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Abstract 

Model-Based Systems Engineering holds the promise of enhancing systems engineering 

tasks and product quality through better, more efficient exchange of data across tools, personnel, 

and departments, a higher quality of analysis resulting from greater access to cross-discipline 

data, better coordination between engineering activities and those of program management, and 

many other benefits. Yet, there is still no standardized method for achieving commonality of 

architecture vocabulary across projects, across, companies, across industries such that entities 

operating in the same domain produce products that speak the same technical language. Some 

specialized domains, such as the Department of Defense (DoD), have developed Architecture 

Frameworks (AF), such as the DoDAF, to establish a level of standardization through 

enforcement of a profile on the architecture development activities. Still, for other industries, 

there is no such standardization. Ontologies offer a possible solution to this problem by allowing 

domain interests to collaborate to construct a domain ontology that can then be transformed into 

a modeling profile to constrain architectural development activities to use a more common 

vocabulary. This thesis examines the current state of the practice in industry towards developing 

a standard methodology for transforming such standardized domain ontologies into modeling 

profiles. 
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                                                                   1 Introduction 

Ontologies are built for the purpose of capturing knowledge about objects and their 

relations to each other so that this knowledge can be reused in multiple activities. The primary 

emphasis on application of ontologies today is in the development of the Semantic Web. The 

Semantic Web “has the potential for semantically richer representations of things … and should 

provide us with more intelligent services.” (Gasevic, Djuric, & Devedzic, 2006) 

The study and use of ontologies in modern engineering practices has only recently come 

to the attention of systems engineers. An ontology defines the basic terms and relations 

comprising the vocabulary of a topic area as well as the rules for combining terms and relations 

to define extensions to the vocabulary. (Neches, et al., 1991) The most effective use of 

ontologies in systems engineering thus far has been in the area of requirements engineering. 

(Bernardi, Rabello, & Cervi, 2016) Most of the progress has been made in the areas of 1) mining 

domain knowledge from Natural Language requirements text documents to construct ontologies 

that support other requirements engineering activities, 2) requirements analysis using a domain 

ontology to reduce requirements ambiguity and promote completeness, and 3) requirements 

specification development using the domain ontology to layout the structure of the document. 

(Siegemund, 2014) The activity identified in 1) above holds promise for contributing to a 

domain-specific ontology that could also serve the purpose of architecture development. 

To deliver a quality architectural description of a solution, the architect faces a task that 

requires substantial knowledge about the domain of the problem space that the solution is 

intended to address. This thesis examines the state of the practice of using the domain knowledge 

captured in an ontology that is then transferred to a modeling profile. The modeling profile can 

then be used to represent the captured knowledge about the given domain in the development of 
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system architectures, which form the basis for the conceptual description of engineered systems. 

The knowledge transferred from an ontology to a modeling profile includes primarily a 

description of the individual domain objects and their relationships to each other. To derive 

maximum usability from an ontology selected to support architecture modeling activities, the 

ontology should meet certain basic criteria: 

• Expressive Power – Does the ontology communicate the domain knowledge

effectively to the modeling profile? 

• Understandability – Can the architect understand the contents and meaning of the

ontology as represented in the profile? 

• Accessibility – Can the needed knowledge be easily extracted from the ontology

for use in the modeling profile? (Fikes & Tom, 1985) 

Satisfaction of some of these criteria are influenced by the translation mechanism going 

from the selected ontology to the modeling profile. But having a quality ontology selected at the 

start solves much of the problem. 

However, the problem is not restricted to selecting and ontology and applying it to the 

task of architectural development. Two additional problems exist in the landscape of ontology 

applications to architecture. One problem is the lack of sufficient domain ontologies of concern 

to architects of complex engineered systems. In order for more engineering-related ontologies to 

become available, engineering organizations involved in design activities should begin 

contributing to the development of an open repository of general-purpose ontologies in various 

engineering fields of study. However, this requires that engineers who understand the complex 

nature of the subsystems involved in these specialized engineering domains become involved in 

the actual construction of ontologies. This leads to the second problem to be dealt with. 
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According to Boyce & Pahl, the tools currently available require a degree of expertise that does 

not favor the generation of ontologies by people who are experts in a particular subject area but 

not practiced in ontological engineering. Currently, a joint effort by domain experts and ontology 

engineers is necessary for ontology development. To see the widespread development of domain 

ontologies would require availability of ontological tools for creating ontologies from scratch, or 

to enrich pre-existing ontologies with minimal human intervention. (Boyce & Pahl, 2007) 

1.1 What is an Ontology? 

There are many interpretations of the meaning of ontology depending on the perspective 

of the user (philosophical, conceptual, logical, etc), the degree of formality required, and whether 

the need is for a domain-specific application or something more generalized. For the purpose of 

this thesis, which focuses on the practical engineering use of an ontology for developing 

architectures, the following definition (Neches, et al., 1991) suits the need well: “An ontology 

defines the basic terms and relations comprising the vocabulary of a topic area as well as the 

rules for combining terms and relations to define extensions to the vocabulary.” It is the 

identification of key architectural elements and the defining of relationships among those 

elements that interest the architect the most. The primary relationships of interest include 

classification (type casting), generalization-specialization (is-a-kind-of), and whole-part (is-a-

part-of). (Graves, Integrating Reasoning with SysML, 2012) Together, the defined elements and 

their relationships allow the architect to establish the principle features of the architecture, 

including the components, subcomponents, assemblies, roles, functions, interfaces, ports, 

connectors, data exchange items, etc. This task is enhanced by the availability of a modeling 

profile that represents community knowledge of a particular domain, thereby promoting efficient 
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use of pre-existing knowledge, and consistency of the product architecture with other 

architectures within the domain community. 

1.2 Ontologies as the Source of this Knowledge in Engineering Architectures 

While the interest in using ontologies to support the development of modeling profiles in 

system architecture practice is growing, the actual state of current practice is that most 

architecture development efforts do not take advantage of ontologies, nor of the domain profiles 

built from recognized domain ontologies. As a result, the identification of architectural elements 

and their relationships end up being parochial activities sponsored by individual organizations 

such as companies or departments, with little-to-no knowledge sharing or commonality with 

other organizations. Users of the architectures discover that terminology normally accepted as 

common, in the end has multiple interpretations. The architectures thus produced have limited 

transference outside of the organization without the user of the architectural description having 

to inquire about the definition of the fundamental terms used to describe the various elements of 

the architecture. This situation produces misinterpretations of the architecture and is an 

especially important consideration with system architectures because they represent a 

conceptualization of a product solution, and thus, to some degree, represent a product of the 

mind on the part of architects constructing the architecture. These conceptualizations can be 

difficult to precisely define if not well documented, and thus easily misinterpreted by users of the 

architecture not familiar with the frame of mind of the architects constructing the architecture. 

The only solution is to include definitions of terms as a part of the architectural description. 

1.3 Benefits of Using Ontologies for Architecture Development 

The use of modeling profiles generated from ontologies that have been built and accepted 

by a domain community is that the terms become standardized within the community, the 
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definitions of all the elements of the architecture no longer need to be embedded within the 

architecture, and chance of misinterpretation of the architecture is vastly reduced. 

With almost every architectural development activity undertaken, a new architectural 

database must be built from scratch. The cost of duplicating the effort of previous architecture 

development projects without reuse remains one of the major costs in system development 

activities. The cost of this duplication of effort will become prohibitive as larger architectural 

projects are undertaken. To overcome this waste of effort, ways of preserving existing 

knowledge bases and of sharing, reusing, and building on them must be developed. Ontologies 

provide the basis for building, storing, and sharing reusable knowledge for a variety of uses, not 

just for architectural development. Thus, ontologies will provide sources of information that 

serve the same functions as traditional text-based databases, such as books, and reports. Yet, they 

are more flexible, easier to update, and easier to query. Ontologies will make it possible for end 

users to tailor large systems to their needs by assembling knowledge bases and services rather 

than developing architectures from scratch. (Neches, et al., 1991) 

1.4 What is Preventing the Use of Ontologies in Architectural Development? 

The availability of ontologies for engineering use in particular domains is extremely low 

due to 1) the nascency of this specific application of ontologies, 2) the fluid nature of standards 

development in this area, and 3) the lack of tools to facility the transformation of ontologies into 

modeling profiles. This thesis examines the current state of practice in the construction of 

modeling profiles from existing ontologies and recommends steps to be taken to improve the 

process such that it becomes more readily available for architects to employ. 
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1.5 Thesis Roadmap 

The roadmap for this thesis, illustrated in Figure 1, is intended to summarize the 

development of the theme of this thesis and walk the reader down the path of understanding the 

value and potential of the use of ontologies to understanding how ontologies can be of value to 

architects when developing system architecture, to finally understanding the current state of the 

practice in transforming ontologies into useful profiles for modeling systems architectures. 

 

Figure 1: Thesis Roadmap 
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2 Historical Background of Ontology Development 

Ontology development spawns from the human desire to provide structure and meaning 

to our universe. Ontology development has its origins with the Ancient Greeks with their study 

of Philosophy. Parmenides is generally recognized as the first to discuss the ontological 

categorization of existence. The etymology of the term ontology points to Greek origins that 

refer to ontology as “the study or theory of being or that which is.” (Roe, 2012) However, it is 

not the ancient purpose and use of ontology that interests us in engineering today. 

Since the times of the Ancient Greeks, the modern use of ontology in the sciences has its 

origins with the research activities into Artificial Intelligence (AI) in the 1970s and 1980s. 

During the 1990s, interest in ontology moved from the AI laboratories to the desks of domain 

experts who saw the potential of the organized classification of information to help solve 

practical real-world problems. (Noy & McGuinness, 2001) The modern application of ontology 

is better defined as “a technical term denoting an artifact that is designed for a purpose, which is 

to enable the modeling of knowledge about some domain, real or imagined.” (Gruber, Ontology, 

2009) The overall concept of ontology and its application in a diverse set of fields of study has 

sparked a debate over its precise meaning for different applications. 

Developing an ontology is not an end in itself. Noy and McGuinness identified five 

reasons why people would have interest in developing ontologies. These are 1) to share a 

common understanding of the structure of information among people or software agents, 2) to 

enable reuse of domain knowledge, 3) to make domain assumptions explicit, 4) to separate 

domain knowledge from the operational knowledge, and 5) to analyze domain knowledge. (Noy 

& McGuinness, 2001) The interest of this thesis lies in the second reason – to enable and foster 

greater sharing of common knowledge among domain practitioners in the area of system 
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architecture, so that the definition of system elements, interrelationships, behavior, etc., are 

reused from other domain contributors and not developed afresh for each undertaking. 

In (Pahl & Holohan, 2004), Pahl and Holohan identified four purposes for developing 

knowledge spaces. These are: 

• Vocabulary – To collect terms along with their definitions with no specific 

defined relationships among the elements of the vocabulary. 

• Taxonomy – To establish terminology definition and classification as the central 

issues. It supports browsing and retrieval of educational resources. 

• Thesaurus – To identify relationships between terms are the central issues. It 

constrains the use of a vocabulary. 

• Conceptual Model – As a formal model of some domain that supports modeling 

of the subject area and technical aspects, and often uses more than simple 

classification-oriented relationship types. 

• Logical Theory – To reason and infer on a given problem. It combines knowledge 

representation with logic and, thus, supports reasoning within a knowledge 

domain. 

One objective of developing an ontology is to establish a firm understanding of the 

terminology used within a domain. Thus, it is appropriate when studying ontologies to be 

familiar with terms surrounding the development of ontologies. Here, we examine the difference 

between the terms vocabulary, taxonomy, and ontology. 
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2.1 Vocabulary 

Simple vocabularies are human-oriented, as opposed to having structure that a machine 

could easily interpret. However, there can be vocabularies that have some organization and 

structure that aids in their interpretation, although the structure may not be optimized for 

machine interpretation and the interpretations are often subjective and ambiguous. Types of 

vocabularies include 1) controlled vocabulary, such as a catalog, which provides a finite list of 

terms together with an unambiguous interpretation of those terms, 2) glossary which provides a 

list of terms and their meanings in a natural language, and 3) thesaurus which provides some 

semantics in the form of synonym relationships between terms that greatly reduces ambiguity. 

However, none of these vocabularies provide explicit term hierarchies. (Gasevic, Djuric, & 

Devedzic, 2006) 

2.2 Taxonomy 

A taxonomy is a hierarchical categorization or classification of entities within a domain. 

(Gasevic, Djuric, & Devedzic, 2006) A taxonomy is used to classify or categorize a collection of 

concepts within a hierarchical structure. This is a treelike structure that places the most general 

concept as the root of the tree. Each node of the tree represents some object in the real world that 

the designer has decided should be modeled based on the stated purpose of the taxonomy. Each 

link between two nodes in the taxonomy represents a “subclassification-of” relation or a 

“superclassification-of” relationship. (Boyce & Pahl, 2007) 

Taxonomies illustrate more structure than do vocabularies in that they describe 

supertype/subtype relationships among entities where a child only has a single parent and a 

parent can contain one or more children. Taxonomies allow the classification of the members of 

a population into groups and subgroups within subgroups, where every sibling set under a parent 
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node (class) enables the division of the parent population into mutually exclusive and 

collectively exhaustive subsets. However, they suffer from not having sufficient range of entity 

relationship characterization to fully describe a domain. According to David Hay, a major issue 

with taxonomies for organizing knowledge is that “most of our knowledge is not hierarchical. To 

cram a body of knowledge into a hierarchical structure leads to all kinds of problems.” 

(Hoberman, 2008) A properly structured taxonomy separates the entities into mutually exclusive, 

unambiguous groups and subgroups that, taken together, include all possibilities. (Gasevic, 

Djuric, & Devedzic, 2006) 

2.3 Ontology 

Ontologies are a formal way of organizing information using categories, and relating one 

category to another. Ontologies include a taxonomy along with additional data that provides a 

full specification of the domain of interest. (Gasevic, Djuric, & Devedzic, 2006) They offer a 

simplification of something complex in our environment described by using a standard set of 

symbols. Ontologies identify a variety of types of relationships among elements, not just 

hierarchical classification of types of entities as in a taxonomy. (Hoberman, 2008) 

Ontologies are used by people, databases, and applications to share terms used to 

describe an area of knowledge in a given domain of interest. Thus, ontologies assist in resolving 

a prevalent problem in the data-centric world today – that of data and information that is heavily 

siloed, having been collected to service very specific and narrowly-focused local needs within 

the context of specific applications. This poorly managed data capture/location scheme makes it 

very difficult to reuse data. (Neuhaus, et al., 2011) Ontologies can be used in applications 

requiring computer-usable definitions of basic concepts in a domain and the relationships among 

those concepts. Certain applications need ontologies with a significant degree of structure. This 
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applies to an architectural description of a complex engineered system. These architectures need 

to specify descriptions for the following kinds of concepts: 

• Classes (general things) in the many domains of interest.

• The relationships that can exist among things.

• The properties (or attributes) those things may have.

Ontologies are expressed in a logic-based language, so that accurate and meaningful 

distinctions can be made among the classes, properties, and relations.  (Boyce & Pahl, 2007) 

The view that humans take of the world around them is affected by the natural order of 

things, and by man’s impulse to organize the world around him. Whether studying the natural or 

man-made order of things, the complex interweaving of dependence connections and forms of 

independence among the many items of which systems are composed becomes apparent to the 

observer and can become the subject of the attempt to record the discovered elements and 

relations among them. Through examination of natural and man-made systems, a list of objects 

can be identified. These objects can be categorized generally as independent items and dependent 

items. Independent items are those that exist naturally on their own. They are not the result of 

any intervention on the part of humans. The independent items can be further categorized as real 

and ideal. The real items being real physical elements we see around us, such as mountains. The 

ideal elements being abstract objects that are a result of human representation of relations among 

real concepts by various formalisms in the various sciences, such as sets. Further, the dependent 

items can also be categorized by real items and ideal items. The real dependent items do not 

necessarily exist naturally in the world, but are created through human activity, such as a 

handshake. The ideal dependent elements being abstract objects that are a result of human 

representation of relative concepts among the real dependent items, such as color. (Poli, 2003) 
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2.4 State of Readiness in Ontology Development 

This section addresses the current state of readiness of institutions and industry to train 

the workforce needed to take on ontology development tasks. The information provided here is 

derived from the Joint Communiqué of the Ontology Summit 2010. The 2010 Ontology Summit 

was devoted to the education of ontologists under the heading “Creating the Ontologists of the 

Future”. (Neuhaus, et al., 2011) 

2.4.1 Current State of Need for Trained Ontologists 

There already exists a great demand for trained ontologists in research and industry. This 

demand is expected to increase over time as new uses for ontologies are identified and their 

successful applications proven. As the world becomes more data-centric, the need to characterize 

and process that data becomes more urgent. Ontologies can assist in efficiently processing this 

data. Ontologist skilled in these methods will need to become available to meet the growing 

demand. These ontologists will be employed in research to develop new ontological theories, 

methods, and tools that are then used by ontologists in industry to create ontologies, use them to 

manipulate data, and evaluate the results. (Neuhaus, et al., 2011) 

2.4.2 Current State of Ontologist Training 

The communique reported the following findings regarding the educational opportunities 

available. (Neuhaus, et al., 2011) 

2.4.2.1 Demand for Ontologists Increasing 

The demand for ontologists is expected to rise considerably. It is expected that 5% of 

information system and software engineering professionals will be required to have some degree 

of ontology education or training. 
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2.4.2.2 Gap Between Educational Needs and Education Availability 

There exists a large gap between educational needs and education availability. 

Unfortunately, our educational system and industry training mechanism are not suited for 

delivering trained ontologists at the rate needed in research and industry. Institutions are finding 

it difficult to locate skilled ontologists. There exists no professional organization chartered to 

certify skilled ontologists. There are few educational institutions that offer courses in ontology, 

let alone degrees in the field. As of 2011, only 21 educational programs were identified that 

offered courses in ontology. And of those, only one was identified as being devoted to education 

in applied ontology. As a result of the lack of training opportunities for aspiring ontologists, 

graduates often do not meet the needs of organizations seeking skilled professionals. New 

educational organizations and new educational methods need to be identified and developed to 

train the ontologists needed today and into the future. Due to the lack of educational 

opportunities in this field, those that consider a career in a field involving ontology development 

or use must rely on becoming self-taught or seek out on-the-job training. 

2.4.2.3 Demand for Training Opportunities Increasing 

Significant demand for training opportunities for working professionals exists. The 

communique reported finding that most training opportunities were as a result of formal 

educational opportunities, as few as there are. Thus, training opportunities outside of formal 

education are essentially non-existent. People that indicated an interest in ontology education 

were found to have developed that interest from exposure to the topic through work assignments. 

While these subjects are often part of the typical college curriculum, they often are not found in 

industry training programs. Thus, there is a significant demand for training at work; and not just 

to become familiar with the subject area, but rather to develop significant technical competence. 
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2.4.2.4 Important Subjects are Absent 

Important subjects are absent from existing curricula. Workforce professionals who have 

to staff and manage those entering career ontologist positions have identified technical subject 

areas related to ontology development that are not covered by the educational curriculum taken 

by candidates filling the positions. 

