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ABSTRACT 

Examination of lung function for diagnosis and monitoring of diseases such as chronic 

obstructive pulmonary disease (COPD) and asthma can be performed with a variety of pulmonary 

function testing (PFT) techniques. The most commonly prescribed of these procedures are 

spirometry and whole-body plethysmography. However, these active participation tests depend on 

forced breathing maneuvers, may be physically exhausting, might not produce enough 

information, and are susceptible to being subject-dependent.  In contrast, passive PFT approaches 

such as the forced oscillation technique (FOT) and the impulse oscillometry system (IOS) are 

increasingly being utilized for measuring lung mechanics because they require only minimal 

participation, which is a crucial advantage when dealing with very young pediatric patients, 

geriatric patients, and those with cognitive impairments or who are unconscious. Using external 

pressure oscillations superimposed onto tidal breathing, both FOT and IOS reveal intricate details 

behind breathing mechanics by measuring the frequency response of the respiratory system from 

the composite test signals to determine input impedance at the airway opening and detect lung 

obstructions and restrictions.  

IOS features a unique discriminative property to identify the location of lung obstruction, 

which makes IOS very valuable for the detection and diagnosis of small airways disease (SAD), 

also known as small airways impairment (SAI), and impending asthma potentially long before 

their clinical manifestation.  However, IOS measurements are coarse and there is also a need for 

studies with test functions in the low frequency range to determine the respiratory impedance of 

distant airways. Furthermore, particularly for preschoolers, current limitations of IOS include the 

lack of an international test standard; a lack of reference equations, parameter values, and 

identifiable SAD biomarkers; and a high probability of impedance distortion and biased 
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estimations due to signal interference from spontaneous breathing at low frequencies or upper 

airway shunting effects at high frequencies. 

This dissertation aims at an enhanced IOS determination of the function of small airways 

via analysis of their frequency response to facilitate early SAD detection, which is considered a 

phenotype and likely childhood precursor for the pathogenesis of asthma. The ultimate goal of this 

research is to aid diagnosis and monitoring of asthma at an early stage, to treat and control the 

disease, and improve the quality of life of asthmatic individuals, particularly pediatric patients. 

This research introduces the development of a novel electrical model of the respiratory system to 

determine the mechanical impedance of peripheral airways using IOS-based data in the range from 

5 Hz down to tidal breathing frequency, the ultra-low frequency range (ULF). The presented 

approach models the effects of noninvasive application of ULF excitation signals into the 

respiratory system to parameterize its frequency response below 5 Hz and ascertain sharper 

resolution of 7th to 19th generation airways.   
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CHAPTER 1: INTRODUCTION 

Asthma is a chronic allergic disorder, wherein hyper-reactivity of the immune response to 

stimuli and airborne allergens triggers an inflammation of the bronchial tubes in the lungs, 

resulting in constricted airways and impaired breathing [2].  Depending on the severity and 

frequency of attacks, physiological distress symptoms range from dyspnea and diffused sibilant 

rhonchi to hypoxemia in extreme cases, thereby limiting physical activity and severely restricting 

quality of life.  In 2018, asthma affected over 26.5 million Americans (339.4 million people 

globally) and was responsible for 420,000 deaths worldwide, or more than 1,000 per day [3, 4], 

predominantly among those inhabiting the developing world and almost all of which were 

preventable. It is estimated that one in twelve adults in the United States currently suffer from 

asthma, which coincidentally is the same statistic for prevalence among children in this country 

[2].  

 

1.1  PROBLEM STATEMENT  

In recent decades, the prevalence of pulmonary obstructive diseases has grown sharply 

among children, which has been attributed in part to an increase in atopic sensitization (e.g. genetic 

predisposition, urbanization trends, etc.) [2]. With the proliferation of lung disorders and diseases 

on the rise, examination of lung function for diagnosis and monitoring of respiratory diseases such 

as COPD and asthma becomes crucial. Current options among respiratory diagnostic and 

monitoring techniques include a variety of pulmonary function test (PFT) devices and procedures 

developed over the last 60 years [REFS]. The most commonly prescribed and well-established 

procedures are spirometry and whole-body plethysmography (WBP), which are often performed 

in tandem [1, 5]. In fact, spirometry is considered the PFT gold standard [5, 6] due in part to its 
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historically extensive body of knowledge and present adherence to a set of quality standards (adult-

specific) established by the American Thoracic Society (ATS) and European Respiratory Society 

(ERS) [7, 8]. However, both spirometry and WBP are active participation tests that depend on 

extreme breathing maneuvers, may be physically exhausting, might not produce enough 

information, and are susceptible to being subject-dependent. 

In contrast, passive PFT approaches such as the forced oscillation technique (FOT) and the 

impulse oscillometry system (IOS) are increasingly being utilized for measuring lung mechanics, 

though their historical rate of adoption has been lessened due to their atypical procedures, abstract 

parameters, and technical complexity. Researchers’ and clinicians’ increasing interest in FOT and 

IOS is mainly due to their distinctive ability to discriminate between central and peripheral lung 

obstruction. Additionally, these techniques require only submissive participation from the 

participant, which is a crucial advantage over other procedures when dealing with very young 

pediatric patients, geriatric patients, and those with cognitive impairments or unconscious. 

Using external acoustic pressure waves superimposed onto spontaneous breathing, both 

FOT and IOS determine respiratory mechanics by measuring the relation between pressure waves 

applied and the resulting respiratory airflow at the mouth.  The resulting respiratory system input 

impedance response, 𝑍*+, is used to detect lung obstructions and assess their degree of severity. 

Application of these passive PFTs, via demonstration of their related fundamental 

principles of operation with respect to their measurements of 𝑍*+, primarily focuses on their extent 

of use in identifying central versus peripheral discriminative features, given that both techniques 

enable a detailed and accurate observation of lung mechanics for the potential identification of 

obstructions and pathologies in the respiratory system. Considerable research and clinical work 

still must be performed to leverage IOS capabilities to scrutinize small airways and alveoli utilizing 
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ultra-low frequencies (ULF) in search of reliable precursors and antecedent indicators for early 

detection of respiratory diseases, i.e. asthma. In addition, respiratory system models must be 

developed or extended into the ULF range to support research and clinical practice targeting small 

airway disease. 

 

1.2  SMALL AIRWAY DISEASE AND OBSTRUCTIVE PULMONARY DISORDERS  

Small airways disease (SAD) refers to the obstruction, inflammation, fibrosis and 

remodeling of the small airways.  SAD may underlie asthma persistence, as most standard inhaled 

pharmaceutical treatments are unlikely to penetrate into pulmonary peripheral regions, but instead 

mainly therapeutically affect the large, central airways [33]. 

Chronic obstructive pulmonary disease (COPD) refers to an inflammatory disorder 

provoking airflow blockage, dyspnea, productive cough, and diffuse sibilant rhonchi. Frequent and 

prolonged exposure to irritants and allergens is the main source of this disease [1]. COPD is often 

considered to include a group of related and contributory respiratory disorders, primarily 

encompassing bronchitis and emphysema, typically occurring together but varying in severity. 

Bronchitis is characterized by inflammation of the lining of bronchial tubes that branch from the 

trachea, while emphysema can be described as a progressive disease causing dyspnea due to over-

inflation of alveoli.  

Bronchiectasis is another obstructive pulmonary disease, although functionally different 

from previously described diseases, with symptoms including productive cough and recurrent 

respiratory infections. Symptoms are produced and exacerbated by pathological dilation of 

airways, which in turn prevents ciliary transport of sputum out of the airways thus allowing these 

secretions to remain in the smaller airways cultivating bacteria. 
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Lastly, asthma is a very prolific and precarious respiratory disorder characterized by 

inflammation and constriction of the airways that causes a severe reduction in airflow. Marked by 

the overstimulation of the immune response and accompanying production of excess sputum, acute 

episodes can occur followed by extended symptom-free periods. 

All of the conditions just mentioned result in either some type of not fully- or irreversible 

damage occurring in the lungs. Therefore, early screening for the recognition of accelerated and 

progressive deterioration of the small airways via sensitive PFT may provide awareness for a 

predisposed development of asthma and therefore allow timely and systemic intervention before 

the onset of chronic airflow obstruction and further lung function decline, commonly associated 

with COPD and this morbidity. 

 

1.3  CLINICAL RELEVANCE AND SIGNIFICANCE OF THE PROBLEM 

Research shows a unique discriminative property of IOS to identify the site of airway 

obstructions, which makes IOS very valuable for the detection and diagnosis of SAD and 

impending asthma, potentially long before their clinical manifestation. However, IOS 

measurements are coarse and typically limited to frequencies well above the tidal breathing 

frequency. To probe the small airways, IOS measurements must be extended to the ultra-low 

frequency range (ULF), i.e. below 5 Hz, for a more sensitive and specific determination of 

peripheral respiratory impedance in the quiet zone. Collectively the small airways compose a 

significantly large portion of the lungs’ volume and surface area in comparison to the central 

airways, yet account for only 10 percent of total airway impedance [9], making this peripheral 

zone contribution more challenging to detect. This research aims at extending IOS data and models 

into the ULF range to explore and determine whether they will offer increased sensitivity for 
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detection of peripheral obstructions in the lungs, which potentially predisposes the onset of small 

airway disease in suspect patients, and provide an earlier detection of asthma. 

Furthermore, particularly for preschoolers and geriatric patients, current limitations of IOS 

include:  the lack of an international test standard; a lack of reference equations, parameter values, 

and identifiable SAD biomarkers; and a high probability of impedance distortion and oscillatory 

signal interference due to tidal breathing and upper airway shunting effects. These effects become 

yet more complicated in early childhood subjects, where discernment between the effects of 

disease from the influences of growth and development is critical to clinical management [10]. 

PFT, however, offers opportunities for prevention, reversibility, and early identification of 

respiratory disease. For instance, both spirometry and IOS can identify airflow obstruction before 

COPD symptoms emerge and five to ten years before any signs may surface on X-ray images [6]. 

 
1.4  RESEARCH OBJECTIVES AND PROPOSED SOLUTION 

Significant advantages of IOS over other PFTs in clinical practice and research include its 

objectivity, high sensitivity for the detection of SAD, improved time resolution of measurements, 

and subject passive participation. In current clinical practice, however, IOS complex test results 

lack comprehensive and discriminative respiratory impedance data below the standard 5 to 30 Hz 

range where it has been suggested that results are most sensitive to normal physical processes and 

pathologic structural alterations [11], especially in small airways. Given that most of data and 

current practice do not encompass ultra-low frequency measurements of respiratory system 

impedance, which correlate directly with the condition of the small airways, the research questions 

guiding this work are, first, can existing IOS data be validly expanded into the ULF range for SAD 

studies? And, second, how can electrical pulmonary system models be developed, extended, or 
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tuned into the ULF range to reveal specific information about the condition of small airways based 

on IOS PFT to support research and clinical practice targeting SAD?   

Hence, the aim here is to describe the calculated research approach used to address the 

challenges in applying composite ULF test signals and extracting valid respiratory impedance 

measurements from the frequency response of the small airways, analyzing the results, and 

modeling the outcomes. For the sake of this research and for future reference, ultra-low frequency 

(ULF) is defined as all signal frequencies from 0+ε to 5 Hz, for ε > 0 and ε→0, which includes the 

spontaneous tidal breathing frequency. 

The main focus of this research is the evaluation of ULF IOS data and electrical models 

with the following goals: 

Objective 1: To develop and optimize an electrical analog, lumped parameter SAD model to 

characterize the impedance response of the human respiratory system subject to test under ULF 

IOS. 

Objective 2: To design a model parameter estimation algorithm to define optimal parameter values 

for a SAD electrical analog via regression analysis of IOS respiratory impedance measurements 

from an existing patient database.  

Objective 3: To simulate the application of synthetic ULF test signals superimposed onto a tidal 

breathing signal and extract high quality respiratory system impedance outputs from an electrical 

IOS circuit model with optimized parameter values to detect evidence of SAD. 

Objective 4: To quantitatively evaluate performance of the frequency response signals, primarily 

respiratory system impedance (𝑍*+), and gauge the precision of transduced IOS circuit model 

parameter estimates via the coherence function (g2) and signal-to-noise ratio (SNR) to evaluate 

their effectiveness. 
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Objective 5: To assess the impact of simulated impedance of the respiratory system (𝑍*+ via SAD 

inverse and forward model approaches) and SAD-related model parameter estimates across the 

low-frequency range of interest for the subsequent identification of sensitive changes in respiratory 

system frequency response in comparison to competitive models and predetermined IOS indices 

from a patient database. 

