologies specifically in Systems

Engineering, including 1) a process to capture a systems engineering functional domain

ontologies (Sarder & Ferreira, 2007), 2) to capture knowledge items used in the systems

engineering process in order to record engineers’ ideas and reasoning processes, and facilitate

their reuse (Chourabi, Pollet, & Ben Ahmed, 2008), 3) to enhance the communications between

domain specialists and modelers, to enhance the communications among specialist in different

domains, facilitate the collection of system information to be used in modeling, to create new

perspectives on existing models, and to generate documentation using those perspectives

(Ernadote, 2015), 4) to capture and preserve tacit knowledge from domain experts involved in

the inspection of a railway tunnel network (Thakker, Dimitrova, Cohn, & Valdes, 2015), 5) to

analyze the system design (Graves, Integrating SysML and OWL, 2009), 6) to transform data

among models using an XML-based data format (Abele, Legat, Grimm, & Muller, 2013), 7) to

provide the formal basis for verifying compliance of the system model developed in SysML with

State Analysis semantics (Wagner, et al., 2012), 8) to perform in-depth reasoning on engineering

tasks by embedding a model of the system under analysis as an axiom set within a suitable logic

109

(Graves, Integrating Reasoning with SysML, 2012), and 9) to managing inconsistencies in

models of systems from the domain of automated production systems (Feldmann, et al., 2015).

The work of greatest promise to the objectives of the author of this thesis is embodied in

the work of NASA JPL as described in (Wagner, et al., 2012) and other related works. The

author intends to follow closely the progress of the Semantics Technologies for Systems

Engineering (ST4SE) group introduced in Section 6 to determine the applicability of their work

towards the construction of ontologies that can be used to develop modeling profiles.

110

8 Conclusion

The author of this thesis set out to identify the state of the practice in bridging the gap

between engineering ontologies and modeling profiles for engineering applications. This subject

has been of interest to the author for the last 15 years of involvement in the architecting of

complex systems (military aircraft), which provided exposure to the subject, without the

opportunity to investigate the subject adequately. The work invested in the development of this

thesis has provided the author with an overview of the various themes and threads involved in

the process of developing ontologies for engineered systems, and converting those ontologies

into system modeling profiles. The work has shown that there exists a complex network of

researchers working on advancing the state of the art of ontological engineering, albeit for a large

variety of end-purposes.

The specific purpose of interest here is to support the development of profiles for system

modeling which capture the domain-specific concepts, properties, and relationships, etc useful to

the architect developing the system architecture of some particular product in some particular

domain. The detailed process of going from “some” ontology to a useable profile has not yet

been sufficiently examined by the author. This thesis only addresses the mechanics of efforts

previously performed for activities of interest to the information sources accessed. The material

documented here in this thesis does not yet focus on the steps needed to be taken to develop a

profile for a specific purpose in a specific domain. It is the author’s intention to take the next

logical step of narrowing down the scope from the broad-brush survey presented in this thesis to

examine a particular engineering application.

The application of interest to the author is the development of system models that capture

the essence of Systems-of-Systems (SoS) architectures wherein constituent systems with a set of

111

mission-relevant capabilities participate in the SoS on a capability-defined basis to occupy

mission roles requiring capabilities that the particular platform can fulfill. Thus, role-filling by

the SoS becomes a constant activity intended to make maximum use of available resources, and

in order to meet the minimum mission needs at the least cost. These are valid goals for complex

systems participating in complex SoSes, no matter the domain of discourse involved. Towards

this goal, it is desirable to define a consistent modeling approach that focuses on role-filling

using the most cost-effective assets available. To control the model development activities,

modeling profile(s) are desirable to provide consistency via constraints that force the hand of the

modeler to observe accepted standards in architecture modeling relevant to complex SoSes. The

availability of profiles that are consistent with the accepted terminology of the domain requires

that such profiles be developed off of consistent source material, and the most logical choices for

this source material are domain ontologies related to the particular domain of discourse involved.