2.4.2.5 Ontology is Interdisciplinary 

The research, development, and application of ontologies is seen by those practicing the 

skill as being a very interdisciplinary occupation. Since ontology engineering is seen much as a 

service that supports multiple domains, practitioners suggest a curriculum that includes 

contributions from a variety of fields that can benefit from the product of ontological 

engineering. Educational programs should be designed to attract students with varied 

backgrounds and interests. 

2.4.2.6 Qualified Ontologists not Recognizable by Industry 

Employers cannot easily recognize qualified ontologists. Due to the fact that educational 

programs have such few opportunities for those interested in fields directly or indirectly related 

ontological engineering to engage in courses that relate to the field, organizations requiring that 

skill find it difficult to identify qualified candidates. Further, there exists no professional 

certification or qualification organization established to certify professionals who have the 

requisite skills for performing the tasks in an industrial setting. This makes it very difficult for 

employers to identify candidates that have proven specialty skills in ontology. 

2.4.3 Required Knowledge and Skills for Development and Application of Ontologies 

In order to be an effective professional in the field of ontology development and 

application, the ontologist must command a specific set of skills. The Communiqué identified 
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three sets of knowledge and skills that a candidate would need to display to qualify for 

performing tasks associated with the development and application of ontologies in research and 

industry. The three knowledge and skill sets identified in the Communiqué are 1) Core skills, 2) 

Core knowledge, and 3) Elective knowledge and skills. The Communiqué recommends that 

educational institutions interested in training the next generation of ontologist should consider 

providing course content and career path opportunities that emphasize these skills and 

knowledge areas. According to the Communiqué, in order to be prepared for a career involving 

ontology development or application, a student should be required to gain competence in all of 

the core areas and some of the elective skills and knowledge. The three skill sets that the 

Communiqué developed are reproduced in Tables 1-4, with an assessment by the author of this 

thesis as to which of these skills would be of particular use in developing ontologies that serve 

the purpose of transferring knowledge to modeling profiles used to develop system architectures. 

The Communiqué indicates that many of these skills are not developed through course lecture 

alone. Practical, hands-on experience with developing ontologies that help solve real-world 

issues is important to developing the requisite knowledge and skills. (Neuhaus, et al., 2011) 

Table 1: Core Skills Required of a Professional Ontologist (Neches, et al., 1991) 

Required Core Skill Service to Architectural Development 

Clarify the purpose of an ontology High 

Analyze data for relevancy to a project High 

Judge the kinds of ontologies useful to a project High 

Managing ontologies across the lifecycle Medium 

Using software tools for ontology development High 

Choosing a representation language Low 

Selecting the appropriate level of detail Medium 

Identify existing content resources High 

Assemble an ontology from reusable modules High 

Using different representation languages Low 

Identify ontological entities and relationships High 

Evaluate and improve ontologies Medium 
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Document ontologies Medium 

Support distributed development of ontologies  Medium 

Use one or more modern programming language Low 

 

Table 2: Core Knowledge Required of a Professional Ontologist (Neuhaus, et al., 2011) 

Required Core Knowledge Service to Architectural Development 

Basic terminology of ontology High 

Theoretical foundations of ontology  

First-order logic Low 

Set theory Low 

Basic notions of philosophical ontology Medium 

Philosophy of language Low 

Conceptual modeling High 

Representation languages (RDF, OWL, Common 

Logic) 

Low 

Building/editing ontologies  

Application of classification principles High 

Software tools High 

Addressing interoperability issues High 

Ontology evaluation strategies High 

Ontology methodologies  

Upper-level ontologies  Medium 

Mid-level domain-spanning ontologies Medium 

Domain-specific ontologies High 

Applications of ontologies  

As controlled vocabulary High 

To solve interoperability problems Low 

For reasoning Low (at this time) 

To improve search and retrieval Low 

For natural language processing Low 

For decision support Low 

Web Applications  

General foundations (URIs, XML, etc.)  Low 

Semantic Web initiatives Low 

Publishing, annotation, curation Low 

 

Table 3: Elective Skills of a Professional Ontologist (Neuhaus, et al., 2011) 

Elective Skills Service to Architectural Development 

Coordinate ontology development efforts High 

Creating visualizations of ontologies Medium 



17 

Training people in the use of ontologies Low 

Table 4: Elective Knowledge of a Professional Ontologist (Neuhaus, et al., 2011) 

Elective Knowledge Service to Architectural Development 

Advanced logic Low 

Advanced philosophical ontology Low 

Computer science 

Formal languages Low 

Automated reasoning Low 

Database theory Low 

Artificial intelligence Low 

Logic programming Low 

Linguistic/cognitive sciences 

Syntax, semantics, pragmatics Medium 

Natural language processing Low 

Cognitive theories of categorization High 

Representation languages (SWRL, RIF, SKOS, 

OBO Format, UML, IKRIS) 

High (for UML, SysML) 

Ontology content acquisition (data mining) High 

Ontology interoperability Medium 

Building ontology repositories Medium 

Usability and user interface issues Low 

Knowledge of application domain High 

As can be seen by the large variety of topics that the ontologist must have either have some 

familiarity with or develop significant knowledge of, there remains a good deal of work required 

of educational institutions to identify and develop a quality curriculum for those seeking careers 

as ontologists. The field of ontology research, and application is still a very young discipline. 

There is, as the Communiqué points out, no widely agreed upon body of shared knowledge, 

established methodologies or common terminology. Instead, multiple terminologies are used in 

the different subfields of ontology, for example, deriving from specific programming 

environments, from database design and the conceptual modeling community, or from traditional 

philosophical ontology. (Neuhaus, et al., 2011) 
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3 Historical Background on Use of Ontologies in Engineering 

3.1 Use of Ontologies in Engineering in General 

Globa, et al. provide a set of considerations for usage of ontologies in engineering 

applications. The objective of their work is to help establish answers to the following questions 

in order to properly scope the ontology development effort: 

• Which domain will be the subject of the ontology?

• What questions should the knowledge representation in the ontology address?

• Who will use and maintain the ontology?

They suggest the development of four separate ontologies to support engineering 

activities. These are 1) an engineering activity ontology, 2) an engineering knowledge ontology, 

3) an engineering computations ontology, and 4) a subject domain ontology. The purpose of the

engineering activity ontology is to capture concepts related to the business organization of 

engineering activities, such as the people, organizations, tasks, etc related to accomplishing the 

engineering objectives within the business. The purpose of the engineering knowledge ontology 

is to capture the meta-concepts that specify structures to describe the problem, such as the 

methods, objects, results, and equipment used in research activities that provide the knowledge to 

support the engineering activities. The purpose of the engineering computations ontology is to 

capture the classes that describe calculation abilities needed to support the conversion of data to 

knowledge, such as the kinds of calculations, services, service parameters, interfaces, etc., 

needed. (Globa, Novogrudska, Koval, & Senchenko, 2018) 
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3.2 Use of Ontologies in Systems Engineering and Manufacturing 

Systems engineering and system manufacturing have both seen an increase in the 

importance and popularity of the use of ontologies to solve critical problems. Ontology and 

semantic technologies have been adopted by the engineering community as a promising 

approach to solve several of these issues such as information modeling, data integration, data 

analysis, data exchange, system interoperability, etc. For example, in product design, ontologies 

are used 1) for modeling the product structure and taxonomy, 2) for design automation using 

existing engineering knowledge, and 3) for requirements engineering. In manufacturing, 

ontologies are used 1) for the control of production processes for dynamic orchestration, 2) for 

factory automation, and 3) for the mapping of data sources to Manufacturing Execution Systems 

functions. (El Kadiri, et al., 2015) El Kadiri, et.al. describe three specific FP71 European projects 

that exemplify the use of ontologies in engineering applications. 

3.2.1 LinkedDesign Project 

The goal of the LinkedDesign project is to collect product manufacturing data from 

factory floor work stations to feed operational efficiency analysis, future product design Life 

Cycle Cost (LCC) analysis, and to respond to changing customer requirements with speed. In 

order to collect and process manufacturing data from a variety of work stations reporting such 

data in a variety of formats, locations, and times, etc, the team defined a common semantic 

model that enables common interpretations of data and information exchanged between people 

and systems that have no common recognition of data type or relationships. Analysis of the LCC 

across the enterprise allows the factory configuration to be selectively optimized to meet LCC 

1 FP7 refers to the Seventh Framework Programme of the European Union 



20 

 

requirements. Thus, various LCC options can be presented to the customer to enhance the 

available selection. To enable advanced control of products design and maintenance, three 

groups of rules were created: 1) rules for enforcing customer requests that select workstation 

configurations that meet customer LCC requirements, 2) rules for inheritance of properties from 

part to product such that if the configuration of a part drives LCC, that property is inherited by 

the workstation processing the part, 3) rules to alert service teams when the production line is not 

functioning at optimal performance. (El Kadiri, et al., 2015) 

3.2.2 VFF Project 

The goal of the Virtual Factory Framework (VFF) project was to develop an integrated 

collaborative virtual environment intended to synchronize factory floor production operations 

with various simulations of those operations for near-real time optimization of factory 

operations. Distribution, modeling integration, and reasoning of data was accomplished using 

Semantic Web technologies, in particular, an ontology-based data model, named Virtual Factory 

Data Model (VFDM). The VFDM model allows seamless data exchange between disparate 

software tools provided they employ a software connector that transforms data from the ontology 

format to the proprietary data structures of the tools, and vice-versa. (El Kadiri, et al., 2015) 

3.2.3 FLEXINET Project 

The goal of this project is to “provide decision support on how to best design and 

facilitate Global Production Networks (GPN)”. GPNs consist of a set of diverse and divergent 

facilities, personnel, and organizations over vast geographical areas. FLEXINET is intended to 

provide the ability to reconfigure the configuration and operation of these networks in order to 

accommodate the introduction of new manufacturing technologies thereby reducing costs, risk, 

and/or improving production rates. To accomplish this, FLEXINET employs a reference 
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ontology that provides a consistent data-set of production information and knowledge from 

across the entire span of facilities that support the GPN. The resulting process helps identify the 

optimal arrangement of in-sourcing, out-sourcing, partnerships, logistics, etc. to achieve 

manufacturing and LCC goals. (El Kadiri, et al., 2015) 

3.3 Use of Ontologies Specifically in Software Engineering 

Software Engineering shares a common legacy with Knowledge Engineering from which 

the current interpretation of what ontology means emanates. However, despite this common 

legacy, both communities have developed along different paths and mostly live in their own 

worlds. The aim of Software Engineering has been toward achieving a higher degree of 

abstraction through 1) modeling that places greater emphasis on development activities based on 

the modeling of objects and procedures, and 2) higher-level programming languages. 

Meanwhile, Knowledge Engineering has been focused on realizing the vision of the Semantic 

Web, which has spawned the development of new technologies and tools for ontology 

representation, machine-processing, and ontology sharing. This makes their adoption in real-

world applications much easier placing ontologies in the position to enter mainstream use. While 

there are movements to build commonality among the two disciplines, little work is being done 

to develop specific guidelines for practicing engineers to employ. As a result, each discipline 

continues to develop their own core concepts, thus making it increasingly difficult for one 

community to engage with the other. Nevertheless, there are opportunities for ontologies to 

bridge the gap between the two communities. (Happel & Seedorf, 2006) 

Happel and Seedorf have defined a set of concrete approaches for using ontologies in the 

context of Software Engineering, presented here in the order of appearance in the Software 

Engineering lifecycle. 
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3.3.1 Analysis and Design 

3.3.1.1 Requirements Engineering 

In this phase of the lifecycle, the objective is to gather the desired system functionality 

from customers. It is important for all participants in the process to have a shared understanding 

of the problem domain. Ontologies can be used to describe the requirements specification 

documents and to formally represent requirements knowledge. Requirements are normally stated 

in terms of natural language. However, ontologies can play a role here through the use of formal 

specification languages which are generally more precise than natural language. This higher 

level of precision can lead more directly and more effectively towards the production of formal 

system specifications. The use of ontologies offers several improvements to traditional 

Requirements Engineering: 1) requirements ontologies, if properly architected, support 

automated requirements consistency checking and validation, 2) serve as prerequisites to realize 

model-driven approaches in the design and implementation phases. (Happel & Seedorf, 2006) 

3.3.1.2 Component Reuse 

Reuse implies the use of previously designed and developed components when 

implementing functionality in order to reduce costs by avoiding rework. Most reuse repositories 

rely on plain syntactical key-word-based search which suffers from low precision (due to 

homonyms) and low recall (due to synonyms). Ontologies can help due to their more convenient 

and powerful querying capability made possible by a knowledge representation formalism for 

describing the functionality of components sought for reuse.  Thus, ontologies can help to 

combine information isolated in several separate component description repositories. Ontologies 

can also provide background information that allows non-experts to query the repository in 
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search of reuse components from their point of view, using terminology that may not be exactly 

aligned with the terminology used in the components sought after. (Happel & Seedorf, 2006) 

3.3.2 Implementation 

3.3.2.1 Integration with Software Modeling Languages 

Modern software development practices follow the Model-Driven Architecture approach 

which provides an architecture for creating models based on metamodels, and which defines the 

transformations between those models, and managing metadata. MDA-based languages do not 

yet have a knowledge-based foundation to enable reasoning. So, there exists interest in 

integrating MDA-based information representation languages, such as UML and SysML, with 

ontology languages, such as RDF/OWL. These two language bases are regarded as two distinct 

technological spaces. However, it is possible to discover synergies between them that can be 

realized by defining bridges between them, such as the Ontology Definition Metamodel (ODM). 

ODM is an effort to standardize the mappings between knowledge representation and conceptual 

modeling languages. (Happel & Seedorf, 2006) 

3.3.2.2 Ontology as Domain Object Model 

In order to promote broad acceptance and use of ontologies in software development 

projects, it is imperative that automated means for object-oriented software developers to access 

ontologies be developed to avoid the need for building special knowledge by the developers to 

gain that access. This is accomplished by automating the mapping of the domain model to code 

in order to enable the dynamic use by other components and applications. This can be achieved 

by ontology tools that generate an API from the ontology, by mapping concepts of the ontology 

to classes in an object oriented language. The generated domain object model can then be used to 

manage models, and for inferencing and querying. The automated end-to-end use of ontologies 
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in analysis and design, as well as implementation, is highly desirable for rapid application 

development. (Happel & Seedorf, 2006) 

3.3.2.3 Coding Support 

Some Integrated Development Environments (IDEs) like Eclipse use the documentation 

of Application Programming Interfaces (APIs) to enhance developer productivity by providing 

autocompletion of method calls. New approaches to IDE environment programming suggest 

enriching APIs with semantic information provided by ontologies. The needed annotations could 

be stored in a public web service to enable collaborative knowledge acquisition. This approach 

could also be used to automatically generate a suitable sequence of method calls to achieve a 

desired goal state (like getting a database result set). The main advantage of ontologies is that 

they provide a globally unique identifier for concepts. An ontology enables developers to 

annotate API elements with an unambiguous concept. (Happel & Seedorf, 2006) 

3.3.2.4 Code Documentation 

Programming languages are poorly suited for software maintenance tasks such as 

documentation. They describe knowledge in a procedural way and are not well suited for the 

querying of knowledge required to pull knowledge to support documentation activities. The use 

of applied description logics provides a data environment that consists of programming-language 

independent descriptions of software structures and an ontology that describes the problem 

domain of the software. Both can be manually connected to allow the querying of code features 

dealing with a certain domain object. (Happel & Seedorf, 2006) 
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3.3.3 Deployment and Run-Time 

3.3.3.1 Semantic Middleware 

In modern three-tier architectures for software systems, the middleware layer lies in the 

focus of attention. Sophisticated middleware infrastructures shield a lot of complexity from the 

application developer, but creates challenging tasks for other tasks. Ontologies can be used to 

support the formal description of concepts from component-based and service-oriented 

development. The ontology provides a precise, formal definition of some ambiguous terms from 

Software Engineering as well as structures supporting the formalization of middleware 

knowledge by modeling the dependencies of libraries, licenses etc. (Happel & Seedorf, 2006) 

3.3.3.2 Business Rules 

Today’s business environment requires that companies react to rapidly-changing market 

conditions necessitating frequent adjustments to business rules. Often, the business logic of a 

company is hard-coded in programming languages. Thus, changes to the business logic of a 

software system require modifications to the source code, triggering the normal compilation and 

deployment cycle. As a result, companies are looking for solutions that support a quick 

propagation of new business rules into the core software systems by disconnecting business logic 

from processing logic. Rule engines are a possible solution to this problem. The business logic is 

modeled declaratively with logical statements and processed by a rule engine. Similar to a 

reasoner, the rule engine applies inference algorithms to derive new facts on a knowledge base. 

Business rule engines can be regarded as "ontology-based" approaches since they run declarative 

knowledge on a special middleware. Business rules can be changed more easily, because they are 

explicitly stated in a formal language that can be presented in a user friendly way for editing. 

(Happel & Seedorf, 2006) 
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3.3.3.3 Semantic Web Services 

Web services enable developers to combine information from different sources to new 

services. Offering data and services via well-defined interface descriptions in the web is the core 

idea of web services. However, it is often difficult for developers to find appropriate services, 

since most industry standards are purely syntactical, lacking semantical meaning. Thus, an 

algorithm cannot find out whether the output of one service is appropriate as an input to another 

service. Semantic web services add a semantic layer on top of the existing web service 

infrastructure. Input parameters, functionality and return values are annotated semantically, 

allowing automatic discovery, matching, and composition of service-based workflows. 

Ontologies can ensure discovery and interoperability in cases that were not anticipated by the 

initial developer, since semantic descriptions can be extended over the course of time. Even 

mediation among services that have been developed independently and annotated with different 

ontologies could interoperate by defining mappings between the services that is then interpreted 

by the ontology language. (Happel & Seedorf, 2006) 

3.3.4 Maintenance 

3.3.4.1 Project Support 

In software maintenance workflows such as bug fixing, several kinds of related 

information exist without an explicit connection. This is problematic, since a unified view could 

avoid redundant work and speed up problem solving. Ontologies help to connect the electronic 

communication (via forums and mailing lists) of the developers with bug-reports and the affected 

areas in the source code. Central concepts are the community (e.g. developers), their interactions, 

and content (e.g. emails). The knowledge is codified in three kinds of ontologies: 1) content 

ontologies that describe the structure of artefacts, 2) an ontology of interactions that describes the 
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communication flow among the developers, and 3)  a community ontology that defines the roles 

that are involved in the problem solving process. Ontologies thus provide a layer to integrate data 

from different sources into a unified semantic model. The combined data can then be used to 

derive additional information that was not stated explicitly in any one of the single sources 

before. (Happel & Seedorf, 2006) 

3.3.4.2 Testing 

Software testing is an important part of quality assurance. However, the writing of test 

cases is an expensive endeavor that does not directly yield business value. Furthermore, the 

derivation of suitable test cases demands a certain amount of domain knowledge. Ontologies 

could help to generate basic test cases since they encode domain knowledge in a machine 

processable format. Ontologies may not be the first candidate for such a scenario, since there are 

formalisms like Object Constraint Language (OCL) at are specialized for such tasks. However, 

once domain knowledge is available in an ontology format, it might be feasible to reuse that 

knowledge. (Happel & Seedorf, 2006) 

3.4 Use of Ontologies Specifically in Systems Engineering 

There exist many possible applications of ontologies in systems engineering activities. 

