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Abstract 

    The family of insulin- like growth factor 2 mRNA binding proteins (IMPs) contains three 

members: IMP1, p62/IMP2 and IMP3. All these proteins are oncofetal proteins, expressed 

during embryogenesis and lost in most tissues in adults. However, p62/IMP2 were found 

overexpressed in various cancers but its function in carcinogenesis remains to be investigated. 

Our previous studies found that p62/IMP2 was not only overexpressed in hepatocellular 

carcinoma (HCC) tissues, but also overexpressed in HCC cell lines. To explore the biological 

roles of p62/IMP2 in HCC progression, p62/IMP2 was knockout in two p62/IMP2 positive HCC 

cell lines (SNU449, HepG2). Due to the low expression level of p62/IMP2 in SNU449, we 

overexpressed p62/IMP2 in this cell line. The results from both of wound healing assay and 

transwell migration assay indicated that overexpressed p62/IMP2 in both cell lines could 

promote the cell migration significantly (p<0.05).  On the contrary, the lack of p62/IMP2 

expression can reduce the cell migration ability (p<0.05).  After analyzing the HCC expression 

data from Gene Expression Omnibus (GEO), the high and low p62/IMP2 expression groups were 

set up based on the median expression of p62/IMP2 from GSE 14520. CTNNB1 was selected in 

differential gene expression analysis with a cancer-metastasis related gene profile.  

Subsequently, western blotting analysis was performed to explore the effect of overexpressed 

p62/IMP2 on Wnt/β-catenin pathway-related proteins, and we found that overexpressed 

p62/IMP2 can significantly enhance the expression of Wnt and β-catenin, whereas inhibiting the 
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expression of Gsk3b and E-cadherin. A Wnt/β-catenin signaling pathway inhibitor XAV939 was 

used for confirming the results. Nevertheless, although β-catenin expression dramatically 

reduced in p62/IMP2 knockdown SNU449 cells, their colony formation ability was still 

enhanced by activating Wnt5-induced non-canonical Wnt signaling. In addition, we validated 

our results at the phosphorylation level by using Wnt pathway phosphoproteome chips. In 

summary, our data showed that overexpressed p62/IMP2 can enhance the migration ability of 

HCC cells via activating Wnt/β-catenin. 
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Chapter 1 Background and significance 

1.1 Hepatocellular Carcinoma 

1.1.1 Epidemiology and etiology 

    Liver cancer is one of the most frequently occurring malignant tumors in the world, which 

has a high mortality rate. Liver cancer can be divided into two major categories: primary liver 

cancer and secondary liver cancer. The cancer which originates and grows in the liver cells is 

called primary liver cancer. The liver metastasis transferred from cancer originated in other 

organs of the body is called secondary liver cancer. [1].  

    Primary liver cancer is the sixth most common cancer (about 850,000 new cases each year) 

and is the second leading cause of cancer-related deaths (about 800,000 annually) in the world 

[2,5]. Hepatocellular carcinoma (HCC) is one of the most common primary liver cancers, which 

accounts for about 90%. In the United States, there were estimated 40,710 new cases of primary 

liver cancer, of which HCC accounts for three quarters of all cases [3]. The ratio of men to 

women for HCC in global distribution is 2.4, and the most common age when HCC is diagnosed 

is usually between 30 and 50 years [4]. HCC occurs mainly in developing countries, including 

China, Mongolia, Southeast Asia, and sub-Saharan West Africa and Eastern Africa. With 

exception of Japan, Italy and France, the incidence of HCC in developed countries is low [2,5]. 

However, it is worth noting that from 1980 to the present, the incidence of liver cancer has 

increased by 43% in the United States and has increased at a rate of 4% per year [6]. 
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Figure 1. The global burden of HCC 

    HCC occurs predominantly in patients with liver cirrhosis [7], so risk factors often include 

factors that may contribute to chronic liver disease that leads to cirrhosis. The known risk factors 

include hepatitis B [8] or hepatitis C infection [9], alcohol abuse [10], aflatoxin [11], iron 

overload (hemochromatosis) [12], nonalcoholic steatohepatitis [13] and type 2 diabetes [14]. The 

risk factors for HCC are also different in different regions. China is a high-risk country for HCC, 

and chronic hepatitis B infection is found in 90% of cases [5,8]. However, in Japan, chronic 

hepatitis C is associated with 90% of cases of HCC. At the same time, another important factor 

leading to HCC in these areas is aflatoxin, which is widely found in East Asia and Southeast 

Adapted from Laursen, L. A preventable cancer. Nature 516, S2–S3 (2014), Nature Publishing 

Group 

file:///D:/software/Dict/7.5.0.0/resultui/dict/
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Asia [11]. In Europe and the United States, hepatitis C and alcohol abuse are the most important 

factors leading to HCC [9]. 

    The etiology of HCC has not yet been fully elucidated.  Many studies indicated that HCC 

is caused by the accumulation of genomic mutations. In one HCC nodule, the coding region 

within the genome was accumulated with an average of 40 functional somatic mutations [15, 16]. 

This can lead to the activation of several cancer-related pathways in HCC. First, the 

WNT-β-catenin pathway is frequently activated in patients with liver cancer [17, 18], triggering 

a more aggressive HCC phenotype [104]. The mutations in its associated gene, such as CTNNB1, 

Axin1, APC, and ZNRF, are also frequently observed in patients with HCC [15]. Second, RB1, 

CDKN2A, and other tumor suppressor genes are frequently founded mutated in HCC. 

Inactivation of p53 and alternations in cell cycle also occur frequently in HCC [15, 19]. The third, 

RAS-RAF-MAPK and PI3K-AKT-mTOR pathways are also frequently activated in HCC [15]. 

Studies have shown that they are associated with FGF3, FGF4 and FGF19 amplification, and the 

inactivation of TSC1, TSC2, PTEN, RPS6K3, RSK2. In addition, mutations are also closely 

related to telomerase overexpression. Two mutations, located at the nucleotide positions 124 and 

146 upstream of the ATG, suggest that they can generate new transcription factor binding sites 

and regulate Telomere reverse transcriptase mRNA expression. In 60% of HCC cases, the TERT 

promoter contains mutations, whereas telomerase is overexpressed in 90% of HCC cases [20].  
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1.1.2 Staging, Diagnosis and Treatment 

    The traditional methods for diagnosing HCC include imaging examination and blood tests. 

The majority of patients with HCC develop from chronic liver disease and cirrhosis, so related 

high-risk groups are recommended to use ultrasound for screening. In addition, CT scans and 

MRI can be used to diagnosis HCC [21,22]. The Liver Imaging Reporting and Data System 

(LI-RADS) is applicable to HCC for high risk groups. LI-RADS can be used regardless of the 

presence of nodules in previous ultrasound or other imaging check. If the mass has been treated, 

it should be classified as LR-treated. Benign and high-possibility benign lesions were classified 

as LR-1 and LR-2, respectively. If the lesion appears to be a malignant tumor such as 

cholangiocarcinoma, it should be classified as LR-M (possibly malignant tumor but not 

specifically HCC). In this case, biopsy is required for confirmed diagnosis. If there is a clear vein 

thrombus, regardless of whether the primary tumor can be observed, it should be classified as 

LR-5V. This can be diagnosed as a malignant lesion. Although intravascular tumor emboli are 

most common in HCC, intrahepatic cholangiocarcinoma may also be accompanied by atumor 

emboli. Based on specific criteria, lesions can also be classified as LR-3, LR-4, LR-5 [23]. 

   Blood tests are also an essential procedure for the early diagnosis of HCC. At present, 

alpha-fetoprotein (AFP) is the most widely used serological marker in the diagnosis of HCC, but 

its specificity is not very high [24]. Therefore, AFP is not an optional biomarker for screening 

HCC. In recent years, research on autoantibodies to tumor-associated antigens (TAAs) is 

becoming a challenging area in the early diagnosis of HCC. As early as the 1960s, Robert W. 
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Baldwin showed that the human immune system can produce autoantibodies in the early stage of 

cancer development. A widely accepted viewpoint in cancer research field is that mutations, 

ectopic or recombination can occur early in the development and progression of tumor cells. 

During tumorigenesis and progression, specific protein products which were excreted by tumor 

cells, or released, shed by necrosis of cells are recognized by the immune system to produce 

antibodies against the antigen, which is called tumor-associated autoantibodies [25-27].  Many 

new TAAs, such as CAPERα/HCC1.4 [28], p62/IMP2 [29] and CIP2A/p90 [30], have been 

discovered with certain clinical values in the early diagnosis of HCC. 

Unlike the TNM staging system, which is used for most tumors, the Barcelona Clinic Liver 

Cancer (BCLC) staging system is used for HCC [31]. The introduction of this system will help 

assess the patient's condition, provide accurate treatment options and predict patient outcomes. 

The clinical staging system for BCLC liver cancer was proposed by Llovet in 1999 and later 

revised by the American Association for the Study of Liver Diseases （AASLD) in 2005 [24]. 

Table 1 shows the BCLC staging and the corresponding treatment plan. 

Table 1. BCLC staging and preferred treatment plan 

Stage  Disease condition description Preferred treatment plan 

Stage 0 (very early stage) The patient is in good 

condition and has a single 

tumor with a diameter of less 

than 2 cm. His liver function 

is well maintained. 

Surgery 

Ablation for patients who are 

not suitable for surgery [32] 
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Stage A (early stage) The patient is in good health, 

with a single to three tumor 

nodules less than 3 cm in 

diameter, with good liver 

function maintenance 

Liver transplantation/surgery 

Ablation for patients who are 

not suitable for surgery [32] 

Stage B (intermediate stage) Cannot be surgically 

removed, the patient has 

multiple nodular 

asymptomatic tumors, no 

invasive growth, and good 

physical condition 

Transcatheter arterial 

chemoembolization (TACE) 

[33] 

Stage C (advanced stage) Cannot be surgically 

removed, patients have 

cancer-related symptoms 

affecting physical state, 

symptomatic tumors, portal 

vein invasion, and 

extrahepatic spread (lymph 

node metastases) 

Sorafenib [34] 

Stage D (end-stage) Cannot be surgically 

removed, patients have 

extensive metastases, and 

their physical condition is 

very poor 

Palliative care [32] 

    Just a few years ago, sorafenib was the only drug that proved effective for advanced HCC 

treatment [34]. In recent years, with the in-depth study of the tumor microenvironment, 

researchers have discovered that the accumulation of a large number of gene mutations leads to 

the production of multiple antigens in occurrence and development of HCC, which can be 

recognized and specifically killed by the immune system [35]. At the same time, HCC cells can 

evolve, thereby to evade the body's immune surveillance through a variety of mechanisms. 
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Studies have confirmed that persistent viral infections and tumor neoantigen stimulation result in 

the formation of immunosuppressive states in the liver and promote development of HCC [36]. 