It is the author’s opinion that, in large part, such ontologies do not yet exist to support

development of role-filling SoSes in any domain of discourse.

The next step for the author is to begin focusing on specific technologies introduced in

this thesis that demonstrate high potential for use in the application described above. Toward that

objective, the author has identified the work performed by Djuric, et al. in (Djuric, Gaševic,

Devedžic, & Damjanovic, 2004) and other of their related works, as well as that of NASA JPL as

described in (Jenkins S. , Ontologies And Model Based Systems Engineering, 2010), (Jenkins &

Rouquette, 2012), (Jenkins & Rouquette, Semantically-Rigorous Systems Engineering, 2012),

(Jenkins S. , Semantic Technologies, 2018), and (Wagner, et al., 2012), as holding the most

promise for paying dividend on investment of time in researching further their activities. Toward

112

that objective, the author has taken keen interest in the activities of the Semantics Technologies

for Systems Engineering (ST4SE) introduced in Section 6.

With regard to roles and their importance in the architecture of a SoS and presequently

their usage and declaration in ontologies, the author intends to pursue the work of Kouji Kozaki,

Yoshinobu Kitamura, Mitsuru Ikeda, Riichiro Mizoguchi, Eiichi Sunagawa, Matteo Baldon ,

Guido Boella, Leendert van der Torre, and others who have addressed the concept of roles (or

perhaps better said as the “role” of roles) in ontologies.

113

References

Abele, L., Legat, C., Grimm, S., & Muller, A. W. (2013). Ontology-based Validation of Plant

Models. 11th IEEE International Conference on Industrial Informatics. Bochum,

Germany: IEEE. Retrieved from https://ieeexplore.ieee.org/document/6622888

About JPL. (n.d.). Retrieved January 3, 2020, from NASA Jet Propulsion Laboratory:

https://www.jpl.nasa.gov/about/

Alhir, S. S. (2003). Understanding the Model Driven Architecture (MDA). Retrieved January 3,

2020, from Methods & Tools:

https://www.methodsandtools.com/archive/archive.php?id=5

Antoniou, G., Groth, P., van Harmelen, F., & Hoekstra, R. (2012). A Semantic Web Primer.

Retrieved from Islamic Azad University Mobarakeh Branch:

http://prof.mau.ac.ir/images/Uploaded_files/A%20Semantic%20Web%20Primer-

The%20MIT%20Press%20(2012)[7460174].PDF

Arlow, J., & Neustadt, I. (2005). UML 2 and the Unified Process. Upper Saddle River, New

Jersey, USA: Addison-Wesley.

Bayer, T. J., Bennett, M., Delp, C. L., Dvorak, D., Jenkins, S. J., & Mandutianu, S. (2011).

Update – Concept of operations for integrated model- Centric Engineering at JPL. IEEE

Aerospace Conference. Big Sky, Montana: IEEE. Retrieved January 3, 2020, from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.4638&rep=rep1&type=pdf

Bayer, T. J., Cooney, L. A., Delp, C. L., Dutenhoffer, C. A., Gostelow, R. D., Ingham, M. D., . . .

Smith, B. S. (2010). An Operations Concept for Integrated Model-Centric Engineering at

JPL. IEEE Aerospace Conference 2010 (pp. 1-14). Big Sky, Montana: IEEE. Retrieved

114

January 3, 2020, from https://trs.jpl.nasa.gov/bitstream/handle/2014/45289/09-

5046_A1b.pdf?sequence=1

Bernardi, T. L., Rabello, R. D., & Cervi, C. R. (2016). An Ontology-Based Approach to Use

Requirements Engineering in Portals of Transparency. Proceedings of the IX ONTOBRAS

Brazilian Ontology Research Seminar. Curitiba, Brazil: CEUR-WS.org. Retrieved

December 27, 2019, from http://ceur-ws.org/Vol-1862/paper-13.pdf

Boyce, S., & Pahl, C. (2007). Developing Domain Ontologies for Course Content. Educational