The trend is growing to investigate newer such applications. Hennig, et al. in 2011 surveyed a set 

of reported applications to assess their type and usefulness as exemplars of the application of 

ontologies in systems engineering projects. While somewhat dated, the survey illustrates the 

types of applications that organizations see as having solutions by using ontologies. Nine of the 

surveyed projects are summarized here to describe the application of the ontologies that the 

organization implementing them had in mind. 



28 

 

3.4.1 Domain Knowledge Acquisition Process 

In (Sarder & Ferreira, 2007), Sarder and Ferreira (2006) describe their Domain 

Knowledge Acquisition Process (DKAP) to capture a systems engineering functional domain 

ontology, with plans to use the developed systems engineering ontology to further develop a 

system of systems (SoS) engineering ontology. In order to serve the interest of SoS projects, they 

acknowledge that it is important to resolve the differing semantics and standards used by the 

many and varied system types that make up a SoS and the varied disciplines and backgrounds of 

the engineers performing the SE tasks on such projects.  The authors see as a solution the 

development of a SoS ontology that consolidates and resolves differences among the individual 

system ontologies. The authors surveyed several techniques and tools for developing ontologies 

and selected the IDEF5 elaboration language as the means for developing ontologies in their 

project. The authors also surveyed methodologies for developing ontologies and selected the 

DKAP method for their project. The authors described the DKAP process and used the process 

to identify the major entities of the systems engineering domain, which were then presented as a 

taxonomy. It should be noted that the entities shown in the resulting taxonomy are of the systems 

engineering “process”, not of any given systems engineering “project.” The work is concluded 

by indicating that the authors intend to also apply the DKAP methodology to develop a System 

of Systems Engineering (SoSE) ontology. (Sarder & Ferreira, 2007) 

3.4.2 Knowledge Modeling Framework 

In (Chourabi, Pollet, & Ben Ahmed, 2008), Chourabi, et al. describe a layered set of 

ontologies intended to capture knowledge items used in the systems engineering process in order 

to record engineers’ ideas and reasoning processes, and facilitate their reuse. They propose a 

Knowledge Modeling Framework for systems engineering projects consisting of a SE General 
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Ontology and an ontological framework organized into four semantic layers used to capture 

knowledge. The SE General Ontology three description facets: 1) Domain Facet - contains a set 

of ontologies that capture basic concepts and relations used to describe the content of engineered 

systems on a high semantic level, 2) Product Facet – contains concepts and relations representing 

a system by formally relating modeling elements to domain concepts to provide a systematic and 

semantic description of an engineering solution, 3) Process Facet - contains concepts and 

relations that formally describe engineering activities, tasks, actors, and design rationale. The 

Multi-layered ontologies for SE knowledge modeling are subdivided into several levels of 

abstraction, thus separating general knowledge from knowledge about particular domains, 

organizations and projects. These four layers are 1) General Layer - to describe super-concepts 

that are the same across all domains, it corresponds to the SE General Ontology, 2) Domain 

Layer - defines specializing concepts and semantic relations for a specific systems engineering 

domain , 3) Application Layer - presents specialized concepts that act as a systematized 

representation for annotating engineering knowledge on a particular project, 4) Instance Layer – 

defines all instances of engineering ontology concepts, defining a conceptual vocabulary from 

the application layer. 

3.4.3 Combining Metamodel-Based Models with Ontology-Oriented Implementation 

In (Ernadote, 2015), Ernadote proposes the use of ontologies to fulfill several objectives: 

to enhance the communications between domain specialists and modelers, to enhance the 

communications among specialist in different domains, facilitate the collection of system 

information to be used in modeling, to create new perspectives on existing models, and to 

generate documentation using those perspectives. Ernadote suggests a new modeling approach 

which is a combination of metamodel-based models with ontology-oriented implementation. In 
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Erandote’s view, metamodel-modeling fails to fully address the communication problems project 

that spans multiple domains since modelers have to agree in advance on the meaning of the data 

they are creating in the models. And while ontology-oriented approaches are seen as properly 

addressing multi-domain projects, Erandote nevertheless feels there remain several 

disadvantages of ontology-oriented modeling. These are: without the benefit of a metamodeling 

tool (and modelers) stakeholders now have the responsibility of binding an ontology to existing 

system data, the visualization in ontology authoring tools is difficult for end-user to understand, 

domain-specific languages and tool are time-consuming to use and lack flexibility. The solution 

Erandote proposes is a combined metamodel-ontology, or “mixed” approach. The advantages of 

this approach over the others is that all the advantages of metamodeling apply while only 

modelers need to know the particulars of constructing the metamodels. Erandote proceeds to 

describe the use of Category Theory as a means for mapping the ontology to the metamodel. 

3.4.4 Decision Support System 

In (Thakker, Dimitrova, Cohn, & Valdes, 2015) Thakker, et al. describe a prototype 

application of ontologies in a systems engineering Decision Support System (DSS) project to 

capture and preserve tacit knowledge from domain experts involved in the inspection of a 

railway tunnel network in France. The project turned to knowledge systems for assistance due to 

the complexity of the inspection process which is prone to subjectivity and scales poorly across 

cases and domains. The Pathology Assessment and Diagnosis of Tunnels (PADTUN) project 

assist tunnel experts in “making decisions about a tunnel’s condition with respect to its disorders 

and diagnosis influencing factors.” The system consists of two main components: the Pathology 

Assessment and Diagnosis component, and the Ontology component. The Pathology Assessment 

and Diagnosis component is designed using a three-tier architecture of Presentation (User 
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Interface) Layer, a Processing (Application) Layer, and a Data Layer. The Data Layer contains a 

relational database for storing inspection data supplied by the domain experts. The Data Layer 

also contains a semantic repository (triple store) that stores the domain knowledge in the form of 

an ontology, and performs reasoning on the inspection data. The Processing Layer consists of 

three subcomponents: 1) the Pathology Inferencing component that uses the stored ontologies to 

infer a list of pathologies when provided with observed tunnel inspection disorders, 2) a Regions 

Of Interest (ROI) component uses the output of the Pathology Inferencing component together 

with stored ontologies to infer aggregate tunnel portions that are susceptible to the same types of 

pathologies – a process which traditionally has been done by experts in an intuitive fashion, and 

3) a Data Management component that stores inspection data as per the schema dictated by the

ontologies. The conceptualization of the domain by experts was converted into OWL ontologies. 

The PADTUN ontologies were designed based on the knowledge of domain experts and were 

developed using the METHONTOLOGY methodology. The ontologies were designed for the 

purpose of capturing the existing decision process used in diagnosing tunnel pathologies, and to 

provide a context for automated decision support on the part of inspectors so as to result in a 

more consistent and reliable pathology assessment. In a comparison of ROI inferencing between 

the new ontology-based system and traditional methods the new system produced results which 

were in “almost perfect agreement.” (Thakker, Dimitrova, Cohn, & Valdes, 2015) 

3.4.5 Knowledge Base from SysML Block Definition Diagrams 

In (Graves, Integrating SysML and OWL, 2009), Graves describes a method for 

constructing a system design Knowledge Base (KB) based on information transformed from 

SysML Block Definition Diagrams (BDD). Such a KB could represent detailed information of a 

system design, such as the number of occurrences of a part and interconnections between parts. 
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The objective would be to take advantage of ontological reasoning tools to analyze the system 

design. Graves argues that SysML BDDs have sufficient expressiveness to represent these 

detailed designs. Accordingly, if the SysML BDDs are restricted to include only associations and 

no operations, then these diagrams can be translated into OWL2 to provide the degree of system 

description being sought. In this approach, design KBs can be developed in engineering design 

tools using SysML and then exported to OWL tools for analysis while preserving the intended 

semantics of the SysML BDD. A larger goal would be to use formal reasoning tools in product 

development that takes full advantage of the expressivity provided in the SysML. However, this 

would require a formal semantics for a much richer subset of SysML, for example, including 

ports with their interfaces, and including SysML operations. (Graves, Integrating SysML and 

OWL, 2009) 

3.4.6 Computer Aided Engineering Exchange 

In (Abele, Legat, Grimm, & Muller, 2013), Abele, et al. a solution is sought for the 

problem of exchanging and validating manufacturing plant engineering models. In particular, a 

data exchange mechanism is needed to transform data among models using the XML-based data 

format called Computer Aided Engineering Exchange (CAEX) which is part of the 

AutomationML (AML) language specification. CAEX was specially developed to meet the 

requirements of the manufacturing engineering domain. It is currently the most recognized 

standard data exchange tool for plant engineering data. A proposed solution to these data 

exchange issues is presented which includes the automated validation of CAEX plant models by 

means of their transformation into Web Ontology Language (OWL) ontologies, and subsequent 

application of reasoning mechanisms to perform the validation process. The engineering process 
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using the CAEX standard consists of three major steps, as illustrated in Figure 2. (Abele, Legat, 

Grimm, & Muller, 2013) 

Figure 2: CAEX Plant Models Validation Process Using OWL (Abele, Legat, Grimm, & 

Muller, 2013) 

In the first step of the process, the roles to be used in the respective domain are defined. 

This is accomplished by defining the user-specific roles for system elements as specializations of 

standard roles defined in the AML standard libraries. Since multiple domain experts may be 

working on the engineering model concurrently, different system elements representing the same 

physical component might possibly be created. To support the consistency of the model, a 

validation activity must be developed to identify multiple instances of the same physical element 

in the model. In the second step, the defined roles are used for selecting suitable components 
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from vendor-specific product catalogues. After manually selecting a suitable component from the 

catalogues, it is assigned to the previously defined system elements. Due to the manual 

component selection process, it is possible that a component not fully meeting the role 

requirements might be assigned. Therefore, another validation activity must be developed to 

check for improper assignment of catalogue component to system elements in the model. In the 

third step, the system elements are connected by interfaces representing the plant-specific inter-

component connections. Due to the complexity of a plant model, interfaces might be incorrectly 

place between the wrong system elements. Therefore, another validation activity must be 

developed to check for such inconsistencies. The transformation from CAEX to OWL captures 

the basic design decisions of representing CAEX plant models in OWL ontologies. The Semantic 

Web querying and reasoning technologies incorporated into OWL are used to perform three 

validation consistency checks of the CAEX process. These are 1) performing a query to identify 

all system elements with the same name to determine whether they were intentionally assigned 

the same name, 2) performing a query to ensure that components selected from vendor-specific 

product catalogues match the defined roles to which they are being assigned, and 3) performing a 

query to check that all interfaces are properly aligned according to the standard definition of 

interfaces provided in the AML standard libraries. (Abele, Legat, Grimm, & Muller, 2013) 

3.4.7 State Analysis Methodology 

In (Wagner, et al., 2012), Wagner, et al. present the State Analysis methodology as a 

means for architecting, designing and documenting complex control systems. In this project, 

State Analysis is performed using the Systems Modeling Language (SysML). To make use of the 

SysML capabilities, it is necessary to provide ontological definitions of the concepts and 

relations in State Analysis. This is accomplished through a mapping of State Analysis into a 



35 

practical extension of SysML. The ontology provides the formal basis for verifying compliance 

of the system model developed in SysML with State Analysis semantics including architectural 

constraints. This is accomplished by first applying stereotyped relations in the SysML model so 

that it can be analyzed to compare the semantics and constraints expressed in the stereotype 

definitions with the details of the model, and thereby verify that the model conforms to the 

semantics of the domain expressed in the ontology. The State Analysis domain is constructed as 

an ontology in OWL2 using an ontology editing tool. Thus, by using a model transformation 

from OWL2, meaningful domain-specific stereotypes are defined and applied in a SysML 

modeling tool to construct a system model. Then, the system model is exported to OWL in order 

to enforce semantic consistency rules established by the principles of State Analysis and verify 

the correctness properties in the model. While the focus of this work was to illustrate the use of 

State Analysis in the design of control systems for large, complex enterprises, the value of this 

work to the author of this thesis is the process used for mapping of the ontologies into SysML to 

define the ontological concepts and relationships as SysML stereotypes that can be applied to 

appropriate modeling entities. Wagner, et al. only say that success in this endeavor is due to 

“some advanced model transformations developed by JPL’s Integrated Model-Centric 

Engineering team.” This hint prompted the author of this thesis to investigate activities at JPL 

further to discover the nature of the JPL advanced model transformations. Of all the applications 

of the ontologies to systems engineering, this project showed the most promise for describing a 

practical approach to populating profiles for use in architectural development, which is the 

concern of this thesis. The further works of NASA JPL toward this goal are described in Section 

6 of this thesis. (Wagner, et al., 2012) 
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3.4.8 Integrating Reasoning with SysML 

In (Graves, Integrating Reasoning with SysML, 2014), Graves addresses the need to 

perform in-depth reasoning on engineering tasks by embedding a model of the system under 

analysis as an axiom set within a suitable logic. By taking this approach, engineering questions 

translate into questions about axiom sets. Automated reasoning can then be used to answer these 

questions. Graves illustrates techniques for embedding the class diagram fragment of SysML 

into OWL, and then extending that approach to cover other SysML constructs. Graves then 

illustrates how reasoning can be integrated with SysML to answer engineering questions, with 

three examples. These examples relate a variety of engineering questions to axiom set questions 

that are then formulated as model queries. The first example illustrates how an advertised system 

capability can be verified using reasoning. The second two examples illustrate design 

consistency can be maintained by verifying the consistency of design changes. Examples are 

given to, and illustrate how formal reasoning can be exploited to answer these questions. The 

examples presented illustrate the semantic embedding of a Block Definition Diagram (BDD) 

fragment of SysML into a type theory logic. Other important SysML language constructions, 

such as the Internal Block Diagram (IBD) cannot be embedded within OWL. To overcome this 

issue, Graves suggests that SysML be reengineered to use an engineered version of type theory 

as its foundation. Graves states that “Type theory provides the language extensions suggested by 

the examples with a formal semantics well adapted for use with inference engines.” (Graves, 

Integrating Reasoning with SysML, 2012) 

3.4.9 Managing Inconsistencies in Models 

In (Feldmann, et al., 2015), Feldmann et al. address the challenges related to managing 

inconsistencies in models of systems from the domain of automated production systems. These 
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inconsistencies arise out of the collaborative nature of a variety of stakeholders from different 

disciplines employing a variety of modeling languages, formalisms, and tools. Three challenges 

to consistency management are identified as needing to be resolved: 1) heterogeneity of models 

causes issues such as misinterpretation of parameters among those that specify a required 

attribute, and those that reveal the current state of an attribute for analysis, as well as 

fundamentally different formalisms, varying abstraction levels, and terminology relevant to a 

particular application domain, 2) semantically overlapping models marked by the presence of 

either duplicate, or related information, referred to as semantic overlaps, 3) lack of automated 

inconsistency management techniques. The proposed solution to manage inconsistencies is the 

use of a knowledge-based system composed of two parts: a knowledge base and an inference 

mechanism. The Resource Description Framework (RDF) is proposed for use as a knowledge 

representation formalism. RDF allows for statements to be made about entities the form of 

subject-predicate-object triples and therefore is similar to conceptual modeling approaches such 

as class or entity relationship diagrams. Use of the SPARQL Protocol and RDF Query Language 

are proposed as the means to retrieve and manipulate information represented in RDF. The 

process of using these tools first involves an expert identifying a-priori the specific types of 

inconsistencies anticipated to be encountered. The application of this approach is illustrated with 

two examples of inconsistency queries that result in successful identification of inconsistencies, 

while passing on valid consistency checks. A technology demonstrator was then exercised to 

evaluate the technical feasibility and viability of the conceptual approach. (Feldmann, et al., 

2015) 
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4   Constructing Ontologies 

The process of building or engineering ontologies for use in information systems remains 

an arcane art form, which must be transformed into a rigorous engineering discipline in order to 

be viewed as a useful and reliable resource for engineering applications, particularly for 

developing architectural descriptions of complex engineered systems. (Guarino & Welty, 2002) 

This section provides guidance on best practices for constructing ontologies. 

4.1 Design Criteria 

In the words of Tom Gruber, “an ontology is an explicit specification of a 

conceptualization.” That conceptualization consists of the entities that exist in the domain being 

described as well as the relationships among those entities. It is said that an ontology is 

“committed” to the conceptualization, meaning that the design of the ontology accurately 

represents the conceptualized view of the domain. The set of entities represented in such an 

ontology is called the “universe of discourse” for that domain. These are the classes, functions, 

relations, and other objects declared to represent the domain. The ontology includes definitions 

associated with the names of all the entities in the universe of discourse. The definitions include 

human-readable text describing what the names mean as well as formal axioms that constrain the 

possible interpretations of the defined terms. (Gruber, A Translation Approach to Portable 

Ontology Specifications, 1993) 

In order for an ontology to be an accurate description of the conceptualized domain, it 

needs to be designed as such. This implies that the process for designing ontologies comes with 

design criteria. Tom Gruber defined five design criteria for constructing ontologies. The first of 

these is clarity. Definitions of terms should be complete, objective, and written in natural 

language. Definitions should be independent of social or computational context. Formalism 
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promotes this independence. To achieve formalism in the definition, logical axioms should be 

used to define the terms. Completeness implies the use of a predicate defined by necessary and 

sufficient conditions. This is preferred over a partial definition which is defined only by 

necessary or sufficient conditions. (Gruber, A Translation Approach to Portable Ontology 

Specifications, 1993) 

The second criterion is coherence. This applies to both the formal and informal elements 

of the definition. At the least, the defining axioms should be logically consistent. If the axioms 

infer a sentence that contradicts an informal definition, then the ontology is incoherent. (Gruber, 

A Translation Approach to Portable Ontology Specifications, 1993) 

The ontology should be extendable monotonically in order to be reusable for multiple 

purposes or tasks without requiring revision of the existing definitions. (Gruber, A Translation 

Approach to Portable Ontology Specifications, 1993) 

The ontology should exhibit minimal encoding bias. An encoding bias results when 

design choices are made purely for the convenience of notation or implementation of the 

encoding. Minimization of such bias is necessary since knowledge-sharing agents may be 

implemented in different representation systems. (Gruber, A Translation Approach to Portable 

Ontology Specifications, 1993) 

Finally, the ontology should require minimal ontological commitment sufficient to 

support the intended knowledge-sharing activities. This allows parties who are committed to 

using the ontology the freedom to specialize and instantiate the ontology as needed. Such 

minimization can be achieved by defining only the terms that are essential to the communication 
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of knowledge consistent with the weakest theory of the domain. (Gruber, A Translation 

Approach to Portable Ontology Specifications, 1993) 

4.2 Ontological Formalisms 

Ontologies are often categorized according the degree of restriction on the semantics used 

to express the ontological terms. As such, ontologies are broken into two major groups: 1) 

lightweight ontologies, which are mainly taxonomies, and 2) heavyweight ontologies, which 

provide more restrictions on domain semantics in order to model the domain in a deeper way. 

