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Abstract 

The concept of low lattice misfit and high-density of nanoscale precipitates obtained through 

solution treatment was adopted to obtain ultrahigh strength maraging steel without compromising 

elongation. An “ultrahigh strength-high toughness” combination was successfully obtained in 

19Ni3Mo1.5Ti maraging steel with ultimate strength of ~1858 MPa and static toughness of ~110 

MJ·m-3. Maraging steel had extremely high density (2.3×1024 m-3) of nanoscale precipitates with 

minimum lattice misfit of less than 1% at the solutionization temperature of 820 oC. Two kinds of 

nanoscale precipitates, namely, η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) contributed to ultrahigh strength. 

The size of nanoscale precipitates governed the movement of dislocations, cutting versus by-

passing. Theoretical estimate of ordering and modulus contribution to strengthening suggested that 

ordering had a dominant influence on strength. The toughness was closely related to the 

characteristic evolution of nanoscale precipitates such that the high density of nanoscale 

precipitates contributed to increase of elastic deformation and low lattice misfit contributed to 

increase of uniform deformation. The nanoscale size and low lattice misfit of precipitates were the 

underlying reasons for the high-performance of maraging steel. Moreover, the combination of 

high-density of nanoscale precipitates and low lattice misfit is envisaged to facilitate the futuristic 

design and development of next generation of structural alloys. The low lattice misfit (0.6% ~ 

0.9%) precipitates interacted with dislocations leaving stacking fault ribbons within precipitates 

and built a large long range of back stress producing a high strain-hardening response. Additionally, 

nanoscale twinning occurred. The above contributions to ductility are envisaged to be in addition 

to the significantly reduced elastic interaction between the low lattice misfit nanoscale precipitates 

and dislocations that reduces the ability for crack initiation at the particle-matrix interface. EBSD 

studies suggested that preferred orientations of {101}, fraction of high-angle grain boundary 
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(HAGB) and total length of grain boundary per unit area (μm/μm2) were increased with increase 

of aging temperature, which was beneficial to both strengthening and toughening of maraging steel. 

Three types of reverted austenite, granular reverted austenite at grain boundaries (γG1), lamellar 

reverted austenite in the matrix (γL) and globular reverted austenite (γG2) were observed 

depending on the aging temperature and time. At low temperatures (560 °C and 640 °C), only γG1 

and γL were observed. While at high temperature (700 °C), γG1 and γL decreased with holding 

time increased and were completely transformed to γG2 at equilibrium condition. The observation 

of three different morphologies of reverted austenite were a consequence of competition between 

the nucleation rate and growth rate of reverted austenite at different aging temperatures. The weak 

texture of maraging steel with high Schmid factor at high aging temperature implied that γL and 

γG2 are the likely reasons for superior toughness and ductility. We underscored that it is important 

to consider and control the morphology and content of reverted austenite, besides other 

microstructural features when interpreting the mechanical behavior. 
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Chapter 1: Introduction 

With continuous demand in high performance and improvement of product quality, steel 

industry and researchers are currently seeking to increase the reliability in manufacturing, 

reduction in energy consumption, and design light-weight materials for automotive, aerospace and 

navigation applications. Three ultimate objectives of nowadays steel researches are: better 

mechanical properties, low weight and easy for manufacturing.  

Ultrahigh strength steels and high strength low alloy steels are two approaches to satisfy 

these criteria. Ultrahigh strength steels basically have a dislocated martensitic structure with fine 

precipitates. The class can be subdivided into low-alloy steels, precipitation hardened stainless 

steels, maraging steels, and alloyed secondary hardening steels. All these steels are martensitic in 

microstructure and derive strength from precipitation strengthening, dislocation strengthening and 

structural refinement. These steels are developed for exceptional performance at high strength 

levels [1,2]. Among all these classifications maraging steel and medium manganese steel are the 

most ideal representative because they offer an unusual combination of high tensile strength and 

high fracture toughness. 

 

1.1 MARAGING STEEL 

It is customary to regard maraging steels as low-carbon precipitation-strengthened Fe+Ni 

martensitic steels [3-4]. The term ‘maraging’ is derived from the combination of the words 

martensite and age-hardening. Maraging steels are a class of low-carbon martensitic steels, which 

employ substitutional alloying elements and intermetallic compounds to achieve precipitation 

strengthening (formed during thermal ageing). They were first introduced by Bieber [3]. However, 
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during initial development, high levels nickel (20 ± 25 wt.%) contain was added without chromium 

Currently they have aluminum, titanium and niobium, which are added to achieve age hardening.  

Maraging steel is two times harder than stainless steel and 85% harder than pure titanium. 

Maraging steel alloys are twice as hard as stainless steel and 35% stronger than the hardest titanium 

alloy. On the Rockwell scale of hardness, stainless steel is 23-26, titanium alloys are 28-41 and 

maraging steel is around 52-55. There is no ambiguity that maraging steels can be used for critical 

applications because of their ultra-high strength combined with excellent fracture toughness. 

Maraging steel is used in aircraft, with applications including landing gear, helicopter 

undercarriages, slat tracks and rocket motor casing – applications which require high strength-to-

weight material. Maraging steel offers an unusual combination of high tensile strength and high 

fracture toughness. Most high-strength steels have low toughness, and the higher their strength the 

lower their toughness. The rare combination of high strength and toughness within the maraging 

steel makes it well suited for critical aircraft structures that require high strength and damage 

tolerance. [6] 

1.1.1 Type of maraging steel  

Bieber [3] discovered the effectiveness of cobalt and molybdenum in introducing 

precipitation strengthening in martensite. This led to the standardized grades of maraging steels in 

the early 1960s, designated 18NiCo - 200, 18NiCo – 250, 18NiCo – 300 and 18NiCo 350 in Table 

1.1 [3,4,5,7]. They are classified according to their 0.2% proof stress or yield strength level, namely 

200, 250, 300 and 350 ksi. in general, the higher the strength, higher is the cobalt and titanium 

content in the alloy.  
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Table 1.1 Grades of maraging steels and their alloys composition [3,4,7]. 

Element Grade 200 Grade 250 Grade 300 Grade 350 

Iron Balance Balance Balance Balance 

Nickel 17.0 – 19.0 17.0 – 19.0 18.0 – 19.0 18.0 – 19.0 

Cobalt 8.0 – 9.0 7.0 – 8.5 8.5 – 9.5 11.5 – 12.5 

Molybdenum 3.0 – 3.5 4.6 – 5.2 4.6 – 5.2 4.6 – 5.2 

Titanium 0.15 – 0.25 0.3 – 0.5 0.5 – 0.8 1.3 – 1.6 

Aluminum 0.05 – 0.15 0.05 – 0.15 0.05 – 0.15 0.05 – 0.15 

 

Maraging 200 

Maraging 200 is a tough, relatively soft and therefore readily machined and formed. The 

properties are achieved through martensitic precipitation aging. When working with maraging 

steels even though some of them contain titanium and some contain cobalt as strengthening 

element, it is important to remember that their physical properties vary only slightly and are 

extremely similar. Usually Maraging 200 furnished in the annealed condition can be easily to 

machined and relatively soft. However, after heat treating via a precipitation hardening, the 

hardness increases greatly, which makes the steel quality for many tooling applications [8]. 

Maraging 250 

Like all maraging steels, goes through an aging process that forces the metal to cool from 

its molten state to its solid state over an artificially long time. This process results in tempered steel 

that has both high levels of strength and hardness. It will also resist certain stresses and maintain 
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its structure in environments that would cause irreparable changes into many other steels. The 

properties that make Maraging 250 particularly appealing to many industries is its workability. 

This allows Maraging 250 to be more versatile than many other alloys in its class. However, it is 

still the alloy’s strength and resistance to extreme temperatures that makes it a truly effective 

material in a wide range of environment. After Maraging 250 has undergone heat treatment, it 

demonstrates excellent mechanical properties. It will reach a yield strength of 240 ksi and a fracture 

toughness of 75 kIc. These properties have made Maraging 250 effective in the construction of 

missile and rocket motor casing, landing and takeoff gear, and high-performance shaft [9]. 

Maraging steel 300 

This grade exhibits high levels of strength and hardness in a manner similar to all other 

maraging steels. However, Maraging 300 also possesses an extreme resistance to crack 

propagation, even in the most extreme environments. Maraging 300 is often used in applications 

where high fracture toughness is required or where dimensional changes have to remain at a 

minimal level. The unique properties of Maraging 300 have made it an integral part of the aircraft 

and aerospace industries. It is often used in rocket motor casings and the landing gear for certain 

planes. Maraging 300 is also effective in the design of power shafts and low-temperature cooling 

systems. Maraging steel 350 refers to crystalline tempered steel. Martensite, which is created 

through an aging process. When aging is used, steel is forced to cool from its molten state to its 

solid state over a prolonged period. The result is a metal that is harder and stronger than it would 

be had the steel been allowed to cool at a natural rate.  

Maraging 350 

Maraging steel 350 is the integral material in aerospace industry. Due to its strength and 

its ability to withstand extreme conditions including frequent and sudden changes in speed and 
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temperature, Maraging 350 is used in the production of rocket motor cases, takeoff and landing 

gear, and certain munitions created by defense companies. Maraging 350 also has uses in less 

drastic applications such as die casting and high-performance shafting. 

The average density of maraging steel is equivalent to 8 g/cm3 and the melting point is 

1413 °C. It possesses excellent mechanical properties like higher yield strength and UTS. Besides, 

it has higher impact strength, fatigue strength, compressive strength, toughness, ductility, hardness, 

and wear resistance. It has excellent machinability characteristics and readily cold and hot formed. 

Maraging steels are highly resistant to crack propagation and possess good wettability. For heat 

treating, maraging steels require lower furnace temperature. Uniform and predictable shrinkage 

occurs during heat treatment. Minimal distortion occurs during hardening and free from the 

formation of carburized or decarburized layers on its surface. Maraging steels have the unique 

combination of ultra-high yield and tensile strength, ductility, and fracture toughness of any ferrous 

materials. It can retain its strength up to 350 °C. Having a very low carbon martensite, the structure 

is soft and readily machinable. It can be surface hardened by nitriding [5].  

1.1.2  C-type maraging steel and T-type maraging steel 

In addition, with the overwhelming demanding in maraging steel, the high cost of cobalt 

became a problem and to overcome this there has been an interest in developing maraging steels 

which do not contain cobalt to lower the cost of raw material. T type maraging steel was introduce 

in 1988 by Decker and Floreen [10]. These grades typically are obtained by reducing or eliminating 

the cobalt content and maintained original strength levels by increasing the titanium level. For 

example, the cobalt-free alloys designed to replace the 18NiCo(C-250) and 18NiCo(C-300) grades 

contain 1.4 and 1.85 wt% titanium (T-250 and T-300), respectively. When the nickel content is 

greater than about 12 wt%, Asayama [11] showed that an addition of 3 wt% chromium improves 
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toughness. Presence of nanoscale precipitates of high density in the microstructure of 250 grade 

cobalt free maraging steel gives rise to appreciable enhancement of strength and toughness. 

1.1.3  Production characteristic 

Melting 

The maraging steels may be melted in air by arc or induction methods as well as by vacuum 

induction and consumable-electrode methods. Regarding 25 Ni steel, vacuum-melted material has 

been developed with somewhat higher strength than the air-melted material. Ductility was not 

improved by vacuum melting. With respect to the 20 Ni steel and the 18 Ni Co Mo steels, vacuum-

melted stock indicated better ductility and notch toughness than have been obtained by air melting. 

Forging 

The maraging steels should be soaked and forged at 1000 to 1200 °C. Forging should be 

finished at about 800 °C for grain-size control and optimum mechanical properties after heat 

treatment. The forging behavior of the maraging steels is about the same as that of a medium alloy 

steel. In some instances, titanium segregation has not been eliminated in a single upset forging 

operation; substantial reduction in forging and intermediate soaking was required. 

Rolling 

The maraging steels are readily hot rolled in the temperature range of 800 to 1000 °C in 

between heat treatment. Again, finishing at about 800 °C is necessary for grain size control. The 

maraging steels are readily cold rolled. All four types have been cold reduced as much as 90 

percent between anneals. Even those steels that are martensitic at room temperature are readily 

cold rolled. This is attributed to the fact that low-carbon martensite is relevant soft and work 

hardens slowly. 
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Heat treatment 

Maraging steel is produced by heating the steel in the austenite region usually above 850 °C 

(Austenization), followed by air cooling to form a martensitic microstructure. The slow cooling of 

hypoeutectic austenite steel usually results in the formation of ferrite and pearlite and rapid cooling 

by quenching in water or oil is often necessary to form martensite. However, martensite forms in 

maraging steel upon slow cooling due to the high nickel content which suppresses the formation 

of ferrite and pearlite. Obtained martensitic microstructure in as-cooled maraging steel is soft 

compared with other martensite formed in plain carbon steels by quenching and the softness is an 

advantage because it will result in high ductility and toughness without the need for tempering. 

The softness also allows maraging steel to be machined into structural components, unlike hard 

martensitic steels that must be tempered before machining to avoid cracking.  

The martensite in maraging steels is soft and the steel can achieve its strength only after 

ageing; age hardening of maraging steels is due to the precipitation of ultrafine second phase 

particles dispersed uniformly throughout the martensitic matrix. Precipitation strengthening of 

maraging steels can be accomplished in several different ways. Improvement in mechanical 

properties of 250 grade maraging steel can be achieved by cyclic ageing treatment where repeated 

thermal cycling is done within the preselected ageing temperatures. During ageing segregation of 

austenite stabilizing elements can occur which, creates regions of high concentration of austenite 

former and thus increases the amount of reverted austenite; this takes care of toughness whereas 

fine scale precipitation of Laves phase Fe2Mo takes place at the high ageing temperature and as a 

result strength increment by more than 20% is possible [12]. Modification of tempering / ageing 

treatment envisages further improvement in strength and impact properties of maraging steel [13]; 

one approach proposed recently is the short time ageing treatment for which a higher aging 
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temperature is required. Normally, higher temperature aging is discouraged in maraging steel 

owing to the threat for the formation of undue amount of reverted austenite due primarily to the 

presence of high amount of austenite stabilizers in the composition. However, a shorter time ageing 

at the high ageing temperature can alleviate with the problem of formation of increased amount to 

reverted austenite. In general, maraging steel is reheated around 480–500 °C for several hours to 

form a fine dispersion of hard precipitates within martensite matrix as shown in figure 1.1 [14]. 

 

Figure 1. 1 Schematic diagram of the heat treatment process of maraging steels [14]. 

Fabrication 

Welding is considered in detail in a later chapter regarding welding properties of maraging 

steel. Based on limited tests, the 20 Ni and 25 Ni steels have a machinability rating about 50 percent 

that of free-machining stainless steels. In the annealed condition, the steels are soft and susceptible 

to tearing. Better finishes, higher machining rates, and improved tool life are obtained on fully 

hardened material. The 18 Ni-Co-Mo steels in the annealed condition appear to machine somewhat 
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more readily than the 20 Ni and 25 Ni steels in the as-annealed or as-hardened condition. Even 

though the steel work hardens very slowly, the ductility in the annealed condition, as measured by 

elongation in 2 inches, is only 15 to 25 per cent. Consequently, extensive stretching and deep 

drawing will require intermediate annealing [15]. 

1.1.4  Alloying elements in maraging steel  

Nickel 

Nickel was added to maraging steel when its initial development by C. G. Bieber [3]. On 

adding 25% of nickel in steel, the Ms temperature is decreased to near room temperature and upon 

cooling room temperature a semi-austenitic composition was achieved. Current commercial 

maraging steel contains 17-19% Nickel to ensure maintaining fully martensitic composition at 

room temperature. Moreover, nickel reduces the tendency for cleavage and lowers the ductility-

brittle transformation temperature (DBTT) of steel. 

Cobalt 

Cobalt is an important alloying element in maraging steel and serves several functions. 

Cobalt is used to reduce the solubility limit of molybdenum and thereby increase the volume 

fraction of Mo-rich precipitates (e.g. Ni3Mo, Fe2Mo). Cobalt also assists in the uniform dispersion 

of precipitates through the martensite matrix. Cobalt accelerates the precipitation process and 

thereby shortens the ageing time to reach maximum hardness [6,16]. 

Molybdenum 

Molybdenum provides good precipitation hardening by forming different precipitates. But 

Decker, Eash, and Goldman and other researchers [17-19] found that hardening when cobalt and 

molybdenum were present together was much greater than the sum of the strength increments 

produced when they were added separately. Due to low diffusivity, molybdenum effectively 
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reduces the size, suppresses coarsening of precipitates, enhances stability and increases the number 

density of low lattice precipitates. Molybdenum is the primary hardener in maraging steel. Ni3Mo 

precipitate gives better toughness [5,20]. 

Titanium 

Titanium along with small portion of aluminum around 0.25% to 0.3%, is present in T-

type maraging steel to substitute cobalt. The strengthening precipitates in T type maraging steels 

is intermetallic compounds of NiTi or Ni3Ti types with ordering structure [21, 22]. Titanium has 

negative influence on the plasticity and ductility, which is due to the distribution of titanium-

containing intermetallic compounds primarily at prior austenite grain boundaries [23]. This 

negative influence is particularly characteristic of steels without molybdenum [24]. In this case the 

balance between titanium and trace elements such as carbon, nitrogen and sulfur in the matrix 

should also be considered to achieve a better fracture toughness [25, 26]. Titanium also refines 

grain structure and raises the creep strength of the material. 

 

1.1.5  Microstructure of maraging steel 

As mentioned above, maraging steel is forged involving martensitic transformation, 

followed by age hardening. General microstructure consists of many micro precipitates embedded 

within the martensite lath. Figure 1.2 and 1.3 shows the microstructure difference between 

maraging steel and general martensite steel. 
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Figure 1. 2 Typical microstructure of maraging steel. 
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Figure 1. 3 Typical microstructure of general martensite steel. 

 

Microstructure-martensite matrix 

In many respects, the metallurgy of the maraging steels resembles that of the precipitation-

hardening stainless steels Figure 1.4. The maraging steels have enough alloy content to lower the 

MS temperature to near or below the room temperature. Austenite decomposition does not occur 

above the MS temperature, which means neither pearlite nor bainite is formed. So, as mentioned 

in the production characteristics, the rate of cooling from high temperature is not important in 

hardening. The steels are hardened mainly by aging the martensite to promote precipitation 

hardening. The martensitic structure does not revert to austenite on heating until a temperature of 
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about 530 °C is exceeded. The steel was designed to be austenitic and, thus, soft and readily 

fabricated in the as-annealed condition. To harden this steel, the austenitic structure must transform 

into martensite. To develop maximum strength, the steel must be entirely martensitic before 

precipitating hardening. Cold working is known to raise the MS temperature of austenitic iron 

alloys. Consequently, cold working may serve as a substitute after austenitization.  

 

Figure 1. 4 Typical microstructure of precipitation-hardening stainless steels. 

Microstructure-reverted austenite 

In general, austenite in steels is derived from two different ways: (a) the austenite phase 

retained after cooling from the two-phase region is known as retained austenite, which has been 

investigated extensively in TRIP steels and (b) austenite phase which is formed by partial reversion 

from martensite on aging in the two-phase region at a lower temperature is defined as reverted 
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austenite [27-33]. In some maraging steels, reverted austenite was observed in the martensitic 

matrix on aging at high temperature. The reversion of martensite (α’) to austenite (γ) is an 

important constituent that is believed to control the final structure and influence the mechanical 

properties. The reverted austenite in maraging steel exhibits different morphologies [32,33]. The 

morphologies of reverted austenite are closely correlated with alloy compositions and process 

parameters [33]. Reverted austenite in maraging steels generally appears either as elongated or 

granular shape. More specifically, reverted austenite is classified into three types, i.e. matrix 

austenite, lath-like austenite and recrystallized austenite [32]. Matrix austenite is defined as an 

austenite phase that either develops from retained austenite and thus has the same orientation or 

grows at the prior austenite grain boundaries and forms a single austenite grain (Figure 1.5(a)). 

Lath-like austenite can be generated along and within the martensite laths, thereby generating a 

lamellar structure of alternate austenite lath and residual martensite lath (Figure 1.5(b)). 

Recrystallized austenite normally nucleates at high aging temperatures or after long aging times 

and it is characterized by a polygonal shape with low dislocation density, as shown in Figure 1.5(c). 

In addition, in high Ni alloyed and Ti-containing maraging steels, a type of Widmanstätten 

austenite was reported to become dominant on aging at high temperatures for a long time [36,45].  

Austenite can act as a sink for impurities by reducing N and P embrittlement during heat treatment. 

Transformation of austenite to martensite may occur during deformation, which also improves 

toughness. 
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Figure 1. 5(a) Matrix austenite at prior austenite grain boundaries [34], (b) the lamellar structure 

of alternate lath-like austenite and residual martensite [46] and (c) a recrystallized austenite grain 

free of defects [33]. 

