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Abstract

One of the main objectives of systems engineering is to design, maintain, and analyze

systems that help the users. To design an appropriate system for an application domain,

we need to know: what are the users’ desires and preferences (so that we know in what

direction we should aim to change this domain), what is the current state and what is the

dynamics of this application domain, and how to use all this information to select the best

alternatives for the system design and maintenance.

Designing a system includes selecting numerical values for many of the parameters

describing the corresponding system and its subsystems. At present, in many cases, this

selection is made by consulting experts and/or by following semi-heuristic recommendations

(recommendations based partly on the past experience of system design and monitoring).

Experience shows that such heuristic imprecise recommendations often lead to less-than-

perfect results. It is therefore desirable to come up with analytical techniques for system

design, techniques that would be based on valid numerical analysis and on the solution of

the corresponding optimization problems.

System engineering is a very broad discipline, with many different application domains.

Each domain has its own specifics and requires its own analysis and, probably, it own

analytical techniques.

In this dissertation, we formulate and analyze general problems corresponding to differ-

ent stages of system design, implementation, testing, and monitoring, and show, on appro-

priate examples, how the corresponding analytical techniques can be applied to different

application domains. Examples of our applications range from biological and biomedical

systems (ranging from cows to humans) to social-related systems (such as recommender

systems) to physical systems (for which we provide a new system-based explanation for the

minimum entropy principle) to engineering systems (for which we describe how to find the

optimal proportion of testing on different levels of system design).
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Chapter 1

Formulation of the Problem

Main objectives of systems engineering: a brief reminder. One of the main ob-

jectives of systems engineering is to design, maintain, and analyze systems that help the

users. To design an appropriate system for an application domain, we need to know:

• what are the users’ desires and preferences, so that we know in what direction we

should aim to change this domain, and

• what is the current state and what is the dynamics of this application domain, and

• how to use all this information to select the best alternatives for the system design

and maintenance.

Need for analytical techniques. Designing a system includes selecting numerical values

for many of the parameters describing the corresponding system and its subsystems. At

present, in many cases, this selection is made by consulting experts and/or by following

semi-heuristic recommendations (recommendations based partly on the past experience of

system design and monitoring). Experience shows that such heuristic imprecise recommen-

dations often lead to less-than-perfect results.

It is therefore desirable to come up with analytical techniques for system design, tech-

niques that would be based on valid numerical analysis and on the solution of the corre-

sponding optimization problems.

What we do in this dissertation: general idea. System engineering is a very broad

discipline, with many different application domains. Each domain has its own specifics and

requires its own analysis and, probably, it own analytical techniques.
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What we do in this dissertation is we formulate and analyze general problems corre-

sponding to different stages of system design, implementation, testing, and monitoring,

and show, on appropriate examples, how the corresponding analytical techniques can be

applied to different application domains.

What we do in this dissertation: a detailed description. We start with analytical

techniques for describing the users’ preferences. In the ideal world, we should be able

to ask each user’s opinion about each of the alternatives, but for large systems, with

many possible alternatives, this is not realistic. Therefore, we need to extrapolate the

user’s preferences based on partial information that we can elicit from the user. There are

analytical techniques for such extrapolation – e.g., the widely used matrix factorization

technique. However, this technique is purely empirical – and thus, not very reliable. In

Chapter 2, we provide a theoretical explanation for this techniques – and the existence of

such an explanation makes it more reliable.

In analyzing user preferences, we need to take into account that these preferences are

usually not very detailed – and thus, because of their approximate nature, we should not

waste time trying to fit them optimally. This approximate nature is usually captured by

the empirical 7 plus minus 2 law, according to which, in the first approximation, instead

of sorting all the alternatives, a user usually divides them into 7 plus minus 2 groups. This

law is purely empirical – and thus, its use is not as reliable as we would like it to be. To

make this law more reliable, in Chapter 3, we provide a partial theoretical explanation of

this law.

In addition to knowing the user preferences, we also need to know what is the current

state and what is the dynamics of this application domain. This information comes from

two main sources: from measurements and from expert estimates.

In analyzing this information, it is important to take into account that many real-world

processes are probabilistic. In many cases, the corresponding probability distributions are

Gaussian (normal) – which makes perfect sense, since such processes are affected by many

independent factors and it is known that in such cases, the distributions should be close to

2



normal. However, there are cases when the corresponding distribution is different – e.g.,

uniform. In Chapter 4, on the example of a practical cases study, we explain why such

distributions appear.

In general, systems change with time, and the corresponding probability distributions

change. There are some general rules about such changes, some of them well-explained,

some more of an empirical nature. For example, it is a well-known (and reasonable well-

explained) fact that the entropy of a closed system increases with time – this is known as

the Second Law of Thermodynamics. Interestingly, there is another empirical observation

– which is not as well justified – that while the entropy increases, its rate of increase

is often the smallest possible. The corresponding minimum entropy production principle

was first formulated and explained by a future Nobelist Ilya Prigogine. Since then, many

possible explanations of this principle appeared, but all of them are very technical, based

on complex analysis of differential equations describing the system’s dynamics. Since this

phenomenon is ubiquitous for many systems, it is desirable to look for a general system-

based explanation, explanation that would not depend on the specific technical details.

Such an explanation is presented in Chapter 5. Our explanation is related to the well-

known fact that in general, it is important to keep as many solution options open as

possible: in decision making, one of the main errors is to focus too quickly and to become

blind to alternatives.

Dealing with expert estimates bring additional challenges. For example, while measure-

ment results come with guaranteed bounds on the corresponding measurement inaccuracy,

the only estimates of the inaccuracy of expert estimates come from the experts them-

selves. It turns out that experts often misjudge the inaccuracy of their estimates. This

phenomenon is known as the Dunning-Kruger effect, after the two psychologists who dis-

covered it. Which this phenomenon has been confirmed by many follow-up experiments, it

remains largely unexplained. In Chapter 6, we present an analytical model that provides

a simple system-based explanation for the Dunning-Kruger effect.

Once we have the information about the system, information coming from measurements

3



and from expert estimates, we use this information to come up with a model describing

the system. The usual way to come up with such a model is to formulate several different

hypotheses and to select the one that best fits the data. Techniques for formulating hy-

potheses based on the available information are known as data mining techniques. When

the amount of data is not sufficient to make statistically justified conclusions, the depen-

dencies produced by data mining techniques are often caused by accidental coincidences

and do not reflect the actual behavior of the corresponding system. To separate such acci-

dental coincidences from true dependencies, it is important to look for possible theoretical

explanation for these empirical dependencies:

• if such an explanation is possible and natural, this means that this dependence is in

line with our knowledge about the system and it is, thus, highly probable that this

dependence is real;

• on the other hand, if no such natural explanation is possible, this means that this

“dependence” is probably an accidental coincidence.

In this dissertation, we illustrate this general approach on four examples, all four biology-

related. In the first three examples, we have found a natural explanation for the observed

phenomenon which confirmed the conclusions of data mining:

• the first example is a surprising observation that was made from the analysis of

records of cow insemination; this example is described in Chapter 7;

• the second example is an empirical fact that pink noise enhances sleep and memory

in humans, see Chapter 8;

• the third example is that filtering out higher frequencies makes it easier for a human

to carry a tune; see Chapter 9.

In the fourth example – related to an observed decline in IQ scores – vice versa, a natural

explanation invalidates the conclusion of data mining; see Chapter 10.

4



Once we have come with several reasonable models, we need to select the one that best

fits the data. There are many statistical techniques for selecting the model, most of them

well-justified but some more heuristic – and thus, less reliable. One of such techniques is

a widely used area-under-the-curve method. In Chapter 11, we use analytical techniques

to provide a theoretical explanation for this method – and thus, make it more reliable.

In Chapter 12, we use analytical techniques to explain why, upon getting new data, it is

desirable to revisit the selection of the best model, and why a usual practice of sticking to

the original model is faulty.

In Chapter 13, we illustrate the need for a careful comparison between different hy-

potheses on one of the most well-known historical examples – epicycles versus more modern

techniques in celestial mechanics. Our conclusion is that, contrary to what one may read

in modern astronomy and physics textbooks, epicycles were actually a very efficient tool,

in some aspects foreseeing modern techniques such as Fourier series – while not exactly as

efficient as Fourier series.

Once we have an adequate description of the users’ preferences and of the corresponding

application domain, we need to come up with a system design which the most appropriate

for this setting. One of the ways to come up with a good design is to use the experience

of successful similar systems – engineering and even biological. Examples of such systems

are plentiful: many situations in engineering and in life require constant monitoring. At

first glance, this would necessitate the need for the system to maintain the same alert level.

However, interestingly, recent experiments have shown that in many situations like driving,

the driver’s attention level constantly oscillates. In Chapter 14, we show that such an

oscillation is indeed helpful – and thus, it is necessary to emulate such an oscillation when

designing automatic systems, e.g., for driving.

One of the challenges in searching for an optimal system design is that we need to take

into account many different aspects of the resulting system. In many practical situations,

for each aspect, we have well-defined optimal design strategies, but there is no analytical

techniques for taking all the aspects into account. In Chapter 15, we show how several

5



aspects can be taken into account on the example of a tradeoff between computation and

communication needs.

When making recommendations, we need to take into account that people do not nec-

essarily follow the expert advice. In Chapter 16, we provide that an analytical model that

explains the observed non-compliance, and in Chapter 17, we use analytical techniques to

explain how to make recommendations more acceptable.

On all design stages, we need to test the designed system. This testing has to be

done on all levels, from the original big-picture design draft to the level of final detailed

implementation. On each level, there are numerous known techniques and methods for

testing. The problem is that our resources are limited, so we need to optimally distribute

these testing resources between different levels. In Chapter 18, we use analytical techniques

to come up with recommendation on how to optimally distribute testing resources between

different system levels.

6



Chapter 2

Analytical Techniques for Describing

User Preferences: Justification for

(and Extension of) the Matrix

Factorization Technique

In the ideal world, we should be able to ask each user’s opinion about each of the alterna-

tives, but for large systems, with many possible alternatives, this is not realistic. Therefore,

we need to extrapolate the user’s preferences based on partial information that we can elicit

from the user. There are analytical techniques for such extrapolation – e.g., the widely used

matrix factorization technique. However, this technique is purely empirical – and thus, not

very reliable. In this chapter, we provide a theoretical explanation for this techniques –

and the existence of such an explanation makes it more reliable.

Comment. The results presented in this chapter first appeared in [2].

2.1 Formulation of the Problem

Recommender systems. Many computer-based services aim at making the customers

happier. For example, platforms like amazon.com that help us buy things not only allow

us to buy what we want, they also advise us about we may be interested in looking at.

The system comes up with this advice based on our previous pattern of purchases and

on how satisfied we were with these purchases. For example, platforms like Netflix not only

7



allow you to watch movies, they also use our previous selections to help the customer by

providing advice on what other movies this particular customer will want to see.

To make such recommendations, for each customer i, the system uses the ratings rij that

different customers made for different objects j. Based on the available values rij corre-

sponding to different customers and different objects, the system estimates the customer’s

future ratings of different possible objects – and, based on these ratings, recommends, to

each customer i, the objects j for which the estimated ratings rij are the largest. Such

systems that, based on our past selections and our previous rating, try to predict our future

preferences are known as recommender systems.

Matrix factorization. One of the most successful techniques in designing recommender

systems is matrix factorization; see, e.g., [107, 135] and references therein. This method

is based on the assumption that we can find parameters ci1, . . . , cin characterizing the i-th

customer and parameters oj1, . . . , ojn characterizing the j-th object so that the rating rij

of i-th customer on the j-th object has the form

rij =
n∑

k=1

cik · ojk. (2.1)

Challenge. While the matrix factorization methods works well, it is not clear why a

person’s recommendations can be described in this way.

What we do in this chapter. In this chapter, we provide a general systems-based

explanation for the matrix factorization method.

To be more precise, our theoretical analysis leads to a somewhat more general tech-

niques. We hope that the use of this more general techniques will lead to a better repre-

sentation of user preferences.

8



2.2 Why Matrix Factorization: Our Explanation

Formulation of the problem in precise terms. Let p1, . . . , pn be parameters describing

a customer, and let q1, . . . , qn be parameters describing the object. Based on the values

pi describing the customer and on the values q1, . . . , qn describing the object, we need to

estimate the customer’s rating of the object. Let us denote the algorithm providing such

an estimation by

f(p1, . . . , pn, q1, . . . , qn).

We want to explain why the formula (2.1) is a good model for such a dependence.

Linearization. In general, in the first approximation, we can always expand each depen-

dence in Taylor series and keep only linear terms in the corresponding expansion. This

linearization procedure is a general systems idea widely (and successfully) used in physics,

in engineering, and in many other applications; see, e.g., [35].

In line with this general idea, let us expand the function f in Taylor series in terms

of the values p1, . . . , pn and keep only linear terms in this expansion. We perform this

procedure for each possible combination of values q1, . . . , qn. As a result, for each possible

combination of values q1, . . . , qn, we get an expression which is linear in pi:

f(p1, . . . , pn, q1, . . . , qn) = a0(q1, . . . , qn) +
n∑

k=1

ak(q1, . . . , qn) · pk. (2.2)

In this expression, in general, for different combinations of values qk, the corresponding

coefficients ak are different.

We can then apply the same linearization procedure to each of the dependencies

ak(q1, . . . , qn):

ak(q1, . . . , qn) = ak0 +
n∑

`=1

ak` · q`. (2.3)

Substituting the expressions (2.3) into the formula (2.2), we conclude that

f(p1, . . . , pn, q1, . . . , qn) = a00 +
n∑

k=1

ak0 · pk +
n∑

`=1

a0` · q` +
n∑

k=1

n∑
`=1

ak` · pk · q`. (2.4)

9



Singular Value Decomposition. By selecting appropriate linear combinations of pi and

qj, we can represent the matrix ak` in the diagonal form; this is known as the Singular

Value Decomposition of the matrix ak`. In other words, if:

• instead of the original variables p1, . . . , pn, we use their appropriate linear combina-

tions p′k, and

• instead of the original variables q1, . . . , qn, we use their appropriate linear combina-

tions q′`,

then the expression
n∑

k=1

n∑̀
=1

ak` ·pk ·q` takes a diagonalized form
n∑

k=1

λk ·p′k ·q′k for some values

λk.

This expression can be further simplified if instead of the variables p′k, we use variables

p′′k
def
= λk · p′k. Then, the diagonalized form takes the following simpler form:

n∑
k=1

p′′k · q′k.

Since the new variables p′′k are linear combinations of the original variables p1, . . . , pn,

vice versa, the original variables pk are linear combinations of the new variables p′′1, . . . , p
′′
n.

If we substitute these linear combinations into the formula
n∑

k=1

ak0 · pk, we get a linear

combination of the new variables p′′k, i.e., an expression of the type
n∑

k=1

a′′k0·p′′k, for appropriate

coefficients a′′k0.

Similarly, since the new variables q` are linear combinations of the original variables

q1, . . . , qn, vice versa, the original variables q` are linear combinations of the new variables

q′1, . . . , q
′
n. If we substitute these linear combinations into the formula

n∑̀
=1

a0` · q`, we get

a linear combination of the new variables q′`, i.e., an expression of the type
n∑̀
=1

a′0` · q′`, for

appropriate coefficients a′0`.

Thus, in terms of the new variables p′′i and q′j, the expression (2.4) takes the form

f(p′′1, . . . , p
′′
n, q
′
1, . . . , q

′
n) = a00 +

n∑
k=1

a′′k0 · p′′k +
n∑

`=1

a′0` · q′` +
n∑

k=1

p′′k · q′k. (2.5)
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This expression can be further simplified. The above expression can be further

simplified if we introduce new variables p′′′k = p′′k + a′0k and q′′` = q′` + a′′`0 for which p′′k =

p′′′k − a′0k and q′` = q′′` − a′′`0. Substituting these expressions for p′′k and q′` into the formula

(2.5), we get

f(p′′′1 , . . . , . . . , p
′′′
n , q

′′
1 , . . . , q

′′
n) =

a00 +
n∑

k=1

a′′k0 · (p′′′k − a′0k) +
n∑

`=1

a′0` · (q′′` − a′′`0) +
n∑

k=1

(p′′′k − a′0k) · (q′′k − a′′k0) =

a00 +
n∑

k=1

a′′k0 · p′′′k −
n∑

k=1

a′′k0 · a′0k +
n∑

k=1

a′0k · q′k −
n∑

k=1

a′0k · a′′k0+

n∑
k=1

p′′′k · q′′k −
n∑

k=1

a′k0 · p′′′k −
n∑

k=1

a′0k · q′′k +
n∑

k=1

a′′k0 · a′0k =

a′00 +
n∑

k=1

p′′′k · q′′k ,

where

a′00 = a00 −
n∑

k=1

a′′k0 · a′0k.

Conclusion. Thus, in the new variables p′′′k and q′′k , the function

f(p′′′1 , . . . , . . . , p
′′′
n , q

′′
1 , . . . , q

′′
n)

that estimates the customer’s ratings takes the form

f(p′′′1 , . . . , . . . , p
′′′
n , q

′′
1 , . . . , q

′′
n) = a′00 +

n∑
k=1

p′′′k · q′′k . (2.6)

This is – almost – the original expression (2.1), with:

• the variables p′′′1 , . . . , p
′′′
n describing the customer and

• the variables q′′1 , . . . , q
′′
n describing different objects.
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The only difference from the formula (2.1) is that in our general formula (2.6) we have an

additional constant term a′00.

This term can be deleted if we appropriately re-scale the ratings, i.e., consider the

ratings r′ij = rij − a′00 instead of the original ratings rij. Indeed, if, e.g., ratings on a scale

from 0 to 10 satisfy the formula (2.1), this formula will no longer be valid if we use a

difference numerical scale for the same ratings – e.g., a scale from −5 to 5. In this sense,

the formula (2.1) already pre-assumes that we are using an appropriate scale – and thus,

our general formula (2.6) indeed provides an explanation for why the empirical formula

(2.1) is so ubiquitous.

12



Chapter 3

Analytical Techniques for Describing

User Preferences: 80/20 Rule

Partially Explains 7 Plus Minus 2

Law:

General System-Based Analysis

In analyzing user preferences, we need to take into account that these preferences are

usually not very detailed – and thus, because of their approximate nature, we should not

waste time trying to fit them optimally. This approximate nature is usually captured by

the empirical 7 plus minus 2 law, according to which, in the first approximation, instead

of sorting all the alternatives, a user usually divides them into 7 plus minus 2 groups. This

law is purely empirical – and thus, its use is not as reliable as we would like it to be. To

make this law more reliable, in this chapter, we provide a partial theoretical explanation

of this law.

In this explanation, we use another difficult-to-explain empirical law: the 80/20 rule,

according to which, in each activity, 20% of the people contribute to the 80% of the results.

