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ABSTRACT 

Warming trends and increasing temperatures have been observed and reported by federal 

agencies, such as the National Oceanic and Atmospheric Administration (NOAA). Extreme-

weather events, especially hurricanes, tornadoes and winter storms, are among the highly devas-

tating natural disasters responsible for massive and prolonged power outages in Electrical Trans-

mission and Distribution Systems (ETDS). Moreover, the failure rate probability of any system 

component under extreme-weather tends to increase in the impacted geographic area. This disser-

tation proposes an Artificial Intelligence (AI) Decision Support System that can predict damage in 

the ETDS and allow operators to mitigate disastrous extreme weather events. The document re-

ports the results of the exploration of a novel method to integrate two main domains: the critical 

operation of the ETDS under natural disaster conditions; and data integration based on the se-

quence of steps in a Knowledge Discovery Framework (KDF). Machine Learning and Deep Learn-

ing approaches, including the spectrum of data mining, are incorporated in the KDF and used to 

perform the estimation, regression, and classification tasks. By means of two scenarios, a winter 

storm and a major hurricane, the proof of concept of the consolidation of the two domains, AI and 

ETDS, is demonstrated. The results of the methods are compared, as well as techniques and accu-

racy of the algorithms. Discussion includes descriptive statistics of the data analysis, conducted to 

understand each data set, and how they are related to each task. The results reveal a powerful tool, 

that incorporates disparate ideas and data, and increases the accuracy of predictions and classifi-

cations of extreme weather damage in the hypothetical cases presented. This is of importance to 

the operator decision support in order to solve problems in the area of critical operation of the 

Transmission and Distribution systems during extreme-weather events. 
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1 

CHAPTER 1: INTRODUCTION 

This chapter introduces the problem of enhancing the resilience of the Transmission and 

Distribution Systems under natural disasters. The rationale of the study, the research objectives 

and the expected outputs of this study are presented in this chapter.   

1.1 Natural disasters and their effects  

Climate change is increasing the risk of climate-related natural disasters, as stated by 

[Muna13]. Important indicators include the increment of global temperature, changing patterns in 

precipitation, storms, and extreme temperatures as reported by Kausky [Kaus14] and Mercado 

[Merc16]. The increment in the frequency and intensity of extreme weather events has broadened 

floods, droughts, wildfires and extreme temperatures in the world since 1940, as shown in figure 

1.1. These events have affected 232 million people, and caused more than $100 billion dollars in 

damage worldwide between 2001 and 2010, as Brown [Brow18] states.  

 

 

 

 

 

 

 

Figure 1.1: Natural disaster in the world since 1940 [Muna13]. 

1.2 Natural Disasters in the United States 

In the past 10 years, up to the time of this study, the following hurricanes have impacted 

the United States: Ike (category 2-4, September 2008) hit mostly Cuba, Florida, Texas, Louisiana 

and Arkansas reported by Berg [Berg08], while hurricane Katrina (category 3-5, August 2005) hit 

 



 

2 

Florida, Louisiana, Mississippi, and Alabama reported by Knab et al. [Knab06], and hurricane Rita 

(category 3-5, September 2005) hit Arkansas, Florida, Louisiana, Mississippi, and Texas. These 

hurricanes, collectively, devastated much of the U.S. Atlantic coast from Florida to New England, 

as reported by Knab et al. [Knab06]. Other catastrophic events include hurricane Charley (category 

4, August 2004), which hit Florida, South Carolina, and North Carolina, as reported by Pasch et 

al. [Pasc11], and hurricane Ivan (category 3, September 2004) which hit Alabama, Florida, Loui-

siana, and Texas, as reported by Baker [Bake17]. Recently, Hurricane Harvey (category 3, August 

2017) and Hurricane Irma (category 5, September 2017), with extremely heavy winds, plowed 

through the Caribbean. The wind smashed buildings, and downed trees and power lines, as re-

ported by Blake et al. [Blak18] and Masters [Mast16]. Moser et al. [Mose14] states that these 

disaster events underscore the vulnerability of Caribbean countries and coastal cities. Figure 1.2 

shows the 16 billion-dollar weather and climate disasters that impacted the United States (U.S.) 

during 2017, as reported by NOAA [Noaa17]. 

 

 

 

 

 

 

 

Figure 1.2: Climate disasters impacted the U.S. during 2017 [Noaa17]. 