Research performed aims to enhance IOS sensitivity of small airway impedance 

characteristics via modeled ULF frequency response for reliable extraction of discriminative 

predictor features of SAD. A key deliverable of this research is the development of a novel 

electrical analog of a SAD respiratory model that circumvents the standard test range and instead 

concentrates on the unfamiliar ULF range. Circuit simulations, nonlinear regression with 

extrapolations, and statistical analysis using clinical parametric data from a 2006 IOS study of 112 

children ages 5 to 17 are performed to assess the validity and accuracy of the ULF SAD model, 

especially in pediatric patients. 
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CHAPTER 2: LITERATURE REVIEW 

The mechanical properties of the respiratory system become explicitly important when the 

normal rhythm of breathing becomes compromised. Researchers and clinicians rely on the 

measurement of these properties to determine the conditions of lung function and reach a diagnosis 

[39]. The objective of this chapter is to offer an overview of PFT to analyze the manner in which 

mechanical properties of the lung have been measured, modeled, and researched. 

 

2.1.  PHYSIOLOGICAL INTERPRETATIONS OF RESPIRATORY IMPEDANCE 

Pulmonary function tests measure a set of system parameters that serve as key indicators 

of the current state of the lungs. These indicators are interpreted to diagnose, monitor, and treat 

respiratory disorders via a combination of expertise in the field and comparison against established 

references including test standards, equations, and threshold values.   

The principal parameter that only IOS and FOT can measure directly via external pressure 

oscillations is respiratory system impedance (𝑍*+). This parameter may be defined as the 

mechanical load of the respiratory system to ventilation, or in IOS/FOT terms, the sum of all forces 

in the airways and surrounding parenchyma that oppose the injection of the pressure oscillation 

down into the lungs [39]. Such forces include frictional loss in the airways, or resistance, plus gas 

inertive and tissue compliance influences, or reactance. By definition, the sum of respiratory 

system resistance (𝑅*+) and reactance (𝑋*+)	produces the total respiratory system impedance 

(𝑍*+). 

From the IOS/FOT perspective, 𝑍*+ is the mechanical response to the respiratory system 

to an acoustical pressure wave traveling from the airway opening through the trachea and 

ultimately to the alveoli. The airflow induced by this pressure wave will be impeded in a non-
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uniform fashion by the Venturi effect in the airways and shunting properties of the distended 

parenchyma [37]. 𝑍*+ is comprised of 𝑅*+, which represents the energy dissipation caused 

primarily by flow drag against the viscous walls of the narrow airways, and 𝑋*+, which is 

considered as energy storage that is relative to a tissue’s elasticity or compliance, its inverse. 

 

2.1  THEORETICAL FOUNDATIONS OF FOT AND IOS 

The pulmonary testing scheme of applying forced oscillations, primarily via sinusoidal air 

pressure fluctuations at the mouth or around the chest, to ascertain flow response of the lungs and 

thus determine the state of respiratory mechanics in humans was first researched by DuBois et al. 

(1956). Pressure and flow measurements are ascertained by the instrument’s pneumotach (airflow 

meter) and pressure transducer (scales and digitizes an acoustic signal to a voltage output reading), 

respectively. The acquisition of this FOT flow response for subsequent computation of mechanical 

lung impedance provides a method for detection of SAD and monitoring of asthma. Since its 

introduction, FOT has been a replacement or an adjunct to spirometry when the focus of study is 

on small airways, which are the predominant site of airflow obstruction in asthmatics [12]. 

Instead of relying on total lung capacity (TLC) and residual volume (RV) measurements 

as proxies for the calculation of respiratory impedance as done in spirometry, FOT utilizes 

mechanical perturbations, i.e., external pressure signals, superimposed over normal breathing to 

derive any underlying level of obstruction. A loudspeaker or an air piston are common sources of 

acoustic pressure signals to be applied at the airway opening. The input impedance of the 

respiratory system (𝑍*+) can be approximated from the ratio of the fast Fourier transform (FFT) of 

the FOT pressure input to flow response at each test frequency. 𝑍*+ represents the impedance of 
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the whole respiratory system comprised of both resistance (𝑅*+), or frictional loss, and reactance 

(𝑋*+), or elastic and inertial load, and it can be expressed as the complex quantity 

𝑍*+ = 𝑅*+ + 𝑖𝑋*+,where	𝑖 = √−1.        (2-1) 

𝑅*+ describes the dissipative mechanical properties of the respiratory system and encompasses the 

resistance of central and peripheral airways, lung tissue, and chest wall. Since the resistance 

contribution from the latter two is typically negligible, 𝑅*+ is predominantly determined by caliber, 

wall surface, and structure of the airways. 𝑋*+ describes the energy storage capacity of the 

respiratory system and represents the mass-inertive forces of the moving air column in the 

conducting airways expressed in terms of frequency-dependent capacitance and inertance [13]. 

FOT can reliably discriminate between large and small airway obstruction via high versus 

low frequency response characteristics, respectively. The FOT high-frequency response (>20 Hz) 

is determined by proximal airways, whereas its low frequency response (<15 Hz) is determined by 

small airways. FOT parameters, where P< stands for measured parameter P using a test signal with 

the fundamental or reference frequency f, including 𝑅=, 𝑅>?, 𝑋=, 𝑋>?, and resonant frequency, FABC, 

indicate the relationship between impedance measurements, site of airflow deficiency, and the 

degree of obstruction, as pulmonary impedance varies inversely with the caliber of airways [14]. 

Reference to these specific FOT parameters may support the diagnosis of a pulmonary obstructive 

disease such as bronchitis, emphysema, bronchiectasis, and similar dysfunctions. Additionally, the 

frequency dependence of resistance (fdR = 𝑅= – 𝑅>?) can be used as another indicator in 

determining whether an obstruction is present in large versus small airways. A distinctive feature 

of SAD is a relatively high fdR, which is indicative of higher resistance within the lumen of 

peripheral airways. Thus, impairment causes can be identified as follows [10]: 

1. High 𝑅>? implies proximal airway obstruction. 
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2. High 𝑅= and |𝑋=|, where |a| indicates absolute value, imply peripheral airway obstruction, 

e.g. asthma. 

3. High fdR implies small airways disease. 

FOT shares physical, anatomical, and physiological bases with IOS [15]. However, the 

former uses as test signals a mono-frequency sine wave sequence or pseudorandom noise (PRN) 

[16, 17], whereas the latter uses mixed multi-frequency (5 – 30 Hz) impulse signals. Using 

conventional equipment, these IOS input pressure pulses may be applied at up to 10 impulses per 

second, thereby allowing for the reliable analysis of intra-breath variation in impedance, 

comparable to FOT. However, IOS applications, as in this research, typically utilize 5 impulses 

per second to record longer respiratory time constants (t) that usually provide more information 

and evidence of respiratory defects [13]. 

IOS uses spectral analysis of the pressure (𝑃*+) to flow (𝑉*+F ) ratio at the mouth to calculate 

𝑍*+ in the test signal frequency range to determine the location and extent of any airway 

obstructions, with respiratory system impedance routinely calculated at the desired frequency via 

FFT and represented in acoustical terms in the frequency domain as follows: 

𝑍*+(𝑓) = 𝑃*+(𝑓) 𝑉F*+(𝑓), where	{0	⁄ < 𝑓 ≤ 𝑓LMN}.      (2-2) 

IOS is advantageous for diagnostic use in pediatric and geriatric cases because only brief, 

passive subject cooperation is necessary. For detection of SAD, IOS compares favorably to other 

methods including spirometry, WBP, and gas dilution techniques that lack the required sensitivity 

to detect abnormalities and measure airflow obstruction in peripheral bronchi [1]. To identify SAD, 

IOS is also better than chest radiographs because of their inadequate spatial resolution and 

interpretation-dependent accuracy [18]. 
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IOS data analysis is based on electrical and mathematical models of pulmonary function in 

terms of impedance, which is potentially a more robust method. Yet, visualizing and relating these 

concepts to biomechanical or physiological analogs may still prove nontrivial and even 

counterintuitive. As an example, Fig. 2.1 presents a common approach for visualization of 

respiratory system resistance and reactance using arithmetic mean values per group of healthy, 

pre-SAI, SAI, and asthmatic subjects for discrete test frequencies commonly used in research and 

clinical practice. Notice that small airway impairment (SAI) is another way to refer to small airway 

disease (SAD). 

 

Figure 2.1:  Respiratory system impedance response as a bivariate linear regressions of respiratory resistance (Rrs, 
four top responses) and reactance (Xrs, four bottom responses) versus applied impulse signal frequency. 
Input data obtained from children ages 5-17 [12]. Severity of pulmonary obstruction is indicated in trend 
lines via higher resistance and lower reactance, particularly at 5 Hz. Lines indicate Normal (healthy), 
small airway impairment (SAI), pre-SAI, and Asthma IOS results. 

 

2.2  IOS BACKGROUND AND STATE-OF-THE-ART NONINVASIVE PFT 

Measurements of the mechanical properties of the respiratory system depend heavily on 

the PFT technique used to acquire them, as shown in tables 2.1 and 2.2. A challenge here is that 
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lung disease resemblances and symptomatic crossovers among distinct yet similar conditions blur 

traditional delineations for detection of obstructions. Thus, it is important to consider the evolution 

of techniques and what they offer to estimate or measure respiratory parameters of interest to 

determine diseases or impairments. Moreover, analysis and interpretation of PFT results are often 

compared against established, yet limited, sets of demographic- and/or anthropometric-specific 

reference values, thereby making the choice of PFT critical. In addition, various algorithms may 

be used to classify subjects as either healthy or impaired and to assess degree of dysfunction and 

even therapeutic response under provocation testing. 

Although its tests do not directly measure respiratory resistance, spirometry is the de-facto 

PFT of choice for detecting airflow limitation and increased resistance via peak expiratory flow 

(𝑃𝐸𝐹) and forced expiratory volume in t seconds (𝐹𝐸𝑉R), respectively [19]. For noninvasive 

detection of SAD, which spirometry cannot measure directly, both FOT and IOS are better. 

Since its inception circa 1956, as shown in Fig. 2.2, FOT eventually evolved in the mid-

1970’s into IOS, which uses mixed multi-frequency (~5 to 30 Hz) acoustic impulses as input test 

signals, versus the single-frequency sine wave signal approach used in fundamental FOT or the 

pseudorandom (PRN) signals used in auxiliary FOT techniques [16, 17]. IOS was later 

commercialized in 1993 by Jaeger [15]. Fig. 2.2 shows a timeline of the evolution of FOT/IOS. 
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Figure 2.2:  Historical development of FOT and IOS. 
 

Tables 2.1 and 2.2 present a comprehensive analysis of current noninvasive PFT methods 

and equipment, with an emphasis on device physics. These tables also include assessments such 

as discrimination of disease and site of impairment; clinical applications; and reference 

populations best served by each technique. The top eight PFT techniques considered are listed in 

order of utilization frequency or impact level. Methods linked by the same physics are shaded with 

the same color; methods include: 1) flow-volume mechanics, 2) oscillometric impedance response, 

and 3) airway occlusion resistance. Parameters listed in the tables were selected based on relevance 

and how well their measurement ranges correlate. Assessments of airway responsiveness to 

bronchodilators or bronchoconstrictors and use of gases other than air are not included in the 

analysis. 
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Table 2.1:  PFTs based on flow-volume mechanics or airflow interruption. 

 

Table 2.2:  PFTs based on application of oscillatory test signals. 

 

TABLE II

PARAMETER
FORCED OSCILLATION      

(FOT or MFO)
IMPULSE OSCILLOMETRY 

(IOS)
HEAD GENERATOR (HGT)

AIRWAVE OSCILLOMETRY        
(AOS)

Measurement Principle

Measures pulmonary imped-
ance, Zrs, via pressure and 
flow (oscillations) at the mouth 
during spontaneous breathing

Similar to FOT except uses 
mixed multi-frequency test 
signals and FFT to calculate 
impedance (Zrs = Rrs + Xrs)

Same as FOT except test 
signal applied to a chamber 
enclosing the head to min-
imize upper airway shunt

Same as FOT except uses 
vibrating mesh as source of 
excitatory input test signal

Key Parameters Zrs, Rrs, Xrs, Fres, fdR, Ax Zrs, Rrs, Xrs, Fres, fdR, Ax Zrs, Rrs, Xrs, Fres, fdR, Ax Rrs, Xrs, Fres, AX, Xin-ex, 
Vtidal, Respiratory Rate (RR)

Device Type
FOT Apparatus using Linear 
Regression Algorithm

Impulse Oscillometry System 
using Fast Fourier Transform

FOT Apparatus incl. 35-40L 
Chamber (e.g. Pulmosfor)

Portable, Handheld for use with 
Tablet/Laptop (e.g. tremoFlo)

External Excitation Wave 
Generator

Loudspeaker or Piston Pump 
(applied at mouth)

Loudspeaker (applied at 
mouth)

Loudspeaker (applied at 
canopy around the head) Breathe-through Vibrating Mesh

Single or Multiple Test 
Signal Frequencies

Single or Multiple Discrete 
Freq. (sequentially applied) Multiple Multiple Multiple - Non-harmonic 9- or 10-

Frequency Composite Signal
Input Test Signal and 
Typical Frequency Range

Sine Wave (approx. 5-35 Hz) 
or Pseudorandom Noise

Square Wave Impulses (5-35 
Hz; typ. every 5 Hz harmonic)

Pseudorandom Noise (4-30 
Hz, every 2 Hz harmonic)

Pseudorandom Noise (Adult: 5-
37 Hz; Pediatric: 7-41 Hz)

Patient Cooperation Req./ 
Breathing Maneuver

Minimal Cooperation; Passive / 
Tidal Breathing

Minimal Cooperation; Passive / 
Tidal Breathing

Minimal Cooperation; Passive / 
Tidal Breathing

Minimal Cooperation; Passive / 
Tidal Breathing

Typ. Measurement Duration 
and No. of Repetitions

8-16 sec; 3-5 reps 30 sec; 3-5 reps 16 sec; avg. of 2 to 3+ reps 20 sec; 3 reps

Tracks Real-Time Within-
Breath Changes of 
Rrs_Zrs?