In this chapter, we show that, because of the 80/20 rule, the number of classes cannot be

smaller than 5. Thus, the 80/20 rule explains the lower bound (5) on the 7± 2 law.

Comment. The results presented in this chapter first appeared in [4].
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3.1 Formulation of the Problem

Difficult-to-explain empirical facts. There are several difficult-to-explain empiri-

cal facts.

• For example, there is a ubiquitous 80/20 rule, according to which, in each human

activity, 80% of the results come from 20% of the participants. For example, 20%

of the people own 80% of all the wealth, 20% of researchers publish 80% of all the

papers, etc.; see, e.g., [45, 63] and references therein.

• There is a known phenomenon in psychology called a 7± 2 law (see, e.g., [83, 105]),

according to which each person usually classifies everything into a certain number of

classes C; depending on the person, this number ranges from 7 − 2 = 5 to 7 + 2 =

9 classes.

We cannot explain these facts, but we can at least find the relation between

them. There have been many attempts to explain these two facts; see, e.g., [65, 127].

However, in general, we are still far from fully understanding them.

Meanwhile, maybe we can have at least some relation between the two facts: e.g., maybe

we can show that one of them explains another one – at last partially. This is what we do

in this chapter: we show that the 80/20 rule partially explains the 7±2 law.

3.2 Our Explanation

Consequences of division into C classes. If we, in the first approximation, divide

everything into C classes, this means that any proportion which is smaller than 1/C will

be, in this approximation, simply ignored. For example:

• If C = 9, this means that any proportion smaller than 1/9 ≈ 11% will be ignored.

• If C = 5, this means that any proportion smaller than 1/5 = 20% will be safely

ignored, etc.

14



What happens if C < 5. If C < 5, i.e., if C ≤ 4, then any proportion smaller than

1/4 = 25% will be, in the first approximation, ignored.

How this is related to the 80/20 rule: wealth example. Let us see how this is

related to the 80/20 rule. As we have mentioned, in general, 20% of the people own 80%

of all the property, so the property owned by the remaining 80% of the people amounts to

20% of the world’s wealth.

When C ≥ 5, we can still see that: in the division into at least 5 categories, at least one

of the categories is the wealth owned by the majority of the people – exactly one category

out of 5 if we have C = 5, but still at least one such category.

If C ≤ 4, this means that this proportion will be ignored and people will get an impres-

sion that they own nothing – that everything is owned by a few rich folks. This impression

is not a recipe for social stability – it is a recipe for a violent revolution.

How this is related to the 80/20 rule: case of research productivity. In a less

violent consequence, 20% of researchers publish 80% of the papers. Thus, the remaining

80% of researchers publish the remaining 20% of the papers.

When C ≥ 5, we can still see this proportion and thus, conclude that even the least

productive scientists have a chance to contribute to the world’s body of knowledge.

However, if we had C ≤ 4, then, in the first approximation, we would simply not see

any possibility for anyone who is not a top researcher to publish – and this would clearly

very much discourage the scientists’ activity.

Another example: 20% of the letters from a text carry practically all infor-

mation. An even more extreme example come from Claude Shannon’s estimate that the

redundancy rate of the English text is about 80%: crudely speaking, only one in five letters

carries any information; see, e.g., [115], p. 152.

With C ≥ 5, we can still notice this informative part.

However, if we had C ≤ 4, then, in the first approximation, we would not notice any

meaningful information at all – and we would thus be able to erroneously conclude that all
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communications are non-informative.

Conclusion. Based on these examples, we can make the following general conclusion:

Due to the 80/20 rule, the number C of clusters on which we divide objects must be at

least 5.

This explains the lower bound for the seven plus minus two law.
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Chapter 4

Analytical Techniques for Analyzing

Probability Distributions: How to

Explain That Changes in Elderlies

Depression Level Are Uniformly

Distributed

In analyzing information about the application domain, it is important to take into ac-

count that many real-world processes are probabilistic. In many cases, the corresponding

probability distributions are Gaussian (normal) – which makes perfect sense, since such

processes are affected by many independent factors and it is known that in such cases, the

distributions should be close to normal. However, there are cases when the corresponding

distribution is different – e.g., uniform. This happens, e.g., when we analyze the changes in

the elderlies depression level. In this chapter, on the example of this practical cases study,

we explain why such distributions appear.

Comment. The results presented in this chapter first appeared in [7].
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4.1 Formulation of the Problem

Elderly depression is a serious problem. Many elderly people suffer from loneliness.

In general, loneliness increases the chances of depression, and depression negatively affects

the person’s health. As a result, many elderly people suffer from depression; it affects every

seventh elderly person – a much larger proportion than in the population in general; see,

e.g., [20, 131].

It is therefore desirable to monitor the changes in depression level of elderly people, es-

pecially elderly people in an at-risk category. Such monitoring has indeed been undertaken;

see, e.g., [93].

Changes in depression level are uniformly distributed. Depression level is usually

gauged by a number on the Geriatric Depression Scale (GDS); see, e.g., [93, 131]. The

changes usually range from −8 to +8 units.

Interestingly, for any two moments of time, the corresponding changes are, in effect,

uniformly distributed on the interval [−d0, d0], where d0 ≈ 8.

Why this is interesting. The uniform distribution rarely occurs in nature. The most

typical probability distribution is a normal one. Its ubiquity comes from the fact that most

real-life phenomena result from the joint effect of many independent small factors. In prob-

ability theory, it is known that, under reasonable conditions, the probability distribution

of the sum of a large number of small independent random variables is close to Gaussian –

the corresponding result is known as the Central Limit Theorem; see, e.g., [111]. Normal

distribution is what we almost always encounter – and so the emergence of the uniform

distribution is highly unusual.

The fact that we have the same uniform distribution for shorter- and longer-time periods

is also unusual. Indeed, as mentioned in [93], it is difficult to predict the change in one short-

term period based on the observed change in another such period. With this in mind, it

seems reasonable to conclude that the changes corresponding to different short-term periods

are independent. The long-term difference can be represented as the sum of several such
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short-term differences. If all these short-term differences are uniformly distributed, the

distribution of long-term differences should correspond to the sum of several independent

uniform distributions. However, it is well known that the distribution of such a sum is not

uniform: e.g., the distribution of the sum of two identical independent uniform distribution

has a triangular probability density function. In contrast, the probability distribution of

long-term differences is uniform.

How can we explain all this?

Why? In this chapter, we provide a possible explanation for the emergence of this unex-

pected uniform distribution. This explanation is of very general nature, so it can be applied

to other situations as well.

4.2 Our Explanation

Main idea. The fact that we cannot predict the change in one period based on the change

in another period implies that the changes corresponding to adjacent time periods are kind

of independent. On the other hand, they cannot be fully independent: if they were, then

there would be a possibility that by combining almost d0 unit changes in both periods, we

would get a 2d0 units change in the long-term period – and in the long-term period, we

only observe changes from −d0 to d0 units.

To describe the corresponding probability distributions, we therefore need to take into

account two facts:

• that these distributions are almost independent, but

• that the distribution of the sum of these two random variables is bounded by the

same interval [−d0, d0] as each of the short-term changes.

Resulting formalization. The only limitation to independence is the observed range of

the values of the sum of the two random variables. It is therefore reasonable to describe
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the situation as maximally independent – with the restriction on the sum as the only

available restriction.

In precise terms, we conclude that the probability distributions corresponding to two

adjacent time intervals are not fully independent – the distribution of their sum corresponds

to the distribution of the sum of two independent random variables, but limited to the range

[−d0, d0]. In other words, the distribution for the sum can be obtained if we:

• first consider the distribution of the sum of two independent random variables each

of which is distributed on the interval [−d0, d0] and

• then we restrict this distribution to the interval [−d0, d0], i.e., consider the conditional

distribution – under the condition that the sum is located in the interval [−d0, d0].

This formalization explains the seeming contradiction. The above formalization

explains the above-mentioned seeming contradiction between:

• the fact that the long-term difference is the sum of practically independent uniformly

distributed short-term differences, and

• the fact that the observed probability distribution of the long-term differences is very

different from the distribution of the sum of several independent uniformly distributed

random variables.

This formalization also explains the emergence of the uniform distribution. It

turns out that the same formalization can explain why the distributions are uniform in the

first place.

Indeed, each difference d(t+T )−d(t) between depression levels at moments t and t+T

is the sum of the large number of very-short-term differences:

d(t+ T )− d(t) = (d(t+ ∆t)− d(t)) + (d(t+ 2∆t)− d(t+ ∆t)) + . . .+

d(t+ (k + 1) ·∆t)− d(t+ k ·∆t)) + . . .+ (d(t+ T )− d(t+ T −∆t)).
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According to our formalization, the distribution of this sum should be obtained by first

taking the distribution of the sum of several independent random variables

d(t+ (k + 1) ·∆t)− d(t+ k ·∆t)

and then limiting this distribution to the original interval [−d0, d0].

According to the Central Limit Theorem, the distribution of the sum is close to Gaussian

– and since the variance of the sum of several independent random variables is equal to the

sum of the variances, this variance σ2 grows with the number of variables in the sum. Thus,

in our case, we select restrict to the interval [−d0, d0] a Gaussian distribution corresponding

to a very large value of σ2 – and, thus, to the very large value of the standard deviation σ.

On this interval, the probability density function changes from
1√

2π · σ
to

1√
2π · σ

· exp

(
− d20

2σ2

)
.

The ratio of these two values – which is preserved when we consider conditional distributions

– is thus equal to exp

(
− d20

2σ2

)
which is, for large σ, very close to 1.

Thus, under our assumption of “almost independence”, the resulting probability distri-

bution is very close to the uniform one – which is exactly what we observe.
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Chapter 5

Analytical Techniques for Analyzing

How Systems Change with Time: A

Natural Explanation for the

Minimum Entropy Production

Principles

In the previous chapter, we analyzed possible probability distributions describing real-

life phenomena. In general, systems change with time, and the corresponding probability

distributions change. There are some general rules about such changes, some of them

well-explained, some more of an empirical nature. For example, it is a well-known (and

reasonable well-explained) fact that the entropy of a closed system increases with time

– this is known as the Second Law of Thermodynamics. Interestingly, there is another

empirical observation – which is not as well justified – that while the entropy increases,

its rate of increase is often the smallest possible. The corresponding minimum entropy

production principle was first formulated and explained by a future Nobelist Ilya Prigogine.

Since then, many possible explanations of this principle appeared, but all of them are

very technical, based on complex analysis of differential equations describing the system’s

dynamics. Since this phenomenon is ubiquitous for many systems, it is desirable to look

for a general system-based explanation, explanation that would not depend on the specific

technical details. Such an explanation is presented in this chapter. Our explanation is
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related to the well-known fact that in general, it is important to keep as many solution

options open as possible: in decision making, one of the main errors is to focus too quickly

and to become blind to alternatives.

Comment. The results presented in this chapter first appeared in [9].

5.1 Formulation of the Problem

Minimum entropy production principle. It is well known that, according to the

second law of thermodynamics, the entropy of any closed system – including the Universe

as a whole – cannot decrease, it can only either increase or stay the same; see, e.g., [35, 124].

It is somewhat less well known that in many situation, this entropy increase is the

smallest possible; this fact is known as the minimum entropy production principle. This

principle was first formulated in 1945 by a future Nobelist Ilya Prigogine [101]; see also

[44, 55, 62, 76, 78, 81, 102].

In contrast to the second law of thermodynamics – which is always true – the minimum

entropy production principle is not always valid (see, e.g., [48]), but it is still valid in

many practical situations. In particular, it explains why usually, a symmetric state, when

perturbed, does not immediately turn into a state with no symmetries at all; usually, some

symmetries are preserved – and the more symmetries are preserved, the more frequent are

such transitions. For example, when heated, a highly symmetric solid-body state usually

does not immediately turn into a completely symmetry-less gas state, it first transitions

into a liquid state in which some symmetries are preserved. Sometimes, a solid state does

turn directly into gas: e.g., dry ice used to keep ice cream cold goes directly into a gas state

without becoming a liquid. However, usually, symmetries are broken sequentially, not all

at once. This seemingly simple idea explains many physical phenomena: e.g., it explains

the observable shapes of celestial bodies, relative frequency of different shapes, and how

shapes change with time; see, e.g., [37, 38, 75].

Challenge: to provide a simple explanation for the minimum entropy produc-
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tion principle. While the principle itself sounds reasonable, all its available derivations

are very technical and non-intuitive. Usually, in physics, no matter how complex the cor-

responding equations, there is a reasonably simple explanation – at least a qualitative one

– of the observed phenomena [35, 124]. However, for the minimum entropy production

principle, such an explanation has been lacking.

What we do in this chapter. In this chapter, we provide a general system-based

explanation for the ubiquity of the minimum entropy production principle, an explanation

which – unlike the existing ones – uses only simple easy-to-understand math.

In this explanation, we will first start with the analysis how complex problems are

solved, and then we will explain how this analysis helps explain the minimum entropy

production principle.

5.2 How Complex Problems Are Solved: Reminder

and Related Analysis

NP-complete problems: a brief reminder. As we have mentioned, our explanation

for the minimum entropy production principle starts not with physics, but with the known

fact that in real life, we need to solve complex problems:

• we may need to find a path that leads from point A to point B,

• a mechanic needs to find a way to repair a broken car,

• a medical doctor needs to cure the patients.

In most such problems, it may be difficult to come up with a solution, but once we have

a candidate for a solution, we can relatively easily check whether this is indeed a solution.

For example, if may be difficult to find a way to repair a car, but if we follow some sequence

of actions and the car starts running, we clearly have a solution – otherwise, if the car does

not start running, the sequence is not a solution.
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The class of all such problems, i.e., problems in which we can, in reasonable (“feasible”)

time check whether a given candidate for a solution is indeed a solution, is known as the

class NP. Within this class, there is a subclass of all the problems that can be solved in

reasonable time. This subclass is usually denoted by P; see, e.g., [68, 94] for details.

Most computer scientists believe that there are problems that cannot be solved in

reasonable time, i.e., that P is different from NP; however, this has never been proven, it

is still an open problem. What is known is that in the class NP, there are problems which

are as hard as possible – in the sense that all other problems can be reduced to this one.

Such problems are known as NP-complete.

Historically the first NP-complete problem was the following propositional satisfiability

problem for 3-SAT formulas.

• We start with Boolean (propositional) variables x1, . . . , xn, i.e., variables that can take

only two values: true (1) and false (0).

• A literal is either a variable xi, or its negation ¬xi.

• A clause (disjunction) is an expression of the type a ∨ b or a ∨ b ∨ c, where a, b, and

c are literals.

• Finally, a 3-SAT formula is an expression of the type C1 &C2 & . . . ,&Cm, where Cj

are clauses.

An example is a 3-clauses formula

(x1 ∨ x2) & (¬x1 ∨ x2 ∨ x3) & (x1 ∨ ¬x2 ∨ ¬x3).

The general problem is:

• given a 3-SAT formula,

• check whether this formula is satisfiable, i.e., whether there exist values of the vari-

ables that make it true.
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How NP-complete problems are solved now. If P6=NP, this means, in particular,

that no feasible algorithm is possible that would solve all the instance of the general 3-

SAT problem. So, in practice, when only feasible algorithms are possible, we have to use

heuristic algorithms, i.e., algorithms which do not always lead to a solution.

Many such algorithms start by selecting a literal – i.e., equivalently, by selecting one of

the Boolean variables xi and selecting its truth value. Then, when we substitute this value

into the original formula, we get a new propositional formula with one fewer variable. If the

original formula was satisfiable and we selected the literal correctly, then the new formula

is also satisfiable – and so, by repeating this procedure again and again, we will confirm

that the formula is satisfiable (and also find the values of the variables xi that make the

formula true).

Which literal should we select? In general, a satisfying 3-SAT formula has several

satisfying vectors. For example, by trying all 8 possible combinations of truth values, we

can check that the above sample 3-SAT formula has four different solutions: (101), (110),

(111), and (010).

By selecting a literal, we restrict the number of solutions, from the original number

N to a new – usually smaller – number N ′ ≤ N . A priori we do not know which vector

of Boolean values are solutions, all 2n such vectors are equally probable to be a solution.

Thus, the more vectors remain, the higher the probability that by this restriction we do

not miss a solution. It is therefore reasonable to select a literal for which the estimated

number of satisfying vectors is the largest possible; see, e.g., [30, 31, 66, 67] and references

therein.

For a general 3-SAT formula, the expected number of solutions can be estimated, e.g.,

as follows:

• a formula a ∨ b is satisfied by 3 out of 4 combinations of the values (a, b) (the only

combination which does not make this formula true is a = b = false); thus, the

probability that this clause will be satisfied by a random Boolean vector is 3/4;
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• a formula a ∨ b ∨ c is satisfied by 7 out of 8 combinations of the values (a, b, c) (the

only combination which does not make this formula true is a = b = c = false); ; thus,

the probability that this clause will be satisfied by a random Boolean vector is 7/8.

It is difficult to take into account correlation between the clauses, so, in the first approxi-

mation, we can simply assume that the clauses are independent, and thus, the probability

that a random vector satisfies the formula is equal to the product of the corresponding

probabilities – and the number of satisfying vectors can be estimated if we multiply the

overall number 2n of Boolean vectors of length n by this probability.

For example, for the above 3-SAT formula, the corresponding probability is (3/4)·(7/8)·

(7/8), and the estimates number of satisfying Boolean vectors is (3/4)·(7/8)·(7/8)·23 ≈ 4.6.

In this formula, we have three variables, so we have six possible literals. Which one should

we select?

• if we select x1 to be true, then the first and the third clauses are always satisfied,

and the formula becomes ¬x2 ∨ ¬x3; here, the estimated number of solutions is

(3/4) · 22 = 3;

• if we select a literal ¬x1, i.e., we select x1 to be false, then the second clause is

satisfied, and the formula becomes x2 & (¬x2 ∨ ¬x3); here, the estimated number of

solutions is (1/2) · (3/4) · 22 = 1.5;

• if we select a literal x2, then the formula becomes x1 ∨ ¬x3; here, the estimated

number of solutions is (3/4) · 22 = 3;

• if we select a literal ¬x2, then the formula becomes x1 & (¬x1∨x3); here, the estimated

number of solutions is (1/2) · (3/4) · 22 = 1.5;

• if we select a literal x3, then the formula becomes (x1 ∨ x2) & (x1 ∨ ¬x2); here, the

estimated number of solutions is (3/4) · (3/4) · 22 = 2.25;
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• finally, if we select a literal ¬x3, then the formula becomes

(x1 ∨ x2) & (¬x1 ∨ x2);

here, the estimated number of solutions is (3/4) · (3/4) · 22 = 2.25.