 The most current reports, at the time of this writing, indicate that the U.S. (in 2018) has 

suffered billion-dollar and climate disasters, as highlighted in the map shown in figure 1.3. As 

reported by the NOAA [Noaa18], severe weather is the major cause of disasters during the first 

months of 2018, with a toll estimated at 36 Deaths and $7.1 Billion in estimated costs. According 
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to a NOAA research group, these threats could be continued for the rest of the year and years to 

come, as climate change continues to develop, as stated in section 1.1. 

 

 

 

 

 

 

 

 

 

Figure 1.3: Natural disaster impacted in the U.S. during 2018 [Noaa18].  

1.3 Electric power systems 

 The electric power systems or the Electricity Transmission and Distribution System, are 

generally categorized into three segments: generation, transmission, and distribution. Between 

each division there exists a crucial link, the electric substation. 

1.3.1 ELECTRIC GENERATION SYSTEMS 

 There are many different ways to generate electricity in a central generation station, or by 

island modes, such as hydro, coal, oil, renewable, nuclear, and gas turbine. Furthermore, genera-

tion can involve a mix of synchronous and asynchronous machines, whose behavior could poten-

tially create a source of power energy disturbance, such as short-circuit faults. Tleis [Tlei18] states 

that the most common short-circuit faults are weather related, followed by equipment failure. Fig-

ure 1.4 shows the existing types of electricity production in the United States through 2018, re-

ported by the U.S. Energy Information Administration (USEIA) [Usei18a].  The power energy 

from the generators is delivered to the transmission systems with the help of a step-up transformer. 
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Figure 1.4: United States electricity production in 2018 [Usei18a]. 

1.3.2 ELECTRIC TRANSMISSION SYSTEMS 

 Electric power transmission is the bulk transfer of power by high-voltage connections be-

tween generation and load substations, to ultimately supply power to end users. Figure 1.5 shows 

the actual transmission network in the United States at the time of this research study, reported by 

the USEIA [Usei18b].  Real-time monitoring, with communication technology, is based on Phasor 

Measurement Units (PMUs) and state estimator sensors, located at key points to remotely monitor 

where and when the power might go out as studied by Momoh [Momo12].  

The main objective of electric power transmission is the ability to transfer energy, reliably 

and efficiently, between generation sources and distribution load points. Any causes of disruption, 

like power outage, could alter the transmission system operation. One of the primary causes of 

transmission line outages is extreme weather conditions, and this is directly dependent on the ge-

ographic location of the transmission line as studied by Shen et al. [Shen98]. 
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Figure 1.5: United States energy power transmission systems [Usei18b]. 

1.3.3 ELECTRIC DISTRIBUTION SYSTEMS 

 The Distribution System is the last step in the transmission of energy to end users. This 

system is similar in structure to the transmission system, but covers a smaller geographical section. 

The effect of weather conditions, like icing, is one potential cause of energy fault in the distribution 

systems, because of the effect of the expansion or contraction of the conductor. Additionally, other 

factors like wind and ice loading on overhead distribution lines lead to potential faults. The timely 

action in finding the location of a fault is crucial to minimize the interruption time in Distribution 

Systems as studied by Feizifar et al. [Feiz13]. 

1.3.4 ELECTRIC SUBSTATIONS 

 The Substations are an important part of the power energy system, as the main objective 

of the substation is to dispatch electric power from generation stations delivering through trans-

mission lines, to the distribution system by step-up and step-down transformers. In addition, the 

substation contains the most important equipment in power energy systems, which typically are: 

Transformers, Regulators, Circuit Breakers, Air-Break, Disconnect Switches, Switchboard, Meas-

urement Instruments, Relays and Bus Bars. The operation of a substation, could be carried out by 

a local operator, or remotely by an automatic control center system, named Supervisory Control 

and Data Acquisition Systems (SCADA) [Ahme08].  
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The recent deployment of distributed intelligent devices and Phasor Measurement Systems 

(PMUs) as studied by Yu [Yufb17] and Nakafuji [Naka17], are enabling system stability by de-

tecting and isolating a disturbance caused by different events such as a short-circuit, equipment 

failure, temporary damage, or an extreme-weather generated faults. Moreover, these devices gen-

erate useful data for wide-areas distribution analysis. 

1.4 Power faults classifications 

 A power energy fault is the unintentional and unwanted creation of a conducting path 

(short circuit) or an open circuit. It exists as four types of power energy faults: single line-to-

ground, line-to-line, double line-to-ground, and balanced three-phase (details of this faults are not 

presented in this document for purposes of simplicity). On the other hand, the causes of power 

energy faults can be classified in two broad categories: typical and extreme-weather related 

[Egbu16]. Both types of power faults are briefly detailed below to give a point of comparison, but 

only the extreme-weather related power fault will be considered in this study. 