Cell populations with immunosuppressive functions such as regulatory T cells (Treg) and 

myeloid-derived suppressor cells (MDSC) are significantly up-regulated. In addition, the 

continuous exposure of antigens causes the tumor-specific lymphocyte surface to over-express 

inhibition signaling molecules, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4), 

programmed cell death 1 (PD-1), lymphocyte activation gene-3 (LAG-3), consequently leaving 

T cells in a state of disability [37, 38]. Therefore, against the mechanism of immunosuppression 

in HCC, reverse the disability state of T cells and exert their anti-tumor effect is an important 

direction of HCC immunotherapy. 

PD-1/PD-L1 

   PD-1 is a member of the CD28 superfamily that binds to ligands PD-L1 or PD-L2 and 

transmits a co-suppressor signal to T cell receptors [39]. It is mainly expressed on the surface of 

activated T cells and can also be expressed on B cells, Treg cells, NK cells and MDSC. Its 

ligands PD-L1 and PD-L2 are mainly expressed in macrophages, monocytes and other 

inflammatory cells [40]. 

Activation of T cells requires two signals, the first signal from the specific binding of TCR 

and antigen, and the second signal from the activation of accessory molecules such as 

CD80/CD28 [41]. When PD-1 on the surface of T cells binds to ligand, cytoplasmic tyrosine in 
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immuno-receptor tyrosine switch motifs (ITSM) domain of PD-1will be phosphorylated. Then it 

can recruit SH2 domain-containing protein-tyrosine phosphatase-2 (SHP-2) to dephosphorylate 

ZAP-70 and PI3K in the downstream of TCR and CD28, blocking the activation of T cells [42]. 

PD-1 can be expressed under the action of inflammatory mediators such as IFN-y. IFN-y can 

induce interferon regulatory factor 9 (IRF-9) binding to PD-1 gene promoter, leading T cells to 

transcribe PD-1. At the same time, IFN-γ stimulation also up-regulates PD-L1 expression on the 

cell surface. In the tumor microenvironment, T cells activate and expand into effector T cells by 

recognizing tumor antigens, specifically killing tumor cells, and secreting a large number of 

inflammatory factors such as IFN-y. Prolonged antigen stimulation causes activated T cells to 

overexpress PD-1, leading T cell incapacitation [43]. Most tumor cells escape the attack of 

immune cells in this way [44]. Therefore, the use of blockers to block the interaction between 

PD-1 and PD-L1 can restore T cell activity and kill tumor cells. 

CTLA-4 

   CTLA-4 is a protein receptor also known as CD152. CTLA-4 functioning as an immune 

checkpoint participate in the inhibitory pathways in the immune system, which play an important 

role in self-tolerance. CTLA-4 is produced by Tregs, sharing the same ligands with CD28. In the 

process of activating immune cells, antigen-presenting cells (APC) present antigens to T cells 

and combine with TCRs to generate a first signal for T cell activation, which also need CD28 

bind with CD80/CD86 to generate a second signal. Tregs bind to CD80/CD86 molecules on the 
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T cell surface through CTLA-4, thereby inhibiting the function of effector T cells [45]. 

CD80/CD86 also expresses on the surface of APC. Regulatory T cells induce APC through 

binding of CTLA-4 and CD80/CD86 thereby producing IDO, which also can inhibit the function 

of activated T cells and induces T cell apoptosis [46]. 

1.1.5 The metastasis and Epithelial-mesenchymal transition in HCC 

As much as 90 percent of cancer related deaths can be attributed to metastasis rather than 

primary tumors [47], and HCC is no exception. According to the BCLC staging system, the 

patients with early HCC have a good prognosis, 30%-40% of patients can be cured, and the 

overall survival (OS) is more than 60 months. However, the prognosis of advanced stage patients 

with portal vein invasion and extrahepatic metastases is poor, whose OS is only 11 months [31]. 

Despite the remarkable advances in the research, drug development and clinical treatment plan of 

HCC in recent years, majority of advanced metastatic HCC patients are still facing desperate 

facts that we do not have an effective curable treatment method, but only limitedly extend their 

lives. 

Epithelial-mesenchymal transition (EMT) refers to a process in which epithelial cells are 

transformed into a biological process with a mesenchymal phenotype by a de-differentiation 

procedure [48]. EMT plays an important role in the development of many tissues and organs in 

embryos [49]. In recent years, many studies have shown that EMT is closely related to fibrosis 

and cancer metastasis. Its main characteristics include the reduced expression of cell adhesion 
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molecules (such as E-cadherin), up-regulated expression of markers of mesenchymal cells (such 

as Vimentin, N-cadherin) and cytoskeletal transformation [50]. Through EMT, epithelial cells 

lose their cell polarity and epithelial phenotypes such as their attachment ability to the basement 

membrane, and therefore can acquire high interstitial phenotypes such as high migration and 

invasion, anti-apoptosis, and ability to degrade extracellular matrix. EMT is an important 

biological process for the ability of epithelial cell-derived malignant tumor cells to gain 

migration and invasion [48]. 

EMT is common in HCC patients. As the most important molecular marker of EMT, 

E-cadherin is down-regulated in 69% of HCC specimens and is associated with intrahepatic 

metastasis and invasion [51]. In patients with metastases, E-cadherin expression was 

significantly lower than the patients without metastasis. 

The emergence of EMT requires a series of complex signaling pathway cooperation which 

are orchestrated by many activated EMT-inducing transcription factors (EMT-TFs). The most 

important EMT-TFs include the SNAI family (Snail and Slug), the Twist family (Twist 1, Twist 2, 

E12 and E47, and the ZEB family (ZEB 1 and ZEB 2) [52]. All these EMT-TFs can repress the 

transcription of E-cadherin by similar mechanisms: to bind with E-boxes which present in the 

E-cadherin promoter. In HCC patients, Snail and Twist overexpression are associated with larger 

tumor volume, increased relapse rate, shorter overall survival. In vitro experiments have 

demonstrated that overexpression of Snail or Twist promotes tumor cell invasion and increases 
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the mesenchymal phenotype of cells [53]. Overexpression of Snail and Twist in Huh7 cells 

inhibits E-cadherin expression and induces EMT phenotypic transformation [53]. Besides 

increasing cell invasiveness, EMT also protects HCC cells from extracellular signal-induced 

apoptosis. For example, EMT can activate epidermal growth factor receptor (EGFR) pathway 

and help HCC cells escape apoptosis induced by transforming growth factor-β1 (TGF-β1) [54]. 

Numerous signaling pathways have been shown to be involved in EMT, including the 

TGF-beta signaling pathway, the Wnt signaling pathway, and the Notch signaling pathway. The 

TGF-β signaling pathway is a key regulator of EMT and a major inducing factor that plays a 

crucial role in development, wound healing, fibrosis and tumors [55]. This pathway is initiated 

by a complex of TGF-β family members with cell surface receptors, which are tetramers 

composed of two type I and two type II transmembrane protein kinase receptors. This binding 

first phosphorylates the TβRII receptor and subsequently activates the TβRI receptor. The 

activated TβRI receptor then recruits and phosphorylates the Smad2 and Smad3 proteins in the 

cell. The phosphorylated Smad2 and Smad3 can form a trimeric complex with Smad4. As the 

Smad trimeric complex are translocated into nucleus, a series of its target gene will be regulated 

by other transcription factors. Smad signaling has been found to regulate EMT transcription 

factors including Snail1/Snail2 [56], ZEB1/ZEB2 [57], and the expression of Twist [58]. In 

addition to the classical Smad signal, TGF-β can also induce EMT through other non-Smad 
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signaling pathways, including Rho-like GTPase [59], PI3K/Akt/Mtor 60], extracellular 

signal-regulated kinase (ERK) [61], p38 [62], and JNK [63]. 

Wnt signaling pathway has been extensively studied in tumor progression in past two 

decades. So far, 19 different Wnt ligands and 11 transmembrane Frizzled receptors (FZD) have 

been found in humans. The binding of extracellular secreted Wnt ligands to FZD and 

low-density lipoprotein receptor related protein, (LRP) 5/6L can initiate canonical Wnt signaling 

pathway (Wnt/β-catenin signaling pathway) and non-canonical signaling pathway (PKC and 

JNK signaling pathway) [64].  

Without Wnt signaling cascade activated, β-catenin is rarely existed in cytoplasm. There is a 

destruction complex consisting of APC, Axin, GSK3, CK1α and PP2A responsible for the 

removal of free cytoplasmic β-catenin [65]. However, while Wnt bind with Fz and LPR5/6, the 

function of degradation of β-catenin by destruction complex will be prevented. The activation of 

Wnt signaling could trigger the translocation of axin and bind with the cytoplasmic tail of LPR6 

which result in the destruction complex loses the ability to bind with β-catenin. In the other way, 

activated Wnt-Fz-LPR5/6 complex can cooperate transduce the signaling to cytoplasm, leading 

the inhibition of GSK3β [66]. The consequences of Wnt signaling pathway activation allow 

β-catenin accumulating in cytoplasm, and finally translocate into nucleus [67].  

     Once Wnt pathway activated, β-catenin could bind with lymphoid enhancing factor/T-cell 

factor, LEF/TCF complex, forming β-catenin/LEF/TCF complex in nucleus. Following, the 
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transcriptional coactivators and histone modifiers, such as Brg1, CBP, Bcl9 and Pygopus will be 

recruited by the β-catenin/TCF complex and drive the Wnt target genes expression [68]. As a 

result, the transcription of cell cycle related gene such as cyclin D1 and c-myc will be activated, 

enhancing the proliferation ability of cells. In addition, a study has found that β-catenin/LEF-1 

complex can down-regulate the expression of E-cadherin. Another research demonstrated that 

this pathway also plays an important role in EMT induced by hypoxia-inducible factor-1α 

(HIF-1α) [69]. 

Notch signaling pathway plays a crucial role in many physiological and pathological 

processes. So far, there are 4 Notch receptors (Notch 1-4) and 5 Notch ligands (Delta-like1,3,4 

and Jagged1, 2) were found. Notch ligands and receptors are transmembrane proteins [70].  

1.2 Insulin like growth factor 2 mRNA binding protein family 

1.2.1 Nomenclature  

    Due to the family members are identified and assigned different functions in different 

biological systems, the nomenclature of the IMPs family in the earlier literature was confusing. 