The largest estimate of remaining Boolean vectors is when we select x1 or x2. So, on the

first step, we should select either the literal x1 or the literal x2. One can check that in both

cases, we do not miss a solution (and in each of these cases, we actually get 3 solutions,

exactly the number that we estimated).

General case. The same idea is known to be efficient for many other complex problems;

see, e.g., [66]. For example, a similar algorithm has been successfully used to solve another

NP-complete problem: a discrete optimization knapsack problem, where:

• given the resources r1, . . . , rn needed for each of n projects, the overall amount r of

available resources, and the expected gain g1, . . . , gn from each of the projects,

• we need to select a set of projects S ⊆ {1, . . . , n} which has the largest expected

gain
∑
i∈S

gi among all the sets that we can afford, i.e., among all the sets S for which∑
i∈S

ri ≤ r.

The corresponding algorithms are described, e.g., in [70, 112].

In general, it is important to keep as many solution options open as possible. In decision

making, one of the main errors is to focus too quickly and to become blind to alternatives.

This is a general problem-solving principle which the above SAT example illustrates very

well.

5.3 How This Analysis Helps Explain The Minimum

Entropy Production Principle

How is all this related to entropy. From the physical viewpoint, entropy is proportional

to the logarithm of the number of micro-states forming a given macro-state; see, e.g.,
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[35, 124]. In the case of the SAT problems, micro-states are satisfying vectors, so the

number of micro-states is the number of such vectors. Similarly, in other complex problems,

solution options are micro-states, and the number of micro-states is the number of such

options.

As we solve each problem, the number of states decreases – but decreases as slowly

as possible. Thus, the entropy – which is the logarithm of the number of states – also

decreases, but decreases as slowly as possible, at the minimal possible rate.

So, if we consider the dependence of entropy on time, then, in the backward-time

direction (i.e., in the direction in which entropy increases), this increase is the smallest

possible.

How is all this related to physics. At first glance, the above text may be more relevant

for human and computer problem solving than for physics, since at first glance, nature does

not solve problems.

However, in some reasonable sense it does; let us explain this. Traditionally, physical

theories – starting from Newton’s mechanics – have been formulated in terms of differential

equations. In this formulation, there is no problem to solve: once we know the state at a

given moment of time, we can compute the rate at which each variable describing the state

changes with time. This computation may be tedious, may require a lot of computation

time on a high-performance computer, but it does not constitute a challenging NP-complete

problem.

At present, however, the most typical way to describe a physical theory is in the form

of a variational principle, i.e., in the form of an objective function whose optimization

corresponds to the actual behavior of the physical systems; see, e.g., [35, 69, 124]. This

formulation is especially important if we take quantum effects into account:

• while in non-quantum physics, optimization is exact and is just another equivalent

form of describing the corresponding differential equations,

• in quantum physics, optimization is approximate: a quantum system tries to optimize,
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but its result is close to (but not exactly equal to) the corresponding optimum.

In this formulation, what nature does is solving the complex optimization problem: namely,

trying to optimize the value of the corresponding functional.

We therefore expect to see the same pattern of entropy changes as in general problem

solving: in the direction in which entropy is increasing, this increase is the smallest possible.

Increasing entropy is exactly how we determine the direction of physical time. For

example:

• if we see a movie in which a cup falls down and break, we understand that this is

exactly the time direction, while

• if we see the same movie played backward, when the pieces of a broken cup mys-

teriously come together to form a whole cup, we realize that we saw this movie in

reverse.

From this viewpoint, the above statement means that in the forward-time direction – i.e.,

in the direction in which entropy increases – the rate of the entropy increase is the smallest

possible.

We thus have a natural systems-based explanation for the minimum entropy production

principle.
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Chapter 6

Analytical Techniques for Gauging

Accuracy of Expert Knowledge: A

Simple System-Based Explanation of

the Dunning-Kruger Effect

To properly design a system, we need to know what is the current state and what is the

dynamics of this application domain. Often, an important part of this information comes

from expert estimates. Dealing with expert estimates is challenging: while measurement

results come with guaranteed bounds on the corresponding measurement inaccuracy, the

only estimates of the inaccuracy of expert estimates come from the experts themselves.

It turns out that experts often misjudge the inaccuracy of their estimates. Specifically,

experienced experts not only provide better estimates of different situations than novice

experts, but they also provide a better estimates of the accuracy of their estimates. This

phenomenon is known as the Dunning-Kruger effect, after the two psychologists who dis-

covered it. Which this phenomenon has been confirmed by many follow-up experiments, it

remains largely unexplained. In this chapter, we present an analytical model that provides

a simple system-based explanation for the Dunning-Kruger effect.

Comment. The results presented in this chapter first appeared in [6].
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6.1 Formulation of the Problem

Dunning-Kruger effect: a brief reminder. In their 1999 paper [72], Justin Kruger

and David Dunning from Cornell University showed that:

• not only experts have a better knowledge and produce more accurate estimates than

novices,

• experts also assess their own accuracy with better accuracy than novices;

see also [32, 110]. This phenomenon became known as the Dunning-Kruger effect.

Comment. It should be mentioned that in their original paper [72], due to faulty statistical

analysis, the above claim was more specific:

• that experts usually underestimate their abilities (in particular, overestimate the

inaccuracy of their estimates),

• while novices usually overestimate their ability (in particular, underestimate the in-

accuracy of their estimates).

A more accurate statistical analysis has shown that this specific claim is not supported by

the evidence. However, the above claim – that experts estimate the accuracy of their own

estimates better than novices – is definitely statistically valid; see, e.g., [89, 90].

Challenge. The effect is there, but how can we explain it?

What we do in this chapter. In this chapter, we provide a simple system-based quali-

tative explanation for the Dunning-Kruger effect.

Remaining open question and future work. We hope that future research will help

transform our qualitative explanation into a more quantitative one.
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6.2 Our Explanation

Towards formulating the problem in precise terms. What we want from experts is

an estimate of the state of the corresponding system:

• this system is a patient if this expert is a medical doctor,

• this system is a complex machine if the expert is an engineer,

• this system is a mineral deposit if the expert is a geophysicist, etc.

Most information is usually described in terms of real numbers. In this sense, what

we want from an expert is to provide some estimates of the numbers describing the corre-

sponding system.

For example, based on his/her expertise (and on other available information), a geo-

physicist can provide us with:

• an estimate of the amount of oil in a given oil field,

• an estimate of the depth at which this oil will most probably be found, etc.

In all these cases, we want to predict the value of the desired quantity y based on the

available values x1, . . . , xn of related quantities. In other words, we need to have some

prediction algorithm

y = f(x1, . . . , xn).

Depending on the previously available data, we can have different prediction algorithms.

For example, if we want to predict tomorrow’s weather, then:

• in some areas (e.g., areas shielded by mountain ranges), it is sufficient to take into

account today’s weather patterns only in the nearby areas, while

• in other places (e.g., on the plains where cyclones and other weather phenomena can

travel large distances fast), we need to take into account today’s weather in a much

wider area.
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In general, instead of a single algorithm

y = f(x1, . . . , xn),

we have a family of algorithms

y = f(x1, . . . , xn, c1, . . . , cm)

depending on some parameters c1, . . . , cm. These parameters c1, . . . , cm need to be deter-

mined based on the available data.

• In statistics [111] and in machine learning (see, e.g., [23, 47]) the corresponding family

of algorithms is usually given explicitly.

• In expert decision making, a lot of the reasoning is happening at the subconscious

level. So we do not have explicit expressions for the corresponding prediction algo-

rithm – but, in effect, experts make predictions – and thus, subconsciously use some

algorithms to make these predictions.

Resulting formulation of the problem. We have a model

y = f(x1, . . . , xn, c1, . . . , cm)

that describes the dependence of the desired quantity y on observable quantities x1, . . . , xn.

To make a prediction, we need to estimate the values of the parameters c1, . . . , cm that best

describe the current situation.

In reality, measurements are approximate, and models are approximate. So, in the

actual dependence of y on x1, . . . , xn, we do not have the exact equality, there is also some

noise N :

y = f(x1, . . . , xn, c1, . . . , cm) +N.

To estimate the values of these parameters, we can use the results of previous observa-

tions. Let K denote the number of such observations. For each observation k = 1, . . . , K,
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we know the values x
(k)
1 , . . . , x

(k)
n and y(k) of the corresponding quantities. We want to find

the values of the parameters c1, . . . , cm for which

y(k) ≈ f
(
x
(k)
1 , . . . , x(k)n , c1, . . . , cm

)
for all k.

Comment. This problem is ubiquitous in applications of statistics, it is known as regression.

• The most widely used and the most well-known is the linear regression, when the

dependence f(x1, . . .) on x1, . . . , xn is linear.

• However, nonlinear regression is also actively used; see, e.g., [111].

How the estimate’s accuracy depends on the number of observations. The main

difference between an expert and a novice is that an expert is aware of a much larger

number of previous observations: the value K corresponding to the expert is much larger

than the number of observations corresponding to the novice. Thus, to understand the

difference between estimates by experts and estimates by novices, we need to analyze how

the accuracy of an estimation depends on the available number of observations K.

According to statistics, if we have K observations with standard deviation σ, then, in

general, the accuracy with which we can estimate the values of the corresponding parame-

ters is proportional to
σ√
K

; see, e.g., [111].

This formula is easy to derive in the simplest situation, when we simply observe the

desired quantity y several times, i.e., if we have K results y(1), . . . , y(K) of measuring this

same quantity. In this case, a reasonable way to combine these results into a single more

accurate estimate is to take the average

y =
y(1) + . . .+ y(K)

K
. (6.1)

The inaccuracy of each measurement is described by the difference ∆y(k)
def
= y(k)−y between

the measurement result y(k) and the actual (unknown) value y of the corresponding quantity.
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From the formula (6.1), we conclude that the inaccuracy ∆y
def
= y − y of the arithmetic

average is equal to

∆y =
∆y(1) + . . .+ ∆y(K)

K
.

Inaccuracies ∆y(k) corresponding to different measurements are usually independent. For

independent random variables, the variance of the sum is equal to the sum of the variances.

Since each of the inaccuracies ∆y(k) has the variance σ2, the variance of the sum

∆y(1) + . . .+ ∆y(K)

is thus equal to K · σ2. Hence, the standard deviation of the sum is equal to the square

root of this variance, i.e., to
√
K · σ.

When we divide a random variable by a positive constant, its standard deviation divides

by the same constant. Thus, the standard deviation of the inaccuracy ∆y – corresponding

to the use of K observations – is equal to
√
K · σ
K

=
σ√
K
.

This derivation is only valid for the simplest case, but a similar asymptotics
σ√
K

holds in

the general situation as well [111]. This confirms the intuitive idea that the more experience

the expert, the more accurate are this expert’s estimates.

Towards understanding the Dunning-Kruger effect: how accurately can we es-

timate the accuracy of our own estimates? Accuracy estimates presented in the

previous subsection depend on the standard deviation σ of the measurement error – i.e., on

the standard deviation of the differences ∆y(k). Usually, we do not know this value exactly,

but we can estimate it based on the results of previous observations.

For example, if we simply observe the desired quantity y several times, i.e., if we have K

results y(1), . . . , y(K) of measuring this same quantity, then we can estimate this standard

deviation σ as

σ ≈ σ =

√√√√ 1

K − 1
·

K∑
k=1

(y(k) − y)
2
.
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Similar formulas can be used in the general case: once we have estimates c1, . . . , cm for the

parameters c1, . . . , cm, we can then estimate σ as

σ ≈ σ

√√√√ 1

K − 1
·

K∑
k=1

(
y(k) − f

(
x
(k)
1 , . . . , x

(k)
n , c1, . . . , cm

))2
.

It is known that the relative accuracy
σ − σ
σ

of this estimate decreases with K as
1√
K

– at the same rate as the accuracy itself. Thus, the more experienced the expert – i.e., the

larger the corresponding K – the more accurately this expert can estimate the accuracy of

his/her estimates.

This is exactly what the Dunning-Kruger effect is about. Thus, we have indeed found

a simple explanation for this effect.
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Chapter 7

Analytical Techniques Help Enhance

the Results of Data Mining: Case

Study of Cow Insemination

Once we have the information about the system, information coming from measurements

and from expert estimates, we use this information to come up with a model describing

the system. The usual way to come up with such a model is to formulate several different

hypotheses and to select the one that best fits the data. Techniques for formulating hy-

potheses based on the available information are known as data mining techniques. When

the amount of data is not sufficient to make statistically justified conclusions, the depen-

dencies produced by data mining techniques are often caused by accidental coincidences

and do not reflect the actual behavior of the corresponding system. To separate such acci-

dental coincidences from true dependencies, it is important to look for possible theoretical

explanation for these empirical dependencies:

• if such an explanation is possible and natural, this means that this dependence is in

line with our knowledge about the system and it is, thus, highly probable that this

dependence is real;

• on the other hand, if no such natural explanation is possible, this means that this

“dependence” is probably an accidental coincidence.

In this chapter and in the three following chapters, we illustrate this general approach

on four examples, all four biology-related. In the current chapter and in the two following
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chapters, we consider the cases for which we have found a natural explanation for the

observed phenomenon which confirmed the conclusions of data mining. The fourth chapter

provides an opposite example: when a natural explanation invalidates the conclusion of

data mining.

In this particular chapter, we consider the case study of cow insemination. To improve

the efficiency of artificial insemination, farmers equip cows with sensors, based on which

a computer system determines the cow’s insemination window. Analysis of the resulting

calves showed an unexpected dependence of the calf’s gender on the insemination time:

cows inseminated earlier in their window mostly gave birth to female calves, while cows

inseminated later in their window mostly gave birth to males. In this chapter, we provide

a general system-based explanation for this phenomenon.

Comment. The results presented in this chapter first appeared in [12].

7.1 Formulation of the Problem

Unexpected empirical fact. Computer-based systems are ubiquitous. For example,

farmers use sensors to identify cows in heat – they then apply artificial insemination to these

particular cows, thus guaranteeing that all the inseminated cows will become pregnant.

When analyzing the results of applying this technique, researchers found out an un-

expected phenomenon – that the gender of the resulting calves depends on the insemina-

tion time:

• for cows inseminated at the very beginning of their sixteen-hour insemination window,

most resulting calves are female (to be more precise, about 70%); while

• for cows inseminated during the later part of their sixteen-hour insemination window,

most resulting calves are male;

see, e.g., [43] and references therein.
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What we do in this chapter. In this chapter, we provide a natural system-based

explanation for this newly discovered phenomenon.

7.2 Our Explanation

What would be a perfect mix of cow genders. Artificial insemination is a reasonably

recent process. Until then, cows were always inseminated by the bulls. From this viewpoint,

to understand why cows sometimes give birth to male calves and sometimes to female calves,

we need to understand what proportion of cows and bulls would be perfect for such a mixed

cows-and-bulls herd.

From the biological viewpoint, each species aims to reproduce as much as possible – as

much as the food and other resources allow.

• From this viewpoint, if there are too few bulls in the herd, many cows will not be

inseminated and thus, the herd will not achieve its reproductive potential.

• On the other hand, if there are too many bulls in the herd, much more than needed

to inseminate all the cows, the herd reproductive potential will also be wasted – the

same herd would reproduce more if instead of the extra useless bulls, we would have

cows.

Thus, the ideal cow-herd situation is when there are exactly as many bulls as needed

to inseminate all the cows – not less and not more.

What if the mix is imperfect: how to balance the situation. In real life, the cow-

bull proportion may be not ideal. In this case, from the biological viewpoint, a reasonable

idea is to produce calves of different genders so as to bring the cow-bull proportion closer

to the ideal one:

• if there are at present too many bulls, it is desirable to balance the situation, by

making sure that the majority of newborn calves are female;
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• vice versa, if there are at present too few bulls, it is desirable to balance the situation,

by making sure that the majority of newborn calves are male.

How can an individual cow know that the balance is imperfect. The gender of a

calf is determined by the biological processes in the cow’s body. How does the cow’s body

know when there are too many bulls or too few bulls?

At first glance, it may seem that the cow does not have this information. However, a

detailed analysis of the situation shows that a cow can get this information.

Indeed, as we have mentioned, cows have a sixteen-hour period during which they can

be inseminated. If there are sufficiently many bulls to inseminate all the cows in heat in

a shorter period of time, this means that we have an excess of bulls – with fewer bulls,

we would still be able to inseminate all the cows by using the remaining unused time. For

example, if all the cows are inseminated during the first eight hours of their insemination

period, this means that we could use half as many bulls.

In the ideal cow-bull mix, all sixteen hours of the cow’s insemination period can be

used. Thus, for an individual cow, the time ∆t from the moment it got into heat to the

moment when it is inseminated can be any value between 0 and 16 hours. The average

value of ∆t is thus about 8 hours.

If there are too many bulls, this means that, in general, all the cows in heat will be

inseminated earlier than that – thus, ∆t will be, in general, smaller.

On the other hand, if there are too few bulls, this means that many cows will be not

inseminated at all, and those “lucky” ones to be inseminated will be inseminated closer to

the end of their insemination window. In this case, the average value of the time ∆t will

be larger.

So, we arrive at the following conclusion:

• if there are too many bulls in the herd, most cows will be inseminated in the earlier

part of their insemination window; while
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• if there are too few bulls in the herd, most cows will be inseminated in the later part

of their insemination window.

Now, we are ready to explain the above phenomenon.

Our explanation.

• When a cow gets inseminated during the earlier part of their insemination window,

to the cow’s organism, this is an indication that there may be too many bulls in the

heard. Thus, as we have mentioned, a natural biological reaction is to decrease this

dis-balance by producing mostly female calves.

• On the other hand, when the cow gets inseminated during the later part of their

insemination window, to the cow’s organism, this is an indication that there may be

too few bulls in the heard. Thus, as we have mentioned, a natural biological reaction

is to decrease this dis-balance by producing mostly male calves.

And this is exactly the phenomenon that has been observed – which we thus explained

from the general system viewpoint.
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Chapter 8

Analytical Techniques Help Enhance

the Results of Data Mining: Why

Pink Noise Is Best for Enhancing

Sleep and Memory

This chapter provides a second example of how analytical techniques can help enhance the

results of data mining.

This example if related to the fact that, as several researchers found out, acoustic stim-

ulation during sleep enhances sleep and enhances memory. An interesting – and somewhat

mysterious – part of this phenomenon is that out of all possible types of noise, the pink

noise leads to the most efficient stimulation. In this chapter, we use general system-based

ideas to explain why in this phenomenon, pink noise works best.

Comment. The results presented in this chapter first appeared in [17].

8.1 Formulation of the Problem

Acoustic stimulation helps sleep and memory: a brief description of the ob-

served phenomenon. Several researchers found out that acoustic stimulation during

sleep help patients to sleep better and enhanced their memory; see, e.g., [87, 92, 95, 125].