Yes - Based on Period of Excit-
ation Signal w.r.t. Breath Dur-
ation; typ. ~Mean of Whole Val

Yes - Based on Period of Excit-
ation Signal w.r.t. Breath Dur-
ation; typ. ~Mean of Whole Val

Yes - Based on Period of Excit-
ation Signal w.r.t. Breath Dur-
ation; typ. ~Mean of Whole Val

Yes - Between Low Frequency 
Inspiratory & Expiratory 
Reactance

Discriminates Between 
Large & Small Airways 
Obstruction?

Yes - High Sensitivity via fdR 
(Central v. Peripheral)

Yes - High Sensitivity via fdR 
(Central v. Peripheral)

Yes - High Sensitivity via fdR 
(Central v. Peripheral)

Yes - High Sensitivity via fdR 
(Central v. Peripheral)

Quality Control Indices for 
Data Integrity

Yes - Coherence; Coefficient 
of Determination (Model Fit)

Yes - Coherence:  an Index of 
Signal-to-Noise Ratio

Yes - Coherence; Coefficient 
of Determination (Model Fit)

Yes - Coherence; Automatic 
artifact detection/exclusion

PFTS BASED ON APPLICATION OF OSCILLATORY TEST SIGNALS
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Despite the availability of a few international recommendations for some PFTs, there is a 

need for determining the extent of correlation of indices and parameters to support comparative 

analysis of results across multiple different techniques. Likewise, experimental variability in PFT 

measurements includes effects of artifacts due to swallowing, coughing, or airflow leaks. 

Consecutive trials and statistics are used to reduce the effects of variability [17]. The latter itself 

is a source of variability across methods, as sample size, test cycle duration, number of trials, and 

parameter statistics vary between PFT implementations. Measurements in children have additional 

sources of variability due to their anatomically small, hard-to-fit, still developing features, which 

according to most experts correlates closely with the subject’s height but may be debated [12]. In 

this work, data variability in the used pediatric data set will be considered as a factor in ULF IOS 

modeling to support accurate diagnoses of pediatric respiratory disorders. 

 

2.3  RELATED WORKS 

This section presents the main existing electrical models of the respiratory system over the 

widely adopted frequency range between 5 Hz and 25 Hz and above. Then it discusses low-

frequency FOT, and finishes by presenting the concept and importance of ultra-low frequency IOS. 

An important consideration when dealing with low frequency test signals below the 5 Hz threshold, 

to determine 𝑍*+ in this frequency range, is the effect of tidal breathing in measurement and 

processing. Here the main goal is to eliminate undesirable breathing frequency noise and reveal 

𝑍*+ values associated with small airway pathologies.  A few methods exist for accomplishing this 

objective, and with very accurate results, but these methods have mainly succeeded when applied 

to unconscious patients or using invasive measurement procedures [41]. An important aim of this 

work is the enhancement in measurement sensitivity of IOS in the low frequency range to improve 
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localization of site and degree of obstruction.  In turn, this higher resolution examination of 𝑍*+ 

below 5 Hz may lead to timelier, more accurate detection and treatment of distal obstructive 

diseases such as SAD and asthma. 

 
2.3.1  RESPIRATORY IMPEDANCE MODELING VIA ELECTRICAL ANALOGS 

Human respiratory system analogs based on either a mechanical or electrical system 

modeling provide means to estimate and interpret IOS parameters. In this dissertation, only 

electrical models will be considered. Models investigated consist of Resistance-Inductance-

Capacitance (RIC) circuits of various single- or dual-compartment designs, primarily of parallel 

component configurations shown in Fig. 2.3. A hierarchy of historical models established circa 

1956 to 1969 and two derivatives of the Mead model (extended RIC, eRIC, and augmented RIC, 

aRIC) which were fully developed and thoroughly analyzed at UTEP in the past decade, served as 

the predicate circuit models of reference for the design of a novel, electrical ULF IOS respiratory 

impedance model which provides parameter estimates that physiologically parallel characteristics 

of subjects with SAD. 

 

Figure 2.3:  (a)-(f) Electrical analogs and reference models of the human respiratory system. 
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Using respiratory impedance analogs, translation of acoustic impedance to electrical 

impedance is accomplished by relating, first, the voltage drop across an electrical element to 

acoustic pressure drop relative to atmospheric pressure and, second, the electrical current through 

an element to volume velocity or airflow. Therefore, the acoustical impedance is made equivalent 

to electrical impedance, via analog component models, and its definition as the ratio of the pressure 

drop to the change in airflow in (2-2) is modeled as the ratio of voltage to current at various levels 

of the respiratory system model. In the electrical analog for the respiratory system, resistors 

represent central or peripheral resistance to airflow, and capacitors and inductors represent 

compliance and mass-inertive forces of the moving air column in conducting airways for high and 

low frequency of response, respectively, as detailed in Table 3.1.  

All reference electric circuit models including ancillary component representations for 

peripheral resistance of the small airways, e.g.	𝑅S, were of primary importance and a particular 

focus of interest for benchmarking purposes as in Otis and Mead-1969 models in Fig. 2.4 and two-

compartment model in Fig. 2.5. Fittingly, in addition to the Otis model [26], there are a few other 

pertinent electrical models that meet this criterion. For example, the Mead-1969 model [22], 

Mount model [34, 35], and two-compartment model [27] all share relatively similar circuit 

configurations depicting compartmentalization of the large airways from the small airways, 

representing the latter via parallel pathway arrangement of elements. These “p” components 

represented as electrical elements in the peripheral zone of the circuit model enable analysis of the 

SAD analog by demonstrating an inverse relationship between 𝑍*+ and frequency, especially in the 

ULF range. Thus, a main objective of this research is to analyze changes in the mechanical 

properties of the lungs through corresponding changes in acoustical impedance when subjected to 

ULF IOS via a SAD model of the human respiratory system. 
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                                  (a)         (b) 

Figure 2.4:  Electric analog of (a) Otis and (b) Mead-1969 models. Frequency dependence of respiratory impedance 
at outputs are depicted as parallel pathways, each with a different resistance-compliance time constant. 

 
 

 
 

Figure 2.5:  Electric analog of the parallel two-compartment model with accompanying lung model. 
 

2.3.2  LOW FREQUENCY FOT 

Conventional IOS testing covers an oscillation frequency range of test signal impulses from 

5 to 30 Hz [13], with results as plotted in Fig. 2.1. Injection of high frequency (>20 Hz) pulses into 

the lungs mainly reach central airways, whereas low frequency (<15 Hz) pulses are transmitted 

distally into small airways. The difference between the resistances at these two distinct frequencies 

of pulses (i.e. 𝑅= minus 𝑅>?) is referred to as the frequency dependence of resistance (fdR) and is 

indicative of SAD, also referred to as SAI, when a large differential occurs. Additionally, at low 

frequencies, respiratory system behavior is dominated by the elastic recoil properties of the lungs, 

modeled as electrical capacitance; whereas, at higher frequencies the determination of impedance 

response is dominated by pulmonary inertance, modeled with electrical inductance, mostly 

attributable to diminished compliance of peripheral lung tissues and gas in airways. 
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Normally in the IOS test technique, five acoustic impulses per second, each approximately 

between 30 to 40 ms in duration, are applied at the airway opening alongside the patient’s natural 

breathing via an inline mouthpiece coupled with an antibacterial filter [12]. This mixed multi-

frequency approach avails IOS a higher SNR than mono-frequency FOT. Furthermore, the lower 

the frequency of the applied test signal, the deeper the oscillations travel into the lung periphery 

where the added compliance of multigenerational bronchioles and eventually the alveoli may 

influence the impedance calculation, i.e. as increased reactance, 𝑋*+, with regard to the respiratory 

system frequency response. However, signal frequencies below 5 Hz are affected by harmonics of 

the underlying natural respiratory frequency, in the 0.3 to 0.5 Hz range in preschoolers, which 

contribute unwanted measurement noise [20]. Aside from the intensified vibrating sensation 

actuated in the subject’s chest from this extended range into lower frequencies, which may be 

slightly more unpleasant to some while imperceptible to others, although otherwise safe, it is the 

interference from spontaneous tidal breathing that commonly discourages most researchers and 

equipment manufacturers from utilizing oscillations below 5 Hz as input pressure signals. 

Oftentimes, inferences by extrapolation of 𝑅*+ and 𝑋*+ curves in the ULF region are alternatively 

executed, but usually without merit and often disregarded in research and clinical practice. 

A main aim of this research is the performance of an in-depth study of IOS ULF 

measurements and modeling designed to eliminate undesirable breathing frequency effects to 

reveal 𝑍*+ values associated with small airway pathologies.  The significance of this objective is 

the enhancement in measurement sensitivity of IOS for improved localization of site and degree 

of peripheral obstructions.  In turn, this higher resolution examination of 𝑍*+ below 5 Hz may lead 

to timelier, more accurate detection and treatment of distal obstructive diseases such as SAD and 

asthma.  
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CHAPTER 3: METHODOLOGY  

A detailed description of methods, processes, and procedures utilized to address the 

presented objectives and the overall goal of this research are presented below. 

 

3.1  IOS CLINICAL STUDY PATIENT DATABASE 

An essential component that enabled the achievement of the objectives of this research was 

the use of a representative high-quality database that included the analysis of previously collected 

IOS data, centered on the classification of lung function with correlation between several 

demographic and anthropometric factors. This IOS lung function database was acquired in 2006 

via the “Asthma on the Border” study conducted by UTEP researchers and funded by the NIH 

[12]. The database is comprised of 112 quality-assured records of male and female Hispanic and 

Caucasian minors, exclusively children between the ages of 5 to 17 years old, with each record 

consisting of respiratory impedance indices at discrete frequencies of 5, 10, 15, 20, 25, and 35 Hz. 

Furthermore, the raw IOS data and accompanying statistics were used to calculate the estimated 

IOS parameters of fdR, FABC, reactance area between 𝑋= and FABC, referred to as AX or the 

Goldman’s Triangle, and eRIC and aRIC circuit model parameters that are also contained in the 

database. Results from this study were classified by the resident clinician, Dr. Michael Goldman, 

into one of four conditions of health or disease as Normal (N), Possible/Pre- Small Airway 

Impairment (PSAI), Small Airway Impairment (SAI), or Asthmatic (A) for each child record. 

Consequently, each record in the database belongs to a subset as either N, PSAI, SAI, or A. The 

sample size (n) for each subset of the four conditions of lung function varied with n = 11, 17, 54, 

and 30, respectively. Fig. 3.1 shows impedance measurement values with separate 𝑅*+ and 𝑋*+ 

plots with stratification of the IOS database population into the four classifications, indicating the 
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indistinct upper and lower boundaries for each and a real potential for crossover between adjacent 

groups; thus, demonstrating the need for a final clinical diagnosis by a qualified clinician. 

 

 

Figure 3.1:  Comparison of 112 patient records from IOS database classified into four groups (asthma, SAI, PSAI, and 
normal) depicting ranges and variability in Zr and Zx measurements. 

 

3.2  SAD MODEL – RESEARCH DESIGN AND PROCEDURES 

The earliest recorded attempt for modeling sinusoidal forced oscillation to acquire 

respiratory system impedance via an analogous mechano-acoustical representation of the chest and 

an equivalent electrical circuit was described in 1956 by DuBois et al. [14]. Several researchers 
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later proposed other linear and nonlinear lumped parameter models to represent the impedance of 

the total respiratory system through various architectures with resistive, inertive, and elastic 

components. Rather than relating to these components in mathematical or mechano-acoustical 

terms, several lumped parameter models aim to equate impedance parameters indirectly with the 

use of analogous components used in electrical circuits, namely resistance (R), inductance (I), and 

capacitance (C). Table 3.1 includes impedance measures in terms of the analogous relationships 

between quantitative physiological attributes of lung function, mechano-acoustical systems, and 

electrical circuit models. 