1.4.1 TYPICAL POWER FAULT (TPF) 

The components of the power energy system could exhibit failures during normal operation 

of the ETDS, which could happen at any time. As stated by Arabali et al. [Arab16], the most 

common causes are trees falling onto power lines, wind damage, lightning, line breaks due to ex-

cessive ice loading, vandalism, birds shorting out lines, vehicles’ collision with towers or poles, 

etc. Furthermore, authors Kuma et al. [Kuma17] and Demazy et al. [Dema17] affirm that with the 

recent modernization in the distribution and generation system by the integration of solar and wind 

energy into the power grid, and the addition of new technologies like Plug-in Hybrid Vehicles 

(PHEVs), the power demand is increasing, thus causing more energy outages that are more com-

plex to address.  
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1.4.2 EXTREME-WEATHER POWER FAULT (EPF) 

According to the U.S. Energy Information Administration [Usei18b], Natural Disaster in-

cidents are hierarchical in number of occurrences: windstorm (hurricane, severe storm), thunder-

storm (tornado, lightings), winter storm (ice, snow), temperature extreme, wildfire, and other un-

defined weather. Moreover, Egbue et al. [Egbu16] sustain that recent earthquakes and tsunamis 

are increasing and are now included in the list. According to the U.S. Department of Homeland 

Security FEMA [Fema18] and Kenward et al. [Kenw14], extreme-weather, caused by windstorm 

and thunderstorm, are among the most destructive causes of sustained power faults and massive 

damage to the ETDS infrastructure. This is also reported by NOAA and shown in Figure 1.6 

[Noaa18b].  

 

 

 

 

 

 

 

Figure 1.6: Billion-dollar weather and climate disasters: Time series [Noaa18b]. 

1.5 Electric system modernization and data analytics modeling 

Modernization in the ETDS allows the generation and acquisition of big data, by means of 

new technology devices like Remote Transmission Units (RTUs), Phasor Measurement Units 

(PMUs) and smart meters in the Advance Metering Infrastructure (AMI). Supervisory Control and 

Data Acquisition (SCADA) is still being used extensively in the ETDS with upgraded options, 
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such as the modernization in the new SCADA system architecture, which provides remote com-

munication via circuit breakers and line switches, to help reduce time to restoration as proposed 

by Agarwal [Agar16].   

The rapidly rising levels of computer technology, in addition to the massive data-gathering 

capabilities of companies like Google and Amazon, develop the ability to process massive amounts 

of information at an extremely efficient speed. Several new concepts, techniques and new ap-

proaches have been emerging as a result of these developments, like Knowledge Discovery, Big 

Data and Data Mining, and in the field of the Artificial Intelligence: Machine Learning, Artificial 

Neural Networks, and Deep Learning. A brief description is presented below.  

1.5.1 KNOWLEDGE DISCOVERY PROCESS (KDP) 

Knowledge Discovery Process, is mostly used to find interesting hidden patterns in data. 

Cios et al. [Cios05] revealed studies where data mining plays a main role in areas like automation, 

employed as an efficient strategy for human decision-making, other authors support this theory as 

expounded in their works [Davi08], [Hutc08], [Erjo08] and [Pere08]. This study includes an in-

depth discussion of KDP in Chapters 3 and 5. 

1.5.2 BIG DATA (BD) 

Big Data (BD) is distinguished from other kinds of data particularly because of its three 

salient characteristics: volume, velocity, and variety. In addition, it has become popular in many 

fields that stream data in large quantities, e.g. social media, as established by Anbalagan et al. 

[Anba16], finance [Fu15], energy [Yang17], weather forecasting [Tiem18], and many other areas 

that continue to be added to the list. In this study we do not employ BD because of time restrictions, 

but the ideas will certainly be part of a future study. 