Technology & Society, 275-288. Retrieved January 3, 2020, from

https://core.ac.uk/download/pdf/11310019.pdf

Chourabi, O., Pollet, Y., & Ben Ahmed, M. (2008). Ontology Based Knowledge Modeling for

System Engineering Projects. 2008 Second International Conference on Research

Challenges in Information Science. Marrakech, Morocco: IEEE. Retrieved January 3,

2020, from https://ieeexplore.ieee.org/document/4632138?arnumber=4632138

Djuric, D., Gaševic, D., Devedžic, V., & Damjanovic, V. (2004). A UML profile for OWL

ontologies. Model Driven Architecture, European Workshop on Model Driven

Architecture (pp. 204-219). Twente, The Netherlands: Springer. Retrieved January 3,

2020, from

https://www.researchgate.net/publication/221233499_A_UML_profile_for_OWL_ontolo

gies

El Kadiri, S., Terkaj, W., Urwin, E. N., Palmer, C., Kiritsis, D., & Young, R. (2015). Ontology in

Engineering Applications. In R. Cuel, & R. Young, Formal Ontologies Meet Industry:

7th International Workshop (pp. 91-98). Berlin, Germany: Formal Ontologies Meet

115

Industry. Retrieved January 3, 2020, from

https://www.researchgate.net/publication/220438605_Creating_the_ontologists_of_the_f

uture

Ernadote, D. (2015). An ontology mindset for system engineering. 2015 IEEE International

Symposium on Systems Engineering. Rome, Italy: IEEE. Retrieved January 3, 2020, from

https://www.researchgate.net/profile/Dominique_Ernadote/publication/308842690_An_o

ntology_mindset_for_system_engineering/links/5c8b47b345851564fade5d4b/An-

ontology-mindset-for-system-engineering.pdf

Feldmann, S., Herzig, S. J., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., . . .

Vogel-Heuser, B. (2015). Towards Effective Management of Inconsistencies in Model-

Based Engineering of Automated Production Systems. 15th IFAC Symposium

onInformation Control Problems inManufacturing, (pp. 916-923). Ontario, Canada.

Retrieved January 3, 2020, from

https://reader.elsevier.com/reader/sd/pii/S2405896315004395?token=41FCAFBB3B9181

19BCA7BDCCCD92AD5F5456F8489B11FD99B1DB756E45BE564D02D40E322F8C8

A1AD13A3A475725A805

Fensel, D., & Federico, F. (2010). Web Ontology Language (OWL). Retrieved January 3, 2020,

from Insbruck University Department of Computer Science: https://www.sti-

innsbruck.at/sites/default/files/courses/fileadmin/documents/semweb14-15/07_SW-

OWL.pdf

Fikes, R., & Tom, K. (1985). The Role of Frame-Based Representation in Reasoning.

Communications of the ACM, 904-920. Retrieved December 27, 2019, from

116

https://www.researchgate.net/publication/220426864_The_Role_of_Frame-

Based_Representation_in_Reasoning

Fuentes-Fernández, L., & Vallecillo-Moreno, A. (2004, April). An Introduction to UML Profiles.

Upgrade - The European Journal for the Informatics Professional, 6-13. Retrieved

January 3, 2020, from

https://www.researchgate.net/publication/245346983_An_introduction_to_UML_profiles

/link/02e7e537c492be345d000000/download

Gasevic, D., Djuric, D., & Devedzic, V. (2006). Model Driven Architecture and Ontology

Development. Berlin, Heidelberg: Springer-Verlag.

Globa, L., Novogrudska, R., Koval, A., & Senchenko, V. (2018, February 20). Examples of

Ontology Model Usage in Engineering Fields. Retrieved from IntechOpen:

https://www.intechopen.com/books/ontology-in-information-science/examples-of-

ontology-model-usage-in-engineering-fields

Graves, H. (2009). Integrating SysML and OWL. OWLED'09: Proceedings of the 6th

International Conference on OWL: Experiences and Directions (pp. 117–124). Chantilly,

Virginia: CEUR Workshop Proceedings. Retrieved January 3, 2020, from http://ceur-

ws.org/Vol-529/owled2009_submission_8.pdf

Graves, H. (2012). Integrating Reasoning with SysML. INCOSE INternational Symposium 2012.