Microstructure-precipitates 

Besides martensite matrix, characteristic of precipitates in maraging steel play another 

significant role in determining the mechanical properties. The precipitates in maraging steel are 

effective in restricting the movement of dislocations, and thereby promote strengthening by the 

precipitation hardening process. During initial development of maraging steel, researchers have 

shown great interest in precipitates present in maraging steel. With the development in the material 
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characteristic techniques like high resolution transmission electron microscope (HR-TEM) and 3D 

atom probe tomography (3DAPT), the extremely small precipitates can be characterized. The 

nature of intermetallic precipitates within maraging steel have been generally investigated, as 

shown in Table 1.2  
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Table 2.21 Phases in maraging steel [34]. 

Phase Stoichiometry Crystal structure Lattice parameters 

γ  f.c.c a = 3.5852 Å 

α  b.c.c a = 2.8812 Å 

    

μ A7B6 rhombohedral a = 4.751 Å 

   α = 30.38ο 

ω A2B hexagonal a = 3.9-4.05 Å 

   c = 2.39-2.48 Å 

S A8B hexagonal a = 7.04 Å 

   c = 2.48 Å 

X A3B hexagonal a = 2.55 Å 

c = 8.30 Å 

Fe2Mo A2B hexagonal a = 4.745 Å 

c = 7.754 Å 

Ni3(Ti, Mo) A3B hexagonal a = 5.101 Å 

c = 8.307 Å 

Ni3Mo A3B orthorhombic a = 5.064 Å 

b = 4.224 Å 

c = 4.448 Å 
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For T type maraging steel most of studies show that Ni3Ti(Mo,V,W)-type phases occurs 

during the very early aging stage following a more stable FeMo(W)-type phase is formed after 

long-term aging [34]. The formation of Ni3Ti(Mo) type phases at the initial aging stage in 

conventional maraging steels have been proposed since the invention of the [4]. The modern 

techniques with atomic-scale resolution allow direct observation of nano-precipitates possible and 

finally confirm the existence of Ni3Ti(Mo) phase (η-phase) in those steels. The morphology of 

Ni3Ti precipitates was found to be needle-like [35,36], plate-like [37] or rod-like [35]. Ni3Ti 

precipitates exhibits hexagonal lattice with a = 2.55 Å nm and c = 4.2 Å [38]. Selected area electron 

diffraction (SAED) analyses indicate that the orientation relationship between ηNi3Ti and 𝛼’-

martensite matrix is (011)𝛼’∥ (0001)𝜂, [11̅1]𝛼, ∥[112̅0]𝜂 [39]. The formation mechanism of Ni3Ti 

is general considered as heterogeneous nucleation on dislocations followed by growth via pipe 

diffusion [39,40]. Researchers have varied opinions on the dominant strengthening effect of each 

type of precipitates in these steels. Some studies revealed that in maraging steels where both Ti 

and Mo were present, Ti was much more active in the beginning due to its higher diffusivity in 

martensite. Apart from the kinetic advantage, the smaller lattice misfit between Ni3Ti and 

martensite and consequently a lower barrier for nucleation is another reason for the formation of 

Ni3Ti in the early stage of aging. Therefore, a sharp rise in hardness shortly after the onset of aging 

was usually observed in Ti containing maraging steels [34]. During the early aging stage, Mo is 

more likely to be incorporated into the Ni3Ti phase and partially substitutes Ti atoms. As aging 

time increase the substitution reach limited and still sufficient Mo atoms left for the following 

formation of FeMo-type phases. Conversely, the growth of FeMo phase would consume the Mo 

atoms in Ni3Ti(Mo) phase and therefore the stoichiometry of Ni3Ti(Mo) becomes more closer to 

that of Ni3Ti. The activity of Mo has been shown to be strongly affected by other elements. The 
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presence of Co is generally found to promote the formation of Mo-rich precipitates. When Co is 

absent, the driving force for the precipitation of Mo-rich precipitate is significantly reduced. In 

this case, the precipitation of Mo-rich phases would take 3 to 8 hours to occur [41]. Thus, the major 

precipitates in Co-free maraging steels are entirely Ni3Ti phase and thus higher Ti content is 

required to achieve the same level of precipitation strengthening. In addition, the stoichiometry of 

FeMo-type phase is still debated. Previous TEM and SAED studies suggested it as Fe2Mo Laves 

phase [39,41], whereas the compositional result by a more recent ATP analysis corresponded to 

Fe7Mo6 µ phase. Moreover, the possibilities of FeMo and Fe3Mo2 cannot be excluded as well. 

Apart from the primary Ni3Ti(Mo)-type and FeMo-type phase, several other intermetallic phases 

may also form as well due to the composition variation in maraging steels.  

In Ti-free maraging steels, the role of Ti is taken over by Mo. A precipitation sequence of 

Ni3Mo followed by equilibrium FeMo-type phase was reported by Sha et al [41]. Besides, a type 

of metastable ω phase (ordered isothermal phase enriched in Ni, Co and Mo) was always generated 

before the formation of the more stable Ni3Mo phase. Researches revealed that this ω phase had a 

higher level of coherency with the matrix and hence was easier to form [42,43]. In addition, the 

precipitation of Ti6Si7Ni16 (G-phase) was found to be responsible for the precipitation hardening 

of Cr-containing high-Si steels [44]. 

1.1.6  Low lattice misfit precipitates 

A recent investigation with the maraging steel of composition Fe-19Ni-3Mo-1.5Ti has 

revealed the presence of nanoscale precipitates of hcp Ni3 (Ti, Mo) and bcc B2 Ni (Mo, Fe) in the 

microstructure. Precipitates of the type Ni3(Ti, Mo) possess a low misfit of 1% with the matrix 

[47]. The ultimate strength of this cobalt free maraging steel was 1850 MPa at static toughness of 

110 MJ/m3. This counterintuitive strategy for utilizing low lattice misfit precipitates with the 
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matrix strengthen alloys without sacrificing ductility draw attention worldwide. It is stated that 

ordering and modulus strengthening provides influence in improving the strength to the steel and 

major strengthening mechanism is the precipitation hardening. These low misfit high density 

precipitates contribute significantly to the toughness of the steel.  

Lattice misfit also known as lattice mismatch describe the difference of two material lattice 

parameters. Low lattice misfit precipitates’ lattice constant of the precipitate is similar or almost 

same as the matrix. It is preferred in the field of semiconductor industry in epitaxy process. This 

new research of low lattice misfit precipitates in T type maraging steel provided an alternative 

method in improving material strength as well as ductility. 

 The impact of low lattice misfit precipitates on material precipitation hardening 

mechanism is generally summarized as decreasing the nucleation barrier for precipitation and  

enabling nanoprecipitates with an extremely high density and small size Meanwhile, when 

deforming instead of conventional precipitate-dislocation interaction happens, the minimized 

elastic misfit strain around the precipitates provides chemical ordering effect that creates opposing 

forces when precipitates are cut by dislocations [47,48]. 

1.1.7  Evolution of precipitates and effect on strengthening  

Generally, the precipitation process is described as successive nucleation and growth. So, 

the evolution of precipitates is required for in depth understanding to explain the effect of 

precipitates on strengthening mechanism. 

Size of precipitates 

During aging stage, the formation and coarsening of precipitates involves complex process 

including interaction mechanism of precipitates with dislocations, which is closely related to the 

size of precipitates. Several critical sizes are introduced to characterize precipitate during different 
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stages of precipitation. The critical precipitate radius (rc) below which the precipitates will dissolve 

is usually determined by [49]: 

 

 𝑟𝑐 = 2𝑐𝑎𝛤/(𝑐0 − 𝑐𝑎) (1.1) 

where 𝑐𝛼 is the solute concentration in the matrix phase during aging, 𝑐0 is the solute concentration 

in the matrix before aging. The capillarity constant Γ is described as [49]: 

 

 
𝛤 =

σ𝑎/β𝑁𝐴Ωβ(1 − c𝑎)

RT(cβ − cα)
 

(1.2) 

where 𝜎𝛼/𝛽 is the interfacial energy per unit area between the precipitate and matrix, 𝑁𝐴 is 

Avogadro’s number, 𝛺𝛽 is the atomic volume of precipitates, 𝑐𝛽 is the solute concentration in the 

precipitate, R is the idea gas constant and T is the absolute temperature. 

The first critical precipitate radius 𝑟𝑐1 is defined to distinguish the growth mechanism. 

When precipitate size is above 𝑟𝑐1, the interfacial-limited growth is taken over by the diffusion-

limited growth. After that, further precipitation results in another critical precipitate radius 𝑟𝑐5 

above which the diffusion-limited coarsening occurs.  

As the interfacial free energy 𝜎𝛼/𝛽 (Equation (1.2)) varies depending on the nature of 

coherency, two more critical sizes, 𝑟𝑐0 and 𝑟𝑐3, are introduced. 𝑟𝑐0 is the critical radius below which 

precipitates will dissolve when the interface is coherent and 𝑟𝑐3 is the critical radius below which 

precipitates will dissolve when the interface is incoherent. Another two critical sizes relating to the 

precipitation strengthening are also taken into consideration. 𝑟𝑐2 stands for the critical radius above 

which the coherency strengthening starts to decrease, whereas 𝑟𝑐4 indicates the critical radius 
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above which the interaction between dislocation and the precipitate transforms from shear-cutting 

mechanism to looping mechanism which we will discuss in following sections. 

It’s important to figure out the relationship between these critical sizes for us to fully 

understand the evolution of precipitates and its effect on strengthening mechanism. It is not 

difficult to understand that 𝑟𝑐1<𝑟𝑐5 and 𝑟𝑐0<𝑟𝑐2<𝑟𝑐3. As 𝑟𝑐0 and 𝑟𝑐1are very small, they are 

usually considered as zero [49]. In most cases, the Orowan looping occurs when precipitates are 

incoherent with the matrix, thus we can obtain 𝑟𝑐3 < 𝑟𝑐4 (dislocation looping may also occur when 

the coherent precipitate is too large or strong to be cut through).  

Evolution of precipitates  

During the early stage of precipitation, the nucleus is surrounded by a supersaturated matrix 

with a higher solute concentration gradient which provides as the driving force for solute diffusion 

into nucleus and therefore promotes the precipitate growth. The growth rate of precipitates is 

governed by two parameters: the interface reaction and the lattice diffusion [50]. When the average 

size of precipitates is below 𝑟𝑐1, as the distance of diffusion field is rather short, the interface 

reaction is the rate-controlling step. The precipitate size is proportional to the aging time: 𝑟  = 𝑟𝑐0 

+ 𝐺0𝑡 (Figure 1-7), where 𝐺0 is the growth rate during the interface-limited growth. In the case of 

larger precipitates (𝑟 > 𝑟𝑐1), the driving force for lattice diffusion gradually decreases owing to the 

continuous depletion of solute atoms in the matrix, the diffusion becomes the rate-controlling step 

[50,51]. The relationship between the precipitate size and growth time follows the equation [49,52]: 

 

 
𝑟 = (𝑟𝑐1

2 + 2𝐷
𝑐0 − 𝑐𝑎

𝑒

𝑐𝛽 − 𝑐𝑎
𝑒 (𝑡 − 𝑡1))

1/2 
(1.3) 
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where 𝐷 is the diffusion coefficient in the matrix, 𝑐0 is the initial solute concentration, 𝑐𝑎
𝑒 is the 

equilibrium solute concentration in the matrix, 𝑐𝛽 is the solute concentration in the precipitate and 

𝑡1 is the time the diffusion-limited growth starts. 

At the end of the diffusion-limited growth period, Equation (1.3) cannot describe the 

dynamic evolution of precipitate size anymore which indicates that the diffusion-limited 

coarsening initiates. It is difficult to draw a line to distinguish the diffusion-limited growth and 

diffusion-limited coarsening. The diffusion-limited growth process is defined as the stage when 

the solute obtained by precipitates is from the matrix; while for diffusion-limited coarsening, the 

solute is from the dissolving of smaller precipitates. According to the Gibbs-Thomson equation 

[60], the solubility of smaller precipitates which possess a larger ratio of surface area to volume is 

higher than that of larger precipitates. This size-dependent solubility results in a further size-

dependent driving force for coarsening. Based on the Gibbs-Thomson equation, the growth rate is 

positive for large precipitates with 𝑟  < 𝑐𝑅 and negative for small precipitates with 𝑟  >𝑐𝑅, namely, 

larger precipitates grow at the expense of smaller precipitates which dissolve back into the matrix. 

Therefore, the coarsening process is described by the decrease of number density and the 

broadening of size distribution. But coarsening may take place simultaneously with the growth 

process or even in the nucleation stage if the initial solid solution supersaturates [51]. In addition, 

due to the increase in the distances of diffusion field, the size increment rate in the coarsening 

stage is slower than that in the growth stage (Figure 2-5). The precipitate size in most coarsening 

process obeys the LSW (Lifshitz and Slyozov [53] and Wagner [54]) theory which suggests the 

time exponent is 1/3 (Figure 1.7). 
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Figure 1. 6 The evolution of precipitate size during aging in terms of precipitation kinetics [49]. 

 

Precipitate coarsening theory 

Precipitate coarsening is the most unfavorable thing in precipitation strengthening of 

materials became coarsening not only drastically increases the size of precipitates but also reduces 

the density and has negative impact on precipitate distribution within the matrix. Lifshitz and 

Slyozov, Wagner [53,54] developed a theory attempting to interpret the diffusion-limited 

coarsening named as LSW theory which has been proved experimentally [51,55].  

LSW theory is developed based on following per-assumptions: 

1. Dilute solution theory applies and the linearized version of the Gibbs-Thomson equation 

is valid. 
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2. Diffusion field of precipitates do not overlap and the particles only interact with the 

matrix, thereby limiting the precipitate volume fraction to zero. 

3. Coarsening takes place in a stress-free matrix. 

4. Precipitates possess a spherical morphology. 

5. The composition of precipitates is same as given by the equilibrium phase diagram. 

Based on the above assumptions, the LSW theory provides three equations to describe the 

diffusion-limited coarsening. The first equation predicts the increase of average precipitate radius, 

𝑟 ̅, with respect to the coarsening time according to: 

 
𝑟 = (𝑟𝑐1

2 + 2𝐷
𝑐0 − 𝑐𝑎

𝑒

𝑐𝛽 − 𝑐𝑎
𝑒 (𝑡 − 𝑡1))1/2 

(1.4) 

where 𝐷 is the diffusion coefficient in the matrix, 𝑐0 is the initial solute concentration, 𝑐𝛼𝑒 is the 

equilibrium solute concentration in the matrix, 𝑐𝛽 is the solute concentration in the precipitate and 

𝑡1 is the time the diffusion-limited growth starts. 

The second equation reveals that the decrease in the precipitate number density, 𝑁𝑉, 

follows: 

 

 
𝑁𝑉 ≅

3𝑓𝑝

4𝜋

1

𝐾𝑅𝐹3
𝑡−1 

(1.5) 

where 𝑓𝑝 is the volume fraction of precipitate, 𝐾𝑅 is the coarsening rate constant in Equation (1.4) 

and 𝑓3 is the third moment of the time-independent precipitate size distribution function 𝑓(𝑟/𝑟̅) 

when 𝑉𝑝→0 

The relationship between the solute concentration within the matrix, 𝑐𝑖
𝑎, and coarsening 

time is derived: 
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𝛥𝑐 =

9(𝑐𝛽
𝑒 − 𝑐𝑎

𝑒)

4𝐷
𝐾𝑅
2/3

𝑡−1/3 
(1.6) 

Most of these experimental studies revealed that the experimental roughly fitted LSW 

theory. However, experimental results also indicated that the size distribution function was much 

broader than that of the theoretical 𝑓(𝑟/𝑟 ̅). This deviation has later been demonstrated to be 

associated with the non-zero volume fraction of precipitate in reality. Therefore, many studies have 

been carried out to modify the LSW theory for better application in cases where the volume 

fraction of precipitate has to be taken into consideration. The major challenge is to determine the 

effect of interparticle diffusional interactions on the coarsening behavior of a precipitate with a 

specific size. According to the modified theories [56-59], with the increase of precipitated volume 

fraction, the average distance of diffusion field become shorter and thus the concentration 

gradients will be larger, thereby resulting in the increase of the coarsening rate. Besides, the local 

diffusional interactions give rise to spatial correlations between adjacent precipitates which further 

leads to the broadening and symmetry of size distribution function. 

Effect of precipitate size on precipitation strengthening 

Precipitation strengthening is usually utilized to describe the strength increase during the 

ageing stage and precipitation occurs. During The early stage of aging (under-aged), with the 

growth of coherent precipitates, the strength with shear-cutting mechanism increase. While in the 

overaged stage, the coarsening of precipitates results in incoherency and thus activates the looping 

softening mechanism. Even though at over aging stage we used softening to describe the decrease 

of strength but the strength at both stages is higher than that before aging, therefore both the 

mechanisms are defined as strengthening mechanisms.  

Although the softening during the overaged period is generally considered to result from 

loss of coherency, a number of studies have shown that the extremely large coherent precipitate 
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and the modulus difference between the precipitate and matrix can also lead to the decrease of 

strength. In the case of large precipitates, considerable flexing of dislocation occurs owing to the 

increase of the interparticle spacing (assuming the volume fraction of precipitate is constant), 

thereby resulting in the coherency softening. Namely, the coherency softening may occur before 

the loss of coherency. Another possibility is the modulus difference, which is suggested to result 

in softening as well, but so far there is no experimental evidence to support this viewpoint yet [49]. 

The strengthening mechanism is only associated with the precipitate size regardless of how 

the precipitate approaches the critical size, by growth or coarsening. It means that 𝑟𝑐2 and 𝑟𝑐4 are 

irrelevant to 𝑟𝑐5. But according to Sha and Guo’s conclusion [49], the value of 𝑟𝑐2 should be 

somewhere between 𝑟𝑐1and 𝑟𝑐5. 

Based on the discussion, a more comprehensive precipitation-strengthening process is 

comprised of three stages: when the precipitate is small, coherency strengthening takes effective 

by cutting mechanism, the strengthening effect increases with the precipitate size; with the growth 

of precipitate size, the stress required to cut through precipitate is so high that Orowan looping 

mechanism takes place. Orowan strengthening is inversely related to the interparticle spacing, so 

initially the precipitate growth which reduces the interparticle spacing leads to the Orowan 

strengthening. The coarsening of precipitates decreases. The number density and thus the increase 

of interparticle spacing results in the Orowan Softening mechanism. On the other hand, the 

structure of the interface is also very important. For example, if the precipitates are small but have 

incoherent interface, the looping mechanism takes place. Conversely, if the precipitates have a 

large size but coherent interface and a small misfit strain, the shearing will be the dominant 

mechanism. 
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It is worth emphasizing that apart from the coherency mechanism and modulus mechanism, 

there are more strengthening mechanisms, such as chemical (softening), stacking fault 

(strengthening), order (strengthening), etc. which we will discuss specifically in chapter 3. 

 

1.2 MEDIUM MANGANESE STEEL 

Recently, there have been concerns about lightweight high-strength steels becoming the 

most concerned issue in the automotive industry in terms of improving fuel efficiency, reducing 

vehicle exhaust emissions, and improving vehicle safety. In order to meet these requirements, 

many steels have been proposed such as: DP steel (dual phase) steel, TRIP steel (variable) Plastic 

deformation, plasticity, and TWIP steel (twining induced plasticity) Figure 1.7 [60]. However, due 

to the large amount of expensive alloying elements and the cumbersome processing that needs to 

be carried out, it is difficult to apply this effect to the production of steels for motor vehicles at 

reasonable prices [60]. In the past decade, medium Mn steels have been actively investigated due 

to their excellent balance between material cost and mechanical properties. 

 

Figure 1. 77 Global tensile strength-elongation profile for various kinds of steels [60]. 
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1.2.1  Type of medium manganese steel 

The manganese content of the steel is about 5%, between low and high manganese steels 

(3% < Mn < 9%). As one of the austenite forming elements, manganese can effectively expand the 

austenite phase region and increase the austenite content and its stability [61]. 

The current medium manganese steel can be divided into three categories: 

The first type of medium manganese steel is obtained by inverse transformation on the 

basis of martensite to obtain ultrafine crystal ferrite and austenite structure. In this and alloy 

systems, the strengthening of manganese is achieved by obtaining martensite structure, and 

martensite transforms into ultrafine grained ferrite and austenite structure during subsequent 

reverse transformation. 

The second type of medium manganese steel is obtained on the basis of the reverse 

transformation of martensite to obtain two kinds of grain size distribution structure, which is 

ultrafine grained ferrite and austenite structure and coarse δ ferrite. In this alloy system, Al is 

mainly to prevent delta ferrite transformation. The high-temperature austenite portion is 

transformed into martensite and reverse-transformed into austenite after annealing in the 

subsequent two-phase region to obtain ultrafine-grained ferrite and austenite structure. 

The third type of medium manganese steel is characterized by re-dissolution of carbides 

and bi-grain size distribution, namely ultra-fine-grained ferrite and austenite and coarse delta 

ferrite. Since this alloy system contains a large amount of Al, the density of the steel sheet is low. 