In the past decade, many synonyms have been used in the literature, including IMP, CRD-BP, 

VICKZ, ZBP, Vg1RBP/Vera, or KOC [71]. The research scientists in this field finally 

discovered that all these proteins belonged to the same RNA-binding proteins (RBPs) family, 

which was so-called insulin-like growth factor 2 mRNA binding proteins (IMPs). Many  studies 

have demonstrated that IMPs could regulate diverse aspects of cell function during development 
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and cancerIn mammals, three IMP paralogs (IMP1-3), also known as insulin-like growth factor 2 

(IGF2) mRNA binding proteins 1, 2 and 3 (IGF2BP1-3) have been identified so far. Some 

studies also showed that IMPs can regulate the translation of IGF2 mRNA through a 

high-affinity binding site [72]. 

1.2.2 Structure of IMPs 

    IMPs are highly conserved, and they share a similar structure. The molecular weights of 

human IMP1, 2 and 3 family members are 63, 66 and 64 kDa, respectively. The identity of the 

overall amino acid sequences approximately is 60-80%. IMP1 and IMP3 are more closely related 

members in this family, with 73% amino acid sequence identity [71]. The genes for encoding 

IMP1 and IMP3 contain 15 exons, and the gene for encoding p62/IMP2 protein contains 16 

exons [73].  

    All three members have 6 characteristic RNA binding modules, including two N-terminal 

RNA recognition motifs (RRMs) and four heteronuclear ribonucleoproteins (hnRNP) 

K-homology (KH) domains in their C-terminal regions (Fig.2). All members of the IMP family, 

regardless of the organism they express, show a high affinity for binding RNA. The association 

with DNA was only reported once for the p62/IMP2 homolog protein Vg1RBP/Vera in Xenopus 

[74]. Due to the lack of highly resolution structural information of the IMPs and their complexes 

with the target RNA, the current analysis of each domain is based on inferences from 

biochemical experiments and structural data from RRM and KH domains in other RNA binding 
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proteins. In vitro studies show that KH domains are mainly responsible for RNA binding [75], 

while the RRM domain is responsible for protein-protein interactions, protein dimerization, and 

stabilization of IMPs-RNA complexes [76]. However, the KH domains could only recognize 

short stretch RNAs with weak binding affinities so that a single domain may not be enough to 

regulate the translation of target mRNAs. Research indicates that human IGF2BP1 KH domains 

3 and 4 form an anti-parallel pseudo-dimer conformation, in which KH3 and KH4 recognize 

their targets through sequence-specific interactions, each in contact with the targeted RNA. Two 

low-affinity interactions can allow KH3 and KH4 to bind to highly specific RNAs and force their 

associated transcripts to adopt a specific conformation [77]. It is worth noting that IMP-RNA 

complexes have a long in vitro half-life, suggesting that IMPs play an important role in the 

formation and maintenance of stable protein-RNA complexes. 

1.2.3 Expression of IMPs 

    In mice, the expression characteristics of the IMP family are biphasic. IMPs were first 

peaked in oocytes and zygotes, and they have another expression peak in embryos from day 10.5 

to day 12.5 [72], then they are continuously reduced till birth. In the second trimester, IMPs 

could be found in most tissues of embryos. They are expressed most in neurons and epithelial 

cells, and they also could be detected in the brain, nasal cavity, zygomatic arch, intestine, tail, 

vertebrae, and skin [78, 79]. 
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    After E12.5, the expression of IMPs is differentiated. In E17.5, p62/IMP2 can still be 

observed in the brain, nasal cavity, lung, liver, intestine and kidney. IMP3 almost disappeared at 

this time; between E12.5 and E16.5, IMP1 expression was only expressed in stem cells with 

poorly differentiated levels in the dorsolateral telencephalon (DMT) [80]. IMP1 and p62/IMP2 

remained at low levels of expression in some organs until birth, whereas IMP3 was almost 

undetectable. Taking into account of the striking different expression in fetal and adult stages, 

IMPs are considered to be oncofetal proteins. 

1.2.4 Physiological functions 

    Studies have shown that IMPs play an important role in embryonic development. Members 

of the IMP family plays an important role in mRNA processing steps, including localization, 

stability, translation, and possible nuclear export [71, 72]. IMP1 deficiency cause defects in the 

development of the intestine in newborn mice, and their size are 40% smaller than normal 

controls [79]. Also, p62/IMP2 deficiency severely affects the development of neural stem cells in 

mice [81]. IMPs do not express or express less in adulthood, but they are found overexpressed in 

many types of cancer.  

    Although this family of proteins was named as IGF2 mRNA binding proteins, IMPs have a 

wide range of binding targets. IMP1 was initially described to be involved in the stabilization of 

c-myc mRNA [82]. IGF2BP2 and IGF2 mRNA both have 3'-UTR and 5'-UTR binding sites, 

which can upregulate its expression and organize its presentation. p62/IMP2 can also organize 
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the degradation of c-myc mRNA through a similar mechanism to increase c-myc expression [83]. 

A comprehensive study showed that 3% of the HEK293 cell transcriptome will be expressed in 

IMP1 mRNP particles, which implies the number of IMP1 targets may be over 1000 [84]. IMP1 

can allow β-actin mRNA to be localized to the leading edge of fibroblasts, thereby increasing the 

migration ability of cancer cells [85,86]. In addition, the IMP1 gene is amplified in breast cancer 

and studies have shown that this is associated with the loss of the estrogen receptor [87]. Let-7 is 

a family of highly conserved miRNAs with a total of 13 members which promote differentiation 

and inhibit tumor growth. IMPs can protect target genes of let-7, such as LIN28A, LIN28B, and 

HMGA2 from let-7-dependent silencing, thereby preventing the breakdown of these proteins and 

thus enhancing the invasiveness of tumors [88-90]. The role of IMP3 in cancer has also been 

extensively studied. It also influences cancer progression by modulating the stabilization and 

translation of cytoplasmic fate of mRNAs. IMP3 has been found to have many target genes, such 

as CD44 [91], H19 [92], HMGA2[93], etc. It is closely related to the invasion of cancer, and its 

expression is a good indicator of prognosis. 

1.2.5 The regulation of p62/IMP2 and its role in cancer 

                  y 
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Figure 2.  p62/IMP2 gene and its structure  

The p62/IMP2 gene is located on 3q27.2, which contains 16 exons and 15 introns. The largest 

isoform of p62/IMP2 is 66KD.When exon10 is not transcribed, another 62KD isoform will be 

expressed known as p62 (Fig.2). The first intron contains an AT-rich regulatory region. An 

oncofetal protein, HMGA2, can bind to this AT-rich region to regulate p62/IMP2 expression [94]. 

In addition, HMGA2 has recently been reported as a driver of cancer metastasis by inducing 

epithelial-mesenchymal transition (EMT) [95]. Therefore, p62/IMP2 overexpression also has a 

potential role in promoting cancer metastasis. Besides HMGA2, Airn, a long noncoding RNA 

(lncRNA) could bind p62/IMP2 in cardiomyocytes and upregulate the translation of p62/IMP2. 

Silencing Airn will decrease expression of p62/IMP2 and reduce the binding ability of p62/IMP2 

with its target mRNA [97]. 

p62/IMP2 was originally identified as an autoantigen in HCC [29], which implied that 

p62/IMP2 may play a role in cancer progression. Furthermore, several cancer-associated 

p62/IMP2 target mRNAs have been identified, such as CTGF mRNA [96], IGF2 mRNA [72] and 

c-myc mRNA [59]. Several studies have reported that p62/IMP2 is involved in carcinogenesis. 

p62/IMP2 might be a driver in cancer proliferation. Phosphorylated by mTOR, p62/IMP2 could 

stabilize HMGA1 and enhance the expression of IGF2 [101]. By activating the IGF2 / PI3K / 

Akt pathway, p62/IMP2 can promote the proliferation, migration, invasion and epithelial to 

mesenchymal transition (EMT) of GBM cells [98]. Analysis of a large number of samples shows 
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that p62/IMP2 may enhance the proliferation of gallbladder carcinoma by regulating 

RAC1-induced ROS generation [99]. In esophageal adenocarcinoma, p62/IMP2 expression is 

abnormally increased and is associated with short survival and metastasis [100]. 

    Recently, more and more evidence showed that p62/IMP2 can also enhance the migration 

ability of cancer cells and promote cancer metastasis. A cluster of p62/IMP2 targets (LIMS2, 

TRIM54, and LAMB2) are considered to be involved in cell migration, cell adhesion, and 

cytoskeleton remodeling. These processes are highly related with cancer metastasis [102]. A 

recent study from our group found that the overexpressed p62/IMP2 could enhance cell 

migration and reduce cell adhesion in breast cancer [96]. Other group also reported that 

p62/IMP2 and IMP3 could cooperate to down-regulate progesterone receptor and promote 

metastasis in triple-negative breast cancer [103]. 

Some studies suggest that p62/IMP2 plays an important role in the regulation of EMT in 

cancer. One of the mechanisms is that p62/IMP2 can be considered as an indicator of 

Wnt/β-catenin signaling pathway in HCC, thereby inducing genomic instability and an invasive 

phenotype [104]. In breast cancer, p62/IMP2 could enhance the expression of β-catenin and 

promote metastasis [96]. Wnt/β-catenin pathway activation triggers the loss of E-cadherin, plays 

a key role in EMT. In sum, overexpressed p62/IMP2 might promote EMT through the activation 

of Wnt/β-catenin pathway. 
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Chapter 2 Hypothesis and Specific Aims 

2.1 Hypothesis 

    Liver cancer is one of the most common types of cancer and the third leading cause of 

cancer related death in worldwide. There are three major subtypes of liver cancer, including 

HCC (HCC), cholangiocarcinoma, hepatoblastoma. Among these three types of liver cancer, 

HCC is the most common type of primary liver cancers in adults. Most HCC cases are caused by 

liver cirrhosis associated with hepatitis B virus or hepatitis C virus infection and excess alcohol 

intake. HCC commonly metastasizes to lungs, lymph nodes, adrenal gland and bones, which 

leads to poor prognosis for patients. 

    Insulin-like growth factor 2 mRNA binding protein 2 (p62/IMP2/) was originally reported 

as an autoantigen in HCC which belongs to IMPs family. The IMPs family contains three 

members: IMP1, p62/IMP2 and IMP3, which share similar protein structure. IMPs are oncofetal 

proteins, which are expressed during embryogenesis and lost in most tissues in adults. Therefore, 

p62/IMP2 can be used as a potential biomarker for early diagnosis of HCC. It has been reported 

that many targets mRNA of p62/IMP2 are highly related with cancer progression, such as c-myc 

mRNA, CTGF mRNA, p53 mRNA and RAS mRNA. The cluster of p62/IMP2 targets was 

involved in cell migration, cell polarization and cytoskeleton remodeling, all of which could 

promote cancer metastasis. Several studies have reported that p62/IMP2 is related to the 

metastasis of different types of cancer. However, the mechanism is poorly understood. We 

hypotheses that overexpression of p62/IMP2 may play an important role in EMT and 
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metastasis of HCC. The proposed study will help us to elucidate the roles of p62/IMP2 in HCC 

and provide the basis for novel biomarker development and further design of anti-cancer drug. 