Table 3.1:  Analogous relationships of mechano-acoustical and electrical impedance to the mechanics of breathing. 

PHYSIOLOGICAL MECHANO-
ACOUSTICAL 

ELECTRICAL 
TERM UNITS 

Rate of Lung Volume Exchange 
(inhalation/exhalation) L / sec Air Flow Current 

Alveolar Air Pressure 
(w.r.t. atmospheric pressure) kPa Air Pressure Voltage 

Airway and Tissue Resistance kPa / (L/sec) Resistance Resistance 
Alveolar Air Capacitance L / kPa Capacitance Capacitance 

Tissue Compliance 
(inverse of Elastance) L / kPa Compliance Capacitance 

Tissue Inertance kPa / (L/sec2) Inertance Inductance 
 

Furthermore, available models involve the use of mono-frequency FOT data to estimate 

impedance; while only a handful pertain exclusively to multi-frequency IOS and even fewer to 

ULF. Consequently, the present research focuses on the development and evaluation of a novel 

electrical analog to simulate the respiratory impedance response at ULF that pertains to lung 

function for patients with small airway disease, henceforth referred to as the SADWX< model. 

Development of the novel SADWX< model began with a search for key theoretical electric 

circuit models that exhibited characteristics and exploited the unique discriminative property 
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inherent to IOS for simultaneous assessment of the contribution of central and peripheral airways 

to total respiratory impedance. The basic predicate models are shown in Fig. 2.3. As an illustration 

of modeling approach, the RIC model, oftentimes associated with a rigid tube and attached balloon 

mechanical analogy, offers a linear whole system model of a single-compartment structure. 

However, the RIC model does not discern between large and small airways impedance, as only 

total respiratory impedance is modeled. Further, fdR and frequency dependence of elastance of the 

lung are not replicated by this single-compartment model. Conversely, most nonlinear two-

compartment models such as the eRIC model distinguish impedance of central airways from 

peripheral airways as parameters denoted with a subscript “c” for central or “p” for peripheral. 

Aside from the number of compartments and irrespective of the quantity of elements, 

inclusion and arrangement of R, I, and C elements within electrical analogs is crucial in 

determining the frequency response from the respiratory system model to accurately ascertain 

physiologically and pathologically relevant impedance estimates. Compartmental arrangements of 

circuit elements may be in series or parallel to model effects such as fdR. One electrical analog in 

particular, the Otis model, as shown in Fig. 2.4, consists of a combination of both types; two 

parallel pathways each containing single R and C elements connected in series, representing the 

peripheral airways.  Otis configured the circuit in this way primarily with the intention of 

expressing inhomogeneity in the lungs with varying degrees of obstruction from one region to 

another as evidenced by different impedance levels, resulting in unbalanced RC time constants (t) 

between each pulmonary pathway [26]. Whereas, parallel ventilation heterogeneity in the lung 

must exist, even if purely on an anatomical basis, the concept of uneven time constants of the 

system implies that the left and the right system halves respond to airflow and pressure differently 

based on the regional severity of obstructions in the peripheral airways and/or restrictions on lung 
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elasticity [27]. When airflow stops, an air redistribution phenomenon occurs between both lungs 

via gas diffusion from the higher-pressure compartment to the lower-pressure compartment, in 

which ventilation of each separate lung may be quantified by mismatched time constants (𝜏R ¹ 𝜏>) 

before equilibration [28]. 

To reproduce the significant qualities of the aforementioned electrical analogs as they 

relate to low frequency IOS testing, a two-compartment parallel pathways arrangement was chosen 

as the foundation for the design and development of the SADWX< model (Fig. 3.2). In this approach, 

and in accordance with Table 3.1, the SADWX< electrical model indirectly converts pressure to 

voltage and flow to current by means of replacing the mechano-acoustical model flow-resistive 

elements with electrical resistors and elastic compartments with capacitors. Since the focus of this 

research is the frequency response of the respiratory system to ULF test signal inputs, 

representation of inertance was omitted by design because inductor elements are insignificant at 

low frequencies given the model circuit when characterizing the peripheral airways. Therefore, the 

SADWX< model is unsuitable for dynamic analyses at frequencies higher than 25 Hz because the 

inertance of air and tissue are not included in the circuit model. Furthermore, while some electrical 

analogs, e.g. the aRIC model, choose to include an additional capacitor to model the extrathoracic 

compliance (Ce) in order to mitigate the effects of upper airway shunt, e.g. absorption of energy 

from acoustic impulse at high frequency due to friction and turbulence in the mouth and trachea, 

the SADWX< model excludes modeling of this extra element since its relevance pertains to impedance 

modeling at high frequencies. Finally, in regards to the first compartment, which models the 

contribution of the large central airways to the IOS impedance estimate, both airway resistance 

(Rc) and compliance (Cc) were contemplated as being significant in this region and therefore 

included at the front end of the SADWX< model.  
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Figure 3.2:  Schematic of electrical IOS model of SADulf for analysis at ULF. Rc and Cc represent the central airways 

resistance and compliance, respectively. Rp1 and Rp2 represent their respective pathway’s resistive 
components of the peripheral airways’ impedance; while, Cp1 and Cp2 represent their respective 
pathway’s reactive components. 

 

3.3  INVERSE MODELING APPROACH: PARAMETER ESTIMATION TECHNIQUE 

As reliable as IOS test measurements and indices such as AX and fdR are to the diagnosis 

of diminished lung function, particularly with respect to their discriminative abilities in revealing 

small airways impairment, it has been found that model-derived parameters may be just as, if not 

more, valuable and sensitive in their own regard for lung function monitoring and disease detection 

[37]. While standard IOS impedance measurements, plot tracings, and indices may offer very 

important information regarding metrics of pulmonary function, their interpretation is nontrivial 

due a lack of clear mapping between the test subject anatomy and pathology and the corresponding 

modeling and computations founded on electro-mechano-acoustical models. Use in this work of 

nonlinear regression for calculating model-derived parameters proved useful for describing 

physiological properties of the lung by attributing a tangible numerical value to specific lung 

regions, thereby simplifying clinical interpretations. Just as spirometry and IOS complement each 

other, together IOS indices and parameter estimates lead to more predictive and intuitive outcomes. 



27 

Establishing a mathematical model of a system whose configuration is not known a priori, 

in this case the structure of SADWX<, from experimental measurements of system inputs and outputs 

is referred to as inverse modeling. Black-box SADWX< parameters are evaluated by testing candidate 

internal mechanisms of the model’s structure with varying inputs to see whether and how closely 

test results are matched given outputs provided by the experimental data set. Given that this is an 

ill-posed problem, a solution is sought through iterative steps to accurately estimate the predicted 

outputs within a minimal acceptable variance, i.e. estimation error within expected measurement 

error in the recorded experimental data. For this purpose, MATLAB® R2018b matrix-based 

programming language and software was utilized to calculate the parameters of the inverse model 

for the components of interest. In addition, Microsoft® Excel’s add-in Solver program was similarly 

used, although primarily for visual and numerical validation, to perform what-if analysis on the 

same error minimization/solution optimization problem for model-derived parameter estimation 

by means of its GRG nonlinear solving method. 

Having established the SADWX< respiratory system electrical analog, the next step was to 

determine whether or not impedance response at ULF could be properly inferred from the data set, 

which is shown in Table 3.2. 

Table 3.2: Sample records from IOS pediatric patient database. Each subject record contains IOS respiratory 
impedance measurements recorded at five discrete frequencies: 5, 10, 15, 20, and 25 Hz; separated into 
both resistive and reactance information for a total of n=10 data points. 

 

 

# ID Ethnicity Sex Age Height Weight Classified R5 R10 R15 R20 R25 X5 X10 X15 X20 X25
(cm) (kg) by Dr. G as

1 7798 Caucasian M 8 114.2 20.9 Asthma 0.94 0.68 0.51 0.41 0.46 -0.45 -0.33 -0.25 -0.08 0.11
2 111592 Caucasian M 13 168.5 55.5 Asthma 0.57 0.49 0.42 0.37 0.41 -0.16 -0.10 -0.08 0.01 0.09
3 040496 Caucasian M 10 139.7 40 Asthma 0.71 0.52 0.39 0.34 0.42 -0.28 -0.22 -0.15 -0.01 0.12

. .
 .

110 101600 Hispanic M 6 127 25.1 SAD 0.63 0.53 0.44 0.37 0.40 -0.36 -0.18 -0.13 -0.02 0.10
111 123091 Hispanic M 15 165.1 67 SAD 0.93 0.77 0.67 0.61 0.61 -0.25 -0.21 -0.15 -0.07 0.03
112 5491 Hispanic F 15 165.1 77.9 Normal 0.36 0.29 0.30 0.30 0.29 -0.14 -0.02 0.04 0.08 0.13
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Assigning valid parameters, or estimated values, to each element of the SADWX< electrical circuit 

via inverse modeling allows the calculation and prediction of respiratory impedance response 

below the standard IOS frequency range. This links and characterizes the influences of resistive 

and capacitive components on respiratory impairments that take part under specific physiological 

conditions, e.g. obstruction, specifically to small airways disease. For this inverse modeling 

approach, the units of measurement remain in terms of respiratory mechanics, where airways 

resistance (R) and tissue compliance (C) are left in the mechano-acoustical energy domain and 

denoted in terms kPa/L/s and L/kPa, respectively. 

Equations that represent both the resistive 𝑍* and reactive 𝑍N components of the respiratory 

impedance 𝑍*+ under low frequency IOS form the basis for inverse models of the lung. These 

models are used to derive the state of pulmonary function via frequency response computation, 

thus serving the main purpose behind the parameter estimation process. The impedance equation 

for the IOS SADWX< model, also referred to as the equation of motion is the following: 

       					𝑍*+ = 𝑅Z +
R

[\]^
+ _𝑅SR +	

R
[\]`a

b		c|	| _𝑅S> +	
R

[\]`e
b       (3-1) 

with the real and imaginary parts expressed as:  

               𝑍* = 	𝑅Z +
\ef`af`e(f`a]`e	g	f`e]`a)	g	f`a]`agf`e]`e

\e]`ae ]`ee (h`ag	h`e)eg	(]`ag	]`e)e
         (3-2) 

       𝑍N = 	
R
\]^

− \e(f`e]`a	g	f`a]`e)e	g	(]`ag]`e)e

\e(f`ae ]`eg	f`ee ]`e)g	]`ag	]`e
	       (3-3) 

where the angular frequency w = 2pf, and the time constants are 𝜏SR = R p1C p1 and 𝜏S> = R p2C p2, 

respectively. Thus, the equation of motion for the two-compartment SADWX< model is a second-

order differential equation, which explicitly shows the frequency dependence of pulmonary system 

resistance and the reactive component of impedance, which is purely imaginary.  
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3.4  NONLINEAR LEAST SQUARES REGRESSION 

For model parameter estimation, this work performs regression analyses through least 

squares minimization (LS) to produce best fit functions between dependent outcomes and 

independent predictors. LS is applied to estimate the parameters of the nonlinear electrical analog 

designed to compute the SADWX< impedance model. Parameter estimation, and extrapolation as 

discussed in chapter 4, was performed using MATLAB’s built-in function lsqnonlin. Execution of 

lsqnonlin solves nonlinear LS curve fitting problems of the form: 

               min
N
‖𝑓(𝑥)‖	>> = 	minN (𝑓R (𝑥)> + 𝑓>(𝑥)> + 	.		.		. + 𝑓n(𝑥)>)                    (3-4) 

with optional upper and lower limits on the components of x. Hence, this translates into a curve 

fitting prediction routine, wherein the LS regression analysis minimizes the sum of squared 

residuals, 𝜖p, 𝑖 = 1,2, . . , 𝑛, where	𝑛 is the data subset cardinality, between true impedance data at 

discrete frequencies as taken from the IOS patient database and the computed impedance solution. 

For yielding the lowest estimation error, and therefore calculating optimal model parameter 

values, several factors were taken into consideration regarding the accuracy and robustness of the 

devised method to reliably converge to parameter values that are physiologically meaningful. The 

algorithm implemented in the MATLAB environment includes randomization of initial conditions, 

determination of the global minimum instead of local minima (as shown in an example in Fig. 