Within these groups, ontologies are also categorized according to the level of formality 

incorporated into their design and definition. The classifications according to formalism are: 1) 

1) highly informal - if expressed in natural language; 2) semi-informal - if expressed in a 

restricted and structured form of natural language; 3) semi-formal - if expressed in an artificial 

and formally defined language; and 4) rigorously formal - if they provide meticulously defined 

terms with formal semantics, theorems and proofs of properties. (Gómez-Pérez, Fernández-

López, & Corcho, 2004) 

4.3 Methods for Modeling Ontologies 

This section describes several popular methods employed to develop ontology models. It 

is important to note that the selection of the formalisms used to model domain knowledge and 

the languages that implement the modeling techniques limit the kind of knowledge that can be 

modeled and implemented.  For example, to model formal axioms either as independent 

components in the ontology or embedded in other components, the use of Artificial Intelligence 

(AI) formalisms are required. AI-based languages and ontology markup languages are better 

candidates for representing and implementing ontologies than other non AI approaches. Another 
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important note is that simply because an ontology is written using a language specifically 

designed for constructing ontologies does not mean that the result constitutes an ontology. 

4.3.1 Frames and First Order Logic 

In (Gruber, A Translation Approach to Portable Ontology Specifications, 1993), Gruber 

suggested modeling heavyweight ontologies by using frames and first order logic. In this 

approach, Gruber used five kinds of modeling components: classes, relations, functions, formal 

axioms, and instances. (Gómez-Pérez, Fernández-López, & Corcho, 2004) 

4.3.2 Description Logics 

Description Logics (DL) is a kind of logical formalism theory which is divided into two 

parts: the TBox and the ABox. The TBox contains the definitions of concepts and roles built 

through declarations that describe general properties of domain concepts. These are expressed as 

intensional (terminological) knowledge in the form of a terminology. The ABox contains the 

definitions of individuals (instances) which is specific to the individuals of the discourse domain. 

These contain extensional (assertional) knowledge. (Gómez-Pérez, Fernández-López, & Corcho, 

2004) 

4.3.3 Ontology Modeling Using UML/SysML 

The UML (Unified Modeling Language) and SysML (Systems Modeling Language) can 

both be used for modeling ontologies. UML is commonly used in the software engineering 

community, and SysML in the systems engineering community, and therefore modeling of 

lightweight ontologies is a task easily picked up by engineers using either of these two methods. 

Resulting models can be enriched by adding Object Constraint Language (OCL) expressions to 

add axioms to these models. (Gómez-Pérez, Fernández-López, & Corcho, 2004) These are the 
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methods of interest in this thesis, and will be explored further in Sections 5 and 6. (Gómez-Pérez, 

Fernández-López, & Corcho, 2004) 

4.3.4 Ontology Modeling Using Database Technology 

This modeling technique primarily involves the use of Entity/Relationship (ER) diagrams 

and their extensions, as well as other types of databases, such as object-oriented database models 

or deductive database models. Though, it is not possible to model heavyweight ontologies with 

the extended ER diagrams commonly used. Other extended ER notations or complementary 

notations would be needed. Only those ER diagrams that have been agreed upon could be 

considered ontologies. It is highly desirable that ontologies be machine-readable since many 

Computer-Aided Software Engineering (CASE) tools are set up for this purpose. (Gómez-Pérez, 

Fernández-López, & Corcho, 2004) 

4.4 Types of Ontologies 

Gómez-Pérez, et al. assembled a type characterization of developed ontologies according 

to the subject of their conceptualization. The result is captured in the following subsections. 

These are not meant to be exhaustive lists. 

4.4.1 Knowledge Representation Ontologies 

The most well-known of these Knowledge Representation (KR) ontologies are the Frame 

Ontology (Gruber, A Translation Approach to Portable Ontology Specifications, 1993) and the 

Open Knowledge Base Connectivity (OKBC) Ontology. They provide formal definitions of the 

representation primitives used mainly in frame-based languages and thus permit building other 

ontologies by means of frame-based conventions. Other KR ontologies include the RDF KR 

Ontology, RDF Schema KR Ontology, OIL KR Ontology, DAML+OIL KR Ontology and OWL 

KR Ontology. (Gómez-Pérez, Fernández-López, & Corcho, 2004) 
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4.4.2 General or Common Ontologies 

These are used to represent common sense knowledge that can be reused across all 

domains. These ontologies capture very general vocabularies related to subjects common to all 

ontologies, such as things, events, time, space, causality, behavior, function, mereology, etc. The 

Mereology Ontology is a good example of a general ontology. It defines the Part-Of relation that 

can be used to state how devices are formed by the assembly of components, each of which 

might also be decomposed into subcomponents. This ontology defines the principle properties 

that any decomposition should have. (Gómez-Pérez, Fernández-López, & Corcho, 2004) 

4.4.3 Top-level Ontologies Or Upper-level Ontologies 

These ontologies describe very general concepts to which all root terms in existing 

ontologies should be linked. There exist several top-level ontologies that differ on the criteria 

followed to classify the most general concepts and therefore create some confusion about the 

manner in which domain ontologies should link to them. To solve work is being performed to 

develop a Standard Upper Ontology (SUO) that is intended to give a structure and a set of 

general concepts from which domain ontologies could be constructed. (Gómez-Pérez, 

Fernández-López, & Corcho, 2004) 

4.4.4 Domain Ontologies 

These kinds of ontologies may be reusable in a given specific domain, such as medical, 

pharmaceutical, engineering, etc. They provide vocabularies that describe the concepts within a 

domain and their relationships, as well as the activities that take place in the domain. There is a 

clear boundary that separates the domain from the upper-level ontologies. The domain concepts 

are established by specializing off of concepts defined in top-level ontologies. (Gómez-Pérez, 

Fernández-López, & Corcho, 2004) 
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4.4.5 Task Ontologies 

Task ontologies describe the vocabulary related to a generic task or activity that can be 

found in most modern organizations today. They provide a vocabulary of terms used with tasks 

that may or may not belong to the same domain. (Gómez-Pérez, Fernández-López, & Corcho, 

2004) 

4.4.6 Domain-Task Ontologies 

These ontologies are reusable in a given domain, but not across domains, and therefore 

are application-independent. (Gómez-Pérez, Fernández-López, & Corcho, 2004) 

4.4.7 Method Ontologies 

These ontologies define the concepts and relations that can be used to specify a reasoning 

process that is designed to achieve a particular task, for example. (Gómez-Pérez, Fernández-

López, & Corcho, 2004) 

4.4.8 Application Ontologies 

These are application-dependent ontologies that contain all the definitions needed to 

model the knowledge required for a particular application. They extend and specialize the 

vocabulary of the domain and of task ontologies for a given application. (Gómez-Pérez, 

Fernández-López, & Corcho, 2004) 

4.5 Languages for Building Ontologies 

In (Gómez-Pérez, Fernández-López, & Corcho, 2004), Gómez-Pérez, et al. provide a 

comprehensive overview of the languages used by ontologists to construct ontologies. This 

section will quickly summarize those languages identified, simply for reference purposes. The 

authors break the grouping of languages into two types: traditional languages and markup 
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languages. For traditional languages, the authors identified KIT, LOOM, OKBC, OCML, and 

FLogic. For ontology markup languages, the authors identified SHOE, XOL, RDF and RDF 

Schema, OIL, DAML-OIL,  and OWL. (Gómez-Pérez, Fernández-López, & Corcho, 2004) Any 

further discussion of the particular languages is beyond the scope of this thesis. Further research 

is needed to identify the pros and cons of each language and to determine which type of language 

and which language in poarticular might be used to develop ontologies that establish the basis for 

modeling profiles used to build system architectures. (Gómez-Pérez, Fernández-López, & 

Corcho, 2004) 

4.6 Ontology Development Tools 

Likewise, with ontology development tools, Gómez-Pérez, et al. provide a listing of tools 

commonly used in the ontology engineering field. The language-dependent tools identified are 

hese tools are characterized by their tight association with an ontology language. These are the 

Ontolingua Server, OntoSaurus, WebOnto, and OilEd. The extensible language-independent 

tools are easily extensible and can easily be integrated with other applications. These are 

Protégé-2000, WebODE, OntoEdit, and KAON. The ontology merging tool identified is 

PROMPT. The ontology-based annotation tools are COHSE, MnM, OntoMat-Annotizer and 

OntoAnnotate, SHOE Knowledge Annotator, and UBOT AeroDAML. (Gómez-Pérez, 

Fernández-López, & Corcho, 2004) 

4.7 Ontology Development Methodologies 

Gómez-Pérez, et al. also provide a comprehensive listing of ontology developmewnt 

methodologies and the pros and cons of each, focussing on the following methodoologies: the 

Cyc method, the Uschold and King’s method, the Grüninger and Fox’s methodology, the 

KACTUS approach, METHONTOLOGY, the SENSUS method, and the On-To-Knowledge 
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methodology. (Gómez-Pérez, Fernández-López, & Corcho, 2004) However, in this thesis the 

author would like to focus on a recent methodology outlined by Noy and McGuinness in (Noy & 

McGuinness, 2001) which provides a concise, step-by-step description of their recommended 

approach, summarized here. 

 Before beginning an ontology development effort, the designer needs to carefully 

consider the various aspects of the development process that will impact the final product. These 

considerations include deciding what the ontology is going to be used for, deciding how 

important is it for the ontology to be intuitive, extensible, maintainable, etc. The developer must 

also keep in mind that the ontology is a model of the real world, and the concepts in the ontology 

must reflect that reality. Afterall, the goal of building the ontology is not the ontology itself, but 

the best use of the ontology in a particular application or practice. (Noy & McGuinness, 2001) 

The ontology engineer should not seek to identify all the possible information about the 

domain. There is often no value added to specializing (or generalizing) more than is needed for 

the intended application of the ontology. The farthest extent that an ontology development 

activity should go is at most one extra level each way (towards specialization and 

generalization.) Similarly, the ontology engineer should not try to capture all the possible 

properties of and distinctions among classes in the hierarchy. (Noy & McGuinness, 2001) 

As far as methodologies for developing ontologies are concerned, there are many 

proposed methodologies, and they all have their pros and cons depending on the purpose of the 

ontology and the way in which the ontology will be used. This thesis describes a general 

approach to ontology development as suggested by Noy and McGuinness. 
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4.8 How Ontology Development Differs from Object-Oriented Design 

Since ontologies are closely related to software products such as editors, readers, 

processors, interpreters, etc., software developers may be involved in some aspect of the 

ontology development or use. It is important to emphasize the difference between ontology 

development and the design of classes and objects in object-oriented programming. When 

developing object-oriented programming, a software developer normally gives primary 

consideration to the operational properties of a class, whereas with ontology development, the 

primary consideration is that of the structural properties of a class. As a result, the class structure 

in an ontology and the relations among the various classes of the ontology are different from the 

structure designed in an object-oriented program, for the same or similar domain of interest. 

(Noy & McGuinness, 2001) 

4.9 Important Ontological Terms 

The following terms defined by Noy and McGuinness and elsewhere are used in the 

development of frame-based ontologies and will be used throughout this discussion. 

• Ontology – A formal explicit description of concepts (aka classes) in a domain of

discourse 

• Class – Represents a concept in a domain of discourse

• Superclass – Represents a concept that is more general than the subclass that is

derived from it 

• Subclass – Represents a concept that is more specific than the superclass from

which it is derived 

• Is-A Relation (aka Is-A-Kind-Of Relation) – A taxonomic relation in which a

subclass is related to a superclass 
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• Direct Subclass – A subclass that is directly subordinate to its superclass 

• Direct Superclass – A superclass that is directly superior to its subclass 

• Indirect Subclass – A subclass that has an intervening class between it and a 

superior superclass 

• Indirect Superclass – A superclass that has an intervening class between it and an 

inferior subclass 

• Instance – Individual implementation of a concept (a class) 

• Disjoint Classes – Two classes that cannot have any instances in common 

• Slots (aka Roles) – Properties of each concept describing various features and 

attributes of the concept 

• Slot Value – A slot value that is fixed for all instances and cannot be changed 

• Range of a Slot – The classes of the Instances to which a slot is attached (that a 

slot describes) 

• Domain of a Slot - The classes to which a slot is attached (that a slot describes) 

• Facets (aka Role Restrictions) – Restrictions on slots, such as cardinality 

• Inverse Relation – A situation in which the value of one slot depends on the value 

of another slot (example: “produces” versus “produced by”) 

• Knowledge Base – An ontology together with a set of instances of classes 

There exists a fine line between the point at which an ontology ends and a knowledge 

base begins. This can be equated with the idea of a database structural template that has no actual 

data loaded (no practical use other than a template) and that of a fully populated database that 

can be used to load, process, analyze, and report database results. In the case of an ontology, it 
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begins to serve practical use as a knowledge base when individual instances are defined with 

associated slot and facet information. (Noy & McGuinness, 2001) 

4.10 Understanding Classes and Class Hierarchies 

Before taking on the task of constructing an ontology, it is important to ensure that the 

authoring engineer has a good understanding of the concept of class and of class hierarchies. A 

hierarchy of classes is established by what is termed an “is-a” or “is-a-kind-of” relation among 

two classes. Formally, these relations are known as hyperonymy and hyponymy. Hyperonymy is 

the semantic relation between a more general word and a more specific word. Example: “tree” is 

a hyperonym of “oak.” Hyponymy is the semantic relation between a more specific word and a 

more general word. Example: “oak” is a hyponym of “tree.” This process is also known as 

subsumption. Example: “A canoe is a kind of boat.” Here, the Canoe class is a subclass of class 

Boat. So, in a hierarchy, the Boat class would exist at a higher level than the Canoe class. 

“Canoe” is subsumed by “Boat.” 

4.10.1 Is-A Overloading in Subsumption 

Guarino warns against overloading of the “is-a” mechanism for subsumption. Many 

ontology development efforts suffer from “is-a overloading” by using the subsumption 

relationship for many different kinds of associations. To help avoid some of these issues with the 

“Is-A” relationship, Boyce and Pahl suggest using an its inverse relation, which they called the 

‘HasSubtype’ relation. The use of the ‘HasSubtype’ relationship makes it easier to avoid the 

pitfalls associated with the ‘Is-A’ relation, while remaining analogous to it. (Boyce & Pahl, 

2007) 
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4.10.1.1 Confusion of Senses 

This is a case in which a subclass is identified in an ontology as a child of two or more 

different superclasses. For example, “crane” is a kind of “bird”, while “crane” is also a kind of 

“lifting device.” While the two uses of “crane” are phonetically the same, it is not appropriate in 

an ontology to make them equivalent. 

4.10.1.2 Reduction of Sense 

In this usage, the superclass does not represent a sufficiently complete aspect of the child. 

For example, it would be inappropriate to place “computer” and a kind of “calculator.” While 

computers can certainly perform calculations, their primary functionality provide much more 

capability than mere calculation. 

4.10.1.3 Overgeneralization 

In this usage, the superclass is many levels above the child, such that, while true, the 

specialization of the child seems too far removed from the parent. For example, “computer” is a 

kind of “physical object.” While true, several levels of specialization have been skipped to go 

from “physical object” to “computer.” 

4.10.1.4 Suspect Type-to-Role Link 

This is a case where there exists confusion whether the child class is actually as a concept 

or a role. For example, “apple” is a kind of “fruit.” This is a proper subsumption of “apple” by 

“fruit.” But, were we to say the “apple” is a king of “food,” then this suggests a role for the apple 

to play (as food) and not a classification of the apple (as a subclass.) 
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4.10.1.5 Confusion of Taxonomic Roles 

In this case, ontological engineers tend to express all the unary properties of a certain 

class of entities in terms of superclasses to inherit from. For example, with a general list of 

quality attributes, such as accessibility, adaptability, flexibility, testability, etc., there is no 

distinction between the classes representing a major organizational role in the taxonomy, and 

those that simply express a particular property. (Guarino, Formal Ontology and Information 

Systems, 1998) 

4.10.2 Concept Metaproperties 

Guarino and Welty developed the OntoClean methodology to provide guidance on the 

kinds of ontological decisions that need to be made by an ontological engineer when developing 

the structure of an ontology based on rules of subsumption. OntoClean also describes approaches 

that can be taken to evaluate the decisions made when choosing a construct for representing a 

concept. Guarino and Welty identified several formal notions to define a set of metaproperties 

used to characterize relevant aspects of the intended meaning of the properties, classes, and 

relations that make up an ontology. These metaproperties are used to impose several constraints 

on the taxonomic structure of an ontology, which help in evaluating the structural choices made 

when constructing the ontology. (Guarino & Welty, 2002) 

4.10.2.1 Essence 

A property of an entity is essential to that entity (has essence) if the property must hold 

for the entity to be properly characterized. This is a stronger notion than one of permanence. 

Whether an entity has a property that is permanent or not, does not make that property essential 

to its characterization. For example, magnets have the property that they are magnetic. This a 

property which is essential to magnets when used in application such as electric motors. 
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However, if a common nail is magnetized and therefore takes on that property whether 

permanently or not, does not make it a property which is essential to its characterization as a nail. 

4.10.2.2 Rigidity 

Rigidity is a special form of essence that describes the strictness with which the property 

applies to all the instances of the class having the property. Guarino and Welty identify three 

types of rigidity. These definitions are restricted to meaningful properties (not necessarily true 

nor necessarily false), so trivial cases are excluded. (Guarino & Welty, 2002) 

• Rigid – a property that is essential to all instances of a class. Example: all magnets 

are magnetic; therefore, magnetism is a rigid property of magnets. 

• Non-Rigid (or Semi-Rigid) – a property that is not essential to all instances of a 

class. Example: common nails could possibly be magnetic; therefore, magnetism 

is a non-rigid property of common nails. 

• Anti-Rigid – a property that is not essential to any instances of a class. Example: 

brass nails could never be magnetic; therefore, magnetism is an anti-rigid property 

of brass nails. 

