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Abstract

Communication networks provide the foundational services on which our modern economy

depends. These services include data storage and transfer, video and voice telephony, gam-

ing, multimedia streaming, remote invocation, and the world wide web. Communication

networks are large-scale distributed systems composed of heterogeneous equipment. As a

result of scale and heterogeneity, communication networks are cumbersome to manage (e.g.,

configure, assess performance, detect faults) by human operators. With the emergence of

easily accessible network data and machine learning algorithms, there is a great opportu-

nity to move network management towards increasing automation. Network management

automation will allow for a reduced likelihood of human error in network configuration, im-

proved productivity from network managers as redundant tasks are automated, simplified

scalability, and greater insight into network operation. Network application classification,

the process of identifying the network application associated with trains of packets called

flows, is a critical task in the automation of network management. This association of

network applications with network traffic is critical for improving network management as

it will allow setting application-specific policies to optimize network operation, enhancing

security measures by blocking certain applications with improved firewall configurations,

and developing a more reliable quality of service by prioritizing time-sensitive applications.

This work studies the classification performance of a basket of network flow features.

We utilized three categories of flow features: inherent, derived, and engineered. In our first

experimental analysis, we set out to uncover the inherent and derived feature’s ability to

classify network flows. We developed an expert system to generate application labels to

serve as training data, which is used to train our models on two inherent and one derived

feature. Flows are analyzed by implementing three supervised machine learning techniques

for classification: k-nearest neighbors, decision trees and random forest. These experiments

varied the number of applications and type of flows, all or only large, in a traffic data capture
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from UKY’s university network. For our subsequent experimental analysis, we engineered

three flow features based on host behavior presented by the authors of BLINC and examined

their influence on traffic classification performance when combined with the features from

the previous experiments. A new UKY data set is captured using deep packet inspection

to obtain training labels and the same three machine learning techniques are employed. In

these subsequent experiments, we varied the set of features used for classification by always

including the three inherent and derived features and one combination of adding the three

engineered features. Our initial experiments reveal that the inherent and derived features

can adequately classify a subset of applications while focus on large flows slightly reduces

performance. Our subsequent experimental analysis concludes that the use of engineered

features provides a statistically significant improvement on classification performance for

decision tree and random forest, while KNN is most effective with only the original three

inherent and derived features.
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Chapter 1

Introduction

Communication networks are the pillar holding up our modern civilization. The creation

of communication networks has transformed the world by allowing the development of a

global society while redefining many aspects of our lives in the process. First, communi-

cation networks have reshaped our idea of community. Traditional communities bound by

geographic location are no longer our only avenue for socialization. The capacity to inter-

act with anyone across the world has developed virtual communities, where people with

similar hobbies and interest can come together to find a sense of inclusion and belonging.

Our professional environment has also been impacted by permitting communication and

collaboration across the globe. This has allowed companies to operate through multiple

branches located in every corner of the world while still focusing on a cohesive product. As

for employees, it has given many the option to work from home. Finally, communication

networks have enabled e-commerce, where we can buy and sell goods and services from

anywhere in the world. Whether its something as simple as a toothbrush or as significant

as a car or home, we are able to make these purchases completely online. Anything that

we can ever want or need is just a click away.

A clear example of just how truly vital communication networks have become to our

society can be seen in the face of this COVID-19 pandemic. Communication networks have

had an immediate impact as they have enabled the health industry to share information

in real time to facilitate tracing the spread of the virus. A domino effect has also been

felt on our day-to-day interactions with communication networks. First, the use of social

media and news networks to disseminate information regarding the preventive measures,

such as the stay-at-home orders and social distancing guidelines. These measures have
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pushed society to find new ways to keep in touch with family and friends. Video and audio

communication applications have become very useful tools for us to do so. Despite the

pandemic, communication networks provide the infrastructure to allow many to continue to

work from home and continue their education remotely. Tools like Blackboard Collaborate

Ultra and Zoom, that allow for virtual classes and work meetings to take place, are the new

norm for at least the near future. Finally, we have never been so reliant on e-commerce.

Whether purchasing essentials, like groceries and take-out, or recreational items, like games

or books to keep us busy in these difficult times, it is clear that communication networks

have never been so necessary as they are today. Communication networks have been so

ingrained in our daily routines, even before this pandemic, that it is nearly impossible to

imagine a world without these services.

Figure 1.1: Map of autonomous systems communicating over the Internet [1].

A communication network is defined as an interconnection of computing devices with the

purpose of sharing information. The largest and most obvious example of a communication

network is the Internet, where network-enabled devices such as computers, smart phones

and tablets are able to transmit images, audio, video and files over the network. The

Internet is comprised of a series of interconnected networks. The networks that constitute

the Internet are called autonomous systems (AS). Each AS in the Internet is assigned a

2



unique number for identification. For example, the University of Texas at El Paso (UTEP)

is AS# 16461. Figure 1.1 is a visualization of the Internet, where each icon on the map

represents an AS and the connecting purple lines correspond to the information transferred

amongst these AS. Although this image represents a relatively small subset of Internet

traffic, it provides a clear perspective of the global scale of communication networks and how

information is shared across the world. Now, let us consider a topology of an AS such as the

sample network of an educational institution as illustrated in Figure 1.2, where the variety

of networking devices that are constantly interacting is exemplified. Core, layer 3, and layer

2 switches and routers connecting end users to file, web, and mail servers are just a few

of the devices coordinating within an AS to provide communication services. This makes

evident that a communications network can be a very complex system making network

management a complicated task. The fact remains that none of the wonderful services

mentioned earlier would be possible as they are today without communication networks. It

is therefore in our best interest to make every effort so that these communication networks,

that are so important to us, are operating as efficiently as possible. In order to do that, we

must understand how to control, or manage, network operation.

Network management is best described using the International Telecommunications

Union (ITU) M.3400 FCAPS model which delineates the responsibilities of network man-

agement as:

• Fault detection and correction

• Configuration and operation

• Accounting and billing

• Performance assessment and optimization

• Security assurance and protection

For example, a network manager will account for the usage of its network in order to

fine-tune the network configuration to provide optimal operation. Similarly, a new security

3



Figure 1.2: Network topology of a generic university AS [2].
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policy is implemented by the network manager who then performs an assessment of network

performance once this new policy is set. These responsibilities that define network manage-

ment come with many challenges. There are four main challenges associated with network

management. The first challenge is the scale of communication networks. This is not only

in the sense that the Internet contains over 96,000 AS [3], but as Figure 1.3 illustrates,

the size of a single AS can become overwhelming. The next challenge in communication

networks is the heterogeneity of devices that constitute a network. Not only are there many

types of devices that serve distinct functions within a network, but there are also different

manufacturers with various models of these devices. Although these manufacturers design

their equipment such that they are able to interoperate, most have proprietary software

which indicates that the configuration of these devices is not uniform. This means that

the network manager, when needing to update the Dell and D-Link switches along with

the Linksys and Cisco routers to be able to access the new HP server, will need to write

multiple versions of the same configuration file to update all these network devices. Now

imagine having to check each of those distinct networking devices to determine which need

the latest software update or a new security patch because of a new found vulnerability.

Network management can quickly become a cumbersome task. The third challenge is the

induction of human error. Whenever a human is interacting with any computing system

there is a possibility of generating an error. Anyone who has ever written any computer

code can attest to the devastating effects that a simple typo, such as a missing semicolon

or closing bracket, can have on the functionality of a system. And finally, the last challenge

is the frustration of a fault in network operation. The frustration can manifest in the end

user detecting a misconfiguration and becoming upset with the network manager because

the network that is so essential to them is not working as they expect. This can create

further frustration for network managers as they are unable to detect and correct faults

before the end users are affected. All of these challenges need to be handled by the net-

work managers, who for the most part currently need to do all of this via a command line

interface or SNMP. As is evident, there is a lot of work being asked of network managers.
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In an effort to make network management a less burdensome task, there is a growing trend

towards network management automation.

Figure 1.3: A network topology can become complex which makes them difficult to manage

[4].

1.1 Automating Network Management

Network management automation is the process in which software is utilized to configure,

provision, manage and test communication networks with minimal human assistance. The

objective is not that of eliminating network managers from network management, but rather

to limit the redundant and time-consuming tasks currently assigned to network managers

by enabling these tasks to be performed automatically.

The introduction of software defined networking has opened the door for network man-

agement automation. Software defined networking (SDN) allows the separation of the data

6



and control planes in networking devices. While each networking device will control its

data plane, SDN allows multiple network devices to be dynamically configured with soft-

ware by a central controller. This means that to manage the network, changes are only

made to the network controller which forwards these changes to all the networking devices

within the network. Figure 1.4 provides a visual representation of SDN in comparison with

traditional network management. This gives network managers simplified access to their

network devices from a single location as opposed to connecting to each individual network

device which becomes difficult to handle with the issues of scale and heterogeneity. Having

a network that can autonomously detect and correct connection problems, self-optimize,

or recognize and block security concerns such as cyberattacks would prove invaluable, and

SDN gets us one step closer to achieving that goal. However, in order to make network

management automation a reality, a deeper understanding of network utilization is neces-

sary.

Traditional Network SDN Network

Network Management tasks

Data Plane
Control Plane

Figure 1.4: Software Defined Networking compared with traditional networking.

Let us envision a scenario where we have fine-grained knowledge of network behav-

ior. This will allow application-specific configuration, where an application can be limited
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to a percentage of network resources. For example, having an entire university network

allocating all of its resources to video streaming is undesirable. By identifying traffic ac-

cording to its generating application, a network manager can configure policies to limit

this application to consume a third of the network resources. Understanding the perfor-

mance of individual applications will also improve quality of service. By measuring latency

of sensitive applications, such as live streaming, an Internet service provider can adjust

the network as necessary to guarantee the service that their customers expect. Finally,

recognizing how applications are communicating within a network over a period of time

will allow for the generation of behavior patterns. These behavior patterns, represented

by network flows, can then be used to detect faults by analyzing new network traffic with

contextual anomaly detection techniques. The application that produced the network flows

can serve as part of the context to detecting faults and misconfigurations before they affect

the end users. The broad impact that network traffic classification by application will make

on the understanding of network operation is the key to unlocking network management

automation.

1.2 Network Application Classification

Network traffic consists of a series of data packets generated by a variety of applications

and utilities propagating across a communications network. The process of applying a label

to observed network traffic according to the program or process responsible for its creation

is referred to as network application classification. The label applied is determined based

on the characteristics of the network traffic (e.g. size, duration). This can be done at at the

packet level, where each packet’s generating application is identified, or at the flow level,

where packets passing an observation point are aggregated based on similar characteristics,

or features. Flows are created for the purpose of extracting a conversation communicating

over the network as opposed to analyzing individual packets. Once flows are created, they

are subsequently labeled according to the communicating application. The labels assigned
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to the observed traffic can be coarse-grained such as peer-to-peer or bulk transfer, or fine-

grained where the exact application which generated the message (e.g. BitTorrent, FTP)

is identified.

There are three approaches to network application classification:

• Port number conventions - The transport layer protocol and port numbers of each

packet are identified and the corresponding application registered to that combination

is assigned as the generating application.

• Packet payload - The payload, which is the section of the packet where the actual

message transmitted is stored, is compared to a set of patterns or signatures in order

to identify the communicating application.

• Flow features - The characteristics generated during packet aggregation as well as in-

formation about the flow itself are used to infer the application generating the traffic.

It is common for additional flow features to be created by combining information ob-

tained during flow creation or by combining the information in the flows with outside

data to develop supplementary features.

Although all three approaches have their advantages and disadvantages which are de-

scribed in detail in Section 2.3, the port number convention’s susceptibility to port abuse

and inability to classify data on dynamic ports do not make it a feasible approach moving

forward. Similarly, the packet payload’s privacy concern along with the inability to classify

encrypted data makes this approach unfit for the future as more applications are opting

to encrypt their traffic. In contrast, the flow feature’s wide deployment, respect of data

privacy and ability to handle encrypted traffic make it the most adequate approach. The

ability of the flow feature approach to classify network traffic is based on the capacity of

the features generated during and after flow creation to uncover the communicating ap-

plications. Therefore, it is crucial that there is a meticulous evaluation of which features

should be created and considered for network application classification when using the flow

feature approach.
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1.3 Thesis Outline

The inability for network managers to have a clear picture of how their network is being

utilized makes network management automation an extremely difficult task. The reality is

that network traffic classification is not a new problem, so it begs the question, why now?

Well, there are several reasons for optimism. Recent improvements in computing systems

allow for large volumes of data to be stored and analyzed quickly. This has kindled many

efforts in making tools to analyze this data, such as machine learning and neural network

open-source libraries, which have been made easily accessible to all. This has empowered

researchers across all disciplines to leverage these tools in their efforts to solve problems

specific to their domain.

Network traffic classification is a non-trivial problem with the potential to change the

way in which networks are currently managed for the betterment of its users. This is a

monumental task that is very actively researched by many across the world. Like many

other complex problems, it is best to apply the ”divide and conquer” approach where the

focus is on a section of the problem and these solutions are built on top of one another as

these sub-problems are solved. With this in mind, the focus of this work is in evaluating the

performance of network flow features in network traffic classification. Specifically, the aim

is to understand how different combinations of flow features are able to impact the ability

for machine learning techniques to correctly predict the applications generating network

traffic.

The rest of this work is organized as follows: Chapter 2 presents the definition of net-

work flows, typical algorithms used for classification, approaches for network application

classification and relevant work conducted on this topic. Chapter 3 describes the plan for

the efforts conducted to evaluate the combination of flow features in classification perfor-

mance, with results reported in Chapter 4. Finally, Chapter 5 provides concluding remarks

as well as future work in this exciting and challenging problem.
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Chapter 2

Background

Network traffic classification is a complex problem with many moving parts that come

together in an effort to overcome this challenging hurdle in order to improve network

management operation. Therefore, it is of great value to understand the individual parts

involved in this problem separately before attempting to find an appropriate solution. The

process of network traffic data capture and aggregation into flows is covered in section 2.1,

typical algorithms used for data classification are presented in Section 2.2, the different

types of data used in network traffic classification are described in Section 2.3 and finally

current efforts are explored in Section 2.4.

2.1 Network Flows

2.1.1 Definition

According to [5] a flow is defined as a ”set of IP packets passing an observation point in

the network during a certain time interval, such that all packets belonging to a particular

flow have a set of common properties.” These common properties are typically contained in

packet headers. For example, source and destination IP addresses, source and destination

port numbers, and information about the packet itself (e.g. transport layer protocol).

The purpose of aggregating network packets into flows is to convert what appears to be an

unordered set of packets communicating over a network into a set of meaningful information

about these interactions without having to store all of the packets themselves. These

interactions can provide an increased level of understanding of the network’s behavior,
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giving network managers, both human and automated, a better sense of how the network

is being utilized.

This is analogous to what you may see at your local post office. Instead of network

packets with IP addresses, the post office receives letters and packages with sender and

delivery addresses. In this sense, letters and packages are grouped at the post office ac-

cording to their destination. This enables the post office manager to allocate resources

more efficiently. It would not make sense for a few letters to be sent across town using an

airplane in the same way that it would not make sense for a university to allow most of its

network to be used for playing video games online.

Because of the initial lack of a standard, most commercial networking hardware ven-

dors created their proprietary flow export protocol, such as Cisco’s NetFlow and Juniper’s

J-Flow. As a result of the growing inconsistency on the definition of a network flow, the

Internet Engineering Task Force (IETF) created the Internet Protocol Flow Information

eXport (IPFIX) protocol. This is the standardized protocol for flow export and is increas-

ingly supported by most commercial vendors.

2.1.2 Creation

Flow creation can be considered in three distinct steps: packet observation, flow metering

and export, and data collection.

Packet Observation

In this step packet data is read and routed for aggregation into a network flow. This data is

captured from the communication network line by the Network Interface Card (NIC). This

can be typically done in one of two ways: by connecting a capture device directly in-line, or

by mirroring traffic from the line using forwarding devices onto the capture device. Once

the packet is captured it receives a timestamp. Packet timestamps can be created with

hardware, available on special NICs to increase accuracy, as well as software, which is how
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most commodity cards perform timestamps.

Although this occurs for all captured packets, there are optional configurations to limit

the amount of data and/or packets observed. Packet truncation at a predetermined packet

length (snapshot length) can be selected to reduce the amount of data stored per packet

as this can become resource intensive in large networks. Additionally, packet sampling and

filtering, where a packet subset is selected according to sampling (e.g. 1 of every 50 packets)

and/or filtering (e.g. packets with a certain size) configurations, can also be applied during

the packet observation step [6].

Flow Metering and Export

Flow metering is the step in which observed network data packets are analyzed and ag-

gregated into network flow records. This aggregation process is based on the Information

Elements that define the data available in the flow records created. Information Elements

(IEs) are the data fields that can be extracted from network traffic packets according to the

IPFIX standard. Examples of IEs are source/destination IP address, source/destination

port number, packet count, and byte count. The Internet Assigned Numbers Authority

(IANA) is the entity tasked with maintaining a complete list of the standard IEs.

A flow table where all the information required for flow metering is referred to as the flow

cache. In this cache, the IE data extracted from each network traffic packet is aggregated

to an existing flow record or converted into a new flow record. These flow record entries

in the cache will remain until it is deemed that the flow has completed. There are several

specifications to determine if a flow has completed [6].

• Active Timeout - If the flow record is active for a prolonged period of time. This

timeout allows to report activity of long-lived flows and is configurable by the network

manager.

• Idle Timeout - No data for this particular flow record is received within the selected

timeout. This is also configurable by the network manager.
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• Natural Expiration - TCP packet with a FIN or RST flag is observed, which by TCP

definition signals the end of the communication and thus the end of the flow. Figure

2.1 displays a message with natural expiration.

• Emergency Expiration - A number of flow records, configured by the network man-

ager, are forced to expire if the flow cache becomes full.

FIN

Source Destination

SYN1925324758

19 25 32 47 58

Message:

Figure 2.1: TCP message with SYN and FIN flags delineating message start and end.

Similarly to the packet capture stage, once a flow record completes it may go through

a sampling/filtering stage. Once sampling and/or filtering is complete, an IPFIX message

containing the completed flows is constructed. These messages are then sent, or exported,

to the data collector.

The packet observation, flow metering and export steps are not always separated. In

fact, these are often combined into a single device called a flow exporter. When the flow

exporter is a dedicated device it is called a flow probe. Forwarding devices and firewalls

are often already available in networks and many have flow export support, in which case

no extra device is necessary and enabling the flow export function is simply a matter of

configuration [6].