A relatively high C content will result in carbides during processing. 
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1.2.2  Designing advanced high-strength steel 

At present, designing of advanced high-strength steel structure is mainly divided into 2 

directions: phase regulation, by controlling the shape, proportion, size, distribution of different 

phases in material, especially though grain refinement to improve the mechanical properties. The 

second focus is on the mechanical properties of each individual phase in material, such as 

increasing the strength of the BCC phase and improving the FCC phase stability, improve the 

TRIP( transformation induced plasticity) effect of retained austenite during the deformation 

process and TWIP (twinning-induced plasticity) effect. Here we summarize a few representative 

advanced high-strength steels: TRIP steel, super-strong bainite steel, Q&P steel and medium 

carbon manganese steel, etc. to better facilitate the understanding of advanced high-strength steels. 

TRIP steel 

TRIP (transformation induced plasticity) steel was discovered by Zackay [62] in 1967 

during the study of high nickel and high chromium stainless steel. Due to the original TRIP steel 

contains a large amount of expensive alloying elements such as nickel and chromium, its 

application is greatly limited. At the end of the 1880s, the emergence of low-cost C-Si-Mn TRIP 

steels [63] promoted the development of low-cost TRIP steels [64, 65]. The emergence of this type 

of steel provides a new way to improve the strength and plasticity of steel. Today's TRIP steels are 

mainly concentrated in the field of low-alloy high-strength steels with a composition range of 

0.1~0.4wt.% C, 1.0~2.0wt.% Si, 1.0~2.0wt.%Mn. In addition, in order to increase the strength, the 

addition of Nb, V, Ti and other elements, using solid solution strengthening and precipitation 

strengthening, regulates balance between strength and plasticity. However, with high content of 

Si, the surface quality of the steel plate is rough [66] so Al was added by some researchers into the 
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TRIP steel to replace Si to inhibit the precipitation of cementite during the low temperature 

isothermal process [67, 68]. 

The typical production methods of TRIP steel mainly include hot rolling and cold rolling 

[69, 70], and the production process is shown in Figure 1.8. The hot-rolled TRIP steel is produced 

as follows: The steel is heated to high temperature austenitization zone, and after rolling in the 

austenitization zone, it is slowly cooled to the dual-phase zone for isothermal treatment. During 

this time, some of the austenite transform to ferrite and the alloying elements are initially enriched 

in remaining austenite, then the material is rapidly cooled to below 500 oC (bainite region). Note 

that the reason for applying quick cooling is to avoid the formation of pearlite, because the 

cementite in pearlite will use a large amount of C and reduce the stability of retained austenite. In 

this process, the transformation of bainite will occur, producing a certain proportion of bainite and 

the alloying elements are further enriched in retained austenite obtain austenite to stabilize 

austenite. Finally air-cooled to room temperature to obtain a multi-phase structure composed of 

ferrite, bainite and retained austenite. In industrial production, “two-stage slow cooling” is used 

instead of “two-stage isothermal”. The key to hot-rolled TRIP steel production is the control of the 

two slow cooling stages after hot rolling. As for cold roll process, cold rolling is applied after 

initial hot rolling and reheated to dual-phase zone and following sequences same as hot rolling 

process. During the cold rolling, strain in the microstructure provides nucleation energy for 

reverted austenite formation.  
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Figure 1. 88Schematic diagram of the heat treatment process of hot rolled TRIP steel (a) and 

cold rolled TRIP steel (b). 

 

The idea of both cold rolling and hot rolling TRIP steel is to enrich C in austenite to 

improve the stability of austenite at room temperature and eventually form multi-phase structure 

(consisting of ferrite, bainite and retained austenite), as shown in Figure 1.9. Due to the TRIP effect 

of retained austenite, this type of steel achieves high strength, high elongation, good formability 

and ideal strain hardening index. 
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Figure 1. 99Typical microstructure of TRIP steel 

Nanostructured bainite steel 

Bhadeshia et al. [71,72] successfully developed a new type of ultra-high-strength nano-

bainitic steel with a tensile strength of 2.5 GPa through a combination of composition design and 

heat treatment. Chemical composition (wt%) of the steel was: 0.8~1.0C, 1.5Si, 2.0Mn, 1.0Cr, 

0.25Mo, 0.1V [71]. The heat treatment of nano-bainitic steel is as follows (Figure 1.10): steel is 

homogenized to fully austenitize, then it is cooled to the bainite transformation temperature region 

(125-250oC) for long time (2-60 days) isothermally and finally cooled to room temperature.  
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Figure 1. 1010 Schematic diagram of the heat treatment process of nano-bainitic steel. 

 

The microstructure of nano-bainitic steel is nanoscale (20-40 nm) ultra-fine slab-like 

bainitic ferrite and a large number of film-like residual austenite (Fig. 1.11). Although the strength 

of the nano-bainitic steel is very high, its heat treatment makes the production efficiency low, 

which restricts the development of the steel. Bhadeshia et al. added Co and Al [70] to the original 

alloy composition to shorten the bainite isothermal heat treatment time to less than 10 days. 

Nevertheless, longer heat treatment time is still the main problem that restricts its engineering 

application. Meanwhile, the higher carbon content also limits its thermal stability and weldability. 

Caballero et al. [72] modified the chemical composition (wt.%) of nano-bainitic steel to 0.2~0.3C, 

1.5 Si, 1.5-2.0Mn, 1.5Cr, 0.25Mo, and replaced the original heat treatment with air cooling which 

makes the entire heat treatment process easier to achieve in industrial production. With this process, 

the tensile strength can reach up to 1.8 GPa with at least 18% elongation. 
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Figure 1.1111Typical microstructure of nano-bainitic steel. 

 

The idea of nanostructured bainite steel is to obtain ultra-fine lath microstructure though 

low temperature bainitic transformation and the high dislocation density within the lath, provides 

ultrahigh strength. 

Q&P steel 

Speer et al. [73-76] developed a new process for heat treatment of martensitic steels called 

quenching and partitioning process (Figure 1.12) [77-79], using medium and high carbon silicon-

containing steel. As shown in figure 0.35C-1.3Mn-0.74Si is heated to austenite zone for complete 

austenitization and it is rapidly cooled to a temperature TQ between Ms-Mf. Then heated to a 

certain temperature above Ms TP for isothermal treatment, finally cooled to room temperature, a 

multiphase structure composed of martensite and retained austenite is obtained, which has 

comprehensive mechanical properties (high strength, high plasticity). The characteristic structure 
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is shown in Figure 1.12. Ci, Cγ and Cm represent the carbon content in the original alloy, austenite 

and martensite, QT and PT represent the initial quenching temperature and the isothermal carbon 

partitioning temperature respectively.  

 

Figure 1. 12 Schematic diagram of Q&P process [76-78]. 12 

The Q&P process is identical to the traditional process of quenching-tempering (cooling 

speed and holding temperature) with some minor differences: in the Q&P process, quenching is 

incomplete and at the end of quenching, a certain amount of retained austenite remains in the 

microstructure. In the isothermal partitioning process, C atoms are enriched from martensite to 

retained austenite without phase transformation, thereby improving the stability of retained 

austenite. New martensite is produced during the subsequent cooling process, and part of austenite 

is preserved at room temperature. Si element is added in order to transfer enough carbon from the 

supersaturated martensite into the austenite through inhibits the precipitation of cementite.  

Q&P steel is comparable to that of conventional quenched and tempered martensitic (M) 

steel in strength but has better plasticity. Q&P tempering proposed by Xu et al. [80, 81] has made 

full use of the precipitation strengthening effect of alloy carbides, and the strength is above 2 GPa, 
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and the plasticity is higher than 10%. However, the precipitation of carbides consumes a part of 

the carbon atoms, which reduces the carbon content in the retained austenite, which affects the 

austenite stability and the elongation of the material to some extent. Therefore, the high carbon 

content Q&P and Q&P-T steel has become one of the development trends [82, 83]. 

ART medium manganese steel 

Morris et al. [84, 85]. found that in low-carbon steel with Mn content of 5% (wt), high 

content austenite with ultra-fine ferrite can be obtained through Austenite Reverted 

Transformation (ART). Figure 1.13. ART treatment is to heat the martensite structure obtained by 

quenching between Ac1-Ac3 for annealing at different times. Austenite nucleation occurs (reverse 

transformation) during annealing. A stable austenite, ultrafine ferrite and a multiphase structure of 

precipitated phase are obtained. One of the most important features of the ART process is that the 

martensite structure formed in quenching is reheated to a large amount of stable austenite and 

ferrite (degenerate martensite) multiphase structure. It is necessary to suppress the excessive 

coarseness of the martensite lath during the austenite reverse transformation annealing, austenite 

stabilize elements are required (Mn, Ni, etc.) considering relatively slow diffusion rate. At the 

same time, carbon can greatly improve the stability and matrix strength of metastable austenite 

and is also an essential element for alloying of ART process. 
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Figure 1. 13 Schematic diagram of ART process 

All these advanced high-strength steels have one thing in common is that the focus is on 

the retained austenite and increasing austenite ratio and stability is significantly influences the 

mechanical properties. Also, we can find that in the effect of "double enrichment" to improve the 

stability of retained austenite is higher than that of "single enrichment". For high-performance 

structural steels, to control the stability of retained austenite in a low-carbon low-alloy component 

system, it is necessary to obtain enough stability of the retained austenite by multi-step enrichment 

of the alloying elements. However, high temperature distribution and multi-step distribution, 

which inevitably reduces the strength of the BCC phase, are problems that must be considered.  

1.3  SUMMARY 

In this chapter, we introduced maraging steel and medium manganese steel and their recent 

development. Based on the above discussion, we proposed a strategy in my research of obtaining 

high strength and high ductility in maraging steel and medium manganese steel (a) by utilizing 

different heat treatment parameters to obtain nano-scale low lattice misfit precipitates to achieve 

good combination of mechanical properties and (b) establish the relationship between heat 
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treatment parameters, mechanical properties and microstructures and understand the strengthening 

mechanisms and deformation behavior of cobalt-free maraging steel. Furthermore, elemental 

partitioning in retained austenite and microstructure refinement in medium manganese steel was 

studied. 
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Chapter 2: Material and experimental methods 

2.1 ALLOYS AND PROCESSING DETAILS 

In maraging steel research, commercial T-250 maraging steel was used. 19Ni3Mo1.5Ti 

maraging steel (referred as T-250) ingot with a nominal composition of Fe-

19Ni3Mo1.5Ti0.3Cr0.1Al0.007C was prepared by combining vacuum induction melting and 

vacuum arc melting, using high purity (99.9 at%) alloying elements. Aluminum and chromium 

were added to enhance oxidation and corrosion resistance. The content of P and S was controlled 

to 0.005 wt%, and the conditions of O, H and N were limited to below 5 ppm. The ingot was forged 

as thick plates at 1200 oC, and annealed in an Ar atmosphere for 60 min, followed by air cooling 

(AC) to room temperature. Fig 2.1 illustrates the relationship between ultimate tensile strength and 

total elongation and the raw material cost for the experimental maraging steel and compared with 

other high-strength steels that are being developed or are currently available [86-92].  

In medium manganese steel research, the nominal chemical composition of experimental 

steel was Fe-0.22C-4.88Mn-1.59Al. Mn is the primary alloying element in the experimental steel. 

The reason for higher carbon content as compared to our recent study on MSP [93] is to study the 

effect of carbon on tempering in MSP steel. Al was added to inhibit the formation of cementite. 

Steel was melted in vacuum and cast into ingots of ~80 mm thickness. The ingots were 

homogenized at 1200 oC for 2 h, and hot rolled to 12 mm thick strip using several passes with 

minimum reduction of 20% per pass. Detail heat treatment parameters of medium manganese steel 

are given in chapter 7. 
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Figure 2. 1 Typical high-strength steels evolution and comparison of raw material cost (A-single 

phase ferritic steel, B-dual phase steel [88], C-austenitic stainless steel [89], D-TRIP and 

complex phase steel [90], E-advanced TWIP and TRIP steel [91], F-maraging stainless steel 

[92], G-Co-containing maraging steel [87], H-maraging TRIP steel [86] and I-Ti-strengthened 

maraging steel [87]). 

2.2  SAMPLE PREPARATION 

2.2.1  Cutting, grinding and polishing 

All hot-rolling and heat-treatment pieces for characterization were cut from bulk samples 

after each processing procedure. To avoid deformation-induced phase transformation, all the aged 

materials were cut by Buehler ISOMET 2000 Precision Cutting with feeding speeds of 5- 10 mm/s. 
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Small pieces of samples were then hot mounted for optical and scanning electron microscopy 

(SEM) observation. Samples without mounted were prepared for X-ray diffraction (XRD) and 

transmission electron microscopy (TEM) analyses. Mechanical grinding and polishing process 

with extremely care to make sure produce good image. The grinding operation was carried out 

successively on 240, 400, 800 and 1200 grade silicon carbide papers with running water. The 

polishing operation was performed by AutoMet™ 250 Grinder-Polisher from 9 μm to 3 μm 

polishing cloth with corresponding diamond suspensions. All the samples were rinsed and dried 

with isopropanol after each step and final cleaning was done using ultrasonic agitation. 

The 2% nital is the most widely used etchant for general steels. In this study, 2% nital 

worked effectively on medium manganese steel but not on maraging steel samples. Eventually 

maraging steel were etched with modified Fry's regent (50ml HCl + 25ml HNO3 + 1g CuCl2 + 

150ml H2O) to better reveal the microstructure.  

2.2.2  TEM thin foil preparation 

TEM thin foil samples were prepared in electropolishing. The bulk samples were manually 

ground to foils below 150 μm thick. Disks with a diameter of 3 mm were then punched and further 

thinned to 50-80 μm. Electropolishing was conducted with solution of 5% perchloric acid and 95% 

ethanol at -20 oC. within the twin-jet electro polisher operated at 25-35 V (being adjusted to ensure 

the current of ~40 mA). The whole process lasted approximately 2-3 minutes depending on the 

operation parameters (such as temperature, jet speed and sensitivity, etc.) and stopped once the foil 

was perforated.  
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2.2.3  EBSD sample preparation 

EBSD samples were prepared from as-polished bulk material. After mechanical polishing, 

electro-polishing within a solution of 10% perchloric acid and 90% ethanol at a voltage of 25 V 

was applied to remove the surface roughness and stress. 

2.3  CHARACTERIZATION TECHNIQUE 

2.3.1  Tensile testing  

The tensile tests were carried out on ASTM E8 standard specimens using an MTS testing 

machine. The machine has a fixed lower jaw and a movable upper jaw to hold the dog-bone 

samples for testing. Once the sample is fixed, the load is set to zero to neglect force set manually 

because the load set by fixing the sample hand tight is not the original load. An extensometer set 

helps in finding the instantaneous change in the cross-section during the test on the specimen while 

the strain is extracted. The standard geometry followed for the tensile specimen are shown in figure 

2.2. 
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2.3.2  Microstructure characterization  

Optical and scanning electron microscopy studies were applied and micrographs were 

taken at selected locations in all the tests using a Nikon optical microscopy (OM), TM-1000 back 

scattered electron microscope, and field-emission scanning electron microscopy (SEM). 

Transmission electron microscopy (TEM) was completed to distinguish the constituent 

phases and precipitates in maraging steel and differentiate nano phases in medium manganese and 

look at the dislocation structure inside the grains, its size and distribution. Hitachi H9500 TEM 

and FEI Tecnai G2 F20 transmission electron microscope were used in 200 kV. 

2.4  PHASE VOLUME CALCULATION BY XRD 

X-ray diffraction work was performed on Bruker D8 Discover using Cu Kα radiation (λ = 

1.54178Å) at the condition of 40 kV and 40 mA. Samples were step scanned (0.02° per step) by a 

beam size of 0.2 mm covering a range of 2 angles. For quantitative phase analysis, more than two 

 Figure 2. 2  ASTM E8 standard dimensions and geometry of a flat tensile specimen [94]. 
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sites of each sample were scanned. XRD data were collected by DIFFRAC plus XRD commander 

(D5000). The diffraction plots undertaken using ICDD PDF-4+. 

X-ray diffraction (XRD) measurement was applied to identify the austenite (fcc) in 

martensite matrix (bct). It is worth noting that, to simplify the discussion, ε-martensite was treated 

as ferrite (bcc). The XRD patterns were compared to standard diffraction patterns by software to 

identify phases. Each phase has characteristic X-ray peaks and corresponding to d spacing. 

Accurate d-spacings were calculated using Bragg’s law, λ = 2dsinθ (λ is the wavelength of target 

radiation and θ is half of the angle where the peak presents). XRD technique is considered as one 

of the most accurate and convenient methods to evaluate the volume fraction of austenite in steels. 

In this study, the volume fraction of austenite was calculated via comparison method described by 

Yang et al. [95] and the ASTM standard E975-03 [96]. For a randomly oriented sample, the 

integrated intensities of the austenite (γ) and ferrite (α) diffraction peaks are determined by: 

 
𝐼𝑎
ℎ𝑘𝑙 =

𝐾𝑅𝑎
ℎ𝑘𝑙𝑉𝑎
2𝜇

 
(2.1) 

 
𝐼𝛾
ℎ𝑘𝑙 =

𝐾𝑅𝛾
ℎ𝑘𝑙𝑉𝑎

2𝜇
 

(2.2) 

where K is the constant related to the instrumentation geometry and radiation. R is proportional to 

the theoretical integrated intensity which depends on the interplanar spacing (hkl), Bragg angle θ, 

crystal structure and composition of the phase. V is the volume fraction of each phase and μ is the 

linear absorption coefficient of steels. In this study, the integrated intensities of ferrite peaks (200) 

and (211) and austenite peaks (200), (220) and (311) were used and measured by ICDD PDF-4+. 
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2.5  IDENTIFICATION OF PRECIPITATES  

The crystal structure of precipitates is of vital importance for the study of precipitation-

strengthened materials as the structure of precipitates, to a large extent, determines their properties 

and thus their roles in precipitation-strengthened materials. SAED is one of the most frequently 

used experimental tools to identify the crystal structure of ultrafine phases which cannot be 

detected by XRD or SEM. Electron diffraction pattern is unique to the crystal structure and the 

patterns can provide information about the size and shape of the unit cells and atomic positions in 

the unit cell as well. As Figure 2.3 shows, the dhkl can be obtained as: 

 
𝑑ℎ𝑘𝑙 =

𝐿𝜆

𝑟
 

(2.3) 

Lλ is known as camera constant and after measuring the nearest r1, r2 and r3 we can calculate the 

lattice spacing and therefore get the crystal structure. 

 

Figure 2. 3 The geometric relationship between reciprocal lattice and electron diffraction. 

Pattern [97]. 
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Chapter 3: Strengthening through high-density and low lattice misfit nanoscale precipitates 

3.1.  INTRODUCTION 

In this chapter, we have conducted an in-depth understanding of the effect of 

solutionization temperature on the precipitation behavior and mechanical properties of 250 grade 

cobalt-free maraging steel. The potential of optimizing the solutionization temperature in obtaining 

extremely high-density and low lattice misfit nanoscale precipitates is elucidated in the study 

presented here. The crystal structure of nanoscale precipitates was also analyzed to understand 

their contribution toward strengthening. 

3.2  EXPERIMENTAL DETAIL 

The specimens were first cut in the form of 2 mm×50 mm plate and solutionized at different 

temperatures of 780 oC, 820 oC, 860 oC and 900 oC for 1 h, and air cooled (referred as S780, S820, 

S860 and S900). Next, aging was carried out at 480 oC for 3 h. Sheet tensile samples of gage length 

20 mm and cross-section of 2 mm×5 mm were cut and mechanically polished using standard 

metallographic procedure. Tensile tests were conducted using the MTS system at a strain rate of 

5×10-3 s-1. Given that the static toughness has a direct relationship with the impact toughness and 

fracture toughness at room temperature [98-100], the acquired tensile stress-strain plots were used 

to obtain ultimate tensile strength (σb) and static toughness (UOT), which represents strength and 

toughness of steels, respectively [98]. The static toughness was obtained from the integrated area 

according to the following equation [99]:  

 

0

t

OTU d


 =   

(3.1) 

 

where UOT is static toughness, εt is total strain after fracture, σ is real-time stress, ε is real-time 

strain. 
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To observe the microstructure, the samples were metallographically polished and etched 

with modified Fry's regent (50ml HCl + 25ml HNO3 + 1g CuCl2 + 150ml H2O). The 

microstructure of samples subjected to four different annealing temperatures was observed by 

optical microscopy (OM), scanning electron microscopy (SEM) combined with energy dispersive 

spectrometer (EDS) and high-resolution transmission electron microscopy (HRTEM). SEM 

studies were carried out using a Hitachi S-4800 field emission scanning electron microscope 

operated at 15 kV. TEM studies were carried out via FEI Tecnai G2 F20 transmission electron 

microscope operated at 200 kV using thin foils electropolished in a solution of 5% perchloric acid 

and 95% ethanol at -20 oC. The fracture surface was observed by scanning electron microscope. 