3.3), definition of numerical constraints, establishing iteration step size and threshold for number 

of trials, and stopping criteria that avoids overfitting the model. The most impactful algorithmic 

steps are the random selection of initial estimate values and the designation of lower and upper 

bounds. The significance of the boundary constraints is to enable the algorithm’s power for 

optimization of parameter values while avoiding physiologically unrealistic solutions. Therefore, 

in the SADWX< model, all R and C parameter estimates were constrained to real positive values 0 ≪
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𝑃[ ≤ 𝐿u, ∀𝑗, 𝑞 = 𝑟, 𝑐 where 𝐿* =1.5 kPa/L/s and 𝐿Z =1.5 L/kPa, respectively [29]. The result of 

plugging the optimized lumped parameter model estimates for all elements of the SADWX< circuit 

back into the 𝑍* and 𝑍N impedance equations is a best-fit function. Each component aptly 

approximated to predict respiratory system impedance response across the frequency range of 

interest in addition to the best combinations of parameter values for balanced/imbalanced 𝜏R vs. 

𝜏> in specific cases, e.g., in dual- and parallel-compartment models such as Otis and SADWX<. 

 

Figure 3.3:  Global and local minima of an arbitrary error function, E. The presence of local minima stresses the 
importance of randomly selecting appropriate initial conditions for the least squares algorithm in order 
to determine the best approximation to the global minimum. 

The algorithm for SADWX< model parameter estimation is presented in pseudocode next. 

Although the algorithm used in this research required substantial programming to solve the error 

minimization problem using the pediatric IOS data set, details of the working code are rendered as 

simplified readable descriptions of the MATLAB program development process.  

1. Declare and initialize all scalar and vector variables: 
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a. Define and initialize a vector 𝒑 to represent initial conditions of the model-derived parameter 

estimates for the LS algorithm, where the vector’s length equals the number of parameters 

in the model. 

b. Create a variable 𝒑𝒓 and initialize it to a very large random number. The final numerical 

value of this variable is equal to the estimation error. 

b. Impose numerical constraints to find a solution for the error minimization problem that makes 

physiological sense, albeit at the expense of potentially obtaining a high error. For instance, 

a lower bound of 0.0 yields nonnegative values while an upper bound 𝐿u = 1.5 returns 

realistic parameter estimates with respect to lung airways resistance and lung tissue 

compliance. 

c. Establish iteration step size and stopping criteria by incrementally changing parameter values 

from one iteration to the next via LS optimization. 

 i. Step size ∆ may be defined as the following: 

         ∆= max[𝑎𝑏𝑠(𝒙 − 𝒙F)] ,                                    (3-5) 

where x is a vector containing estimated parameter values of the current iteration and x’ 

represents the previous iteration estimates. 

ii. A stopping condition is imposed by comparing these incremental changes to a real number 

very close to zero, 𝜖+ = 0.5 E-05, and finally stopping when either the step size is smaller 

than 𝜖+ or until a large number of consecutive runs (1,000) have been attempted. 

2.  For a user-defined number of trials of the estimation algorithm, execute the following during 

each trial and repeat the process until all trials are completed: 

a. Initialize a uniformly distributed random number generator to a unique state, based on the 

current time as per system clock, which seeds the generator to produce a different sequence 
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of numbers after each time the algorithm is performed and avoiding repeating multiple times 

the same estimation when performing the nonlinear LS regression function. 

b. Form an initial estimate. Using the uniformly distributed random number generator, populate 

initial 𝒑. Each element of the vector corresponds with a model-derived parameter, or more 

specifically an electrical component provided in the respiratory system analog. To seed the 

random number generator with initial conditions that are physiologically feasible, initial 

guesses ranging from 0 to 5 for the values of the resistances and 0 to 0.5 for the values of 

capacitances are selected. 

c. Execute the nonlinear LS regression function using the initial estimate and applying the 

predefined upper and lower parameter limits. Store the returned output arguments, estimated 

parameter values and the residual into vector x’ and variable r’, respectively. 

d. While ∆	> 𝜖+, repeat the following: 

  i. Run the nonlinear LS regression function using the values stored in x’ as the updated 

parameter. Store new estimates as vector x, the smallest between residual these new 

estimated solutions and the impedance values from pediatric IOS dataset at 5, 10, 15, 20 

and 25 Hz into variable r. 

 ii. Recalculate ∆ with the latest values from x and x’ using (3-5). 

iii. Assess the current iteration output arguments and take the following actions: 

 If r < r’, then reset x = x’ and r’ = r. Repeat from (d). 

e. Check if algorithm found minima: 

 If r’ < 𝒑𝒓, then set 𝒑 = x’ and 𝒑𝒓 = r’. Repeat from (d). 
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3. Return to the user a final set of model-derived parameter estimates, vector 𝒑, which yielded the 

smallest estimation error, 𝒑𝒓, either by stopping on ∆	≤ 𝜖+or reaching the user-defined 

maximum number of iterations. 

 
3.5  FORWARD MODELING APPROACH: ELECTRO-MECHANO-ACOUSTICAL TRANSDUCTION 

Forward modeling of SADWX<, performed here through simulation, involves having a priori 

knowledge of the internal system architecture and attempting to computationally predict its output 

from a given input [28]. Following Dubois modeling of respiratory mechanics with an electrical 

analog system, simulation of lung function with respect to airways and tissue impedance allows 

exploration and analysis of the lung pathophysiologic mechanisms. Based on sound modeling 

practice, the SADWX< analog abstraction is not designed to perfectly represent a lung with the full 

complexity of a human organ. Instead, the purpose of the novel SADWX< design is to follow the 

mechanical behavior dynamics of both the central airways and the peripheral airways such that its 

application as a forward model follows the lung frequency-dependent pressure-flow relationships. 

A goal of this research is the design and implementation of a forward modeling approach 

to simulate IOS response to ultra-low frequency via the SADWX< respiratory impedance model. 

However, modeling attempts to actually transduce the energy domains, along with their respective 

units of measure, from physical respiratory models of the lung to electrical constructs are scarce 

and incomplete in the literature. Hence, a key deliverable of this research is a novel transduction 

scheme for the explicit conversion of parameters from the mechano-acoustical energy domain to 

the electrical energy domain. 

The equipment for acquisition of impedance measurements in the IOS pediatric data set 

used in this work is a Jaeger MasterScreen IOS; Vyaire Medical, Yorba Linda, CA, USA. Because 
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of this, the MasterScreen IOS pressure sensor/transducer was used as a reference for devising the 

method leading to the mechano-acoustical to electrical transduction presented here. The IOS 

pressure transducer measures differential pressure across a Lilly-type pneumotachometer (PNT) 

and is used to obtain pressure readings at the mouth with respect to atmospheric pressure. 

For PNT differential pressure measurement, airflow is determined directly from the 

pressure drop over a small fixed resistance with a heated mesh screen, which is then converted to 

an analog voltage signal and scaled proportionately to the rate of flow. The piezoresistive 

transducer span, i.e., the output voltage from zero to full-scale pressure, is set in accordance with 

its supply voltage and the PNT range of linearity as per the manufacturer calibration curve. Thus, 

the transduction of energy domains used in the forward modeling approach of SADWX< circuit 

simulation was founded on this differential pressure to output voltage relationship. However, to 

calculate electrical impedance with Ohm’s Law at least two of the variables must be known; 

whereas, in the case of the IOS pressure transducer, only output voltage can be determined. Hence, 

since the IOS patient database contains mainly impedance data and neglects to include any 

accompanying transducer outputs, mappable to voltage readings, such as measured pressure and 

airflow at the mouth, nor integrated volume, neither I nor R can be deduced from the final 

impedance results. Therefore, based on the principles of fluid dynamics, including the Venturi 

effect, Bernoulli’s Principle, and Poiseuille’s Law, as they pertain to respiratory mechanics, and 

through manipulation of impedance equations, a sensible transduction method was developed as 

documented in Table 3.3. 
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Table 3.3:  Energy domain transduction scheme from mechano-acoustical to electrical values and units. 

 MECHANO-
ACOUSTICAL 

 ELECTRICAL  

Pressure 1 kPa = 1 V Voltage 

Flow 1 L/s = 1 mA Current 

Resistance 1 kPa / (L/s) = 1 kW Impedance 

 
 

To transduce complex mechanical impedance into the electrical domain, both the 

imaginary reactive component and the real resistive component must be represented. Although 

Table 3.3 can be used to directly assign resistor values in the SADWX< forward model, it is necessary 

to add an extra step to the transduction system for assigning capacitor values. The formula for 

calculating capacitive reactance is: 

                                𝑋Z = 	1/𝜔𝐶		,	          (3-6) 

where w = 2pf, f is the frequency in hertz, and C represents the capacitance in farads. Consequently, 

substituting the frequency of the forced pressure input, i.e. the impulse signal, injected into the 

SADWX< model for f and replacing Xc with the measured reactance value from the IOS patient 

database at that same frequency (e.g. Xc replaced by 𝑋>? in first serial compartment and 𝑋= in 

second parallel compartment), the equation can be rearranged to calculate the transduced value for 

the capacitance C from units of L/kPa to µF. However, one should consider that this capacitance 

value pertains to all capacitors per respective compartment of the circuit, which according to the 

SADWX< model’s schematic in Fig. 3.2 refers to 𝐶Z for the central capacitance and both 𝐶SR and 𝐶S> 

for the peripheral capacitance. Since the two subscript “p” capacitors reside in different pathways 

representing the peripheral airways of the lungs, the total transduced value for capacitance must 
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be shared proportionally among both elements and can be determined from the equation for parallel 

capacitors: 

𝐶SR	||	𝐶S> 	= 𝐶SR + 𝐶S> ,         (3-7) 

where 𝐶SR	||	𝐶S> is the total capacitance of the SADWX< circuit. The values for 𝐶SR and 𝐶S> are 

determined by proportionally distributing the total capacitance across both elements by taking the 

ratio of their respective IOS component values as previously computed in the inverse modeling 

parameter estimates optimization technique. 

With a method of transduction as just described, real electrical values and units can be 

attributed to each of the electrical elements, input signal sources, and output frequency response 

in the SADWX< model for forward-modeling simulations in actual electrical terms; versus the 

standing practice of commonly labeling electrical element symbols in circuit schematics with 

counterintuitive mechano-acoustical terms. To the best of our knowledge, no similar method of 

transduction exists in the literature. 

 

3.6  ELECTRICAL MODEL SIMULATIONS USING ULF EXCITATION SIGNALS 

National Instrument’s Multisim circuit design software was employed in the schematic 

capture and simulation of a unique electrical circuit model that reflects the SADWX< respiratory 

system impedance response under test using ULF IOS. This circuit simulation software was 

utilized to elicit and analyze the frequency response of existing and novel (objective 1) electrical 

circuit models of the human respiratory system for the investigation of their performance and 

accuracy in demonstrating physiological equivalency to clinically recognized respiratory 

impairment conditions within the peripheral airways, namely SAD.  In particular, output voltages 

and currents from simulations in forward modeling of these electrical analogs were measured, 
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manipulated, and interpreted to assess fdR from impedance calculations at frequencies below the 

standard 5 to 25 Hz range, and thus detect SAD through enhanced resolution of the small airways. 

ULF pressure analogs, 0.5 Hz or 5 Hz square waves, 300 mV��, 40 ms pulse width, superimposed 

onto a similarly low frequency sinusoidal signal, 0.25 Hz, 1.6 V��, which represents the 

spontaneous breathing of the test subject at 15 breaths/min, constitute the composite signal, or IOS 

excitation pressure input [13, 30]. 

 Leveraging the results of the inverse modeling algorithm, every resistor and capacitor of 

the SADWX< circuit model was given a value corresponding with results of the nonlinear LS 

regression analysis, or more specifically a model-derived best-fit parameter estimate. Each element 

value was ascertained with this algorithm using averaged impedance data drawn from the mean 

𝑅N and 𝑋N measurements of the separate subsets of N (n=11), PSAI (n=17), SAI (n=54), and A 

(n=30) classifications as recorded in the IOS patient database, where x = 5, 10, 15, 20, and 25 Hz. 

The component values obtained from this averaging procedure were then transduced from the 

mechano-acoustical energy domain to the electrical energy domain, with the respective elements 

labeled accordingly, as demonstrated in Fig. 3.4. 

 

 
Figure 3.4: SADulf circuit simulation representation of Asthma group for respiratory impedance determination at ultra-

low frequency.  
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Next, using the software’s Fourier analysis option, the SADWX< circuit simulation was executed to 

obtain the FFTs of both the output voltage Vout and current flowing through the parallel pathways 

𝐼]Z , at the fundamental frequency and for a specified number of harmonics appearing thereafter. 