Qualitative explanation of the phenomenon. While the level of enhancement was
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much higher than most researchers expected, the very fact that exercising some organ is

good should be expected: it helps to exercise muscles, it helps to exercise brain activities,

it helps to exercise visual activities, etc.

It is also understandable that a noise helps better than a signal emitted at a single

frequency: just like exercising different muscles is better for a person’s overall health than

focusing on a single group of muscles, just like practicing different types of mental activities

is better for a person’s mental abilities than repeatedly performing tasks of the same type,

it is reasonable to expect that processing components of different frequencies will work

better than processing only one frequency.

Pink noise: why? The best stimulation results were obtained when the researchers

applied pink noise, i.e., the noise in which the power spectral density S(f) (i.e., energy

per unit frequency) is inverse proportional to the frequency itself: S(f) =
c

f
for some

constant c.

From the biological viewpoint, this may not be that surprising, since the pink noise is

the most common signal in biological systems; see, e.g., [118] (see also [57] and references

therein). In particular, pink noise is a good description of signals corresponding to mental

activities; see, e.g., [128]. Pink noise is also ubiquitous in nature in general: e.g., in describes

the statistical structure of many natural images; see, e.g., [36].

However, from the scientific viewpoint, the efficiency of pink noise is still somewhat a

mystery, since it is not clear why the use of the most biological signal would lead to a better

enhancement than any other possible signals.

What we do in this chapter. In this chapter, we provide a system-based explanation

of why pink noise is the most efficient one.

8.2 Our Explanation

Main idea. As we have mentioned earlier, the best results are usually achieved when

different organs, different parts of the organs are all involved. With respect to frequencies,
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this means that the biological acoustic sensors corresponding to all the frequencies should

be involved.

Of course, if on one of the frequencies, we have a very weak signal, this means that the

sensor corresponding to this frequency is practically not exercised ar all. So, to make sure

that the exercise leads to the largest possible effect, it is reasonable to require that each of

these sensors is exercised similarly, i.e., in precise terms, that the energy of the part of the

signal affecting each sensor will be the same for all sensors.

To describe this idea in precise terms, we need to recall which part of the signal is

affecting each of these sensors.

Acoustic perception: a particular case of the general Weber’s law. In general,

our perception – be it visual or acoustic or any other – follows the Weber’s law, according

to which, for each perceived quantity x, the just noticeable difference ∆x is proportional

to the actual value of this quantity, i.e., ∆x = δ · x for some δ > 0; see, e.g., [60].

In particular, for the frequency, this means that for each frequency f , the just noticeable

difference in frequency ∆f (f) should be proportional to the frequency itself, i.e., we should

have ∆f (f) = δ · f , for some value δ > 0. In other words, each biological acoustic sensor

corresponding to a certain frequency f actually takes in all the frequencies from f to

f + ∆f (f) = f + δ · f .

What will happen is we have a signal with power spectral density S(f)? By definition,

the power spectral density is the energy per unit frequency. Thus, to get the overall energy

E(f) affecting this sensor, we need to multiply the power spectral density S(f) by the

width ∆f (f) of the corresponding frequency interval [f, f + ∆f (f)]. As a result, we get

the value

E(f) = S(f) ·∆f (f) = S(f) · δ · f.

As we have mentioned, the best effect is expected when each sensor gets the exact same

amount of energy, i.e., when E(f) = const. For the above expression E(f) = S(f) · δ · f ,

the requirement E(f) = const means that, to achieve the best effect, we should use the
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power spectral density S(f) =
const

δ · f
. This is exactly the pink noise, with c =

const

δ
. Thus,

we have indeed explained why, out of all possible types of acoustic noises, the pink noise

leads to the most efficient stimulation of sleep and memory.
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Chapter 9

Analytical Techniques Help Enhance

the Results of Data Mining: Why

Filtering Out Higher Harmonics

Makes It Easier to Carry a Tune

This chapter provides a third (and final) example of how analytical techniques can help

enhance the results of data mining.

This example if related to the fact that, as a recent patent shows, filtering out higher

harmonics helps people sing in-tune. In this chapter, we use the general signal processing

ideas to explain this empirical phenomenon. We also show that filtering out higher har-

monics is the optimal way of increasing the signal-to-noise ratio – and thus, of making it

easier for people to recognize when they are signing out of tune.

Comment. The results presented in this chapter first appeared in [1].

9.1 Formulation of the Problem

A helpful invention. According to the patent description, the patent [42] “greatly im-

proves the singing abilities of both novice and experienced singers by amplifying the fun-

damental frequency of one’s voice to correct tone deafness.”

It works but why? The device has been successfully tested, it clearly works, but why?
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Why does amplifying the fundamental frequency – or, equivalent;y, filtering out the higher

harmonics – helps a person carry a tune?

This is a question to which we plan to find an answer in this chapter. This answer will

be based on the general engineering signal processing ideas; see, e.g., [74, 77]. Moreover,

not only we explain why this works, we also show that such filtering is the optimal way to

make it easier for a person to carry a tune.

9.2 Our Explanation

Higher harmonics: a brief reminder. Each note corresponds to a certain fundamental

frequency f0. The resulting signal is periodic with the same frequency. Thus, if we perform

the Fourier transform – i.e., if we represent the signal as a linear combination of sinusoids

of different frequencies, then we only get components corresponding to multiples of the

fundamental frequency f0. Components corresponding to frequencies 2f0, 3f0, etc., are

known as higher harmonics.

The fact that the frequency f0 is fundamental means that the component correspond-

ing to this frequency has the largest energy S(f0); the energies of the higher harmonics

are smaller:

S(2f0) < S(f0); S(3f0) < S(f0), . . . (9.1)

Why is it not always easy to carry a tune: signal-processing analysis. In general,

in signal processing, the quality of signal detection depends on the signal-to-noise ratio.

Thus, if a singing person does not understand that he/she is singing out of tune, this means

that for the sound produced by this singing person, the signal-to-noise ratio is too low to

detect this.

The overall energy S of the signal can be computed by adding the energies corresponding
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to the fundamental frequency and to the higher harmonics:

S = S(f0) + S(2f0) + S(3f0) + . . . (9.2)

Similarly, the overall energy N of the noise can be computed by adding the energies of the

noise on all these frequencies, i.e.:

• the energy N(f0) of the noise on the fundamental frequency f0,

• the energy N(2f0) of the noise on the double frequency 2f0, etc.:

N = N(f0) +N(2f0) +N(3f0) + . . . (9.3)

In contrast to signal whose energy changes drastically from one frequency to another,

the energy of the noise is usually changing very little from one frequency to another. In

the first approximation, we can therefore simply assume that this energy is the same for

all the involved frequencies:

N(f0) = N(2f0) = N(3f0) = . . . (9.4)

Thus, the formula (9.3) has the form

N = k ·N(f0),

where k is the overall number of harmonics.

The corresponding signal-to-noise ratio of the original singing signal is thus equal to

S

N
=
S(f0) + S(2f0) + S(3f0) + . . .+ S(k · f0)

k ·N(f0)
. (9.5)

The fact that a person has difficulty correctly carrying a tune means that this signal-to-noise

ratio is too small. We need to increase it.

Let us apply filtering. In signal processing, a usual way to increase the signal-to-noise

ratio is to perform some filtering. Filtering means that we either amplify or decrease certain

frequencies. This amplification or damping is applied to the combination of signal and noise,

49



so it equally affects both. In both cases of amplification or damping, the energy of both the

signal component and of the noise component is multiplied by the same coefficient c(f) ≥ 0

depending on the frequency f :

• for the fundamental frequency f0, the energy of the signal changes from S(f0) to

c(f0) · S(f0) and the energy of the noise changes from N(f0) to c(f0) ·N(f0);

• for the frequency 2f0, the energy of the signal changes from S(2f0) to c(2f0) · S(2f0)

and the energy of the noise changes from N(2f0) = N(f0) to c(2f0) ·N(f0);

• for the frequency 3f0, the energy of the signal changes from S(3f0) to c(3f0) · S(2f0)

and the energy of the noise changes from N(3f0) = N(f0) to c(3f0) ·N(f0); etc.

After the filtering, the overall energy of the signal is equal to

S ′ = c(f0) · S(f0) + c(2f0) · S(2f0) + . . .+ c(k · f0) · S(k · f0), (9.6)

the overall energy of the noise is equal to

N ′ = c(f0) ·N(f0) + c(2f0) ·B(f0) + . . .+ c(k · f0) ·N(f0) =

(c(f0) + c(2f0) + . . .+ c(k · f0)) ·N(f0), (9.7)

and thus, the new signal-to-noise ratio is equal to

S ′

N ′
=
c(f0) · S(f0) + c(2f0) · S(2f0) + . . .+ c(k · f0) · S(k · f0)

(c(f0) + c(2f0) + . . .+ c(k · f0)) ·N(f0)
. (9.8)

Which filter is optimal: formulation of the problem. We want to find the coefficients

c(f0), c(2f0), . . . , c(k ·f0) for which the signal-to-noise ratio (9.8) attains the largest possible

value – this will lead to the best possible chance of a person recognizing inaccuiracies in

his/her own signing.
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The optimal filter is exactly filtering out higher harmonics. Let us prove that

the optimal filter is exactly the filter used in [42] – the filter that filters out all higher

harmonics, i.e., the filter for which

c(f0) > 0 and c(2f0) = . . . = c(k · f0) = 0. (9.9)

Indeed, for this filter, the signal-to-noise ratio is equal to

S ′

N ′
=
c(f0) · S(f0)

c(f0) ·N(f0)
=
S(f0)

N(f0)
. (9.10)

What happens if at least one of the higher harmonics is not completely filtered out, i.e.,

we have c(i · f0) > 0 for some i? In this case, for all such harmonics i, we have, due to the

inequalities (9.1), S(i · f0) < S(f0) hence

c(i · f0) · S(i · f0) < c(i · f0) · S(f0).

By adding up these inequalities, we conclude that

S ′ = c(f0) · S(f0) + c(2f0) · S(2f0) + . . .+ c(k · f0) · S(k · f0) <

c(f0) · S(f0) + c(2f0) · S(f0) + . . .+ c(k · f0) · S(f0) =

(c(f0) + c(2f0) + . . .c (k · f0)) · S(f0). (9.11)

Dividing both sides of this inequality by the expression (9.7) for the noise N ′, we con-

clude that
S ′

N ′
<

(c(f0) + c(2f0) + . . .+ c(k · f0)) · S(f0)

(c(f0) + c(2f0) + . . .+ c(k · f0)) ·N(f0)
. (9.12)

Dividing both numerator and denominator of the right-hand side by the same sum c(f0) +

c(2f0) + . . .+ c(k · f0), we thus conclude that

S ′

N ′
<
S(f0)

N(f0)
. (9.13)

Thus, if at least one of the higher harmonics is not fully filtered out, the resulting signal-

to-noise ratio is smaller than the value (9.10) that we have when all these harmonics are

filtered out.
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In particular, by taking the values

c(f0) = c(2f0) = . . . = c(k · f0) = 1

corresponding to taking the original signal as is, we conclude that the signal-to-noise ra-

tion of the optimally filtered signal is indeed larger than the signal-to-noise ratio of the

original signal.

Conclusion. Thus, we have shown the following:

• We showed that filtering out higher harmonics increases signal-to-noise ratio. Thus,

we explain why after this filtering, it is easier for a person to detect when he or she

is signing out of tune.

• We also showed that filtering out higher harmonics is indeed the optimal approach –

in the sense that it leads to the largest possible increase in the signal-to-noise ratio

(and thus, to the best chance of detecting out-of-tune deviations).
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Chapter 10

Case When Analytical Techniques

Invalidate the Conclusions of Data

Mining: Reversed Flynn Effect of

Decreasing IQ Test Scores

In the previous three chapters, we provided examples when analytical techniques helped to

enhance the conclusions of data mining. In this chapter, we provide an opposite example:

when analytical techniques help to invalidate the conclusions of data mining.

This example is related to the fact that researchers who monitor the average intelligence

of human population have reasonably recently made an unexpected observation: that after

many decades in which this level was constantly growing (this is known as the Flynn

effect), at present, this level has started decreasing again. In this chapter, we show that

this reversed Flynn effect can be, in principle, explained in general system-based terms:

namely, it is similar to the fact that a control system usually overshoots before stabilizing

at the desired level. A similar idea may explain another unexpected observation – that the

Universe’s expansion rate, which was supposed to be decreasing, is actually increasing.

Comment. The results presented in this chapter first appeared in [15].
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10.1 Formulation of the Problem

IQ tests: a brief reminder. For many decades, researchers have been using standardized

test to measure Intelligent Quotient (IQ, for short), a numerical values that describes how

smarter is a person that an average population:

• the IQ value of 100 means that this person has average intelligence,

• values above 100 means that this person’s intelligence is above average, and

• values below 100 means that this person’s intelligence is below average.

Of course, this is a rough estimation. Researchers have known that there are different

types of intelligence, and that it is therefore not possible to adequately characterize one

person’s intelligence by using a single number. However, the IQ test score remains a

reasonable overall (approximate) measure both of the individual intelligence and of the

relative intelligence of different population groups. For example, a recent study showed that

non-violent criminals are, on average, smarter than violent ones; this makes sense, since it

takes some intelligence (ill-used but still intelligence) to steal without using violence.

Average IQ scores grow: Flynn’s effect. Since the IQ scores describe the relation

of a tested person’s intelligence to an average intelligence at the given moment of time,

researchers periodically estimate this average level of intelligence.

Somewhat unexpectedly, it turned out that for almost 100 years, the average level of

intelligence has been growing; see, e.g., [22, 26, 28, 40, 41, 86, 104, 120, 126]. Specifically:

• if we give average current folks the test from the 1930s, they will, on average, score

way above 100, and

• vice versa, if we measure the intelligence of the 1930s folks in a current scale, their

average intelligence will be way below 100, at about the 80–90 level.

This steady increase in intelligence is known as the Flynn effect, after a scientists who

actively promoted this idea.
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Why IQ scores grow: possible explanation. There are many explanations for the

growth in intelligence. One of the natural ones is that, in contrast the old days, when in

many professions, physical force was all that is needed to earn a living, nowadays intelligence

is very important – non-intelligent jobs have been mostly taken up by machines. No one

needs a galley slave to row a boat, no one needs a strong man to lift heavy things, etc.

It is therefore reasonable that modern life requires more intelligent activities, and this

increase in solving intelligent problems naturally leads to an increased intelligence – just

like exercising the muscles leads to an improved physique.

Reverse Flynn effect. While the intelligence scores have been steadily rising for several

decades, lately, a reverse phenomenon has been observed, when the average scores no

longer grow; instead, they decline. This decline is not as big as to wipe out the results

of the previous decades of growth, but it is big enough to be statistically significant; see,

e.g., [19, 33, 39, 49, 99, 100, 106, 117, 121, 122].

How can we explain the reverse Flynn effect? There are many different explanations

for the reverse Flynn effect: that it has been caused by pollution, that it has been caused

by declining education standards, etc.

In this chapter, we analyze this phenomenon from the general systems viewpoint, and

conclude that, from the system’s viewpoint, a current small decline is natural – and that

we therefore do not need to be unnecessarily alarmed by this decline. In other words, in

spite of this decline, it is still reasonable to remain optimistic.

10.2 Systems-Based Analysis of the Problem and the

Resulting Explanation of the Reversed Flynn Ef-

fect

Current explanation of the Flynn’s effect reformulated in general terms. The

current explanation of the Flynn’s effect is that the increase in intelligence is motivated by
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the fact that nowadays, more and more important real-world activities require intelligence.

In other words, the previous level of intelligence – which worked optimally in the past

– is no longer optimal for adequate functioning in the modern world. Thus, it is necessary

to raise the average intelligence to a new higher level, a level that would guarantee effective

functioning in this world.

Why general systems approach is necessary. Changing intelligence is not something

we directly know how to do. It is a complex process that, probably, involves many different

related quantities. The corresponding change in the values of these quantities x1, . . . , xn

can be described by an appropriate system of differential equations

dxi(t)

dt
= fi(x1(t), . . . , xn(t)). (10.1)

These changes are slow: they are statistically significant and impressive when we compare

1930s with 1990s, but not that noticeable year after year. Suffice it to say that the reversed

Flynn effect was not noticed until a decade or so passed when, as it turned out, the

intelligence scores were declining. The fact that these changes are slow means that with

the passage of time, the values xi of the corresponding quantities change very little. Let us

pick some moment of time t0. Then, the corresponding differences ∆xi(t)
def
= xi(t)− xi(t0)

are small. Thus, we substitute the expressions xi(t) = xi(t0) + ∆xi(t) into the right-hand

side of the formula (10.1), expand this right-hand side in Taylor series and keep only linear

terms in this expansion. Thus, for the new variables ∆xi(t) for which, by the way,

d∆xi(t)

dt
=
dxi(t)

dt
,

we get a system of linear equations with constant coefficients:

d∆xi(t)

dt
= ci +

∑
j

cij ·∆xj(t),

for appropriate coefficients ci and cij.

The general solution to such systems of equations is well known, it depends on the

eigenvalues λ = a+ b · i of the corresponding matrix cij, and, in general, contains not only
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exponential decrease of the difference between the current and the limit state, but also

oscillations (corresponding to b 6= 0).

This is known phenomenon in control: in an answer to a perturbation, a stable system

usually not just monotonically returns to the original state, it often goes through kind

of oscillations: first, it overshoots the original state, then the value goes down and get

an undershoot – a smaller one than the original overshoot – then we may get one more

overshoot, etc.

How this explains the reversed Flynn effect. In general, when a dynamical system

tries to reach a certain level, it usually does not reach this level monotonically. It first

overshoots, then undershoots, then may overshoot again, etc. In each such cycle, the

deviation between the current and desired values decreases – and eventually, the system

stabilizes at this new level.

This is exactly what we observe with the dynamics of average intelligence scores: first,

we have a large increase, then a slight decreases. From this viewpoint, we can say that the

current slight decrease does not necessarily mean that the population is becoming dumber.

There is no need to be pessimistic about the future of mankind. This decline simply means

that the natural dynamic phenomena that led to the original increase overshot (as is natural

for dynamical systems). Our prediction is thus that this decline will continue to be small,

and the resulting average intelligence level will still be higher as in the distance past. After

that, we may see another – even smaller – increase, then maybe again decrease, etc.

10.3 Maybe the Same Idea Can Explain the Observed

Increase in Universe’s Expansion Rate: A Spec-

ulative Observation

Phenomenon. It is known, according to modern physics, the Universe expands; see, e.g.,

[124]. Until the late 1990s, it was assumed that – in accordance with simply physical
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models – this expansion occurs at a decreasing rate. However, later observations showed

that while this rate may have been indeed decreasing in the past, it is, at present, somewhat

increasing; see, e.g., [96, 129]. This phenomenon even won the Nobel Prize in Physics.