Data Collection

Network flow data collection is done within the flow collector. Here, the IPFIX messages

are received and then written into storage devices. The flow collector can typically save

the flow messages as flat files (e.g. binary or text files) as well as entries in a database (e.g.

14



MySQL). Flow collectors may conduct pre-processing tasks such as IP obfuscating, where

the original IP addresses are altered or removed, as a security and privacy measure before

saving the network flows [6].

Figure 2.2 provides a visual representation of the creation of network packets into flows.

As traffic propagates through the network and into the destination host, packets are ob-

served by the flow exporter. This exporter analyses the network packets and updates the

flow cache table according to the observed traffic. Once the flow has been completely ob-

served, such as the green packets in the figure, the flow cache entry is converted to an

IPFIX packet which is sent to the flow collector. Finally, the IPFIX packet containing the

flow information is stored, completing the creation of the flow representing the green traffic.

flow exporter

Flow collector

flows # of packets

2

2

1

network packets

flow cache

8
IPFIX packet

Destination

Internet

Figure 2.2: Network packet data is observed, exported and collected.

Once the data is collected, data analysis can take place. This can either be done

manually or automated. Many companies provide products and services for automated
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flow data analysis based on specific needs like security or performance monitoring.

2.1.3 Features

Although there is a predetermined number of IEs, or features, which a network flow object

must include, it is by no means limited to only those specified by IEs. There are a myriad

of features that can be included in a flow object definition but they will all fall into one of

the three feature descriptions:

Inherent Features

The inherent feature are those that are obtained from the raw network traffic packet capture

where no additional processing is needed to obtain these features. These are the features

generated by the IEs in the flow metering process. This includes the standard five-tuple of

features which are the minimum requirement for a network flow object construction:

1. Source IP address

2. Source port number

3. Destination IP address

4. Destination port number

5. Transport layer protocol

Additionally, any feature which can be read directly from the network packet such as:

• Start timestamp

• End timestamp

• Byte count

• Packet count
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• Type of Service (ToS)

• TCP flags

Derived Features

Derived features are those that can be generated from the combination or analysis of the

inherent features. For example, the duration of a flow can be determined from subtracting

the start timestamp from the end timestamp, or the average number of bytes per packet

can be determined from the byte count over the packet count.

Engineered Features

Engineered features are those that combine data from across a collection of flow objects

and/or using additional data not contained in the network traffic packets. Appending

geographic information such as source/destination country based on the IP addresses of

each flow object, or including whether the flow occurred during the week or weekend are

trivial examples of engineered features.

Feature engineering allows for creativity and innovation as there is an increasing amount

of data in general being collected in all areas. This allows for information pertinent to a

specific problem that would not be universally pertinent to other problems to be applied.

The importance is in generating additional information that will provide an facilitate anal-

ysis of the problem at hand, in this case the classification of network traffic. One interesting

approach is presented by [7] where network behavior is analyzed. This is further explored

in Section 2.4.1.

2.2 Machine Learning Algorithms

Machine Learning is the study of algorithms and statistical models where inference and

patterns are used to perform a specific task without explicit instructions. These algorithms

17



can be divided into four main categories:

• Supervised - Mapping a set of inputs to a set of outputs. The presence of sample

data with the desired outputs is required in order to generate, evaluate and optimize

the model’s performance. A common example is an email spam filter. Email data

with values such as sender, email length and time of day sent as well as the resulting

label (spam or not spam) are presented for the model to ”train” or find the patterns.

Once the model has analyzed this data it can be used to predict on previously unseen

email data.

• Unsupervised - Finding patterns and associations in data that has no specified out-

put. In this approach the value lies in the algorithm revealing structure within the

data. This method includes data clustering, anomaly detection and dimensionality

reduction. An example of unsupervised learning is grouping customers by segments

according to their spending habits which can be used to apply adequate marketing

strategies to each group independently.

• Semi-supervised - A combination of using a small amount of labeled data with a large

amount of unlabeled data to obtain the benefit of both supervised and unsupervised

algorithms. This model is applicable where labeled data is scarce. This model could

be used by labeling a small set of breast cancer scans and extrapolating those labels

out to a much larger data set using an unsupervised method.

• Reinforcement - Reward based technique to encourage positive results and discourage

adverse results. This model is common in games and decision based problems where

there are defined states, such as the position of a game piece on a board, and the

outcome can be quantified in win or lose, points total or other metrics where the

model controls a system [8].

Because network traffic classification is by definition a supervised machine learning

problem, our efforts are focused on this category.
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2.2.1 Supervised Learning

Supervised learning consists of finding the relationship between a set of inputs (also called

predictors, independent variables or features) and their corresponding output (also called

responses, dependent variables or targets). The data for both the inputs and outputs can

be quantitative (continuous) or qualitative (categorical). There are two distinct problem

types that can be solved by supervised learning, regression and classification [9].

Regression

Regression problems are those where data is used to predict continuous outputs. Regression

aims to find a model or function which represents the data with ratio or interval values.

In mathematical terms, regression finds the function that best predicts the true output y

based on the estimation ŷ = f(x) where f(x) is the function based on the input data vector

x = [x1, x2, ..., xn]. Because there is a necessity to compare regression function models to

find which best predicts the data, there needs to be a measure that evaluates how well the

function predicts the output in comparison with the true output. This is done with a loss

function which calculates the error in predictions.

Linear regression can provide a simple implementation of regression. Suppose height

h is predicted as a function of weight w. Given a series of weight and height data pairs,

linear regression will find a line that best fits the data by

ĥ = b0 + b1w. (2.1)

Because height and weight are not perfectly correlated, if they were there would be

no need to calculate a prediction, there is always an error e between the optimal model’s

predicted height ĥ and the actual height h given by the data. Note that because this error

is a distance, the error must be the square root of the squared error

e =

√
(h− ĥ)2 (2.2)
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to account for possible negative distances. b0 and b1 are the coefficients selected by the

regression model based on the given data such that this error is minimized.

min
for all h∑

e = min
for all h∑ √

(h− (b0 + b1w))2. (2.3)

Once this model has been fitted with the appropriate b0 and b1, the model can be used

to make height predictions based on any given value for weight. This can be expanded into

a multidimensional linear model by changing equation 2.1 to a polynomial equation.

X1

X2

Figure 2.3: Regression illustration.

Figure 2.3 gives a visual example of regression. Predicting tomorrow’s stock market

value based on data from previous days or years is a classic example of a regression problem.

In this example, tomorrow’s stock market value is predicted and the resulting output is a

continuous value [8, 9].
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Classification

Classification problems are those where data is used to predict ordinal or nominal outputs.

In these types of problems, the classification algorithm or function is used to split the data

into multiple categorical classes. A similar process to regression can be used in classification

with the caveat that the loss function in classification needs to be tailored to categorical

prediction errors. The new loss function L(k, j) will correspond to the penalty for classifying

an observation from class k as j. Typically, a zero-one loss function is applied, where the

value for an element being incorrectly classified is 1 while a correct classification corresponds

to a 0. The classification model error is then the sum of all values

Error =

for all y∑
L(y, ŷ) (2.4)

A well known example of a classification problem is the handwritten digit classification.

In this example the images of handwritten digits are used as inputs and the algorithm is

tasked with labeling each image with a value 0 to 9 [10].

X1

X2

Figure 2.4: Simple classification illustration.

A simple binary classifier is visualized in Figure 2.4 where the two dimensional space is
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carved into two sections, any new observation would be classified according to the section

in which it falls. This visualizes the difference from regression which attempts to find a

function that follows the data’s trend and classification which finds the best way to separate

data by carving the feature space into sections. Because our problem of network traffic

classification is a supervised learning classification problem, our focus is on the models

available for classification.

2.2.2 Classification Models

Regardless of the problem type, all supervised learning problems need to be trained on the

available labeled data in order to enable the model to make predictions on new unlabeled

data. The labeled data is split into training and testing subsets. This data split allows the

use of part of the data to train or fit our model and another part of the data to test our

model for model performance analysis. Once the data has been separated into train/test

subsets, the classification model is selected.

It is of great importance to note that adjusting the model too closely to the training

data may cause overfitting, where the model is so tightly matched to the training data

that it will produce poor results when presented with new data. On the other hand,

underfitting, where the underlying structure of the data is not discovered, can also provide

poor classification results on unseen data. This is a delicate balance that must be accounted

for by carefully selecting the parameters available to each particular model [10]. There are

many classification models, because of the large number of classes possible in network traffic

classification, the following are considered for this work:

KNN

k-Nearest Neighbors (KNN) is a non-parametric, lazy, distance based algorithm [9]. Non-

parametric refers to the fact that KNN does not follow a predetermined structure, but

rather the structure of the model is determined by the data. KNN is a lazy algorithm
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because there is no computation in the training phase as training simply consists in saving

the data points and all the distances for classification are conducted in the testing phase of

the model. The new data point to be classified will be labeled according to the classification

of the k closest neighbors. The more neighbors that are required to classify a new data

point, the more time and memory intensive the process becomes. To predict a value’s

class, the distance metric from the new data point y to each of the training data points x

is calculated. This is often measured using the Eucledian distance:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.5)

Where the distance between x and y is calculated, n being the number of rows in the

training data set. While Euclidean distance is often the function selected to calculate dis-

tances, others like Manhattan, Minkowski or Hamming distances are also routinely applied.

It is also common for the data in each feature to be standardized to zero mean and unit

variance.

zi =
xi − x̄
s

(2.6)

Where zi is the standardized value, xi the value to be standardized, x̄ is the feature

mean and s the feature standard deviation. This is done to remove the bias introduced by

large numerical values which can overpower smaller values when calculating distances.

Once the distances have been computed, the probability that the new data point y

belongs to each class c from the k nearest points is calculated,

P (Y = c|X = x) =
1

k

k∑
i=1

I(yi = c) (2.7)
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Where the k nearest neighbors to ŷ are analyzed and the function I() produces a 1 when

yi is equal to class c and a 0 otherwise. This is will yield the probability of membership of

ŷ into all possible classes present in k neighbors, with the highest probability deemed the

predicted label for ŷ [9].

K = 9

K = 3

K = 1

X1

X2

Figure 2.5: KNN illustration.

Figure 2.5 visualizes k-Nearest Neighbors. As the figure shows, the new data point

marked as a circle will be classified as a triangle if k = 1, as a square if k = 3, and again

as a triangle if k = 9. This shows the importance k has in the classification outcome using

this model. It is important to note that the size of k has an immense impact on the model.

If k is small, the model can suffer from overfitting, while a large k can produce underfitting.

Decision Tree

The decision tree algorithm, although simple to understand, is a powerful classification

model. It has a tree structure, similar to a flowchart, where each node is a decision point

based on a feature’s value and at the end, or leaf, of the structure a class label is present.

The training data is analyzed and partitioned based on a rule generated by the model.

The two subsets are independently analyzed and partitioned again based on another rule
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generated. This recursive partitioning is conducted until all the elements in the subset

contain a single class label or until the splitting no longer adds any classification value.

There are two main metrics to calculate the best rule to split any particular set of data: the

gini impurity and the entropy or information gain. These are the criterion used to measure

the quality of a partition. Although decision tree models can become computationally

expensive to train, they do not require much computation to classify new data once trained.

Additionally, decision trees are able to handle both categorical and continuous features

[9, 10].
Decision Tree

90° angle

Verticesall sides equal

sides = 3

Figure 2.6: Decision Tree illustration.

Figure 2.6 visualizes a decision tree. All figures begin at the top of the image. At each

intersection a rule on an a feature of that shape is tested. The result of the rule separates

the shapes into smaller groups until there is only one possible shape at the bottom of the

image, these are the leaves of the decision tree.

Random Forest

Because decision tree models recursively partition the training data until it is no longer

advantageous, it is susceptible to overfitting. The random forest model addresses this

concern by constructing several decision trees during training and merges the individual
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decision tree’s result for a more accurate and stable prediction. Random forest combines

the decision tree model with bagging (bootstrap aggregation), where several subsets of the

training data are selected with replacement. Each subset then randomly selects a subset

of features, from which it begins generating a decision tree classifier which it grows to the

largest possible size. Once all the subsets have created their respective decision trees, the

random forest is ready to classify new data. The random forest model feeds the new data

to all of the generated tree models and the random forest prediction is the aggregated

prediction from the decision tree models [8, 9].
Random Forest

Random sampling with replacement

Average result

Classification

Training set

Figure 2.7: Random Forest illustration.

Figure 2.7 visualizes the random forest model. As is shown, several trees are generated

from random samples of the training data. Although all the possible classes, in this case

geometric shapes, possible are not present in every decision tree it is clear that once the

results are averaged the resulting class is correct. For example, if a triangle is presented to
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this random forest for classification, the result of the second and third trees will result in

a triangle. Even though the first tree will classify incorrectly, the average will still classify

as triangle. This shows how a random forest can produce a better classification model

than a single tree. Similarly to decision trees, random forests can become computationally

demanding during the training phase, but testing results are considerable faster since there

is only a small calculation being done at that time.

2.2.3 Evaluation Metrics

A method for assessing performance regardless of machine learning algorithm is essential as

it will allow comparison across algorithms. The confusion matrix is a great tool to evaluate

classification performance. As you can see in the generalized form of the confusion matrix

in Figure 2.8a, there are four values in the confusion matrix:

• True Positives (TP) - Marked as belonging to this class, correct.

• False Positives (FN) - Marked as belonging to this class, actually does not.

• True Negatives (TN) - Marked as not belonging to this class, correct.

• False Negatives (FN) - Marked as not belonging to this class, actually does.

Each row of the multi-class confusion matrix represents each of the class or group

predicted while each column represents the actual values of each class. Figure 2.8b gives a

visual demonstration of a confusion matrix. Here we can see how many circles, squares and

triangles were classified as circles, squares and triangles. Figure 2.8c gives us the confusion

matrix of the circles. Note that the False Positives are the sum of all the squares and

triangles labeled circles, while the False Negatives are all the actual circles that are not

labeled circles. Once the TP, TN, FP, FN values are obtained for each classification label,

evaluation metrics can be obtained.
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Figure 2.8: Confusion matrix examples.

Accuracy

The accuracy is the number of correctly classified over the total number of elements for a

particular class or classification label,

Accuracy =
TruePositive+ TrueNegatives

TruePositive+ FalsePositive+ TrueNegatives+ FalseNegatives
(2.8)

For multi-class problem, the overall accuracy is the sum of all True Positives for all

classes over the total number of elements classified,

OverallAccuracy =

all classes∑
i=1

TPi

# of elements
(2.9)

This shows how well this technique does at classifying the data. The overall accuracy

is frequently utilized when comparing the same machine learning algorithm while tuning

hyper-parameters [9, 11].

Precision

Precision is the percentage of elements that are adequately labeled out of the total number

of elements labeled to a particular class. To calculate precision for any particular class:

Precision =
True Positive

True Positive + False Positive
(2.10)
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This is a useful metric when a False Positive is a more costly error than a False Negative.

For example, in spam detection, it is a greater penalty to mark an important email as spam

(False Positive) than to let a spam email through (False Negative) [10, 11].

Recall

Recall is the ratio of elements which are correctly classified from the entire group of elements

which truly correspond to that label. It tells what percentage of a particular class were

able to be detected correctly. To obtain recall for any particular class:

Recall =
True Positive

True Positive + False Negative
(2.11)

This metric is especially important when doing any kind of health detection, as incor-

rectly classifying an ill patient as not sick is a very costly error [10, 11].

F1-score

F1-score is the harmonic mean of precision and recall. This allows for a single number to

give a combined representation of the classification results.

F1-score =
2× (Precision× Recall)

Precision + Recall
(2.12)

The combination of precision and recall, often weighted by class element membership

to avoid class imbalances in the metrics, are the two most telling metrics as it applies to

our network traffic classification problem. For this reason, these will be the metrics utilized

for the experimental analysis conducted as part of this work.

2.3 Network Application Classification

There are two methods to capture network traffic, active data capture where traffic is

generated and injected into a network to perform measurements and analysis, and passive
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data capture in which a measurement point is placed on the network and the typical traffic

generated by users is observed. Active network traffic measurements are mainly utilized for

fault and vulnerability detection or in some cases for testing application performance. For

the purposes of network traffic classification, active measurements faces two main issues:

• Injecting network traffic alters network usage metrics. Network routers and switches

must react to route newly created traffic, potentially altering network routing while

reducing network throughput during active measurement data capture.

• Scalability becomes an issue. Large networks with many end systems require many

experiments to test all possibilities. As the networks increase in scale, so to does the

complexity for active measurements.

Passive measurements consist of observing traffic present in the network and collecting

this traffic data for analysis. Passive data capture gives a greater insight into the network

traffic as typical network behavior transmissions are observed and analyzed [6].

There are several approaches for network traffic classification using passive data capture

on a network:

2.3.1 Using Port Number Conventions

Port numbers, along with the tranport layer protocol, are used to recognize which com-

munication packets belong to each of the many applications running on that particular

host. The Internet Assigned Numbers Authority (IANA) transport layer port numbers

are classified based on three ranges: System Ports (0-1023), User Ports (1024-49151), and

the Dynamic and/or Private Ports (49152-65535) [12]. IANA assigns application names to

ports in the order in which they are registered.

To classify network traffic, the transport layer protocol and observed port numbers

are read from the packet headers and compared to the IANA registered port numbers list

to determine the application based on this mapping. The advantages of this approach
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are that it is a simple procedure to classify network traffic. It also allows to incorporate

new applications easily, as it is only a matter of appending the new application to its

corresponding transport layer protocol and port number. Applications such as e-mail,

FTP and DNS have been successfully classified using this port number approach [13].

There are two main obstacles for solely relying on port number conventions for network

traffic classification. First, applications need to be registered in order to be detected.

Unregistered or new applications that have not yet completed the registration process are

therefore not supported. Second, there number of applications that are using other ports

(e.g. using TCP/port 80 which is registered as HTTP for chat or streaming while avoiding

firewalls) or dynamic ports (which are not registered by IANA) to obfuscate their traffic

are increasing [14, 11]. The inability for this port based approach to keep up with the

growth and direction of network traffic impedes its use as a reliable approach on its own

for network traffic classification.

Keeping with the post office analogy from Section 2.1.1, this would be similar to clas-

sifying the letters and packages based solely on the envelope or box which contains them.

While many retailers have their logos on their boxes which can make them easy to identify,

such as the Amazon logo or mail from a university where their logo and information is

printed on the envelope, many will reuse the boxes where now the package does not cor-

respond to an Amazon shipment. Additionally, many use generic envelopes or boxes with

no differentiating markings, similarly to network traffic using HTTP port 80, which makes

those extremely difficult to classify.