Rome, Italy: International Council on Systems Engineering. Retrieved January 3, 2020,

from http://ontolog.cim3.net/forum/ontology-summit/2012-02/pdfrV7esTvCnf.pdf

117

Graves, H. (2014). Integrating Reasoning with SysML. INCOSE International Symposium 2014.

Las Vegas, Nevada: INCOSE. Retrieved January 3, 2020, from

http://ontolog.cim3.net/forum/ontology-summit/2012-02/pdfrV7esTvCnf.pdf

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, 199-220. Retrieved January 3, 2020, from

https://tomgruber.org/writing/ontolingua-kaj-1993.pdf

Gruber, T. R. (2009). Ontology. In Encyclopedia of Database Systems (pp. 1963-1965).

Switzerland: Springer-Verlag. Retrieved January 3, 2020, from

https://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf

Guarino, N. (1998). Formal Ontology and Information Systems. Proceedings of FOIS’98 (pp. 3-

15). Trento, Italy: Formal Ontology in Information Systems. Retrieved January 3, 2020,

from

https://klevas.mif.vu.lt/~donatas/Vadovavimas/Temos/OntologiskaiTeisingasKoncepcinis

Modeliavimas/papildoma/Guarino98-

Formal%20Ontology%20and%20Information%20Systems.pdf

Guarino, N., & Welty, C. (2002, February). Evaluating ontological decisions with ontoclean.

Communications of the ACM, 61-65. Retrieved January 3, 2020, from

https://www.researchgate.net/publication/297428382_Evaluating_ontological_decisions_

with_ontoclean/link/59f1b061aca272cdc7ce21db/download

Happel, H.-J., & Seedorf, S. (2006, January 1). Applications of Ontologies in Software

Engineering. Computer Science, p. Unknown. Retrieved January 3, 2020, from

118

https://pdfs.semanticscholar.org/11e2/c3bfe1dd68446180f17e476addc947dad095.pdf?_g

a=2.13634355.564213146.1578065933-477270357.1575778655

Harold, E. R., & Means, W. S. (2004). XML in a Nutshell, Third Edition. Sebastopol, California:

O'Reilly Media, Inc.

Hennig, C., Viehl, A., Kämpgen, B., & Eisenmann, H. (2016). Ontology-Based Design of Space

Systems. International Semantic Web Conference (pp. 308-324). Kobe, Japan: Springer

International Publishing. Retrieved January 3, 2020, from http://www-

kasm.nii.ac.jp/iswc2016/papers/paper_A6_.pdf

Hoberman, S. (2008, January 14). Taxonomy and Ontology. Retrieved January 3, 2020, from

Information Management: https://www.information-management.com/news/ontology-

and-taxonomy

Jenkins, J. S., & Rouquette, N. F. (2012). Semantically-Rigorous Systems Engineering Modeling

Using SysML and OWL. 5th International Workshop on System & Concurrent

Engineering for Space Applications. Lisbon, Portugal. Retrieved January 3, 2020, from

https://pdfs.semanticscholar.org/1c94/f934eb1fd5033c019260470b071346ac91e6.pdf

Jenkins, S. (2010). Ontologies And Model Based Systems Engineering. INCOSE. Retrieved

January 3, 2020, from

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:ontologies-jenkins.pptx

Jenkins, S. (2018). Semantic Technologies. Semantic Technologies for Systems Engineering.