Possible system-based explanation. There are many different physical explanation for

this phenomenon, e.g., many explanations involving dark matter – to be more precise, using

different differential equations describing the dynamics of the mysterious dark matter.

In this case, while in the cosmological time of billions of years, changes are great, year-

by-year (and even million years by million years) changes are very small in comparison.

Thus, similar to the IQ case, we can use linearization to analyze this phenomenon.

Our above analysis shows that there may be a general system-based explanation for this

phenomenon. Namely, in general, on top of the systematic change, we usually have oscilla-

tions. Because of these oscillations, even when in the systematic component, accelerations

decrease, added oscillation may make it increase or decrease all the time – and this may

be a general system-based explanation for the observed phenomenon.
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Chapter 11

Analytical Techniques in Hypothesis

Testing: Why Area Under the Curve?

Once we have the information about the system, information coming from measurements

and from expert estimates, we use this information to come up with a model describing the

system. The usual way to come up with such a model is to formulate several different hy-

potheses and to select the one that best fits the data. There are many statistical techniques

for selecting the model, most of them well-justified but some more heuristic – and thus,

less reliable. One of such techniques is a widely used area-under-the-curve method. Specif-

ically, to compare two different hypothesis testing techniques, researchers use the following

heuristic idea: for each technique, they form a curve describing how the probabilities of

type I and type II errors are related for this technique, and then compare areas under the

resulting curves. In this chapter, we provide a justification for this heuristic idea.

Comment. The results presented in this chapter first appeared in [13].

11.1 Formulation of the Problem

Type I and type II errors. There are many different techniques for hypothesis testing,

i.g., for deciding, based on the observation, whether the original (null) hypothesis is valid

or whether this hypothesis has to be rejected (and the alternative hypothesis has to be

considered true); see, e.g., [111]. In hypothesis testing, we can have two different types

of errors:

• a type I error (also known as False Negative) is when the correct null hypothesis is
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erroneously rejected, while

• a type II error (also known as False Positive) is when the false null hypothesis is

erroneously accepted.

The probability of the type I error is usually denoted by α and the probability of the type

II error is usually denoted by β.

In different situations, we have different requirements on the allowed probabilities of

these two errors. For example, in early cancer diagnostics, when the null hypothesis means

no cancer, type I error is not that critical – it simply means that a healthy patient has

to go through an extra testing to make sure that he/she is healthy. On the other hand,

a type II error means missing a potentially dangerous disease – which can lead to grave

consequences. In such situations, it is desirable to minimize the probability of type II errors

as much as possible – even when this leads to a larger type I error.

On the other hand, in law enforcement, we do not want to have too high a probability of

type I errors – that would mean SWAT teams breaking into the houses of innocent people

in the middle of the night, that would mean massively arresting people who have not done

anything wrong.

Depending on the situation, we can adjust the given technique – by changing some

appropriate parameters – to increase or decrease α and β. In the ideal world, we should

have both errors as small as possible, but this is not possible if all we have is a finite sample.

Thus:

• if we decrease α, the probability β increases, and,

• vice versa, if we decrease β, the probability α decreases.

In particular, based on the finite sample, the only way to make sure that we do not have

any type I errors is to never reject the null-hypothesis. In this case, however, every time

the null hypothesis is false, it will still be accepted. In other words, when the probability

α of the type I error is 0, then the probability β of the type II error will be 1.
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Vice versa, the only way to get β = 0 is to never accept the null hypothesis – but in

this case, we will have α = 1.

How can we compare two hypothesis testing techniques? To get a full description

of the quality of a given hypothesis testing technique, we need to indicate, for each α > 0,

what probability β we can achieve with this technique, and, vice versa, for each β, what

probability α we can achieve with this technique. In other words, the perfect description

of this quality is a curve that describes how β depends on α – and vice versa. We have

a curve β = f(α) that describes the dependence of the smallest possible β on the given

value α.

For α = 0, as we have mentioned earlier, we have β = f(0) = 1. The larger α we

allow, the smaller β can be – so the dependence f(α) is decreasing, and it reaches the value

f(1) = 0 for α = 1.

How do we compare the two hypothesis testing techniques? If the required value

α is given, we select the technique for which the corresponding value β is the smallest –

and, vice versa, if the value β is given, we select the technique for which the corresponding

value α is the smallest.

This requires that we implement all possible hypothesis testing techniques, and every

time select a technique depending on the specifics of a situation. In reality, however, there

are dozens and dozens of different hypothesis testing techniques. In practice, it is often not

realistically possible to implement all of them on the available computational device. In

such situations, we select one of the techniques and use it – with varying parameters – for

all possible practical situations. (Alternatively, we can select two or more techniques – and

for each given values of α or β, select the best of these. This is equivalent to selecting a

hybrid technique: e.g., technique A for values of α which are smaller than some threshold

α0 and a technique B for all other values α.)

In all such cases, we select one of the techniques (either one of the original ones or one

of the hybrid ones). The question is: how do we select? One technique may be better for
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some α, another may be better for another α. The usual way to select one of the available

techniques is to select the one for which the Area Under the Curve (AUC)
1∫
0

f(α) dα is the

smallest possible.

Comment. Instead of the dependence of β on α, we can plot the dependence of 1−β on α:

1− β = g(α). For this new function, the area under its curve is equal to 1 minus the area

under the f -curve: ∫ 1

0

g(α) dα =

∫ 1

0

(1− f(α)) dα = 1−
∫ 1

0

f(α) dα.

Thus, for these functions, minimizing the area under the f -curve is equivalent to maximizing

the area under the g-curve.

Why? In practice, the AUC criterion seems to lead to reasonable results. A natural

question is: why? Alternatively, we could, e.g., take different values f(α) with different

weights w(α) and compare the weighted values
∫
w(α) · f(α) dα; so why AUC?

In this chapter, we provide a possible explanation for the empirical efficiency of the

Area Under the Curve criterion.

11.2 Our Explanation

Analysis of the situation. In practice, we usually have bound on both types of error,

i.e., we have bounds α0 and β0 for which we would like to have α ≤ α0 and β ≤ β0.

Can we achieve this requirement by using a hypothesis testing technique with a given

curve f(α)? If we cannot achieve the desired values β0 for some α < α0, not all is lost: we

may still be able to get the desired probability of the type II error if we allow higher type

I errors. Thus, to test whether the given requirements can be achieved, we should take the

largest allowed value α0 of the type I error and check whether for this value, we can get

β ≤ β0, i.e., whether we have f(α0) ≤ β0.

This inequality corresponds to the point (α0, β0) being above the curve β = f(α). If

the point (α0, β0) is below this curve, this means that for this hypothesis testing technique,
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the corresponding requirement cannot be satisfied.

For each technique, some requirements can be satisfied, some cannot. A natural measure

of the technique’s quality is the frequency with which this technique succeeds – i.e., in more

precise terms, the probability that this technique will succeed.

To formalize this idea, we need to select a probability distribution on the set

of all pairs (α0, β0). To estimate the probability that a given pair of probabilities (α0, β0)

can be achieved, we need to select some probability distribution on the set of all such pairs.

On the unit square [0, 1] × [0, 1], there are many possible probability distributions.

Such situations are ubiquitous in applications of probabilistic methods. In such situations

of uncertainty, a reasonable idea is not to pretend that we have less uncertainty than

we do – and thus, put of all probability distributions consistent with our knowledge, to

select the probability distribution with the largest uncertainty. A natural measure of the

distribution’s uncertainty is its entropy [56, 88]. Thus, the idea is to select the probability

distribution for which the entropy S = −
∫
ρ(x) · ln(ρ(x)) dx is the largest possible; see,

e.g., [56].

This indeed explains the AUC. It is known that among all possible probability distri-

butions located on the unit square, the uniform distribution has the largest entropy. For

the uniform distribution, the probability that the randomly selected requirements can be

implemented by this technique – i.e., that randomly selected pair (α0, β0) will be under the

curve β = f(α) – is equal to the area under this curve.

Thus, when comparing two techniques, we should indeed select the one for which the

area under the f -curve is the smallest possible – or, equivalently, the technique for which

the area under the g-curve is the largest possible.
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Chapter 12

It Is Important to Revisit the

Selection of the Best Model When

New Data Appear: Why

Confirmation Bias Is a Faulty

Strategy

One of the biases potentially affecting systems engineers is the confirmation bias, when

instead of selecting the best hypothesis based on the data, people stick to the previously-

selected hypothesis until it is disproved. In this chapter, on a simple example, we show

how important is to take care of this bias: namely, that because of this bias, we need twice

as many experiments to switch to a better hypothesis.

Comment. The results presented in this chapter first appeared in [5].

12.1 Formulation of the Problem

Confirmation bias. It is known that our intuitive reasoning shows a lot of unexpected

biases; see, e.g., [61]. One of such biases is a confirmation bias, when, instead of selecting the

best hypothesis based on the data, people stick to the previously-selected hypothesis until

it is disproved. This bias is ubiquitous in systems engineering; see, e.g., [24, 85, 98, 114].
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How important is it to take the confirmation bias into account? Taking care of

the confirmation bias requires some extra effort; see, e.g., [64, 113, 114, 130] and references

therein. A natural question is: is the resulting improvement worth this extra effort? How

better the result will we get?

In this chapter, on a simple example, we show that the result is drastically better:

namely, that if we properly take this bias into account, then we will need half as many

experiments to switch to a more adequate hypothesis.

12.2 Analysis of the Problem

Description of the simple example. Let us consider the simplest possible case when

we have a parameter a that may be 0 and may be non-zero, and we directly observe this

parameter. We will also make the usual assumption that the observation inaccuracy is

normally distributed, with 0 mean and known standard deviation σ.

In this case, what we observe are the values x1, . . . , xn which are related to the actual

(unknown) value a by a relation xi = a + εi (i = 1, . . . , n), where εi are independent

normally distributed random variables with 0 mean and standard deviation σ.

Two approaches. In the ideal approach, we select one of the two models – the null-

hypothesis a = 0 or the alternative hypothesis a 6= 0 – by using the usual Akaike Informa-

tion Criterion (AIC); see, e.g., [111].

In the confirmation-bias approach, we estimate the value a based on the observations

x1, . . . , xn, and we select the alternative hypothesis only if the resulting estimate is statisti-

cally significantly different from 0 – i.e., e.g., that the 95% confidence interval for the value

a does not contain 0.

What if we use AIC. In the AIC, we select a model for which the difference AIC
def
=

2k− 2 ln
(
L̂
)

is the smallest, where k is the number of parameters in a model and L̂ is the

largest value of the likelihood function L corresponding to this model.
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The null-model a = 0 has no parameters at all, so for this model, we have k = 0.

For n independent measurement results, the likelihood function is equal to the product of

the values
1√

2π · σ
· exp

(
− x2i

2σ2

)
of the Gaussian probability density function corresponding to these measurement re-

sults xi. Thus,

L =
n∏

i=1

1√
2π · σ

· exp

(
− x2i

2σ2

)
and so, for this model,

AIC0 = −2 ln(L) = 2n · ln
(√

2π · σ
)

+
1

σ2
·

n∑
i=1

x2i .

We assume that xi = a+ εi, where the mean value of εi is 0 and the standard deviation

is σ. Thus, the expected value of x2i is equal to a2 + σ2. For large values n, due to the

Law of Large Numbers (see, e.g., [111]), the average
1

n
·

n∑
i=1

x2i is approximately equal to

the expected value E[x2i ] = a2 + σ2. Thus,
n∑

i=1

x2i ≈ n · (a2 + σ2) and hence,

AIC0 = 2n · ln
(√

2π · σ
)

+
1

σ2
· n · (a2 + σ2). (12.1)

The alternative model a 6= 0 has one parameter a, so here k = 1. The corresponding

likelihood function is then equal to

L =
n∏

i=1

1√
2π · σ

· exp

(
−(xi − â)2

2σ2

)
.

We select the parameter a that maximizes the value of this likelihood function. Maximal

likelihood is the usual way of estimating the parameters, which in this case leads to â =
1

n
·

n∑
i=1

xi. For large n, this estimate is close to the actual value a, so we have

L̂ =
n∏

i=1

1√
2π · σ

· exp

(
−(xi − a)2

2σ2

)
.
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For this model, xi − a = εi, thus,

AIC1 = 2− 2 ln
(
L̂
)

= 2 + 2n · ln
(√

2π · σ
)

+
1

σ2
·

n∑
i=1

ε2i .

For large n, we have
n∑

i=1

ε2i ≈ n · σ2, hence

AIC1 = 2 + 2n · ln
(√

2π · σ
)

+
1

σ2
· n · σ2. (12.2)

The second model is preferable if AIC1 < AIC0. By deleting common terms in these

two values AICi, we conclude that the desired inequality reduces to 2 <
n · a2

σ2
, i.e., equiv-

alently, to

n >
2σ2

a2
. (12.3)

What if we use a confirmation-bias approach. In the confirmation-bias approach, we

estimate a – and we have already mentioned that the optimal estimate is a =
1

n
·

n∑
i=1

xi. It

is known (see, e.g., [111]) that the standard deviation of this estimate is equal to σe =
σ√
n

.

Thus, the corresponding 95% confidence interval has the form [a − 2σe, a + 2σe]. The

condition that this interval does not contain 0 is equivalent to |a| > 2σe, i.e., equivalently,

to a2 > 4σ2
e . Substituting the above expression for σe into this inequality, we conclude that

a2 > 4 · σ
2

n
, i.e., equivalently, that

n >
4σ2

a2
. (12.4)

Conclusion. By comparing the expressions (3) and (4) corresponding to the two ap-

proaches, we can indeed see that the confirmation-bias approach requires twice as many

measurements than the approach in which we select the best model based on the data.

Thus indeed, avoiding confirmation bias can lead to a drastic improvement in our esti-

mates and thus, in our decisions.
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Chapter 13

Need for a Careful Comparison

between Hypotheses: Case Study of

Epicycles

In this chapter, we illustrate the need for a careful comparison between different hypotheses

on one of the most well-known historical examples – epicycles versus more modern tech-

niques in celestial mechanics. Our conclusion is that, contrary to what one may read in

modern astronomy and physics textbooks, epicycles were actually a very efficient tool, in

some aspects foreseeing modern techniques such as Fourier series – while not exactly as

efficient as Fourier series.

Comment. The results presented in this chapter first appeared in [3].

13.1 Epicycles: Bad Science or Genius Idea

Epicycles: what they are. For purposes of navigation, since the ancient times, as-

tronomers have studied the visible motion of the planets and the stars. In the first crude

approximation, their trajectories form a circle.

To provide a more accurate description, astronomers proposed the following idea –

called epicycles. First step is to assume that while a point corresponding to a planet

follows a circular motion around the Earth, the planet itself performs a circular motion

around this point. To get an even more accurate description, we assume that it is not

the planet itself, but rather the second point associated with the planet that performs a
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circular motion around the first point. The planet itself performs a circular motion around

the second point.

An even more accurate description is that for each planet, there is a third point that

performs a circular motion around the second point, and the planet itself moves in a circle

around this third point, etc.

This idea was originally proposed by Apollonius of Perga (late 3rd — early 2nd centuries

BCE), developed by several others, and finalized by Claudius Ptolemy (≈100–≈170).

Epicycles: traditional textbook-based negative coverage. Traditional textbooks on

history of science treated epicycles as bad science, a bad idea that was overcome by the

genius of Nicolaus Copernicus (1473–1543).

Epicycles as Fourier (trigonometric) series. From the mathematical viewpoint, a

circular rotation around the origin of the coordinate system can be described in simple

trigonometric terms:

x(t) = r · cos(ω · t+ ϕ), y(t) = r · sin(ω · t+ ϕ),

i.e., equivalently, as

x(t) = x0 · cos(ω · t)− y0 · sin(ω · t);

y(t) = x0 · sin(ω · t) + y0 · cos(ω · t).

In these terms, Ptolemy’s description means that we represent the motion of a planet as

a sum of such motions – i.e., as a linear combination of sines and cosines, a combination

that we now call trigonometric series or Fourier series, after Joseph Fourier (1768–1830),

a researcher who, in effect, reinvented them for modern times.

Fourier series is exactly how we now describe the visible motion of the planets (see, e.g.,

[73]). Taking into account the ubiquity of Fourier series and their importance for science

and engineering (see, e.g., [91]), the epicycles idea sounds more like a stroke of genius than

the bad science as described by traditional textbooks.
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What is better: Fourier series or epicycles? Epicycles are, in effect, Fourier series.

So, any trajectory that can be represented by an epicycle can also be represented by the

corresponding Fourier series.

Natural question are:

• are these two representations truly equivalent, i.e., can we represent each Fourier

series motion in terms of epicycles?

• if yes, which representation is better? is there any computational advantage in using

Fourier series in contrast to epicycles?

These are the questions that we deal with in this chapter.

13.2 Analysis of the Problem and the Resulting Con-

clusions

Can any Fourier series be represented in epicycle terms? In the above text, we

showed that every epicycle-based motion can be represented in terms of Fourier series. A

natural question is: is the opposite true? Can any Fourier-series motion be represented in

epicycle terms?

When the dependence of both coordinates x and y on time is described by Fourier series,

the question is whether we can separately represent the x-motion and the y-motion by

epicycles; if we can, then by adding these two representations, we will be able to represent

any Fourier motion this way. Thus, the question is: can epicycles represent the purely

x-motion in which y = 0 or the purely y-motion in which x = 0?

The answer to this natural question was provided, for the first time, by the Arabic

astronomer Nasir al-Din at-Tusi (1201–1274); see, e.g., [108]. One of the solutions that he

proposed to represent an x-only motion is to have a circle of half-radius rotate inside a

circle of the original radius. In this case, a point on a small circle moves only along the
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x-axis. An even simpler solution would be to represent an x-only motion

x(t) = r · cos(ω · t+ ϕ), y(t) = 0

as the sum

(x(t), y(t)) = (x1(t), y1(t)) + (x2(t), y2(t)),

where

x1(t) =
r

2
· cos(ω · t+ ϕ), y1(t) =

r

2
· sin(ω · t+ ϕ)

and

x2(t) =
r

2
· cos((−ω) · t+ ϕ) =

r

2
· cos(ω · t+ ϕ);

y2(t) =
r

2
· sin((−ω) · t+ ϕ) = −r

2
· sin(ω · t+ ϕ).

Similarly, we can represent an y-only motion.

Comment. It is worth mentioning that, as shown in [108], Copernicus used al-Tusi results

in his analysis of celestial mechanics – to the extent that he even borrowed some illustrative

pictures from a translation of al-Tusi’s book.