2.3.2 Using Packet Payload Data

Definition

In addition to utilizing the packet’s headers, this approach inspects the packet’s payload,

the actual information contained in the transmitted packet. This is often referred to as

deep packet inspection (DPI) and can be used to identify the application producing this
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traffic. The computational burden of analyzing every packet of each user’s network traffic

makes this approach unscalable. This is circumvented by generating unique identifier byte

sequences, called signatures, to identify traffic. For example ’\GET ’ is used to identify web

traffic, while ’\xe3 \ x38’ can be found in P2P network traffic [13].

There are several issues with implementing this approach for network traffic classifi-

cation. First, this approach is looking into the packets’ payload which can create the

potential for a violation of privacy with some countries having gone as far as to forbid

network managers from looking into packet payloads. This limits its use to networks where

these countries operate, which includes any international network backbone. Second, many

times this signature analysis is done off-line, meaning packets are first recorded and then

the signature matching is done on the recorded packet traces at a later time. Because

capturing the entire traffic of all users in a particular network requires excessive storage

which makes this difficult, packet capture algorithms typically only store a subset of each

packet (e.g. the first 200 bytes). This can lead to a situation where the packet payload is

cutoff before the bytes match any signature and are therefore not classified [13, 11].

Applying the post office analogy once again, this is similar to scanning mail and en-

velopes with x-ray machines. Although the x-ray scan will not be able to see everything in

the envelope or package, it can identify metal shapes to try to find potentially hazardous

objects. Similarly, DPI can be applied to analyze a section of the payload in order to

attempt to find packet signatures which would produce an improved classification of the

packet.

In practice, payload approaches are used to establish ground truth to allow further

experimentation using alternative methods.

Tool: nDPI

Deep packet inspection (DPI) refers to the process of analyzing packet payloads. This

technique can be used while creating flow exports to increase network visibility. nDPI [15]

is ntop’s open source library for DPI. nDPI is an ntop extension of OpenDPI, another open
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source project, since this has not been updated ntop continued this work while keeping this

as an open source project. nDPI uses libpcap, an open source library, for packet capture.

In this program, an application protocol is defined by a unique numeric protocol Id, and

its associated symbolic protocol name (e.g. Skype). In nDPI a protocol includes both net-

work protocols such as SMTP or DNS, and application traffic over network protocols (e.g.

Facebook and Twitter over HTTP). A protocol is typically detected by a traffic dissector

written in C, but it can also be labeled by analyzing the packet’s protocol/port, IP address,

and protocol attributes. For instance the Dropbox traffic is identified by both the dissector

for LAN-based communications, and by tagging as Dropbox the HTTP traffic on which

the Host header field is set to *.dropbox.com. This allows to both detect known protocols

on non-standard ports such as detect HTTP on ports other than 80, and conversely detect

non HTTP traffic such as a Skype call on port 80 [16].

Each dissector is available in its separate C source file. These protocols have attributes

such as default level 4 protocol (TCP, UDP, TCP/UDP) and port (80 for HTTP, 53 for

DNS). This allows unclassified traffic to be passed by all possible dissectors in a ”most

likely first” manner. For example, if the unclassified packet is TCP port 80, it will first

apply the HTTP protocol dissector. If it is not identified by the HTTP protocol dissector,

it will move through the available TCP dissectors until it either finds a match or exhausts

all possibilities.

Because Internet traffic is moving towards encrypted content often using SSL, nDPI in-

cludes a decoder for SSL/STL certificates to support encrypted connections. Protocols and

subprotocols can be detected using the encryption certificate which allows identification of

encrypted protocols (e.g. Apple iCloud) that otherwise would be undetected. Additionally,

nDPI has the ability to support sub-protocols using string-based matching. This is because

many new sub-protocols such as Apple iCloud/iMessage, WhatsApp and many others use

HTTP(S) that can be detected by decoding the SSL certificate host or the HTTP ”Host:”

field. nDPI includes an efficient string-matching library based on the popular Aho-Corasick

algorithm for matching hundred of thousand sub-strings efficiently (fast enough to sustain
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10 Gbit traffic on commodity hardware).

nDPI will analyze the payload of up to the first 8 to 10 packets [16] to attempt to

classify the type of traffic for each flow. This heuristic value has been recommended by

ntop as there is little to no advantage in looking beyond for classification purposes while

analyzing more packets for each flow can introduce performance degradation as the packets

must be saved in memory in order to be analyzed.

Continuing with the post office analogy, nDPI would represent our x-ray machine. All

postage is analyzed with this tool and marked according to its findings.

2.3.3 Using Flow Feature Data

Description

This approach classifies network traffic by generating network flows as opposed to classifying

data at the packet level. There are several advantages when using network flows as opposed

to regular packet capture to represent network traffic:

1. Widely deployed - They are integrated into routers, switches and firewalls among

other packet forwarding devices. According to [6], a recent survey among both com-

mercial and research network operators shows that 70% of participants have devices

that support flow export.

2. Proven effective and reliable - Its use in security analysis, capacity planning, account-

ing and profiling, along with its use to comply with data retention laws demonstrates

the confidence instilled in these export protocols to describe network traffic.

3. Significant data reduction - Multiple packets are aggregated into a single flow. This

means that data reduction to the order of 1/2000th of the original volume can be

achieved, which allows for historical storage of network traffic information in order

to comply with rules and regulations for communication providers. For example, in

communication providers in Europe must retain communication data for ”the purpose
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of the investigation, detection and prosecution of serious crime for a period between

six months to a year” [6].

4. Sensitive to data privacy - The fact that only packet headers are used in flow export,

it is typically less privacy sensitive than packet export.

It is worth noting that although packet aggregation into network flows are reducing the

amount of data, the size of flow data, specially in high speed networks, can quickly exceed

tens of terabytes. Therefore, this can be considered a form of ”Big Data” and comes with

all the challenges that this type of problem encompasses (e.g. exponential data growth,

scalability, resource constraints).

In the post office analogy, using flow features is similar to using shipment information.

Rather than looking at individual items, information can be clustered as network traffic data

packets are aggregated into flows. Instead of using IP/port addresses consider aggregating

mail by ZIP codes. There is a lot of value in understanding transit trends at the ZIP code

level. A post office manager can prepare routes and allocate resources according to the

ZIP codes that send or receive the most postage to ensure that all mail gets picked up and

delivered on time. Note that this data aggregation can be done with the aid of computer

software which can analyze all incoming mail and produce the aggregated data and display

the results in a practical manner for the post office manager.

Tool: PMACCT

Pmacct [17] is a small set of open-source, multi-purpose passive network monitoring tools

used to account, classify, aggregate, replicate and export network traffic as flow objects.

These tools, refered to as daemons in pmacct, have two main functions: packet acquisition

(pmacctd the NetFlow exporter) and packet processing (nfacctd the NetFlow collector).

Both daemon types are based on the same overall structure with several modules. The

main module is called the core process whose main focus is gathering packets from the

network. The core is additionally responsible for filtering, pre-tagging and sampling. There
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are one or more additional modules, called plugins, responsible for the packet processing.

The core process is structured in a circular queue which is then further subdivided into

multiple buffers. Once a buffer is full, the core will signal to the plugin to begin processing.

Network data aggregation duties are shared amongst the core and plugins. The core is in

charge of flow definition while the plugin handles accumulation of counters.

Core Process

The core process is separated into two parts: the upper which collects network data and

the lower which handles plugin operations by aggregating, filtering and core communication

to/from plugins. Because the way that data is collected for the two deamons is different,

the developers decided on making a hard separation between the upper and lower parts

of the core process. This allows the bottom part to serve as an abstraction layer between

the upper core and the plugins. Additionally, it allows modularity in that if a new core is

desired only the upper part needs to be developed. Finally, if a new plugin is created, it

can be added seamlessly so long as it follows the hooking interface from the bottom part

of the core to interact with all available cores.

The pmacctd daemon upper core obtains network traffic data by using the libpcap

framework. Once a packet is received, pmacctd sets pointers to the starting point of protocol

headers up to the transport layer (TCP/UDP). The network layer (IP) is reassembled to

handle packet fragmentation, and this new structure is passed to the beginning of the lower

part of the core.

The nfacctd daemon received data in the form of NetFlow/IPFIX packets sent from

an exporting agent (NetFlow enabled equipment or probes). It only accepts data from

the specific exporters with whom it is setup to communicate, which allows for multiple

instances of the deamon to coexist and capture different NetFlow versions and/or subsets

of traffic if desired. It is then dissected and the extracted information is sent to the lower

part of the core.

The abstraction layer, or lower part of the core, uses the set of pointers setup in the
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upper level and is responsible for data aggregation, applying any additional filtering and

feeding the buffered data to the appropriate plugins [18].

Plugins

Plugins receive the full buffers containing the data from the core process. Then the plugin

may conduct its process whether it may be saving the data to a flat file, to an SQL

database, printing out to the console or creating a data exporter probe to forward this data

to another service. For detailed information on a full list of currently enabled plugins as

well as in-depth description of each plugin available, readers are encouraged to consult the

CONFIG-KEYS documentation on pmacct’s official github account [19].

nDPI with Pmacct

Including ’class’ in the aggregation list setting in pmacct’s configuration file enables the use

of nDPI’s library. This allows pmacct to obtain the data for IE 94, 95 and 96 (application

Description, application Id and application Name) in the creation of IPFIX packets which

provide valuable information for network traffic classification. Because of the privacy con-

cerns discussed earlier, this is only done on a subset of traffic to serve as ground truth for

machine learning classification experiment validation.

Continuing the post office analogy, pmacct is the computer software creating the ship-

ment aggregation data that, when combined with our x-ray machine (nDPI), provides great

insight into the use of the post office resources and can be a great aid in managing the

postal service. The challenge is to now extract the knowledge from the data that these

tools provide and apply them towards optimizing the management of the post office, or in

this the network. While automating postal service shipping has been in practice for some

time now, there is a great opportunity for network traffic automation to be improved.
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2.4 Related Work

Now that the individual actors in network traffic classification have been presented, an

analysis of past and current efforts in this complex problem can be investigated. The

works are arranged according to the technique used for classification of network traffic.

Figure 2.9 presents the taxonomy for this section while Table 2.1 contains a list of related

works along with their associated algorithm for classifying network traffic, features used

and applications or categories in which their data is classified.

Figure 2.9: Taxonomy of related works.

2.4.1 Pattern Based Classification

BLINC

In their efforts to find a novel approach in classifying network traffic, Karagiannis et al.

developed BLINC [7], a new approach which focuses on associating Internet hosts with

applications based on behavior. In order to capture the host behavior, the authors evalu-

ate flow data at three distinct levels. First at the social level, the interactions with other

hosts are analyzed. They consider a host’s ”popularity” as the number of unique des-

tination hosts with which a particular source host communicates. After analyzing these

interactions the source and destination IPs are grouped into communities, by identifying

and grouping hosts that interact with each other. The argument for doing this is that a
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group of hosts can participate in a collaborative manner, or offer a service to the same set

of hosts, such as a set of servers with different IP addresses belonging to the same service

provider. Next, the number of source ports that a particular host uses for communication

is explored. The argument for this analysis is that by analyzing the functional level of the

hosts, one can further refine the type of service that a community is utilizing. Finally, the

two previous levels are combined with more specific metrics such as transport layer protocol

or average packet size in order to classify the network traffic behavior. These three levels

are visualized into graphlets. Then, these relationships in the graphlets are used as visual

signatures to classify all the traffic contained within that particular graphlet according to

its behavioral visualization as pictured in Figure 2.10. This application level evaluation

allows the combination of behavioral and general flow metrics into behaviors such as web

traffic, online gameplay, P2P and streaming. BLINC provides a creative approach for net-

work traffic classification, although it does have its limitations. A graphlet needs to be

defined for each application in order to be able to classify that particular application. Also,

if the case where there are similar graphlets exists, graphlets will no longer discern the

applications effectively. The ideas behind this model for classification are worthwhile and

a numerical representation can be created, which can be used along with data analytics to

classify network application traffic.

Figure 2.10: BLINC graphlet examples [7].
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Traffic classification based on zero-length packets

Kampeas et. al. present a very interesting feature extraction approach for classification of

network data. In [20], they propose that by considering communication at the application

layer, a clear communication pattern is visible. Observing network traffic at the network

layer, as the majority of researchers are doing, fragments this natural communication pat-

tern as the data gets split into packets for transmission. The Application Protocol Data

Units (APDUs) are the messages being communicated at the application layer. The back

and forth communication of the APDUs exchange patterns are the focus of this work. They

argue that although these exchange patterns, or signatures, are not unique as one appli-

cation can have several signatures, the application can be identified with a high level of

confidence with these patterns. In order to obtain these patterns, they develop a simple se-

quence named accumulated-APDU (a-APDU). A tuple is created representing the number

of bytes in each direction, with only one side updating at a time, and at every switch in

the direction of the data, a new tuple entry is added to the list of tuples representing this

particular flow. Consider two sides (A and B), side A begins the communication and sends

a message with 100 bytes. This creates a list where the index is the 4-tuple corresponding

to the IP and port numbers of both A and B. The first tuple entry is created (100,0).

Then B responds with 50 bytes. Since there is a change in the direction of the traffic, a

new tuple is created (100,50). The list containing these patterns now contains two entries

[(100,0),(100,50)]. Now, another message from B with 200 bytes is observed. Because there

is no change in the direction of the traffic, the data is aggregated to the latest tuple, with

the resulting list [(100,0),(100,250)]. These lists of tuples are what generate the patterns,

or fingerprints, of the flows which are then used to classify network flows into applications.

Because all that concerns them in this approach is the number of bytes each flow is sending,

the authors develop a clever idea. Instead of looking at all the packets, they focus on the

zero length packets. Because they focus on TCP traffic, the seq# and ack# in the packet

header give all the necessary information to populate the signature lists. This means that

they only need to capture and analyze a fraction of the traffic. On top of that, the calcula-

40



tion is a simple reading of a value in the packet header and the subsequent update to a list.

This approach is therefore very amicable with online classification. Additionally, because

they are not bothered by the payload, encrypted data is not an issue for this approach.

This is a feature extraction approach, and any supervised classifier can be used to classify

the signatures. However, the authors decide on the J48 decision tree classifier because of its

wide use and ease in implementation for their experimentation. Once their data extraction

approach is developed, they analyze a data set with 50 applications and a variable a-APDU

signature length. The full list of applications is noted in Table 2.1. Their results show great

outcomes for some applications. However, the authors note that 19 applications were com-

pletely missed. The authors note that these missed applications, such as POP3 and VNC,

produce very poor performance because they only create 2 sequences. The authors also

note that some applications see their evaluation metrics dip after the third sequence. The

authors also compare this approach with a network layer approach where packet size is

used to generate features. The results show a 3 sequence a-APDU outperforms this packet

size approach as well as a flow statistics approach. This is an interesting feature extraction

approach that, although it has its limitations as it does not work well with applications

having few packets, can be combined with other approaches, such as neural networks or

ensemble learning models, to take advantage of its resilience to encrypted traffic.

2.4.2 Supervised Learning

Machine learning in software defined networks: Data collection and traffic clas-

sification

The authors of [21] create a simplified framework to analyze and classify network traffic in

an enterprise network. Their proposed framework consists of mirroring traffic from a switch

onto an SDN enabled switch. This SDN switch acts as a filter, sending TCP traffic from a

specified host through to the controller and dropping all other traffic. The specified host is

sending controlled traffic generated by the researchers which allows for ground truth labels

41



to be placed on the generated traffic. BitTorrent, Dropbox, Facebook, HTTP, LinkedIn,

Skype, Vimeo and YouTube are the applications for which traffic is generated and labeled.

Once the data is captured and labeled, it is normalized and a Principal Component Analysis

(PCA) algorithm is run on the data set to remove correlated features and only utilize

linearly uncorrelated features in the experimental classification. Although the complete list

of features captured is reported in Table 2.1, the uncorrelated sublist of features used for

classification is not reported. Amaral et. al. apply machine learning classifiers to analyze

the data. The classifiers utilized are Random Forests, Stochastic Gradient Boosting and

Extreme Gradient Boosting. These classifiers are selected because they work similarly in

that they use a set of regular classifiers and classify data by the weighted average of the

individual predictions. To create their train and test split, a random number generator

calculates n values which are used as the train set, with the remaining entries used as the

test set. The models are then fitted with the trained set and accuracy is evaluated with the

test set. This process is executed 30 times and the average of all executions is presented as

the experiment accuracy score for each classifier. The reported accuracy of the classifiers

has only a small variation within each of the applications classified, with the exception of

YouTube and Facebook where the difference among classifiers is more substantial.

SVM-based Classification Mechanism and Its Application in SDN Networks

Liu et. al. present their work [22], where a mechanism for network traffic classification

applied to SDN is developed. This is done using a network virtualization function (NVF)

with the aim of applying network traffic classification to virtual networks, where the net-

working devices consists of software running on a cloud server. The support vector machine

based Internet traffic identification and classification (STIC) mechanism consists of a vir-

tual classifier communicating to a network controller. Data communicating through this

virtual network is mirrored to the SVM classifier, where it is analyzed and a classifica-

tion label is predicted. The network controller uses OpenFlow, a networking protocol that

allows access to the data plane in a network device, to append a VLAN ID to incoming
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traffic according to the classifiers results. This VLAN ID is used by the Open vSwitches

to reroute the traffic according to the classification result. This allows for network traffic

classification to influence routing within a network. The SVM classifier is tested with 4

data sets created and collected by the authors. The list of 29 applications represented in

the data sets are shown in Table 2.1. Although there is mention of using a radial basis

function (RBF) kernel for feature selection, which is not uncommon when using SVM, there

is no mention of the features considered or selected. The overall accuracy, precision, recall

and F1-score is reported with all between 84-88%. They also implement a decision tree

in addition to STIC for the specific purpose of classifying YouTube traffic according to a

combination of quality (144, 360, 1080 pixels) and time (4 and 20 mins). The results of

this YouTube data show that using the features for both length and quality in a decision

tree outperform the decision tree where only one of the features is used in isolation thus

demonstrating value in both features for YouTube detection.

Network traffic classification techniques and comparative analysis using ma-

chine learning algorithms

In [23], the authors evaluate machine learning techniques in network traffic classification.

Packet captures are made using Wireshark to capture WWW, DNS, FTP, P2P and Telnet

traffic and then leverage the Netmate tool for feature extraction on captured packets. A

total of 23 features are reported to be extracted from the captured data but the list of

features is not provided. The data is then split into training and testing sets which are

used to train and evaluate the machine learning models. Shafiq et. al. selected to test the

C4.5 (Decision Tree), Support Vector Machine (SVM), BayesNet and NaiveBayes classifiers

in their comparative analysis. Accuracy, precision and recall are provided for the resulting

classification scores of each classifier and it is clear that the C4.5 classifier outperforms

the rest. Figure 2.11 notes that this is largely due to C4.5 having the ability to recall the

WWW traffic by over 80% while the other classifiers could only perform a maximum of

40% recall on that particular type of traffic. Additionally, DNS is poorly classified by all
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classifiers.