3.3  RESULTS AND DISCUSSION 

3.3.1  Mechanical properties 

Tensile properties of the four samples (S780, S820, S860 and S900) extracted from the 

engineering strain-stress plots (Fig.3.1) are listed in Table 3.1.  

Table 3. 1 Tensile properties of experimental steels 

Sample σb, MPa σs, MPa εt, % UOz 

MJ·m-3 

S780 1650 1352 9.8 83.2 

S820 1858 1645 10.0 110.4 

S860 1767 1420 9.4 76.3 

S900 1603 1295 10.2 87.5 

Note: σb - ultimate tensile strength, εt - total elongation, UOT – static toughness. 

 

On solutionizing at 780 oC, ultimate tensile strength of 1650 MPa, yield strength of 1352 

MPa and total elongation of 9.8% were obtained. The corresponding static toughness was ~83 

MJ·m-3. At 820 oC, the ultimate tensile strength was increased to 1858 MPa (208 MPa higher than 

S780 steel) and the yield strength was increased to 1645 MPa, which was 293 MPa greater than 

S780 steel (increase of ~22%). Meanwhile, the total elongation was maintained at 10% and the 
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static toughness increased to ~110 MJ·m-3. While for S860 steel, the ultimate tensile strength and 

yield strength were decreased to 1767 MPa and 1420 MPa, respectively. The total elongation 

decreased to 9.4%, and the static toughness decreased to ~76 MJ·m-3. When the solutionizing 

temperature was high at 900 oC, both ultimate tensile strength and yield strength were decreased 

with small increase in total elongation of ~10.2%. The static toughness was 87.5 MJ·m-3. Based 

on the above observations, solutionization temperature had a significant effect on the mechanical 

properties of T-250 maraging steel. In summary, S820 steel had highest ultimate strength, yield 

strength and static toughness, and was characterized by best combination of strength and toughness. 

It can be concluded from the data of mechanical properties (Table 3.1) that the solutionization 

temperature of 820 oC was optimal for T-250 maraging steel. 
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Figure 3. 1 Engineering stress-strain plots of maraging steels subjected to different 

solutionization temperatures. 

  

 

 

3.2.2  Microstructure evolution 

Fig.3.2 shows differences in the microstructure of four steels. All four maraging steels were 

characterized by lath-like martensite matrix (Fig. 3.2a1-d1). Retained and reverted austenite was 

absent (Fig. 3.2a2-d2) and was confirmed by X-ray diffraction and TEM studies (see below). 

However, the dimensions or width of martensite lath increased with increase in solutionization 

temperature. At 780 oC, the martensite lath within the block was needle or acicular-like (Fig. 3.2a1) 
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with a width of ~2 μm, as shown by arrow 1 in Fig. 3a2. At 820 oC, the martensite lath within the 

block was also needle or acicular, similar to 780 oC, but appeared to have a preferred orientation 

(Fig. 3.2b2). At 860 oC, the martensite blocks had a width ~5 μm (Fig. 3.2c1), and prior austenitic 

grain boundaries could be delineated, as indicated by arrow 3 (Fig. 3.2c2). When solutionization 

was carried out at 900 oC, the prior austenite grain size was large (~50 μm) (arrow 3 in Fig. 3.2d2), 

and martensite blocks were ~10 μm in size. In the etched microstructure, some etched pits 

presumably associated with the precipitates (arrow 2) were observed in the martensite matrix and 

at interface/grain boundaries (Fig. 3.2a2-d2 and inset of Fig. 3.2d2). It is known that when the 

interfacial energy (γinterface) between the precipitate and matrix is high, it leads to corrosion at the 

interface surrounding the precipitates, compared to the martensite matrix [101]. The etched pits 

are believed to be associated with precipitates that strengthen maraging steel during the aging 

treatment [100,102]. 
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Figure 3. 2 Optical and SEM micrographs of T-250 maraging steels at different solutionization 

temperatures (arrow 1-martensite block, arrow 2-etched pits presumably associated with the 

precipitates, arrow 3-original austenitic grain boundaries). 
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Figure 3. 3 Representative TEM micrographs of T-250 maraging steels (the solutionization 

temperature was 780℃) (a) martensite lath, (b) low magnification of precipitates, (c) high 

magnification of precipitates and (d) selected area electron diffraction pattern. (A-martensite lath, 

B-dislocations, C-precipitates). 
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To further observe the microstructure, we now describe in some detail the TEM studies of 

martensite lath and precipitates in Fig. 3.3. The matrix consisted of martensite lath (A) and 

dislocations (B). A number of nanoscale precipitates (C) of size ~2-3 nm were observed and 

confirmed by selected area diffraction pattern to consist of Ni3(Ti, Mo) precipitate [103,104]. 

There were also nanoscale precipitates that were less spherical (Fig. 4c), and are likely to consist 

of Ni, Mo and Fe [105,106].  

3.2.3  Effect of solutionization temperature on nanoscale precipitation 

Characteristic evolution of nanoscale precipitates 

The main strengthening factor for maraging steel is precipitates [104,107,108]. Thus, the 

characteristics of nanoscale precipitates at different solutionization temperatures are important in 

governing mechanical properties, whose evolution is illustrated in Fig. 3.4. At 780 oC, the size of 

precipitates was small and their density was low (Fig. 3.4a). The density of nanoscale precipitates 

at 820 oC was higher and their distribution was also uniform (Fig. 3.4b). With further increase in 

the solutionization temperature, the precipitates coarsened and their density was decreased. When 

the temperature was 900 oC, the size of precipitates was increased to ~20 nm, and the density was 

the lowest (Fig. 3.4d). 
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Figure 3. 4 Representative TEM micrographs illustrating the characteristics of nanoprecipitates 

at different solutionization temperatures. 

Using a number of TEM micrographs of the type presented in Fig. 3.4, the characteristics 

of nanoscale precipitate were statistically analyzed using MATLAB software and Nano-measurer 

software. At least 30 micrographs of each steel and more than 2000 nanoscale precipitates were 

assessed for measurements. Assuming nanoscale precipitates to be spherical, the total volume 

fraction of nanoscale precipitates (fv) was estimated by:  
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and the average nanoscale precipitate size ( pptd ), nanoscale precipitate spacing ( ppt ) and 

nanoscale precipitate density (ρppt, unit: m-3) were evaluated by equations 3.2-3.4 respectively: 

 

where 
𝑉𝑖

𝑉𝑡𝑜𝑡𝑎𝑙
is the volume fraction of nanoscale precipitates having diameter, di (unit: nm). 

Furthermore, the average width of martensite lath (Wm) was also measured by MATLAB software 

from more than 20 TEM micrographs. Based on equations (3.2) -(3.4), the characteristic evolution 

of nanoscale precipitates (size, volume fraction, density and spacing between nanoscale 

precipitates) and the width of martensite lath as a function of solutionization temperature are 

presented in Fig. 3.5. It was observed that the solutionization temperature had an effect on the 

characteristics of nanoscale precipitates and martensite lath. The width of martensite lath (Wm) was 

increased from ~0.2 μm to ~1 μm with increased solutionization temperature. Meanwhile, the 

diameter ( pptd ) of nanoscale precipitates increased from ~2-3 nm to ~22 nm with solutionization 

temperature. The total volume fraction of nanoscale precipitates (fv) first increased with increase 

of solutionization temperature, and then decreased when the solutionization temperature was 

 
2 ( )i

ppt i

total

V
d R d

V
= =   

(3.2) 

 2

3 2

ppt

ppt

v

d

f


 =  

(3.3) 

 
3

6
= v

ppt

ppt

f

d



 

(3.4) 



   57 

greater than 860 oC. While the spacing between the nanoscale precipitates (λppt) indicated a trend 

opposite to that of size, such that the lowest value of λppt was observed at 820 oC. At this 

temperature the nanoscale precipitate density was highest (2.3×1024 m-3), when the steel exhibited 

the best combination of strength and toughness (Table 3.1).  

 

Figure 3.5 Characteristic evolution of martensite lath and nanoprecipitates in T-250 maraging 

steel as a function of solutionization temperature. 

 

Nanoscale precipitates and relationship with matrix 

Figs. 3.6 and 3.7 are the representative high resolution TEM micrographs of nanoscale 

precipitates in two different regions of maraging steel. The nature of nanoscale precipitates was 

identical in all the four steels. There were two kinds of nanoscale precipitates in T-250 maraging 
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steel, both of which had superlattice diffraction pattern. The differences in the high resolution 

image of nanoscale precipitates and matrix were clearly distinguished by the IFFT image (Fig. 

3.6c). The points in the broken box of the two-dimensional lattice image of nanoscale precipitate 

indicated an alternating bright and dark superlattice pattern (Fig. 3.6a), while the points in the solid 

box of the two-dimensional lattice image of the matrix (Fig. 3.6a) were of similar brightness, 

identified by M. It is the difference in the real space between the nanoscale precipitates and the 

matrix, while the superlattice diffraction spots is the difference in the reciprocal space between the 

nanoscale precipitate and matrix. In combination with the FFT image (Fig. 3.6b) and selected area 

electron diffraction pattern (Fig. 3.6d) of the high resolution image, the nanoscale precipitate was 

identified as η-Ni3(Ti,Mo) by indexing the diffraction pattern in Fig. 7e. This was further 

confirmed from the atomic ratio of Ni and Ti, Mo by energy dispersive X-ray spectroscopy (Fig. 

7f), consistent with the results of Fig. 4. According to the diffraction pattern, the η-Ni3(Ti,Mo) 

had an hcp structure [14,15]. The atomic arrangement of Ni3(Ti,Mo) is delineated by the box with 

broken lines in Fig. 3.6a. The crystal orientation relationship between Ni3(Ti,Mo) nanoscale 

precipitate and the matrix was (0112)𝜂 ∥ (110)𝛼, [2110]𝜂 ∥ [001]𝛼. Using identical approach, 

another type of nanoscale precipitate was identified as B2-Ni(Mo,Fe) (Fig. 8a-8f). Based on the 

diffraction pattern, B2-Ni(Mo,Fe) had bcc structure. The atomic arrangement of Ni(Mo,Fe) is 

shown in the box with broken lines in Fig. 3.7a. The crystal orientation relationship between 

Ni(Mo,Fe) nanoscale precipitate and the matrix was 2(110) (110)B ∥
, 2[001] [001]B ∥

. Based on 

high resolution images, the a-axial lattice constant of η-Ni3(Ti,Mo), B2-Ni(Mo,Fe) and the matrix 

was statistically analyzed. They were aη=0.2785 nm, aB2=0.2886 nm and am=0.2877 nm, 

respectively, which are similar to the lattice parameter of α-Fe matrix in maraging steel, am=0.288 

nm [109,110]. Using identical approach, all four steels were characterized by high resolution TEM 
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and the lattice parameters are listed in Table 3.2. At low temperature of 780 oC, the lattice constant 

of Ni3(Ti,Mo) was smaller than the matrix, while the lattice constant of Ni(Mo,Fe) was slightly 

larger than the matrix. The small change in the lattice constant of η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) 

is related to distribution of Ni atoms with change in the solutionization temperature. As the 

solutionization temperature was increased, it was envisaged that a number of Ni atoms were 

associated with Ni3(Ti,Mo) and Ni(Mo,Fe) nanoscale precipitates, and the decrease in the fraction 

of Ni atoms in the martensite matrix was apparent. This phenomenon led to increase in the lattice 

constant of η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) and the lattice constant of the matrix was decreased 

(Table 3.2). However, when the temperature was greater than 860 oC, e.g., S900 steel, there was 

an increase in the lattice constant of matrix, because high solutionization temperature led to 

dissolution of some nanoscale precipitates back into the matrix (Fig. 3.5), with consequent increase 

in the fraction of Ni atoms in the matrix. Irrespective of the above, from the lattice misfit (Table 

3.2), we envisage that both types of nanoscale precipitates in the four steels had low lattice misfit 

with the matrix (＜5%), and for S820 steel, the lattice misfit was less than 1% for both η-

Ni3(Ti,Mo) and B2-Ni(Mo,Fe) nanoscale precipitates, and were coherent with the matrix. 

Correspondingly, S820 steel had the highest strength and toughness (Table 3.1). This underscores 

that low misfit between nanoscale precipitates and matrix in T-250 maraging steel had a significant 

influence in governing the mechanical properties of maraging steel. 
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Table 3. 2 Lattice parameters and misfit between nanoscale precipitates and matrix (in 

nanometers). 

Sample am aη  δη aB2 δB2 

S780 0.2877 0.2785 3.2% 0.2886 0.3% 

S820 0.2864 0.2847 0.6% 0.2890 0.9% 

S860 0.2848 0.2895 1.7% 0.2912 2.2% 

S900 0.2869 0.2978 3.8% 0.2950 2.8% 

Note: am, aη and aB2 are lattice constant of matrix, η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe), respectively, 

δη-the lattice misfit between η-Ni3(Ti,Mo) and the matrix, δB2- the lattice misfit between B2-

Ni(Mo,Fe) and the matrix. 
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Figure 3.6 (a) Representative high resolution image of one area in maraging steel along [001]α 

direction (the solutionization temperature was 780℃), (b) FFT image of (a), (c) IFFT image of 

(a), (d) selected area electron diffraction pattern of (a), (e) indexing of diffraction pattern of (b) 

and (d), (f) EDS of η-Ni3(Ti,Mo) nanoprecipitate in (a). 
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Figure 3.7 (a) Representative high resolution image of another area in maraging steel along 

[001]α direction (the solutionization temperature is 780℃), (b) FFT image of (a), (c) IFFT image 

of (a), (d) selected area electron diffraction pattern of (a), (e) indexing of diffraction pattern of 

(b) and (d), (f) EDS of B2-Ni(Mo,Fe) nanoprecipitate in (a). 
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3.2.4  Strengthening response of nanoscale precipitates and mechanical properties 

The increase in yield strength by precipitation strengthening is given by Orowan-Ashby 

equation [111-113]: 

 
- -(0.538 / 2 ) ln( / ) = /p v ModeI ModeIIR Gb f R R b cGb  =   (3.5) 

 

where ΔRp is the yield strength increase associated with precipitates, G is the shear modulus, b is 

the Burgers vector, fv is the volume of the precipitate, R is the radius of the precipitate, c is the 

correction coefficient and λ is the precipitate spacing. In T-250 Co-free maraging steel, the 

nanoscale precipitates are the primary contributors to strength. The two mechanisms through 

which the dislocations can move across the precipitates are cutting and by-passing based on 

interparticle spacing. This is schematically illustrated in Fig. 3.8. If R/b＜15, the dislocation moves 

by cutting (shearing) the precipitate (Mode I), where fv and R are the dominant factors influencing 

the strength. If R/b≥15, the dislocation moves via by-passing the precipitate forming a dislocation 

loop around the precipitate (Mode II), where λ is the dominant factor influencing the strength. In 

our study, the Burgers vector b for the martensite matrix, i.e., the unit slip distance in easy atomic 

slip direction, is 0.248 nm [38] and the shear modulus G=72 GPa [41,42]. Based on the size of 

nanoscale precipitates ( =2pptd R ) presented in Fig. 3.5, the value of R/b of four steels is listed in 

Table 3.3. For S780 and S820 steels, the R/b is below 15, which activates Mode I. When the 

solutionization temperature is greater than 860 oC, the R/b of S860 and S900 steels is greater than 

15, which activates Mode II. According to equation (3.5) and Fig. 3.5， the yield strength 

increment by precipitate (ΔRp) was calculated, and the second yield strength increment (ΔRm) 

involved the martensite matrix. Their contributions are listed in Table 3.3. It shows that the 

contribution of nanoscale precipitates to yield strength is greater than the martensite matrix, which 
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suggested that the nanoscale precipitates played a dominant role in strengthening T-250 maraging 

steel. At solutionization temperature of 780 oC and 820 oC, a greater number of Ni atoms are 

involved in precipitates, which increased the precipitation strengthening effect and decreased solid 

solution strengthening effect. Thus, the yield strength increment by nanoscale precipitates was 

increased, while that of the martensite matrix was decreased. However, at relatively higher 

solutionization temperature of 860 oC and 900 oC, Ni atoms from the precipitates dissolved back 

into the martensite matrix such that the precipitation strengthening effect was reduced. In summary, 

S820 steel had the highest density of nanoscale precipitates and lowest lattice misfit between the 

two types of nanoscale precipitates and matrix, which led to maximum strength in S820 steel, with 

insignificant loss in ductility. 

 

Table 3.3 Tensile properties of experimental steels. 

Sample R/b ΔRp, MPa ΔRm, MPa ΔRmodulus, MPa ΔRordering, MPa 

S780 7.40 664 668 205 427 

S820 11.3 1259 386 402 906 

S860 43.0 1077 343 — — 

S900 53.3 893 402 — — 

Note: ΔRp-the yield strength increment by precipitate, ΔRm-the yield strength increment by 

martensite matrix, ΔRmodulus-the yield strength increment by ordering hardening, ΔRordering-the yield 

strength increment by modulus hardening. 
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Figure 3.8 Schematic illustration of movement of dislocations (a) Mode I-dislocation moves by 

cutting precipitate and (b) mode II-dislocation moves via by-passing precipitates. 

 

The characteristics of nanoscale precipitates and their lattice misfit with the matrix 

significantly influence the inherent strengthening mechanism. In the case of S780 and S820 steels, 

the coherent η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) nanoscale precipitates strengthened the matrix via 

Mode I because of their nanoscale dimensions (~2-3 nm) and very high density (greater than 1024 

m-3). In this system, with low coherency strain (low lattice misfit), the elastic interaction between 

the nanoscale precipitates and dislocations is less and strengthening from elastic coherency strain 

is negligible. Modulus and ordering hardening contributed to the precipitation strengthening 

mechanism. The modulus hardening contribution to the yield strength increment can be estimated 

by Knowles-Kelly equation [114]: 
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where M≈3 is Taylor factor, b, / 2pptr d= , fv and G are identical to equation (6). ΔG is 

the difference in the shear modulus between the precipitates and the matrix. The modulus of B2 
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phase is reported to be ~88 GPa and is not strongly composition-dependent [115]. The ordering 

hardening contribution to the yield strength increment is estimated by [38]: 
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where rs=(2/3)1/2r is the average radius of the sheared precipitates in the gliding plane, 

apb =0.48 J·m-2 is the average value of the antiphase boundary energy for η-Ni3(Ti,Mo) and B2-

Ni(Mo,Fe), which is similar to NiAl [116-119] and T1 is the dislocation line tension, which is 

approximated as ~Gb2/2. The calculated results are listed in Table 3.3. The contribution of modulus 

strengthening and ordering strengthening to the total yield strength was calculated to be 205 MPa 

and 427 MPa for S780 steel, and 402 MPa and 906 MPa for S820 steel, respectively. Adding these 

two factors, the total strengthening increment is 632 MPa for S780 steel and 1308 MPa for S820 

steel, consistent with equation (3.5), i.e., 664 MPa for S780 steel and 1259 MPa for S820 steel, 

respectively (Table 3.3). This result indicated that ordering strengthening had greater influence on 

strength, which is related to the high density of nanoscale precipitates and their low lattice misfit 

with the matrix. 

As regards the toughening mechanism, the nanoscale precipitates can make a significant 

difference. Fig. 3.9 shows working hardening rate curves for the four steels as a function of true 

strain. The data extracted from Fig. 3.9 is summarized in Table 3.4. It is clear that the four steels 

were characterized by three stages of working hardening rate (WHR). In the first stage (S1), WHR 

decreased with increased strain, and then increased gradually in the second stage (S2), and finally 

decreased to zero in the third stage (S3). The increase in stage S2 is attributed to the contribution 

of nanoscale precipitates on uniform deformation, while S1 and S3 are associated with the 

deformation of martensite matrix and nanoscale precipitates. The starting strain (εs) and final strain 
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(εf) of working hardening refers to the beginning and end of uniform deformation, respectively. 

The commencement of work hardening for S820 steel occurred at a later stage at εs =0.032, because 

ordering and modulus strengthening by nanoscale precipitates hindered the movement of 

dislocations and provided a larger elastic regime prior to the yield point compared to the other 

three steels. The end of work hardening of S820 steel also occurred at a later stage at εf =0.088, 

and the total true strain during the work hardening period ΔS2=0.056, was the largest. This implied 

that the high density of nanoscale precipitates had an important role in uniform deformation 

because of near homogeneous distribution of nanoscale precipitates in the matrix. Additionally, 

the WHR of S820 steel in the second stage increased more rapidly than other three steels. This is 

attributed to the lowest lattice misfit between the nanoscale precipitates and matrix in S820 steel. 

It was difficult for the dislocation to cut or by-pass the nanoscale precipitates that are highly 

coherent with the matrix. Thus, the ultrahigh strength and high toughness of maraging steel (S820) 

was obtained via high density and extremely low lattice misfit (＜1%) nanoscale precipitates via 

optimized solutionization temperature. 
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Figure 3.9 The curves of working hardening rate vs the true strain of four steels (S1 stage 1, 

S2-stage 2, S3-stage 3, εs – the starting strain of work hardening, εf - the final strain of work 

hardening, ΔS2 – the total true strain during the work hardening period). 
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Table 3.4 Summary of work hardening rate of experimental steels. 