Rigidity is an important notion, every property in an ontology should be labeled as rigid, 

non-rigid, or anti-rigid. In addition to providing more information about what a property is 

intended to mean, these metaproperties impose constraints on the subsumption relation, which 

can be used to check the ontological consistency of taxonomic links. One of these constraints is 

that class with anti-rigid properties cannot subsume classes with rigid properties. (Guarino & 

Welty, 2002) 
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4.10.3 Identity and Unity 

Identity and unity are the most important philosophical notions used in the OntoClean 

methodology. They are different notions, although strictly related and often confused with each 

other. (Guarino & Welty, 2002) 

4.10.3.1 Identity 

Identity refers to one of the most common decisions that must be made in ontological 

analysis, that of being able to recognize individual entities (concepts) in the world as being the 

same or different. This concerns circumstances in which something that is seen as one entity is 

actually two or more. Examining situations involving time provides a way of interpreting 

identity. Is a person the same person even if their appearance has changed over time? The 

problem can be evaluated also by considering the identity criteria at a single point in time. How 

can a time interval (from a start time to an end time) be related to a time duration (a measured 

length of time?) One approach is to make time interval a kind of (subclass of) time duration, 

since all time intervals could be seen as time durations. While this makes intuitive sense, since 

two durations of the same length are the same duration, two intervals occurring at the same time 

are the same, but two intervals occurring at different times, even if they are the same length, are 

different. Therefore, the two example intervals given would be different intervals, with the same 

duration. This creates a contradiction in which two time intervals that have the same duration, 

even if they occur at different times, are the same kind of (subsumed by) time duration, while 

two intervals that have the same duration, but do not occur at the same time, cannot be identical 

because they occur at two different times. This situation is brought on through common 

confusions of natural language and can be avoided by realizing that duration is a component 



54 

 

(property) of an interval, but it is not the interval itself. Therefore, the relationship cannot be 

modeled as a subclass. (Guarino & Welty, 2002) 

4.10.3.2 Unity 

Unity refers to property that identifies and describes all the parts that form an individual 

entity and the way that parts of an object are bound together, such that we know in general what 

is part of the object, what is not, and under what conditions the object is a whole. Unity can tell 

us a lot about the intended meaning of properties or classes based on whether class instances are 

parts or wholes. (Guarino & Welty, 2002) 

4.10.3.3 Whole Entities 

For some classes, all their instances are wholes, for others, none of their instances are 

wholes. For example, “water” cannot conveniently be identified as an isolated entity as can 

“ocean;” therefore, “water” is not commonly represented as a “whole” entity. On the other hand, 

“ocean” for which “Atlantic Ocean” can be identified as an instance, is an identifiable whole 

entity. This leads to another problem with subsumption in that “ocean” might be established as a 

subclass of “water,” since all oceans are made up of water. But this raises an inconsistency since 

instances of “water” are never wholes, yet instances of “ocean” always are. This presents a 

contradiction since oceans are not “kinds of” water; they are instead composed of water. This is a 

distinction that must be carefully thought through when constructing an ontology. (Guarino & 

Welty, 2002) 

4.10.3.4 Part Entities 

It is also important to analyze the conditions that must hold among the parts of an entity 

in order to consider it a whole. These conditions are called unity criteria. With suitable 
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metaproperties, these criteria distinguish the classes that carry a common unity criterion for all 

their instances (such as “ocean”) from those that do not (like “water”). (Guarino & Welty, 2002) 

4.10.4 Subsumption 

The subsumption relation that is the most commonly used and the most commonly 

misused structuring primitive used in constructing ontologies. Guarino and Welty have 

established a set of heuristics (below) which can be used to guide the ontological engineer in 

making the correct decision regarding subsumption of classes into an ontological hierarchy. 

Deciding whether one property should subsume another is one of the most important ontological 

decisions a modeler must make in building an ontology, and providing a formal foundation for 

evaluating these decisions has proved an important milestone in the practice of conceptual 

modeling. (Guarino & Welty, 2002) 

4.10.4.1 Subsumption is not Instantiation 

Subsumption is not the same as instantiation. The subsumption relationship is often used 

when instantiation was actually intended. 

4.10.4.2 Subsumption is not a Meta Principle 

“Rigidity” is considered a metaproperty in that rigidity is a property of properties, and not 

a property of objects in the world. It may be tempting to create a class called “rigid class” and 

have it subsume all classes that are rigid, such as Human. But, instances of “rigid class” are 

classes and these identity criteria cannot be applied to the instances of Human, so being rigid is a 

metaproperty of the class Human. Therefore, it is improper to establish Human as a subclass of 

“rigid class.” 
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4.10.4.3 Subsumption is not a Part Property 

Confusion here is due to the fact that subclass is analogous to subset, and a subset of a set 

is a part of it. This confusion can be overcome when it is realized that the difference between the 

parts of a set and the parts of its members. For example, while “engine” is a part of a “car”, 

“engine” is not a kind of “car.” 

4.10.4.4 Subsumption is not Disjunction 

An often-used “work-around” to the part property problem is creating artificial classes 

representing different levels of decomposition, such as a class for “car parts” of which “engine” 

would be a subclass along with a restriction or axiom requiring that all the parts of cars be 

subclasses of “car parts.” This work-around amounts to using subsumption to create a disjunction 

of classes in order to accommodate a type restriction. Rigidity analysis can be used to expose the 

difficulty. There is no instance of a car part that is of necessity by itself always a car part. For 

example, the engine could be removed and used in another application such as in a power boat. 

Therefore, the car part class would be anti-rigid. The class engine is rigid, since an engine is and 

always will be characteristically an engine. This violates the rule that an anti-rigid class cannot 

subsume a rigid one. Since most modeling systems do not provide for disjunction, modelers 

believe they are justified in using this kind of work around. 

4.10.4.5 Subsumption is not Polysemy 

The most common misuse of subsumption in linguistics is to represent the multiple 

meanings (polysemy) of a term. This may have some linguistic motivations, but is incorrect from 

the ontological point of view. To see how this is incorrect, we can usefully employ identity or 

unity analysis. The term “book” can refer to a physical item that has weight, size, position in 

space, etc. “Book” can also refer to abstract notion of a work written by an author that has a title, 
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etc. Bound volumes are identified by their location in space/time, so that two bound volumes 

cannot occupy the same space at the same time. The abstract notion of book is independent of 

space and time, being identified by other criteria. No instance can meet both of these identity 

criteria; they belong to two different classes of entity, though there is a close relationship 

between them. No “book” is both a bound volume and an abstract entity. 

4.10.4.6 Subsumption is not Constitution 

Another common misuse of subsumption is to use it to represent the fact that one thing is 

constituted of another. It is important to understand that one class of entities mat be constituted 

by entities in the other class, but it may not be subsumed by it. For example, a company might be 

constituted by a group of people, but a group of people are not (necessarily) a kind of company. 

4.10.5 Choosing Classes and Class Names 

When constructing ontology hierarchies in this fashion, it is important to avoid making 

the mistake of including both a singular and a plural version of the same concept in the hierarchy 

making the former a subclass of the latter. For example, avoid creating a class Boat that is a 

subclass of Boats. To avoid this issue, remain consistent throughout the hierarchy by using only 

either singular class names or plural class names. 

It is also important to recall that classes represent concepts. No matter what name is 

chosen for the class, the concept remains the same. The name of a class in a hierarchy might 

change depending on the use of the ontology, but the concept, and its relation to other concepts 

(other classes) must remain the same. An example is the use of the same idea (concept) in 

different languages, or different applications, such as different services of the military. Do not 

create two classes for the same concept simply because two similar terms (synonyms) exist in the 
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common vocabulary of the domain. If it is important to identify synonyms, then include a list of 

synonyms in the ontology documentation. 

Avoid creating class cycles in the ontology hierarchy in which one class (A) is a subclass 

of another class (B), while class B is also a subclass of class A. This is the same as saying that 

class A and class B are equivalent. 

Sibling classes should be at the same level of generality compared to the parent class. For 

examples, classes Canoe, Skiff, Yacht, Schooner are all siblings of class Boat, and are all at the 

same level of generality. The exception to this rule is at the highest possible level of an ontology 

where the immediate children of the most general class may represent major divisions of the 

domain and therefore may not be similar concepts. 

A superclass should not have only one subclass. Such a situation would indicate that 

further development of the superclass is warranted. To maintain a good structure of the hierarchy 

it is recommended that a given superclass have between two and a dozen direct subclasses. 

However, to best reflect the natural world it is better to not force a specific number of subclasses. 

If a large number of subclasses exist in the natural world, then the ontology should reflect that 

natural order. The rule of between two and a dozen subclasses is to be used when additional 

ontology development can be afforded without violating the natural order of the reality within 

the domain. 

Guarino and Welty recommend beginning the class hierarchy construction with a 

“backbone taxonomy” consisting of all the rigid properties in the ontology, organized according 

to their subsumption relationships. It represents a view of the ontology showing all the most 

important properties—those that cover the entire universe of discourse. Every entity in the 
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backbone taxonomy must have identity criteria and must have a rigid property that describes 

those criteria. Backbone properties are the most important to analyze first—those that represent 

the invariant, essential aspects of the domain. Guarino and Welty identify three benefits to 

constructing a backbone taxonomy: 1) it jump starts to the integration process since every entity 

in the resulting ontology must instantiate at least one property in the backbone taxonomy, 2) it 

allows for the discovery of inconsistencies in the use of subsumption among the classes of the 

backbone taxonomy, 3) it can serve as the common backbone when comparing the rigid 

properties for two different ontologies that must be merged together, trying to establish a basic 

set of stable properties within the merged domain. (Guarino & Welty, 2002) 

4.10.6 Whether to Introduce A New Class 

When developing an ontology, it is not uncommon to come across a situation in which it 

is difficult to decide whether a concept should be established in the ontology as a new class or as 

a property value of an existing class. Noy and McGuinness identify a few rules of thumb for 

helping to determine which approach to take. 

4.10.6.1 Subclasses Have Additional Properties 

Subclasses of a class usually (1) have additional properties that the superclass does not 

have, or (2) have restrictions different from those of the superclass, or (3) participate in different 

relationships than the superclasses. So, only introduce a new class in the hierarchy when there is 

something that can be said about this class that cannot be said about the superclass. In practical 

terms, each subclass should either have new slots added to it, or have new slot values defined, or 

override some facets for the inherited slots. 
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4.10.6.2 Subclasses in Terminological Hierarchies 

Sometimes it may be useful to create new classes even if they do not introduce any new 

properties. Classes in terminological hierarchies do not have to introduce new properties. This 

type of classification may be just a hierarchy of terms, without properties (or with the same set of 

properties). In that case, it is still useful to organize the terms in a hierarchy rather than a flat list 

because it will (1) allow easier exploration and navigation and (2) enable a user to choose easily 

a level of generality of the term that is appropriate for the situation. 

4.10.6.3 Concepts which have Specific Distinction 

Another reason to introduce new classes without any new properties is to model concepts 

among which domain experts commonly make a distinction even though it may have been 

decided not to model the distinction itself. Since ontologies are used to facilitate communication 

among domain experts and between domain experts and knowledge-based systems it would be 

good to reflect the expert’s view of the domain in the ontology. 

4.10.6.4 Importance of the Concept within the Domain 

Whether to establish the concept as a class or a property value of an existing class 

depends on the scope of the domain and the task at hand. It depends on how important is the 

concept within the domain. If the concepts with different slot values become restrictions for 

different slots in other classes, then a new class should be created to emphasize the distinction. 

Otherwise, represent the distinction in a slot value. For example, if it appears that whether a type 

of boat is powered or not is becoming an important distinction in the ontology, then perhaps this 

requires that two subclasses be established under the Boat class; one for Powered Boats and one 

for Unpowered Boats. 
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4.10.6.5 Importance of a Distinction within the Domain 

If a distinction is important in the domain and if the objects with different values for the 

distinction are viewed as different kinds of objects, then a new class should be created for the 

distinction. For example, if it is important to distinguish unpowered boats that can hold no more 

than two people, such as dinghies, canoes, and pirogues, then perhaps a new class should be 

established for these types of objects. 

4.10.6.6 Consideration of Individual Instances 

Considering the potential individual instances of a class may also be helpful in deciding 

whether or not to introduce a new class. A class to which an individual instance belongs should 

not change often. 

4.11 A Simple Knowledge-Engineering Methodology 

Noy and McGuinness offer a methodology for ontology development that addresses the 

general concerns that apply to most ontology development activities. They emphasize the 

importance of observing a few fundamental rules to ontology development: 

• There is no correct way to model a domain. The approach taken depends strongly

on the ultimate application of the ontology and any extensions that are anticipated 

to be added to the ontology through lessons learned as a result of use of the 

ontology. 

• Ontology development is necessarily an iterative process. They start the process

with a rough first pass, followed by practical application, and review by experts, 

after which subsequent passes are made to continually refine the ontology. 

• Concepts in the ontology should be closely related to objects (nouns) and their

relationships (verbs) as observed in the domain of interest. 
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4.11.1 Step 1 – Determine the Domain and Scope of the Ontology 

It is understood that anyone constructing an ontology would already have determined the 

domain of interest for which the ontology is being built. The question should really be whether 

the domain is fully understood in relation to the intended use of the ontology. Noy and 

McGuinness suggest that the following topics be addressed to narrow and focus the scope of the 

ontology to be built. (Noy & McGuinness, 2001) 

• Competency of the ontology – The ontology should be competent with regard to 

the issues that the user intends to address. In order to determine whether the 

ontology is competent enough, the kinds of questions that the target user would 

ask should be posed against the ontology to determine whether the ontology is 

sufficiently suitable to address those questions. 

• Use of the ontology – No matter what the domain of interest, users in any given 

domain will have some particular interest in using the ontology to address some 

concern. Depending on that concern, an ontology in any given domain could be 

suitable to address the concerns or not. It is important to understand those 

concerns to ensure that the ontology addresses the user’s issues. 

• Queries the ontology is intended to address – With the understanding of who is 

going to use the ontology and for what purpose, it is now important to focus on 

the specific questions those users will ask of the ontology to ensure that the 

ontology will be capable of providing the answers to those questions. 

• Maintenance of the ontology – No ontology will be able to achieve competency 

over the long term without maintenance, since the kinds of problems to address 

will likely change over time. It is important to anticipate the kinds of changes that 
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are likely to occur to ensure that the ontology will be designed in a way to allow 

for maintenance of the ontology that will preserve its competence. 

4.11.2 Step 2 – Consider reusing existing ontologies 

Depending on the objective, consider whether any previous development efforts would 

either serve as a starting point for the new ontology or would contribute in some way to its 

development. This might be a consideration existing sources can be refined or extended for a 

particular domain or task, or if the system for which the ontology is being built needs to interact 

with other applications that have already committed to particular ontologies. Most modern  

knowledge-representation systems have extensive import and export facilities, and therefore the 

formalism in which an ontology is expressed often does not matter since the task of translating 

an ontology from one formalism to another is usually not a difficult one. (Noy & McGuinness, 

2001) 

4.11.3 Step 3 – Enumerate important terms in the ontology 

Since an ontology is first and foremost a domain vocabulary, it is important to identify 

and capture the terms that the user operating in that domain will be interested in formulating 

statements about or will be in need of an explanation. These terms will be used to formulate the 

concepts that become classes in the class hierarchy of the ontology. It is important at this point to 

consider not only the primary terms concepts that make up that hierarchy, but also related terms 

that help fill out the domain of discourse the user will expect to require in usage of the ontology. 

(Noy & McGuinness, 2001) 

4.11.4 Step 4 – Define the class and the class hierarchy 

The class hierarchy for a particular project within a particular domain will depend greatly 

on the ultimate application of the ontology. One class hierarchy in a given domain can appear 
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quite different from another in the same domain. There is no single correct class hierarchy for 

any given domain. The hierarchy depends on the possible uses of the ontology, the level of the 

detail that is necessary for the application, personal preferences, and sometimes requirements for 

compatibility with other models. (Noy & McGuinness, 2001) Noy and McGuinness identify 

three approaches to defining the class hierarchy. 

Top-Down – In this approach, the engineer starts by first identifying and defining the 

most general concepts in the domain. This could be one single concept at the top of the domain 

hierarchy, or several concepts under the domain title. From this point the engineer identifies 

subsequent specialization of the principle concepts. By taking this approach, the engineer is 

creating subclasses at increasingly lower levels of the hierarchy. In the process, the engineer is 

identifying “is-a” type relations between levels of the hierarchy. 

Bottom-up – This is the antithesis of the top-down approach in which the engineer starts 

by first defining the most specific classes, those being the leaves of the hierarchy, and develops 

grouping of the leaf-level concepts into higher-level groupings. The higher-level groupings 

would be generalizations of the more specific lower-level concepts. This process is repeated for 

each level until no higher generalizations can be identified, or until sufficient leaf-level 

identification of concepts has been accomplished. 

Combination – This approach is a combination of the top-down and bottom-up 

approaches. Here, the engineer defines the more salient concepts first – those that represent the 

mid-level concepts that best represent the more visible and identifiable concepts of the domain. 

These concepts are then generalized (going higher into the hierarchy) and specialized (going 

lower into the hierarchy) until the hierarchy is populated to the degree desired. 
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It is important to consider the structure of the ontology as it can be difficult to navigate a 

poorly structured hierarchy. Ontologies that are either extremely nested with many extraneous 

classes, or very flat with too few classes and too much information encoded in slots, are very 

difficult to navigate. Finding the appropriate balance though is not easy. 

Noy and McGuinness point out that the selection of which approach to take when 

constructing an ontology depends on the personal perspective that the ontology engineer has of 

the domain. If the engineer has a systematic, organizational view of the domain, then it may 

make best sense to use the top-down approach. If the engineer normally operates at the low-level 

of detail, is able to identify the majority of the leaf-level concepts, and is not fully cognizant of 

how these lower-level elements roll-up into higher-level organization, then it may be best to start 

at the bottom of the hierarchy. Most engineers are more aware of the mid-level concepts which 

tend to be the more descriptive concepts in the domain. In this case, it is best to start where most 

of the knowledge and experience exists, and work up/down from that point developing the upper 

and lower levels of the hierarchy. (Noy & McGuinness, 2001) 

Whichever approach is taken, the ontology engineer starts by defining the classes at the 

chosen level starting with the list that was created in Step 3.  It’s best to start by select the terms 

from the list that describe objects having independent existence rather than terms that are 

descriptive of other objects (whose identification is tied to other objects and are therefore 

dependent on those other objects for meaning). The chosen terms will then be identified as 

classes in the ontology. These first selected terms are key elements of the ontology and will serve 

as anchors in the class hierarchy from which others elements will be supported. Once this initial 

identification of related concepts is established, the classes are then organized into a hierarchical 

taxonomy. This is accomplished by identifying super-class/sub-class relationships. One way of 
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accomplishing this task is by posing the following question: if by being an instance of one class, 

will the object necessarily also be an instance of some other class (its superclass)? This would be 

so for a valid super-class/sub-class relationship because if a class A is a superclass of class B, 

then every instance of B is also an instance of A. In other words, class B represents a concept 

that is a “kind of” A. In such a case, an instance of class B is also, by definition, an instance of 

class A. (Noy & McGuinness, 2001) 

4.11.5 Step 5 – Define the Properties of a Class (Slots) 

With classes identified and located in the hierarchical structure, it is necessary to then 

elaborate on the internal structure of the concepts represented by the class. This is done by 

describing the class properties, known in ontological engineering as “slots”. This step can be 

performed by either considering what are the properties of a class individually, or considering 

which are domain properties and then assigning each of those properties to a particular class. 

There are several types of object properties that can become slots in an ontology: 

• Intrinsic properties – those which are natural or essential properties of the class 

• Extrinsic properties – those which are not directly attributable to the class, but are 

nonetheless closely related to it 

• Part properties – if the class represents a structured object, then its parts are 

defined as part properties; these can be both actual physical parts as well as 

abstract (non-physical) parts  

• Relationship properties – These are the relationships between individual members 

of the class and other items 
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In order to promote the hierarchical concept of inheritance, a slot should be attached at 

the most general class that can have that property. Thus, when a subclass for the superclass is 

identified, it inherits all the properties of the superclass. (Noy & McGuinness, 2001) 

When establishing relations between classes, avoid establishing relations among 

strikingly different branches of the ontology simply because they make literal sense. While these 

relations may be literally correct, they cause confusion within the ontology and the user of the 

ontology may not understand the purpose for their existence. 