(a) Precision (b) Recall

Figure 2.11: Machine Learning classifiers metrics by application [23].

A Comparative Performance Analysis on Network Traffic Classification using

Supervised Learning Algorithms

Archanaa et. al. perform a comparative analysis of supervised learning algorithms in [24].

A data set from the University of Queen Mary’s repository is used. This data set contains

266 features. Feature selection methods are applied in order to reduce the data to a more

managable subset of features. PCA, CfssubsetEval, chi-squared and InfoGain are applied to

the complete data set. CfssubsetEval with Best First search provides the smallest working

subset consisting of 8 features:

• first quartile inter-arrival time

• Frequency of zero receive window advertisement

• Categorical value Y or N for SYN permission for SACK

• Total time for data transfer
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• Number of RTT samples found

• Median Ethernet frame bytes

• Minimum arrival time between packets

The Naive Bayes, BayesNet and Complement Naive Bayse base classifiers are analyzed

and the best performing of these base classifiers is BayesNet. Similarly, several ensemble

classifiers implemented in Java’s Weka package for data analysis and predicting modeling.

Decorate, Random Forest, AdaBoost, Bagging, Stacking and Rotation Forest, are com-

pared. The reported results show that Decorate provides the best classification precision

and recall of the selected data set at 99.6% for both, with Random Forest a close second

with 99.4% and 99.5% respectively. Comparative performance analysis are a good approach

to evaluate the performance of various classifiers under the same conditions. This should

be explored further with larger and more recent data sets.

Class-of-Service Mapping for QoS: A Statistical Signature-based Approach to

IP Traffic Classification

The authors of [25] aim to combine applications based on the type of service they provide

in order to classify and eventually prioritize network traffic to provide the required Quality

of Service for the class of application in use. Four main classes are defined:

• Interactive (Telnet)

• Bulk data transfer (FTP-data, Kazaa)

• Streaming (RealMedia)

• Transactional (DNS, HTTPS)

These classes are analyzed using K Nearest Neighbor (KNN) and Linear Discriminant

Analysis (LDA). There are four data sets used for these experiments, one comes from the
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Waikato Applied Network Dynamics (WAND) group at the University of Waikato (New

Zealand), and three Gigascope data sets from an access network on a T3 line using a

Gigascope probe collecting TCP traffic. The features selected for classification are the

average packet size, flow duration, bytes per flow, and root mean squared packet size.

Roughan et. al. note that the two most valuable features for classification are the average

packet size and flow duration. There are several interesting findings in this article. First,

they conclude that many streaming applications act very similarly to bulk-data and thus

these simple statistics are not ideal for separating the two. While examining these two

more closely, they noticed that streaming traffic, while having a fairly consistent behavior,

in many cases ended with a long gap (20-40 seconds) followed by a few (2-7) final packets

as shown in Figure 2.12. They note that this is a protocol related effect, and that their

statistical metrics are being biased by this effect. They opted to remove the last 10 packets

from each flow. This eliminates this bias and allows for better separation of streaming from

bulk-data transfer traffic. They also note that inter-arrival variability, which is defined as:

E[r] = 1
N

∑N
n=1 ri where ri = σi/µi and N is the number of flows with at least three packets,

also appears to provide a good metric to separate streaming from bulk-data transfer using

LDA. Finally, they note that they experience consistently positive performance using 3 and

5 Nearest Neighbors throughout their work.

Toward Classifying Unknown Application Traffic

In [26] K Nearest Neighbors is used to classify network traffic. The difference is that

Baker et. al. use the two-sample Kolmogorov-Smirnov (KS) distance, as opposed to the

typical Eucledian distance, to calculate the nearest neighbor. The features used for their

experiments are:

• Packet count

• Byte count

• Average packet inter-arrival time
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Figure 2.12: Streaming traffic shown in seconds on the x-axis and the milliseconds within

that second on the y-axis. Note the trailing packets at the end of the flow [25].

• Average bit rate of connection

• Largest/Smallest packet size

• Longest/Shortest packet inter-arrival time

• Direction (inbound/outbound)

• Number of ARP packets

• Number of DNS packets

• Number of TCP ACKs

• Min/Max advertised receive window

The data used to evaluate this machine learning algorithm is captured using TCPdump.

The desired traffic for evaluation came from Skype, Google Hangout, Youtube and HTTP

web browsing. Figure 2.13a shows the cumulative distribution function (CDF) for each

application evaluated which is the basis for calculating the KS distance. Figure 2.13b

shows several CDF’s of Skype which allows to perceive that the CDF for each application
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is very similar while having a distinct CDF across applications. The use of KS distance is

compared against the typical Eucledian distance and the results for these applications show

a large improvement in classification. Specifically, while both present similar values for true

positives in classification, the Eucledian distance yields 81.07% false positives while the KS

distance only presents 7.19%. It is worth noting that this is done in a controlled data set

and further testing is necessary to prove its validity when a diverse group of applications

is classified.

(a) CDF of all applications (b) CDF of multiple traces of Skype traffic

Figure 2.13: Cumulative Density Functions used for KS distance for K Nearest Neighbor

classification [26].

Early classification of residential networks traffic using c5.0 machine learning

algorithm

In [27] a framework is created to classify residential network traffic. The proposed solution

relies on a supervised machine learning method applied to a set of statistical characteristics

for the first packets of a flow for classification. nDPI is used as their ground truth as they

note that DPI comparative studies have showed that only nDPI and Libprotoident are

the two libraries with reliable accuracy. C5.0 decision tree is the successor of C4.5 and is

the selected supervised learning classifier used in this work. The list of features used for
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classification are listed on Table 2.1. Since this classification framework is using only the

first few (5 to 10) packets for classification, Aouini et. al. remove any TCP bidirectional

flows that do not contain any SYN flags, any UDP flows obseverd during the first 120

seconds of the capture and any flows where no ground truth is able to be determined in

order to obtain a high quality data set. The reported accuracy is above 98% for the C5.0

classifier which easily outperforms the Naive Bayes, KNN and C4.5 classifiers with which

it is compared.

Network traffic classification based on transfer learning

Sun et. al. introduce the concept of transfer learning into machine learning for network

traffic classification. In [28] TrAdaBoost, a modified version of AdaBoost to enable transfer

learning, is used to classify network traffic traces. Maxnet is used as the base classifier which

is then enhanced with TrAdaBoost to allow for transfer learning. WWW, mail, database,

FTP, P2P and Services are the applications used for training and testing this approach.

The number of flows in the WWW and mail are reduced as using all of them would result

in an imbalanced data set. The selected features to be used for classification are shown

in Table 2.1. Their experimental analysis consists of two conventional versions of MaxNet

and the transfer learning TrAdaBoost. Their results show that using TrAdaBoost with 5

MaxNet base classifiers reporting a 98.7% accuracy, where the traditional MaxNet classifiers

performed at 81.2% and 85.45%.

2.4.3 Semi-supervised Learning

PSO optimized semi-supervised network traffic classification strategy

This work [29] improves on the K Nearest Neighbor algorithm by applying both a semi-

supervised learning approach to reduce the number of required training samples as well

as Particle Swarm Optimization (PSO) in order to reduce KNN prediction time to en-

able its use in real-time network traffic classification. The K-means clustering technique,
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an unsupervised technique where the algorithm groups data into k clusters based on the

characteristics of the data, is applied on the training data containing some samples that

possess application labels. Once clustering has been conducted, the training labels are used

to assign an application label to the cluster to which it belongs. This now fully-labeled

data set can be used as training data for KNN. PSO is an optimization technique where

a population of individuals, or neighbors in the case of KNN, can be considered at once.

This optimizes KNN in that instead of needing to find the distance measure to the closest

k neighbors one at a time for any prediction, it can find the closest neighbor by considering

all neighbors at once. The resulting algorithm is named PSO-KNN and is compared to

C4.5 (a decision tree algorithm), NBK (Naive Bayes with kernel density estimator), K-

means clustering, and KMKNN (K nearest neighbor with k-means clustering acceleration)

to verify its ability to correctly classify network traffic. The reported results on classifying

WWW, FTP, RTX, bulk data transfer, and RTMP traffic show that C4, KMKNN and

PSO-KNN have the best results with similar accuracy scores. Although the author states

that the PSO-KNN reduces the computational complexity of KNN, which seems reasonable

since computations are done simulaneously as opposed to sequentially when calculating the

nearest neighbors, there is no metric or analysis to support this claim. This is an interesting

approach to optimize the prediction time using KNN. However, further analysis needs to

be conducted with a large data set to confirm scalability as well as quantification of the

time complexity reduction.

A framework for QoS-aware traffic classification using semi-supervised machine

learning in SDNs

The authors of [30] approach network classification from the angle of its applicability in

Software Defined Networks (SDN). Wang et. al. focus their efforts in traffic classification

for the purpose of providing adequate quality of service to the end user. Because their

focus is not on the specific application (i.e. Skype, Google Hangout, etc) but rather on the

coarse-grained behavior (VoIP) the broad classification classes are:
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• Voice/Video Conferencing (Skype, QQ, Google Hangout, etc)

• Streaming (PPStream, Vimeo, SopCast, Putlocker, etc)

• Interactive Data (Gaming, Web, HTTP Services, etc)

• Bulk Data Transfer (FTP, Torrent, Dropbox, etc)

Their framework consists of two stages, the first stage detects elephant flows from

incoming traffic while the second stage classifies detected elephant flows. Keeping with

their aim of adequate quality of service, they argue that only elephant flows are of interest

to satisfy their needs. They characterize ”elephant flows” as those flows that use above

a threshold of a particular link’s bandwidth, ranging from 1% to 10% depending on the

actual bandwidth of the link. For their Machine Learning algorithm the authors selected

to use a semi-supervised Laplacian Support Vector Machine (SVM). They opt for a semi-

supervised machine learning model based on the idea that because all applications grouped

in the same classification class require the same quality of service, their tendency is to

exhibit similar statistical properties. This idea also allows unlabeled flows to be classified

with the trained model and then subsequently use these newly labeled models to train

the algorithm. In order to evaluate their framework the model is trained and tested using

a 59GB traffic trace file captured by the Broadband Communications Research Group in

Barcelona, Spain. This data set contains over 760,000 flows of which 440,000 torrent flows

are removed as the authors argue that it would have lead to a highly imbalanced data set.

3,377 of the remaining flows are considered elephant flows which are labeled using DPI. The

flows are then split into training and testing groups using a ratio of 7.82 training flows for

each testing flow. From the 60 available features extracted for each elephant flow a subset

of 9 is selected as training a model over a larger subset no longer provides any benefit as can

be seen in Figure 2.14. Additionally, utilizing such a wide range of features without enough

flow samples would lead to a severe overfitting of the classifier model. The most reliable

features for the model are selected using a feature selection algorithm (Wrapper method)
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in which forward selection is employed. After executing the feature selection algorithm

it is clear that there is no improvement on the model by using more than 9 features for

this particular problem. Wang et. al. report classification of elephant flows using their

framework with 90% accuracy.

Figure 2.14: Classifier accuracy relative to the number of features selected [30].

QoS-aware traffic classification architecture using machine learning and deep

packet inspection in SDNs

[31] provides a framework for quality of service aware flow classification. Yu et. al. note that

because network traffic is constantly changing, classification must be able to adapt with the

traffic. They argue that semi-supervised is best for real time applications as DPI cannot

recognize all of the flows with the increasing amount of encrypted traffic and this leaves

only a subsection of labeled data. At the center of their framework is a tri-training semi-

supervised learning mechanism. They select a Support Vector Machine, Bayes classifier and

K Nearest Neighbor classifier for their framework. The 4 classes used to classify are voice,

video, bulk data and interactive data. The training data, for which only elephant flows are

selected, is split amongst the three classifiers. Once trained, the weights assigned to the

different classifiers in this framework are determined by the correctness of the classification
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during the training process. After conducting the experimental plan, they report to having

found 8 to be the most appropriate number of flow features. The results show nearly an

11% accuracy improvement over the traditional tri-training.

A Framework & System for Classification of Encrypted Network Traffic using

Machine Learning

Seddigh et. al. build a Machine Learning Traffic Analysis Tool (MLTAT) in their work

[32]. This framework aims to train, tune and validate machine learning models for network

traffic classification whose predictions are combined to give a more robust classification.

Logistic regression, support vector machines, decision trees, adaboost, neural networks

and naive bayes are all combined using bagging. There are two specific forms of bagging

implemented, a majority vote and a weighted vote based on each individual classifier’s

confidence. MLTAT is trained using the following bidirectional network flow features:

• Min, max, mean and variance of packet inter-arrival time in both directions

• Min, max, mean and variance of packet size in both directions

• Total flow duration

• Protocol

• Total packet, byte and payload count in both directions

• Entropy of packet size

• Inter-arrival time in the ”backward” direction

Additionally, they develop a two phase semi-supervised data capture technique to label

data for training and model evaluation. First, type 1 data refers to fully labeled data that

is acquired by generating and capturing a particular application’s network traffic. Because

this traffic is being generated by the authors, they can be certain of the ground truth label
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for that traffic. It is worth noting that the authors express their difficulty in setting up a

machine that would only communicate the desired application’s message, as many system

and network advertisement and signaling packets for network operation are routinely sent

and inevitably became part of the data capture. Once type 1 data is labeled, type 2

data is collected from a university network. This unlabeled traffic data capture containing

many applications is then labeled using a co-training approach based on another author’s

work. This entails generating two separate random forest classifiers using independent

features. One focuses on packet related features while the other on time related features.

The generation of training data is a three step process.

1. The type 1 data collected is used to train both random forest classifiers. These are

then used to predict on the unlabeled data. Those flows with a matching prediction

across both random forest classifiers and a confidence level greater than 80% are

labeled and incorporated into the new training set along with the type 1 data.

2. The new training set is used to train both random forest classifiers once again, with

the remaining unlabeled data classified with these newly fitted models. This time, if

either of the classifiers has a confidence greater than 80%, that flow is labeled and

added to the training data set.

3. In the final phase, three classifiers (random forest, neural network and adaboost) are

trained with the new aggregated training data. This time, all remaining unlabeled

data is classified by a majority vote of the three models.

This is a very interesting approach to generating training data for network traffic classifi-

cation. The authors report that this approach provides over 93%, 91% and 88% accuracy

when 20%, 10% and 5% respectively of the initial data is labeled. It is also reported to

have outperformed decision tree and KNN classifiers.
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A New Semi-supervised Method for Network Traffic Classification Based on

X-means Clustering and Label Propagation

Noorbehbahani et. al. present a semi-supervised approach for generating training data

to apply machine learning algorithms for network traffic classification [33]. They apply x-

means clustering, a clustering algorithm based on k-means clustering. K-means clustering

creates k clusters from the unlabeled data. X-means builds on that by constantly attempt-

ing to split each cluster until a criterion is reached. In this case the Bayesian Information

Criterion (BIC) is selected. BIC is the optimization function that x-means is optimizing

by finding the number of clusters where BIC is lowest. Once the unlabeled data has been

clustered, the subset of labeled data is added and the unlabeled data is classified according

to the k closest points within their assigned cluster. The authors opt to use the publicly

available Moore data sets. The classification classes contained in the data sets are bulk

data, database, interactive, mail, services, WWW, P2P, attack, games and multimedia.

The applications contained in each class can be found in Table 2.1. The experimental

plan consists of using 20% labeled data using 3 or 5 nearest neighbors on 3 distinct data

sets, corresponding to 6 experiments. Once the data has been labeled according to this

approach, J48 (decision tree) and naive bayes classifiers are created using the training data

to compare the accuracy in prediction using the original labeled data against data labeled

according to the author’s approach. The results show that both models perform within 1%

of each other in all cases. This is an interesting approach to generating training data which

has been proven to work on the Moore data sets which are known for having high variance

and thus are a good measure of this approach’s ability to generate labels for training data.

2.4.4 Neural Networks

Packet-based Network Traffic Classification Using Deep Learning

Lim et. al. present an interesting approach for network traffic classification in [34], where

packet payload data is converted into images and then classified using a convolutional
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neural network (CNN) as well as a residual network (ResNet). The packet payload is

transformed into an image by considering each byte a pixel on an image. There are 4

pre-determined image sizes (6 × 6 pixels, 8 × 8 pixels, 16 × 16 pixels, 32 × 32 pixels). If

the image contains less pixels than those generated from a packet’s payload the surplus

pixels are truncated. Conversely, if the image is larger than the number of pixels gener-

ated from the packet’s payload, the remaining pixels are filled with trailing zeros. The

selected applications for classification are Remote Desktop Protocol (RDP), Skype, SSH,

BitTorrent, Facebook (HTTP), Google (HTTP), Wikipedia (HTTP) and Yahoo (HTTP).

10,000 packets randomly selected from each application’s packet payload are used to train

the networks. For the output data of the network, a one-hot encoding vector is used. This

means that there is a 1 × 8 vector where all the entries are 0s and a single 1 is used to

distinguish the label representing the application. The two deep learning models selected

for this article are Convolutional Neural Network (CNN) and Residual Network (ResNet).

The CNN contains the input layer, two separate convolution layers, a pooling layer and

finally a fully connected output layer. The convolution layers, as the name implies, are

layers where the image is convolved with itself. The ResNet consists of an input layer, an

initial convolution layer, a convolution group layer that consists of a series of 3 convolu-

tional layers, a second convolution group layer, a pooling layer and a fully interconnected

output layer. The ResNet architecture is visualized in Figure 2.15. The key in ResNet

Figure 2.15: ResNet architecture [34].

is that there is a ”shortcut connection” where the output of the initial layer is fed not
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only to the first group convolution layer, but also added to the output of the third group

convolution layer. This means that the input of the second group convolution layer is the

sum of the input and output of the first group convolution layer. The F1-scores conclude

that the CNN achieves better performance than ResNet when using smaller images (6× 6

pixels) while ResNet outperforms CNN with larger images (16× 16 pixels, 32× 32 pixels)

while in the intermediate size images (8× 8 pixels) the performance is almost identical.

A Traffic Classification Method Based on Packet Transport Layer Payload by

Ensemble Learning

Xu et. al. present a novel ensemble approach to network traffic classification in [35]. The au-

thors select 1DCNN (1-dimensional convolutional neural network), 2DCNN (2-dimensional

convolutional neural network), and LSTM (Long Short Term Memory) as the base models

to which they apply a bagging strategy. Using a publicly available data set, the applica-

tions to classify are combined into 6 categories: email, chat, stream, P2P, VoIP and file

transfer. Each packet from the data set is stripped of the header and only the first 784

bytes in the packet payload are used, filling shorter packets with trailing zeros. These bytes

are converted to decimal values and arranged as both a sequence and a 28 × 28 matrix.