NASA JPL. Retrieved January 3, 2020, from

http://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_iw_2018:st

4se_incose_mbse_2018-01-20.pptx

119

Jenkins, S., & Rouquette, N. (2012). Progress on Integrating OWL and SysML. INCOSE

International Workshop 2012. Jacksonville, Florida. Retrieved January 3, 2020, from

https://pdfs.semanticscholar.org/d3bb/3e2b98e16e0f93834bf44ba17feb4327b5c1.pdf

Jenkins, S., & Rouquette, N. (2012). Semantically-Rigorous Systems Engineering. Retrieved

January 3, 2020, from

https://pdfs.semanticscholar.org/6e2c/dbb556015380f447ce455c6756ae5844fcd6.pdf

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained. Boston, Massachusettes: Addison-

Wesley.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., & Swartout, W. R. (1991,

Spetember). Enabling Technology for Knowledge Sharing. AI Magazine, pp. 36-56.

Neuhaus, F., Florescu, E., Galton, A., Gruninger, M., Guarino, N., Obrst, L., . . . Smith, B.

(2011). Creating the ontologists of the future. Applied Ontology, 91-98. Retrieved

January 3, 2020, from

https://www.academia.edu/2824018/Creating_the_ontologists_of_the_future

Noy, N., & McGuinness, D. (2001). Ontology Development 101: A Guide to Creating Your First

Ontology. Knowledge Systems Laboratory. Stanford, California: Stanford University.

Retrieved January 3, 2020, from

https://protege.stanford.edu/publications/ontology_development/ontology101.pdf

Object Management Group. (2019, December). OMG System Modeling Language. Retrieved

January 3, 2020, from OMG: https://www.omg.org/spec/SysML/1.6

120

Overbeek, J. (2006). Meta Object Facility (MOF): Investigation of the State of the Art.

University of Twente, Computer Science. Enschede, The Netherlands: University of

Twente. Retrieved January 3, 2020, from

https://essay.utwente.nl/57286/1/scriptie_Overbeek.pdf

Pahl, C., & Holohan, E. (2004). Ontology Technology for the Development and Deployment of

Learning Technology Systems - a Survey. Proceedings of ED-MEDIA 2004--World

Conference on Educational Multimedia, Hypermedia & Telecommunications (pp. 2077-

2084). Lugano, Switzerland: Association for the Advancement of Computing in

Education. Retrieved January 3, 2020, from

https://core.ac.uk/download/pdf/147601228.pdf

Passant, A. (2009, November 3). OWL2 Property Chain Example. (D. E. Institute, Producer)

Retrieved January 3, 2020, from SlideShare:

https://www.slideshare.net/apassant/introduction-to-the-semantic-web-2410632/21-

OWL2_Property_chain_exampleDigital_Enterprise

Poli, R. (2003). Descriptive, Formal and Formalized Ontologies. In D. Fisette, Husserl's Logical

Investigations Reconsidered (pp. 183-210). Unknown: Springer. Retrieved January 3,

2020, from https://www.ontology.co/essays/descriptive-ontologies.pdf

Roe, C. (2012, June 7). A Short History of Ontology: It’s not just a Matter of Philosophy

Anymore. Retrieved January 3, 2020, from Dataversity: https://www.dataversity.net/a-

short-history-of-ontology-its-not-just-a-matter-of-philosophy-anymore/

121

Sarder, B., & Ferreira, S. (2007). Developing Systems Engineering Ontologies. 2007 IEEE

International Conference on System of Systems Engineering. San Antonio, Texas: IEEE.

Retrieved January 3, 2020, from https://ieeexplore.ieee.org/document/4304237

Shadbolt, N., Berners-Lee, T., & Hall, W. (2006, July). The Semantic Web Revisited. IEEE

Intelligent Systems, pp. 96-101. Retrieved January 3, 2020, from

https://eprints.soton.ac.uk/262614/1/Semantic_Web_Revisted.pdf

Siegemund, K. (2014). Contributions to Ontology-Driven Requirements Engineering. Dresden,

Germany: Technische Universität Dresden. Retrieved December 27, 2019, from https://d-

nb.info/1069096571/34

Thakker, D., Dimitrova, V., Cohn, A. G., & Valdes, J. (2015). PADTUN - Using Semantic

Technologies in Tunnel Diagnosis and Maintenance Domain. The Semantic Web. Latest