Avoid storing the information for inverse slots “in both directions”. This constitutes 

redundant information. An application using the knowledge base can always infer the value for 

the inverse relation. Decide on which direction to keep. If this is a pattern throughout the 

ontology, and if appropriate, choose one direction to describe the inverse relationship and 

maintain that direction throughout the ontology. 

4.11.6 Step 6 – Define the Facets of the Slots 

With slots defined for the classes, it is time to identify the slot value features, known in 

ontological engineering as facets. These include such items as the type of the values that the slot 

can assume, the allowed values, the number of the values (the cardinality), and other features of 

the values the slot can take on. 

4.11.7 Slot Value Type 

This describes the type of the values that can occupy a slot. Examples of the most 

common value types are: string, number (integer and float), Boolean, enumerated, and instance-

type. Instance-type slots allow the definition of relationships between individuals. That is, which 
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other class instances can have a relation with this class instance. Slots with value type Instance 

must also define a list of allowed classes from which the instances can come. 

4.11.8 Slot Cardinality 

Slot cardinality defines how many values a slot can have. Some systems distinguish only 

between single cardinality (allowing at most one value) and multiple cardinality (allowing any 

number of values). Some systems allow specification of a minimum and maximum cardinality to 

describe the number of slot values more precisely. Minimum cardinality of N means that a slot 

must have at least N values. Maximum cardinality of M means that a slot can have at most M 

values. Sometimes it may be useful to set the maximum cardinality to 0. This setting would 

indicate that the slot cannot have any values for a particular subclass. 

4.11.9 Slot Domain and Range 

The domain of a slot is the class to which a slot is attached or the class with the property 

that the slot describes. The range of a slot identifies the allowed classes for slots of type Instance. 

In the phrase “Wineries produce wines”, “produce” is the slot, “wineries” is the domain, and 

“wine” is the range. 

Noy and McGuinness identify several basic rules for determining a domain and a range 

of a slot. 

• When defining a domain or a range for a slot, find the most general classes or 

class that can be respectively the domain or the range for the slots. 

• On the other hand, do not define a domain and range that is overly general. 

• All the classes in the domain of a slot should be described by the slot. 
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• Instances of all the classes in the range of a slot should be potential fillers for the

slot. 

• Avoid choosing an overly general class for the range, but rather choose a class

that will cover all fillers. For example, avoid choosing “THING” for the range of 

a slot. (THING is generally accepted as the uppermost possible element in any 

ontology.) Instead of listing all possible wines that a winery can produce, simply 

choose “wine” for the range. “THING” would be too general. 

• More specifically, if a list of classes defining a range or a domain of a slot

includes a class and its subclass, remove the subclass. 

• If a list of classes defining a range or a domain of a slot contains all subclasses of

a class A, but not the class A itself, the range or domain should contain only the 

class A and not the subclasses. 

• If a list of classes defining a range or a domain of a slot contains all but a few

subclasses of a class A, consider if the class A would make a more appropriate 

range definition. 

4.11.10Step 7 – Create Instances 

The last step is creating individual instances of the classes defined in the hierarchy. To do 

so, perform the following activities: 1) choose a class, 2) create an individual instance of that 

class, and 3) fill in the slot values for that instance. 

At times it can become difficult to decide whether a particular concept is a class in an 

ontology or an individual instance. The answer often depends on what the potential applications 

of the ontology are. Noy and McGuinness suggest taking the approach of deciding what is the 

lowest level of granularity in the representation. This is determined by the intended application 
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of the ontology. Ask what are the most specific items that are going to be represented in the 

knowledge base. The most specific concepts that constitute answers to competency questions are 

very good candidates for individual instances in the knowledge base. (Noy & McGuinness, 

2001) 

For architectural development activities, the instances are more reasonably developed in 

the actual architecture of the system and not in the ontology. In order for ontologies to remain 

generally applicable to multiple projects within a domain, the identification of instances of 

concepts should be left to the actual architectural description of the designed solution. 

4.12 Ontology Maintenance 

It is important to maintain the ontology over time. Concepts in a given domain can 

change over time. Depending on the use of the ontology it may be necessary to periodically 

review the ontology to ensure that it is up-to-date with the current vocabulary usage within the 

given domain. 
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5 Bridging the Gap Between Ontologies and Modeling Profiles 

Several technologies have been under development in the last couple of decades that have 

accelerated the potential for bridging the gap for the transfer of knowledge between ontologies 

and system modeling profiles, and thus into the system model architectures themselves. These 

technologies are discussed in the following sections. 

5.1 Modeling 

Humans have been using models to describe the world around them for as long as the 

need to convey information from one to another has existed. A model is simply a conceptual 

representation of some entity in the real world, whether that entity actually exists at the point in 

time that it is modeled, or simply exists as a vision of something that has existed in the past or 

could exist in the future. By definition, a model is “a description of (part of) a system written in a 

well-defined language. A well-defined language is a language with well-defined form (syntax) 

and meaning (semantics), which is suitable for automated interpretation by a computer ”. 

(Kleppe, Warmer, & Bast, 2003) In the realm of systems engineering, models are representations 

of systems to be built to provide some capability that satisfies the needs of a stakeholder. This 

arrangement of a modeler expressing an idea that a stakeholder would interpret is illustrated in 

Figure 3. (Overbeek, 2006) 

Figure 3: Relation Among Modeler-Model-Interpreter (Overbeek, 2006) 
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For our purposes, we are addressing system and software models as capturing 

descriptions of system elements, their characteristics, behaviors, interfaces, etc. These modeling 

elements are captured in a form that can be interpreted by stakeholders using industry standards 

that define the syntax and semantics of the languages used to model the system. The idea of a 

modeling language as being the means by which the expression of the model is captured is 

illustrated in Figure 4. (Overbeek, 2006) 

 

Figure 4: Representation of Figure 3 in Modeling Language (Overbeek, 2006) 

A modeling language includes the syntax (the part of the language that defines the 

notation) and the semantics (the part of the language that describes the meaning of the notation). 

The syntax is further divided into a concrete syntax, which defines the physical notation of the 

language observed by the user, and the abstract syntax, which describes the concepts in the 

language, their characteristics, and interrelationships. The semantics describe the meaning of the 

language in terms of concepts that are well-defined and understood. These concepts are 

contained in the semantic domain which envelopes the whole of the concepts included in the 

selected language used for modeling. The language used for describing models is called a 

modeling language. (Overbeek, 2006) 
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The concepts of concrete syntax, abstract syntax, semantic domain and the mapping of 

the elements to each other are represented in Figure 5, which describes a model of a language 

used for modeling. This is also known as a language metamodel. (Overbeek, 2006) 

Figure 5: Syntax and Semantics of Metamodel (Overbeek, 2006) 

Recent advances in the practice of system and software modeling have led to the 

popularity of object-oriented (OO) modeling, in which modeling elements are treated as objects 

in an OO modeling paradigm. The popularity of OO modeling has led to the use of graphical 

languages to describe the systems being modeled. The modeling solution for textual modeling 

languages is well-developed in the form of the Backus Naur Form (BNF) notation. (Fuentes-

Fernández & Vallecillo-Moreno, 2004) However, for graphical modeling, as is commonly used 

in software and systems engineering, a different mechanism is needed. The desire to use 

graphical languages in modeling gave rise to the need to formalize the graphical modeling 

process. As a result, the Object Management Group (OMG) has developed the Meta-Object 

Facility (MOF) as one solution which has now become an accepted standard in the industry. 

5.2 Meta-Object Facility 

As suggested in the previous section a metamodel is a model of a model. In the case of a 

modeling language, the language metamodel is a model that describes a language used for 

modeling. Taking this concept a step further, a meta-metamodel is a specialized metamodel that 

describes other metamodels. (Overbeek, 2006) 
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The purpose of the MOF is to create, store, and manipulate object schemas into the form 

of a meta metamodel used for defining metamodels, like the Unified Modeling Language 

(UML). The OMG has established a four-layer construct known as the OMG metamodel 

hierarchy, in which the MOF is designed to occupy the top layer of the structure, as illustrated in 

Figure 6. All the layers in this structure (M3 down to M0) employ a strict instance-of 

relationship with layer above, down to the M0 layer. (Overbeek, 2006) 

 

Figure 6: Meta-Object Facility Metamodel Hierarchy (Overbeek, 2006) 

The four layers of the metamodel hierarchy are, namely:  

M3 – Meta-metamodel layer – This layer represents the MOF, which is a language 

specification layer. The purpose of this layer is to specify the language of the metamodel at the 

M2 layer. This layer contains only one metamodel, which is the MOF. The MOF is what is 

known as a recursive layer. In addition to specifying the language at the next lower level, a 
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recursive layer defines a representation of its own behavior and structure, so no additional 

language is needed at a higher layer to describe the MOF. (Overbeek, 2006) 

M2 – Metamodel layer – This layer is a language specification layer that specifies the 

languages used to define those models. It is also a metamodel layer in that it is used to specify 

models. The metamodels in this layer are more specific as compared with the meta-metamodel 

layer. This layer can contain multiple metamodels. (Overbeek, 2006) It is within this layer that 

modeling languages such as the Unified Modeling Language (UML) and the Systems Modeling 

Language (SysML) are specified. 

M1 – Model layer – The model layer is a specification layer available to the modeler to 

develop models of the object of interest. This layer will contain a concrete definition of the data 

created by the modeler to represent the system being modeled. This is the layer in which the 

modeler uses modeling tools to create an architectural description of some system of interest to 

stakeholders, for example. (Overbeek, 2006) 

M0 – Run-time layer – In software engineering terms, the run-time layer contains the 

objects instantiated out of the model which will be executed during run-time, and thus represent 

the final products of the software engineering effort. (Overbeek, 2006) In systems engineering 

terms, this might be termed the Real-world layer, in which the modeled systems are actually 

produced and delivered to customers, and used in the real world to deliver value to stakeholders. 

5.3 UML Profile Extension Mechanism 

The Unified Modeling Language (UML) was established as a standardized modeling 

language by the Object Management Group (OMG) in the mid-1990s, and has since enjoyed 

widespread acceptance and usage. The UML is a general-purpose graphical and visual modeling 
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language used initially to specify the design of software engineering projects and products, 

irrespective of the domain of the problem solution. The drawback of the general-purpose nature 

of the UML is that there exists a lack of features that can be directly used to represent specific 

characteristics of the domain of the problem space. The OMG accommodates this need for 

additional features through two available mechanisms. (Overbeek, 2006) 

The first of these involves using the MOF to create a new meta-model at the M2 layer to 

describe a modeling language that provides the domain-specific features not found in a general-

purpose language like the UML. By taking this approach, the desired modeling characteristics of 

the domain are defined into the syntax and semantics of the elements of the new language. 

However, the result is a modeling language that is quite limited to applications within the domain 

of discourse covered by the language syntax and semantics. Furthermore, the new language will 

not observe UML semantics, and therefore the language will not be compatible with commercial 

UML tools for drawing diagrams, generating code, etc. (Overbeek, 2006) 

The second approach is that of the usage of a language extension profiling mechanism. 

With language profiles, some elements of the language are specialized by imposing constraints 

which more closely represent the characteristics of the elements in the domain of interest. 

However, in order to retain the general-purpose nature of the UML, the profiling extension 

mechanism continues to conform with the UML metamodel by leaving the original semantics of 

the UML elements unchanged. (Overbeek, 2006) 

The advantages of using the UML profile extension mechanism are 1) extend the 

modeling terminology to cover domain-specific terminology, 2) extend the syntax of the 

modeling language to include modeling concepts specific to the domain, 3) display a customized 

set of graphical symbology more appropriate to the target application domain, 4) add semantics 
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that were left unspecified in the metamodel that defined the UML, 5) add semantics that do not 

exist in the metamodel that defined the UML, 6) add constraints to the way the metamodel can 

be used. (Overbeek, 2006) However, above all, the most important advantage to be gained by the 

profile extension mechanism is that a domain profile can be developed that can then in turn be 

reused on other projects within the same domain in order to establish a consistent domain-

specific modeling approach within an organization and across an industry. 

5.4 Model Driven Architecture 

Model Driven Architecture (MDA) was conceived out of the need to separate the 

elements of software engineering activities that were driven by the desired functionality of the 

system from those that were affected by the constraints of the computing hardware of the system. 

(Truyen, 2006) This approach allows us to focus on model definition, leaving implementation 

details until the end. Doing so makes the models more portable, more adaptable to new 

technologies, and more interoperable with other systems, regardless of the technology they use. 

(Fuentes-Fernández & Vallecillo-Moreno, 2004) 

The MDA specification identifies three distinct viewpoints intended to emphasis this 

separation of concerns. These are 1) the computation independent viewpoint, 2) the platform 

independent viewpoint, and 3) the platform specific viewpoint. The computation independent 

viewpoint considers the problem seeking a solution from the stakeholder perspective in which 

the method of achieving the solution (the way the problem is solved) is independent from the 

problem statement (what the problem is). The platform independent viewpoint focuses on the 

functional and physical characteristics of the solution that allow it to meet its operational 

objectives independent of how the solution will actually be implemented. The platform 

dependent viewpoint provides the detailed information that describes how the platform 
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independent viewpoint will be implemented in a specific hardware configuration. The platform is 

a set of software and hardware subsystems and technologies that provide a coherent set of 

functionalities to provide the complete deliverable functionality which serves as a solution to 

address the stakeholders’ problem space. Examples of platforms include operating systems, 

programming languages, databases, user interfaces, middleware solutions, processors, interfaces, 

etc. that service the platform independent elements of the MDA. (Truyen, 2006) 

In order to realize these viewpoints, MDA defines three models of a system that 

corresponding to the three MDA viewpoints: 1) Computation Independent Model (CIM), 2) the 

Platform Independent Model (PIM), and 3) the Platform Specific Model (PSM). (Truyen, 2006) 

The CIM is also referred to as the business or domain model since it uses a vocabulary 

that is familiar to subject matter experts (SMEs) operating in the domain of discourse. It 

describes the operational functionality and performance that the system is expected to deliver in 

order to meet the stakeholders’ objectives. In the process of doing so, the CIM hides technology 

related details to maintain independence from the system solution description. This independence 

is critical so that the specification of the desires of the stakeholder are not influenced by any 

particular technology solution. However, as the development proceeds, the CIM requirements 

should be made traceable to the PIM and PSM constructs that implement them. (Truyen, 2006) 

The independence of the PIM is an intentional characteristic in order for the PIM to be 

developed such that it can be easily mapped to one or more platforms without impacting the 

PIM. The mapping from PIM to PSM is then performed by defining a set of services in a way 

that abstracts out the technical details of the mapping. Other models on the PSM side of the 

mapping then realize these services in a manner specific to the platform on which the PIM will 

be implemented. (Truyen, 2006) UML Profiles can be used to describe the platform model and 
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the transformation rules between models. Doing so guarantees that the transformed models will 

be consistent with the UML. (Fuentes-Fernández & Vallecillo-Moreno, 2004) Note, that while 

this application of UML Profiles is valuable, it is not the use of profiles that is being sought after 

as a solution to the problem of incorporating ontologies into the systems modeling process. 

The PSM then combines the specifications in the PIM with the details that describe how 

the PSM is implemented on a particular platform. (Truyen, 2006) 

Figure 7 (Alhir, 2003) illustrates the foundational concepts that constitutes the MDA. In 

this figure, the Requirements Gathering process produces the Requirements Model (CIM) that 

feeds the requirements specifications to the Analysis process. The Analysis process is actually 

the beginning of the conceptualization of a solution to the problem through the architectural 

design tasks that are included in the Analysis process in this figure. During the Analysis process, 

the architecture that describes the platform independent functionality and performance of the 

system is defined to produce the architectural description (PIM). The Analysis process is 

performed as part of the architectural development by analyzing whether the architecture 

developed will provide the needed functionality and performance to satisfy the stakeholder 

requirements. The architectural description (PIM) is then passed to the Design process where the 

detailed implementation plan is developed. From this point, the Design process produces the bill 

of materials (PSM) which is then fed to the Implementation process. It is in the Implementation 

process where the actual, realized product is constructed (System). 
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Figure 7: SE Lifecycle Phases Mapped to MDA (Alhir, 2003) 

The most important advantage of this approach, and the main purpose for developing this 

architectural approach, is so that software engineers are then able to define transformations that 

automatically convert the PIM to a PSM. The PIM is supplied as an input to this process, along 

with a description of the PSM to be used to implement the system. A set of transformation rules 

are then used to implement the system in the most automated way possible. (Truyen, 2006) 

5.5 Ontology Definition Metamodel 

The Semantic Web represents the next logical step beyond the World Wide Web, and is 

intended to enable machine-understandable data to be shared across the Net. Ontologies will give 

the Semantic Web machine-understandable meaning to its data. These interoperable ontologies 

will facilitate Web with the ability to “know” something. The Semantic Web architecture defines 

three levels that incrementally introduce expressive primitives: metadata layer, schema layer and 

logical layer. The Semantic Web ontology languages that support this architecture are depicted 

in Figure 8. (Djuric, Gaševic, Devedžic, & Damjanovic, 2004) 
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Figure 8: Semantic Web Architecture (Djuric, Gaševic, Devedžic, & Damjanovic, 2004) 

The Resource Description Framework (RDF) and the RDF Schema are used as general 

languages for the description of metadata on the Web. OWL has been developed as a vocabulary 

extension of RDF. OWL is a semantic markup language for publishing and sharing ontologies on 

the WWW. OWL is designed to advance beyond simply presenting information to humans. It is 

designed to provide the ability for applications to process information content. OWL facilitates 

greater machine interpretability of Web content by providing additional vocabulary along with a 

formal semantics. This capability goes beyond that which is supported by XML, RDF and RDFS 

alone. To achieve common data interoperability in applications, XML is the preferred choice as 

it supports syntax, while semantics is provided by RDF, RDF Schema, and mainly by OWL. 