So which representation is computationally more efficient? In both cases – of

using epicycles and of using trigonometric series – we approximate the observed motion

x(t), y(t)) by a linear combination of several standard motions (xi(t), yi(t)):

x(t) ≈
∑
i

ai · xi(t), y(t) ≈
∑
i

ai · yi(t);

see, e.g., [111].

In general, there is a small advantage in using trigonometric series. This advantage is

related to the fact that in many cases, the motion is close to linear. In this case, e.g., for

the x-only motion:

• in trigonometric series, we need two terms for each frequency ω, namely, we need a

linear combination of the terms

(x(t), y(t)) = (cos(ω · t), 0) and (x(t), y(t)) = (sin(ω · t), 0),

while
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• to represent this particular frequency component via epicycles, we need two at-Tusi-

type pairs – i.e., we need four terms and thus, four (twice as many) coefficients.

This advantage is not that big for the regular planetary motions, since such motions are

indeed close to circular, but it is important for other motions – and for higher-frequency

(i.e., higher-order) terms describing this motion.
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Chapter 14

Analytical Techniques Help in

Emulating Biological Systems: An

Explanation of Why High-Level

Attention Constantly Oscillates

Once we have an adequate description of the users’ preferences and of the corresponding

application domain, we need to come up with a system design which the most appropriate

for this setting. One of the ways to come up with a good design is to use the experience

of successful similar systems – engineering and even biological. Examples of such systems

are plentiful: many situations in engineering and in life require constant monitoring. At

first glance, this would necessitate the need for the system to maintain the same alert level.

However, interestingly, recent experiments has shown that in many situations like driving,

the driver’s attention level constantly oscillates. In Chapter 14, we show that such an

oscillation is indeed helpful – and thus, it is necessary to emulate such an oscillation when

designing automatic systems, e.g., for driving.

Comment. The results presented in this chapter first appeared in [14].

14.1 Formulation of the Problem

In many real-life situations, high level of attention is crucial. In many practical

situations, we concentrate on a certain task. For example, when a person drives a car,
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he/she needs to keep a close attention to the road, to make sure that if a problem appears,

the driver will react as soon as possible – and thus, avoid a possible accident.

What researchers assumed. In critical situations, when the maximum attention is

needed, psychologists assumed that the attention is consistently kept at the maximum

possible level – of course, until the person becomes too tired to maintain this level of

attention.

This assumption makes perfect sense: when a lot is at stake, including the person’s

own life, it makes sense to concentrate all the energy on avoiding possible catastrophic

situations.

A recent surprising observation. Surprisingly, recent experiments showed that while

the attention indeed remains high, the attention level – as measured, e.g., by the reaction

time – constantly oscillates; see, e.g., [51, 54]. This level remains high, but the reaction

time still oscillates between the smallest possible value and a much larger value. This larger

value of reaction time is still good, but not as perfect as the smallest value.

The problem. It is not clear what is the reason for this observed phenomenon. Are they

somehow needed for survival? Or are they due to an imperfection of human physiology?

This is not just an interesting theoretical question, it has practical applications:

• If the oscillations indeed improve the system’s performance, then we should add

similar oscillations to the self-driving cars and other automated vehicles and systems.

• On the other hand, if the oscillations are caused by imperfections of human physi-

ology, then we should not emulate human drives in this; we should instead keep the

computer’s attention level constant.

What we do in this chapter. In this chapter, we show that oscillations do make

the system more efficient – and thus, appropriate oscillations should be implemented in

automatic control systems.
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14.2 Analysis of the Problem

Need for a numerical model. To analyze the problem, to see whether constant attention

of oscillating attention are more productive, we need to formulate this problem in precise

numerical terms. Let us therefore describe a simple simplified model of this phenomenon.

Towards a simplified model. Let T denote the duration of the period during which

we need to maintain high attention level. Without losing generality, we can start counting

time from the beginning of this period. In this case, the corresponding time interval takes

the form [0, T ].

There are natural limitations on how many observations we can process, whether in a

computer or in our brains. For a high-performance computer, these limitations are higher

than for a simple laptop, but they are still there. These limitations are real: e.g., when a

conference speaker makes a presentation remotely (e.g., by skype), the system often does

not catch up when the speaker’s movements are too fast.

Let us assume that, because of these limitations, during a certain period of time T , we

can process at most N observations. In crucial situations requiring high attention, it is

important that the person concentrates on the corresponding task as much as possible –

and thus, that this person processes as much information as possible. This means that in

such situations, we should process the maximum possible number of observations: namely,

we should process exactly N observations during the time T .

These observations correspond to, in general, different moments of time. Let us sort

these moments of time in chronological order. For each i from 1 to N , let us denote the

time of the i-th observation by ti. Then, we have

0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ T.

We want to detect possible obstacles as early as possible, at the time when the corre-

sponding signals are still weak. For weak signals, a single observation is not sufficient for

reliable detection, since there is always some noise level: we are not sure that the observed
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signal is real or just a noise. Swerving every time when a speck appears which may be a

car or a pedestrian is also a sure recipe for disaster: this means that a car would follow

an unpredictable waving trajectory, like when the driver in drunk. We need to perform

correcting actions only when we are reasonably sure that there is indeed a problem on

the road.

The more observations confirm that there is a problem, the higher our level of confidence

that this problem is real. Let m denote the smallest number of observations that make

us confident. Then, if a problem appears at time t ∈ [0, T ], we will detect it when m

observations pass after this time t. Let i(t) denote the first index i for which ti ≥ t. The

problem can then we observed in observations made at times ti(t), ti(t)+1, ti(t)+2, etc. The

problem will be detected after m such observations, i.e., at the moment ti(t)+m−1. The

difference ∆(t)
def
= ti(t)+m−1 − t between the time when we detect the problem and the

original time t is the main component of the reaction time.

For problems appearing at the end of the time period [0, T ], namely for problems cor-

responding to times t > tN−m, there are not enough remaining observations to observe

this problem.

Definition 14.1.

• By an high-attention situation, we mean a tuple (T,N,m), where T > 0 is a real

number, and m and N are integers for which m < N .

• For each high-attention situation, by a strategy, we mean an increasing sequence of

real numbers t1, . . . , tN for which 0 ≤ t1 ≤ t2 . . . ≤ tN .

• For a given strategy and for each moment t ∈ [0, T ], by the reaction time ∆(t), we

mean the difference ti(t)+m−1 − t.

Comment. As we have mentioned earlier, the reaction time is defined only for moments t ≤

tN−m.
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Which strategy should we prefer? We want to minimize reaction time. First of all,

we want to make sure that no matter when the problem appears, we should be able to deal

with it within a reasonable time r – and this time should be as small as possible. This

means that for all the moments t ≤ T − r, we should have ∆(t) ≤ r. This guaranteed

reaction-time r should be as small as possible.

There may be several different strategies with the same worst-case reaction time. To

select between then, it is reasonable to choose the strategy with the smallest possible

average reaction time: the average value of ∆(t) over all the moments t ∈ T − r. Thus, we

arrive at the following definition.

Definition 14.2.

• For each strategy ti, by its worst-case reaction time rw(ti), we mean the smallest

positive real number r for which max
0≤t≤T−r

∆(t) ≤ r.

• For a strategy ti with worst-case reaction time r, by its average reaction time ra(ti),

we mean the value

ra(ti)
def
=

1

T − r
·
∫ T−r

0

∆(t) dt.

14.3 Oscillations Are Better: Proofs

Discussion. Let us use the above model to check which strategy is better: the strategy is

constant or the strategy in which attention is oscillating. Let us describe these strategies

in precise terms.

Constant level of attention: how to formalize. Constant level of attention means that

we have the exact same difference δ = ti+1 − ti between the two consecutive observations,

i.e., that t2 = t1 + δ, t3 = t2 + δ = t1 + 2δ, etc., all the way to tN = T .

In this case, the worst-case reaction time is r = m · δ that occurs if the problem appears

right after each observation, at time t = ti + ε for some small positive ε� δ. To maintain

the same reaction time for t = 0, it is sufficient to take t1 = δ, thus, ti = i · δ. So, δ = T/N .
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Since we ignore moments t > T−r, we can as well place all the moments ti corresponding

to these times at T − r.

Definition 14.3. By a uniform strategy, we mean the strategy in which ti = i · (T/N) for

i < N −m and ti = (N −m) · (T/N) for i ≥ N −m.

Proposition 14.1. For the uniform strategy, the worst-case reaction time is rw = m ·

(T/N), and the average reaction time is

ra =

(
m− 0.5− m · (m− 1)

2(N −m)

)
· (T/N).

Proof. For the worst-case reaction time, the result is straightforward.

For the average reaction time, the interval [0, T − r] is divided into N − m intervals

[ti−1, ti] of equal width δ. Thus, to compute the average reaction time over the whole

interval [0, T − r], it is sufficient to compute the average reaction time over each of these

small intervals, and then compute the arithmetic average of these averages.

For the first N − 2m + 1 intervals [ti−1, ti], the reaction time changes between the

maximal value m · δ (attained close to ti−1) and the smallest value (m − 1) · δ (attained

at ti), so the average over this interval is (m− 0.5) · δ.

For i = N −m+ 2, we have reaction time changing from (m− 1) · δ to (m− 2) · δ, with

an average ((m − 1) − 0.5) · δ. For the next interval, we have ((m − 2) − 0.5) · δ, etc., all

the way to 0.5 · δ for the last interval.

In general, the average over each interval has the form (j−0.5) · δ, where in N −2m+ 1

cases, we have j = m, and then we have m− 1 values j = m− 1, j = m− 2, . . . , j = 1. So,

the average reaction time is equal to ra = (E[j]− 0.5) · δ, where E[j] is the average value

of j. Here,

E[j] =
m · (N − 2m+ 1) + (m− 1) + . . .+ 1

N −m
=

m · (N − 2m+ 1) +
(m− 1) ·m

2
N −m

.
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Since N − 2m+ 1 = (N −m)− (m− 1), we get

E[j] =
m · (N −m)−m · (m− 1) +

(m− 1) ·m
2

N −m
=

m · (N −m)− (m− 1) ·m
2

N −m
= m− (m− 1) ·m

2(N −m)
.

Substituting this expression for E[j] into the formula ra = (E[j] − 0.5) · δ, we get the

desired result.

The proposition is proven.

Oscillations: how to formalize. Let us consider the extreme case of oscillations, where

instead of having observations at uniformly distributed times, we bring observations in

groups of m: no observations, then m of them in a row, then again no observations, then

N of them in a row, etc., until we reach the last m values, i.e., the values starting with

k ·m+ 1, where k = bN/mc:

t1 = t2 = . . . = tm = r, tm+1 = . . . = t2m = 2r, . . . ,

tk·m+1 = . . . = tN = k · r. (14.1)

Definition 14.4. By a maximally oscillating strategy, we mean the sequence (14.1), where

k = bN/mc and r = T/k.

Proposition 14.2. For the maximally oscillating strategy, the worst-case reaction time is

rw = T/k, and the average reaction time is

ra = T/(2k).

Discussion. For the case when N is divisible by m, we get k = N/m. In this case, the

worst-case reaction time rw = T/k = m · (T/N) is the same as for the uniform strategy.
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However, the average reaction time is almost twice smaller. Thus, the oscillations indeed

make the strategy more efficient.

Proof of Proposition 14.2. For the worst-case reaction time, the proof is straightforward.

On each interval of width r, the reaction time changes from 0 to r. For each value t from

0 to r, the reaction time is r − t. Thus the average reaction time is

1

r
·
∫ r

0

(r − t) dt =
1

r
·
(
r · t− t2

2

)∣∣∣∣r
0

=
1

r
·
(
r2 − r2

2

)
=

1

r
· r

2

2
=
r

2
.

The proposition is proven.

Discussion. It is possible to show that not only the maximally oscillating strategy is

better than the uniform strategy, it is actually the best possible.

Definition 14.5. Let an high-attention situation (T,N,m) be given. We say that a strategy

ti is optimal of for every other strategy t′i, we have:

• either rw(ti) < rw(t′i),

• or rw(ti) = tw(t′i) or ra(ti) ≤ ra(t
′
i).

Proposition 14.3. For each high-attention situation, the maximally oscillating strategy

is optimal.

Proof. Let us assume that we have an optimal strategy, and that its worst-case reaction

time is equal to r = rw(ti). For the maximally oscillating strategy, we have ra(ti) = 0.5 · r.

Let us show that, vice versa, we cannot have ra < 0.5 · r, and that if ra = 0.5 · r, then

the corresponding strategy is maximally oscillating. This will prove that the maximally

oscillating strategy is indeed optimal.

Indeed, the fact that the worst-case reaction time is equal to r means there exists a

moment t0 for which ∆(t) is as close to r as possible. This, in turn, means that between

the moments t0 and t0 + r − ε, there are m values ti, namely the values ti(t0), ti(t0)+1, . . . ,

ti(t0)+m−1. If all these m values are equal to each other, then for each moment t between
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t0 and the common value of ti, we get ∆(t) = ti(t0) − t = t0 + r − t, and thus, the average

value of ∆(t) over the corresponding interval is equal to 0.5 · r.

In general, the nextm values ti cannot be earlier that t0+r, thus we have ∆(t) ≥ t0+r−t.

If for some t, we get strict equality, then the average reaction time over the corresponding

interval is > 0.5 · r. The only possibility to have this part of ta equal to 0.5 · r is when for

all t, we have ∆(t) = t0 + r − t.

Let us show that in this case, we have at least m values ti equal to t0 + r. Indeed, let j

be the last value for which tj < t0 + r. Then, any t between tj and t0 + r, the fact that we

have ∆(t) = t0 + r − t means that the next m values ti must be ≤ t0 + r. Since the only

value ti between t and t0 + r is the value t0 + r, this means that we have at least m values

equal to t0 + r. Thus, for the optimal solution, we have a group of at least m equal values,

then another group of at least m equal values, etc.

If we group ti into groups of size > m, then we would be divide the interval [0, T ] into

fewer pieces than in the case when each group has exactly m values ti. So, in this case, the

distance between two consecutive groups will be larger than in the case when we have the

division into groups of m; thus, this arrangement cannot be optimal. Hence, in the optimal

arrangement, we should have m indices in each group of equal consecutive values ti. This

is exactly the oscillating arrangement. The proposition is proven.
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Chapter 15

Analytical Techniques for Taking into

Account Several Aspects of a

Designed Systems: Case Study of

Computation-Communication

Tradeoff

Once we have an adequate description of the users’ preferences and of the corresponding

application domain, we need to come up with a system design which the most appropriate

for this setting. One of the challenges in searching for such a design is that we need to take

into account many different aspects of the resulting system. In many practical situations,

for each aspect, we have well-defined optimal design strategies, but there is no analytical

techniques for taking all the aspects into account. In Chapter 15, we show how several

aspects can be taken into account on the example of a tradeoff between computation and

communication needs.

The need for such a tradeoff can be illustrated by a recent study of chimpanzees. This

study has shown that on the individual basis, the chimpanzees are, surprisingly, much

better than humans in simple tasks requiring intelligence and memory. A usual explanation

– called cognitive tradeoff – is that a human brain has sacrificed some of its data processing

(computation) abilities in favor of enhancing the ability to communicate; as a result, while

individual humans may not be as smart as possible, jointly, we can solve complex problems.

82



A similar cognitive tradeoff phenomenon can be observed in computer clusters: the most

efficient computer clusters are not formed from the fastest, most efficient computers, they

are formed from not-so-fast computers which are, however, better in their communication

abilities than the fastest ones. In this chapter, we propose a simple analytical model that

explains the cognitive tradeoff phenomenon.

Comment. The results presented in this chapter first appeared in [10].

15.1 Formulation of the Problem

Interesting empirical phenomenon. A recent study of chimpanzees [27, 80, 82] showed,

somewhat surprisingly, that on the individual basis, they are much better than human

in many tasks requiring intelligence. For example, they can remember more objects in

images, and in conflict situations their behavior is much closer to the optimal behavior (as

recommended by game theory) than the behavior of humans.

Cognitive tradeoff: an explanation for this phenomenon. A current explanation

for this phenomenon is based on what is called cognitive tradeoff: humans have better

communication abilities, and so, human brain has to sacrifice some individual intellectual

abilities to leave space for parts needed for efficient communication.

The need for such a tradeoff is not limited to humans. A similar tradeoff phe-

nomenon can be observed not only in humans, but in computers as well. The world’s

fastest computations are performed on so-called high performance computers. Each of

them is, in effect, a large number of processors constantly communicating with each other.

In principle, there exist processors which are very fast and efficient, but modern super-

computers are not formed from these processors: they are formed from simpler processors

– similar to the ones we use in not-very-expensive home computers. One of the reasons for

this choice is that these simple processors communicate well, as opposed to more efficient

processors; these more efficient processors individually perform better but which take much
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longer time to communicate (another reason is that simple processors are usually much

cheaper, which allows the designers to combine many more such processors within the

same budget).

The ubiquity of cognitive tradeoff motivates the desired to have a universal

quantitative model. The fact that cognitive tradeoff occurs in many situations, from

human to computer communications, shows that there must be a simple quantitative ex-

planation for this phenomenon.

In this chapter, we provide a simple quantitative model that explains the main ideas

behind this phenomenon. We hope that this simple model can be used as a basis for

more complex – and more realistic – models that would not only qualitatively explain this

phenomenon, but that would also lead to quantitative predictions.

15.2 Description of a Model

Main idea behind the model. We have a computing device – be it a computer or a

brain – that is involved in communication with other computing devices so that together,

they can solve a certain important problem.

The main difficulty with communication is that we cannot just send the internal sig-

nals out. It does not work for humans: we sometimes do not even understand each

other’s gestures or words, we need to translate our knowledge from our internal knowledge-

representation language to a more universal one. Similarly, computers cannot just send

out signals describing 0s and 1s that serve as internal representations of the corresponding

knowledge: even if the two computers use the same way of representing, e.g., arrays of real

numbers, the actual representation includes the information on where exactly this arrays

is stored in the computer memory – the information that is useless for the computer that

receives this information.

So, in general, to communicate, computing devices need to translate their internal

signals into a different, more universal communication language. For this translation, we
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need a dictionary stored in the computing device.

In computing devices, usually, there are several levels of information storage. There is

an operating memory where access to information is fast but the size of this memory is

limited. There is usually a much larger second-tier memory that can store a much larger

amount of information but where access takes much longer. There are usually several

more layers, but in this chapter, for simplicity, we will simply assume that we have two

memory layers.

Details. Let a denote the overall computational ability related to the top (fastest-to-access)

memory level. Some part of this level memory is taken by the most frequent “words” in

the dictionary – so that translation of these words and thus, sending a message would go

faster. Let a0 denote the part of this level memory that is focused on this translation; then,

we have a− a0 ability remaining for general computations.