Advances and New Domains: 12th European Semantic Web Conference. Portoroz,

Slovenia: Springer. Retrieved January 3, 2020, from

https://www.researchgate.net/publication/277714675_PADTUN_-

_Using_Semantic_Technologies_in_Tunnel_Diagnosis_and_Maintenance_Domain

Truyen, F. (2006). The Fast Guide to Model Driven Architecture. Tustin, CA: Cephas Consulting

Corp. Retrieved January 3, 2020, from

https://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

Wagner, D. A., Bennett, M. B., Karban, R., Rouquette, N., Jenkins, S., & Ingham, M. (2012). An

Ontology for State Analysis: Formalizing the Mapping to SysML. 2012 IEEE Aerospace

Conference. Big Sky, Montana: IEEE. Retrieved January 3, 2020, from

https://ieeexplore.ieee.org/document/6187335

122

Wikipedia. (2019, December 3). RDF Schema. Retrieved January 3, 2020, from Wikipedia:

https://en.wikipedia.org/wiki/RDF_Schema

Wikipedia. (2019, December 2). Reification (computer science). Retrieved January 3, 2020, from

Wikipedia: https://en.wikipedia.org/wiki/Reification_(computer_science)

World Wide Web Consortium. (2004, February 10). RDF Primer. Retrieved from W3C:

https://www.w3.org/TR/rdf-primer/

World Wide Web Consortium. (2006, April 12). Defining N-ary Relations on the Semantic Web.

Retrieved from W3C: https://www.w3.org/TR/swbp-n-aryRelations

World Wide Web Consortium. (2012, December 9). OWL 2 New Features and Rationale.

Retrieved January 3, 2020, from W3C:

https://www.w3.org/2007/OWL/wiki/New_Features_and_Rationale#F8:_Property_Chain

_Inclusion

World Wide Web Consortium. (2013, June 19). W3C Semantic Web Activity. Retrieved January

3, 2020, from W3C: https://www.w3.org/2001/sw/

World Wide Web Consortium. (2014, February 25). RDF Schema 1.1. Retrieved from W3C:

https://www.w3.org/TR/rdf-schema/

World Wide Web Consortium. (2014, March 15). Resource Description Framework (RDF).

Retrieved from RDF: https://www.w3.org/RDF/

123

Curriculum Vita

Mr. John G. Artus (txartus@gmail.com) graduated in 1978 from Louisiana State

University in Baton Rouge with a Bachelor of Science Degree in Electrical Engineering. Mr.

Artus took employment in the Defense Industry with General Dynamics, Fort Worth Division in

Fort Worth, Texas as a Test Director in the Air Force – Electronic Warfare and Evaluation

Simulator (AF-EWES). Mr. Artus advanced his career into Operations Research as a Senior

Operations Analyst, performing on many Independent Research And Development (IRAD)

projects over a period of 18 years to assess the operational effectiveness of the company’s

military aircraft products using industry-standard Modeling and Simulation (M&S) tools.

In 2006, Mr. Artus transitioned to Systems Engineering at Lockheed Martin Aeronautics

Company as a Senior Staff Systems Engineer. In this position, Mr. Artus provided expertise in

Requirements, Architecture, and Design to develop Organizational Standard Practices (OSP) in

these technical areas in preparation for CMMI assessment, successfully achieving a Level 3

assessment for the company as part of the assessment support team.

In 2014, Mr. Artus transitioned to the Advanced Development Programs (ADP, aka

“Skunk Works”) as Senior Staff Architect, to perform architecture development on a number of

IRAD and CRAD programs. Mr. Artus will retire in the summer of 2020, after a successful 42-

year career in engineering, having achieved several certifications during his career: International

Council On Systems Engineering (INCOSE) – Certified Systems Engineering Professional since

2009, and Expert Systems Engineering Professional since 2012, Federal Enterprise Architect

Certification (FEAC) Institute – Certified Enterprise Architect in DoDAF since 2008, Object

Management Group (OMG) – Certified Systems Modeling Professional II since 2010, Zachman