2.2 Specific Aims: 

Specific Aim 1: To use bioinformatics and in vitro approaches to explore the relevance of 

p62/IMP2 to the HCC progression. 

Specific Aim 2: To investigate the effect of overexpressed p62/IMP2 on HCC progression.  

Specific Aim 3: To explore the effect of overexpressed p62/IMP2 on the molecular mechanism 

of HCC carcinogenesis.  

2.3 Significance 

    In worldwide, primary liver cancer is the sixth most common cancer and is the second 

leading cause of cancer-related deaths. In China and sub-Saharan Africa, HCC is the most 

common cancer among men. Once metastasis occurs, the average survival time of patients with 

HCC will be less than 10 months. Therefore, early diagnosis is very important. 

    p62/IMP2 was first reported as a tumor-associated antigen in HCC. A series of studies have 

demonstrated   the abnormal overexpression in HCC cell lines and HCC tissues. Since the 

expression of p62/IMP2 is regulated by HMGA2 and closely related to the activation of the 

Wnt/β-catenin pathway in HCC, we hypothesize that p62/IMP2 may play an important role in 

the metastasis of HCC, but the mechanism remains to be investigated. 
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In the present project, firstly we will use bioinformatics approach to analyze and identify 

the targets of p62/IMP2, and then conduct in vitro studies to explore the role of p62/IMP2 in 

HCC. This project will also focus on the p62/IMP2 

 pathways and their target genes in the metastasis of HCC. We propose that the in vitro 

studies will also provide evidence for a better understanding of HCC metastasis at the molecular 

and cellular levels.  
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Chapter 3. Materials and Methods 

3.1 Data pre-processing 

    All the original data was downloaded from Gene Expression Omnibus (GEO) for further 

pre-processing. R software (version 3.4.3) was used to read and analyze data. The bioconductor 

“affy” package was used to adjust the background and normalize the original microarray data. 

Probe id was annotated to gene id accordingly. For genes with multiple detecting probes, mean 

gene expression values were used in the subsequent analyses.  

3.2 Differential expression analysis 

    Gene expression profile from HCC patients or HCC tissues as well as  HCC cell lines were 

included. Due to the nature of different type of sample sources, they were analyzed separately. 

All samples were separated into two groups, a high expression group and a low expression group 

by using the median expression value of p62/IMP2 gene. Bioconductor package “limma” was 

used to compare differentially expressed genes (DEGs) in the high and low p62/IMP2 expression 

groups. Genes with log2 fold change greater than 1.5 and adjusted p value lower than 0.01 were 

considered to be significantly different. 

3.3 Gene Ontology (GO) and KEGG annotation of DEGs 

    R Bioconductor package “clusterProfiler” was used to carry out GO and KEGG annotations 

for the DEGs.  
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3.4 Cell lines and cell culture 

    Human HCC cells SNU449 and HepG2 were purchased from ATCC and cultured in RPMI 

(GIBCO, Life Technologies, Grand Island, NY, USA). Medium was supplemented with 10% 

FBS and 100 units/ml penicillin plus 100ug/ml streptomycin (Thermo Scientific, Waltham, MA, 

USA) at 37oC, 5% CO2. When cells were cultured with Wnt/β-catenin inhibitor, 10 μM of 

XAV-939 was added into media at 80 percent cell confluence. The cells were collected after 24h 

of growth.  

3.5 Transfection 

    To overexpress p62/IMP2, SNU449 cells were transfected using Lipofectamine 2000 (Life 

Technologies, Grand Island, NY, USA) in 6-well plates following the manufacturers’ instruction. 

800 ng/ml G418 was used to select the transfected cells and to obtain stably transfected clones. 

The clones were picked with cloning cylinders (Corning, Tewksbury, MA, USA) and expanded 

in 24-well plates. 

    To knock-down p62/IMP2, co-transfected IMP2 HDR Plasmid (h) and IMP2 CRISPR/Cas9 

KO Plasmid (h) (Santa Cruz Biotechnology, TX, USA) with Lipofectamine 3000 (Life 

Technologies, Grand Island, NY, USA). Puromycin (1mg/ml) was used to select stable 

p62/IMP2 knockout variants. 10 clones for each variant were obtained, and they were expanded 

and tested by western blotting. 
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3.6 Immunohistochemistry 

    Immunohistochemistry was performed on a commercially available liver cancer tissue array 

(BC03116a, US Biomax, Inc.). Briefly, after deparaffinization with xylene and rehydration with 

ethanol, antigen retrieval was performed by microwave heating methods. 2-3 drops of avidin 

block solution were applied to the slide to block endogenous biotin activity. After washing, 

200μl p62/ IMP2 monoclonal antibody (Cell Signaling Technology, MA, USA) with 1:100 

dilution was applied to the cover of every slide and then incubated overnight at 4oC. The slide 

was then incubated with polyvalent biotinylated linked goat-anti-rabbit secondary antibody for 1 

hour at room temperature. 3'-Diaminobenzidine (DAB) was used for detection. Lastly, the slide 

was counterstained with hematoxylin, dehydrated with ethanol, stabilized with xylene and then 

processed for imaging.  

3.7 Proliferation assay 

    Cells were seeded at 5x103 cells/well in 96-well plates and grown for 1-5 days. The cell 

proliferation was determined by a sulforhodamine (SRB) assay. Briefly, cells were fixed with 10% 

(w/v) trichloroacetic acid (TCA) at 4°C for 1 hour, rinsed 5 times with water, and air dried. The 

cells were then fixed with 100ul 0.4% (w/v) SRB in acetic acid for 15 minutes. After washing, 

the unbound dye was removed by washing five times with 1% acetic acid and the plate was 

air-dried. The binding stain was dissolved by 150 ul 10 Mm Tris base each well. Colorimetric 

readings were performed in microplate reader at 515nm. 
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3.8 Transwell migration assay 

    Cells were detached from culture plate with 0.25% Trypsin-EDTA solution. After 

centrifugation, the cells were resuspended in serum-free medium, and 100 μl of the cell 

suspension was added onto the filter of a transwell chamber. The cells were cultured for 16 hours 

after carefully adding 600 μl of 10% FBS medium in 24-well plate lower chambers. Cells were 

fixed by 3.7% formaldehyde in PBS and then permeabilized by 100% methanol 20 min at room 

temperature. Cells were finally stained with 0.1% crystal violet for 15 min and counted under 

microscope. After each step, cells were washed twice with PBS. 

3.9 Plate clonogenic assay 

    Cells were seeded onto 6-well plates at 500 cells/well and cultured for 2 weeks with 10% 

FBS. The colonies were washed with PBS, fixed with 100% methanol for 15 minutes and stained 

with 0.1 % crystal violet for 20 minutes. Colonies with more than 50 cells were counted 

manually.  

3.10 Wound healing assay 

    Cell were cultured in 6-well plates and cultured in RPMI medium with 2% FBS. Wound 

scratches were made to the all monolayer cells with pipetting tips. The photographs of the wound 

scratches were taken every 24 hours. The cell migration levels into the scratch were quantified 

using Image J software. 



 

27 

3.11 Western blotting analysis  

    Proteins (20 μg/well) were separated on 10% SDS-PAGE gels and transferred onto 

nitrocellulose membrane. Blocking in 5% no fat milk TBST buffer for 1 hour in room 

temperature. Membranes were incubated at 4°C in TBST with primary antibodies overnight, then 

in TBST with secondary antibody at room temperature for 1 hour. Finally, an enhanced 

chemilluminescence visualization kit (Thermo Fisher Scientific, MA, USA) was used to 

visualize the staining bands. Protein expression was detected by western blotting with rabbit 

monoclonal antibodies: p62/IMP2, β-catenin, Wnt3a, Wnt 5a/b, GSK3β, Snail, N-cadherin, 

GAPDH (Cell Signaling Technology, MA, USA); and mouse antibodies: E-cadherin (Cell 

Signaling Technology, MA, USA). Primary antibodies were detected with goat anti-mouse IgG 

(HPR conjugate) or anti-rabbit IgG (HPR conjugate). The membranes were finally scanned by 

Invitrogen iBright Imaging System (Thermo Fisher Scientific, MA, USA). 

3.12 Immunofluorescence 

    Cells were seeded onto 8-chamber culture slides and grown for 24 hours fixed with 100% 

methanol and 100% acetone at -20°C. The cells were subsequently treated with β-catenin 

monoclonal antibody (Cell Signaling Technology, MA, USA) and incubated with Alexa Flour 

488 conjugate secondary antibodies. Mounting medium containing DAPI was then added. 

Confocal fluorescence images were acquired with a laser scanning microscope (LSM 700; Zeiss, 

New York, NY, USA).  
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3.13 Phosphoproteome assay 

The Wnt Pathway Phospho Antibody Array (PNT227) was conducted by Full Moon 

BioSystem Inc, which contains 227 site-specific and phospho-specific antibodies. SNU449 cells, 

HepG2 cells and their transfected variants were harvested as whole-cell lysates and transferred to 

Full Moon Biosystem Inc in dry ice. Further, proteins were purified, labeled with biotin and 

placed on the blocked microarray with coupling solution. 0.1% Cy3-Streptavidin solution was 

used to detect conjugation-labeled proteins. The phosphorylation degree of a site was represented 

by the ratio of phosphorylation/unphosphorylation. 
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Chapter 4. p62/IMP2 is Highly Associated with Hepatocellular Carcinoma 

4.1 Overview 

The family of insulin- like growth factor 2 mRNA binding proteins (IMPs) contains three 

members: IMP1, p62/IMP2 and IMP3. All these proteins are oncofetal proteins, expressed 

during embryogenesis and lost in most tissues in adults. However, IMPs were found to be 

overexpressed in various cancers. In this project, we will focus on p62/IMP2 and explore its role 

in HCC progression. In chapter 4, the association between p62/IMP2 and HCC will be 

investigated.  

4.2 Rationale, experimental design and alternative approach 

Specific Aim 1: To use bioinformatics and in vitro approaches to explore the relevance of 

p62/IMP2 to the HCC progression. 

4.2.1 Rationale 

The high frequency of anti-p62/IMP2 autoantibody occurrence in the serum samples from 

various types of cancer patients implies that p62/IMP2 may play a role in cancer progression. 

Several cancer-associated p62/IMP2 target mRNAs have been identified. They include CCN2 

mRNA (15), IGF2 mRNA (7) and c-Myc mRNA. In previous study, our group has demonstrated 

that p62/IMP2 is overexpressed in breast cancer. However, we still know very little about the 

role of p62/IMP2 in the development of HCC.  