The composite input signal fundamental frequency (𝑓?) was set at 0.5 Hz for obtaining ULF IOS 

response and at 5 Hz for acquiring the lower bound frequency response within the standard 5 to 

25 Hz range, with the number of harmonics recorded being specified as eight and five, respectively. 

Furthermore, the simulation duration was set at 4 secs yielding up to 20 pulses with a 5 Hz square 

wave, with the transduced and digitized pressure and flow values, or Vout and 𝐼]Z  respectively, 

sampled at a rate of 200 Hz [31]. Finally, the values for 𝑍*+ were calculated by dividing the FFTs 

of output voltage and current, as written in the following equation: 

        𝑍*+	(𝑓)	|	Ln = 𝐹𝐹𝑇[𝑉���]	 	� 𝐹𝐹𝑇[𝐼]Z]	,        (3-8) 

where	𝑚 =	 �
0.5	𝐻𝑧,			𝑓𝑜𝑟	𝑓? = 0.5	𝐻𝑧
5	𝐻𝑧,			𝑓𝑜𝑟	𝑓? = 5	𝐻𝑧

� 	and	𝑛 = �
4	𝐻𝑧,			𝑓𝑜𝑟	𝑓? = 0.5	𝐻𝑧
25	𝐻𝑧,			𝑓𝑜𝑟	𝑓? = 5	𝐻𝑧

� 

and 𝑍*+(𝑓) is evaluated across a narrow band spectrum at various incremental frequencies 

including 0.5, 1, 2, 3, 4, 5, 10, 15, 20, and 25 Hz. These forward model simulation results are 

then compared with their counterpart impedance calculations from the inverse modeling 

approach to determine model convergence.  
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CHAPTER 4: RESULTS – SADulf RESPIRATORY MODEL ANALYSIS  

A goal of the synthesis and use of ULF test signals in conjunction with recognized IOS 

circuit models would enhance the resolution of the respiratory system frequency response, 

particularly concerning the peripheral airways, to produce more informative IOS impedance 

results for an accurate and early detection of SAD and asthma. IOS impedance predictions and 

model-derived parameter estimates from computer simulations and modeling approaches 

successfully support this hypothesis as presented graphically, e.g. 𝑅*+ vs. ULF and 𝑋*+ vs. ULF 

plots, and statistically to analyze respiratory impedance data, validate the modeling techniques, 

and extract clinically and physiologically relevant information. 

 

4.1  ENHANCED RESPIRATORY IMPEDANCE USING ULF IOS 

Through this research, acoustical pressure oscillations, as represented by synthetic square 

wave impulses superimposed onto tidal breathing, were methodically applied and measured to 

characterize IOS test signal input oscillations, and thus allow determination of the respiratory 

impedance response 𝑍*+ from the underlying tidal breathing component 𝑍�* on the output signals 

in the frequency domain. However, the spontaneous breathing, which is considered by most 

researchers and clinicians as system noise, can be difficult to remove when dealing with ULF 

excitation signals. Due to overlap in the frequency range of interest for excitatory and output 

respiratory signals, filtering was not applicable for extracting the desired information from the 

blended IOS output signal, as done in practice with the 5Hz to 25Hz range. 

Apart from conducting other filtering schemes and advanced signal processing practices, 

which are beyond the scope for this research, various other signal separation techniques, e.g. 

baseline approximation method as shown in Fig. 4.1, were contemplated regarding the IOS output 
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response to ULF to extract the 𝑍�* from the 𝑍*+ [13]. However, the combination of curve fitting, 

regression algorithms, and simulation sampling methods were ultimately sufficient for the accurate 

discernment and estimation of IOS ULF impedance without interference from the tidal breathing 

frequency content in the response signal. 

 

Figure 4.6: a) FOT primary flow exhalation response displaying loudspeaker-induced pulsatile flow superimposed 
onto the patient’s expiratory respiratory flow. The dash-dot straight line segment is used to approximate 
respiratory flow only by disregarding the loudspeaker impulse. Subsequent application of this process to 
the recorded tracings of the composite flow (or pressure) signal, an undisturbed pure flow (or pressure) 
signal may be derived. b) Corrected impulse tracings of pressure (- - -) and flow (¾) respiratory responses, 
resulting from baseline correction, now ready for input into the fast Fourier transform. Reprinted from 
Lung Function Testing: Ch. 5-Forced Oscillation Technique and Impulse Oscillometry, by H.J. Smith et 
al., Copyright 2005 by European Respiratory Society. 

 
Consequently, corresponding 𝑅*+ and 𝑋*+ outputs could be unambiguously detected based 

on the selected test signals and resultant frequency response with notable trends and/or deviations 

across the lower spectrum of IOS frequencies attributed to the heightened sensitivity of the SADWX< 

model towards obtaining clearer recognition of respiratory state. Test signals were chosen based 

on their signal frequency, amplitude, morphology, and convenience in mathematical models and 

computer simulations. 
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4.1.1  INVERSE MODEL: OPTIMIZED PARAMETER SOLUTIONS 

The objective of the followed inverse modeling approach is to define model-derived 

parameter estimates using algorithms in MATLAB and Excel to derive accurate and reliable 

predictions of respiratory impedance at ULF with IOS. These algorithms utilize impedance 

equations from (3-2) and (3-3), along with existing 𝑅*+ and 𝑋*+ measurements from the IOS patient 

database to perform nonlinear LS regression and minimize estimation error. Outcomes of these 

algorithms are presented in Table 4.1 with model-derived parameter estimates (𝑅Z, 𝐶Z, 𝑅SR, 𝐶SR, 

𝑅S>, and	𝐶S>) for each of the four respiratory conditions (N, PSAI, SAI, and A) and via plots of 

resistance (𝑅*+) and reactance (𝑋*+) components of the total input impedance of the respiratory 

system to provide visual verification of the SADWX< model. 

Tables 4.1 and 4.2 display the obtained parameter estimates through the LS regression in 

the inverse model for 𝑍h and 𝑍�, respectively. Substitution of the corresponding values for these 

model-derived parameters into the equations of motion derives a predicted impedance value at any 

desired frequency, which provided a mathematical means for analyzing the SADWX< electrical 

analog for its practicality among the four classifications of respiratory impairment. Since the prime 

area of interest for this research are frequencies below 5 Hz, or the ULF range, for which no data 

exists in the IOS patient database, reference experimental data was unavailable and was not 

considered when constructing the algorithm for inverse modeling. Hence, in order to determine 

the resistance 𝑅*+	and reactance 𝑋*+ components of the predicted respiratory impedance response 

at ULF, the same optimized parameter estimates where used adjusting for the new lower frequency 

range, 0.5 to 4 Hz, in their respective equations. 
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Table 4.1:  Resistance-based SADulf model-derived parameter estimates from MATLAB LS-based algorithm and Excel 
Solver program for four classifications of IOS pediatric patient data. Units of measure for the parameter 
estimates of individual resistances and capacitances are kPa/L/s and L/kPa, respectively. 

𝑍h  
NORMAL PSAI SAI ASTHMA 

MATLAB Excel MATLAB Excel MATLAB Excel MATLAB Excel 
𝑅Z 0.3331 0.0010 0.2877 0.0010 0.1257 0.0010 0.2239 0.0010 
𝑅SR 1.5000 0.4281 0.3838 0.5826 0.8084 0.6612 0.8725 1.1102 
𝐶SR 1.5000 0.0662 1.2641 0.0253 0.7880 0.0191 1.3745 0.7277 
𝑅S> 0.0010 1.5000 0.0706 0.8599 0.4019 0.9758 0.2557 0.6797 
𝐶S> 0.0984 1.5000 0.0721 0.1410 0.0254 0.3739 0.0223 0.0141 

 

Table 4.2:  Reactance-based SADulf model-derived parameter estimates from MATLAB LS-based algorithm and Excel 
Solver program for four classifications of IOS patient data. Units of measure for the parameter estimates 
of individual resistances and capacitances are kPa/L/s and L/kPa, respectively. 

𝑍�  
NORMAL PSAI SAI ASTHMA 

MATLAB Excel MATLAB Excel MATLAB Excel MATLAB Excel 
𝐶Z 0.0359 0.9303 0.0366 1.2292 0.0381 1.4820 0.0403 1.5000 
𝑅SR 0.0010 1.5000 0.0010 1.5000 0.0010 1.5000 0.0010 1.5000 

𝐶SR 0.0490 2.4E-5 0.0488 7.5E-6 0.0557 1.0E-9 0.0577 1.5E-5 

𝑅S> 0.0162 0.0970 0.0152 0.0774 0.0141 0.0543 0.0130 0.0373 

𝐶S> 1.5000 0.7487 1.5000 0.6233 1.5000 0.5287 1.5000 0.5833 

 

The results of this modeling method for determining impedance within the standard IOS 

range, 5 to 25 Hz, were validated with Excel’s Solver run in conjunction with the MATLAB 

implementation of the algorithm, also providing parameter estimates from the same dataset. 

Overall, both options performed equally well in minimizing the estimation error for resistance, as 

evidenced by resistance curves (via overlapping lines of 𝑅*+	measured and 𝑅*+	estimated) in Fig. 

4.2 and the side-by-side comparisons in Table 4.3. 

Table 4.3 also shows that in terms of minimizing the estimation error for reactance, the 

MATLAB algorithm provided better results. However, upon plotting the ULF predicted 
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impedance results, as shown in Fig. 4.2 and Fig. 4.3, it appears that the MATLAB algorithm 

potentially overfitted the model using a higher-order polynomial than the one in Excel. Best fit 

polynomial plots of reactance (Fig. 4.3) for both methods suddenly and sharply diverged at and 

below 5 Hz with the line representing Excel Solver’s impedance solution following the expected 

trend, i.e. going downwards and having more negative values of reactance, while the line for the 

MATLAB algorithm actually began to ascend towards the x-axis from within the ULF range. This 

divergent behavior of the MATLAB reactance prediction was incited by an overfitting of 

parameter estimates to find the smallest estimation error possible, which also accounts for the 

discrepancy in parameter estimates values in Tables 4.1 and 4.2. Therefore, even though reactance 

obtained from the MATLAB algorithm appeared graphically valid within the standard 5 to 25 Hz 

range, not only matching the IOS measured data points but also the predicted Excel reactance data; 

those impedance predictions calculated by the MATLAB algorithm under 5 Hz are unreliable. 

Therefore, the Excel GRG nonlinear solver was the preferred method for determining optimal 

SADWX< model-derived parameter estimates only for reactance. Using MATLAB in this instance 

solely for the purpose of validating Excel’s ULF reactance predictions by extrapolating the 

impedance curves of the measured IOS data, 𝑅=	 through 𝑅>=	 and 𝑋=	 through 𝑋>=, from the patient 

database, to plot, and attempt to mirror, Excel’s predicted impedance at ULF; which, it did. 
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Figure 4.2:  Resistance (𝑍h) curves for IOS group average data and model estimates of Normal, PSAI, SAI, and 
Asthma classifications per Excel Solver. 
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Figure 4.3:  Reactance (𝑍�) curves for IOS group average data and model estimates of Normal, PSAI, SAI, and Asthma 
classifications per Excel Solver. 

 

 

Table 4.3:  Estimation errors from SADULF inverse model parameter estimation. A comparison between MATLAB and 
Excel nonlinear least squares algorithms per lung function classification for group average test results. 

Classification 
𝑍h LS error 𝑍� LS error 𝑍 LS error 

MATLAB Excel MATLAB Excel MATLAB Excel 
       

Normal 0.0001 0.0001 0.0027 0.0189 0.0028 0.0190 

PSAI 0.0003 0.0002 0.0044 0.0174 0.0047 0.0176 

SAI 0.0023 0.0023 0.0086 0.0232 0.0109 0.0255 

Asthma 0.0030 0.0030 0.0133 0.0272 0.0163 0.0302 
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Finally, observing a similar divergence of plotted (reactance) curves in Fig. 4.3 on the 

opposite end of the spectrum, this is attributed to the SADWX< model’s lack of inductors, which 

represent the inertance components of the proximal and distal airways. Since the inertance of the 

lungs dominates the composition of the reactive components of respiratory impedance for all 

frequencies greater than FABC, discrepant behavior of the SADWX< model at higher frequencies is to 

be expected, particularly because compensation for the effect of extrathoracic compliance (Ce) in 

the model was not included. 

 

4.1.2  FORWARD MODEL: ACHIEVING INTUITIVE SIMULATIONS 

In fulfillment of objective 3 of this dissertation, comprehensive simulations with the SADWX< 

model were conducted. With a working and valid transduction scheme in section 3.5, as described 

in Table 3.3, parameter estimates obtained through the inverse modeling approach became more 

intuitive from the network analysis perspective. Instead of having to deal with a mechanical to 

electrical model conversion in which electrical component values are expressed in mechanical 

units, the forward modeling approach described here is handled in fully electrical terms based on 

transduced units and on the transduction factors in Table 3.3. Leveraging this method for 

transformation from the mechano-acoustical to electrical energy domain, forward modeling of the 

SADWX< model resulted in the schematic capture and analysis of circuit parameters that explicitly 

express the foundational concepts and relationships behind IOS pressure and flow 

measurements/impedance predictions from inverse modeling results in realistic and measurable 

electrical terms and units.  