International Inc. – Zachman Certified Enterprise Architect Associate since 2012.

mailto:txartus@gmail.com

	A Survey Of The Current State Of The Practice In Bridging The Gap Between Engineering Ontologies And Modeling Profiles For Engineering Applications
	Recommended Citation

	1 Introduction
	1.1 What is an Ontology?
	1.2 Ontologies as the Source of this Knowledge in Engineering Architectures
	1.3 Benefits of Using Ontologies for Architecture Development
	1.4 What is Preventing the Use of Ontologies in Architectural Development?
	1.5 Thesis Roadmap

	2 Historical Background of Ontology Development
	2.1 Vocabulary
	2.2 Taxonomy
	2.3 Ontology
	2.4 State of Readiness in Ontology Development
	2.4.1 Current State of Need for Trained Ontologists
	2.4.2 Current State of Ontologist Training
	2.4.2.1 Demand for Ontologists Increasing
	2.4.2.2 Gap Between Educational Needs and Education Availability
	2.4.2.3 Demand for Training Opportunities Increasing
	2.4.2.4 Important Subjects are Absent
	2.4.2.5 Ontology is Interdisciplinary
	2.4.2.6 Qualified Ontologists not Recognizable by Industry

	2.4.3 Required Knowledge and Skills for Development and Application of Ontologies

	3 Historical Background on Use of Ontologies in Engineering
	3.1 Use of Ontologies in Engineering in General
	3.2 Use of Ontologies in Systems Engineering and Manufacturing
	3.2.1 LinkedDesign Project
	3.2.2 VFF Project
	3.2.3 FLEXINET Project

	3.3 Use of Ontologies Specifically in Software Engineering
	3.3.1 Analysis and Design
	3.3.1.1 Requirements Engineering
	3.3.1.2 Component Reuse

	3.3.2 Implementation
	3.3.2.1 Integration with Software Modeling Languages
	3.3.2.2 Ontology as Domain Object Model
	3.3.2.3 Coding Support
	3.3.2.4 Code Documentation

	3.3.3 Deployment and Run-Time
	3.3.3.1 Semantic Middleware
	3.3.3.2 Business Rules
	3.3.3.3 Semantic Web Services

	3.3.4 Maintenance
	3.3.4.1 Project Support
	3.3.4.2 Testing

	3.4 Use of Ontologies Specifically in Systems Engineering
	3.4.1 Domain Knowledge Acquisition Process
	3.4.2 Knowledge Modeling Framework
	3.4.3 Combining Metamodel-Based Models with Ontology-Oriented Implementation
	3.4.4 Decision Support System
	3.4.5 Knowledge Base from SysML Block Definition Diagrams
	3.4.6 Computer Aided Engineering Exchange
	3.4.7 State Analysis Methodology
	3.4.8 Integrating Reasoning with SysML
	3.4.9 Managing Inconsistencies in Models

	4 Constructing Ontologies
	4.1 Design Criteria
	4.2 Ontological Formalisms
	4.3 Methods for Modeling Ontologies
	4.3.1 Frames and First Order Logic
	4.3.2 Description Logics
	4.3.3 Ontology Modeling Using UML/SysML
	4.3.4 Ontology Modeling Using Database Technology

	4.4 Types of Ontologies
	4.4.1 Knowledge Representation Ontologies
	4.4.2 General or Common Ontologies
	4.4.3 Top-level Ontologies Or Upper-level Ontologies
	4.4.4 Domain Ontologies
	4.4.5 Task Ontologies
	4.4.6 Domain-Task Ontologies
	4.4.7 Method Ontologies
	4.4.8 Application Ontologies

	4.5 Languages for Building Ontologies
	4.6 Ontology Development Tools
	4.7 Ontology Development Methodologies
	4.8 How Ontology Development Differs from Object-Oriented Design
	4.9 Important Ontological Terms
	4.10 Understanding Classes and Class Hierarchies
	4.10.1 Is-A Overloading in Subsumption
	4.10.1.1 Confusion of Senses
	4.10.1.2 Reduction of Sense
	4.10.1.3 Overgeneralization
	4.10.1.4 Suspect Type-to-Role Link
	4.10.1.5 Confusion of Taxonomic Roles