Many studies have demonstrated that the occurrence of HCC is mainly due to the gene 

mutations, abnormalities of proteins and the change of cell metabolism. Differentially expressed 
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genes may be directly or indirectly related to the occurrence and susceptibility of cancer. The 

significance of detecting these differentially expressed genes lies in the ability to reveal the 

mechanism of cancer development from the gene level and to better explore the methods for 

cancer treatment. The formation of tumors is a long-term and complex process that requires the 

mutations of multiple genes at multiple stages, including changes in tumor suppressor genes and 

oncogenes, and dysregulation of normal genes. In this specific aim, we plan to find HCC related 

datasets in Gene Omnibus (GEO) database, and will perform a preliminary analysis of the role of 

p62/IMP2 in liver cancer and possible regulatory pathways through differential expression 

analysis. 

4.2.2 Experimental Design & Methods: 

  1）Analysis of p62/IMP2 expression in HCC by in vitro methods: to examine the expression of 

p62/IMP2 in HCC tissues, a multiple HCC tissues microarray was used for performing 

immunohistochemistry (IHC). The microarray contains 40 tumor tissues with detailed clinical 

information and 30 non-tumor tissues including tumor adjacent tissues and healthy tissues as 

control. The microarray was performed by IHC with p62/IMP2 antibody and the results were 

analyzed between tumor and non-tumor tissues. The expression of p62/IMP2 in normal liver cell 

lines (L02) and HCC cell lines (HepG2, SNU449, Hep3b, Huh7 and SMMC7721) was detected 

by western blotting analysis. We subsequently compared the expression differences of p62/IMP2 

in normal liver cells, highly differentiated HCC cells and poorly differentiated HCC cells. In 

addition, we examined the frequency of autoantibody against p62/IMP2 in sera from HCC 
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patients. A total of 160 HCC sera and 90 normal human sera as controls were obtained from the 

serum bank of Cancer Autoimmunity and Epidemiology Research Laboratory at the University 

of Texas, El Paso. Recombinant p62/IMP2 protein was purified and ELISA was used to screen 

the sera with p62/IMP2 autoantibody. 

   2) Analysis of p62/IMP2 expression in HCC by bioinformatics approaches: three HCC gene 

expression datasets (accession numbers GSE 25097, GSE36376, GSE 14520) were downloaded 

from GEO, the p62/IMP2 mRNA expression data was analyzed in normal tissue group (only in 

GSE 25097), tumor adjacent tissue group and HCC tissue group. Subsequently, high and low 

p62/IMP2 expression groups were set up based on the median expression of p62/IMP2 to obtain 

the DEG profile. Based on the DEG profile, GO analysis, KEGG analysis and FunRich 

enrichment analysis were performed with R (version 3.4.3) and Funrich (version 3.1.3) software.  

4.2.3 Potential problems & alternative approaches: 

Due to the high prevalence of autoanbodies against p62/IMP2 was detected in HCC patients, 

we expect the overexpression of p62/IMP2 is highly related to the progression of HCC. However, 

the overexpression of proteins is not the only reason to stimulate the immune system to produce 

autoantibodies. Other factors such as protein structure alternation and chronic inflammation can 

also result in autoantibodies production. Otherwise, the reliable results of IHC and western 

blotting analysis are relied on the high sensitivity and specificity of the antibodies. In this project, 

bioinformatics approaches are performed to provide support for in vitro studies. 
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4.3 Results 

4.3.1 In vitro studies showed that p62/IMP2 is overexpressed in HCC. 

    To examine the expression level of p62/IMP2 in HCC tissues, we performed 

immunohistochemistry (IHC) analysis on a tissue array including 40 HCC tissues and 30 normal 

liver tissues. The expression of p62/IMP2 was scored by the immune-staining intensity and 

positive immune-staining cell area. p62/IMP2 protein is overexpressed in human HCC tissues 

compared with normal human liver tissues (score= 10.30, n=40 vs. score =5.23, n=30, p<0.05) 

(Table 2). The color scores between HCC tissues and normal tissues were significantly different, 

while the area score results were similar. The representative examples of weak p62/IMP2 

staining pattern of adjacent normal tissue and strong p62/IMP2 staining pattern of HCC tissue is 

shown in Figure 3. In addition, western blotting analysis was performed to examine p62/IMP2 

protein expression in the non-tumorigenic liver cell line L02 and three HCC cell lines. p62/IMP2 

are overexpressed in all the HCC cell lines; in contrast, L02 cells showed a relatively low 

expression level of p62/IMP2. Meanwhile, p62/IMP2 was overexpressed in well-differentiated 

cell lines (HepG2, Hep3b and Huh7) compared to the poorly differentiated cell lines (SNU449) 

(Fig.5). To detect the anti-p62/IMP2 autoantibody in HCC patients, the p62/IMP2 recombinant 

protein was purified and used as coating antigen in ELISA for the detection of 160 sera from 

HCC patients and 89 normal controls (Fig. 4 & Table 3).  The average OD value of 

anti-p62/IMP2 autoantibody in HCC sera is significant higher than that in normal controls. The 

prevalence of anti-p62/IMP2 autoantibody in HCC sera is 18.1%, which is significantly higher 
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than that in normal control sera (2.2%), while using Mean+3SD of normal group OD value as the 

cut-off value.  
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Figure 3. Immunohistochemical staining of p62 in Liver cancer tissue and adjacent normal 

tissue slides.  

A. Positive stain pattern of p62 in representative liver cancer tissue. B. Weak stain pattern of p62 

in representative adjacent normal tissue Positive stain pattern of p62 in representative liver 

cancer tissue. (x100 and x400 magnification). 
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Figure 4. Distribution of autoantibodies against p62/IMP2 in HCC sera and normal human 

sera.  

The distribution of antibody titers is indicated as optical density (OD) obtained from ELISA. 

HCC: sera from HCC patients. NHS: normal human sera. 
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Figure 5. The expression of p62/IMP2 in normal liver cell line L02 and HCC cell lines. 

Compare to L02, p62 is slightly overexpressed in SNU449 and SMMC7721 cells and highly 

overexpressed in HepG2, Huh7 and Hep3b cells.  
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Table 2.  Expression of p62/IMP2 in HCC tissues and adjacent normal tissues. 

          

Type of tissues 
  IHC score 

Sample Quantity Color Area Final score 

Tumor tissues 40 2.823* 3.68 10.30* 

Stage I tumor tissues 4 2.50* 3.75 9.00* 

Stage II tumor 

tissues 
13 2.85* 3.54 10.15* 

Stage III tumor 

tissues 
23 2.87* 3.74 10.61* 

Normal tissues 30 1.5 3.67 5.23 

*p<0.05, compared with normal group. (one-way ANOVA) 

The staining of p62/IMP2 was evaluated by a four-level scoring system for color and area. The 

final score is the product of color and area score. Here we show the average number of samples. 
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Table 3. Frequency of autoantibody response to p62/IMP2 in sera from HCC patients 

(HCC) and normal human sera (NHS) 

Group  Positive(%) Negative (%)  Total 

HCC 29/160 (18.1%)*               131/160 (81.9%) 160 

NHS  2/89 (2.2%)                      87/89 (97.8%) 89 

Total 31     218 249 

Cutoff value: Mean+3SD of normal group;  

HCC group vs Normal group: * p<0.01; 

HCC: sera from HCC patients; NHS: sera from normal human. 
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4.3.2 Bioinformatics studies indicated that p62/IMP2 is highly associated with HCC 

progression. 

We investigated p62/IMP2 mRNA expression in a large cohort of HCC patients from the 

GEO database (accession numbers GSE 25097, GSE36376, GSE 14520). Compared with 

adjacent tissues of HCC and normal liver tissues from healthy people, p62/IMP2 gene expression 

in HCC tissues was significantly upregulated in all the three datasets. p62/IMP2 gene expression 

did not show a distinct difference between normal liver tissues and adjacent tissues in GSE 

25097 (Fig. 6). To acquire the DEG profile in HCC, we set up a p62/IMP2 high expression group 

and a p62/IMP2 low expression group based on the median in GSE 14520 and processed them in 

R software. Totally 900 DEGs was selected and further used for GO analysis. The cellular 

component analysis demonstrated that most of the proteins expressed by DEGs are located in the 

cell membrane and cytoplasm, which might be an indirect evidence that p62/IMP2 is involved in 

the regulation of cell migration (Fig. 7). In Funrich enrichment biological pathway analysis as 

well as cellular component analysis, our data supported GO enrichment analysis: 9.9% DEGs 

were figured out related to EMT (p<0.01) and the DEGs are mainly distributed in cell 

membranes and collagens (Fig.8). Therefore, we select 20 DEGs related with EMT and analyzed 

their interaction genes and we found that a lot of interaction genes are involved in Wnt signaling 

pathway (Fig. 9). 
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Figure 6. mRNA expression of p62/IMP2 in tumor tissues and their controls in datasets 

GSE 25097, GSE 36376 and GSE 14520. 

Y axis showed the log2 fold change of the p62/IMP2 gene expression. In all the three datasets, 

p62/IMP2 mRNA expression in HCC tissues is significantly higher than adjacent tumor tissues. 

*p<0.05, **p<0.01.  
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Figure 7. Gene Ontology analysis was performed between p62/IMP2 high expression group 

and low expression group.  

We listed 15 most enriched terms in molecular function and biological process analysis and 10 

most enriched terms in cellular components analysis. 
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Figure 8. The FunRich enrichment analysis of Biological pathway and Cellular component for 900 DEGs.  

The enrichment analyses were performed with FunRich 3.1.3 software. 
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Figure 9. Gene Interaction analysis of metastasis related DEGs. 

The selected metastasis related DEGs are shown as red and their directly interacted gene are 

shown as green. 
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Chapter 5. The Effect of p62/IMP 2 in HCC Progression 

5.1 Overview 

In chapter 4, we indicated that overexpression of p62/IMP2 is widely existed in HCC. 

Hence, we will discuss the role of p62/IMP2 in HCC progression based on it. In the development 

of cancer, cancer cells will display many new features that are different from ordinary cells, for 

instance, anti-apoptosis ability, EMT, higher proliferation ability and motility. In chapter 5, we 

will focus on the functional study of p62/IMP2 and perform a series of in vitro studies. Our 

results in this chapter will reveal the function of p62/IMP2 in HCC and guide us to the next step, 

the molecular signaling research. 

5.2 Rationale, experimental design and alternative approach 

Specific aim 2: To investigate the role of p62/IMP2 on HCC progression 

5.2.1 Rationale: 

In specific aim 1, we explored the expression of p62/IMP2 in HCC and its potential 

function by using bioinformatics methods. In specific aim 2, we will establish in vitro models by 

knockout p62/IMP2 in HCC cell lines to further study the function of p62/IMP2 in HCC. 