Sample εs εf ΔS2 

S780 0.029 0.073 0.044 

S820 0.032 0.088 0.056 

S860 0.024 0.078 0.054 

S900 0.021 0.070 0.049 

Note: εs – the starting strain of work hardening, εf - the final strain of work hardening, ΔS2 – the 

total true strain during the work hardening period. 

 

It may be briefly appropriate to describe the tensile fracture. Fracture is generally 

representative of the deformation processes such that it may retain the signature of the deformation 

processes. The fracture may also reflect the size and distribution of precipitates. The fracture 

surface of four steels, as imaged via SEM, are presented in Fig. 3.10. It can be seen that all the 

four steels exhibited ductile fracture mode, but a careful examination suggests that there was 

significant difference in the nature, size and distribution of dimples. When the solutionization 

temperature increased from was 780 oC to 820 oC, the size of dimples in S820 steel was small 

(~0.5-1.5 μm) and their distribution over the entire fracture was highly uniform compared to S780 

steel (Fig.3.10a). In S860 steel (Fig. 3.10c), the size of dimples was inhomogeneous (~0.5-5 μm) 

and their distribution was non-uniform. In S900 steel, while the dimple was relatively uniform 

(~3-5 μm), but they were shallow. Furthermore, in S780 and S820 steels, very few microcracks 

(indicated by red arrow) were observed, while in S860 and S900 steels, a greater number of 

microcracks were observed. The highest density (2.3×1024 m-3) and uniform size of nanoscale 

precipitates in S820 steel resulted in small-sized dimples compared to the other three steels. In 
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addition, the nanoscale precipitates in S820 steel had the lowest lattice misfit with the matrix. 

When the lattice misfit is low, it requires higher stress and more strain for the nanoscale 

precipitates to separate from the matrix. Furthermore, the low elastic interaction between the 

nanoscale precipitates and the dislocations is reduced. This decreases the possibility of crack 

initiation at the precipitate-matrix interface because of very low misfit and appreciably reduced 

accommodation of strain. It is expected that the microcracks (red arrows) present on the fracture 

surface initiated at the precipitate-matrix interface or because of inconsistent deformation between 

martensite lath with different orientations. There was increased tendency for microcracks with 

increase in lattice misfit (i.e. increase in solutionization temperature). 

 

Figure 3.10 Representative SEM micrographs of fracture surface of four steels at different 

solutionization temperatures. (red arrow- microcrack). 
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3.4  CONCLUSIONS 

An excellent combination of strength and toughness was obtained in the optimized 820 oC 

solution heat treated steel. The ultimate strength and static toughness were 1858 MPa and ~110 

MJ·m-3. Both these properties were superior than the other three steels solution heat treated at 780 

oC, 860 oC and 900 oC. 

The solutionization temperature controlled the characteristic evolution of nanoscale 

precipitates. The nanoscale precipitates were identified as η-Ni3(Ti,Mo) with a hcp crystal 

structure and B2-Ni(Mo,Fe) with a bcc crystal structure. The η-Ni3(Ti,Mo) nanoscale precipitate 

had a slightly smaller lattice constant than the matrix, while the B2-Ni(Mo,Fe) nanoscale 

precipitate had a larger lattice constant than the matrix. The optimized solutionization temperature 

of 820 oC increased the density of nanoscale precipitates (~2-3 nm) to 2.3×1024 m-3 with minimal 

lattice misfit of less than 1%. 

The precipitation strengthening was the dominant strengthening mechanism in T-250 

maraging steels. The strengthening effect by nanoscale precipitates was first increased and then 

decreased with the increase of solutionization temperature from 780 oC to 900 oC. Ordering and 

modulus strengthening contributed to high strength, while ordering strengthening played a more 

effective role than modulus strengthening, with the maximum contribution of 906 MPa in S820 

steel. 

The high density and low lattice misfit of nanoscale precipitates had a significant influence 

on the toughness and ductility of maraging steel. In S820 steel with the optimized solutionization 

temperature, the highest density of nanoscale precipitates and lowest lattice misfit led to work 

hardening at a later stage (high strain) and a longer work hardening period, which contributed to 

increase in the elastic deformation and uniform deformation regimes. 
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The ultra-fine size and low lattice misfit of nanoscale precipitates in S820 steel led to 

fracture with small and uniform-sized dimples. 

3.5  SUMMARY 

In this chapter we have fundamentally elucidated here the concept of low lattice misfit of 

nanoscale precipitates with the matrix and the high density of nanoscale precipitates in the context 

of cobalt-free maraging steel to obtain an ultra-strong T-250 maraging steel. The ultra-strong 

maraging steel was characterized by high-density and minimal lattice misfit nanoscale precipitates 

obtained by optimizing the solutionization temperature followed by aging. HRTEM was used to 

understand the nanoscale crystal structure and precipitation behavior of nanoscale precipitates. 

The tensile fracture was characterized to obtain an insight on the significant role of high-density 

and low lattice misfit nanoscale precipitates on mechanical properties.  

The concept of low lattice misfit and high-density of nanoscale precipitates obtained 

through solution treatment was adopted to obtain ultrahigh strength maraging steel without 

compromising elongation. An “ultrahigh strength-high toughness” combination was successfully 

obtained in 19Ni3Mo1.5Ti maraging steel with ultimate strength of ~1858 MPa and static 

toughness of ~110 MJ·m-3. Maraging steel had extremely high density (2.3×1024 m-3) of nanoscale 

precipitates with minimum lattice misfit of less than 1% at the solutionization temperature of 820 

oC. Two kinds of nanoscale precipitates, namely, η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) contributed to 

ultrahigh strength. The size of nanoscale precipitates governed the movement of dislocations, 

cutting versus by-passing. Theoretical estimate of ordering and modulus contribution to 

strengthening suggested that ordering had a dominant influence on strength. The toughness was 

closely related to the characteristic evolution of nanoscale precipitates such that the high density 

of nanoscale precipitates contributed to increase of elastic deformation and low lattice misfit 
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contributed to increase of uniform deformation. The nanoscale size and low lattice misfit of 

precipitates were the underlying reasons for the high-performance of maraging steel. Moreover, 

the combination of high-density of nanoscale precipitates and low lattice misfit is envisaged to 

facilitate the futuristic design and development of next generation of structural alloys. 
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Chapter 4 Aging temperature on Microstructural evolution and strengthening behavior 

4.1  INTRODUCTION 

In the last chapter, we conducted an in-depth understanding of the effect of solution 

temperature on the mechanical behavior of 250 grade cobalt-free maraging steel and obtained an 

optimal solution temperature at which high-density and low lattice misfit nanoscale precipitates 

were obtained. In sequel to the previous chapter, we present here a systematic study of aging 

temperature on the mechanical properties of this cobalt-free maraging steel. The microstructural 

evolution and hardening behavior were critically analyzed using a combination of electron back-

scattered diffraction (EBSD), scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) to study phase precipitation and phenomena in this maraging steel. 

4.2  EXPERIMENTAL DETAIL 

The samples were solutionized at optimal temperature of 820 ℃ based on our previous 

study for 1 h followed by AC. The aging treatment was carried out at different temperatures of 

460 ℃, 480 ℃, 520 ℃ and 560 ℃ for 3 h followed by AC (referred as A460, A480, A520 and 

A560). Tensile tests were conducted using an MTS system at a strain rate of 5 × 10-3 s-1 to 

determine mechanical properties of steels. The dimensions of tensile samples and method of 

obtaining ultimate strength (σb), elongation (ε) and static toughness (UOT) are described in previous 

chapter. 

 The samples for microstructural analysis were metallographically polished and etched for 

SEM observation via a Hitachi S-4800 field emission scanning electron microscope operated at 15 

kV, and electro-polished with a solution consisting of 90% glacial acetic acid and 10% perchloric 

acid at a voltage of 12 V for EBSD observations. Thin foils for TEM observation via FEI Tecnai 

G2 F20 transmission electron microscope operated at 200 kV were made by mechanical thinning 
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to ~50 μm, followed by twin-jet polishing in a solution of 5% HClO4 + 95% CH3COOH at a 

potential of 40 V at 253 K. 

4.3  RESULTS AND DISCUSSION 

4.3.1  Mechanical properties 

The mechanical properties of maraging steels corresponding to four different aging 

temperatures obtained via tensile tests are listed in Table 4.1. It is clear that the steel aged at 460 ℃ 

had inferior tensile properties with ultimate tensile strength of 1409 MPa, yield strength of 1239 

MPa and static toughness of 75.8 MJ·m-3 (total elongation: 9.9%). When aging temperature was 

increased, the tensile strength and static toughness were both increased, as well as total elongation. 

At aging temperature of 480 ℃, the ultimate strength was 1850 MPa, an increase of 441 MPa and 

yield strength was 1642 MPa, an increase of 403 MPa, whist the static toughness was significantly 

increased to 112 MJ·m-3 with total elongation of 10.7%. As the aging temperature was increased 

to 520 ℃, the ultimate tensile strength of steel was highest at 1892 MPa (~500 MPa greater than 

A460) with highest yield strength of 1730 MPa (increase of ~40%). Meanwhile, the static 

toughness was increased to the peak value of 125.4 MJ·m-3 and total elongation was 11.5% (Table 

1). At higher aging temperature of 560 ℃, the ultimate strength decreased to 1708 MPa, yield 

strength was 1615 MPa, with total elongation of 11.8% and static toughness of 110.5 MJ·m-3. 

From the mechanical properties of steels aged at different temperatures (Table 4.1), it is clear that 

aging temperature of cobalt-free 19Ni3Mo1.5Ti maraging steel had a significant effect. The steel 

aged at 520 ℃ exhibited the best combination of strength and toughness, which resulted from 

precipitation behavior during aging. In the under-aged (temperature less than 520 ℃) or over-aged 

condition (temperature greater than 520 ℃), the nature of martensite, precipitates and reverted 

austenite that are expected to be present at higher aging temperature in the maraging steel did not 
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effectively impact mechanical properties (see below). The microstructural evolution and 

precipitation behavior are discussed in detail in following sections. 

Table 4. 1 Mechanical properties of maraging steels aged at different temperatures. 

Sample σb, MPa σs, MPa εt, % UOT, MJ·m-3 

A460 1409 1239 9.9 75.8 

A480 1850 1642 10.7 112.6 

A520 1892 1730 11.5 125.4 

A560 1708 1615 11.8 110.5 

Note: σb - ultimate tensile strength, σs - yield strength, εt - total elongation, UOT – static 

toughness. 

 

 

4.3.2  Microstructural evolution 

Fig. 4.1 illustrates the microstructure of maraging steels at different aging temperatures. 

The microstructural constituents at four different aging temperatures consisted of martensite lath 

with different orientations and precipitates were observed at high magnification in SEM (inset of 

Fig 4. 1a). The precipitates were confirmed to be low lattice misfit precipitates of η-Ni3(Ti,Mo) 

with hcp crystal structure and B2-Ni(Mo,Fe) with bcc crystal structure, as previously shown by us 

[122]. They were dispersed in the martensite matrix and grain boundaries during aging. The etched 

pits in the SEM micrographs are associated with corrosion at precipitate/matrix interface that 

occurred during etching of steel because of their different interfacial energies (γinterface) [123,124]. 

In the case of A460 steel, the etched pits were small and few. This implied complete precipitation 

did not occur and was fine in size in the under-aged condition. In the A480 steel, because of higher 

aging temperature, a high degree of precipitation occurred with evidence of large etched pits after 
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corrosion (Fig 4. 1b). In contrast, a number of big lenticular etched pits were present in the matrix 

with granular particles embedded in A520 steel (Fig 4. 1c). This granular phase with micron size 

is reverted austenite in the matrix and was confirmed in the previous study [120,121]. This kind of 

reverted austenite occurred at high aging temperature and was distributed in the martensite matrix, 

which is beneficial to toughness [17,135]. This reverted austenite transformed from granular to 

lamellar morphology when the aging temperature was increased to 560 ℃. As shown in Fig 4. 1d, 

the microstructure of A560 steel was comprised of martensite lath, precipitates and lamellar 

reverted austenite. In view of lamellar shape of reverted austenite, micro-cracks can easily initiate 

at reverted austenite/matrix interface, which is detrimental to toughness. 
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Figure 4. 1 SEM micrographs of maraging steels at different aging temperatures (the precipitates 

in the inset of Fig. 1a were present in all four steels) 

 

Fig 4. 2 shows the orientation maps of maraging steels at different aging temperatures, as 

studied by EBSD. In the orientation map of A460 steel, it is clear that the grains had preferred 

orientation with strong orientations of {101} (Fig 4. 2a). This is because martensite is easy to form 

along {101} orientations from the habit planes {111} of austenite during air cooling. As the aging 

temperature was increased, the preferred orientation became weak, and the orientation became 

relatively more random with different orientations such as {001}, {111} and {112} present in small 
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sub-grains (Figs. 4.2b-2d). This indicated that at high aging temperature recovery of dislocations 

in martensite occurred during aging. Because of limitation of EBSD, the reverted austenite could 

not be identified in the maps.  

 

Figure 4. 2 EBSD IPF maps of maraging steels at different aging temperatures of (a) 460 ℃, (b) 

480 ℃, (c) 520 ℃ and (d) 560 ℃. 

 

The EBSD band contrast maps with grain boundary misorientation distribution of 

maraging steels at different aging temperatures are shown in Fig 4. 3. The green lines, black lines 
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and red lines represent the angle of misorientation below 15°, between 15° and 45° and above 45°, 

respectively. It can be seen that sub-grain boundary was increased with increase of aging 

temperature. Meanwhile, the high-angle grain boundaries with misorientation greater than 15° 

(called HAGB: black lines + red lines) were increased.  

 

Figure 4. 3 EBSD band contrast maps with grain boundary misorientation of maraging steels at 

different aging temperatures of (a) 460 ℃, (b) 480 ℃, (c) 520 ℃ and (d) 560 ℃. (green line: ＜

15°, black line: 15°~45°, red line: ＞45°). 

 

The fraction of HAGB and total length of grain boundary per unit area (μm/μm2) at 

different aging temperatures were calculated statistically using EBSD grain boundary 
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misorientation maps and the data is shown in Fig 4. 4. The high-angle grain boundaries (HAGB) 

can effectively deflect or even arrest the propagation of microcracks, whereas the low-angle grain 

boundary (LAGB) has less ability to deflect the cracks [126,127]. The fraction of HAGB increased 

from 12% to 30% as the aging temperature was increased. The high-angle grain boundaries in 

maraging steel at high aging temperature provide greater resistance to nucleation and growth of 

microcracks, which is beneficial to toughness. The total length of grain boundary per unit area was 

increased when aging temperature increased from 460 ℃ to 520 ℃ and had a high value at 560 ℃ 

(Fig 4. 4). This is because of recovery at higher aging temperature. The residual stress is eliminated, 

when the dislocation cells and inner dislocation lines in grains disappear by dividing the original 

martensite laths to several polygonal sub-grains (as shown in Fig 4. 2b-2d), leaving a number of 

sub-grain boundaries with numerous precipitates distributed along them [128,129]. 
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Figure 4. 4 The change in the fraction of high-angle grain boundary (HAGB) and total length of 

grain boundary per unit area (μm/μm2) at different aging temperatures. 

 

The change in dislocation behavior can also be observed in the result of Kernel average 

misorientation analyzed by EBSD (Fig 4. 5). Kernel average misorientation (KAM) was used to 

represent local dislocation density distribution and the recovery fraction. In principle, non-

recovered grains have greater maxima of distribution of KAM values because of their high 

dislocation density, whereas the recovered grains have lower maxima distribution of KAM values 

[130-132]. It may be seen from Fig 4. 5 that the maxima of distribution of KAM values became 

lower when the aging temperature was increased (Fig 4. 5e). The distribution of KAM was more 

uniform at higher aging temperature (Figs. 5a-5d). This indicated that the dislocation density in 
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martensite lath was decreased with increase of aging temperature, consistent with the 

aforementioned results. In addition, the KAM maxima shifted towards higher value with increase 

of aging temperature even though the shift was small but systematic, suggesting more recovery of 

martensite laths, and is another reason for the superior ductility and toughness at high aging 

temperature, as listed in Table 4.1. 
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Figure 4. 5 Kernel average misorientation (KAM) maps at different aging temperatures of (a) 

460 ℃, (b) 480 ℃, (c) 520 ℃ and (d) 560 ℃, and (e) the distribution of KAM values at different 

aging temperatures (calculated using neighboring EBSD points of KAM maps at a d distance of 

200 nm and up to a maximum deviation of 5°). 
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The orientation of grains relative to loading direction (Schmid factor) was also examined 

by EBSD, as shown in Fig 4. 6. The value of different Schmid factor was identified as different 

colors in Figs.6a, 6c, 6e and 6g. It is noted that majority of martensite laths had Schmid factor 

greater than 0.4 because of the soft Fe-Ni martensite matrix. However, the Schmid factor of 

majority of grains shifted to higher value with increase of aging temperature. This suggests that 

grains in steel subjected to high-temperature aging must glide or deform easily, which contributes 

to high ductility and toughness. 
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Figure 4. 6 Schmid factor of martensite laths at different aging temperatures analyzed by EBSD: 

(a) and (b) 460 ℃, (c) and (d) 480 ℃, (e) and (f) 520 ℃, (g) and (h) 560 ℃. 
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4.3.3 Precipitation behavior  

Fig 4. 7 shows TEM micrographs of matrix with Ni3(Ti,Mo) and Ni(Mo,Fe) precipitates 

distributed homogeneously in martensite lath at different aging temperatures. At low aging 

temperature of 460 ℃, the martensite lath had preferred-orientation with numbers of dislocations 

and a few precipitates (Fig 4.7a). In the case of A480 steel, the width of martensite lath did not 

show an observable change, while the dislocations were decreased. A number of sub-grain 

boundaries were observed, which appeared to divide the original martensite lath, and the 

precipitates were increased. Inset shows the selected area electron diffraction pattern (SAED) from 

the precipitates (Fig 4. 7b). As the aging temperature was increased, reverted austenite was 

observed in the matrix, besides increased density of precipitates (Figs. 7c and 7d).  
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Figure 4. 7 Representative TEM micrographs of maraging steels at different aging temperatures 

of (a) 460 ℃, (b) 480 ℃, (c) 520 ℃ and (d) 560 ℃. (O-selected area of diffraction pattern) 

 

The reverted austenite changed from granular in A520 steel to lamellar morphology in 

A560 steel, consistent with SEM observations. The characteristic evolution of Ni3(Ti,Mo) and 

Ni(Mo,Fe) precipitates at high magnification is illustrated in Fig 4. 8.  



   89 

 

Figure 4. 8 Representative TEM micrographs of precipitates at different aging temperatures of 

(a) 460 ℃, (b) 480 ℃, (c) 520 ℃ and (d) 560 ℃. 

The precipitation behavior was changed with increase of aging temperature, in terms of 

size, volume fraction, density and interparticle spacing of precipitate, which were statistically 

measured by Digital Micrograph software. The total volume fraction of nanoscale precipitates (fv) 

is given by [133]:  
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V
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(4.1) 

and the average nanoscale precipitate size (𝑑𝑝𝑝𝑡 ), nanoscale precipitate spacing (𝜆𝑝𝑝𝑡 ) and 
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nanoscale precipitate density (ρppt, unit: m-3) were calculated using equations (4.2)-(4.4), 

respectively [133,134]: 
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where 𝑉𝑖  is the volume of nanoscale precipitates having diameter, di (unit: nm). The 

corresponding data was statistically acquired from a number of TEM micrographs of precipitates, 

which is summarized in Fig 4. 9. 
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Figure 4. 9  Characteristics of nanoscale precipitates in maraging steel at different aging 

temperatures. 

 

  It can be seen that the average nanoscale precipitate size (𝑑𝑝𝑝𝑡) increased from ~3 nm to 

~10 nm, as the aging temperature was increased. While the nanoscale precipitate density (ρppt) 

increased from 6.9×1023 m-3 (460 ℃) to 4.5×1024 m-3 (520 ℃), then decreased to 3.8×1023 m-3 

(560 ℃). The highest density of nanoscale precipitates was obtained at 520 ℃, which is more than 

twice of 480 ℃ (2.3×1024 m-3). Meanwhile, the nanoscale precipitate spacing (𝜆𝑝𝑝𝑡) decreased 

first and then increased, exhibiting a minimum spacing of ~ 6 nm at 520 ℃. This indicated that 
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the maraging steel aged at 520 ℃ had highest density (4.5×1024 m-3) of precipitates and lowest 

interparticle spacing (~ 6 nm), which governs strengthening mechanism. 