This is done in order to prepare the data for the 1 and 2 dimensional CNNs. The data is

split into 10 data subsets, 9 data sets to train and 1 dataset to test the trained models.

Each of the 3 base models is assigned 3 training files and each generates 3 separate models

by training each with a separate training file. This results in a total of 9 trained mod-

els. Once the models are trained, the bagging strategy is implemented in the prediction

of classification labels. This corresponds to combining the results of the separate models

to obtain a final result by selecting the label with the majority of models predicting it as

the resulting class. The experimental analysis conducted provides positive results for most

categories, with the exception of chat and mail. The authors attribute the subpar results

for these two categories to the relatively small number of samples available in the data

set which makes training more difficult. Finally, this ensemble learning model is compared
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to C4.5 (decision tree model) and KNN experimental results conducted in another paper

which used the same data set for training. The results of the comparative analysis show

that the ensemble learning model presented here outperformed both C4.5 and KNN.

Byte Segment Neural Network for Network Traffic Classification

A byte segment deep neural network (BSNN) for classification of network traffic is presented

in [36]. Their idea consists of using deep neural networks to classify networking packets

by looking at the payload data and finding patterns in the datagram. The data packet

is removed of all packet headers so that only the packet’s payload remains. The payload

is then separated into fixed-length segments that will serve as input for the BSNN. Each

segment is transformed with a recurrent neural network which serves as an encoder to

generate a representation of the data sequence. They select two different recurrent neural

network (RNN) encoders, one using a Long Short-Term Memory (LSTM) and another

with a Gater Recurrent Unit (GRU). Once the data is encoded, focal loss is involved in

the BSNN to account for the imbalanced nature of network traffic data sets. The resulting

encoded segments are analyzed by a multilayer perceptron which outputs classification with

a softmax output layer activation function. For the model fine-tuning, a data capture is

conducted containing data from 10 applications: DNS, BitTorrent, PPLive, QQ, SMTP,

360, Amazon, Yahoo, Couldmusic and foxmail. In order to find the optimal number of

segments required they compare different values and conclude that 8 segments is sufficient

for classification without inducing a timing penalty which could hinder their ability to apply

this in real-time environments.

In order to compare BSNN to other packet based techniques, the authors select the

deep packet inspection tool nDPI and Securitas, another datagram level traffic classifica-

tion method which extracts features to then feed to the typical supervised learning algo-

rithms. The authors decide on using Securitas with SVM, C4.5 decision tree and a Bayes

neural network. Although their data capture contains 10 applications, their experimental

analysis focuses on QQ, PPLive, DNS, 360 and BitTorrent. Also, because Securitas is a
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binary classifier, a model for each of the supervised learning algorithm with each of the 5

applications is created. The results are presented, which show that BSNN with a LSTM

encoder and Securitas-C4.5 produce the best results.

In a second phase of analysis the applications Amazon, Yahoo, Cloudmusic and foxmail

are evaluated against BSNN-LSTM. Because these are considered novel applications, they

provide insight of BSNN’s ability to classify new applications correctly. Results for these

novel applications are reported with all having a per application F1-score over 85%, showing

the model’s ability to classify new applications. Finally, Li et. al. report that the average

time for processing a single datagram using BSNN is 2.97ms. Securitas, which is currently

used for real-time online classification, is clocked at 7.01ms. This makes a strong case for

BSNN ability to classify real-time network traffic. This is a very thorough article which

provides an interesting alternative to the typical flow based network traffic classification.

Leveraging Inner-Connection of Message Sequence for Traffic Classification: A

Deep Learning Approach

In [37], Jin et. al. develop a feature extraction approach by obtaining the message segment

for the first 16 segments in a flow. A segment is defined as an independent piece of content

transmitted between hosts. The extraction of a message segment from the TCP packets is

done in the following steps:

1. Remove any packets consisting of only the acknowledgement or retransmission.

2. If an observed packet is of the maximum segment size (MSS), add this data to the

current segment.

3. If an observed packet is smaller than the MSS, add this data to the current segment

and then conclude the segment.

4. If a transmission is beginning in the opposite direction, the message segment ends.
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Message segment sequences for applications show how applications interact and thus can

be used to classify network traffic. The authors select a Long Short Term Model (LSTM),

a recurrent neural network capable of ”remembering” for a long time. In order to train the

model a 3-day capture is conducted and only full TCP flows of HTTP, SSH, SMTP, WeChat

and Remote Desktop are saved. In order to capture P2P and Video traffic, the authors

recruit volunteers to watch videos or download files for five days and the traffic generated

is captured. Model analysis is conducted using the captured data to determine the best

hyper-parameters for this neural network. The results conclude that a 2 layer LSTM with

a size of 400 neurons per layer yields the best performance. An experimental analysis is

performed and the results report an accuracy > 90% for all applications including a perfect

score for both Video and P2P.

Common Knowledge Based Transfer Learning for Traffic Classification

In [38], Xiao et. al. present a very interesting approach to preserve knowledge in a deep

neural network (DNN). The purpose of this knowledge transfer is to allow the initial training

of the neural network which performs the source, or initial, task to transfer a bulk of its

knowledge to be applied to a subsequent target task. Their multi-output DNN approach

separates the neural network into two sections. The input layer feeds into the common

layers which store the bulk of the knowledge. These common layers then feed into private

branches, a collection of networks that are trained independently from one another and are

thus tailored to a specific task. The source task applies its data to train both the common

layers and the initial private branch, then the second task uses the trained common layer

in addition to its training data to only train the new private branch. This is done for as

many tasks as needed and the result is a common layer with multiple independent private

branches. The fact that only a private branch needs to be trained for a new task greatly

reduces the training time complexity relative to training the entire deep neural network.

To validate their approach, 16 features from the WITS ISPDSL-1 and ISPDSL-2 data

sets along with Moore’s Set09 and Set10 data sets are used to train and test their model.
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Because they are working on transfer learning, they select flow duration, flow rate and

application classification as the 3 target outputs for each training and testing experimen-

tal sets. This means that they create a different model for each data set and each target

output for all the models. Their model is compared by creating and training KNN, SVM

and RF as well as a DNN without the multiple output option and their results are pre-

sented. Their experiments show that for all data sets, DNN and multi-output DNN are

always the top 2 performers and always within 1% of each other. They then go on to

compare DNN with multi-output DNN by presenting the perplexity of each. Perplexity

is the normalized distance to the geometrical center of a label. The lower the perplexity

value for any label, the better that the traffic is represented in that knowledge space. The

perplexity score of multi-output DNN outperforms the traditional DNN in every target

label. This demonstrates that although they produced nearly identical prediction accuracy

scores, multi-output DNN has a more well defined separation of the output targets. This is

a very interesting approach at reducing the time to train a model as well as give the ability

to share knowledge which can become very valuable for future work.

An improved stacked auto-encoder for network traffic flow classification

The work in [39] leverages unsupervised learning and neural networks to create an improved

auto-encoder for network traffic classification. Li et. al. improve on a traditional auto-

encoder by training the network based on Bayesian probability theory. This is done by

adding a softmax function to the output layer of the neural network where Bayesian theory

is applied to find the weight values that maximize the likelihood that each training sample

is assigned with the correct class label. They utilize two data sets for analysis, MAWI and

DARPA 99. These data sets are composed of FTP, SSH, Telnet, Mail, DNS and HTTP

traffic. For their experimental analysis, a comparison of this modified version of the auto-

encoder neural network with the traditional neural network is conducted and the results

show that although there is no significant difference when using a balanced dataset, the

modified auto-encoder outperformed the traditional neural network when presented with
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imbalanced data.

Semi-supervised Network Traffic Classification using Deep Generative Models

In [40], Li et. al. present a deep generative model to encode data into a lower dimensional

feature space for network traffic classification. A variational auto-encoder (VAE) is created

using a multilayer perceptron (MLP) which takes the flow features and transforms them

into representation features with the purpose of finding the underlying structure. This is a

completely unsupervised procedure. These representation features are acted on by a second

generative model. This model is semi-supervised as it handles labeled and unlabeled data.

Labeled data is used to tune the model by calculating the loss function in this second

encoding model. Unlabeled data obtains its classification prediction as part of this second

encoding. A stochastic gradient variational Bayes (SGVB) method is applied to optimize

both VAEs. This model is tested against 4 distinct data sets:

• USTC Malware Traffic - Contains Cridex, Geodo, Htbot, Miuref, Neris, Nsis-ay, Shifu,

Tinba, Virut and Zeus malware flows.

• USTC Normal Traffic - Contains BitTorrent, FaceTime, FTP, Gmail, MySQL, Out-

look, Skype, SMB, Weibo and WorldOfWarcraft network flows.

• ISCX VPN - Contains Chat, Email, File, P2P, Streaming and VoIP data.

• USTC Anomaly Detection - A series of flows labeled as normal or malware.

For the experimental analysis of this generative model, the training and testing data is split

with a 10:1 ratio. The training data is further subdivided into labeled and unlabeled data

sets. The authors vary the number of labeled flows per class by selecting 20, 50, 100 and

200 flows per class. Experiments are conducted for each value of labeled flows with each

of the 4 data sets. The results conclude that 20 labeled flows produced over 85% precision

across all data sets, 50 labeled flow increased that to over 90% precision and 200 labeled

flows reached over 95% precision. An interesting conclusion drawn from these experiments
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is that the difference between normal and malware flows is easily detectable using this

approach, as all values of labeled flows generated a perfect score of 100% for precision,

recall and F1-score. Finally, the authors note that, when comparing to similar work which

also uses a limited number of labeled flows for classification, others report an average of

80% precision, 75% recall and 76% F1-score. Those results are considerably lower than the

results reported in this work.

Seq2Img: A Sequence-to-Image based Approach Towards IP Traffic Classifica-

tion using Convolutional Neural Networks

In [41], Chen et. al. present a neural network approach to classifying network traffic.

A Reproducing Kernel Hilbert Space (RKHS) is used in this approach as it allows for a

compact way in which to represent conditional distributions. RKHS is applied to the 28

input features representing the first 10 packets of a flow:

• Packet size difference sequence (9 elements)

• Packet inter-arrival time sequence (9 elements)

• Packet direction sequence (9 elements)

• Server IP address

Once these features are transformed using RKHS, the resulting data is analyzed by a

Convolutional Neural Network with two layers each with softmax pooling, and 3 fully

connected layers that provide the final output. This neural network is compared with

SVM, MLP, Naive Bayes and Decision Tree classifiers across two separate data sets. In the

first data set containing FTP, HTTP, SSH, FTP and TLSV protocols, all classifiers as well

as the neural network provide similar results and all are able to classify with above 90%

accuracy. On the second data set containing Instagram, Skype, Facebook, Wechat and

YouTube application data, the proposed CNN outperformed by a wide margin presenting

88.42% accuracy. The next closest being SVM at 76.93% accuracy and the remaining
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classifiers all falling below 55%. This makes for a very interesting finding which should be

further explored with larger data set and a wider variety of application data.

A novel QUIC traffic Classifier based on Convolutional Neural Networks

Tong et. al. provide interesting findings in [42]. A CNN classifier is combined with a

Random Forest and both flow and packet data are used in this intriguing approach. As

QUIC protocol traffic is analyzed, the authors note that there are several applications using

this protocol to transmit information on the network. Voice call, chat, video streaming,

Google play music and file transfer are all present in QUIC traffic. The authors note that

upon inspection of packet sizes for each of the applications using QUIC, a pattern is found

when considering the percentage of small packets (0 to 150 bytes) vs. large packets (>

1000 bytes). The flow features used in this approach are:

• average payload length in both directions

• percentage of small bytes (0 to 150) in both directions

• percentage of medium bytes (150 to 1000) in both directions

• percentage of large bytes (> 1000) in both directions

These flow features are used on the Random Forest classifier in order to find chat and Google

Hangout voice call. This is the first stage of the classifier. In the second stage, packet data,

consisting of the encrypted payload of the QUIC packets, is analyzed in addition to the flow

features. Because the feature space must be 1400 bytes for the CNN, any packet payloads

smaller than that are padded with zeros before analyzed. The byte sequence representing

the packet payload is normalized by having all values divided by 255 resulting in numerical

sequences between 0 and 1. The CNN consists of a convolutional layer, an average pooling

layer and finally a fully connected layer. This converts the 1400 features into 3 classes

representing the file transfer, video streaming and Google play music applications. The

results of using this combination of classifiers produces a reported precision and recall score
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of approximately 99%. Although the authors do note that this is not adequate for use in

a real-time environment as presently constructed, this is a very interesting combination of

features and classification techniques which show very promising results.

2.4.5 Comparison Table

Table 2.1: Comparison of related works.

Source
Algorithm/Model
for classification

Features Applications/Categories

BLINC
[7]

graphlets
source IP/port
destination IP/port
average packet size (per flow)

Web
P2P
Data
Network Management
Mail
News
Chat
Streaming
Gaming
Nonpayload
Unknown

Traffic Classification Based on
Zero-Length Packets
[20]

Feature Extraction
Accumulated Application
Protocol Data Units (a-APDU)

Amazon, Unknown, Yahoo, POP3,
IRC, IMAPS, Telnet, HTTP-Proxy,
MSN, Facebook, NFS, FTP-DATA,
Oscar, Flash, WindowsUpdate,
AppleiTunes, YouTube, SOCKS5,
IAX, CiscoVPN, Dropbox, RDP,
eDonkey, SSL, FTP-CONTROL,
IPsec, SSH, Gmail, SMB, Google,
HTTP, Skype, Oracle, OpenVPN,
Wikipedia, GoogleMaps, POPS,
Whois-DAS, PostgreSQL, MySQL,
BitTorrent, H323, DNS, LastFM,
CiscoSkinny, VNC, UPnP, eBay,
Apple, Twitter, CNN, RTMP,
Kerberos, IMAP

Machine Learning in Software
Defined Networks:
Data Collection
and Traffic Classification
[21]

Random Forest
Stochastic Gradient Descent
Extreme Gradient Descent

Packet size (first 5 packets)
Packet time stamp (first 5 packets)
Inter-arrival time (first 5 packets)
source/destination MAC address
source/destination IP address
source/destination port number
flow duration
byte count
packet count

BitTorrent
Dropbox
Facebook
HTTP
LinkedIn
Skype
Vimeo
YouTube

SVM-based Classification
Mechanism and Its Application
in SDN Networks
[22]

Support Vector Machine
Decision Tree

Radial Basis Function kernel
used to select feature set
feature list not provided

Facebook, Line, YouTube, Skype,
Google page, BitTorrent, Twitch,
League of Legends, Messenger,
Google Hangout, Spotify, Instagram,
Dropbox, KKBOX, Sanguosha,
MoPTT, PPS, WooTalk, IRC,
PPLIVE, OneDrive, Yahoo page,
Garena Messenger, Foxy, eDonkey,
QQ, Pokemon Go

Network Traffic Classification
Techniques and Comparative
Analysis using Machine
Learning Algorithms
[23]

C4.5 (Decision Tree)
Support Vector Machine
BayesNet
NaiveBayes

23 features (no feature list present)

WWW
DNS
FTP
P2P
Telnet

A Comparative Performance
Analysis on Network Traffic
Classification using Supervised
Learning Algorithms
[24]

Naive Bayes
BayesNet
Complement Naive Bayes
Decorate
Random Forest
Bagging
AdaBoost
Stacking
Rotation Forest

266 features total, subset selected:
First quartile inter-arrival time
Freq. of zero receive window
SYN permission of SACK
Total time for data transfer
Number of RTT samples found
Median Ethernet frame bytes
Min. arrival time between packets

WWW
Mail
FTP
Multimedia
Games
P2P

Class-of-Service Mapping
for QoS: A Statistical
Signature-based Approach
to IP Traffic Classification
[25]

K Nearest Neighbor
Linear Discriminant
Analysis (LDA)

Average packet size
flow duration
bytes (per flow)
packets (per flow)
Root Mean Squared of packet size

Interactive (Telnet)
bulk data (FTP data, Kazaa)
streaming (RealMedia streaming)
transactional (DNS, HTTPS)
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Source
Algorithm/Model
for classification

Features Applications/Categories

Toward Classifying Unknown
Application Traffic
[26]

K Nearest Neighbor
with Kolmogorov-Smirnov
distance

Packet count
Byte count
Average packet inter-arrival time
Average bit rate of connection
Largest/Smallest packet size
Min/Max packet inter-arrival time
Direction (inbound/outbound)
Number of ARP packets
Number of DNS packets
Number of TCP ACKs
Min/Max receive window

YouTube
Google Hangout
Skype
HTTP Web browsing

Early Classification of Residential
Networks Traffic using C5.0
Machine Learning Algorithm
[27]

C5.0
C4.5
K Nearest Neighbor
Naive Bayes

Payload size of first 10 packets
Direction of first 10 packets
Packet inter-arrival time
Inter Downlink packet arrival time
processed packets count

BitTorrent
Facebook
Google-Services
Web browsing
Secure Web browsing
QUIC
Skype

Network Traffic Classification
based on Transfer Learning
[28]

TrAdaBoost
AdaBoost with Maxent

Server port
Min packet inter-arrival time
Mean packet inter-arrival time
Variance packet inter-arrival time
Mean packet bytes per flow
Mean control bytes per flow
Average window size
Mean IP packet bytes

WWW
Mail
Database
FTP-data
P2P
Services

PSO Optimized Semi-Supervised
Network Traffic Classification
Strategy [29]

C4
NBK
KMKNN
PSO-KNN

Utilized RSEC to select features
(feature list not provided)

WWW
FTP
RTX
Bulk data
RTMP

A Framework for QoS-aware
Traffic Classification Using
Semi-supervised Machine
Learning in SDNs
[30]

Laplacian SVM

src to dest entropy of packet length
dest to src entropy of packet length
source/destination port
src to dest avg packet length
dest to src avg packet length
packets to respond src to dest
min packet length dest to src
packet interactivity src to dest
median packet length src to dest

Voice/Video Conference
(Skype,QQ, Google Hangout, ...)
Interactive Data
(Gaming, Web, HTTP services, ...)
Streaming
(PPStream, Vimeo, SopCast, ...)
Bulk Data Transfer
(FTP, Torrent, Dropbox, ...)