Although we first discovered autoantibodies to p62/IMP2 in HCC, we know very little about the 

role of p62/IMP2 in liver cancer. Our group showed that p62/IMP can enhance migration ability 

and reduce cell adhesion in breast cancer. There are also other studies that clarify that p62/IMP2 

plays a role in cancer metastasis. For example, p62/IMP2 has been shown to be closely related to 

the metastasis of breast and esophageal adenocarcinomas. By activating the IGF2 / PI3K / Akt 
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pathway, p62/IMP2 can promote GBM cell proliferation, migration, invasion and 

epithelial-mesenchymal transition (EMT) (98). In addition, several mRNA targets of p62/IMP2 

such as CTGF mRNA, IGF2 mRNA and c-myc mRNA have been shown involved in the 

proliferation of cancer cells. Therefore, in this chapter, we will concentrate on the effect of 

overexpressed p62/IMP2 on proliferation and migration ability in HCC cell lines.  

5.2.2 Experimental Design & Methods: 

We have known that p62/IMP2 is overexpressed in most of HCC cell lines in chapter 4. To 

explore the changes in cell function induced by overexpression of p62/IMP2, our strategy is to 

overexpress or knockdown p62/IMP2 in HCC cells by transfecting Crisper/Cas 9 plasmids. After 

establishing stable transfected HCC cell line variants, we will conduct a series of functional 

studies. 

    1) The effect of overexpressed p62/IMP2 on proliferation ability. We designed three 

experiments to examine the cell proliferation ability. The first one is proliferation assay. The 

sulforhodamine B (Srb) will be used for checking proliferation ability between wild type HCC 

cells and the transfected variants. Compared to other competitor methods such as MTT assay, it 

is more reliable and repeatable. We also performed the cell cycle assay by flow cytometry as the 

second one. It visually reflects the proportion of cells at each stage. When the cells in the G2 and 

S phases are increased, we believe that the proliferation of the cell line is enhanced. Another test 

we used is plate clonogenic assay. It not only reflects the proliferative capacity of cells, but also 

reflects the independent survival ability of cells. 

javascript:;


 

46 

2) The effect of overexpressed p62/IMP2 on cell migration ability. We performed wound healing 

assay and transwell migration assay to check the cell migration ability. In Wound healing assay, 

cells were cultured in 6-well plates and the wound scratches were made to the all monolayer cells 

with pipetting tips. The photographs of the wound scratches were taken every 24 hours so we can 

compare the cell migration ability between HCC cell variants. Transwell migration assay is 

another well-established experiment that can examine the cell migration ability. Counted cells 

were cultured in a chamber in 24-well plates overnight, the number of cells that can pass the 

membrane shows their migration ability. 

5.2.4 Potential problems & alternative approaches: 

We expect that a series of in vitro experiments, such as the wound healing assay, transwell 

migration assay, will support our hypothesis that the overexpression of p62/IMP2 to promote the 

cell migration ability of HCC cells. Our potential problem is that although different cancers 

exhibit similar properties, the underlying mechanisms of mutations between different cancers are 

not the same. Therefore, our hypothesis based on past breast cancer research does not necessarily 

occur in HCC. The molecular mechanism of cancer is very complicated. Although the target of 

IMP2 is related to the migration ability and proliferation ability of cells, the influence of IMP2 

overexpression on cells is unknown. Another potential problem is that different HCC cell lines 

contain different genetic background. A single cell line can only represent part of the HCC 

genetics, so we will select two or more representative cell lines for experiments. 
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5.3 Results 

5.3.1 Establishment of stable p62/IMP2 knockdown variants in HepG2, SNU449, and 

p62/IMP2 overexpression variants in SNU449 cell lines 

    We discussed the expression of p62/IMP2 in multiple HCC cell lines in chapter 4. Among 

them, HepG2 is highly differentiated from Caucasians, while SNU449 is from Asians with low 

degree of differentiation and strong invasion ability. Because they represent diverse genotypes of 

HCC, we want to explore whether p62/IMP2 plays a similar role in these two cell lines. 

To explore the biological roles of p62/IMP2 in HCC progression, p62/IMP2 was knockout 

in two p62/IMP2 positive HCC cell lines (SNU449, HepG2). Due to the low expression level of 

p62/IMP2 in SNU449, we performed the transfection experiment to overexpress p62/IMP2 in 

this cell line (Fig. 10). 
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Figure 10. Verification of p62/IMP2 overexpression and knockout cell line with western 

blotting analysis.  

 A. Western blotting result of p62/IMP2 knockout in HepG2 cell line. B. Western blotting result 

of p62/IMP2 overexpression and knockout in SNU449 cell line. 
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5.3.2 p62/IMP2 does not significantly promote cell proliferation but reduces cell population 

dependence and enhances colony formation. 

All the generated variants were tracked for 5 days in a proliferation assay to examine their 

relative growth rate. However, regardless of whether p62 was overexpressed or knocked down, 

we did not observe a consistent impact on the proliferation in either cell line (Fig .11). The cell 

cycle distribution of each variant was measured by flow cytometry. The results support our 

proliferation assay results in that the cell cycles profiles were not significantly altered by the 

transfections. The only exception to this was for the cell ratio in the G2/M phase of IMP2 

knockdown cells decreased 7%-9%, compared with their corresponding wild type parental cells 

(Fig 12). Surprisingly, in a clonogenic assay, p62/IMP2 overexpressing cells showed a higher 

colony formation rate in both cell lines (Fig. 13). At the same time, the clone formation rate of 

SNU449 IMP2 knockdown cells had a moderate increase as well. Clone formation rate reflects 

two important features: cell population dependence, and proliferation ability. Considering that 

overexpression or knocked out p62/IMP2 did not alter the proliferation ability in both HCC cell 

lines, our results indicated that the change of p62/IMP2 expression enhanced the ability of 

growing without population dependence. 
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Figure 11. Overexpression of p62/IMP2 does not promote HCC cell proliferation ability.  

A. Growth curve of the cell proliferation assay in SNU449. B Growth curve of the cell 

proliferation assay in HepG2 cells. SNU449 IMP2+ vs SNU449 IMP2-: #p<0.05; SNU449(WT) 

vs SNU449(IMP-): *p<0.05 (two-way ANOVA, n=3HepG2(WT) vs HepG2(IMP-): *p<0.05 

(multiple t-test, n=3). 
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Figure 12. Cell cycle of p62/IMP2 variants tested by flow cytometer.  

A. Cell cycle of SNU449 variants. B. Cell cycle of HepG2 variants. The expression of p62/IMP2 

does not affect the cell cycle in either cell lines. 
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Figure 13. plate clonogenic assay p62/IMP2 variants from two HCC cell lines.  

A. Both overexpression and knock down of p62/IMP2 could promote colony formation ability in 

SNU449 cells. B. Knockdown of p62/IMP2 reduce colony formation ability in HepG2. *p<0.05 

(one-way ANOVA, n=3). 
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5.3.3 Overexpression of p62/IMP2 promotes cell migration in HCC 

A cellular component of GO classification showed that most proteins expressed by DEGs 

are expressed in the cell membrane and cytoplasm (Fig. 7). This might be the indirect evidence 

that p62/IMP2 is involved in the regulation of cell migration. We performed two in vitro assays, 

a wound healing assay and a transwell migration assay, to investigate the cell migration 

properties. Although the migration rate of hepG2 cells is significantly lower than SNU449 cells, 

both of assays showed consistent results that overexpressed p62/IMP2 can promote HCC cell 

migration in vitro. Overexpression of p62/IMP2 in HCC cells increased ‘wound’ closure by 40% 

to 50% compared to wild-type cells, which also significantly increased the number of 

transmembrane cells in the transwell migration assay (Fig. 14&15). 

 

 

 

 

 

 

 

 



 

54 

 

Figure 14. The wound healing assay showed that overexpression of p62/IMP2 promotes cell 

migration in HCC.  

A. Overexpression of p62/IMP2 can promote cell migration ability in SNU449. B. 

Overexpressed p62/IMP2 enhances cell migration ability in HepG2. SNU449 IMP2+ vs SNU449 

IMP2-: #p<0.05; SNU449(WT) vs SNU449(IMP-): *p<0.05; SNU449 IMP2+ vs SNU449 WT: 

△p<0.05 (two-way ANOVA, n=3). *P < 0.05 (t-test, n=3). 
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Figure 15. The transwell migration assay in p62/IMP2 variants from two HCC cell lines. 

A&B. Overexpressed p62/IMP2 can increase the trans-membrane cell number in both SNU449 

and HepG2 cell variants. The image of transwell migration assay for p62/IMP2 variants at 

random area under 100X microscope. * p<0.05, ** P<0.01 (One-way ANOVA and t-test, n=3). 

Values represented mean ± SEM of three independent measurements.  
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Chapter 6. Identification the Effect of Overexpressed p62/IMP2 on the 

Molecular Mechanism of HCC Carcinogenesis 

6.1 Overview 

In chapter 5, we demonstrated that overexpressed p62/IMP2 can enhance the migration 

ability of HCC cells. However, we still know very little about the molecular mechanism of this 

phenomenon. Many studies have shown that the classical Wnt signaling pathway plays a very 

important role in the development of HCC and 40%-70% of the HCC cells have β-catenin 

aggregation in the nucleus, which is also result from Wnt signaling activation. At the same time, 

activation of the Wnt pathway is involved in the process of EMT, playing an important role in 

the metastasis of cancer cells. In this chapter, we will explore the molecular mechanisms of 

overexpression of p62/IMP2 in cancer metastasis and our understanding of the occurrence of 

p62/IMP2 autoantibodies will go a step further. 

6.2 Rationale, experimental design and alternative approach 

Specific aim 3: To explore the effect of overexpressed p62/IMP2 on the molecular mechanism 

of HCC carcinogenesis.  

6.2.1 Rationale 

The emergence of HCC is a multi-factor, multi-gene involved, multi-step process. Its 5-year 

survival rate is not more than 50%, and its treatment is still based on local treatment and 

systemic therapy [31]. Radiotherapy, Chemotherapy, targeted therapy, and surgery are the 

mainly treatment strategies, but HCC is not sensitive to radiotherapy and chemotherapy, so the 
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research on targeted therapy for the pathogenesis of HCC is more urgent. Wnt signaling pathway 

plays an important role in the occurrence, development, metastasis and prognosis of HCC. In 

HCC cases, β-catenin gene mutations accounted for 8%-30%, APC and Axin protein gene 

mutations and loss of function accounted for 1%-3% and 8%-15%, respectively [105]. However, 

the mutation mechanism of β-catenin gene is quite different from others. Interestingly, studies 

have shown that the mutation of β-catenin gene appears relatively late in the development and 

progression of HCC, while the accumulation of β-catenin protein in the nucleus occurs in the 

early stage of HCC. 