Simulations of electronic circuits representing SADWX< forward models, such as the one 

depicted in Fig. 3.4, were executed in Multisim. Four versions of the SADWX< circuit were 
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constructed and analyzed, by mapping the values of resistors and capacitors in accordance with 

Tables 4.1 (𝑅Z) and 4.2 (𝐶Z, 𝑅SR, 𝐶SR, 𝑅S>, and	𝐶S>), with each version representing the four 

respiratory conditions as classified in the IOS patient database. Pertinent plots of the Multisim 

analysis for two IOS excitation signal scenarios under the four conditions, each with distinct 

parameter estimates, are presented in Fig.’s 4.4, 4.5, 4.6, and 4.7. 

 

 
Figure 4.4:  Simulated outputs from transient and Fourier analyses of the Normal SADulf model.   

NORMAL GROUP
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Figure 4.5:  Simulated outputs from transient and Fourier analyses of the PSAI SADulf model. 

 
Figure 4.6:  Simulated outputs from transient and Fourier analyses of the SAI SADulf model. 

PSAI GROUP

SAI GROUP
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Figure 4.7:  Simulated outputs from transient and Fourier analyses of the Asthma SADulf model. 

 

Circuit analysis consisted of AC analysis, specifically transient analysis and Fourier 

analysis for the four respiratory classification groups, performed for the two scenarios of 

composite test signals applied at the circuit’s input (0.5 Hz or 5 Hz square wave sources; refer to 

section 3.6). Transient analysis was conducted to verify the validity of the superimposed signal 

from the voltage sources at Vin in the time domain with respect to waveform morphology, 

amplitude, phase, period, and pulse width of square wave; and also, to measure the resultant output 

signal frequency response at Vout. Fourier analysis provided the method for converting the SADWX< 

output signal from the time domain to the frequency domain. Characteristics of the frequency 

response at the output are the magnitudes of Vout and 𝐼]Z c. Determining these values leads to the 

calculation of 𝑍*+ with equation (3-8).  

 

ASTHMA GROUP
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   Figure 4.8:  𝑍*+ plots of IOS group average data and model estimates for Normal, PSAI, SAI, and Asthma 
classifications per Multisim FFTs. 

 

The ratio of the FFTs of Vout to 𝐼]Z  of the circuit analogous to 𝑍*+ was then transduced 

from electrical impedance back to the mechano-acoustical domain in kPa/L/s, which was then 

plotted over the entire frequency range of 0.5 to 25 Hz for each of the IOS classifications (Fig. 
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4.8). Furthermore, for the purpose of comparing the forward modeling results to the measured 

impedance data from the IOS patient database, as done for inverse modeling, the 𝑅*+ and 𝑋*+ at 

discrete frequencies of 5 to 25 Hz were combined to formulate the total respiratory system 

impedance 𝑍*+ per the equation: 

𝑍*+ = 	�𝑅*+ + 𝑋*+ .        (4-1) 

Results of this calculation derived from the IOS database impedance data, coupled with MATLAB 

extrapolated data points for the ULF range, were plotted against the forward model solutions. 

Fitted curves for the measured vs. predicted values for assessment of the validity and robustness 

of the forward modeling approach are shown in Fig. 4.8. 

 

4.2  SADULF MODEL VALIDATION 

In the case of objective 4, the performance evaluation of the SADWX< model was centered 

on defining its power and limitations in reliably determining SAI via IOS simulations within the 

ultra-low frequency range. Hence, the accuracy of IOS parameters estimation of the two-

compartment parallel respiratory model was investigated, referring back to the eRIC and aRIC 

model parameter estimates and respective estimation errors made available in the IOS patient 

database for comparison. In conjunction, the IOS simulation results of the SADWX< model for the 

calculated respiratory impedance were also compared against the IOS patient database values 

across the Normal, PSAI, SAI, and Asthma classifications. 

The coherence function and SNR were considered for validation of performance indices 

for the efficacy of the inverse and forward modeling approaches, sensitivity of electrical 

respiratory models at ULF, and adequacy of impedance parameter estimates. This was due to the 

fact that, in practice, evaluation of SNR for IOS input test signals and output responses to monitor 



52 

the effects of system noise on IOS circuit models and parameter estimates evaluate the 

performance of respiratory system frequency response under varying conditions throughout 

simulations. SNR was of interest, particularly within the ULF range due to competing 𝑍�* and 𝑍*+ 

measurements, to determine the validity of the response. As a second potential index, the 

coherence function, which reflects the linearity of the system and the quality of the output signal, 

may be calculated using the following equation: 

g>(𝑓) = 	 ��`�( )�	e

�``( )∙	�∗��( )
, 0 ≤ g> ≤ 1,        (4-1) 

where 𝐺S¤  is the cross-power spectrum between pressure and flow, and 𝐺SS , 𝐺¤¤  are the auto-

power spectrum of pressure and flow, respectively [23]. In PFT practice, the rule of thumb is to 

only accept impedance measurements with a 𝛾> ³ 0.9 for most frequencies to ensure the 

measurement error is less than 10% [23]; although, a 𝛾> ³ 0.6 may be an acceptable threshold at 5 

Hz [13]. However, neither the SNR nor the coherence function can be calculated from results 

obtained from the SADWX<, though they could be considered as the basis of future model 

development work. Instead, Mean Absolute Error (MAE) was calculated to provide a measure of 

the goodness of fit among the modeling techniques. 

For independent validation of model computations, Excel was utilized to perform all 

pertinent modeling calculations, perform extrapolations, generate plots, create tables, and prepare 

performance comparisons and sensitivity analyses amongst versions of the SADWX< circuit models 

using different impedance equations. The SADWX< circuit layout, configuration, and simulation 

technique were determined based on analysis of the effects of these factors on modeling small 

airway compliance and resistance in a robust manner. 
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4.2.1  PERFORMANCE EVALUATION 

Performance evaluation determines the effectiveness of SADWX< inverse and forward 

modeling parameter estimation algorithms and circuit simulations to predict impedance that 

matches IOS patient data within measurement error. Therefore, accuracy of the measuring device, 

in this case the Jaeger MasterScreen IOS described in section 3.5, is compared to the percent error 

of the modeling approaches, i.e. error from 𝑍*+ output of forward model and error from 𝑍*+ output 

of inverse model. According to Vyaire Medical, the original equipment manufacturer, the accuracy 

of the MasterScreen IOS hardware, inclusive of the pneumotach and pressure transducer, is ± 2%, 

under the assumption that calibration is performed regularly. 

Calculation of the error attributed to the SADWX< model inverse and forward modeling 

approaches were determined via MAE of estimation results, which remain dependent on the 

modeling algorithm as well as the IOS respiratory condition. MAE is calculated according to the 

following equation: 

𝑀𝐴𝐸 = R
n
∑ |𝑟p(𝒑)|©
?.= 	,       (4-2) 

where i = 0.5, 1, 2, 3, and 4 Hz, n = number of impedance values, and p = parameter estimate 

vector. 

Due to lack of measured impedance for ULF in the IOS patient database, no direct 

comparison with predicted values could be made for the range of 0.5 to 4 Hz. Two approaches to 

address this situation were taken: 1) MAE was derived for the two inverse modeling parameter 

estimation algorithms in MATLAB and Excel. For the forward modeling impedance estimation 

technique with Multisim, impedance values calculated in the standard 5 to 25 Hz range are 

compared against one another and referenced with IOS measured data in Table 4.4. And 2) MAE 
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was recalculated using the predicted impedance values in the ULF range of 0.5 to 4 Hz from these 

models, with reference to extrapolated data in Table 4.5. 

 

Table 4.4:  Measured and estimated impedance for representative child patient with asthma, with MAE for inverse 
and forward models over the standard IOS frequency range. 

Measured 
Z5 Z10 Z15 Z20 Z25 MAE 

0.899 0.673 0.530 0.450 0.508  
MATLAB 0.825 0.611 0.522 0.482 0.462 0.0444 

Excel 0.826 0.612 0.523 0.483 0.463 0.0438 
Multisim 0.667 0.480 0.485 0.601 3.130* 0.1553 

* invalid data, not included in MAE; divergent impedance curve beyond 25 Hz due to high frequency 
inertance not included in the SADulf model. 

 

 

Table 4.5:  Extrapolated and estimated impedance for representative child patient with asthma, with MAE for inverse 
and forward models over the ULF IOS frequency range. 

Extrapolated 
Z0.5 Z1 Z2 Z3 Z4 MAE 

1.159 1.129 1.069 1.011 0.954  
MATLAB 1.065 1.054 1.012 0.953 0.888 0.070 

Excel 1.066 1.054 1.013 0.954 0.890 0.069 
Multisim 3.654* 1.869 1.094 0.938 0.915 0.219 

* invalid data, not included in MAE; divergent impedance curve below 1 Hz due to low SNR. 
 
 

From these results, it is observed that the inverse modeling parameter estimation performed 

fairly well with a low MAE. Data sets of impedance values derived from MATLAB and Excel 

were nearly identical irrespective of frequency range, thus validating the SADWX< model. However, 

it is important to note that the SADWX< model impedance equation is governed by a second-order 

equation, yet the MATLAB and Excel algorithms employed higher-order polynomial functions to 

fit the impedance data, which may potentially result in overfitting the model as observed at the 

lowest frequencies in Fig. 4.3. Whereas, in the case of circuit simulation results using Multisim 

FFT impedance data, the MAE was higher than expected. Therefore, as this method of assessment 
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for the SADWX< model seemed very appealing at first, especially since it enabled the introduced 

novel transduction of parameter estimates into the appropriate energy domain, it was decided that 

the proposed forward modeling approach cannot be used effectively at ULF as is, but perhaps it 

eventually may be further refined for this technique.  
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CHAPTER 5: DISCUSSION  

Detection and diagnosis of small airway disease and asthma is oftentimes a difficult task, 

especially in young children where variability among their statures and still developing physiques 

often conflicts with acquiring reliable measures of their lung’s respiratory impedance. In this case, 

and in accordance with the outcomes of the research objectives of this dissertation, a “one size fits 

all” reference equation as the typically accepted standard for classification is not recommended. 

Instead, since SAD has previously been identified as a likely childhood precursor for the 

pathogenesis of asthma, and it cannot be detected by spirometry, we suggest that researchers and 

clinicians take a deeper look into the lung’s “quiet zone” through ULF IOS and its enhanced 

discriminative capacity for the early detection of the onset of this disease of the peripheral airways. 

 

5.1  ULF RESPIRATORY IMPEDANCE RESPONSE TOWARDS SAD AND ASTHMA DETECTION 

The relationship between SAD and asthma detection using IOS PFT within the typical 

frequency range of 5 to 30 Hz is well established across subject groups, as shown in Fig. 2.1. 

However, results lack reliability in the case of a single subject, particularly when attempting to 

quantify lung inhomogeneities via some functional representation of respiratory mechanics, e.g. 

catch-all IOS reference equations and models serving the general population, not intended to be 

anatomically specific [21]. For several decades, IOS researchers and clinicians have held to the 5 

Hz lower threshold of pulmonary function testing primarily due to potential for concomitant low 

frequency spontaneous breathing signals to corrupt the low frequency respiratory impedance 

response, thereby compromising their IOS results in undetectable manner. 

IOS impedance results in the frequency range below 10 Hz, however, are most sensitive to 

normal physical processes and pathologic structural alterations [11]. FOT studies that may relate 
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to ULF response are relatively scarce and date back to 1986 [22]. More recently, in 2017, Maes et 

al. [11] developed an FOT method using a fan-based apparatus to measure respiratory impedance 

within the normal tidal breathing frequency and applied it to a small group of healthy individuals. 

However, to the best of my knowledge, no work with ULF IOS is available in the literature. 

As the basis of the research presented herein, particularly in reference to objectives 1, 2, 

and 3 in section 2, synthetic ULF IOS input test signals were generated in the 0.5 to 4 Hz range 

for the purpose of analyzing their effects on parameter estimation and sensitivity of respiratory 

impedance calculations via computer simulations of electrical circuit analogs of the human 

respiratory system. The upper and lower cutoff frequencies for this specific range were 

strategically selected to isolate 𝑍*+ results from conventional IOS low frequencies, i.e. 5 to 15 Hz, 

while also considering the higher harmonics of underlying natural respiration frequency in 

preschoolers (0.33-0.5 Hz), respectively. Upon injection of these synthesized ULF excitation 

signals into a novel IOS SADWX< model focused on predicting the onset of asthma, it was expected 

that some type of amplified frequency response would occur, which would then hopefully lead to 

the discovery of SAD hallmarks from deep within the peripheral airways. This enhanced 

impedance response would better lend itself to an earlier and more sensitive detection of SAD. 