 

4.3.4 Strengthening mechanism 

It is known that strengthening and toughening of maraging steel is closely related to the 

phases present in the matrix, including martensite lath, precipitates and reverted austenite. As 

regards the strengthening mechanism, precipitates are the main strengthening phase in maraging 

steel, and the remaining strengthening is contributed by the Fe-Ni martensite matrix. Therefore, it 

is essential to estimate the contribution of precipitates to effective strengthening. There are two 

well-known mechanisms for precipitation strengthening, shearing mechanism and bypass 

mechanism [135,136]. The equations for the two contributions are as follows [133,136]: 

 (0.538 / ) ln( / 2 )ppt pptp shearing vGb f d d b − =   (4.5) 

 /p bypassing pptcGb − =  (4.6) 

 

where symbols fv, 𝑑𝑝𝑝𝑡,𝜆𝑝𝑝𝑡 in equations (4.5) and (4.6) are defined above in equations (4.1-4.4), 

and Δσp is the yield strength increase associated with precipitates, G=72 GPa is the shear modulus, 

b=0.248 nm is Burgers vector and c is the correction coefficient [133,137,138]. 

From equations (45) and (4.6) we note that the strengthening increment from shearing 

mechanism increases with the increase of precipitate size, while the strengthening increment from 

bypass mechanism decreases with the increase of precipitate spacing. Combining equations (4.3), 

(4,5) and (4.6), the critical precipitate size dc for transformation of strengthening mechanism can 

be calculated by the following equation: 
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The dc of Ni3(Ti,Mo) and Ni(Mo,Fe) precipitates was estimated to be 7.4 nm calculated from 

equation (4.7). The strengthening effect of nanoscale precipitates of size less than 7.4 nm at aging 

temperature range of 460 ℃~ 520 ℃ was calculated based on shearing mechanism, while for the 

nanoscale precipitates with size larger than 7.4 nm at 560 ℃, the bypass mechanism was applied 

(Fig. 4.9a). Beside the strengthening increment from precipitates, the balance is the strengthening 

increment from martensite. The estimated contributions to yield strength from precipitates and 

martensite are listed in Table 4.2. It can be seen that at low aging temperature of 460 ℃, when the 

precipitates were small and the density was low, the strengthening increment from precipitates was 

~ 435 MPa. The dominant strengthening contribution was the martensite matrix. With increased 

precipitation at high temperature, the strengthening increment from precipitates was significantly 

increased, whilst the strengthening increment from the martensite matrix was decreased. This is 

related to significant precipitation of Ni containing precipitates from the matrix, which weakened 

the strengthening effect of Fe-Ni martensite. The precipitates exhibited maximum strengthening 

effect with a value of 1463 MPa at 520 ℃, when the strengthening increment from the martensite 

matrix was the lowest. The formation of reverted austenite at this temperature further decreases 

the strengthening effect of martensite, and reverted austenite is beneficial to toughness. Thus, 

maraging steel aged at 520 ℃ had ultrahigh strength and high toughness, without sacrificing 

ductility (Table 4.1). When the aging temperature was greater than 520 ℃, growth of precipitates 

occurred and part of them redissolved into the martensite matrix. As a result, the hardening 

mechanism transformed from shearing to bypass. The strengthening increment from precipitates 

decreased to 1064 MPa, while the strengthening effect of martensite had a contribution of 551 
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MPa. Martensite did not provide high strength similar to that at low aging temperature because of 

the formation of significant content of lamellar reverted austenite that provides high ductility and 

toughness. 

Table 4. 2 Contribution of precipitates and martensite to yield strength of maraging steels aged 

at different temperatures. 

Sample Δσs, MPa Δσp, MPa Δσm, MPa 

A460 1239 435 804 

A480 1642 1250 392 

A520 1730 1463 267 

A560 1615 1064 551 

 

4.4  CONCLUSIONS 

The best combination of high-strength and high-toughness was obtained at aging 

temperature of 520 ℃, without sacrificing ductility. The ultimate strength and static toughness at 

this peak aged condition were 1850 MPa and 125.4 MJ·m-3, respectively. 

The microstructural constituents in maraging steels were strongly influenced by the aging 

temperature. Low lattice misfit nanoscale precipitates and martensite matrix were the primary 

constituents in maraging steels aged at different temperatures. The reverted austenite was obtained 

at high aging temperature above 520 ℃, whose morphology changed from granular to lamellar, 

with expected impact on toughness of maraging steel. 

In A460 steel, martensite had a preferred orientation of {101}. As the aging temperature 

was increased, the preferred orientation was weakened. The fraction of high-angle grain boundary 

(HAGB) and total length of grain boundary per unit area (μm/μm2) were increased because of 
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recovery of martensite laths at higher aging temperature, with consequent formation of sub-grains. 

This had a beneficial impact on the strengthening and toughening of maraging steel, consistent 

with the analyses of KAM value and Schmid factor obtained by EBSD. 

With increase of aging temperature, the size of nanoscale precipitates was increased from 

~3 nm to ~10 nm. The nanoscale precipitate density first increased and then decreased with 

maximum of 4.5×1024 m-3 at 520 ℃. The trend in interparticle spacing was opposite, with lowest 

spacing of ~ 6 nm at 520 ℃. The characteristics of precipitation (size, density and interparticle 

spacing) at different aging temperatures governed the strengthening contribution and mechanism. 

4.5  SUMMARY 

In this chapter, we studied the dependence of aging temperature on the microstructural 

evolution and accompanying change in strengthening in cobalt-free maraging steel.: We elucidate 

here the impact of aging temperature on microstructural evolution and strengthening behavior on 

low lattice misfit cobalt-free maraging steel. The best combination of high-strength (1850 MPa) 

and high-toughness (125.4 MJ·m-3) was obtained at the optimal aging temperature of 520 ℃, 

without sacrificing ductility. Electron back scattered diffraction studies suggested that preferred 

orientations of {101}, fraction of high-angle grain boundary (HAGB) and total length of grain 

boundary per unit area (μm/μm2) were increased with increase of aging temperature, which was 

beneficial to both strengthening and toughening of maraging steel. The strengthening contribution 

from the precipitates was transformed from shearing mechanism to bypass mechanism when the 

aging temperature is greater than 520 ℃. The aging tempered steel of 520 ℃ provided maximum 

strengthening increment of 1463 MPa through shearing mechanism, while granular reverted 

austenite at this temperature contributed to high toughness. 
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Chapter 5 Interaction between low lattice misfit precipitates and martensitic MATRIX  

5.1  INTRODUCTION 

Based on the aforementioned research, optimizing the microstructure via change in 

solution and aging temperature-time combination have been achieved. Meanwhile the deformation 

mechanism that contribute to high ductility of cobalt-free maraging steels comprising of high 

density of low lattice misfit nanoscale precipitates has not been explored to the best of our 

understanding. the objective of this chapter is to elucidate the deformation behavior of cobalt-free 

maraging steel via post-mortem electron microscopy of tensile strained samples.  

5.2  EXPERIMENTAL DETAIL 

The samples for microstructural observations by optical microscopy (OM) and scanning 

electron microscopy (SEM) were metallographically polished using standard procedure and etched 

with modified Fry's regent (50ml HCl + 25ml HNO3 + 1g CuCl2 + 150ml H2O). TEM studies were 

carried out using 200 kV FEI Tecnai G2 F20 transmission electron microscope on samples in aged 

condition and post-mortem electron microscopy of the tensile strained condition near the fracture 

tip (please see Fig 5.1 for location). The foils were twin-jet electropolished in a solution of 5% 

perchloric acid and 95% ethanol at 253 K. The characteristics of nanoscale precipitate were 

statistically analyzed by MATLAB software and Nano-measurer software, using a number of TEM 

micrographs of the type presented in Fig 5. 2c. At least 30 micrographs of each steel and more 

than 2000 nanoscale precipitates were assessed for measurements.  
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Figure 5. 1 Dimensions of the tensile specimen and the location from where the TEM foils were 

prepared after tensile straining. All dimensions are in mm). 

5.3  RESULTS AND DISCUSSION 

5.3.1  Mechanical properties and microstructure of (undeformed) maraging steel 

Prior to describing the deformation mechanisms, which contributes the focus of study, it is 

appropriate to first briefly visit and describe the tensile properties and microstructure that 

contributed to ultrahigh strength and elongation. The tensile properties of solution-annealed parent 

metal and aged maraging steel are listed in Table 5.1. Ultimate tensile strength and total elongation 

of solution-annealed parent metal were 912 MPa and 13.8%, respectively, and the static toughness 

had a high value of 82.9 MJ·m-3. On aging, the ultimate tensile strength was increased from 912 

MPa to 1860 MPa, while the static toughness continued to remain high at 112.5 MJ·m-3. Fig 5. 2 

shows the corresponding microstructure of undeformed maraging steel and the engineering stress-

strain plots. The solution-annealed parent metal was composed of lath martensite (Fig 5. 2a). After 

aging, a high density of dislocations (Fig 5. 2b) and precipitates (Fig 5. 2c) in lath martensite with 

straight martensite lath boundaries were observed. A number of these precipitates were analyzed 

to be Ni3(Ti,Mo) by selected area electron diffraction pattern presented in the inset of Fig 5. 2c. 
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Ni3(Ti,Mo) contributes to strength [139]. The precipitates were further studied in detail using high 

resolution TEM and Fig 5. 2d shows that the strength of aged steel increased to ~0.95 GPa 

compared to the solution-annealed parent metal. 

 

 

 

 

Table 5. 1 Tensile properties of experimental steels. 

Sample 

Ultimate 

tensile strength, 

MPa 

Total elongation, 

MPa 

Static toughness, 

MJ·m-3 

As-solution-annealed 912 13.8 82.9 

As-solution-

annealed+aged 

1860 10.2 112.5 
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Figure 5. 2 (a) Light micrograph of solution annealed parent metal, (b) low magnification TEM 

micrograph of maraging steel aged at 480 oC, (c) high magnification TEM micrograph of aged 

maraging steel and inset is selected area electron diffraction pattern and (d) engineering stress-

engineering strain plot. (A-lath martensite, B-dislocation, C-precipitates) 

 

Considering nanoscale precipitates to be spherical, the total volume fraction of nanoscale 

precipitates (fv) is given by [140]:  
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and the average nanoscale precipitate size (𝑑𝑝𝑝𝑡 ), nanoscale precipitate spacing (𝜆𝑝𝑝𝑡 ) and 

nanoscale precipitate density (ρppt, unit: m-3) were determined by equations (2)-(4), respectively 

[140,141]: 
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where 
𝑉𝑖

𝑉𝑡𝑜𝑡𝑎𝑙
is the volume fraction of nanoscale precipitates having diameter, di (unit: nm). 

Furthermore, the average width of martensite lath (Wm) was also measured by MATLAB software 

from more than 20 TEM micrographs. Based on equations (5.2)-(5.4), the characteristic evolution 

of nanoscale precipitate (size, volume fraction, density and spacing between nanoscale precipitates) 

and the width of martensite lath are listed in Table 5.2. The density of nanoscale precipitates was 

extremely high at 2.3×1024 m-3 and the average diameter of nanoscale precipitates was ~4.6 nm. 

Nanoscale precipitate spacing was ~11.2 nm, and the width of martensite lath was ~0.33 μm. Based 

on the well-known Orowan mechanism [142], the increase in yield strength due to precipitation 

strengthening is attributed to a decrease in the precipitate size and the spacing which can increase 

not only the force of dislocation movement, but also dislocation density. These parameters are of 

particular significance to ultrahigh strength of maraging steel. 
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Table 5. 2 Characteristics of nanoscale precipitates. 

Sample Wm (μm) pptd  (nm) ρppt (m
-3) ppt  (nm) 

Aged maraging steel 0.33±0.04 4.6±0.5 2.3×1024 11.2±0.8 

Note: Wm-average width of martensite lath, -average nanoscale precipitate size, ρppt-nanoscale 

precipitate density, -nanoscale precipitate spacing. 

 

Figs. 5.3 and 5.4 are high resolution TEM micrographs of nanoscale precipitates in aged 

steel. There were two types of nanoscale precipitates, and both of them were characterized by 

superlattice diffraction pattern. Fig 5. 3a shows that the points in the box with broken lines of 2D 

lattice image of nanoscale precipitate indicated an alternating bright and dark superlattice pattern. 

In contrast, the points in the box with solid lines of 2D lattice image of the matrix (Fig 5. 3a) had 

similar brightness, indicated by M. This is the difference in the real space between precipitates and 

the matrix, while the superlattice diffraction spots is the difference in the reciprocal space between 

the nanoscale precipitate and matrix. The differences in the high resolution image of nanoscale 

precipitates and matrix were clearly distinguished by the inverse fast Fourier transformation (IFFT) 

image (Fig 5. 3c). The IFFT micrograph (Fig 5. 3c) showed a distinct difference between the matrix 

and precipitates. Combining the fast Fourier transformation (FFT) image (Fig 5. 3b), selected area 

electron diffraction pattern (Fig 5. 3d) and indexed diffraction pattern (Fig 5. 3e), the nanoscale 

precipitate was identified to be η-Ni3(Ti,Mo), which was further confirmed from the analysis of 

energy dispersive X-ray spectroscopy (atomic ratios of Ni, Ti and Mo in Fig 5. 3f). Based on the 

diffraction pattern, the η-Ni3(Ti,Mo) had hcp structure [143,144]. The atomic arrangement of 
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Ni3(Ti,Mo) in Fig 5. 3a is identified by a box with broken lines. The crystal orientation relationship 

between Ni3(Ti,Mo) nanoscale precipitate and the matrix was 
(0112) (110) ∥

, 
[2110] [001] ∥

.  
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Figure 5. 3 (a) Representative high resolution image of η-Ni3(Ti,Mo) nanoprecipitate in 

maraging steel along [001]α direction, (b) FFT image of (a), (c) IFFT image of (a), (d) selected 

area electron diffraction pattern of (a), (e) indexed diffraction pattern of (b) and (d) and (f) EDS 

of η-Ni3(Ti,Mo) nanoprecipitate in (a). 
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Figure 5. 4 (a) Representative high resolution image of B2-Ni(Mo,Fe) nanoprecipitate in 

maraging steel along [001]α direction, (b) FFT image of (a), (c) IFFT image of (a), (d) selected 

area electron diffraction pattern of (a), (e) indexed diffraction pattern of (b) and (d) and (f) EDS 

of B2-Ni(Mo,Fe) nanoprecipitate in (a). 
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Adopting an approach identical to that of characterizing the structure of Ni3(Ti,Mo), the 

second type of nanoscale precipitate was identified to be B2-Ni(Mo,Fe) (Fig 5. 4a-4f) with bcc 

structure, and the crystal orientation relationship between Ni(Mo,Fe) nanoscale precipitate and 

matrix was (110)𝐵2// (110)𝛼, [001]𝐵2// [001]𝛼. The a-axial lattice constants of η-Ni3(Ti,Mo), 

B2-Ni(Mo,Fe) and matrix were aη=0.2847 nm, aB2=0.2890 nm and am=0.2864 nm, respectively, 

which are similar to the lattice constant of α-Fe matrix in maraging steel, am=0.288 nm [145,146]. 

The lattice misfit (δ) between η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) with the matrix was only 0.6% and 

0.9%, respectively, implying that both types of two nanoscale precipitates were coherent with the 

matrix. In comparison to Co-containing maraging steel, the presence of Co can decrease the 

solubility of Mo in the martensite matrix and suppresses the nucleation of dislocations in the matrix, 

which leads to more Mo-containing precipitates in Co-containing maraging steel, such as Fe2Mo, 

Fe7Mo6. These precipitates coarsen easily and are semi-coherent or incoherent with the martensite 

matrix (δ＞5%). The dislocations cut and/or bypass the precipitates [147]. In contrast, in Co-free 

maraging steel, the high coherency of η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) precipitates with the matrix 

(δ＜1%) and nanoscale size with very low elastic strain are envisaged to contribute relatively less 

to dislocation interactions. The strengthening here is primarily associated with chemical ordering 

that produces back stresses that restrict elastic deformation when precipitates cut dislocations [148]. 

In summary, highly dislocated lath martensite and high density of low lattice misfit 

nanoscale precipitates contributed to ultrahigh strength in cobalt-free maraging steel. In contrast 

to the Ni3Ti and Ni3Mo strengthening precipitates in traditional 18Ni maraging steel, the 

strengthening in the experimental steel studied here is achieved through very high density 

(2.3×1024 m-3) of low lattice misfit (~0.6%) precipitates (η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe)) with 

the matrix and high antiphase boundary energy, without loss of ductility. The low lattice misfit 
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precipitate is envisaged to reduce the nucleation barrier for precipitation. Moreover, the low lattice 

misfit is expected to lower the elastic misfit energy between the precipitate nuclei and the matrix 

[148]. Lastly, the low interfacial energy of the precipitates in the martensite matrix reduces the 

energy barrier required for homogeneous precipitation of η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe). The 

number density of nanoscale precipitates is significantly greater than traditional cobalt-containing 

250 maraging steels. This observation leads us to suggest that low lattice misfit approach is 

responsible for the very high density of precipitates. The aforementioned characteristics led to a 

remarkable combination of ultrahigh strength (UTS of 1860 MPa) and good ductility (10.2%) in 

our 19Ni3Mo1.5Ti experimental maraging steel. This combination of ultrahigh strength and good 

ductility is attributed to the following: First, the homogenous distribution of high density of low 

lattice misfit nanoscale precipitates (~5 nm) effectively reduce stress concentration at the 

precipitate/matrix interface, which is the primary challenge in traditional maraging steels. Second, 

the associated elastic interaction between precipitates and cutting dislocations is less because of 

low lattice misfit (~0.6%), preventing crack initiation at the precipitate/matrix interface because 

of negligible strain accumulation. Third, the high content of solute Ni (19 wt% in our case) in the 

matrix has an important role in reducing the tendency for cleavage, lowering the ductile–brittle 

transition temperature of steels [148,149]. In summary, the strengthening is obtained via high 

density of low lattice misfit coherent precipitates that require high cutting stress to enable 

dislocations to cut through the precipitates. 
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5.3.2  Deformation mechanisms in tensile strained maraging steel 

Fig 5. 5 shows that there was a dramatic change in the morphology of lath martensite during 

tensile deformation from lath-type to wavy-type morphology. Some laths were broken and 

transformed into smaller laths. In comparison to the near straight lath-type morphology of 

undeformed maraging steel, the lath boundaries were wavy and discontinuous (marked by yellow 

broken lines). Furthermore, there was significant localization or enrichment of dislocations at the 

wavy boundaries. Two types of martensite matrix can be defined, referred as M1 and M2. The 

bright and large lath martensite (M1) contained less number of dislocations. The dark lath 

martensite (M2) was characterized by high density of dislocations (Fig 5. 5a-5c). The dislocation 

groups are most likely to be a consequence of high mobility and pile-up of different dislocations 

on different slip planes (Fig 5. 5d). In martensitic steels, there are four {111}γ habit planes involved 

in martensite/austenite transformation, which obey {110}α // {111}γ irrespective of the orientation 

relationship between martensite and austenite, i.e., K-S, N-W or G-T. Given that the dislocations 

can easily slip on habit planes, the martensite lath is deformed to wavy shapes and several 

polygonal parts with angles of 30o, 60o or 120o (Fig 5. 5a-5c). The main slip planes that were 

identified include (110)𝛼, (101)𝛼, (011)𝛼, (121)𝛼 and (211)𝛼, as indexed along the wavy 

lines in Fig 5. 5, consistent with the fact that {110} and {112} are common glide planes in body-

centered cubic structure (bcc). 
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Figure 5. 5 TEM micrographs illustrating the morphology of tensile strained maraging steel in 

different areas (M1-bright lath martensite, M2-dark lath martensite with high density of 

dislocations). 

It is envisaged that during deformation, a number of edge and screw dislocations are 

gradually generated. The interaction of edge and screw dislocations occurs when the deformation 

stress (σd) exceeds the critical resolved shear stress (CRSS) of dislocations, i.e., σd≥CRSSdislocation. 

This leads to two types of dislocation mobility in the martensite matrix, as schematically illustrated 

in Fig 5. 6. The intersection and movement of edge and screw dislocations enable slip and climb 
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to occur on another gliding plane (Fig 5. 6b). Jog is formed from edge dislocation, and kink is 

formed from screw dislocation (Fig 5. 6c and 6d). Hence, dislocations in the martensite matrix 

contained substantial number of kinks and jogs as compared to a straight line. These defects within 

a defect significantly influence the mobility of dislocations and are of relevance in the observed 

deformation.  

 

Figure 5. 6 Interactive mobility of dislocations and consequent defects (b1-edge dislocation and 

b2-screw dislocation). 

The transformation of kinks and jogs is schematically illustrated in Fig 5. 7. The kinks and 

jogs are formed on the slip planes and at the intersectional regions, respectively. With increased 
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tensile deformation, the progressive formation of jogs and kinks occurs across the entire martensite 

lath and consequently separated the martensite lath via easy gliding planes to form the wavy 

martensite lath and small martensite lath with preferred orientation of lath boundaries, as shown 

in Figs. 5b and 5c. In addition, a part of jogs remained in the martensite lath (M2 in Fig 5. 5c) 

because of insufficient internal driving force for mobility. A TEM micrograph illustrating such a 

region is presented in Fig 5. 8a and a magnified view of the corresponding area is shown in Fig 5. 