QoS-aware Traffic Classification
Architecture Using Machine
Learning and Deep Packet
Inspection in SDNs [31]

Support Vector Machine
Bayes Classifier
K Nearest Neighbor

Data flow time characteristics
Packet characteristics
Protocol characteristics
Hurst parameter

Voice (Skype, QQ, WeChat...)
Video (YouTube, Youku, Vimeo...)
Bulk Data (FTP, Dropbox, Torrent...)
Interactive (LOL, Dota, HTTP...)

A Framework & System for
Classification of Encrypted
Network Traffic using Machine
Learning [32]

Bagging of:
Logistic Regression
Support Vector Machine
Decision Tree
Adaboost
Neural Networks
Naive Bayes

Flow duration
Protocol
Packet, byte and payload count
Entropy of packet size
min, max, mean and var of:
-packet size
-packet inter-arrival time

Video Streaming (YouTube, Netflix)
Video Chat (Skype, Messenger)
Audio Stream (Spotify, SoundCloud)
VoIP (Skype, Messenger)
File Transfer
(Dropbox, Google Drive)
Mail (Gmail, Yahoo)
Web browsing (Firefox, Chrome)
P2P (BitTorrent, eDonkey)
Chat Message (Facebook, Telegram)
ToR Traffic (Video Streaming, Web)

A New Semi-supervised Method
for Network Traffic Classification
Based on X-means Clustering
and Label Propagation
[33]

X-means clustering
K-nearest neighbor
J48
Naive Bayes

42 features in Moore data set
feature list not provided

Bulk (ftp)
Database (posture, silent oracle,
ingres)
Interactive (ssh, klogin, rlogin,
telnet)
Mail (imap, pop2/3, smtp)
Services (X11, dns, ident, Idap, ntp)
WWW
P2P (KaZaA, BitTorrent, GnuTella)
Attack (worm and virus attacks)
Games (Half-Life)
Multimedia (Win Media Player, real)

Packet-based Network Traffic
Classification Using Deep Learning
[34]

CNN
ResNet

Image representation of bits in
flows by converting payload data
into 4 bit pixels and generating
6x6, 8x8, 16x16 and 32x32 images

RDP
Skype
SSH
BitTorrent
HTTP-Facebook
HTTP-Google
HTTP-Wikipedia
HTTP-Yahoo
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Source
Algorithm/Model
for classification

Features Applications/Categories

A Traffic Classification Method
Based on Packet Transport Layer
Payload by Ensemble Learning
[35]

Bagging of:
1DCNN
2DCNN
LSTM

First 784 bytes of the payload

Email (gmail,POP3,SMPT,IMAP)
Chat
(ICQ, AIM, Skype, Facebook,
Hangouts)
Stream
(Vimeo, Youtube, Netflix, Spotify)
P2P (uTorrent, BitTorrent)
VoIP (Facebook, Skype, Hangouts,
Voipbuster)
File Transfer (Skype, FTPS, SFTP)

Byte Segment Neural Network for
Network Traffic Classification
[36]

Recurrent neural networks
LSTM
GRU
Focal loss
SVM
C4.5
BayesNet

Packet payload binaries

DNS
BitTorrent
PPLive
QQ
SMTP
360
Amazon
Yahoo
Cloudmusic
Foxmail

Leveraging Inner-Connection of
Message Sequence for Traffic
Classification: A Deep Learning
Approach [37]

LSTM neural network
message sequence extracted from
traffic behavior

HTTP, SSH, SMTP, WeChat,
Remote Desktop, P2P, Video

Common Knowledge Based
Transfer Learning of Traffic
Classification [38]

Multi-output Deep Neural
Network (DNN)

16 features selected from
WITS ISPDSL-I, ISPDSL II,
Entry09 and Entry10
feature list not provided

Application list not provided

An Improved Stacked
Auto-Encoder for
Network Traffic Flow
Classification
[39]

Auto-encoder
(Neural Network)
with Bayesian probability
training method

flows, specific metrics presented
to algorithm omitted

FTP
SSH
Telnet
Mail
DNS
HTTP

Semi-supervised Network Traffic
Classification using Deep
Generative Models
[40]

MLP with Stochastic
Gradient Variational
Bayes (SGVB) for loss
function optimization

Variational Auto-Encoder (VAE)
generated mathematical model for
feature representation in lower
dimensional space

4 datasets:
USTC Malware Traffic
(Cridex, Geodo, Htbot, Miuref,
Neris, Nsis-ay, Shifu, Tinba, Virut,
Zeus)
USTC Normal Traffic
(BitTorrent, FaceTime, FTP, Gmail,
MySQL, Outlook, Skype, SMB,
Weibo, WorldOfWarcraft)
ISCX VPN (Chat, Email, File, P2P,
Streaming, VoIP)
USTC Anomaly Detection
(Normal, Malware)

Seq2Img: A Sequence-to-Image
based Approach Towards IP Traffic
Classification using Convolutional
Neural Networks [41]

CNN
MLP
SVM
Decision Tree
Naive Bayes

First 10 packet of each flow:
Packet size difference sequence
Packet inter-arrival time sequence
Packet direction sequence
Server IP address

FTP, HTTP, SSH, FTP, TLSV

Instagram, Skype, Facebook,
WeChat, YouTube

A novel QUIC traffic Classifier
based on Convolutional Neural
Networks [42]

CNN
Random Forest

features all in two directions:
average payload length
percentage of small, medium and
large packets in the flow

All using QUIC protocol:
Voice call, chat, video streaming,
Google play music and file transfer
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Chapter 3

Experimental Plan

In this chapter, two separate sets of experiments are conducted in order to evaluate the

capacity of a set of flow features to provide network application classification. The objective

of the first set of experiments is to understand the effectiveness of non-address inherent and

derived flow features in classifying network traffic. As part of this experimental set, a rule-

based expert system is derived from the port number conventions in order to generate the

training data necessary for experimentation. The experimental plan for this initial effort

is detailed in section 3.1. The objective of the second set of experiments is to uncover

the classification performance of different combinations of flow features. In addition to

using the inherent and derived features from the first experiment set, features describing

host behavior are engineered. The classification power of all possible combinations of these

engineered features is evaluated. Additionally, the training data for the second experimental

set is produced using deep packet inspection during the data capture. This is done to

obtain a closer approximation to the ”ground truth” relative to the rule-based expert

system used in the first experiment set. Section 3.2 describes the second experimental plan

corresponding to the second experimental set.

3.1 Experiment Set 1: Can flow features achieve net-

work application classification?

In the first experimentation set, the focus is on the ability of three non-address inherent

and derived flow features to classify network traffic,
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• Number of bytes - Inherent flow feature

• Number of packets - Inherent flow feature

• Flow duration - Derived flow feature

3.1.1 Rule-Based Expert System

The necessity for labeled flows to serve as training data for machine learning algorithms

encouraged the creation of a rule-based expert system. This expert system generated labels

with the assistance of port number conventions in a two step process.

1. Tuples from the port and IP protocol at both the source and destination of each

network flow are created. These source and destination tuples are mapped to the

registered port numbers in IANA which result in two labels, one for the source and

another for the destination.

2. A comparison of the source and destination labels is performed:

• If both sides are unknown (there is no mapping found in IANA for either port/IP

protocol tuple), the resulting application label is unknown.

• If one side is unknown, the resulting application label corresponds to the known

side.

• If both sides are known, the resulting application is the most likely application.

These generated labels will serve as our ”ground truth” for the experimental analysis of

the selected feature’s ability to classify network traffic. Aware of the limitations involved

with using port number conventions, additional measures are taken into consideration in

selecting the training data from the set of flows labeled with the rule-based expert sys-

tem. The applications selected are those who’s port numbers are unlikely to be misused

by another application. Additionally, only applications with many training samples are

considered.
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3.1.2 Experimental Setup

Once the method for generating training data is established, a set of experiments is con-

ducted to better understand how classification performance is affected using the flow fea-

tures selected while varying the:

• application subset: { Select 5, Top 4, Top 5, Top 10 },

• type of flows: { All flows, only large elephant flows },

• machine learning technique: { K nearest neighbors, Decision tree, Random forest },

• and machine learning hyper-parameters.

Data collected from the University of Kentucky campus network is used for the exper-

imental analysis. The training data set is a composite of several 1 or 2 hour data sets

collected over several days. The test data set is an 8-hour data set collected continuously

on a single day. Both the training and testing data sets are appended with the application

label according to the rule-based expert system. The resulting flow data is displayed in

Table 3.1 which lists the Select 5 applications in the UKY data sets and their correspond-

ing number of flows, while Table 3.2 lists the Top 10 applications in the training data set

ordered by number of flows. Note the exclusion of HTTP and HTTPS since there is low

confidence in the use of port number conventions for those applications.

The machine learning algorithms are implemented in Python 3 using several data ana-

lytics libraries (e.g., NumPy, PANDAS [43], sci-kit learn [44]). First, the network flow data

is loaded into a PANDAS dataframe. Then begins the data preprocessing by first removing

any flows where the application label is ’unknown’ or ’na’. Then, any flows where there

is a discreptancy in labels generated from source and destination, meaning that they are

not labeled as the same application on both sides, are discarded as there is not enough

confidence in these labels to represent ”ground truth”.

With the data preprocessed, the experimental analysis can take place. The first step

is to filter the preprocessed data according to the specifics of the particular experiment by
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Table 3.1: UKY Select 5 Applications with respective flow count.

FLOWS

APPS ALL TOP 50%

ALL 28136 14068

smtp 17233 7883

ssh 8894 4678

domain 1155 659

snmp 849 848

telnet 5 N/A

Table 3.2: UKY Top 10 Applications ordered by flow count.

FLOWS

APPS ALL TOP 50%

ALL 149121 74561

netbios-dgm 51934 34164

netbios-ns 33855 18731

smtp 17233 3983

bootps 10820 9217

microsoft-ds 8930 772

ssh 8894 1009

ntp 6840 N/A

mdns 4733 2663

hsrp 3391 2848

syslog 2491 1174
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selecting the adequate subset of applications (Select 5, Top 4, Top 5, Top 10) and subset of

flows (All, Top 50% elephant flows). Having selected the flow data specific to the experi-

ment being conducted, the feature space (# of bytes, # of packets and duration) and target

(generated application labels) are separated from the rest of the flow data. The machine

learning model is created and the particular model’s hyper-parameters are selected with

the assistance of sci-kit learn’s GridSearchCV() which runs a cross-validated grid-search

over a specified parameter grid and returns the optimal hyper-parameters. The model is

then fitted with the training set and subsequently evaluated with the test set. All pertinent

information on the experiment, including model’s hyper-parameters and evaluation perfor-

mance metrics, are reported and saved onto a csv file. This is conducted for all machine

learning algorithms on all the possible data sets generated from the variations previously

described [45].

3.2 Experiment Set 2: What is the classification per-

formance of combinations of flow features?

Recalling from Section 2.1.3, there are inherent, derived and engineered flow features.

Having previously conducted experimental analysis on a subset of inherent and derived

features, the next logical step is to generate interesting new features and evaluate their

ability to classify network traffic. The work described in this section follows this approach.

3.2.1 Flow Features

The work presented by Karagiannis et. al. in [7] provides an interesting approach to net-

work traffic classification. Their focus is in associating network hosts with the applications

being used based on the communication behavior. Once the behavior is represented in

graphlets, they use these graphlets to classify unlabeled graphlets representing new traffic.

Three numerical features are engineered based on BLINC’s behavioral analysis of network
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traffic.

Destination Address Count

The number of unique destination addresses each source address will communicate with

throughout the data set is analyzed. As explained in [7], this is representative of the

source address ”popularity”. This communication with few or many different destination

addresses creates a quantitative metric which provides host level behavioral context. The

idea is that this translates an address level interaction to a value which can then be leveraged

with the machine learning techniques to better classify network applications. Figure 3.1a

would be numerically represented as dstaddrcount = 3 as this particular source address is

communicating with three different destination hosts on their respective addresses.

Source and Destination Port Count

The port numbers provide insight into the functional behavior of the hosts represented in

the flow data. The number of unique ports the source host is using to communicate is

evaluated first. Not considering which source port numbers are used, the importance here

is with the total number of unique source ports being used by each source address. As

seen in Figure 3.1b, srcportcount = 2 as this particular source address is using two source

ports.

Similarly, the number of unique destination ports that a source address is communicat-

ing with across all its destination addresses is investigated. In terms of Figure 3.1c, there

are three unique destination port numbers across 4 destination addresses for the source

host. This would give us the feature dstportunique = 3.

In this work, the analysis of the original 3 features (# of bytes, # of packets and

duration) from the previous work is improved by the inclusion of these new engineered

features (dstaddrcount, srcportcount and dstportunique) and their classification power is

evaluated.
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(c) Source communicating with

destination ports

Figure 3.1: BLINC-inspired engineered features.

3.2.2 Experimental Setup

The network flow data for these experiments is collected once again from the University of

Kentucky (UKY). The collection instrument is attached to a port which monitors a border

aggregation switch using a 100G Ethernet connection. This aggregation switch is the link

between border routers, distribution routers, remote data centers (private links), an SDN-

enabled science Demilitarized Zone (DMZ), High Performance Computing Cluster (HPC),

Data Transfer Nodes (DTNs), and cloud DTNs used by clinical and research laboratories.

The upstream ports of the aggregation switch connecting various devices and networks

are replicated to the 100G monitoring port, providing aggregate visibility of data being

transmitted between networks, but not within those networks that are downstream. This

over-subscribed aggregation of high-speed links creates the possibility that packets will

be dropped if the total capacity of links exceeds 100G. However, outside of experimental

testing 100G in aggregate traffic has not been observed. In addition, operational flow rates

that exceeded the capacity of the measurement instrument to accurately generate network

flow data from raw monitored traffic have also not been observed. Figure 3.2 provides an

illustration of the measurement instrument deployment.
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Figure 3.2: Network measurement instrument used to collect flow data.
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Data is captured via the collection instrument by leveraging pmacct[17], an open-source

passive network monitoring tool. Pmacct is enhanced with nDPI[15], an open-source deep

packet inspection library, to generate network application labels which will serve as ”ground

truth” for our experimental analysis. A series of 1, 4 or 24 hour flow captures is conducted

spanning 17 days and a combined 361 hours of network traffic data, including weekdays

and weekends at different times of day (morning, afternoon and evening). This is done to

account for changes in network behavior due to temporal bias. Each individual 1, 4 or 24

hour flow capture is then appended with the derived flow duration and augmented by the

BLINC inspired features (dstaddrcount, srcportcount, and dstportunique). A composite

data set is created by aggregating all the collected UKY flow data. This composite data

set is reduced by discarding any flows with a zero duration as any flows with such a short

life are deemed insignificant and thus not considered. At this point, similar nDPI-created

network application labels are aggregated into classes according to the type of service

provided. Table 3.3 displays the breakdown of each class created and their constituent

nDPI application labels.

Figure 3.3: Data preparation pipeline

Once the data preprocessing is complete, it must be split into subsets for training and

testing. This is performed using stratified sampling, to account for the imbalanced nature

of the classes in the data set, and a 2:1 train/test split. With the test subset being further

split into 6 test subsets. Once this is completed for all classes, the resulting subsets from

each class are combined to form 6 test sets with similar distributions. Table 3.4 provides

the breakdown of the flow data into the train and 6 test subsets.
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Table 3.3: Class labels and associated nDPI application labels.

Class nDPI application label Class nDPI application label

Authentication Kerberos Network BGP

Big Tech Amazon Operation Cloudflare

Apple DHCPV6

Google DNS

Microsoft ICMP

Playstore ICMPV6

UbuntuONE IGMP

Chat VoIP GoogleHangout mDNS

IRC NTP

Oscar SSDP

QQ Teredo

QUIC UPnP

RTMP Remote login RDP

SIP SSH

STUN Video Streaming YouTube

Skype Unknown AppleiCloud

SkypeCall COAP

TeamSpeak Facebook

Viber Gmail

File Transfer BitTorrent GoogleDocs

FTP CONTROL GoogleDrive

FTP DATA GoogleMaps

NFS LinkedIn

Github Github MS OneDrive

HTTP HTTP NetBIOS

HTTPS SSL Office365

SSL No Cert Redis

M2M Messaging ApplePush Tor

GoogleServices Twitter

MQTT Unknown

Network SNMP

Management Syslog

Whois-DAS
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Table 3.4: Train and Test sets breakdown by class label

Train Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Authentication 117 10 10 10 10 10 9

Big Tech 173422 14237 14237 14236 14236 14236 14236

Chat VoIP 18147 1490 1490 1490 1490 1490 1489

File Transfer 235 20 20 20 19 19 19

Github 481 40 40 40 40 39 39

HTTP 7363 605 605 605 605 604 604

HTTPS 73841 6062 6062 6062 6062 6061 6061

M2M Messaging 12492 1026 1026 1026 1025 1025 1025

Network Management 370414 30408 30408 30407 30407 30407 30407

Network Operation 1501297 123241 123241 123241 123241 123241 123240

Remote Login 1337029 109757 109756 109756 109756 109756 109756

Video Streaming 902 75 74 74 74 74 74

Unknown 2333153 191528 191528 191528 191528 191527 191527

Having split the data into training and testing sets, data standardization is conducted.

This consists of transforming each feature distribution to one with zero mean and unit

variance. This is common practice when applying many machine learning models as this

eliminates the potential bias caused by the difference in magnitudes among the distinct

features. First, the training data set is analyzed to find the adequate mean and standard

deviation values which will be used to transform this data. Once computed, the training

data set is transformed. All 6 test sets are then individually transformed using the training

data transformation values. Again, this is common practice as the machine learning model

should make a prediction based solely on the training data [46]. This finalizes our data

preparation pipeline, visualized in Figure 3.3.

The experimental analysis in this work consists of implementing the same machine

learning algorithms as in the previous experimentation set (k nearest neighbor, decision

tree and random forest) for consistency. For the feature selection, the original features from

the initial experiments (# of bytes, # of packets and duration) are always included in the

feature set. All the possible combinations of the three engineered features (dstaddrcount,

srcportcount and dstportunique) are added to the original features, resulting in 8 possible
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combinations of flow features. Training and testing data is filtered according to the feature

combination selected and then separated into the feature and target space. The machine

learning models are created, hyper-parameters tuned using sci-kit learn’s GridSearchCV()

as in the previous work, fitted with the training data and then each trained model is

evaluated with all 6 test subsets with the resulting evaluation metrics being saved for

analysis.
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Chapter 4

Experimental Results

4.1 Experiment Set 1: Can flow features achieve net-

work application classification?