6.2.2 Experimental Design & Methods: 

  The approach we used to identify the targets of p62/IMP2 is DEGs analysis by using a 

metastasis-related gene profiling. A metastasis gene list was downloaded from QIAGEN’s 

website, which contains 206 key metastasis related genes. The mRNAs of these genes were 

investigated in high and low p62/IMP2 expression samples as we used in Chapter 4. The DEGs 

would be the potential targets we will investigate in next step. For potential target proteins and 

the pathways in which they are located, we will use western blotting analysis and 

immunofluorescence for further validation. Western blotting analysis and immunofluorescence 

assay can quantitatively analyze the expression of the protein, and immunofluorescence assay 

can also show the location of protein expression. After that, we will use the pathway inhibitor to 

verify the previous experiment. In the regulation of pathways, changes in the phosphorylation 

level of proteins are also important aspects. Hence, a Wnt Pathway Phospho Antibody Array 

which contains 227 site-specific and phospho-specific antibodies was used to check the alteration 
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of phosphorylation degree between each HCC cell variants. Through it we can understand the 

more comprehensive picture of the changes caused by p62/IMP2 overexpression. 

6.2.3 Potential problems & alternative approaches 

We expect overexpressed p62/IMP2 can activate the Wnt/ β-catenin pathway, and activation 

of the Wnt/β-catenin pathway is responsible for the increased migration of HCC cells. The 

potential problem is that the impact of overexpression of p62/IMP2 is unknown, and there may 

be a plenty of mRNA targets of p62/IMP2. Therefore, Wnt/β-catenin pathway may not be the 

only signaling pathway that regulates cell migration. As a way to solve the problem, we will use 

Wnt pathway inhibitors to verify our results. 

6.3 Results 

6.3.1 Overexpression of p62/IMP2 can induce EMT through the Wnt/ β-catenin pathway  

To better understand how the change of p62/IMP2 can regulate cell migration in HCC cells, 

we divided the HCC gene expression profile GSE 14520 into 2 groups based on the median of 

p62/IMP2 expression and performed differential expression gene analysis with a 

metastasis-related gene list (QIAGEN). One of the top genes we selected was β-catenin (Based 

on LogFC+ adj. p value) because we considered it as candidate of the targets of p62/IMP2 

(Fig.16). It is involved in the regulation of Wnt signaling. Since Wnt/β-catenin pathway plays an 

essential role in the process of EMT and cancer metastasis, we examined the expression of 

β-catenin by immunofluorescence (Fig. 18). The results indicated that the expression of 

β-catenin was significantly enhanced when p62/IMP2 was overexpressed and decreased in 
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p62/IMP2 knocked out variants (Fig.18). HepG2 and SNU449 cell lines were reported having 

activated Wnt/β-catenin signaling due to the mutations in their CTNNB1 gene. Due to this, we 

hypothesized that the translocation of β-catenin into nucleus can be observed in both cell lines 

and their variants. However, we only observed a stronger nuclear expression pattern of β-catenin 

in the p62/IMP2 overexpressed cells. When p62/IMP2 is expressed in low quantities, β-catenin 

exhibited a more cytoplasmic expression pattern. The change of β-catenin expression influenced 

by p62/IMP2 was confirmed in western blotting analysis. In addition, we tested the expression of 

several key proteins that are involved in the regulation of Wnt/β-catenin signaling pathway and 

EMT. In general, the protein expression of Wnt5a/b, Wnt3a, and snail presented a positive 

correlation with the expression of p62/IMP2, while GSK3β and E-cadherin emerged a negative 

correlation with the expression of p62/IMP2. However, there are some exceptions in the results 

of western blotting analysis: For example, Wnt5a/b was lost in the HepG2 cell line. In contrast, it 

was overexpressed in SNU449 IMP2 knocked down cells (Fig.17).  

We further explored whether inhibition of β-catenin expression could attenuate migration 

ability of HCC cells. The expression of β-catenin in wild type of HepG2 and SNU449 cells is 

reduced by around 30% to 60%, after being cultured in 10μM Wnt/β-catenin signaling inhibitor 

XAV939 medium. (Fig.19&20). Consequently, in vitro Wound healing assay provided evidence 

that inhibition of β-catenin can suppress the migration ability in wildtype and p62/IMP2 

overexpressed HCC cells, whereas no significant change was observed in p62/IMP2 knockdown 

HCC cells (Fig. 21).  
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Figure 16. DEGs analysis with a metastasis related gene list.  

The -log10 (adj. p value) and LogFC (log 2 conversion of the fold change) between p62/IMP2 

high expression group and p62/IMP2 low expression group was shown in a scatter diagram. The 

gene of β-catenin (CTNNB1) is selected for future research. 
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Figure 17. Western blotting analysis of Wnt/ β-catenin signaling and EMT related proteins. 

Overexpressed p62/IMP2 enhanced the Wnt signaling and the expression of β-catenin, inhibited 

the expression of GSK3b and finally triggered the loss of E-cadherin. 
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Figure 18. Immunofluorescence staining of β-catenin in SNU449 and HepG2 cells.  

Clearly nuclear expression pattern of β-catenin was shown when p62/IMP2 expressed high. Cell 

nucleuses were stained with DAPI (blue). In contrast, knockdown of p62/IMP2 significantly 

reduced the expression of β-catenin. 
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Figure 19. Western blotting analysis showed β-catenin expression was significantly 

inhibited by XAV939. 

 In all SNU 449 and HepG2 variants, 10 μM XAV939 can significantly inhibit the expression of 

β-catenin. 
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Figure 20. Immunofluorescence showed β-catenin expression was significantly inhibited by 

XAV939.  

In both SNU449 and HepG2 cells, 10 μM XAV939 can significantly inhibit the expression of 

β-catenin. 
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Figure 21. Inhibition of Wnt/ β-catenin signaling can reduce migration ability in HCC cell 

lines.  

XAV939 repressed migration ability in p62/IMP2 overexpression and wildtype HCC cells. In 

contrast, XAV 939 did not show inhibition of migration ability in IMP2 knockdown cells.  

Wound scratch image was taken each 24h, the wound healing area was quantified and each point 

(48h per time in HepG2 line). *p<0.05 (Two-way ANOVA, n=3) 
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6.3.2 IMP2 can regulate the phosphorylation of Wnt/β-catenin signaling 

IMP2 was reported to be involved in the post-translational modification of their targets, 

including phosphorylation [106]. Therefore, we performed a phosphoproteome analysis by 

phospho explorer antibody microarrays and then characterized and compared phos/unphos 

(phosphorylation/unphosphorylation) ratio between transfected and wild type cell lines. There 

are 93 well-characterized phospho-specific antibodies in the microarray, and we selected 23 Wnt 

related phosphorylation sites from them. Interestingly, the pattern of phosphorylation is diverse 

in each group. In general, overexpression of p62/IMP2 enhanced canonical Wnt signaling in both 

SNU449 and HepG2 cell lines, but the pattern of affected phosphorylation sites was different.  

In SNU449, the change of p62/IMP2 mainly regulates the cytoplasmic phosphorylation sites 

associated with β-catenin degradation, such as β-catenin Y654, T41/S45, S37 and APC S2054.  

Among them, phosphorylation ratio of β-catenin S37 increased by 77 percent in p62/IMP2 

knocked down cells, while it decreased 19 percent in p62/IMP2 overexpressed cells, which 

promoted the degradation of β-catenin induced by GSK3b and supported our western blot results 

in Fig.17. In contrast, change of p62/IMP2 in HepG2 primarily regulates the Wnt signaling 

receptor-associated phosphorylation site on the cell membrane (Src Y529, S75 and CKIα Y321) 

(Fig 24). At the same time, in SNU449 cells, the expression of p62/IMP2 was negatively 

correlated with the phosphorylation site that activated non-canonical Wnt signaling (Fig. 22&23), 

whereas we did not find a correlation between the expression level of p62/IMP2 and the 

phosphorylation level of non-canonical Wnt signaling in HepG2 cells (Fig. 24). 
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Figure 22. Overexpression of p62/IMP2 enhanced both Canonical Wnt and non-canonical 

Wnt signaling.  

The change of Phosphorylation rate (phosphorylated protein/phosphorylated protein) between 

SNU449 IMP+ and SNU449 WT cells was tested by a phosphoproteome array which screened 

the total cell lysates. The gray area was defined as “no change area” (≥83%/≤120%). The 

induction/reduction of phosphorylation sites was shown with color when their bar is out of the 

gray area boundaries.  
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Figure 23. Knockdown of p62/IMP2 reduces the canonical and non-canonical Wnt 

signaling.  

The change of Phosphorylation rate (phosphorylated protein/phosphorylated protein) between 

SNU449 IMP knockdown and SNU449 WT cells was tested by a phosphoproteome array which 

screened the total cell lysates. The gray area was defined as “no change area” (≥83%/≤120%). 

The induction/reduction of phosphorylation sites was shown with color when their bar is out of 

the gray area boundaries.  
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Figure 24. Knockdown p62/IMP2 inhibit canonical Wnt signaling in HepG2 cells.  

The change of Phosphorylation rate (phosphorylated protein/phosphorylated protein) between 

HepG2 IMP2 knockdown and HepG2 WT cells was tested by a phosphoproteome array which 

screened the total cell lysates. The gray area was defined as “no change area” (≥83%/≤120%). 

The induction/reduction of phosphorylation sites was shown with color when their bar is out of 

the gray area boundaries.  

 

 

 

 



 

71 

Chapter 7. Discussion and Future Direction 

7.1 Discussion 

    In 1999, p62/IMP2 was first identified as a TAA in HCC [29]. Our previous work 

showed that a high frequency of its autoantibodies can be detected in sera from HCC patients, 

which suggests that p62/IMP2 can be used as a biomarker of HCC [107]. Nevertheless, the 

mechanism underlying the production of p62/IMP2 autoantibodies in HCC remains to be 

explored. Previous studies revealed that most TAAs are non-mutated and but overexpressed in 

tumor tissues. Autoantibodies against these TAAs are produced when the antigenic peptides 

presented on human leukocyte antigen (HLA) class I molecules exceeds the TCR threshold 

which is required for CD4+ T cell activation [108].  In this study, we provided evidence for the 

hypothesis: p62/IMP2 is aberrantly overexpressed in both HCC tissues and cell lines, and our 

IHC results showed that the expression of p62/IMP2 reached a high level in the early stage of 

cancer, which is consistent with a previous study showing that autoantibodies can be detected 

early in HCC [109]. Considering that the overall survival time is less than 1 year for late stage 

HCC patients (based on the BCLC staging system), early diagnosis is very  important for 

improving the prognosis of patients. In summary, using autoantibodies against a panel of 

cancer-associated antigens including p62/IMP2 may be a potential approach  for future 

diagnosis of early HCC [107]. 