	4.10.2 Concept Metaproperties
	4.10.2.1 Essence
	4.10.2.2 Rigidity

	4.10.3 Identity and Unity
	4.10.3.1 Identity
	4.10.3.2 Unity
	4.10.3.3 Whole Entities
	4.10.3.4 Part Entities

	4.10.4 Subsumption
	4.10.4.1 Subsumption is not Instantiation
	4.10.4.2 Subsumption is not a Meta Principle
	4.10.4.3 Subsumption is not a Part Property
	4.10.4.4 Subsumption is not Disjunction
	4.10.4.5 Subsumption is not Polysemy
	4.10.4.6 Subsumption is not Constitution

	4.10.5 Choosing Classes and Class Names
	4.10.6 Whether to Introduce A New Class
	4.10.6.1 Subclasses Have Additional Properties
	4.10.6.2 Subclasses in Terminological Hierarchies
	4.10.6.3 Concepts which have Specific Distinction
	4.10.6.4 Importance of the Concept within the Domain
	4.10.6.5 Importance of a Distinction within the Domain
	4.10.6.6 Consideration of Individual Instances

	4.11 A Simple Knowledge-Engineering Methodology
	4.11.1 Step 1 – Determine the Domain and Scope of the Ontology
	4.11.2 Step 2 – Consider reusing existing ontologies
	4.11.3 Step 3 – Enumerate important terms in the ontology
	4.11.4 Step 4 – Define the class and the class hierarchy
	4.11.5 Step 5 – Define the Properties of a Class (Slots)
	4.11.6 Step 6 – Define the Facets of the Slots
	4.11.7 Slot Value Type
	4.11.8 Slot Cardinality
	4.11.9 Slot Domain and Range
	4.11.10 Step 7 – Create Instances

	4.12 Ontology Maintenance

	5 Bridging the Gap Between Ontologies and Modeling Profiles
	5.1 Modeling
	5.2 Meta-Object Facility
	5.3 UML Profile Extension Mechanism
	5.4 Model Driven Architecture
	5.5 Ontology Definition Metamodel

	6 Current State of the Practice
	6.1 NASA JPL Integrated Model-Centric Engineering Initiative
	6.2 NASA JPL View of Systems Engineering Landscape in the 2010 Timeframe
	6.2.1 System Design Emerges from the Pieces
	6.2.2 Knowledge and Investment are Lost Across Phases
	6.2.3 Technical and Programmatics are Poorly Coupled
	6.2.4 System Design Re-Use is Lacking

	6.3 NASA JPL Use of Models as Information Structures
	6.4 NASA JPL Use of Semantic Technologies
	6.5 Embedding Ontologies in SysML Profiles
	6.5.1 Relate OWL Concepts to SysML Classes
	6.5.2 Relate OWL Relationships to SysML Properties
	6.5.2.1 RDF Triples
	6.5.2.2 Reification in General
	6.5.2.3 Reification in UML/SysML
	6.5.2.4 Reification in RDF
	6.5.2.5 Reification in OWL

	6.6 Embedding Ontologies in SysML Profiles
	6.6.1 Step 1 - Create OWL ontologies for SysML
	6.6.2 Step 2 - Relate Domain Concepts to SysML
	6.6.3 Step 3 - Relate Domain Properties to SysML
	6.6.4 Step 4 – Test the Ontologies
	6.6.5 Step 5 – Use a Continuous Integration System
	6.6.6 Step 6 – Load the Ontologies into a Repository
	6.6.7 Step 7 – Produce SysML Profiles
	6.6.8 Step 8 – Produce User Interface Customizations
	6.6.9 Step 9 –Transform SysML Models Back into OWL

	6.7 NASA JPL Conclusions and Future Work

	7 Summary
	8 Conclusion