After executing the first experimental plan, Table 4.1 shows the experimental results. Each

row is the result of an experiment with the rows first grouped by the set of applications

(Select 5, Top 4, Top 5, Top 10), followed by the flows included (all vs. Top 50% elephant),

and finally by the machine learning technique (KNN, Decision Tree, Random Forest). For

each row the results shown are: 1) dataset size after focusing on the particular set of

applications, 2) best performing hyper-parameter values, 3) accuracy, 4) precision, and 5)

recall.

The primary observations are:

1. A random forest classifier mostly provides the highest accuracy.

2. A decision tree classifier has performance very close to the random forest classifier.

3. Unexpectedly, focusing on elephant flows decreases accuracy slightly.

4. Overall, precision and recall measures are similar to accuracy.

Elephant flows are large byte and subsequently large packet and large duration flows.

With the increased range of these three flow features (# of bytes, # of packets, and

duration) the expectation was an increased distinction among different applications thereby

leading to higher accuracy. However, focusing on elephant flows provides fewer flows to train
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our machine learning algorithms and thus decreasing, rather than increasing, its accuracy

slightly.

To gain some deeper insight into the classification performance we can examine the per-

class measures. Precision, recall, and support are shown per-class for Select 5 and Top 10

in Tables 4.2 and 4.3 respectively. For Select 5, smtp and ssh reduce the overall accuracy,

as noted by their recall values, despite the recall values for domain and snmp being rather

high. It is not possible to classify telnet given the small number of samples. With the

rarity of telnet flows, removing this application from consideration in future endeavors is

appropriate.

For Top 10, recall is rather high for most applications, with ssh and smtp being excep-

tions. The results indicate that some applications can be classified using only the three

non-address flow features found in NetFlow records while others likely require more infor-

mation.
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Table 4.1: Experimental classification results: We varied the application set (Select 5, Top

4, Top 5, Top 10), flow type (all, Top 50% elephant), and machine learning technique

(KNN, Decision Tree, Random Forest).

Flows Machine Learning Technique dataset size (flows) best parameters accuracy precision recall

SELECT 5

ALL

KNN 28136 n neighbors: 4 0.61043 0.76 0.61

DecisionTree 28136
criterion : gini

0.65966 0.83 0.66max depth: 16
max features: 3

RandomForest 28136

criterion : entropy

0.65864 0.83 0.66
max depth: 16
max features: 3
n estimators: 64

TOP 50%

KNN 14068 n neighbors: 64 0.74651 0.75 0.75

DecisionTree 14068
criterion : entropy

0.83791 0.89 0.84max depth: 8
max features: 3

RandomForest 14068

criterion : entropy

0.84058 0.88 0.84
max depth: 8

max features: 3
n estimators: 64

TOP 4

ALL

KNN 113842 n neighbors: 2 0.90961 0.92 0.91

DecisionTree 113842
criterion : entropy

0.99139 0.99 0.99max depth: None
max features: 3

RandomForest 113842

criterion : entropy

0.99251 0.99 0.99
max depth: None
max features: 3
n estimators: 64

TOP 50%

KNN 56921 n neighbors: 64 0.68587 0.68 0.69

DecisionTree 56921
criterion : entropy

0.96071 0.97 0.96max depth: None
max features: 3

RandomForest 56921

criterion : entropy

0.96277 0.97 0.96
max depth: None
max features: 3
n estimators: 32

TOP 5

ALL

KNN 122772 n neighbors: 4 0.87294 0.88 0.87

DecisionTree 122772
criterion : entropy

0.95840 0.96 0.96max depth: None
max features: 3

RandomForest 122772

criterion : entropy

0.96070 0.96 0.96
max depth: None
max features: 3
n estimators: 64

TOP 50%

KNN 61386 n neighbors: 64 0.68838 0.68 0.69

DecisionTree 61386
criterion : entropy

0.93873 0.95 0.94max depth: None
max features: 3

RandomForest 61386

criterion : gini

0.93165 0.95 0.93
max depth: 16
max features: 3
n estimators: 8

TOP 10

ALL

KNN 149121 n neighbors: 2 0.81978 0.83 0.82

DecisionTree 149121
criterion : entropy

0.91080 0.93 0.91max depth: None
max features: 3

RandomForest 149121

criterion : entropy

0.91211 0.94 0.91
max depth: 16
max features: 3
n estimators: 64

TOP 50%

KNN 74561 n neighbors: 64 0.67276 0.67 0.67

DecisionTree 74561
criterion : entropy

0.87972 0.87 0.88max depth: 8
max features: 3

RandomForest 74561

criterion : entropy

0.88160 0.87 0.88
max depth: 8

max features: 3
n estimators: 32
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Table 4.2: Per-class classification results (Select 5, Random Forest).

SELECT 5

ALL TOP 50%

Application precision recall support precision recall support

domain 0.79 0.95 1065 0.99 0.98 679

smtp 0.92 0.63 20343 0.95 0.84 9487

snmp 0.92 0.95 914 0.91 0.82 913

ssh 0.22 0.65 3162 0.46 0.78 1667

telnet 0.00 0.00 8 N/A N/A N/A

Table 4.3: Per-class classification results (Top 10, Random Forest).

TOP 10

ALL TOP 50%

Application precision recall support precision recall support

bootps 0.96 0.98 11141 0.80 0.74 9472

hsrp 0.97 0.98 3205 0.96 0.89 2705

mdns 0.91 0.95 2997 0.73 0.48 2130

microsoft-ds 0.79 0.75 11487 0.65 0.09 1110

netbios-dgm 0.99 0.99 55624 0.88 0.97 34876

netbios-ns 1.00 1.00 36384 0.95 0.99 19340

ntp 0.99 1.00 7250 N/A N/A N/A

smtp 0.85 0.61 20343 0.92 0.70 5185

ssh 0.21 0.60 3162 0.46 0.52 968

syslog 0.86 0.79 2660 0.41 0.17 1341
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4.2 Experiment Set 2: What is the classification per-

formance of combinations of flow features?

Once our second classification experiment set concludes, the precision and recall is re-

ported for each combination and each machine learning technique used along with their

corresponding 99% confidence intervals to demonstrate statistical significance. The results

of this comparison can be seen in Tables 4.4, 4.5 and 4.6. These results are also visualized

in Figure 4.1 where the precision and recall confidence intervals for each feature set are

displayed by machine learning algorithm. Additionally a breakdown showing the precision

scores for each of the feature combinations with each machine learning technique at the

class level are shown in Figures 4.2 to 4.9.

Table 4.4: KNN experimental results.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Confidence

Interval 99%

Features Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

duration, dPkts, dOctets 0.9536 0.9541 0.9539 0.9545 0.9534 0.9539 0.9530 0.9536 0.9532 0.9539 0.9536 0.9542 0.9535 ± 0.0008 0.9540 ± 0.0007

+ (dstaddrcount) 0.9365 0.9375 0.9367 0.9376 0.9363 0.9372 0.9364 0.9374 0.9365 0.9376 0.9361 0.9370 0.9364 ± 0.0005 0.9374 ± 0.0006

+ (srcportcount) 0.9213 0.9226 0.9220 0.9232 0.9207 0.9220 0.9210 0.9224 0.9215 0.9229 0.9208 0.9221 0.9212 ± 0.0012 0.9225 ± 0.0011

+ (dstportunique) 0.9323 0.9333 0.9329 0.9338 0.9322 0.9332 0.9319 0.9329 0.9327 0.9337 0.9321 0.9330 0.9324 ± 0.0009 0.9333 ± 0.0009

+ (dstaddrcount, srcportcount) 0.9321 0.9328 0.9321 0.9326 0.9313 0.9319 0.9316 0.9323 0.9315 0.9323 0.9315 0.9322 0.9317 ± 0.0008 0.9324 ± 0.0008

+ (dstaddrcount, dstportunique) 0.9374 0.9382 0.9375 0.9383 0.9370 0.9379 0.9370 0.9379 0.9374 0.9384 0.9368 0.9377 0.9372 ± 0.0007 0.9381 ± 0.0007

+ (srcportcount, dstportunique) 0.9271 0.9275 0.9275 0.9278 0.9267 0.9270 0.9266 0.9271 0.9270 0.9275 0.9266 0.9270 0.9269 ± 0.0009 0.9273 ± 0.0008

+ (dstaddrcount, srcportcount, dstportunique) 0.9322 0.9330 0.9323 0.9330 0.9318 0.9326 0.9318 0.9327 0.9319 0.9329 0.9317 0.9326 0.9320 ± 0.0006 0.9328 ± 0.0005

Table 4.5: DT experimental results.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Confidence

Interval 99%

Features Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

duration, dPkts, dOctets 0.8782 0.8836 0.8780 0.8839 0.8785 0.8843 0.8776 0.8830 0.8774 0.8833 0.8774 0.8831 0.8779 ± 0.0011 0.8835 ± 0.0012

+ (dstaddrcount) 0.9368 0.9392 0.9367 0.9392 0.9364 0.9390 0.9367 0.9390 0.9373 0.9394 0.9364 0.9388 0.9367 ± 0.0008 0.9391 ± 0.0005

+ (srcportcount) 0.9310 0.9331 0.9323 0.9336 0.9316 0.9333 0.9306 0.9326 0.9318 0.9335 0.9311 0.9332 0.9314 ± 0.0015 0.9332 ± 0.0009

+ (dstportunique) 0.9296 0.9315 0.9295 0.9316 0.9291 0.9313 0.9290 0.9310 0.9302 0.9319 0.9292 0.9312 0.9294 ± 0.0011 0.9314 ± 0.0008

+ (dstaddrcount, srcportcount) 0.9353 0.9370 0.9351 0.9373 0.9349 0.9367 0.9352 0.9373 0.9343 0.9368 0.9353 0.9374 0.9350 ± 0.0009 0.9371 ± 0.0007

+ (dstaddrcount, dstportunique) 0.9499 0.9519 0.9505 0.9522 0.9502 0.9521 0.9498 0.9517 0.9508 0.9525 0.9502 0.9518 0.9502 ± 0.0009 0.9520 ± 0.0007

+ (srcportcount, dstportunique) 0.9535 0.9553 0.9542 0.9557 0.9536 0.9551 0.9534 0.9550 0.9545 0.9558 0.9542 0.9553 0.9539 ± 0.0011 0.9554 ± 0.0008

+ (dstaddrcount, srcportcount, dstportunique) 0.9612 0.9629 0.9617 0.9635 0.9611 0.9628 0.9605 0.9624 0.9617 0.9634 0.9615 0.9633 0.9613 ± 0.0011 0.9631 ± 0.0010
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Figure 4.1: Experimental results by machine learning technique with confidence interval.
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Table 4.6: RF experimental results.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Confidence

Interval 99%

Features Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

duration, dPkts, dOctets 0.8769 0.8831 0.8771 0.8833 0.8777 0.8839 0.8786 0.8826 0.8779 0.8830 0.8764 0.8826 0.8774 ± 0.0019 0.8831 ± 0.0012

+ (dstaddrcount) 0.9391 0.9410 0.9395 0.9412 0.9396 0.9408 0.9401 0.9409 0.9401 0.9412 0.9399 0.9408 0.9397 ± 0.0009 0.9410 ± 0.0004

+ (srcportcount) 0.9366 0.9382 0.9379 0.9390 0.9373 0.9382 0.9349 0.9376 0.9359 0.9385 0.9370 0.9385 0.9366 ± 0.0026 0.9383 ± 0.0011

+ (dstportunique) 0.9270 0.9286 0.9268 0.9287 0.9265 0.9287 0.9269 0.9282 0.9284 0.9292 0.9258 0.9282 0.9269 ± 0.0021 0.9286 ± 0.0009

+ (dstaddrcount, srcportcount) 0.9587 0.9602 0.9597 0.9610 0.9586 0.9601 0.9588 0.9600 0.9597 0.9609 0.9593 0.9605 0.9591 ± 0.0012 0.9604 ± 0.0010

+ (dstaddrcount, dstportunique) 0.9558 0.9575 0.9564 0.9580 0.9557 0.9574 0.9555 0.9574 0.9563 0.9580 0.9560 0.9577 0.9559 ± 0.0008 0.9577 ± 0.0007

+ (srcportcount, dstportunique) 0.9574 0.9578 0.9581 0.9585 0.9574 0.9579 0.9575 0.9576 0.9578 0.9583 0.9581 0.9583 0.9577 ± 0.0008 0.9581 ± 0.0008

+ (dstaddrcount, srcportcount, dstportunique) 0.9621 0.9630 0.9625 0.9635 0.9621 0.9631 0.9620 0.9629 0.9623 0.9634 0.9622 0.9634 0.9622 ± 0.0004 0.9632 ± 0.0006

Figure 4.2: Class breakdown of original features experiments

Figure 4.3: Class breakdown of original features with dstaddrcount experiments

86



Figure 4.4: Class breakdown of original features with srcportcount experiments

Figure 4.5: Class breakdown of original features with dstportunique experiments
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Figure 4.6: Class breakdown of original features with dstaddrcount and srcportcount ex-

periments

Figure 4.7: Class breakdown of original features with dstaddrcount and dstportunique

experiments
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Figure 4.8: Class breakdown of original features with srcportcount and dstportunique

experiments

Figure 4.9: Class breakdown of original features with dstaddrcount, srcportcount and

dstportunique experiments
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Chapter 5

Conclusions

5.1 Experiment Set 1: Can flow features achieve net-

work application classification?

Training data was auto-generated using IANA transport layer port number conventions in a

conservative manner. This generated training data is then applied to learn the classification

of the network traffic using the three inherent and derived flow features: # of bytes, # of

packets, and duration. The experiments show that it is possible to classify certain network

applications with reasonable accuracy (close to or above 90%) using the three features.

The experiments also revealed that accuracy decreased slightly if the focus is on classifying

elephant flows (in our case, the top half of flows with respect to the # of bytes).

5.2 Experiment Set 2: What is the classification per-

formance of combinations of flow features?

Upon examination of the experimental results it can be concluded that:

1. K nearest neighbors had best results when only using the three inherent and derived

features (# of packets, # of bytes and duration). Showing that the engineered features

degraded the ability to adequately classify. This is likely due to over-fitting because

of the increased number of features.

2. Overall, decision trees and random forests presented improvement with the addition
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of the engineered behavioral features. This can be attributed to the fact that because

they have more data, decision trees and random forests can create more decision

nodes which produces a better classification result.

3. srcportcount and dstaddrcount provide the greatest improvement. This suggests that

uncovering the client-server behavior provides insight for network traffic classification.

5.3 Future Work

As more experiments are conducted, several interesting paths to continue the growth of the

collective knowledge towards network application classification emerge. In no particular

order:

• Diversifying the data set - Both works presented utilized network data captured from

an academic institution. Comparing this work across different networks (residential,

Internet backbone, commercial, data centers, publicly available data sets) can provide

a different perspective which can yield new insights.

• Expanding the feature set - Increasing the number of inherent, derived and engineered

flow features that can compliment those analyzed in these efforts provides for an

interesting avenue.

• Classification algorithm selection - Comparing a larger set of classification algorithms

such as neural networks, semi-supervised learning or creating a framework where a

variety of algorithms work in harmony to generate more accurate and robust classi-

fications.

5.4 Final Remarks

These experiments show promise in classifying a section of the network traffic and provide

value in confirming that these flow features are adequate for classification of some traffic.
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However, as more traffic is included and new applications emerge with the advances in

technology, research must also continue to collectively advance the efforts towards improv-

ing network application classification and pursuing answers to this complex, but extremely

rewarding, problem.
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Appendix A

nDPI Label Data Information

In the following appendix, the complete list of nDPI labels found in the UKY data set are

reported along with flow counts and the definition of the application label.

A.1 Label Definitions

Table A.1: nDPI application label definitions.

App Label Count Description

Unknown 3480677 nDPI is unable to classify this flow

SSH 1995177 Also referred to as Secure Shell, is a method for secure

remote login from one computer to another.

ICMP 1005147 (Internet Control Message Protocol) is an error-reporting

protocol that network devices like routers use to gener-

ate error messages to the source IP address when network

problems prevent delivery of IP packets. ICMP creates

and sends messages to the source IP address indicating

that a gateway to the Internet, i.e. a router, service or

host cannot be reached for packet delivery. Any IP net-

work device has the capability to send, receive or process

ICMP messages.
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Table A.1 continued

App Label Count Description

DNS 933846 Hierarchical and decentralized naming system for comput-

ers, services, or other resources connected to the Internet

or a private network. It associates various information with

domain names assigned to each of the participating enti-

ties. Typically used to translate more readily memorized

domain names to the numerical IP addresses needed for lo-

cating and identifying computer services and devices with

the underlying network protocols.

SNMP 525298 Simple Network Management Protocol (SNMP) is an In-

ternet Standard protocol for collecting and organizing in-

formation about managed devices on IP networks and

for modifying that information to change device behav-

ior. Devices that typically support SNMP include cable

modems, routers, switches, servers, workstations, printers,

and more. SNMP is widely used in network management

for network monitoring. SNMP exposes management data

in the form of variables on the managed systems organized

in a management information base (MIB) which describe

the system status and configuration. These variables can

then be remotely queried (and, in some circumstances, ma-

nipulated) by managing applications.

NTP 257972 The Network Time Protocol (NTP) is a networking proto-

col for clock synchronization between computer systems.

NTP is intended to synchronize all participating comput-

ers to within a few milliseconds of Coordinated Universal

Time (UTC).
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Table A.1 continued

App Label Count Description

Google 202861 Internet-related services and products, which include on-

line advertising technologies, search engine, cloud comput-

ing, software, and hardware. SSL Certificate verified as

belonging to Google.

SSL No Cert 110155 HTTP with SSL/TLS security protocol but no certificate

found in payload. This happens because by default only

the first few (7 or 8) packet payloads of each flow are an-

alyzed.

UbuntuONE 40659 Free suite of cloud services that provides users with online

cloud storage, syncing, sharing and streaming capabilities

for managing personal data across numerous devices oper-

ating on a variety of operating systems.

Syslog 27542 Standard for message logging. Uses a client-server archi-

tecture where the server listens on a well-known or regis-

tered port for protocol requests from clients. Historically

the most common transport layer protocol for network log-

ging has been User Datagram Protocol (UDP), with the

server listening on port 514. As UDP lacks congestion con-

trol mechanisms, support for Transport Layer Security is

required in implementations and recommended for general

use on Transmission Control Protocol (TCP) port 6514.
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Table A.1 continued

App Label Count Description

ICMPV6 23533 Internet Control Message Protocol version 6 (ICMPv6)

is the implementation of the Internet Control Mes-

sage Protocol (ICMP) for Internet Protocol version 6

(IPv6).,ICMPv6 is an integral part of IPv6 and per-

forms error reporting and diagnostic functions (e.g., ping),

and has a framework for extensions to implement future

changes.