Through the use of OWL, developers can achieve unconstrained representation of the Web 

knowledge and, at the same time, support calculations and reasoning. However, AI techniques 

needed for ontology creation are relatively unknown to the wider software engineering 

population. In order to overcome this gap, several proposals have been offered that suggest using 

UML in ontology development. The drawback of some of these proposals is that UML does not 

by itself satisfy the needs for representation of ontological concepts borrowed from description 

logics, and included in Semantic Web ontology languages. (Djuric, Gaševic, Devedžic, & 

Damjanovic, 2004) 
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Development activities have been underway, focused on to move ontology development 

techniques toward taking advantage of the metamodeling approach offered by the OMG’s Model 

Driven Architecture (MDA) technology. Toward this end, several metamodels and UML profiles 

have been developed which are based on ontology representation languages such as RDF(S), 

DAML+OIL, etc. However, none of these solutions use OWL. As a result, the Object 

Management Group (OMG) has established an initiative aimed at defining a suitable language 

for modeling Semantic Web ontology languages in the context of MDA. This initiative is known 

as the Ontology Definition Metamodel (ODM). This initiative has been established in large part 

due to the recognition that the Semantic Web and its XML-based languages are the main 

enablers of future Web development. (Djuric, Gaševic, Devedžic, & Damjanovic, 2004) 

Djuric, et al. propose to take advantage of the OMG’s Model Driven Architecture (MDA) 

concept to create a language that is defined in a similar way that the UML is defined, using 

metamodeling. Accordingly, they have developed a metamodel for an ontology modeling 

language which is defined using the OMG Meta-Object Facility (MOF), and is based on the Web 

Ontology Language (OWL). To facilitate use by the wider engineering community, they 

developed a profile that supports ontology design, called the Ontology UML Profile (OUP). This 

profile is a standard extension of UML, and is also based on MOF. To provide a usable ontology 

development environment, several data mappings are required. Three two-way mappings are 

required: 1) between OWL and ODM, 2) between ODM and the OUP, and 3) from the OUP to 

other UML profiles. These mappings are impacted by the fact that they involve traversing 

ontology languages based on different platforms (i.e. Semantic Web and MDA), and therefore 

several tools are required to provide those mappings. One approach to this issue is to apply the 

concept of technical spaces. The authors implemented an XSLT that transforms OUP ontologies 
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into OWL in order to provide suitable tool support. The needed transformations are illustrated in 

Figure 8. (Djuric, Gaševic, Devedžic, & Damjanovic, 2004) 

Figure 9: Ontology Modeling in the Context of MDA and the Semantic Web (Djuric, 

Gaševic, Devedžic, & Damjanovic, 2004) 

In the approach proposed by Djuric, et al., ODM encloses common ontology concepts by 

using OWL, since it is the result of the evolution of existing ontology representation languages. 

The position of OWL at the Logical layer of the Semantic Web architecture, on top of RDF 

Schema (Schema layer) allows it to make use of graphical modeling capabilities of the UML. 

Thus, ODM should have a corresponding UML Profile to enable the graphical editing of 

ontologies using UML diagrams. The required two-way transformations between UML and 

ODM can be accomplished using XSLT, since both models are serialized in the XMI format. 

Another pair of XSLTs should be provided for the two-way mapping between ODM and OWL 

since OWL also has representation in the XML format. Additional transformations can be added 

to support the use of ontologies in the design of other domains and vice versa. This would allow 

for the mapping of the Ontology UML Profile into other, technology-specific UML Profiles. 
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6 Current State of the Practice 

As described in Section 3.4.7, NASA JPL has reported on a program that the institution 

has been involved with to transform domain ontologies into system modeling profiles for use in 

systems architecture development. This section delves deeper into the NASA JPL activities in 

this area as reported during the period 2010-2019 to examine more closely the approach taken to 

provide this capability. Towards the end of this period, a consortium of interests launched an 

initiative known as the Semantics Technologies for Systems Engineering (ST4SE). This 

initiative is taking the work of NASA JPL, as well as the results of other research activities into 

the application of ontologies to solve systems engineering problems, to advance the state of the 

art in this area. The ST4SE seeks to “promote and champion the development and utilization of 

ontologies and semantic technologies to support system engineering practice, education, and 

research.” (Jenkins, 2018) The author of this thesis intends to follow the activities of the ST4SE 

group to keep abreast of advances made in this area of research. 

6.1 NASA JPL Integrated Model-Centric Engineering Initiative 

The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory 

(JPL) is a national research facility that designs, develops robotic sensors, spacecraft, and surface 

vehicles to perform Earth and interplanetary science missions. (About JPL, n.d.) JPL launched 

the Integrated Model-Centric Engineering (IMCE) initiative for the purpose of  advancing 

enterprises practices from “the current document-centric engineering practices to one in which 

structural, behavioral, physics and simulation-based models representing the technical designs 

are integrated and evolve throughout the life-cycle, supporting trade studies, design verification 

and system verification and validation.” The objective of the IMCE initiative is to “advance 

engineering practice to a state in which descriptive and analytical models representing technical 
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designs and relating them to stakeholder concerns are developed and integrated throughout the 

mission life cycle, from early concept through operations.” (Bayer, et al., 2011) 

6.2 NASA JPL View of Systems Engineering Landscape in the 2010 Timeframe 

The organization was experiencing the same issues with traditional system engineering 

practices as has been reported in this thesis as being experienced by other organizations, those 

being: managing growing system complexity, dealing with emergent system behavior, and 

inability to fully test systems using traditional test methods, among others. The IMCE identified 

four specific challenges to address: 1) JPL products were being designed around “off-the-shelf” 

components, rather than through a mission-oriented architectural development activity, 2) there 

was no effective mechanism to transfer knowledge from one project to the next, 3) the 

programmatic activities and technical activities were managed separately resulting in poor 

decision-making and increasing risk, 4) It is of value to examine these issues more closely as 

they are more closely aligned with the architecture modeling issues this thesis is intending to 

address. (Bayer, et al., 2011) 

6.2.1 System Design Emerges from the Pieces 

The issues raised here have to do with the tendency of an organization to pull system 

components “off-the-shelf”, or in this case, to use equipment designed by laboratories to deliver 

a particular capability, irrespective of the ability of those components to properly integrate into 

the aggregate system. The IMCE identified the following challenges. (Bayer, et al., 2011) 

• The role of the system architect is not an influential element of the engineering

process. 

• The architecture is disproportionately driven by the design process of functional

decomposition. 
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• The management of ad-hoc, point-to-point interfaces becomes overwhelming. 

• Extensive decomposition of models into simpler submodels can result in 

conflicting conclusions from the submodels. 

• The tendency to delineate fault protection from nominal functionality results in 

systems that are brittle, difficult to operate, and less reliable. 

• The abandonment of architectural principles to solve technical problems of the 

day, whether those principles are spelled out in policy or not, make the system 

brittle, difficult to operate, and increases risk. 

• System designs are spread across many disconnected architectural description 

artifacts requiring many meetings, emails, and conversations to resolve design 

changes over months of effort. 

• Weakly architected systems results in aspects of the design itself scattered over 

system elements resulting in the execution of functionality with little high-level 

oversight and coordination. 

• The physics-based models of subsystem performance are not connected to each 

other, resulting in “stove-piped” analysis (performing analysis separately for each 

subsystem), and manually integrating the results. This extends the time necessary 

to conduct an analysis or trade study and hides significant system-level 

interactions which might later be exposed during testing, or during operations. 

• Insufficient consideration for verification and validation during requirements 

development can render aspects of the design untestable. 

• The primary mission objective requirements are not adequately coordinated with 

the practical infrastructure system requirements resulting in conflicts between 
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basic system operations and fulfilling the primary mission objectives. A side 

result is that opportunities to reduce risk/cost/schedule or even enhance 

performance are missed because of the disconnect between the two. 

• Some desired system behaviors are difficult to express in textual specification

format, resulting in miscommunication between systems engineers and software 

developers, and incorrect system behavior. 

6.2.2 Knowledge and Investment are Lost Across Phases 

There is no effective mechanism to transfer knowledge from one project to the next or 

between phases within the same project. (Bayer, et al., 2011) 

• The system modeling efforts performed during the conceptual phase are

abandoned when transitioning to the implementation phase. The new modeling 

work is essentially started from scratch using non-model-based artifacts to kick-

start the activity. 

• Inadequate configuration management (CM) during one phase results in

incomplete, or non-existent reuse of artifacts from one phase to another. 

• Essential attributes of the system design, such as architectural principles,

assumptions, rationale, and explanatory narrative are not properly captured or 

made available to engineers to take advantage of. 

• Because the system design is so poorly captured in available artifacts, training

new team members requires locating key documents, and having lengthy 

conversations with them in order to bring new personnel up to speed on the 

system design, resulting in new engineers continuing to discover key attributes of 

the design over a very extended period of time. 
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6.2.3 Technical and Programmatics are Poorly Coupled 

This topic area addresses the fact that programmatic activities and technical activities are 

managed separately resulting in poor decision-making and increasing risk. (Bayer, et al., 2011) 

• Very little coupling exists between the technical aspects of the system design and 

the programmatic aspects resulting in the inability to correctly determine the cost, 

schedule, scope, and risk implications of a given set of requirements, science 

objectives, components, and functions. This is due to the difficulty in transferring 

information between disciplines and between the various tool types used. 

• Systems engineers are often insufficiently knowledgeable about the programmatic 

realities of a project and the impact of engineering decisions on programmatics. 

The tools typically used by systems engineers do not support an integrated view 

that includes consideration of programmatics. Trade studies seldom fully 

incorporate programmatic considerations. 

6.2.4 System Design Re-Use is Lacking 

The lack of facilities to document and integrate the broad experience and knowledge of 

engineers across a project makes it difficult, if not impossible, to train new systems engineers 

who will need to absorb this broad knowledge quickly and deeply, and to make this knowledge 

available as a legacy to future projects. Re-using system architectures and designs on subsequent 

projects seldom happens because they are not well-captured. Institutional guidance documents 

often do provide useful heuristics and lessons learned, but these resources often are not sufficient 

to enable architecture re-use. (Bayer, et al., 2011) 
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6.3 NASA JPL Use of Models as Information Structures 

In modern complex engineering systems, models can take various forms, such as 

differential equations, simulations, or SysML drawings. The purpose of such models is to 

organize concepts and properties into meaningful relationships. These concepts, properties, and 

relationships can be unique to an individual model, insomuch as it concerns the description of the 

elements of that particular model and their interrelationships, or they can be common to a family 

of models. For models that share a common format or purpose, they can more easily be 

compared, contrasted, and reused. This enables engineers to more effectively understand the 

content of a model and what is intended to be communicated by a model without the need for 

extensive explanation. Standardized model formats allow engineers to focus on understanding 

and creating, not on explaining and cross-training. Having standardized formats does not restrict 

an engineering team to only use those common formats. Unique situations can be handled by 

model extensions. Ontologies can be used to support the definitions of system modeling 

concepts, properties, and relationships by providing these definitions as inputs that are digested 

by models in the form of modeling profiles. Ontologies can be used to make explicit the 

knowledge about system elements that is often hidden, implied, or non-existent in a system 

description, such as a modeling diagram. Part of the challenge to improving the approach to 

designing modern systems is to devise a method by which model element information (the 

description of some “thing” in the model) can be brought forth for use by the engineers 

architecting a system design. This can be more easily solved by separating what the thing is 

called (its assigned identity) from what kind of a thing it is (where it can be found in a controlled 

vocabulary of concepts). This is the value that an ontology brings to system modeling. (Jenkins, 

Ontologies And Model Based Systems Engineering, 2010) An example of organization of 
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concepts, properties, and relationships is shown in Figure 10, as developed by Jenkins in 

(Jenkins S. , Ontologies And Model Based Systems Engineering, 2010). 

 

Figure 10: Example Type Classification Hierarchy (Jenkins, Ontologies And Model 

Based Systems Engineering, 2010) 

Facts are expressed in “triples” of the form (subject, predicate, object). Facts such as 

these that describe and relate system elements can then be expressed using these terms (as shown 

in the above figures) and stored in a repository called a “triple store.” An example of a set of 

triples for the NASA JPL project is shown in Figure 11. Here three triples are shown. One triple 

can be stated as “The Component Performs a Function”.  
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Figure 11: Relationships are Also Properties (Jenkins, Ontologies And Model Based 

Systems Engineering, 2010) 

The stored facts can then be used to address simple questions like “What is the sensitivity 

of the WhizBangMkIVStarTracker named ‘Star Tracker A’?” Further, if the repository can draw 

inferences by using an inference engine, then we can ask things like “What is the sensitivity of 

the StarTracker named ‘Star Tracker A’?” Also, to produce the master equipment list is a simple 

matter of submitting a query to the database in the form: “Find all FlightHardwareComponents 

and print their names and masses.” If the database is strategically designed, then these queries 

become mission-independent procedures and can thus be reused from one project to another. 

(Jenkins, Ontologies And Model Based Systems Engineering, 2010) 

6.4 NASA JPL Use of Semantic Technologies 

Many of the issues identified above by the IMCE initiative revolve around the 

interrelatedness of all the elements of the systems engineering process employed within an 

organization. According to JPL, achieving a high-level of interrelatedness requires standards for 

naming and classification of model elements and properties (using ontologies) and the expression 

of those standards in SysML-specific terms (modeling profiles). This is the focus of the current 

activities at JPL and what is of interest to this thesis. The integration of Semantic Technologies 
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with SysML modeling is the approach that JPL is currently pursuing to accomplish their near-

term objectives. (Bayer, et al., 2011) 

The concept of the Semantic Web was introduced in Section 5.5. NASA JPL uses the 

term Semantic Technologies to refer to the theories, technologies, and practice of the Semantic 

Web. In the 2010 timeframe, NASA JPL began examining the use of Semantic Web 

technologies. These include the standards indicated in Table 5, and the technologies indicated in 

Table 6. Since this is an active field of research, the technology and tools advance rapidly. 

(Bayer, et al., 2010) Therefore, it is advisable to periodically check on the currency of these 

technologies to determine whether they have rolled over into a new set over time. For example, 

OpenRDF Sesame is now known as RDF4J. 

Table 5: Ontology Standard Used at JPL (Jenkins, Ontologies And Model Based Systems 

Engineering, 2010) 

Ontology Standards Description 

Resource Description Framework (RDF) 
Statements of the form (subject, predicate, object) 

Simple class hierarchies 

Web Ontology Language (OWL) RDF vocabulary for formal logic 

SPARQL Query Language for RDF Powerful language for querying RDF/OWL databases 

 

Table 6: Ontology Technologies Used at JPL (Jenkins, Ontologies And Model Based 

Systems Engineering, 2010) 

Ontology Technology Types Example Technologies 

Ontology Editors Protégé, TopBraid Composer, etc. 

Knowledge Repositories Sesame, Oracle Semantic Database, Mulgara, etc. 

Application Frameworks Sesame, Jena, TopBraid Suite, OpenRDF Sesame, 
RDF4J, etc. 

 

The SysML specification (Object Management Group, 2019) includes definitions of 

concepts that form a kind ontology, including concepts such as Block, Interface, Activity, 
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Requirement, etc. In order to build SysML models capable of a higher degree of 

interchangeability, it is necessary to build additional ontological structure beneath these high-

level concepts. This includes concepts such as Work Breakdown Structure, Hardware, Software, 

Stakeholder, Concern, etc., plus any specialized associations, such as: authorizes, represents, 

specifies, etc. JPL is developing its ontologies using OWL2, which is more fundamental than 

SysML, in terms of the interoperability it implies for the system model (more general, and 

therefore applicable across multiple models.)  These ontologies are then translated into SysML 

conceptual models and profiles. The relative utility of Semantic Web technologies and 

UML/SysML as seen by JPL are described in Table 7. (Jenkins, Ontologies And Model Based 

Systems Engineering, 2010) 

Table 7: Relative Utility of Semantic Web Technologies and UML/SysML (Jenkins, 

Ontologies And Model Based Systems Engineering, 2010) 

As is shown in the table above, and as noted in (Jenkins, Ontologies And Model Based 

Systems Engineering, 2010), the emphasis of SysML is on notation, whereas OWL was founded 

on formal logical principles. Consequently, OWL provides strong support for verification of 

consistency and satisfiability, extraction of entailments, conjunctive query answering, etc. 

SysML inherits a semantic foundation that provides for only limited reasoning and analysis, 
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which is a substantial impediment to developing high confidence in the soundness of any 

conclusions drawn therefrom. For example, a number of foundation concepts from systems 

engineering, such as work package, objective, environment, etc., do not explicitly appear in 

SysML. (Jenkins & Rouquette, 2012) 

OWL has had only limited adoption in systems engineering due to the absence of any 

graphical notation conventions in the OWL standards. But, the complementary strengths and 

weaknesses of SysML and OWL invite the possibility of combining strengths to provide a 

capability that provides the easily editable graphical notation of SysML and the formal reasoning 

of OWL. If the systems engineering ontologies are expressed in OWL, this makes them 

amenable to formal validation. Formal reasoning techniques can then be used to ensure that 

model syntax and semantics are consistent and satisfiable, and that reasoning operations remain 

tractable since they are constrained within the bounds of Description Logic. (Jenkins & 

Rouquette, 2012) 

An additional IMCE objective is to develop the systems engineering ontologies to reflect 

common systems engineering conventions such that they provide the formal unifying framework 

for all systems engineering information in any language, in any tool, in any repository. These 

systems engineering ontologies provide a common controlled vocabulary that can be used to 

address a wide range of assertions about complex systems throughout their life cycles. Some of 

the advantages of using controlled vocabularies in modeling, and enforcing rules for well-

formedness are that it enables durable information storage, lossless information interchange, 

interdisciplinary information integration, and automated analysis and product generation. 

(Jenkins & Rouquette, 2012) 
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The ontologies developed by JPL for these purposes are partitioned into three categories: 

Foundation, Discipline, and Application. These categories are intended to group concerns 

according to differing foci and objectives. The Foundation ontologies define concepts, and 

properties that apply generally across all projects to establish an overall framework for systems 

engineering. The Discipline ontologies define those concepts and properties that are pertinent to 

a particular engineering discipline. This is accomplished primarily through the use of 

specialization from the Foundation ontologies. The primary objective of using the discipline 

ontologies is to provide for information interchange across all disciplines. In this way, all 

systems engineering models, regardless of discipline, use a common vocabulary. This makes it a 

simple matter of using the common vocabulary in a query to extract common properties of any 

modeled component across all disciplines. Application ontologies define the concepts and 

properties pertinent to a particular class of engineered system irrespective of discipline. A certain 

subsystem ontology, for example, would draw from multiple discipline and foundation 

ontologies to characterize components particular to that subsystem application. Multiple 

individual ontologies have been developed within the Foundation and Discipline categories as 

described in Table 8. (Jenkins & Rouquette, 2012) 

Table 8: OWL Ontologies for Systems Engineering (Jenkins & Rouquette, 2012) 

Ontology 
Category 

Ontology 
Name 

Description 

Foundation 

Base The base ontology defines a small number of general 
concepts (e.g., container) and properties (e.g., contains) that 
are refined in other ontologies. 

Mission The mission ontology defines concepts and properties used 
to describe the execution of a mission and its context: 
objectives, performing elements, functions, interfaces, 
requirements, etc. 
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Analysis The analysis ontology defines concepts and properties used 
for qualitative and quantitative characterization of 
individuals of any time. 

Project The project ontology defines concepts and properties used 
to describe the entities and endeavors involved in designing, 
analyzing, acquiring, integrating, and testing the elements of 
a mission: projects, programs, work packages, deliverables, 
etc. 

Discipline 

Electrical Defines concepts and properties for current sources and 
loads, signal types, conditioning and distribution equipment, 
etc. 

Mechanical Defines mass properties, mechanical interface types, etc. 

Verification 
and Validation 

Defines process and analysis specializations to capture V&V 
activities and results. 