8b. The jogs were comprised of two short dislocations with different orientation, indicated by the 

small broken lines in the rectangular boxes in Fig 5. 8b. They are designated as stair-rod 

dislocations, which are partial dislocations that are formed when a dissociated dislocation bends 

over from one glide plane to another or interacts with a dislocation on another glide plane. Among 

them, the best known is the formation of Lomer-Cottrell locks [150]. These locks are formed by 

two stacking faults (a pair of extended dislocations) meeting at the intersection of two slip planes 

and connected by a stair-rod dislocation. Considering that this kind of lock is practically immobile, 

it is recognized as one of the most difficult obstacles for dislocations to surpass because of the 

resistance to glide and climb of dislocations even under an inverse stress. As a consequence, jogs 

in the local severely strained region were formed because of the pile-up of dislocations and stress 

concentration (Fig 5. 5d). 
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Figure 5. 7 Transformation from straight to wavy martensite lath induced by kinks and jogs via 

mobility of dislocations on easy slip planes. 

Some precipitates observed in the martensite lath (Fig 5. 5c and Fig 5. 5d) were observed 

to interact with dislocations. This interaction between dislocations and precipitates observed in 

tensile strained steel must contribute to strengthening of maraging steel. As shown in Fig 5. 8b, a 

number of ribbons were formed in precipitates, marked by circles. In the high resolution TEM 

micrographs of precipitates 1, 2 and 3 (Figs. 5.8c-8e), it can be seen that some ribbons in the 

precipitates were straight and parallel (Fig 5. 8c), and others consisted of combined lines (Fig 5. 

8d and 8e). In metals and alloys with low stacking fault energy, cross slip usually occurs when the 

dislocations pile-up at obstacles such that the internal stress increases to a level that dislocations 

escape from their locked positions at obstacles to change glide planes. Consequently, a full 

dislocation is dissociated into several partials (mostly Shockley partials) and continues to move 

until it is stopped by obstacles such as nanoprecipitates [151]. This means that an interaction 

between a full dislocation and the nanoprecipitate leaves a stacking fault in the interior of the 

precipitate. Thus, the stacking fault ribbon was formed, which impeded the mobility of the 

dislocations once the dynamic stress vanished. In Fig 5. 8c-8e, one ribbon marked by red arrow 

means a Shockley partial or a stacking fault derived from the dissociation of a full dislocation 
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stopped by the precipitate. In bcc structure, a full dislocation dissociates according to the following 

equation [150,151]: 

 [110] [110] [112] [110]
2 8 4 8

a a a a
→ + +

 (5.4) 

These three partials are partially or completely retained in the particle when the dislocation 

cuts across or by-passes the precipitate. The straight ribbon means that only one partial possibly 

remained (Fig 5. 8c), and the ribbon in Fig 5. 8d indicated two partials such as
𝑎

8
[110], 

𝑎

4
[112] 

that were retained in the precipitate. When three partials remained, the ribbon retained the full 

dissociation, as shown schematically in the inset in Fig 5. 8e. Generally, the stacking fault ribbon 

forms between the partials and makes cross-slip difficult because the stacking fault must be 

eliminated for dislocation slip to occur [152,153]. Thus, gliding dislocations were confined to a 

thin slip band forming a large pile-up against an obstacle, i.e., at a martensite lath boundary, as 

observed in Fig 5. 5. Progressive formation of stacking fault ribbons during deformation leads to 

a large pile-up of dislocations that builds a large long range of back stress and consequently 

produces a high strain-hardening rate for maraging steel. 
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Figure 5. 8(a) TEM morphology of lath martensite and precipitates, (b) high magnification of 

rectangular box area in (a) and (c-e) high resolution TEM micrographs of precipitates 1, 2 and 3 

in (b). 

The plastic deformation of cobalt-free ultrahigh strength maraging steel must involve more 

number of slip systems considering the high elongation. Thus, besides the above deformation 

mechanism nanoscale twins were observed (Fig 5. 9). Twins were present individually or as 

clusters at the martensite lath boundaries or near the high density of pile-up of dislocations. They 

had an obvious preferred orientation (Fig 5. 9a-9c). Fig 5. 9d is a high resolution TEM micrographs 

of twins. Nanoscale twin had a thickness of a few nanometers (~3-4 nm). The twin plane was 

{112}, as indexed by the selected area electron diffraction pattern in the inset of Fig 5. 9d. Another 
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important aspect was that twins in the martensite lath were generally parallel (Fig 5. 9a-9c), and 

the closely spaced parallel twins can act as barriers to inclined twins or source for further twinning. 

Given that the propensity of twinning transformation has a positive correlation with strain energy 

[154,155], thus, on continued tensile deformation, the increase of strain energy increases the 

propensity to twinning. Thus, twinning also contributed to the ductility and toughness of maraging 

steel.  
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Figure 5. 9 (a-c) Micrographs of nanoscale twins in different areas near the fracture tip and (d) 

high resolution TEM micrograph of nanotwin and the corresponding selected area electron 

diffraction pattern. 
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5.4  CONCLUSIONS 

We elucidate here the deformation mechanisms that contributed to high ductility in solution 

annealed and aged cobalt-free maraging steel with ultimate tensile strength of 1860 MPa, 

elongation of 10% and static toughness of 112.5 MJ·m-3 and comprised of high density (2.3×1024 

m-3) of η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) nanoscale precipitates with lattice misfit of less than 1% 

with the martensite matrix. 

Multiple deformation processes occurred during tensile deformation. There was a dramatic 

change in the morphology of lath martensite from straight lath-type to segmented and wavy-type 

morphology with angles of 30o, 60o or 120o, involving pile-up of dislocations at wavy-lath 

boundaries because of easy slip on habit planes (110)𝛼, (101)𝛼, (011)𝛼, (121)𝛼 and (211)𝛼. 

The wavy morphology of martensite is attributed to progressive formation of jogs and kinks across 

the martensite lath via easy glide planes to form wavy morphology. The interactive mobility of 

edge and screw dislocations along the martensite habit planes was the intrinsic reason for the 

deformation of martensite lath. 

Some low lattice misfit precipitates interacted with dislocations left a stacking fault within 

the precipitate such that stacking fault ribbons were formed, with retention of either one, two or 

three partials. The progressive formation of stacking fault ribbons during deformation led to pile-

up of dislocations. 

Nanoscale twinning also contributed to the deformation of maraging steel. Twins were 

present individually or as clusters at the martensite lath boundaries or in the vicinity of pile-up of 

dislocations. Twinning delayed the fracture of maraging steel. 

The high ductility of ultrahigh strength cobalt-free maraging steel is attributed to 

cumulative contribution of glide of dislocations on habit planes that transformed the morphology 
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of lath-type martensite, progressive formation of jogs and kinks across the martensite lath, stacking 

fault and twinning. The above contributions to ductility are in addition to the significantly reduced 

elastic interaction between the low lattice misfit nanoscale precipitates and dislocations that 

reduces the ability for crack initiation at the particle-matrix interface. 

5.5  SUMMARY 

In this chapter we elucidate here the deformation mechanism of cobalt free maraging steel 

is involved multiple deformation processes such as precipitates-dislocation interaction, 

dislocation- martensite lath interaction. The high ductility of ultrahigh strength cobalt-free 

maraging steel is attributed to cumulative contribution of glide of dislocations on habit planes that 

transformed the morphology of lath-type martensite, progressive formation of jogs and kinks 

across the martensite lath, stacking fault and twinning. 
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Chapter 6 Study on the morphology of reverted austenite  

6.1  INTRODUCTION 

In previous chapter when we investigate aging parameters, reverted austenite was observed 

in the martensitic matrix on aging at high temperature. The reversion of martensite (α’) to austenite 

(γ) is an important constituent that is believed to control the final structure and influence the 

mechanical properties. The effect of reverted austenite on mechanical properties continues to be 

unclear [9-11]. A few studies proposed that the reverted austenite is supposed to be harmful to 

toughness because of its inconsistent deformation with the matrix [9,10,12]. While others 

suggested that the reverted austenite is beneficial to fracture, fatigue resistance and stress corrosion 

cracking resistance, resulting from significantly reduced diffusion of hydrogen and crack blunting 

effect [11,13,14]. However, the content and morphology of reverted austenite is expected to govern 

the ultimate mechanical properties of maraging steel [15-22]. 

It is envisaged that the formation of reverted austenite strongly depends on the initial 

microstructure and heat-treatment temperature that determine the dynamics of transformation from 

martensite to austenite. In the study described here, we have used a combination of electron back-

scattered diffraction (EBSD) and scanning electron microscopy (SEM), to explore the 

microstructural evolution of reverted austenite in cobalt-free maraging steel and elucidate the 

formation behavior of different morphologies at different heat-treatment temperature and time, to 

understand the formation mechanism of reverted austenite and its effect on mechanical properties. 
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6.2  EXPERIMENTAL DETAIL 

Samples for microstructural analysis were cut from the aged plates and metallographically 

polished. They were etched with 3% nital regent (3 ml HNO3 + 97 ml C2H5OH) to observe 

morphology by SEM (Hitachi S-4800 field emission scanning electron microscope) operated at 15 

kV. EBSD observations were carried out (TSL OIM Analysis 7) at an acceleration voltage and 

step size of 20 kV and 100 nm, respectively, after electro-polishing in a solution of 10% perchloric 

acid and 90% ethanol at a voltage of 25 V. 

 

6.3  RESULTS AND DISCUSSION 

Fig. 6.1 and Fig. 6.2 are the initial microstructure and martensite orientation map, 

respectively, of solution annealed (820 °C) parent maraging steel as imaged by optical microscopy 

and EBSD analysis. Lath martensite was observed within prior austenite grains of average size 

~70 μm (Fig. 6.1). The prior austenite grain was separated by several martensite packets and each 

packet was further divided by elongated blocks that consisted of several martensite laths, as shown 

in Fig. 6.2. 
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Figure 6. 1 Light micrograph of solution annealed parent steel. 

 

Figure 6. 2 Martensite orientation map of solution annealed parent steel. 
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The representative microstructural evolution in maraging steel after different heat 

treatments is shown in Fig. 6.3. With the increase of aging temperature and holding time, three 

types of reverted austenite were observed. At low aging temperature (560 °C) and short holding 

time (60 s), granular reverted austenite (referred as γG1) was nucleated at grain/sub-grain 

boundaries and grew as rod-like along the prior austenite grain boundaries and block boundaries 

of martensite, as shown in Fig. 6.3a. When the aging time was prolonged to 1 h, besides γG1, a 

second type of lamellar reverted austenite (referred as γL) was present in the martensite matrix. γL 

was initially nucleated at lath boundaries as fine particles in the martensite matrix (Fig. 6.3a), then 

grew as parallel lamellar austenite (Fig. 6.3b). When the aging temperature was increased (640 °C), 

γG1 grew rapidly at short holding time (Fig. 6.3c) and extended along prior grain boundaries (Fig. 

6.3d). Meanwhile, the content of γL increased rapidly and grew through the entire block martensite 

grain (Fig. 3d). At high temperature of 700 °C, both γG1 and γL were formed even at short holding 

time of 600 s (Fig. 6.3e). Their content increased with the increase of holding time. Next, they 

extended and merged to form globular reverted austenite (referred as γG2) inside original 

martensite grains (Fig. 6.3f). The content of γG2 increased with holding time until it reached 

equilibrium. 
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Figure 6. 3 SEM images of samples aged at different temperatures and holding times (a) 560 °C, 

60 s, (b) 560 °C, 1h, (c) 640 °C, 60 s, (d) 640 °C, 1h, (e) 700 °C, 60 s and (f) 700 °C, 1 h. (γG1-

granular γ, γL-lamellar γ, γG2-globular γ) 
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The volume fraction of the three types of reverted austenite for different aging temperatures 

and holding times is listed in Table 6.1, which was statistically measured by Digital Micrograph 

software using more than 20 SEM micrographs for each aging condition. The corresponding plot 

is shown in Fig. 6.4. It shows that the volume fraction of reverted austenite increased with the 

increase in holding time and eventually reached an equilibrium condition. At low temperature 

(such as 560 °C and 640 °C), there was no γG2 present in maraging steel in spite of long holding 

time. The volume fraction of γG1 and γL increased gradually with increased holding time at aging 

temperature of 560 °C and attained equilibrium volume fraction of 8.6% and 3.8% at 3 h, 

respectively. At higher aging temperature of 640 °C, the growth of γG1 and γL was higher when 

the holding time was increased, and the equilibrium volume fraction for 3 h was different. The 

equilibrium volume fraction of γG1 decreased from 8.6% to 6.7%, while the equilibrium volume 

fraction of γL increased significantly from 3.8% to 9.4% (Table 6.1). When the aging temperature 

was 700 °C, the initial volume fraction of γG1 and γL was higher, with presumably high growth 

rate. The γG2 was absent at low holding time of 6 s and 60 s. However, γG1 and γL decreased and 

converted to γG2 with the holding time of 600 s (Table 6.1). At equilibrium condition, γG1 and 

γL totally disappeared, while the volume fraction of γG2 was increased to 39.6%. 
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Table 6. 1 The volume fraction of reverted austenite at different aging conditions 

Time 

Temperature /γ fraction (%) 

560 °C 640 °C 700 °C 

fγG1 fγL fγG2 fγG1 fγL fγG2 fγG1 fγL fγG2 

6 s 0.2 0 -- 0.8 0.2 -- 1.6 1.4 -- 

60 s 1.8 0.6 -- 2.5 1.3 -- 3.8 2.6 -- 

600 s 2.7 1.2 -- 3.4 3.3 -- 2.7 2.4 15.5 

1 h 4.6 2.4 -- 4.8 5.8 -- 0.9 1.3 33.8 

3 h 8.6 3.8 -- 6.7 9.4 -- -- -- 39.6 

Note: fγG1 – volume fraction of granular reverted austenite, fγL - volume fraction of lamellar reverted 

austenite, fγG2 - volume fraction of globular reverted austenite. 

 

 

Figure 6. 4 Volume fraction of reverted austenite at different aging conditions (a) 560 °C, (b) 

640 °C and (c) 700 °C 
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In summary, there was a significant difference in the morphology of reverted austenite at 

different aging temperatures and holding time. This is a result of competition between the 

nucleation rate of reverted austenite and its growth rate. Fig. 6.5 shows a schematic diagram of 

reverted austenite evolution as a function of aging temperature and time. It can be seen that at low 

aging temperature (560 °C) and short holding time (60 s), only γG1 occurs along the prior-austenite 

grain boundaries. With the increase of aging temperature (600 °C) and holding time (600 s), γG1 

also begins to form along martensite packet/sub-grain boundaries. Then the initial γL forms in the 

martensite block and grows with the increase of holding time. At these stages, the nucleation rate 

of reverted austenite is lower than the growth rate. Hence it forms different morphologies, namely, 

γG1 and γL, and grows rapidly with different orientations. While at the high temperature (700 °C) 

and long holding time (3 h), the nucleation rate of reverted austenite is significantly higher than 

the growth rate at high temperature, such that γG1 and γL convert together to γG2 before they 

grow with different morphologies, as shown in the last stage of Fig. 6.5. 
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Figure 6. 5 Schematic diagram of reverted austenite evolution with the increase of aging 

temperature and holding time. 

In order to further elucidate the impact of formation behavior of different morphology of 

reverted austenite at different aging conditions, texture and Schmid factor were analyzed, as shown 

in Fig. 6.6. It can be seen that at low aging temperature, the matrix had a strong texture (Fig. 6.6a1). 

With the increase of aging temperature, the texture of matrix became weak (Fig. 6.6a1-6c1), 

because of increased transformation from martensite to reverted austenite. The Schmid factor 

images show that more and more grains tend to have a Schmid factor value of 0.5 with the increase 

of aging temperature (Fig. 6.6a2-6c2). This implies that the material can be easily deformed, which 
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is beneficial to ductility and toughness. It is known that reverted austenite decreases strength and 

increases toughness because of its intrinsic soft phase compared with martensite. However, γG1 

at grain boundaries corresponds to diffusional transformation and has low density of dislocations. 

While γL in the matrix corresponds to shear diffusionless transformation and inherits high density 

of dislocations and K-S orientation relationship with the matrix [23]. The presence of γG1 at grain 

boundaries is harmful to toughness and γL in the matrix is beneficial to toughness in maraging 

steel and was discussed by us in our recent studies [8,18,23]. As regards γG2, it was converted 

from γG1 and γL as a large grain size, which exhibited soft feature of austenite. Thus, we 

underscore that it is important to consider the different morphology of reverted austenite when 

discussing the mechanical behavior. 
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Figure 6. 6. 001α pole figures and Schmid factors of matrix with (a) 560 °C, 1 h, (b) 640 °C, 1 h 

and (c) 700 °C, 1 h. 
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6.4  CONCLUSIONS 

Three types of reverted austenite were obtained in maraging steel depending on aging 

temperature and holding time: granular reverted austenite at grain boundaries (γG1), lamellar 

reverted austenite in the Fe-Ni matrix (γL) and globular reverted austenite (γG2) inside the entire 

martensite grain. 

At low temperatures (560 °C and 640 °C), only γG1 and γL were observed in maraging steel, 

irrespective of the holding time. The volume fraction of γG1 and γL increased with the increase of 

aging temperature and holding time. While at high temperature (700 °C), γG2 was absent at short 

holding time, and γG1 and γL decreased with the increase of holding time such that they were 

converted to γG2 at 3 h to equilibrium condition. 

The nucleation rate of reverted austenite was envisaged to be lower than the growth rate at 

low temperature. The reverted austenite formed into different morphologies as γG1 and γL, and 

grew rapidly with different orientations. While based on the morphological observation, the 

nucleation rate of reverted austenite was significantly higher than the growth rate at high 

temperature, such that γG1 and γL converted to γG2. 

The weak texture of maraging steel with high Schmid factor at high aging temperature 

implied that γL and γG2 are the likely reasons for the previously observed superior toughness and 

ductility. 

We underscore that it is important to consider and control the morphology and content of 

reverted austenite, besides other microstructural features to optimize the mechanical behavior.  

6.5  SUMMARY 

We elucidate here the microstructural evolution and formation of reverted austenite in 

cobalt-free maraging steel. Three types of reverted austenite, granular reverted austenite at grain 
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boundaries (γG1), lamellar reverted austenite in the matrix (γL) and globular reverted austenite (γG2) 

were observed in maraging steel, depending on the aging temperature and time. At low 

temperatures (560 °C and 640 °C), only γG1 and γL were observed. While at high temperature 

(700 °C), γG1 and γL decreased with holding time increased and were completely transformed to 

γG2 at equilibrium condition. The observation of three different morphologies of reverted austenite 

were a consequence of competition between the nucleation rate and growth rate of reverted 

austenite at different aging temperatures. The weak texture of maraging steel with high Schmid 

factor at high aging temperature implied that γL and γG2 are the likely reasons for superior 

toughness and ductility. We underscored that it is important to consider and control the morphology 

and content of reverted austenite, besides other microstructural features when interpreting the 

mechanical behavior.  
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Chapter 7 Research of periodic distribution of alloying elements during tempering in a 

multistep partitioned manganese steels 

 

7.1  INTRODUCTION 

Retained austenite (RA) governs strength-ductility combination in the third generation 

advanced high strength steels (AHSS) [40,172-175]. The stability and volume fraction are both 

important for uniform elongation and tensile strength [176], while high stability is critical for high 

fracture toughness [177]. Optimizing the presence of alloying elements in steel is important to 

control the volume fraction and the stability of RA [176, 178]. It is, however, important to consider 

the cost and any difficulty that may be experienced during processing, while tuning the volume 

fraction and stability. 

Medium-Mn steels adopt intercritical annealing to stabilize retained austenite via diffusion 

of C and Mn into austenite [176]. But longer annealing time leads to a significant loss in strength 

because of low alloying content and recovery of dislocation. Quenching & partitioning (Q&P) heat 

treatment provides high strength martensite matrix and RA enriched with carbon [179]. However, 

there is a competitive relationship between diffusion of carbon to RA and nucleation of carbides 

during the partitioning process [180, 181]. High Si (~1.8 wt.%) content is important for Q&P steels, 

which is effective in preventing the formation of carbides and ensures stabilization of RA by 

carbon [182]. Al has as effect as similar to Si in retarding the precipitation of carbides [183, 184]. 

But high content of Al and Si pose a problem. For example, Al added to molten iron increases the 

risk of ladle nozzle blockage [185], while Si influences temper brittleness of medium-carbon steel 

[186]. Thus, there are restrictions on the addition of Si and Al in minimizing the formation of 

carbides or decomposition of RA [187]. 
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7.2  EXPERIMENTAL DETAIL 

The nominal chemical composition of experimental steel was Fe-0.22C-4.88Mn-1.59Al. 