 

5.2  RELATIONSHIP OF MODEL-DERIVED PARAMETERS TO IOS INDICES 

Examination of the relationships between relevant IOS indices that have historically been 

associated with assessment of the peripheral airways and ULF IOS estimated model-derived 

parameters were of particular interest to the findings of this research. An accurate and reliable 

determination of input respiratory system impedance at ULF IOS was supported in the previous 

chapter through inverse and forward modeling techniques, which were proven to be mostly in 
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accordance with trending results among the standard 5 to 25 Hz range both numerically and 

graphically, e.g. curve fitting of SAD model-derived parameters at ULF coinciding with back 

extrapolation of IOS measured impedance data. This finding is further substantiated by similar 

corresponding trends witnessed among two particularly SAD-sensitive IOS indices, namely fdR 

and AX, as is demonstrated below. 

 
Table 5.1:  IOS indices for frequency dependence of resistance (fdR=R5-R20) and reactance area (AX, or Goldman’s 

Triangle) estimated over 5 Hz to resonant frequency (Fres) range and at ULF between 0.5-5 Hz. 

 

 

fdR is indicative of an imbalance in the levels of severity for obstruction or restriction 

amongst lower and upper airways. Negative fdR refers to a negative slope of 𝑍h from 𝑅=	 to 𝑅>?	, 

and signifies greater impairment in the distal airways than in the proximal airways; precisely owing 

to IOS discriminative capacity for identification of regional inhomogeneity in the lungs. Reactance 

area (AX), on the other hand, is an IOS index intimately related to tissue compliance or elastance 

within the peripheral airways. AX may be defined as magnitude of 𝑍�	in kPa/L of the low 

frequency impedance response integrated over the frequency range from 5 Hz to FABC. Evidence 

points to the fact that inflammation and constriction of the peripheral airways is a commonality 

among asthma patients, for which both of these IOS indices individually may contribute to the 

detection, diagnosis, and treatment of this small airways disease. 

fdR 
Normal PSAI SAI Asthma 

𝐴𝑋 

(kPa/L/s) (kPa/L) 

5-25 Hz 0.0678 0.1389 0.2528 0.3735  
ULF range 1.0444 0.1356 0.2248 0.2400  

 0.4151 0.5237 2.7535 3.3664 5-25 Hz 
 1.1373 1.4232 1.6401 2.0228 ULF range 
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Examining fdR alongside AX, as shown in Table 5.1, may provide insights regarding 

combining the resistive and reactive components of respiratory impedance to obtain an indication 

of the source and location of what may be causing any respiratory distresses. Employing these 

indices in clinical IOS applications, such as tracking changes in lung dysfunction over the course 

of bronchodilation and bronchoconstriction exercises for the purpose of monitoring treatment 

regimens for asthma, is of special interest when disparities are recognized between varying degrees 

of a medication efficacy; particularly since fdR and AX reflect the degree of obstruction in the 

peripheral airways. Therefore, it is common practice to study them in tandem. In fact, in 2005, 

Goldman et al. suggested close similarities between fdR and AX, wherein the equally weighted 

influences of their respective magnitudes appear to offer a near complete assessment of peripheral 

airway mechanical function [32]. 

As evidenced by the results in Table 5.1 and Fig. 5.1, from fdR and AX analyses of the 

SADWX< model, it is apparent that a negative frequency dependence of resistance exists among all 

IOS respiratory conditions as well as a complementary frequency dependence of compliance. 

These relationships persist regardless of method of acquisition, specifically referring to the 

frequency range from which the fdR and AX measurements were obtained (0.5-5 Hz or 5 Hz to 

FABC). Furthermore, it is acknowledged that the fluctuating value of FABC plays a critical role in the 

determination of AX using the traditional method, i.e. effectively shifting the upper limit of 

integration; whereas, the calculation of AX at ULF imposes fixed boundaries. Hence, the resulting 

fdR and AX magnitudes and any incremental differences between IOS groups will typically be 

larger within the standard frequency range. However, all pertinent observations indicate that ULF 

fdR and ULF AX are both as significant as their traditional counterparts in describing the state of 

lung function; thus, imparting their worth toward enhanced SAD and asthma detection. 
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Figure 5.1:  𝑍� plots derived from SADulf model parameter estimates of group averages for Normal, PSAI, SAI, and 

Asthma classifications for AX determination. Post-processing of reactance data using MATLAB’s 
integration function calculated the area above each curve up to the x-axis from (a) 𝑋= to resonant 
frequency and (b) 𝑋?.= to 𝑋= ULF. 
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5.3  SADULF MODEL VERSUS PROMINENT EXISTING ELECTRICAL ANALOGS 

Physiological interpretations based on SADWX< model fit to respiratory impedance data 

suggest that this model’s elements and configuration are an accurate representation of the quiet 

zone’s airway resistance and tissue compliance for determining the state of respiratory function in 

the small airways. The novel SADWX< model shares some features with the Otis, Mead-1969, and 

two-compartment models, as described in chapter 2, and may even be considered a hybrid of all 

three. The main difference being that the SADWX< model lacks any inductor elements due to the fact 

the new model focus is on the ULF range, thereby making any inductor in the circuit effectively a 

short-circuit at these low frequencies and therefore insignificant. 

The SADWX< model’s concept for parallel pathways was adopted to describe inhomogeneous 

lung ventilation between the peripheral airways of the right and left lungs and may even be 

interpreted further as modeling alveoli sacs in each respective lung should pressure and flow data 

be made available at this level. A unique characteristic of the SADWX< model is its ability to quantify 

the degree of inhomogeneity, which Glapiński et al. describe with a simple index defined as the 

ratio between longer and shorter time constants using the Otis model [36]. By effectively creating 

a Wheatstone bridge as its second compartment, i.e. peripheral parallel pathways of the circuit, the 

SADWX< model measures the differential voltage across the nodes located between the resistor and 

capacitor in each leg. This voltage is measured with a digital multimeter (DMM) across the 

model’s bridge circuit as shown in Fig. 5.2. The balanced/unbalanced state of the parallel 

pathways’ voltage dividers indicates the degree of inhomogeneity between the left and right lungs, 

with the sign of the resultant measurement indicative of which lung has higher impedance and thus 

poorer ventilation. Ideally, both lungs should be equally balanced and result in a zero voltage on 
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the DMM; however, in all practicality, the DMM reading will never be absolute zero because 

cardiogenic oscillations induce low amplitude noise into the left lung and cause a perpetual bias. 

 

 

Figure 5.2:  SADulf model bridge circuit for measuring inhomogeneity between the lungs. 
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CHAPTER 6: CONCLUSIONS  

Clinical adoption of IOS is still lagging behind spirometry due to the complexity involved 

in analyzing IOS results, which may be relatively intuitive for engineers/scientists familiar with 

electrical models and analogous references to pulmonary “impedance”, but not particularly so for 

clinicians or physicians; especially those who struggle to visualize and relate these electro-

mechano-acoustical concepts with their physiological cross-references (i.e. analogous 

relationships). The significance of this research to the clinical world looks promising, with the 

advanced techniques and meaningful results attained in the sections above laying the groundwork 

for future, more comprehensive studies.  

 

6.1  SUMMARY 

The novel SADWX< model is the key deliverable of this research. Insights obtained from 

model results for ULF IOS may improve the likelihood of early detection of SAD. The presented 

novel electrical circuit analog of the respiratory system that models small airways disease using 

two different approaches can be used for enhancing the sensitivity of IOS impedance 

measurements and lead to improved and timelier diagnosis of asthma in children. 

Many of the existing electrical models used today limit their usefulness and compatibility 

to mono-frequency FOT or traditional IOS research, making the design, development, and testing 

of a SADWX< model a new resource for research and eventually improved clinical practice in PFT. 

The fact that the SADWX< model is successful in representing lung health or disease from an 

incomplete patient database, which lacked impedance measurements or any relevant information 

regarding ULF IOS, demonstrates its power in performance. Focused on providing a potential 

solution to the SAD detection problem, primarily through an inverse-forward modeling approach, 
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this research both predicted and validated these lung health and disease inferences within the ultra-

low frequency range of IOS. 

In summary, outcomes from these modeling efforts show that the inverse modeling 

technique presented outperforms the presented forward-modeling approach, and in essence self-

validated the model by utilizing two very distinct implementations of the modeling algorithms yet 

still obtaining practically identical results. While the LS analysis performed as expected within the 

standard 5 to 25 Hz IOS frequency range, we can conclude that the provision of experimental ULF 

impedance data would drastically improve regression results within this frequency range, 

particularly for pulmonary system reactance. Furthermore, it was found that this work contribution 

toward developing a mechano-acoustical to electrical transduction scheme made it feasible to 

implement an intuitive forward modeling approach using circuit schematic capture and simulation 

software. The value added from the model transduction and bridge circuit as a respiratory system 

inhomogeneity index concepts is their potential to facilitate and improve future forward modeling 

work. 

 

6.2  TECHNICAL ASSUMPTIONS, RISKS, AND CONSTRAINTS 

The scope of this research and the results presented in this dissertation can be applied to 

supplement current IOS capabilities and enhance existing methods for small airways disease 

diagnosis despite limitations inherent in modeling as a research approach and the specific 

differences between the SADWX< model and the human respiratory system [28]. For instance, use of 

the SADWX< model is specifically indicated for use with ULF IOS and should only encompass 

frequency response of the lungs in the range of 0.5 to 5 Hz. Generic and competing respiratory 

models, or electrical analogs, do exist in the literature and can be applied over a large bandwidth 
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of frequencies to some extent [38], but caution should be taken and assumptions should not be 

made when applying these general models to ULF inputs, where data extrapolations often replace 

actual model outputs. Several of these comprehensive models also tend to exhibit large parameter 

estimate errors at both extremes of the frequency range, due to signal interference from 

spontaneous breathing at low frequencies and upper airway shunting effects at high frequencies. 

Apart from this, this research may allow machine learning approaches for IOS data 

classification, which would further augment the precision of results through the application of a 

validated SADWX< model. This would be expected to enhance the reliability of classification into 

four patient groups and corresponding measurements afforded from the used IOS pediatric patient 

database. For instance, identification of borderline diagnoses due to crossover between two 

respiratory condition classifications, could be more closely examined for the purpose of improving 

accuracy, particularly using information from the newly available IOS ULF modeling data. 

In addition, the future patient databases could be made more robust by recording 

parameters associated with input signals, e.g. pressure, flow, and volume measurements; patient-

specific breathing cycle information, e.g. breaths/min. and baseline volumes; and of course, 

respiratory impedance at ULF, which were all lacking from the IOS pediatric patient database used 

for this research. Furthermore, the inclusion of additional anthropometric data such as physical 

dimensions of the chest could be added to conduct more thorough mathematical studies and 

statistical analyses. It is hypothesized that the addition of ULF impedance data, input signal 

characteristics, and chest size to an IOS data set would result in the definition of discriminative 

features from electrical models such as SADWX< model and lead to enabling highly accurate and 

early diagnoses of small airways diseases. 
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Finally, the presented ULF IOS pulmonary modeling technique and respiratory impedance 

results were not examined in their ability to assess therapeutic response under provocation testing, 

where past studies with competing analog models have found parameter estimates and IOS indices 

correlate closely with bronchodilator response [37]. Consequently, additional patient records 

reflecting provocation data were not considered because such modeling is beyond the scope of this 

research. 

 

6.3  RECOMMENDATIONS FOR FUTURE RESEARCH 

To advance techniques for inverse and forward modeling SAD detection in the ULF range, 

whilst results of regression and circuit simulation indicate that parameter estimate errors and 

impedance calculation tolerances are indeed acceptable, the effect of tidal breathing should be 

investigated to determine its effect on modeling performance. Likewise, the recursive combination 

of inverse and forward modeling into a single dynamic system to methodically reach model 

convergence to an acceptable error level, say within measurement error, could facilitate individual 

patient modeling to improve understanding, monitoring, and treatment of SAD through 

observation of model evolution. Additionally, building a physical circuit of the SADWX< model for 

testing per ULF IOS criteria may serve as a validation of the Multisim circuit simulation’s 

respiratory impedance estimates, so as to offer insight of environmental effects on real-world 

versus virtual results. Finally, use of the SADWX< to baseline and monitor a subject’s lung impedance 

bias should be investigated as a means to observe the evolution of SAD based on contrasting the 

relative progress of disease between the subject’s lungs.   
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APPENDIX A 

 
Least Squares Approximation Plots of Resistance per Respiratory Condition 

 
 

 
 

Figure A.1:  Least squares regression curves of Resistance (Zr) data for (a) Asthma, (b) PSAI, (c) SAI, and (d) Normal 
conditions per MATLAB parameter optimization algorithm. 
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APPENDIX B 

 
Least Squares Approximation Plots of Reactance per Respiratory Condition 

 
 

 
 
Figure A.2:  Least squares regression curves of Reactance (Zx) data for (a) Asthma, (b) PSAI, (c) SAI, and (d) Normal 

conditions per MATLAB parameter optimization algorithm. 
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