STUN 18213 Session Traversal Utilities for NAT (STUN) is a standard-

ized set of methods, including a network protocol, for

traversal of network address translator (NAT) gateways in

applications of real-time voice, video, messaging, and other

interactive communications. STUN is a tool used by other

protocols, such as Interactive Connectivity Establishment

(ICE), the Session Initiation Protocol (SIP), or WebRTC.

It provides a tool for hosts to discover the presence of a net-

work address translator, and to discover the mapped, usu-

ally public, Internet Protocol (IP) address and port num-

ber that the NAT has allocated for the application’s User

Datagram Protocol (UDP) flows to remote hosts. The pro-

tocol requires assistance from a third-party network server

(STUN server) located on the opposing (public) side of the

NAT, usually the public Internet.

GoogleServices 18202 Background service that runs on Android, which helps in

integrating Google’s advanced functionalities to other ap-

plications.
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Table A.1 continued

App Label Count Description

SSDP 16829 Simple Service Discovery Protocol (SSDP) is a network

protocol based on the Internet protocol suite for adver-

tisement and discovery of network services and presence

information. It accomplishes this without assistance of

server-based configuration mechanisms, such as Dynamic

Host Configuration Protocol (DHCP) or Domain Name

System (DNS), and without special static configuration of

a network host. SSDP is the basis of the discovery pro-

tocol of Universal Plug and Play (UPnP) and is intended

for use in residential or small office environments. It was

formally described in an Internet Engineering Task Force

(IETF) Internet Draft by Microsoft and Hewlett-Packard

in 1999. Although the IETF proposal has since expired

(April, 2000), SSDP was incorporated into the UPnP pro-

tocol stack, and a description of the final implementation

is included in UPnP standards documents.

Amazon 14255 Amazon and Amazon Data Services. SSL Certificate veri-

fied.

HTTP 10991 The Hypertext Transfer Protocol (HTTP) is an application

protocol for distributed, collaborative, hypermedia infor-

mation systems. HTTP is the foundation of data commu-

nication for the World Wide Web, where hypertext docu-

ments include hyperlinks to other resources that the user

can easily access by a mouse click or by tapping the screen

in a web browser.
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Table A.1 continued

App Label Count Description

QQ 3505 Tencent QQ, generally referred to as QQ, is the most pop-

ular free instant messaging computer program in China.

Viber 3482 Cross-platform voice over IP (VoIP) and instant messag-

ing (IM) software application operated by Japanese multi-

national company Rakuten, provided as a freeware for the

Android, iOS, Microsoft Windows, macOS and Linux plat-

forms.

DHCPV6 2985 Dynamic Host Configuration Protocol version 6 (DHCPv6)

is a network protocol for configuring Internet Protocol ver-

sion 6 (IPv6) hosts with IP addresses, IP prefixes and other

configuration data required to operate in an IPv6 network.

It is the IPv6 equivalent of the Dynamic Host Configura-

tion Protocol,(DHCP)for IPv4.
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Table A.1 continued

App Label Count Description

QUIC 1445 General-purpose transport layer network protocol initially

designed by Jim Roskind at Google. Although its name

was initially proposed as the acronym for ”Quick UDP

Internet Connections”, IETF’s use of the word QUIC

is not an acronym; it is simply the name of the pro-

tocol.,Among other applications, QUIC improves perfor-

mance of connection-oriented web applications that are

currently using TCP. It does this by establishing a num-

ber of multiplexed connections between two endpoints over

User Datagram Protocol (UDP). This works hand-in-hand

with HTTP/2’s multiplexed connections, allowing multiple

streams of data to reach all the endpoints independently,

and hence independent of packet losses involving other

streams. In contrast, HTTP/2 hosted on Transmission

Control Protocol (TCP) can suffer head-of-line-blocking

delays of all multiplexed streams if any of the TCP pack-

ets are delayed or lost.,QUIC’s secondary goals include re-

duced connection and transport latency, and bandwidth

estimation in each direction to avoid congestion. It also

moves congestion control algorithms into the user space

at both endpoints, rather than the kernel space, which

it is claimed will allow these algorithms to improve more

rapidly. Additionally, the protocol can be extended with

forward error correction (FEC) to further improve perfor-

mance when errors are expected. QUIC is often used by

gaming, streaming media and VoIP services.
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Table A.1 continued

App Label Count Description

YouTube 1347 Video-sharing platform. SSL Certificate verified.

NetBIOS 1240 OSI Session Layer 5 Protocol and a service that allows

applications on computers to communicate with one an-

other over a local area network (LAN). It is a non-

routable Protocol and NetBIOS stands for Network Basic

Input/Output System.

Apple 1038 Company that designs, develops, and sells consumer elec-

tronics, computer software, and online services. SSL Cer-

tificate verified.

Github 719 Provides hosting for software development version control

using Git. SSL Certificate verified.

ApplePush 394 Apple Push Notification service (commonly referred to as

Apple Notification Service or APNs) is a platform noti-

fication service created by Apple Inc. that enables third

party application developers to send notification data to

applications installed on Apple devices.

RDP 389 Remote Desktop Protocol (RDP) is a proprietary proto-

col developed by Microsoft, which provides a user with a

graphical interface to connect to another computer over a

network connection. The user employs RDP client soft-

ware for this purpose, while the other computer must run

RDP server software.
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Table A.1 continued

App Label Count Description

Cloudflare 371 Cloudflare, Inc. is an American web infrastructure and

website security company, providing content delivery net-

work services, DDoS mitigation, Internet security, and dis-

tributed domain name server services. Cloudflare’s services

sit between a website’s visitor and the Cloudflare user’s

hosting provider, acting as a reverse proxy for websites.

FTP CONTROL 341 The File Transfer Protocol (FTP) is a standard network

protocol used for the transfer of computer files between a

client and server on a computer network.

SkypeCall 297 The Skype protocol is a proprietary Internet telephony net-

work used by Skype. The protocol’s specifications have not

been made publicly available by Skype and official appli-

cations using the protocol are closed-source.

Facebook 201 Social media and networking service traffic over HTTP.

SSL Certificate verified.
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Table A.1 continued

App Label Count Description

Kerberos 176 Computer-network authentication protocol that works on

the basis of tickets to allow nodes communicating over a

non-secure network to prove their identity to one another

in a secure manner. Its designers aimed it primarily at a

clientserver model and it provides mutual authentication-

both the user and the server verify each other’s identity.

Kerberos protocol messages are protected against eaves-

dropping and replay attacks. Kerberos builds on symmet-

ric key cryptography and requires a trusted third party,

and optionally may use public-key cryptography during

certain phases of authentication. Kerberos uses UDP port

88 by default.

Tor 90 Tor is free and open-source software for enabling anony-

mous communication. The name is derived from an

acronym for the original software project name ”The Onion

Router”. Tor directs Internet traffic through a free, world-

wide, volunteer overlay network consisting of more than

seven thousand relays to conceal a user’s location and us-

age from anyone conducting network surveillance or traffic

analysis.
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Table A.1 continued

App Label Count Description

SSL 56 Transport Layer Security (TLS), and its now-deprecated

predecessor, Secure Sockets Layer (SSL), are cryptographic

protocols designed to provide communications security

over a computer network. Several versions of the protocols

find widespread use in applications such as web browsing,

email, instant messaging, and voice over IP (VoIP). Web-

sites can use TLS to secure all communications between

their servers and web browsers. Traffic receives this label

when a SSL/TLS certificate is found in the payload but

the certificate does not match any of the known certifi-

cates thus no subprotocol is declared.

IGMP 49 The Internet Group Management Protocol (IGMP) is

a communications protocol used by hosts and adjacent

routers on IPv4 networks to establish multicast group

memberships. IGMP is an integral part of IP multicast.

IGMP can be used for one-to-many networking applica-

tions such as online streaming video and gaming, and al-

lows more efficient use of resources when supporting these

types of applications.
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Table A.1 continued

App Label Count Description

MQTT 49 A machine-to-machine (M2M)/”Internet of Things” con-

nectivity protocol. It was designed as an extremely

lightweight publish/subscribe messaging transport. It is

useful for connections with remote locations where a small

code footprint is required and/or network bandwidth is

at a premium. For example, it has been used in sensors

communicating to a broker via satellite link, over occa-

sional dial-up connections with healthcare providers, and

in a range of home automation and small device scenarios.

It is also ideal for mobile applications because of its small

size, low power usage, minimized data packets, and effi-

cient distribution of information to one or many receivers.

TeamSpeak 45 Proprietary voice-over-Internet Protocol (VoIP) applica-

tion for audio communication between users on a chat

channel, much like a telephone conference call. The client

software connects to a TeamSpeak server of the user’s

choice, from which the user may join chat channels.

RTMP 44 Real-Time Messaging Protocol (RTMP) was initially a pro-

prietary protocol developed by Macromedia for streaming

audio, video and data over the Internet, between a Flash

player and a server. Macromedia is now owned by Adobe,

which has released an incomplete version of the specifica-

tion of the protocol for public use. While the primary mo-

tivation for RTMP was to be a protocol for playing Flash

video, it is also used in some other applications, such as

the Adobe LiveCycle Data Services ES.
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Table A.1 continued

App Label Count Description

GoogleHangout 28 Google Hangouts is a communication software product de-

veloped by Google. Google began developing Hangouts

into a product aimed at enterprise communication. Hang-

outs is now part of the G Suite line of products and con-

sists of two primary products: Google Hangouts Meet and

Google Hangouts Chat. Google has also begun integrating

features of Google Voice, its IP telephony product, into

Hangouts, stating that Hangouts is designed to be ”the

future” of Voice.

Twitter 20 Social networking service. SSL Certificate verified.

PlayStore 19 Google Play is a digital distribution service operated and

developed by Google. It serves as the official app store for

the Android operating system, allowing users to browse

and download applications developed with the Android

software development kit and published through Google.

GMail 19 Free email service developed by Google.

MS OneDrive 18 File hosting service and synchronization service operated

by Microsoft as part of its web version of Office.
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Table A.1 continued

App Label Count Description

Whois-DAS 18 The Whois service provides a way for the public to lookup

information about registered data. To protect the data

from possible abuse, the Whois service enforces a rate lim-

itation mechanism, which will limit the possibility for a

client to do a large number of requests within a short pe-

riod of time. DAS (Domain Availabilty Service) provides a

way for the public to check whether a domain can be reg-

istered. The DAS service enforces a lower rate limitation

than the Whois.

Office365 16 Cloud-based services offered by Microsoft as part of the

Microsoft Office product line.

GoogleDrive 12 File storage and synchronization service developed by

Google which allows users to store files on their servers,

synchronize files across devices, and share files. In addition

to a website, Google Drive offers apps with offline capabili-

ties for Windows and macOS computers, and Android and

iOS smartphones and tablets.

Skype 12 Telecommunications application that specializes in provid-

ing video chat and voice calls between computers, tablets,

mobile devices, the Xbox One console, and smartwatches

via the Internet. Skype also provides instant messaging

services. Users may transmit text, video, audio and im-

ages.
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Table A.1 continued

App Label Count Description

Microsoft 8 Technology company that develops, manufactures, li-

censes, supports, and sells computer software, consumer

electronics, personal computers, and related services. SSL

Certificate verified.

COAP 8 Constrained Application Protocol (CoAP) is a specialized

Internet Application Protocol for constrained devices, as

defined in RFC 7252. It enables those constrained devices

called ”nodes” to communicate with the wider Internet us-

ing similar protocols. CoAP is designed for use between

devices on the same constrained network (e.g., low-power,

lossy networks), between devices and general nodes on the

Internet, and between devices on different constrained net-

works both joined by an internet. CoAP is also being used

via other mechanisms, such as SMS on mobile communi-

cation networks. CoAP is a service layer protocol that is

intended for use in resource-constrained internet devices,

such as wireless sensor network nodes. CoAP is designed to

easily translate to HTTP for simplified integration with the

web, while also meeting specialized requirements such as

multicast support, very low overhead, and simplicity. Mul-

ticast, low overhead, and simplicity are extremely impor-

tant for Internet of Things (IoT) and Machine-to-Machine

(M2M) devices, which tend to be deeply embedded and

have much less memory and power supply than traditional

internet devices have. Therefore, efficiency is very impor-

tant. CoAP can run on most devices that support UDP.
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Table A.1 continued

App Label Count Description

IRC 8 Internet Relay Chat (IRC) is an application layer protocol

that facilitates communication in the form of text. The

chat process works on a client/server networking model.

IRC is mainly designed for group communication in dis-

cussion forums, called channels, but also allows one-on-

one communication via private messages as well as chat

and data transfer, including file sharing.

Redis 6 Redis (Remote Dictionary Server) is an in-memory data

structure project implementing a distributed, in-memory

key-value database with optional durability. Redis sup-

ports different kinds of abstract data structures, such

as strings, lists, maps, sets, sorted sets, HyperLogLogs,

bitmaps, streams, and spatial indexes. Used as a database,

a caching layer or a message broker.

Oscar 6 OSCAR (Open System for CommunicAtion in Realtime)

is AOL’s proprietary instant messaging and presence in-

formation protocol. It was used by AOL’s AIM instant

messaging system and ICQ, their VoIP which name comes

from the phrase ”I Seek You”.

BitTorrent 5 A communication protocol for peer-to-peer file sharing

(P2P) which is used to distribute data and electronic files

over the Internet. BitTorrent is one of the most common

protocols for transferring large files, such as digital video

files containing TV shows or video clips or digital audio

files containing songs.
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Table A.1 continued

App Label Count Description

AppleiCloud 4 iCloud is a cloud storage and cloud computing service from

Apple Inc. SSL Certificate verified.

NFS 4 Network File System (NFS) is a distributed file system

protocol originally developed by Sun Microsystems (Sun)

in 1984, allowing a user on a client computer to access

files over a computer network much like local storage is

accessed. NFS, like many other protocols, builds on the

Open Network Computing Remote Procedure Call (ONC

RPC) system.

LinkedIn 4 Social media platform tailored to professionals. SSL Cer-

tificate verified.

Teredo 3 Transition technology that gives full IPv6 connectivity for

IPv6-capable hosts that are on the IPv4 Internet but have

no native connection to an IPv6 network. Unlike similar

protocols such as 6to4, it can perform its function even

from behind network address translation (NAT) devices

such as home routers. Teredo operates using a platform

independent tunneling protocol that provides IPv6 (In-

ternet Protocol version 6) connectivity by encapsulating

IPv6 datagram packets within IPv4 User Datagram Pro-

tocol (UDP) packets. Teredo routes these datagrams on

the IPv4 Internet and through NAT devices.
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Table A.1 continued

App Label Count Description

MDNS 3 Multicast DNS (mDNS) protocol resolves hostnames to IP

addresses within small networks that do not include a local

name server. It is a zero-configuration service, using es-

sentially the same programming interfaces, packet formats

and operating semantics as the unicast Domain Name Sys-

tem (DNS). Although Stuart Cheshire designed mDNS as

a stand-alone protocol, it can work in concert with stan-

dard DNS servers.

BGP 2 Border Gateway Protocol (BGP) is a standardized exte-

rior gateway protocol designed to exchange routing and

reachability information among autonomous systems (AS)

on the Internet.

GoogleMaps 2 Web mapping service developed by Google. SSL Certifi-

cate verified.

GoogleDocs 2 Word processor included as part of a free, web-based soft-

ware office suite offered by Google within its Google Drive

service. This service also includes Google Sheets and

Google Slides, a spreadsheet and presentation program re-

spectively. Google Docs is available as a web application,

mobile app for Android, iOS, Windows, BlackBerry, and

as a desktop application on Google’s ChromeOS.
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Table A.1 continued

App Label Count Description

UPnP 2 Universal Plug and Play (UPnP) is a set of networking

protocols that permits networked devices, such as per-

sonal computers, printers, Internet gateways, Wi-Fi ac-

cess points and mobile devices to seamlessly discover each

other’s presence on the network and establish functional

network services for data sharing, communications, and

entertainment. UPnP is intended primarily for residential

networks without enterprise-class devices.

FTP DATA 2 The File Transfer Protocol (FTP) is a standard network

protocol used for the transfer of computer files between a

client and server on a computer network.

SIP 1 The Session Initiation Protocol (SIP) is a signaling proto-

col used for initiating, maintaining, and terminating real-

time sessions that include voice, video and messaging ap-

plications. SIP is used for signaling and controlling mul-

timedia communication sessions in applications of Inter-

net telephony for voice and video calls, in private IP tele-

phone systems, in instant messaging over Internet Proto-

col (IP) networks as well as mobile phone calling over LTE

(VoLTE).
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A.2 Flow Data Breakdown by Label

Table A.2: Flow counts by nDPI application label.

App Count Percent

Total 8699852 100.0000

Unknown 3480677 40.0085

SSH 1995177 22.9335

ICMP 1005147 11.5536

DNS 933846 10.7340

SNMP 525298 6.0380

NTP 257972 2.9652

Google 202861 2.3318

SSL No Cert 110155 1.2662

UbuntuONE 40659 0.4674

Syslog 27542 0.3166

ICMPV6 23533 0.2705

STUN 18213 0.2093

GoogleServices 18202 0.2092

SSDP 16829 0.1934

Amazon 14255 0.1639

HTTP 10991 0.1263

QQ 3505 0.0403

Viber 3482 0.0400

DHCPV6 2985 0.0343

QUIC 1445 0.0166

YouTube 1347 0.0155
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App Count Percent

NetBIOS 1240 0.0143

Apple 1038 0.0119

Github 719 0.0083

ApplePush 394 0.0045

RDP 389 0.0045

Cloudflare 371 0.0043

FTP CONTROL 341 0.0039

SkypeCall 297 0.0034

Facebook 201 0.0023

Kerberos 176 0.0020

Tor 90 0.0010

SSL 56 0.0006

IGMP 49 0.0006

MQTT 49 0.0006

TeamSpeak 45 0.0005

RTMP 44 0.0005

GoogleHangout 28 0.0003

Twitter 20 0.0002

PlayStore 19 0.0002

GMail 19 0.0002

MS OneDrive 18 0.0002

Whois-DAS 18 0.0002

Office365 16 0.0002

GoogleDrive 12 0.0001

Skype 12 0.0001

Microsoft 8 0.0001
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App Count Percent

COAP 8 0.0001

IRC 8 0.0001

Redis 6 0.0001

Oscar 6 0.0001

BitTorrent 5 0.0001

AppleiCloud 4 0.0000

NFS 4 0.0000

LinkedIn 4 0.0000

Teredo 3 0.0000

MDNS 3 0.0000

BGP 2 0.0000

GoogleMaps 2 0.0000

GoogleDocs 2 0.0000

UPnP 2 0.0000

FTP DATA 2 0.0000

SIP 1 0.0000
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