 As much as 90 percent of cancer related deaths can be attributed to metastasis [47]. Through 

the establishment of stable p62/IMP2 overexpressed and knocked down cell lines, we found that 
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aberrantly expressed p62/IMP2 can regulate the cell migration ability of HCC cells via 

regulating the expression of β-catenin. β-catenin is known to play a key role in 

cadherin-mediated cell adhesion system. Without Wnt signaling cascade activation, the 

β-catenin-α-catenin complex bridge the cadherin to the actin cytoskeleton physically in the 

cytoplasm [65]. Once Wnt binds with Fz and LPR5/6, the Wnt/β-catenin signaling pathway 

activates and allows β-catenin to accumulate in the cytoplasm in order to finally translocate into 

the nucleus. β-catenin in p62/IMP2 overexpressed cells showed a clear nuclear expression 

pattern. On the contrary, β-catenin is localized in the cytoplasm of HepG2 p62/IMP2 knockdown, 

SNU449 WT, and SNU449 p62/IMP2 knockdown cells. At the same time, a canonical Wnt 

ligand, called Wnt3a, was expressed only in p62/IMP2 overexpressed cells, which implies that 

Wnt/β-catenin signaling is enhanced by the overexpression of p62/IMP2. In the activated 

Wnt/β-catenin signaling pathway, reduction of GSK3β reduces the phosphorylation of Snail, 

thereby enhancing its stability [110], inhibiting the expression of E-cadherin, and ultimately, 

inducing the occurrence of EMT.   

Surprisingly, although the expression of β-catenin was intensely repressed, the p62/IMP2 

knockdown SNU449 cells also expressed higher colony formation ability than SNU449 wild 

type cells. Accordingly, we examined the noncanonical Wnt signaling pathway, which is 

β-catenin independent and can antagonize canonical Wnt signaling in HCC [111]. Wnt receptor 

Frizzled 2 and its ligand Wnt5a/b were found to be elevated in various cancers that also promote 

proliferation and cell migration ability [112]. HCC cell lines express Wnt ligands diversely. 
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Briefly, well-differentiated cell lines such as HepG2 mainly express Wnt3a, whereas poorly 

differentiated cell lines like SNU449 mainly secrete Wnt5a/b [113]. In the scenario of the 

sharply down regulation of β-catenin SNU449 knockdown cells, Wnt5a/b may be oppositely 

upregulated and thus trigger the process of proliferation and EMT. P62/IMP2 is the only IMP 

family member which was reported existed in adult liver tissues [71]. Our study suggests that the 

trace of p62/IMP2 expression is important to maintain the normal function in hepatocytes. 

The protein activity, stability that involved in Wnt signaling were regulated by 

phosphorylation status at multiple steps [114].  In this study, we show that the manipulation of 

the expression of p62/IMP2 triggers a series of changes in the phosphorylation of various Wnt 

pathway proteins. In the absence of a Wnt stimulus, free β-catenin in cytoplasm will be degraded 

by a “destruction complex” including APC, GSK3, Axin, and CK1 [115]. In SNU449 p62/IMP2 

knockdown cells, CK1α-mediated phosphorylation of ser45 on β-catenin was elevated, which 

allowed β-catenin to enter the “destruction complex” and specifically interact with Axin [116]. 

Subsequently, with the dramatic increase of GSK3-mediated phosphorylation of Ser-37 and 

Thr-41, β-catenin binds with APC, stays in this complex, and is eventually degraded [117]. 

Simultaneously, the affinity for cadherins is strengthened with the reduction of Tyr 654 

phosphorylation on β-catenin [118]. Decreased phosphorylation of APC at ser 2054 can facilitate 

the APC to be transported to the nucleus [119]. Besides that，the AKT-mediated phosphorylation 

of GSK3α at ser 21 significantly inhibits the activity of itself [120] (Fig. 23). In summary, all of 

these changes in phosphorylation strengthens the stability of β-catenin and enhances the 

Wnt/β-catenin signaling. 
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 In HepG2 cells, the phosphorylation regulated by p62/IMP2 showed a different pattern. 

Phosphorylation of Tyr 418 of Src was inhibited after knocking down p62/IMP2. Activated 

proto-oncogene tyrosine kinase Src can enhance the cap-dependent translation, and thus elevate 

the expression of β-catenin accumulation and its transcriptional activity. Tyr 418 and Tyr 529 are 

two major phosphorylation sites on Src, Tyr 418 can be auto-phosphorylated, and then displaced 

from binding pockets to allow substrate access. On the contrary, phosphorylated Tyr 529 can let 

the tyrosine group interact with SH2 domain and inactive Src [121]. In addition, the reduced ser 

21 on GSK3α also downregulated Wnt signaling. We did not observe the phosphorylation 

change on β-catenin, which may explain why the downregulation of β-catenin is less in 

p62/IMP2 knockdown cells of HepG2 cells than SNU449 cells (Fig. 24).  

     Wnt5a can induce CaMKII to weaken the protein stability of a co-repressor of Notch 

signaling and the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). 

Phosphorylated Tyr 287 of CaMKII (Tyr 286 in the α isoform) plays an important role in it: 

increase more than 1000-fold binding affinity between CaM and CaMKII; preventing 

auto-inhibition when CaM dissociates from CaMKII due to [Ca2+] i decrease [122]. Moreover, 

CaMKII can phosphorylate Ser 537 of PLCβ3 and thus enhance its basal activity [123]. Our 

phosphoproteome analysis data supported that loss of p62/IMP2 augments the Wnt5-mediated 

non-canonical Wnt signaling, thereby explaining why colony formation ability is improved in 

SNU449 IMP2 knockdown cells. Our results showed that p62/IMP2 regulates the 

Wnt/beta-catenin pathway through multiple pathways: regulation of mRNA expression, affecting 

multiple upstream and downstream genes and changes of phosphorylation levels.       
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In the differential gene expression analysis, we found that 900 genes were regulated by the 

change of expression; in addition, their encoded proteins were mainly distributed in the cell 

membrane and cytoplasm, rather than in the nucleus. Another study showed that 3 percent of the 

HEK293 cell transcriptome will be expressed in IMP1 messenger ribonucleoprotein (mRNP) 

particles, which implies that there may be over 1000 targets of IMP1 [124]. Given that IMP 

family members share a highly conserved structure with 60%-80% identity amino acid sequences 

[125], there may be many unknown IMP2 targets in these differentially expressed genes, which 

can help regulate complex pathways, their phosphorylation and improve the migration ability of 

cancer cells. 

In summary, our study revealed that p62/IMP2 is overexpressed in human HCC tissues and 

cancer cell lines, thereby augmenting cell migration ability through activation of the canonical 

Wnt signaling pathway. In SNU449 p62/IMP2 knockdown cells, colony formation ability was 

promoted by noncanonical Wnt pathway. Our differential expression analysis indicates that 

abnormally high expression of p62/IMP2 in HCC may regulate cells through a variety of 

pathways, resulting in more malignant HCC phenotypes. 
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7.2 Future directions 

7.2.1 To explore novel mRNA targets of p62/IMP2 and evaluate their value as early 

diagnosis biomarkers 

Recently, more and more novel targets of IMPs have been identified. Due to the highly 

conserved structure and similar function of IMPs, p62/IMP2 may have a plenty of unknown 

binding targets. To identify novel targets of p62/IMP2, RNA immunoprecipitation will be used 

firstly to isolate the mRNA that bind with p62/IMP2 in cytoplasm. We will collect cell lysates 

from p62/IMP2-positive cells and use the p62/IMP2 antibody to precipitate the entire complex of 

p62/IMP2-target from cell lysates. The target mRNA is finally isolated and separated by a 

solution for reverse transcription using a RIP-Assay kit. Subsequently, we plan to use RNA 

sequencing and qPCR to analyze the isolated RNA and obtain the list of p62/IMP2 targets. After 

that, we will design a mini-array including p62/IMP2 and its potential targets as well as other 

characterized TAAs to further enhance the autoantibody detection efficiency in the diagnosis of 

HCC. ELISA will be used to examine the autoantibodies expression level. The data will be 

presented as means ± standard deviation (SD). Unpaired two-tailed t test was used to compare 

different groups.  Receiver operating characteristic (ROC) analysis was performed to evaluate 

the diagnostic value for each TAA, which leading to calculate the area under the curve (AUC). 

We expect to identify some novel TAAs and enhance the early diagnosis accuracy through our 

future directions. 
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7.2.2 To determine the role of p62/IMP in HCC by in vivo study 

    In this project, our data from in vitro studies demonstrated that p62/IMP2 can promote cell 

migration ability in HCC via activation of Wnt/ β-catenin signaling pathway. To verify our 

results, the HCC cell variants will be injected into the subcutaneous tissue. Thereafter, the body 

weight and tumor size of the mice will be recorded daily. After 3-4 weeks, the mice will be 

dissected, while the primary tumor and metastatic tumor will be taken out for analysis. The 

metastatic sites of primary liver cancer are mainly concentrated in the lungs and bones, so we 

will focus on their metastatic tumors for collecting statistical data. We will also analyze the 

molecular biology differences between metastatic tumors and primary tumors. 
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Appendix I 

List of abbreviations 

APC - Adenomatous polyposis coli 

BCLC – Barcelona clinic liver cancer 

CDKN2A - Cyclin dependent kinase inhibitor 2A 

CIP2A - Cancerous inhibitor of protein phosphatase 2A 

DAPI - 4’,6’-diamidino-2-phenylindole 

DEG - Differential expression gene 

ECL- Enhanced chemiluminescence 

ELISA - Enzyme linked immunosorbent assay 

EMT - Epithelial mesenchymal transition 

ERK -  Extracellular signal-regulated kinases 

EGFR - Epidermal growth factor receptor  

FGF - Fibroblast growth factor 

GEO - Gene omnibus 

HCC - Hepatocellular carcinoma 

HRP - Horseradish peroxidase 

IHC- Immunohistochemistry 

IMP - Insulin-like growth factor 2 mRNA binding protein 

https://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinases
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LEF - Lymphoid enhancer binding factor 

MAPK - mitogen-activated protein kinase 

mTOR - Mammalian target of rapamycin 

NHS - Normal human sera 

OD - Optical density 

PBS - Phosphate-buffered saline 

PI3K - Phosphoinositide 3-kinases 

PKB - Protein kinase B 

TBS – Tris base saline 

TCF - Transcription Factor 

TERT – Telomerase reverse transcriptase 

TSC - Tuberous sclerosis 1  

ZEB - Zinc finger E-Box binding homeobox  
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