Let us denote by t0 the part of the memory that is needed, on average, to store a

translation of one word. Then, in the part a0, we can store the translations of w
def
=

a0
t0

words.

Let us assume that we need:

• to perform some fast computations – whose overall running time will be denoted by

C – and

• to send several (M) messages (of average length of ` words per message); this means

that overall, in addition to computations, we need to communicate W = M · ` words.

Let d be the size of the dictionary, i.e., the overall number of words that can be used

for communication.

In this arrangement, what is the best division of top layer memory a into parts a0 and

a− a0 under which both computation and communication tasks will be performed as fast

as possible?

Zipf’s law. In our analysis, we will rely on the known law that describes how frequently

different words appear in a message. According to this law – known as Zipf’s law – if we
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sort all the words from a dictionary in the decreasing order of their frequency, then the

frequency fi with which the i-word appears is equal to fi ≈
c

i
, for some constant c; see,

e.g., [79].

The constant c can be determined from the condition that the sum of all the frequencies

f1, . . . , fd should be equal to 1. Thus, we get

c

1
+
c

2
+ . . .+

c

d
= 1,

i.e., equivalently,

c ·
(

1

1
+

1

2
+

1

3
+ . . .+

1

d

)
= 1.

The sum in parentheses is an integral sum for the integral∫ d

1

1

x
dx = ln(x)|d1 = ln(d)− ln(1) = ln(d),

thus
1

1
+

1

2
+

1

3
+ . . .+

1

d
≈ ln(d),

hence c · ln(d) = 1, so c =
1

c
=

1

ln(d)
and

fi =
1

ln(d)
· 1

i
.

Towards formulas for computation and communication times. We have a − a0

elementary computational devices to perform the overall amount C of needed computations.

So, if we distribute these computation tasks between these a − a0 devices, then we need

the time
C

a− a0
to perform all these computations.

Let us now estimate the amount of computations needed to send all M needed messages.

In the fast memory layer, we can store w words. To speed up computations, it is reasonable

to store, in the fast memory, translations to w most frequent words. If a message contains
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other words, we need to spend some time either computing its translation, or, alternatively,

bringing this translation from the slower memory layer. Let us denote the average time

needed to translate a not-stored-in-fast-memory word by t.

Among all W = M · ` words that we need to communicate, we need the translate for

all the words except for the w most frequent ones, i.e., for all the words whose frequencies

are fw+1, . . . , fd. The overall frequency f of all such words can be obtained by adding up

all these frequencies; so, we get

f = fw+1 + . . .+ fd =
c

w + 1
+ . . .+

c

d
= c ·

(
1

w + 1
+ . . .+

1

d

)
.

The sum in the last expression is also an integral sum, this time for the integral∫ d

w+1

1

x
dx = ln(x)|dw+1 ≈ ln(d)− ln(w).

Thus, the frequency f is approximately equal to

f = c · (ln(d)− ln(w)) =
ln(d)− ln(w)

ln(d)
.

Among all W words, we thus need to spend time on f ·W words. Translating each word

requires time t, so overall, we need to spend time f ·W · t on this translation.

Substituting the above expression for f and the formula W = M ·w0 into this formula,

we conclude that the overall time for sending M messages is equal to

ln(d)− ln(w)

ln(d)
·M · w0 · t,

i.e., taking into account that w = a0/t0 and thus, ln(w) = ln(a0)− ln(t0), we get

ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t.

By adding the computation and communication time, we get the following formula for the

overall time.

Resulting formula for overall computation and communication time. The overall

time T needed for computation and communication is equal to

C

a− a0
+

ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t. (15.1)
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15.3 Analysis of the Model: What Is the Optimal

Tradeoff Between Computation and Communi-

cation

Main idea. The desired tradeoff is described by the parameter a0. We want to find

the value of this parameter for which the overall time T needed to perform all the tasks

(including both computation and communication) is the smallest possible. In other words,

the expression (15.1) for this time T is our objective function.

Towards an explicit expression for the optimal value a0. To find the optimal value

a0, let us differentiate the objective function (15.1) with respect to a0 and equate the

derivative to 0. As a result, we get the following formula:

C

(a− a0)2
− M · w0 · t

ln(d)
· 1

a0
= 0.

Multiplying both sides of this equality by (a− a0)2 · a0, we get a quadratic equation:

C · a0 −
M · w0 · t

ln(d)
· (a− a0)2 = 0.

Dividing both sides by the coefficient at (a− a0)2 and changing the sign of both sides, we

get

(a− a0)2 − k · a0 = a20 − (k − 2) · a · a0 + a2 = 0,

where we denoted

k
def
=

C · ln(d)

M · w0 · t
.

Dividing both sides by a2, we get the following quadratic equation to the fraction r0
def
=
a0
a

of the top-level memory allocated for communications:

r20 − (k − 2) · r0 + 1 = 0.

The solution of this quadratic equation is

r0 =
k − 2

2
±

√(
k − 2

2

)2

− 1,
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and a0 = a · r0.

Analysis of the problem. When there are practically no communications, i.e., when

the number of messages M is very small, the second term in the expression (15.1) for the

objective function is negligible, so the objective function is approximately equal to its first

term:

T ≈ C

a− a0
.

This expression is the smallest when the difference a−a0 is the largest, i.e., when the value

a0 is the smallest possible – and the smallest possible value of a0 is 0.

Thus, in situations when we do not need to perform many communications, it makes

sense not to allocate any top-level memory for communications, and use it all (or almost

all) for computations.

On the other hand, if the number of messages is large, then, vice versa, we can ignore

the first term in the expression (15.1) for the objective function and conclude that the

objective function is approximately equal to its second term:

T ≈ ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t.

In this case, the larger a0, the larger is ln(a0) and thus, the smaller is the above expression.

So, for this expression to be as small as possible, we need to select the value a0 which is

as large as possible. The largest possible value of the communication-related portion a0 of

the top-level memory is the whole amount a of this memory: a0 = a.

Thus, in situations when we need to perform a large number of communications, it

makes sense to allocate practically all top-level memory for communications, and leave

only the bare minimum for computations.

These are the two extreme cases, but they show that the more communications we need,

the larger portion of the top-level memory should be allocated for communication purposes

(and the above explicit formula for the optimal value of a0 confirms this conclusion).

This is exactly what we observe, both in chimps and in computer networks, in terms

of a tradeoff between communication and computation. Thus, our simple model indeed
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captures – at least on the qualitative level – the cognitive tradeoff phenomenon.

A recent study of chimpanzees has shown that on the individual basis, they are, surpris-

ingly, much better than humans in simple tasks requiring intelligence and memory. A usual

explanation – called cognitive tradeoff – is that a human brain has sacrificed some of its

data processing (computation) abilities in favor of enhancing the ability to communicate;

as a result, while individual humans may not be as smart as possible, jointly, we can solve

complex problems. A similar cognitive tradeoff phenomenon can be observed in computer

clusters: the most efficient computer clusters are not formed from the fastest, most efficient

computers, they are formed from not-so-fast computers which are, however, better in their

communication abilities than the fastest ones. In this chapter, we propose a simple model

that explains the cognitive tradeoff phenomenon.

15.4 Formulation of the Problem

Interesting empirical phenomenon. A recent study of chimpanzees [27, 80, 82] showed,

somewhat surprisingly, that on the individual basis, they are much better than human

in many tasks requiring intelligence. For example, they can remember more objects in

images, and in conflict situations their behavior is much closer to the optimal behavior (as

recommended by game theory) than the behavior of humans.

Cognitive tradeoff: an explanation for this phenomenon. A current explanation

for this phenomenon is based on what is called cognitive tradeoff: humans have better

communication abilities, and so, human brain has to sacrifice some individual intellectual

abilities to leave space for parts needed for efficient communication.

The need for such a tradeoff is not limited to humans. A similar tradeoff phe-

nomenon can be observed not only in humans, but in computers as well. The world’s

fastest computations are performed on so-called high performance computers. Each of

them is, in effect, a large number of processors constantly communicating with each other.
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In principle, there exist processors which are very fast and efficient, but modern super-

computers are not formed from these processors: they are formed from simpler processors

– similar to the ones we use in not-very-expensive home computers. One of the reasons for

this choice is that these simple processors communicate well, as opposed to more efficient

processors; these more efficient processors individually perform better but which take much

longer time to communicate (another reason is that simple processors are usually much

cheaper, which allows the designers to combine many more such processors within the

same budget).

The ubiquity of cognitive tradeoff motivates the desired to have a universal

quantitative model. The fact that cognitive tradeoff occurs in many situations, from

human to computer communications, shows that there must be a simple quantitative ex-

planation for this phenomenon.

In this chapter, we provide a simple quantitative model that explains the main ideas

behind this phenomenon. We hope that this simple model can be used as a basis for

more complex – and more realistic – models that would not only qualitatively explain this

phenomenon, but that would also lead to quantitative predictions.

15.5 Description of a Model

Main idea behind the model. We have a computing device – be it a computer or a

brain – that is involved in communication with other computing devices so that together,

they can solve a certain important problem.

The main difficulty with communication is that we cannot just send the internal sig-

nals out. It does not work for humans: we sometimes do not even understand each

other’s gestures or words, we need to translate our knowledge from our internal knowledge-

representation language to a more universal one. Similarly, computers cannot just send

out signals describing 0s and 1s that serve as internal representations of the corresponding

knowledge: even if the two computers use the same way of representing, e.g., arrays of real

91



numbers, the actual representation includes the information on where exactly this arrays

is stored in the computer memory – the information that is useless for the computer that

receives this information.

So, in general, to communicate, computing devices need to translate their internal

signals into a different, more universal communication language. For this translation, we

need a dictionary stored in the computing device.

In computing devices, usually, there are several levels of information storage. There is

an operating memory where access to information is fast but the size of this memory is

limited. There is usually a much larger second-tier memory that can store a much larger

amount of information but where access takes much longer. There are usually several more

layers, but in this chapter, for simplicity, we will simply assume that we have two memory

layers.

Details. Let a denote the overall computational ability related to the top (fastest-to-access)

memory level. Some part of this level memory is taken by the most frequent “words” in

the dictionary – so that translation of these words and thus, sending a message would go

faster. Let a0 denote the part of this level memory that is focused on this translation; then,

we have a− a0 ability remaining for general computations.

Let us denote by t0 the part of the memory that is needed, on average, to store a

translation of one word. Then, in the part a0, we can store the translations of w
def
=

a0
t0

words.

Let us assume that we need:

• to perform some fast computations – whose overall running time will be denoted by

C – and

• to send several (M) messages (of average length of ` words per message); this means

that overall, in addition to computations, we need to communicate W = M · ` words.

Let d be the size of the dictionary, i.e., the overall number of words that can be used for

communication.
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In this arrangement, what is the best division of top layer memory a into parts a0 and

a− a0 under which both computation and communication tasks will be performed as fast

as possible?

Zipf’s law. In our analysis, we will rely on the known law that describes how frequently

different words appear in a message. According to this law – known as Zipf’s law – if we

sort all the words from a dictionary in the decreasing order of their frequency, then the

frequency fi with which the i-word appears is equal to fi ≈
c

i
, for some constant c; see,

e.g., [79].

The constant c can be determined from the condition that the sum of all the frequencies

f1, . . . , fd should be equal to 1. Thus, we get

c

1
+
c

2
+ . . .+

c

d
= 1,

i.e., equivalently,

c ·
(

1

1
+

1

2
+

1

3
+ . . .+

1

d

)
= 1.

The sum in parentheses is an integral sum for the integral∫ d

1

1

x
dx = ln(x)|d1 = ln(d)− ln(1) = ln(d),

thus
1

1
+

1

2
+

1

3
+ . . .+

1

d
≈ ln(d),

hence c · ln(d) = 1, so c =
1

c
=

1

ln(d)
and

fi =
1

ln(d)
· 1

i
.

Towards formulas for computation and communication times. We have a − a0

elementary computational devices to perform the overall amount C of needed computations.

So, if we distribute these computation tasks between these a − a0 devices, then we need

the time
C

a− a0
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to perform all these computations.

Let us now estimate the amount of computations needed to send all M needed messages.

In the fast memory layer, we can store w words. To speed up computations, it is reasonable

to store, in the fast memory, translations to w most frequent words. If a message contains

other words, we need to spend some time either computing its translation, or, alternatively,

bringing this translation from the slower memory layer. Let us denote the average time

needed to translate a not-stored-in-fast-memory word by t.

Among all W = M · ` words that we need to communicate, we need the translate for

all the words except for the w most frequent ones, i.e., for all the words whose frequencies

are fw+1, . . . , fd. The overall frequency f of all such words can be obtained by adding up

all these frequencies; so, we get

f = fw+1 + . . .+ fd =
c

w + 1
+ . . .+

c

d
= c ·

(
1

w + 1
+ . . .+

1

d

)
.

The sum in the last expression is also an integral sum, this time for the integral∫ d

w+1

1

x
dx = ln(x)|dw+1 ≈ ln(d)− ln(w).

Thus, the frequency f is approximately equal to

f = c · (ln(d)− ln(w)) =
ln(d)− ln(w)

ln(d)
.

Among all W words, we thus need to spend time on f ·W words. Translating each word

requires time t, so overall, we need to spend time f ·W · t on this translation.

Substituting the above expression for f and the formula W = M ·w0 into this formula,

we conclude that the overall time for sending M messages is equal to

ln(d)− ln(w)

ln(d)
·M · w0 · t,

i.e., taking into account that w = a0/t0 and thus, ln(w) = ln(a0)− ln(t0), we get

ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t.

94



By adding the computation and communication time, we get the following formula for the

overall time.

Resulting formula for overall computation and communication time. The overall

time T needed for computation and communication is equal to

C

a− a0
+

ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t. (15.1)

15.6 Analysis of the Model: What Is the Optimal

Tradeoff Between Computation and Communi-

cation

Main idea. The desired tradeoff is described by the parameter a0. We want to find

the value of this parameter for which the overall time T needed to perform all the tasks

(including both computation and communication) is the smallest possible. In other words,

the expression (15.1) for this time T is our objective function.

Towards an explicit expression for the optimal value a0. To find the optimal value

a0, let us differentiate the objective function (15.1) with respect to a0 and equate the

derivative to 0. As a result, we get the following formula:

C

(a− a0)2
− M · w0 · t

ln(d)
· 1

a0
= 0.

Multiplying both sides of this equality by (a− a0)2 · a0, we get a quadratic equation:

C · a0 −
M · w0 · t

ln(d)
· (a− a0)2 = 0.

Dividing both sides by the coefficient at (a− a0)2 and changing the sign of both sides, we

get

(a− a0)2 − k · a0 = a20 − (k − 2) · a · a0 + a2 = 0,

where we denoted

k
def
=

C · ln(d)

M · w0 · t
.
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Dividing both sides by a2, we get the following quadratic equation to the fraction r0
def
=
a0
a

of the top-level memory allocated for communications:

r20 − (k − 2) · r0 + 1 = 0.

The solution of this quadratic equation is

r0 =
k − 2

2
±

√(
k − 2

2

)2

− 1,

and a0 = a · r0.

Analysis of the problem. When there are practically no communications, i.e., when

the number of messages M is very small, the second term in the expression (15.1) for the

objective function is negligible, so the objective function is approximately equal to its first

term:

T ≈ C

a− a0
.

This expression is the smallest when the difference a−a0 is the largest, i.e., when the value

a0 is the smallest possible – and the smallest possible value of a0 is 0.

Thus, in situations when we do not need to perform many communications, it makes

sense not to allocate any top-level memory for communications, and use it all (or almost

all) for computations.

On the other hand, if the number of messages is large, then, vice versa, we can ignore

the first term in the expression (15.1) for the objective function and conclude that the

objective function is approximately equal to its second term:

T ≈ ln(d) + ln(t0)− ln(a0)

ln(d)
·M · w0 · t.

In this case, the larger a0, the larger is ln(a0) and thus, the smaller is the above expression.

So, for this expression to be as small as possible, we need to select the value a0 which is

as large as possible. The largest possible value of the communication-related portion a0 of

the top-level memory is the whole amount a of this memory: a0 = a.
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Thus, in situations when we need to perform a large number of communications, it

makes sense to allocate practically all top-level memory for communications, and leave

only the bare minimum for computations.

These are the two extreme cases, but they show that the more communications we need,

the larger portion of the top-level memory should be allocated for communication purposes

(and the above explicit formula for the optimal value of a0 confirms this conclusion).

This is exactly what we observe, both in chimps and in computer networks, in terms

of a tradeoff between communication and computation. Thus, our simple model indeed

captures – at least on the qualitative level – the cognitive tradeoff phenomenon.
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Chapter 16

Users Do Not Always Follow Expert

Recommendations: Analytical

Technique Explains Empirical Data

Empirical studies show that users do not always follow expert recommendations. For

example, when a medical doctor prescribes a medicine, only two third of the patients

fill the prescription, and of this filling-prescription group, only half follow the doctor’s

instructions when taking the medicine. In this chapter, we show that a general systems

approach – namely, abstracting from the specifics of this situation – helps explain these

empirical observations. We also mention that systems approach can not only explains this

problem, it can also help solve it – i.e., it can help increase the patients’ adherence to the

doctors’ recommendations – and users’ adherence to expert recommendations in general.

Comment. The results presented in this chapter first appeared in [16].

16.1 Formulation of the Problem

Empirical observation. A recent study [97, 119] shows that among all the patients who

get a prescription from a medical doctor:

• approximately one third of the patients do not fill their prescription at all,

• one third of the patients fill the prescription, but do not exactly follow the doctor’s

instructions about dosage and times, and
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• only the remaining one third of the patients does exactly what the doctor suggested.

Researchers tried to explain this somewhat unexpected observation; see, e.g., [50, 84, 119].

However, all these explanations have been mostly qualitative. So far, to the best of our

knowledge, there has been no convincing quantitative explanation.

What we do in this chapter. In this chapter, we show that the above empirical obser-

vation can be quantitatively explained if we abstract away from medical and social details

and reformulate this problem on the general systems level.

16.2 Our Explanation

Possible reactions to a doctor’s recommendation. When a patient gets some recom-

mendation from the doctor, the patient does not necessarily believe that these recommen-

dations are correct – otherwise, he/she would obediently follow this recommendation. In

general, there are three possible options:

• the first option is that the patient is confident that the doctor’s recommendation is

correct,

• the second option is that the patient is confident that the doctor’s recommendation

is not correct, and

• the third option is that the patient is not sure whether the doctor’s recommendation

is correct or not.

How these reactions affect the patient’s behavior. If a patient is confident that

the doctor’s recommendation is correct, then this patient will obediently follow this rec-

ommendation. In particular, this patient will fill the doctor’s prescription and take the

corresponding medicine at the prescribed times and at the prescribed dosage.