 

6.5 Embedding Ontologies in SysML Profiles 

In order to build SysML profiles from domain ontologies, it is necessary to establish 

formal relationships between the elements of the ontologies and their counterparts in 

SysML/UML. These relationships cannot be established until the UML/SysML concepts and 

properties are transformed into ontologies which can be reasoned over. Once these 

transformations are performed and both sets of ontologies are available, the SysML/UML 

concepts and properties can then be specified and reasoned about, providing the ability to 

express relationships between domain ontologies and SysML using OWL axioms. (Jenkins & 

Rouquette, 2012) The use of QVTo to perform the transformation from UML/SysML form to 

ontological format in order to perform reasoning on the ULM/SysML elements is illustrated in 

Figure 12. 
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Figure 12: Transformation of UML/SysML Models to Ontologies (Jenkins & Rouquette, 

Progress on Integrating OWL and SysML, 2012) 

6.5.1 Relate OWL Concepts to SysML Classes 

Concept (class) relationships are established by declaring that some class defined in a 

domain ontology is a subclass of some corresponding element in SysML, or vice versa, on a 

concept-by-concept basis. This process is covered in detail in Step 2 of the Step-By-Step process 

defined further below. (Jenkins & Rouquette, 2012) 

6.5.2 Relate OWL Relationships to SysML Properties 

Likewise, some properties defined in a domain ontology as relationships can be declared 

as subproperties of some corresponding element in SysML, or vice versa. This process is covered 

in detail in Step 3 defined further below. (Jenkins & Rouquette, 2012) 

Unfortunately, the process of embedding of OWL relationships in SysML/UML 

relationships is not as direct as with OWL classes. This is because there is no direct mechanism 

to reify occurrences of object properties in OWL. To explain this requires some background of 

the concept of reification. (Jenkins & Rouquette, 2012) 

6.5.2.1 RDF Triples 

RDF is intended to provide a simple way to make statements about the world. RDF is 

based on the idea that the things being described have properties which have values, and that 
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resources can be described by making statements that specify those properties and values. RDF 

uses a particular terminology for talking about the various parts of statements. Specifically, the 

part that identifies the thing the statement is about is called the subject. The part that identifies 

the property or characteristic of the subject that the statement specifies is called the predicate, 

and the part that identifies the value of that property is called the object. (World Wide Web 

Consortium, 2004) A statement is an object, predicate, subject triple. (World Wide Web 

Consortium, 2006) The subject-predicate-object triple form a relationship described by the 

predicate, between the source (subject) and the target (object.)  

6.5.2.2 Reification in General 

Reification is widely used in conceptual modeling primarily for the purpose of viewing a 

relationship (such as an RDF triple) as an entity (a concept or class). The purpose of reifying a 

relationship is to make it explicit (to create a class to represent the relationship explicitly), so that 

additional information can be added to it. (Wikipedia, 2019) 

6.5.2.3 Reification in UML/SysML 

In UML/SysML, a relationship between two entities cannot be specified in an RDF 

statement without reifying the relationship (creating a class to represent the relationship as a 

concept or class.)  In the example illustrated in Figure 13, the statement “The task is allocated to 

a resource” cannot be mapped to an RDF triplet without creating a class called Allocation to 

represent the relationship between the task and the resource. (Arlow & Neustadt, 2005) 
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Figure 13: Reification in UML/SysML (Arlow & Neustadt, 2005) 

6.5.2.4 Reification in RDF 

The RDF reification vocabulary is designed to talk about statements. (World Wide Web 

Consortium, 2006) RDF applications sometimes need to describe other RDF statements using 

RDF, for instance, to record information about when statements were made, who made them, or 

other similar information (referred to as "provenance" information). (World Wide Web 

Consortium, 2004) For example, consider a particular camping tent product 

exproducts:item10245, offered for sale. A triple that describes the weight of the tent, is: 

exproducts:item10245   exterms:weight   "2.4"^^xsd:decimal . 

(World Wide Web Consortium, 2004) 

It might be useful to record who provided that particular piece of information. RDF 

provides a built-in vocabulary intended for describing RDF statements. A description of a 

statement using this vocabulary is called a reification of the statement. The RDF reification 

vocabulary consists of the type rdf:Statement, and the properties rdf:subject, 

rdf:predicate, and rdf:object. However, while RDF provides this reification vocabulary, 

care is needed in using it, because it is easy to imagine that the vocabulary defines some things 

that are not actually defined. (World Wide Web Consortium, 2004) 
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6.5.2.5 Reification in OWL 

There exists no mechanism in OWL1 to define properties as a composition of other 

properties. So, the concept of an uncle as a brother of a father cannot be described in OWL1. 

However, in OWL2, the construct ObjectPropertyChain in a SubObjectPropertyOf axiom allows 

a property to be defined as the composition of several properties. (World Wide Web Consortium, 

2012) An example code set for performing reification to define the “uncle” relationship is 

illustrated in Figure 14. 

 

Figure 14: OWL2 Property Chain Example (Passant, 2009) 

As OWL2 provides mechanisms to define arbitrary classes and properties, there is no 

difficulty with creating, for every object property p in some ontology, a corresponding class P to 

represent occurrences of that property, as well as for the source and target properties that connect 

the reified occurrence to the model elements that it relates. Having done so, then the OWL2 

property chain mechanism that can be used to declare that the existence of the reified object 

property occurrence of class P with source A and target B implies that A-p-B (a triple). The next 
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step, then, would be to supplement the system engineering ontologies with axioms that 

implement this reification pattern for every object property in the ontologies. (Jenkins & 

Rouquette, 2012) 

According to Jenkins and Rouquette in  (Jenkins & Rouquette, 2012) “reified 

relationships are the key to a semantics-preserving mapping between UML and OWL. Without 

reification, there are many possible combinations for mapping OWL classes and object 

properties to UML classes, associations, association classes, properties and other relationships 

(e.g., dependencies). The Object Management Group’s Ontology Definition Metamodel (ODM) 

specification explains some of these possibilities but does not recommend a particular one. More 

importantly, the ODM lacks a unifying pattern for handling the various ways in which 

conceptual relationships are modeled as associations, dependencies, generalizations, ports, etc. A 

generic reification pattern simplifies the UML/OWL mapping because it separates the problem 

of modeling a conceptual relationship in OWL in terms of classes, object properties and property 

chain axioms from the problem of choosing an adequate embedding of this conceptual 

relationship in UML or in a profile extension of UML.” (Jenkins & Rouquette, 2012) 

6.6 Embedding Ontologies in SysML Profiles 

The steps identified in (Jenkins & Rouquette, 2012) and (Jenkins & Rouquette, 

Semantically-Rigorous Systems Engineering, 2012) for performing this procedure are outlined 

below. 

6.6.1 Step 1 - Create OWL ontologies for SysML 

Create OWL ontologies for SysML by 1) transforming the UML metamodel into a UML 

ontology, and 2) transforming the SysML (as a profile of UML) into a SysML ontology. These 

transformations are accomplished using the Operational Query/View/Transformation Language 
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(QVTo). The resulting transformed ontologies express certain features of SysML/UML in OWL, 

including the UML/SysML class taxonomy. 

6.6.2 Step 2 - Relate Domain Concepts to SysML 

Relate domain concepts to the best match in SysML by writing embedding axioms that 

define those relations. Embedding domain classes into SysML in this way is straightforward. In 

the following examples, a system Component is defined as a subclass of a SysML Block, and a 

system Requirement is defined as a subclass of a SysML Requirement. 

• mission:Component owl:subClassOf SysML:Block 

• mission:Requirement owl:subClassOf SysML:Requirement 

6.6.3 Step 3 - Relate Domain Properties to SysML 

Relate domain properties to the best match in SysML by writing embedding axioms that 

define those relations. This is more complex than the same process for concepts (classes) the 

uses the OWL2 Property Chain mechanism as described in Section 6.5.2.5. 

• To use the owl:inverseOf relationship requires Extended MOF semantics (not 

explained further in (Jenkins & Rouquette, Semantically-Rigorous Systems 

Engineering, 2012).) 

• As described in Section 6.5.2.5, occurrences of object properties are not reified in 

OWL, so there is no way to represent “this requirement specifies the ‘performs’ 

relationship between this component and this function” because the particular 

occurrence of ‘performs’ has no class defined, and therefore no identity 

• Therefore (as described in Section 6.5.2.5) for a given object property, e.g., 

‘performs,’ create a corresponding reification class ‘Performs,’ corresponding 
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object properties ‘hasPerformsSource’ and ‘hasPerformsTarget’, and OWL 

property chain axiom 

• An instance of this reification class appears in Figure 15, as:

Figure 15: Example UML/SysML Reification (Jenkins & Rouquette, Semantically-

Rigorous Systems Engineering, 2012) 

• By the effect of the OWL2 property chain axiom, illustrated in Figure 16, this

implies: 

Figure 16: Example OWL2 Reification (Jenkins & Rouquette, Semantically-Rigorous 

Systems Engineering, 2012) 

• Which is what is needed for the SysML-to-OWL transformation

6.6.4 Step 4 – Test the Ontologies 

Next, subject the ontologies (including embedding axioms) to a battery of tests. 

• For Consistency

o Ensure that no axioms contradict other axioms

• For Satisfiability

o Ensure that every class can be nonempty

• For Well-Formedness

o Ensure that every class is correctly embedded in SysML
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o Ensure that every property is correctly embedded in SysML 

o Ensure that the domain and range of super/subproperty pairs are consistent 

o Ensure that every object property has a reification apparatus 

o Ensure consistent embedding of super/subclass pairs 

6.6.5 Step 5 – Use a Continuous Integration System 

Run these tests run under a continuous integration system such as Jenkins whenever one 

of the ontologies changes 

6.6.6 Step 6 – Load the Ontologies into a Repository 

Load the ontologies into a Sesame repository and use SPARQL queries to generate 

bundle digests that simplify profile construction by offload reasoning that’s much easier to do in 

SPARQL than QVTo. 

• Query for object property ranges after applying a range restriction 

• Query for valid predicates for each subject class 

• Query for valid object classes for each subject/predicate pair 

6.6.7 Step 7 – Produce SysML Profiles 

Perform a transformation in Operational Query/View/Transform (QVTo) to produce 

SysML profiles 

6.6.8 Step 8 – Produce User Interface Customizations 

The QVTo transforms can also produce architecture-tool-specific user interface 

customizations 

• To assist the modeler in complying with profile rules 
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6.6.9 Step 9 –Transform SysML Models Back into OWL 

Models with profiles applied can then be transformed from SysML back into OWL using 

QVTo to extract the ontological commitments from the profiled model. The OWL representation 

is then suitable for 

• Validation of well-formedness

• Validation of adherence to local business rules, e.g.,

o Validate that every Component performs at least one Function

o Validate that every Function is performed by exactly one Component

o Validate that every ‘presents’ relationship is specified by at least one Requirement

• The OWL representation is also suitable for performing feature extraction and

transformation for specialized analysis tools, e.g., 

o Maple, Mathematica

• The OWL representation is also suitable for  long-term archival and data warehousing

6.7 NASA JPL Conclusions and Future Work 

NASA JPL has come to the following conclusions regarding their work to transform 

domain ontologies into SysML profiles. 

• Transforming SysML/UML specifications to OWL and then embedding

ontologies back into SysML profiles has proven to be a flexible process 

• Pre-processing ontologies with SPARQL simplifies the profile generation code

• QVTo has proven to be powerful once some performance issues were addressed

• SPARQL and Sesame are powerful for analyzing and transforming SysML

models with the transformed profiles applied 
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NASA JPL has identified the following future work activities they plan to undertake as a 

result of success with this ontology transformation approach. 

• Add support for datatype properties 

• Enhance the SysML-to-OWL transformation 

• Develop analysis tooling in the OWL domain 

• Develop discipline and application ontologies that extend foundation concepts, 

such as electrical, mechanical, verification, etc. 
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7 Summary 

Ontologies have been and are proving to be of value to engineering activities. This thesis 

has reported on several fields in which ontologies have been developed and employed to enhance 

the quality and effectiveness of engineering activities. These include 1) for modeling the product 

structure and taxonomy, 2) for design automation using existing engineering knowledge, 3) for 

requirements engineering, 4) for the control of production processes for dynamic orchestration, 

5) for factory automation, and 6) for the mapping of data sources to Manufacturing Execution

Systems functions. (El Kadiri, et al., 2015) There are many possible uses on ontology, and as 

more industries and organizations learn of the benefits of using ontologies, this field of 

application will grow. These benefits include 1) more effective engineering knowledge openness 

and diffusion, 2) faster sharing of product-related information and knowledge across the entire 

value-chain, 3) more innovative mechanisms to enable new feedback, 4) provisioning of new 

feed-forward mechanisms to deliver information to actors in downstream lifecycle phases, 5) 

better decision-support tools, 6) innovative designs, and 6) realization of product-service 

capability to support quick reaction to changing user requirements, among many other possible 

benefits. (El Kadiri, et al., 2015) 

El Kadiri, et.al. describe three specific projects that exemplify the use of ontologies in 

general engineering applications. These were 1) for collecting product manufacturing data from 

factory floor work stations to feed operational efficiency analysis, future product design Life 

Cycle Cost (LCC) analysis, and to respond to changing customer requirements with speed, 2) to 

develop an integrated collaborative virtual environment intended to synchronize factory floor 

production operations with various simulations of those operations for near-real time 

optimization of factory operations, 3) to provide decision support on how to best design and 



108 

 

implement facilities, personnel, and organizations over vast geographical areas. (El Kadiri, et al., 

2015) 

Happel and Seedorf described several approaches for using ontologies in the context of 

the Software Engineering Life Cycle in the areas of requirements engineering, component reuse, 

integration with software modeling languages, ontology as domain object model, coding support, 

code documentation, semantic middleware, business rules, semantic web services, project 

support, and testing. (Happel & Seedorf, 2006) 

In addition, various researchers have identified uses of ontologies specifically in Systems 

Engineering, including 1) a process to capture a systems engineering functional domain 

ontologies (Sarder & Ferreira, 2007), 2) to capture knowledge items used in the systems 

engineering process in order to record engineers’ ideas and reasoning processes, and facilitate 

their reuse (Chourabi, Pollet, & Ben Ahmed, 2008), 3) to enhance the communications between 

domain specialists and modelers, to enhance the communications among specialist in different 

domains, facilitate the collection of system information to be used in modeling, to create new 

perspectives on existing models, and to generate documentation using those perspectives 

(Ernadote, 2015), 4) to capture and preserve tacit knowledge from domain experts involved in 

the inspection of a railway tunnel network (Thakker, Dimitrova, Cohn, & Valdes, 2015), 5) to 

analyze the system design (Graves, Integrating SysML and OWL, 2009), 6) to transform data 

among models using an XML-based data format (Abele, Legat, Grimm, & Muller, 2013), 7) to 

provide the formal basis for verifying compliance of the system model developed in SysML with 

State Analysis semantics (Wagner, et al., 2012), 8) to perform in-depth reasoning on engineering 

tasks by embedding a model of the system under analysis as an axiom set within a suitable logic 
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(Graves, Integrating Reasoning with SysML, 2012), and 9) to managing inconsistencies in 

models of systems from the domain of automated production systems (Feldmann, et al., 2015). 

The work of greatest promise to the objectives of the author of this thesis is embodied in 

the work of NASA JPL as described in (Wagner, et al., 2012) and other related works. The 

author intends to follow closely the progress of the Semantics Technologies for Systems 

Engineering (ST4SE) group introduced in Section 6 to determine the applicability of their work 

towards the construction of ontologies that can be used to develop modeling profiles. 
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8 Conclusion 

The author of this thesis set out to identify the state of the practice in bridging the gap 

between engineering ontologies and modeling profiles for engineering applications. This subject 

has been of interest to the author for the last 15 years of involvement in the architecting of 

complex systems (military aircraft), which provided exposure to the subject, without the 

opportunity to investigate the subject adequately. The work invested in the development of this 

thesis has provided the author with an overview of the various themes and threads involved in 

the process of developing ontologies for engineered systems, and converting those ontologies 

into system modeling profiles. The work has shown that there exists a complex network of 

researchers working on advancing the state of the art of ontological engineering, albeit for a large 

variety of end-purposes. 

The specific purpose of interest here is to support the development of profiles for system 

modeling which capture the domain-specific concepts, properties, and relationships, etc useful to 

the architect developing the system architecture of some particular product in some particular 

domain. The detailed process of going from “some” ontology to a useable profile has not yet 

been sufficiently examined by the author. This thesis only addresses the mechanics of efforts 

previously performed for activities of interest to the information sources accessed. The material 

documented here in this thesis does not yet focus on the steps needed to be taken to develop a 

profile for a specific purpose in a specific domain. It is the author’s intention to take the next 

logical step of narrowing down the scope from the broad-brush survey presented in this thesis to 

examine a particular engineering application. 

The application of interest to the author is the development of system models that capture 

the essence of Systems-of-Systems (SoS) architectures wherein constituent systems with a set of 
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mission-relevant capabilities participate in the SoS on a capability-defined basis to occupy 

mission roles requiring capabilities that the particular platform can fulfill. Thus, role-filling by 

the SoS becomes a constant activity intended to make maximum use of available resources, and 

in order to meet the minimum mission needs at the least cost. These are valid goals for complex 

systems participating in complex SoSes, no matter the domain of discourse involved. Towards 

this goal, it is desirable to define a consistent modeling approach that focuses on role-filling 

using the most cost-effective assets available. To control the model development activities, 

modeling profile(s) are desirable to provide consistency via constraints that force the hand of the 

modeler to observe accepted standards in architecture modeling relevant to complex SoSes. The 

availability of profiles that are consistent with the accepted terminology of the domain requires 

that such profiles be developed off of consistent source material, and the most logical choices for 

this source material are domain ontologies related to the particular domain of discourse involved. 

It is the author’s opinion that, in large part, such ontologies do not yet exist to support 

development of role-filling SoSes in any domain of discourse. 

The next step for the author is to begin focusing on specific technologies introduced in 

this thesis that demonstrate high potential for use in the application described above. Toward that 

objective, the author has identified the work performed by Djuric, et al. in (Djuric, Gaševic, 

Devedžic, & Damjanovic, 2004) and other of their related works, as well as that of NASA JPL as 

described in (Jenkins S. , Ontologies And Model Based Systems Engineering, 2010), (Jenkins & 

Rouquette, 2012), (Jenkins & Rouquette, Semantically-Rigorous Systems Engineering, 2012), 

(Jenkins S. , Semantic Technologies, 2018), and (Wagner, et al., 2012), as holding the most 

promise for paying dividend on investment of time in researching further their activities. Toward 
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that objective, the author has taken keen interest in the activities of the Semantics Technologies 

for Systems Engineering (ST4SE) introduced in Section 6. 

With regard to roles and their importance in the architecture of a SoS and presequently 

their usage and declaration in ontologies, the author intends to pursue the work of Kouji Kozaki, 

Yoshinobu Kitamura, Mitsuru Ikeda, Riichiro Mizoguchi, Eiichi Sunagawa, Matteo Baldon , 

Guido Boella, Leendert van der Torre, and others who have addressed the concept of roles (or 

perhaps better said as the “role” of roles) in ontologies. 
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