Mn is the primary alloying element in the experimental steel. The reason for higher carbon content 

as compared to our recent study on MSP [188] is to study the effect of carbon on tempering in 

MSP steel. Al was added to inhibit the formation of cementite. Steel was melted in vacuum and 

cast into ingots of ~80 mm thickness. The ingots were homogenized at 1200oC for 2 h, and hot 

rolled to 12 mm thick strip using several passes with minimum reduction of 20% per pass.  

The Ac1 and Ac3 temperature for the experimental steel were determined by Thermol-Calc, 

Ac3=860 oC Ac1= 575 oC. Higher austenization temperature was used to obtain large martensite 

lath. Heat treatment details are listed in Table 1. Lower flash temperature was used to control 

austenization and partitioning of alloying elements. The experimental samples are referred based 

on tempering time (15 min, 30 min, 1 h and 2 h) at 300oC, which was used to study the 

microstructural evolution of general quenched (Q) and multi-step partitioning (MSP) quenched 

steels. 

The general quenching tempering (QT) process consisted of austenization at 960oC for 30 

min and water quenched, followed by tempering at 300oC for 30 min. The multistep partitioning 

process (MSP) involved austenization at 960 oC for 30 min and water-quenched (Q), intercritical 

annealing at 650 oC for 6 h and quenching in water (L), reheating to 900oC (at heating rate of 

10oC/s) and then water-quenched (Q) (referred as flashing process-F), and last step of tempering 

at 300oC for 30 min, followed by cooling in air (T). The reasoning for these steps in the MSP 

process are the following: Austenization and quenching provides a predominately martensite lath 

matrix, intercritical annealing enriches retained austenite with C and Mn, while annealed 

martensite or ferrite is depleted in C and Mn. The aim of flashing process is to obtain martensite 
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and retained austenite during austenitization, and on flash cooling martensite transformation 

occurs. It may be noted that during the small duration of the flash process, Mn is enriched in 

retained austenite and bestows stability to austenite, while C diffuses from austenite to the depleted 

martensite region, increasing strength [188]. 

The primary objective of tempering is to enrich retained austenite once again with C and 

relax the internal stress in the matrix. In summary, the MSP process involved the following 

characteristics: (a) enrichment of retained austenite with C and Mn, (b) diffusion of C to the 

depleted annealed martensite, (c) second time enrichment of retained austenite with C. Considering 

the higher solubility of Al in BCC-Fe in relation to FCC-Fe, the diffusion of Al is opposite to that 

of Mn and C. 

Table 7. 1 Heat treatment of samples conventional quenching and tempering (QT) and multistep 

partitioning-quenching and tempering (MSP-QT) 

Samples Heat treatment 

Q 960oC/30 min quenched in water (Q) 

QT Q + 300oC/30 min cooling in air (T) 

MSP-Q Q + 650oC/6 h cooling in air (intercritical annealing: L) + 

1900oC/6s cooling in water (flashing: F)   

MSP-QT QLF + 300oC/30 min cooling in air (T) 

Q: quenching; T: tempering; L: intercritical annealing step in multi-step partitioning (MSP) 

process; F: flashing in MSP process. 

Tensile samples were machined parallel to the rolling direction according to the ASTM 

standard, and tested at room temperature using WE-300 uniaxial tensile test machine. Volume 
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fraction of austenite was determined by X-ray diffractometer (XRD) using Cu-Kα radiation. The 

volume fraction of austenite (VA) was calculated using equation [183]: 

 ( )    1.4  /    1.4VA I I I  = +
 

(7.1) 

where Iγ is the integrated intensity of austenite (200)γ, (220)γ and (311)γ peaks and Iα is 

the integrated intensity of (200)α and (211)α peaks.  

Scanning electron microscopy (SEM) was carried out after mechanical polishing and 

etching with 3% nital to observe the microstructure. Transmission electron microscopy (TEM) was 

carried out using thin foils that were prepared by cutting thin slices from the steel samples and 

grinding to ~50 μm in thickness. 3 mm in diameter foils were punched and electropolished using 

10% perchloric acid in ethanol. 

7.3  RESULTS AND DISCUSSION 

7.3.1  Mechanical properties 

Mechanical properties and engineering stress-strain plots are presented in Fig. 7.1. High 

strength and low elongation were obtained after quenching (ultimate tensile strength (UTS) 1564 

MPa, yield strength (YS) 1070 MPa, uniform elongation (Eu) 5.0% and total elongation (Et) 

10.5%). After tempering at 300 oC for 30 min, the UTS decreased to 1381 MPa and Et slightly 

decreased to 9.5%, while, YS and Eu were similar to the quenched steel.  

Steel MSP-Q had relatively lower strength than steel Q, (YS 493 MPa, TS 1125 MPa), but 

the elongation was significantly greater than steel Q (Eu 17.4% and Et 20.9%). The YS of steel 

MSP-QT increased to 694 MPa and UTS decreased to 1018 MPa, while Eu and Et of steel MSP-

QT decreased to a small extent on tempering. 

As presented in Fig. 7.1, high strength and low elongation were obtained after conventional 

quenching and tempering. But high strength and excellent elongation were obtained in the MSP-
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QT process. The uniform elongation of MSP steel was ~2.5 times greater than the general quenched 

and tempered (QT) steels.  

 

Figure 7. 1 Engineering stress-strain curves of experimental steels. 

 

7.3.2  Microstructure 

The microstructure, as imaged by SEM, is presented in Fig. 7.2. Lath-like martensite with 

high density of dislocations was obtained after quenching (Fig. 7.2a and 7.3a) and 3.9% retained 

austenite was measured by XRD (Fig. 7.4a). Carbides were noted at the lath boundary (indicated 

by arrow in Fig. 7.2b) and insides of martensite lath (Fig. 7.3b) in steel QT after tempering at 

300oC for 30 min. Lath-like microstructure was also observed in steel MSP-Q (Fig. 7.2c, 7.3c), 

together with some ferrite (white region with dislocations in Fig. 7.3c). Lath martensite (with high 
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density of dislocations appeared gray in Fig. 7.3c), twin martensite, ε martensite and retained 

austenite were present in MSP-Q. Twin martensite, ε martensite and retained austenite were present 

together (as dark regions in Fig. 7.3c) and was difficult to delineate in our TEM because of ultra-

refine microstructure. However, they were identified by selective area diffraction of the circled 

region in Fig. 3c and is presented in Fig. 3e. 30.0% retained austenite was obtained in steel MSP-

Q and decreased to 24.7% after tempering at 300oC for 30 min. However, there were small 

differences in morphology between MSP-Q and MSP-QT (Fig. 7.3(c, d)). Carbides and recovery 

of dislocations were not observed in steel MSP-QT (Fig. 7.3d).  

 

Figure 7. 2 SEM micrographs for different heat treatment conditions. (a) Q, (b) QT, (c) MSP-Q, 

(d) MSP-QT 
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Figure 7. 3 TEM micrographs of experimental steel corresponding to different heat treatment 

conditions (a) steel Q, (b) steel QT, (c)steel MSP-Q, (d) steel MSP-QT and (e) select area 

diffraction of circle in (c), (b1) dark field images of precipitates in the marked region in (b). 
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7.3.3  Influence of tempering on microstructure 

The remarkable difference between the two tempered steels (QT and MSP-QT) was the 

presence of carbides (Fig. 7.2b) in QT steel. However, insignificant change in the microstructure 

was observed in steel MSP-QT (Fig. 7.2(b, d)). To further study the influence of tempering on 

microstructural evolution, MSP-Q steel was tempered for 15 min/30 min, 1 h and 2 h and presented 

in Figs. 7.5 and 7.6.   

Based on the XRD data (Figs. 7.4a), 3.9% retained austenite was obtained after quenching 

(steel Q), which decreased to near 0% after tempering at 300oC for 15 min. While, ~30.0% retained 

austenite was obtained in steel MSP-Q, which increased to 34.8% after tempering at 300oC for 15 

min and decreased to 24.7%-27.0% on prolonged tempering for 30 min-2 h (Fig. 7.4b).  

The microstructure of quenched and tempered steels is presented in Fig. 5. Carbides (white 

elongated particles in Fig. 7.5) were observed after tempering for 15 minutes at grain boundaries 

and inside martensite. The carbides coarsened with prolonged tempering time. In contrast, majority 

of retained austenite maintained lath-like morphology in MSP quenched and tempered steels after 

tempering at 300oC for 2 h. No carbides were observed in SEM on tempering for 15 min in MSP-

Q steel, and few carbides were noted in tempered martensite after tempering for 30 min. These 

carbides became coarse and more carbide precipitation occurred with the increase of tempering 

time.  
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Figure 7. 4 (a) XRD curves of experimental steels and (b) volume fraction of retained austenite 

in experimental steels. 
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Figure 7. 5 Microstructure of conventional quenched and tempered steel with tempering time. (a, 

b) 15 min, (c, d) 30 min, (e, f) 1 h and (g, h) 2 h. 
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Figure 7. 6 Microstructure of MSP quenched and tempered steel with tempering time. (a, b) 15 

min, (c, d) 30 min, (e, f) 1 h and (g, h) 2 h. 
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7.4  DISCUSSION 

The major differences between QT and MSP-QT steels were carbides and retained 

austenite. The formation of retained austenite and retarding precipitation of carbides in MSP-Q 

steel is critical and is expected to have significant influence on mechanical properties, as discussed 

in the following paragraphs. 

7.4.1  Distribution of alloying elements in the microstructure 

The chemical composition of steel has a significant impact on the formation of carbides, 

especially when Al restricts the precipitation of carbides. A one-dimensional model (normal to the 

lath) of length 300 nm (from the center of austenite lath to the center of ferrite lath) was built and 

calculated by DICTRA to simulate the distribution of alloying elements, and the results are 

presented in Fig. 7.7. Austenization was not completed as predicted by DICTRA simulation, ferrite 

was left in the right side of model, which is consistent with the observation of ferrite (or annealed 

martensite) in the microstructure of steel MSP-Q in Fig. 7.3b. 2.25 wt.% Al was enriched in the 

ferrite region, and depleted in the center of austenite. In contrast, Mn and C were enriched in 

austenite but depleted in ferrite. The highest concentration of Mn in austenite was 8.06 wt.%. While 

Mn was periodically enriched and depleted in the microstructure of steel MSP-Q as studied by 

Auger electron spectroscopy (AES) (Fig. 7.7). Based on the above observations, it is believed that 

the distribution of alloying elements results in the formation of lath martensite and retained 

austenite, where the lath martensite is enriched in Al and depleted in Mn, and retained austenite is 

enriched in Mn and depleted in Al. The distribution of Mn and Al was maintained during tempering. 

The composition of local microstructure in Fig. 7.6d (EDS 1, 2 and 3) as determined by EDS, was 

0.86Al-5.61Mn wt.% in retained austenite and 1.38Al-3.32Mn wt.% in the tempered martensite 

region.  
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While the local chemical composition in the precipitation region of carbides was 1.26Al-

4.64Mn wt.%, which is close to the bulk composition. It is suggested that the thickness of lath 

varied with location, and the distribution of Mn and Al in small size lath was more uniform, 

because homogenization of Mn and Al can be accomplished when the diffusion distance is small. 

But the precipitation of carbides in these regions was similar to the conventional quenched 

microstructure. Carbides (Fig. 7.5) were well developed in conventional quenched steel (Fig. 7.6). 

Here, there was a competing affect, where small-size carbides in martensite dissolve and carbides 

at grain boundaries coarsen.  

The competition of carbon in steel MSP-Q during tempering was between carbides and 

retained austenite. Considering the presence of retained austenite in steel MSP-Q, carbon was 

partitioned into retained austenite at the beginning of tempering and led to stabilization of retained 

austenite and possible growth of retained austenite, which explains the increase in the volume 

fraction after tempering for 15 min (Fig. 7.4). After the nucleation of carbides between retained 

austenite and martensite, coarsening of carbides occurred by diffusion of carbon from retained 

austenite to the precipitation region. It is clear that carbon diffusion is easier in retained austenite 

as compared to the dissolution of carbides, which can lead to coarsening of carbides.  

The coarsening rate of carbides was faster in steel MSP-Q during tempering. However, 

~25% retained austenite continued to be present in the matrix (Fig. 7.4). This is expected to inhibit 

nucleation of carbides between martensite and retained austenite. It is certain that carbides 

nucleated at martensite rather than at retained austenite. Al was enriched in the center of martensite 

and deceased at the phase boundary of martensite and retained austenite. Furthermore, minimum 

carbon in the martensite region after partitioning of carbon to retained austenite also restricted the 

nucleation of carbides. Therefore, enriched segregation of Al and depletion of carbon at the 
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nucleation site of carbides effectively inhibited the nucleation of carbides. Retained austenite 

restricted nucleation of carbides and resulted in high stability during tempering, which is beneficial 

in enlarging the tempering window from the perspective of application.  
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Figure 7. 7 Concentration of alloying elements as estimated from DICTRA (a) carbon, (b) Mn 

and (c) Al. 
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Figure 7. 8  (a) Surface morphology of electro-polished MSP-Q steel and (b) distribution 

of Mn along the lath structure as determined by AES. 
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7.4.2  TRIP effect of retained austenite 

Retained austenite not only influences to the precipitation behavior of carbides, but also 

significantly impacts mechanical properties. In order to study the TRIP effect of retained austenite 

in steel MSP-QT, true strain-stress curves and work hardening index are plotted in Fig. 9. The 

stress–strain behavior was analyzed using Hollomon analysis and is given by Eq. (7.2) [189]: 

nK =                                  (7.2) 

where σ is the true stress, ε is the true strain, K is constant, n is the work hardening index. 

Eq. (7.2) is represented in terms of instantaneous work hardening index (n*) by: 

* ln / lnn d d =                              (7.3) 

There is a significant difference between steel QT and steel MSP-QT as presented in Fig. 

9. The instantaneous work hardening index of steel QT decreased rapidly with true strain to near 

0, but the instantaneous work hardening index of steel MSP-QT maintained a relative lower 

decreasing rate to ~0.125 in stage I (Fig. 7.9) compared to steel QT and was nearly constant at 

~0.125 in stage II. The high work hardening index in stage II greatly contributed to uniform 

elongation. However, the valley in the work hardening index [190], generally represents significant 

work hardening when retained austenite transforms to martensite. The low value of instantaneous 

work hardening index before martensite start transformation is because the stability of retained 

austenite is relatively high when alloying elements are enriched in austenite. While TRIP effect 

was present in stages I and II, but the TRIP behavior was quite different with the commonly 

observed effect in TRIP-aided steels, such as Q&P steel and intercritical annealed steels. The high 

rate of n* before stage I is attributed to the initiation of dislocation movement after yielding. 

Subsequently, TRIP occurs in stage 2 and contributes to work hardening. 

Considering the unique distribution of alloying elements in austenite of steel MSP-Q, the 
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martensitic transformation start temperature was calculated based on the following equation [191] 

and is presented in Fig. 7.10, 

Ms =539 - 423C – 30.4Mn – 7.5Si + 30Al                                  (7.4) 

The Ms temperature was highest at the phase boundary, which is opposite to conventional 

Q&P steels and intercritical annealed steels, because the alloying elements are segregated at the 

phase boundary or distributed uniformly in austenite. We know that the phase boundary is a 

potential site for nucleation of martensite, because of high local free energy and low interfacial 

energy. The martensite transformation initiated at the phase boundary of ferrite and austenite 

progressed in the interior of austenite or parallel to the austenite lath. Thus, 30% retained austenite 

was left at room temperature because of chemical stability and mechanical stability induced by 

fresh martensite. The volume fraction of retained austenite was reduced to 24.7% after tempering 

at 300oC for 30 min, while carbon was enriched in 24.7% retained austenite and enhanced its 

stability. The concentration of Mn and Al can be ignored because of low diffusion at 300oC. Thus, 

the retained austenite inherited the distribution of Mn and Al in austenite, which dominated the 

heterogeneous distribution of stability of retained austenite. Heterogeneous stress concentration 

and heterogeneous stability of retained austenite led to martensitic transformation during the early 

stage of deformation, and greatly contributed to work hardening index in stage I.  
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Figure 7. 9 True stress-strain curves and work hardening index of experimental steels. 
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Figure 7. 10 Martensite start temperature in retained austenite. 

 

7.5  CONCLUSIONS 

Multi-step partitioning (MSP) process had unique effect in tuning the distribution of 

alloying elements such that there was periodic distribution of high Mn-low Al and low Mn-high 

Al region in MSP quenched steel (MSP-Q). 

The high Mn and low Al in retained austenite of MSP quenched steel contributed to the 

stabilization of retained austenite by carbon enrichment during the early stage of tempering. The 

high concentration of Al in the martensite region restricted the nucleation of carbides and promoted 

carbon partitioning to retained austenite. 

The growth of carbides in martensite during tempering, is governed by the competition of 

carbon between carbides and retained austenite, which led to faster coarsening rate of carbides 

compared to conventional quenched and tempered process. 
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The periodic distribution of Mn and Al, which led to low stability of retained austenite at 

the phase boundary resulted in a unique TRIP effect in MSP quenched and tempered steel with 

high work hardening rate during the early stage of deformation. 

7.6  SUMMARY 

In this chapter, we describe here the periodic distribution of alloying elements in MSP. To 

accomplish the objective, 0.2C-5Mn-1.6Al steel was subjected to two types of heat treatment, 

general quench-temper and MSP quench-temper heat treatment with the aim to delineate the 

influence of MSP quenching on the precipitation behavior of carbides during tempering.  
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Chapter 8 Conclusion and future work 

8.1  CONCLUSIONS 

An excellent combination of strength and toughness was obtained in the optimized 820 oC 

solution heat treated steel. The ultimate strength and static toughness were 1858 MPa and ~110 

MJ·m-3 at the temperature where the density of nanoscale precipitates (~2-3 nm) is 

highest( 2.3×1024 m-3 ) with minimal lattice misfit of less than 1%.The precipitation strengthening 

was the dominant strengthening mechanism in T-250 maraging steels. the highest density of 

nanoscale precipitates and lowest lattice misfit led to work hardening at a later stage (high strain) 

and a longer work hardening period, which contributed to increase in the elastic deformation and 

uniform deformation regimes. 

The best combination of high-strength and high-toughness was obtained at aging 

temperature of 520 ℃, without sacrificing ductility. The ultimate strength and static toughness at 

this peak aged condition were 1850 MPa and 125.4 MJ·m-3, respectively. The microstructural 

constituents in maraging steels were strongly influenced by the aging temperature. 

With increase of aging temperature, the preferred orientation of matrix was weakened. the 

size of nanoscale precipitates was increased from ~3 nm to ~10 nm. The characteristics of 

precipitation (size, density and interparticle spacing) at different aging temperatures governed the 

strengthening contribution and mechanism. 

Multiple deformation processes occurred during tensile deformation. The high ductility of 

ultrahigh strength cobalt-free maraging steel is attributed to cumulative contribution of glide of 

dislocations on habit planes that transformed the morphology of lath-type martensite, progressive 

formation of jogs and kinks across the martensite lath, stacking fault and twinning. The above 

contributions to ductility are in addition to the significantly reduced elastic interaction between the 
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low lattice misfit nanoscale precipitates and dislocations that reduces the ability for crack initiation 

at the particle-matrix interface. 

Three types of reverted austenite were obtained in maraging steel depending on aging 

temperature and holding time: granular reverted austenite at grain boundaries (γG1), lamellar 

reverted austenite in the Fe-Ni matrix (γL) and globular reverted austenite (γG2) inside the entire 

martensite grain. The nucleation rate of reverted austenite was envisaged to be lower than the 

growth rate at low temperature. The reverted austenite formed into different morphologies as γG1 

and γL and grew rapidly with different orientations. While based on the morphological 

observation, the nucleation rate of reverted austenite was significantly higher than the growth 

rate at high temperature, such that γG1 and γL converted to γG2. 

Multi-step partitioning (MSP) process had unique effect in tuning the distribution of 

alloying elements such that there was periodic distribution of high Mn-low Al and low Mn-high 

Al region in MSP quenched steel (MSP-Q). The periodic distribution of Mn and Al, which led to 

low stability of retained austenite at the phase boundary resulted in a unique TRIP effect in MSP 

quenched and tempered steel with high work hardening rate during the early stage of 

deformation. 

8.2  FUTURE WORK 

In maraging steel research, the kinetic origin of nanoscale twins was observed, and 

hypothesis was proposed meanwhile due to lack of direct evidence we cannot solidified it. In-situ 

TEM or other technique which can provide direct evidence is required for further research. Since 

experimental data has been sufficiently acquired, we will continue in thermodynamic simulation 

of deformation behavior and interaction between precipitates and dislocation to further facilitate 
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the understanding in strengthening mechanism. Reverted austenite in high aging temperature is 

observed and its essential for further improvement of ductility of maraging steel. 

In medium manganese steel research, MSP method is well developed, and we have gained 

in depth understanding in partition of alloy elements. Future research will focus on more complex 

alloy design and higher carbon content to achieve better mechanical properties.  
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