If the patient is confident that the doctor’s recommendation is not correct, this patient

will not even bother to fill the doctor’s prescription.
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In the third case, when the patient is not sure whether the doctor’s recommendation

is correct, a reasonable idea – unless the patient goes to a second doctor for a second

opinion – is to follow some part of the doctor’s recommendation. In this case, the patient

fills the prescription but follows only part of the doctor’s instructions about taking this

medicine, e.g.:

• takes only half-dose each time or

• takes it only once a day when the doctor recommended to take it twice a day, etc.

The resulting frequencies with which patients exhibit different reactions to the

doctor’s recommendation. The above analysis shows that, depending on the patient’s

reaction, we will observe exactly the three types of behavior that the above empirical study

observed. Thus, the frequencies with which we observe three different behaviors are exactly

the frequencies with which the patients show one of the above three reactions to a doctor’s

recommendation:

• approximately one third of the patients are confident that the doctor’s recommenda-

tion is correct;

• about one third of the patients are confident that the doctor’s recommendation is not

correct, and

• the remaining one third of the patients are not sure whether the doctor’s recommen-

dation is correct or not.

Hence, to explain the above empirical observation, we need to explain the frequencies of

different patient’s reactions to the doctor’s recommendation.

Frequencies explained. The vast majority of patients are not trained in medicine. Thus,

they have no reasonable way to decide whether they should trust the doctor’s recommen-

dation or not. As a result, they face the problem of selecting one of the three alternatives
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– i.e., one of the three possible reactions to a doctor’s recommendation – without having

any information that would help them select one of these three alternatives.

Such a situation of selection under complete uncertainty is well known. A usual way to

solve it – known as Laplace Indeterminacy Principle – is to conclude that since we have no

reason to assign different probabilities to different alternatives, a reasonable idea is to assign

the exact same probability to all these alternatives; see, e.g., [56] and references therein.

In our case, there are three alternatives, so we assign the exact same probability p to

each of these three alternatives. Since the probabilities of selecting one of the alternatives

must add up to 1, we thus conclude that p + p + p = 1, i.e., that p = 1/3. So, we predict

that the patient will select each of three alternative reactions – and thus, the corresponding

behavior – in exactly 1/3 of the cases. This is exactly what the empirical study observed.

Thus, we have indeed explained the observed frequencies of different medicine adher-

ence behavior.

Need to go beyond explanations. Explanations are nice, but it is desirable not just

to explain the fact that patients do not follow the doctors’ recommendation, but to come

up with ways to increase their adherence to these recommendations. In this, systems

approach can also help; see, e.g., [29]. Specifically, systems approach helps in developing

tools that help the patients understand the reasoning behind the doctors’ recommendations

and thus, increase the percentage of patients who follow these recommendations. One of

such approaches is described in the next chapter.
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Chapter 17

Analytical Techniques for Making

Recommendations More Acceptable

to Users: Status Quo Bias Actually

Helps Decision Makers to Take

Nonlinearity into Account

One of the main motivations for designing computer models of complex systems is to

come up with recommendations on how to best control these systems. Many complex

real-life systems are so complicated that it is not computationally possible to use realistic

nonlinear models to find the corresponding optimal control. Instead, researchers make

recommendations based on simplified – e.g., linearized – models. The recommendations

based on these simplified models are often not realistic but, interestingly, they can be made

more realistic if we “tone them down” – i.e., consider predictions and recommendations

which are close to the current status quo state. In this chapter, we analyze this situation

from the viewpoint of general system analysis. This analysis explain the above empirical

phenomenon – namely, we show that this “status quo bias” indeed helps decision makers

to take nonlinearity into account.

Comment. The results presented in this chapter first appeared in [11].
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17.1 Formulation of the Problem

Real-life problems. In his presentation [58] at the 2019 World Congress of the Inter-

national Fuzzy Systems Association (IFSA), Professor Kacprzyk recalled his experience

of optimizing large systems – like an economic region – at the International Institute for

Applied Systems Analysis (IIASA) in Laxenburg, Austria.

Linearization is needed. Of course, many dependencies in complex real-life systems are

non-linear. However, even with modern computers, optimizing a complex system under

nonlinear constraints would require an unrealistic amount of computation time. As a

result, in the optimization, most processes in a real-life system were approximated by

linear models.

Comment. To be more precise, when analyzing the effect of one specific strategy on a

system, we can afford to take non-linearity into account. However, when we need to solve

an optimization problem of selecting the optimal strategy and/or optimal parameters of

such a strategy, we have to use linearization.

Recommendations based on the linearized model were often not realistic. Not

surprisingly, since the optimization process involved simplification of the actual system,

recommendations based on the resulting simplified model were often not realistic and could

not be directly implemented.

This was not just a subjective feeling: when the researchers tested, on the nonlinear

model, the effect of a strategy selected based on linearization, the results were often not

so good.

Status quo bias helped. One of the reasons that people listed for being reluctant to

accept the center’s recommendations was that these recommendations differed too much

from what they expected. This phenomenon of unwillingness to follow recommendations

if they are too far away from the status quo is known as the status quo bias; see, e.g.,

[59, 109].
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Interestingly, when the center’s researchers “toned down” their recommendations by

making them closer to the status quo, the resulting recommendations led to much better

results (e.g., as tested on the nonlinear models).

In other words, the toning down – corresponding to what we understand as the status

quo bias – actually improved the decisions in comparison to simply using recommendations

based on the simplified linear models. Thus, the status quo bias somehow takes into account

non-linearity – and is, thus, not a deviation from an optimal decision making (as the word

bias makes you think) but rather a reasonable way to come up with a better decision.

But why? The phenomenon described above seems mysterious. Why would getting closer

to the status quo lead to a better solution?

In this chapter, we analyze this phenomenon from the general system approach. Our

analysis allows us to explain why the status quo bias indeed helps to take some nonlinearity

into account.

17.2 Analysis of the Problem and the Resulting Ex-

planation

A general description of a system: a brief reminder. In general, the state of a

system at each moment of time t can be described by listing the values x1(t), . . . , xn(t)

of all the quantities x1, . . . , xn that characterize this system. Similarly, the change in the

system can be described by differential equations that explain how the value of each of

these quantities change with time:

dxi(t)

dt
= fi(x1(t), . . . , xn(t)), i = 1, . . . , n.

Here the expressions fi(x1, . . . , xn) describe how the rate of change in each of the quantities

depends on the state x = (x1, . . . , xn); in general, the expressions fi(x1, . . . , xn) are non-

linear.
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In particular, in the simplest case when we use the value of only quantity x1 to describe

the state, we get the equation
dx1(t)

dt
= f1(x1(t)).

What happens when we linearize. When we linearize the description of the system,

we thus replace the nonlinear functions fi(x1, . . . , xn) by their linear approximations

fi(x1, . . . , xn) ≈ ai +
n∑

j=1

aij · xj.

In particular, in the case when we use only quantity x1, we get the following approximate

equation
dx1
dt

= a1 + a11 · x1.

In this case, for the auxiliary variable y1
def
= x1 +

a1
a1

, we get

dy1
dt

= a11 · y1.

The solution to this simple differential equation is well-known: it is

y1(t) = y1(0) · exp(a11 · t)

and thus,

x1(t) = y1(y)− a1
a11

= y1(0) · exp(a11 · t)−
a1
a11

.

In situations when the value of x1 (and thus, of y1) decreases, we have a11 < 0. In such

situations, the value y1 decreases to 0. Such things happen. However, in situations when

we want to describe the growth, i.e., when a11 > 0, we get an exponential growth.

Exponential growth may be a good approximation for some period of time, but even-

tually it starts growing too fast to be realistic. For example, in good times, economies

grow – but we do not expect, e.g., production of meat to grow thousands times. Similarly,

pollution grows, or, on a somewhat less negative side, populations grow, but we do not

expect thousands-times increases predicted by the exponential models.
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This phenomenon of models-growing-too-fast is not limited to the case when the system

if described by only one variable. In general, a solution to a system of linear differential

equations with constant coefficients is a linear combination of oscillatory terms and expo-

nential terms – so, if we describe growth, the models will make it unrealistically exponential.

How to make conclusions more realistic. Linear models are not realistic – the devia-

tions from the current values and what these models predict become too large to be realistic.

Thus, a natural way to make the models more realistic is to take this phenomenon into

account – i.e., instead of the results of the linearized models, consider states which are

closer to the original state

x(0) = (x1(0), . . . , xn(0)).

Conclusion. This idea of considering the states which are closer to the original state than

the model suggests is exactly what the status quo bias is about. Thus, indeed, the status

quo bias helps take make models more realistic.

The unrealistic character of the linearized model’s recommendation is caused by the

fact that this model is only approximate – it ignores nonlinear terms. So, by making

recommendations more realistic, the status quo bias, in effect, helps us to take nonlinearity

into account.
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Chapter 18

Analytical Techniques for Testing:

Optimal Distribution of Testing

Resources Between Different System

Levels

When designing a system, we need to perform testing and checking on all levels of the

system hierarchy, from the most general system level to the most detailed level. For each

level, there are techniques for testing on this level. The problem is that our resources are

limited, so we need to find the best way to allocate these resources, i.e., we need to decide

how much efforts to use of each of the levels. In this chapter, we formulate this problem in

precise terms, and provide a solution to the resulting optimization problem.

Comment. The results presented in this chapter first appeared in [8].

18.1 Formulation of the Problem

Need for system design. Sometimes, engineers and scientists concentrate on designing

a specific device or a specific software. However, no device and no software works on its

own, whatever we design will be a part of a system. For example, when we design a new

industrial plant, we need to take into account how its functioning will affect the natural

ecosystem, how the increased transportation will affect the city infrastructure, how the

new people brought to this plant will change the demographic system, etc. Similarly, in
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science, when we design a new radiotelescope (or even software to process signals from the

radiotelescope), we need to take into account that this telescope will be mostly used as a

part of a system of radiotelescopes and other astronomical instruments to observe different

celestial objects.

System design is hierarchical. To properly design a system, it is important to first have

a clear general structure. After that, once it becomes clear what are the system components

and how they supposed to interact, we can move to designing these individual components

– taking into account the need for these components to efficiently work together. These

components usually also are subsystems, so we need to come up with their own components,

etc. At the end, once all the tasks have been clarified, we proceed to the most detailed

level, where we design individual machines and instruments and write the corresponding

software.

Of course, the above sequence is an idealized representation of the actual design process:

sometimes, after we go to a more detailed level of design, we realize the need to make some

changes in the previously decided higher-level design structure. However, most of the time,

the system design follows the above hierarchical pattern.

Need for testing and checking. On each design level, we need to check for possible

problems and flaws. Flaws can occur on different levels.

For example, on the highest general-system level, we may forget an important aspect

of the system – e.g., when designing a plant, we may not think about its ecological impact

– and as a result, once the design is done, it may have to be redone completely. To avoid

such situations, it is important to check the design on each level before starting a more

detailed design level.

Flaws may also occur on the very lowest most-detailed level: e.g., we can have a software

that does not always provide the correct control for the plant.

Need to allocate testing resources between different levels. We need to perform

testing and checking on different levels of the system hierarchy. However, our testing re-
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sources are limited. It is therefore important to efficiently distributed the available resources

between different levels; see, e.g., [21, 29, 34, 46, 52, 53, 116, 132, 133, 134].

What we do in this chapter. In this chapter, we describe the problem of allocating

resources in precise terms, and we provide a solution to the resulting optimization problem.

18.2 Analysis of the Problem

The cost of errors on different levels. Errors can occur on all the levels:

• we can make an error on the highest level, by deciding on a faulty overall design;

• we can also make an error on the most detailed level, e.g., making an error when

manufacturing one of the system’s components.

An error on a higher level is very costly: if there was indeed an error in the overall design,

we have to redo the overall design and thus, redo all the details – i.e., largely, start “from

scratch”. On the other hand, errors on the lower levels are not that costly: if we erred in

designing one small component, then all we need to do is re-design this small component.

Let us number the levels from the most general one – which will be Level 1, via the

next-detailed Level 2, then even-more-detailed Level 3, etc., all the way to the most detailed

Level. Let us denote the overall number of levels by n. Then, the most detailed level is

Level n.

In general, an error on each level i leads to the need of redoing several details on the

next-detailed level i+1. Let us denote the average number of details that need to be redone

by q. Then, an error on Level i necessitates redoing q details on the next-detailed Level

i + 1. Each of these re-doings requires redoing q details on the next level i + 2; thus, an

error on Level i requires re-doing q2 details on Level i + 2. Similarly, we conclude that it

requires re-doing q3 details on Level i + 3, and, in general, qk details on level i + k. In

particular, for k = n− i, we conclude that an error on Level i requires redoing qn−i details

on the most detailed Level n.
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Let c denote the average cost of redoing a single detail on the most-detailed Level n.

Then, the overall cost of an error on Level i can be obtained by multiplying this per-error

cost c by the total number of details qn−i that need to be corrected, and is, thus, equal to

c · qn−i.

The cost of discovering errors. How does the number N of remaining errors depend

on the effort – i.e., equivalently, on the time t spent to find these errors. We would like to

find a general formula N(t) for describing this dependence.

It is important to take into account that there are different way to count errors. For

example, when we talk about software errors, we can count the number of modules that

do not perform as we intended, we can count the number of lines of code where we made a

mistake, or we can count the number of erroneous operations on each line of code. All three

(and other) ways of counting errors make sense – but they differ by a factor. For example,

to go from the number of erroneous moduli to the number of erroneous lines of code, we

need to multiply the number of erroneous moduli by the average number of erroneous lines

of code in an erroneous modulus. Thus, if we change the way we count errors, we go from

the original number N(t) to the new number C ·N(t), where C is the corresponding factor.

Both the original function N(t) and the new function C ·N(t) make sense. Thus, instead

of a single function N(t) for describing how the number of remaining errors depends on

time t, we should consider the whole family of functions {C ·N(t)}C corresponding to all

possible value C > 0.

The time t is the time from the moment when we started testing. This may sound well-

defined, but in practice, it changes from one person to another. Some programmers try to

run the very first version of the program that they wrote – and thus, start debugging the

code right away. Other programmers first try some on-paper tests and only start running

when they are reasonably sure that they eliminate the most obvious bugs. While the

results of both programmers may be similar, the starting time for measuring t is different

for the second programmer: what happened for the first programmer at time t, for the

second programmer, happens at time t − t0, where t0 is the time the second programmer
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spent analyzing his/her code before running it. This value t0 may be different for different

programmers. It is therefore reasonable to require that the approximating family {C ·

N(t)}C should not change if we simply change the way we measure the time, i.e., if we go

from t to t− t0.

In other words, the family {C · N(t − t0)}C corresponding to the shifted time t − t0

should coincide with the original family {C · N(t)}C . This means, in particular, that for

every t0, the function N(t− t0) from the shifted family should belong to the original family,

i.e., it should have a form

N(t− t0) = C(t0) ·N(t), (18.1)

for some value C(t0) depending on t0.

The functionN(t) describing the number of remaining errors after time t is (non-strictly)

decreasing: when t < t′, then we should have N(t) ≥ N(t′). Thus, it is measurable, and

therefore, the function C(t0) = N(t − t0)/N(t) is also measurable, as the ratio of two

measurable functions. It is known (see, e.g., [18]) that for measurable functions, the only

solutions to equation (18.1) have the form N(t) = N0 · exp(−a · t) for some coefficients N0

and a; see [71].

Now, we are ready to formulate the problem in precise terms.

18.3 Formulation of the Problem in Precise Terms

Towards the formulation. We want to divide the overall people-time T that we have

allocated for testing into times t1, . . . , tn allocated to testing on different levels:

t1 + . . .+ tn = T. (18.2)

According to the above formulas, for each level i, after the testing, we will have N0 ·

exp(−a · ti) errors. The cost of each error on this level is c · qn−i, so the overall cost of all

these errors is c · qn−i ·N0 · exp(−a · ti).
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The overall cost E coming from all the remaining errors can be computed by adding

the costs corresponding to different levels:

E =
n∑

i=1

c · qn−i ·N0 · exp(−a · ti). (18.3)

Resulting formulation. We want to select the times t1, . . . , tn – under the constraint

(18.1) – so as to minimize the overall cost E of all the errors.

In other words, we want to minimize the expression (18.2) under the constraint (18.1).

18.4 Solving the Resulting Optimization Problem

Solving the problem. A usual way to solve a constraint optimization problem is to use

Lagrange multipliers, i.e., to reduce the original problem of minimizing a function f(x)

under a constraint g(x) = 0 to the unconstrained problem of minimizing an expression

f(x)+λ ·g(x), where the parameter λ (known as Lagrange multiplier) has to be determined

from the condition g(x) = 0.

In our case, the constraint has the form

n∑
i=1

ti − T = 0,

so the corresponding unconstrained optimization problem means minimizing the expression

n∑
i=1

c · qn−i ·N0 · exp(−a · ti) + λ ·

(
n∑

i=1

ti − T

)
.

To find the minimum of this expression, we differentiate it with respect to each unknown ti

and equate the resulting (partial) derivative to 0. As a result, we get the following formula:

c · qn−i ·N0 · (−a) · exp(−a · ti) + λ = 0,

i.e.,

exp(−a · ti) =
λ

a · c ·N0

· qn−i.
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Taking logarithms of both sides and dividing the result by −a, we get

ti = (n− i) · | ln(q)|
a

+ c1,

where we denoted

c1
def
= −1

a
· ln
(

λ

a · c ·N0

)
.

Combining terms not depending on i into a single expression, we get

ti = c2 − i ·
| ln(q)|
a

, (18.4)

where

c2
def
= c1 + n · | ln(q)|

a
.

In line with the main idea of the Lagrange multiplier technique, to find the value c2, we

substitute the expression (18.4) into the constraint (18.1). As a result, we get

T =
n∑

i=1

ti = n · c2 −

(
n∑

i=1

i

)
· | ln(q)|

a
.

Here,
n∑

i=1

i = 1 + 2 + . . .+ n =
n · (n+ 1)

2
,

thus

T = n · c2 −
n · (n+ 1)

2
· | ln(q)|

a
,

and so,

c2 =
T

n
+
n+ 1

2
· | ln(q)|

a
.

Thus, we arrive at the following formula.

Resulting solution. In situation where an error on the next level costs q times less than

the error on the previous level, and the number of detected errors decreases with detection

time as exp(−a · t), the optimal allocation of the overall testing time T into times t1, . . . , tn

allocated to each level has the form

ti =

(
T

n
+
n+ 1

2
· | ln(q)|

a

)
− i · | ln(q)|

a
. (18.5)
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Discussion. In other words, the allocated time linearly decreases as we go from the most

abstract level to the more and more detailed levels. The fact that we allocate most of the

testing time to the highest level makes perfect sense: as we have mentioned, errors on this

level are the costliest ones. That the decrease should be linear follows from the specific

formulas of our model.
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