1.5.3 DATA MINING (DM) 

The increasing amounts of data recorded and stored by government agencies and compa-

nies like Google, Amazon, utilities (smart meters, SCADA, PMU, etc.), Facebook and the like, 

have accumulated vast amounts of big data, as discussed below, which is being utilized at a greater 
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rate, as more large-scale data problems to need to be solved. Therefore, this has led to the creation 

of a whole new movement called data mining, which differs from classical statistical analysis in 

their hypothesis-testing. However, most of the methods used in data mining are related to methods 

fostered in statistics and machine learning (i.e., regression, classification, clustering, and visuali-

zation). DM methods focus on much smaller samples of data, due to the dimensionality reduction 

techniques used by the data mining approach. DM has the purpose to make sense of large amounts 

of data, mostly supervised, consistent with a specific domain, as studied by Cios et al. [Cios05]. 

Microsoft has the SQL Server Analysis Services tool (SSAS) [Micr17], to manage multidimen-

sional models, a useful tool for predictive analytics and Machine Learning for Data Mining. More-

over, several studies in this area have been conducted using Data Mining techniques such as Xiao 

et al. [Xiao17], Yu [Yu16] and Zhao et al. [Zhao07] exposed. DM has been progressing dramati-

cally in the recent years, the main reasons being advancement in storage technology and compu-

tational capabilities. Machine Learning (ML) and Deep Learning (DL) can have effective perfor-

mance, via their algorithms, based on their datasets, regardless of the types of features the data 

consists of, or how it is represented. Therefore, data mining in a knowledge discovery framework 

is a good approach to implement in this study, to extract knowledge, and to better understand the 

data (or understand the nature of the extreme-event in the case of this study). 

1.6 Problem statement 

The power sector is one of the critical infrastructures that can be adversely affected by any 

kind of extreme weather, leading to disruption in the ETDS. However, the results of power disrup-

tions by extreme weather depends on the length of exposure and degree of vulnerability in the 

ETDS system. For example, infrastructure components and geographic location characterizes the 

degree of vulnerability. Furthermore, natural disasters vary with the scale of the event, and are 

interconnected by geographic proximity (i.e., severity, geospatial regulator and energy sector) and 

level of exposure length (i.e., hours and days). During this study, we initially explore the causes 

of typical power faults, and power faults that occur in extreme weather, specifically hurricanes 
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and winter storms, that are among the highly devastating natural disasters responsible for massive 

and prolonged power outages. Finally, we explore Knowledge Discovery Process framework 

(KDP) and Data Mining techniques i.e., Machine Learning (ML) and Deep Learning Neural Net-

works (DLNN), finding remarkable progress in recent years in several applications i.e., computer 

vision, natural-language processing, and generative models. This leads to a methodology capable 

of consolidating both approaches, modernized measurement devices from the ETDS, and DM 

techniques in a KDP, under natural disaster conditions. 

1.6.1 RESEARCH QUESTIONS 

In recent years there has been an explosion in the application of data mining techniques 

and artificial intelligence in the sub-area of machine and deep learning. This is evidenced by the 

huge increase in the number of publications that employ ML and DL, for the state-of-the-art ap-

plications in computer vision, natural-language processing, and generative models. Similarity, the 

increasing state-of-the-art performance algorithms, including the most popular deep learning 

model, due to their effective representation and remarkable performance, are published in the IEEE 

Transactions on Neural Networks and Learning Systems, as evidence of their effectiveness. At the 

time of this study, knowledge discovery process (KDP) and data mining techniques, are not used 

to the point of prediction and classification, in terms of natural disasters in the ETDS, by following 

the path of a hurricane. The research questions to be addressed in this study, based on the need to 

exploit artificial intelligence in the ETDS are: 

• As a main question in this study, would it be effective to use artificial intelligence 

techniques in a KDP framework to support the decision making during the assess-

ment of the critical operation in the ETDS by following a hurricane path or winter 

storm? 

• Which variables (meteorological, geographical, loads, phasor values), could be 

used in the architectures of machine learning and neural networks, to be the most 

effective parameters to define the level of weakness of the critical components in 
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the ETDS, and to predict and classify the contingent-states, and critical-loads in 

Energy Transmission and Distribution systems (ETDS) as a consequence of power 

faults, during the unfolding stages of the hurricane or a winter storm? 

• How should these variables be represented in order to draw accurate prediction 

and classification modeling in the ETDS, during hurricane or winter storm stages? 

• And, which are the most effective models (machine learning and neural networks) 

to derive accurate prediction and classification tasks by using those variables? 

1.6.2 RESEARCH OBJECTIVES 

From the observations research questions addressed above, the main objective of this study 

can be stated as follows: 

1. The main objective of this study is to consolidate the domain of the power energy/data 

analytics by developing a methodology that takes advantage of AI techniques in a KDP 

framework, as a tool to generate accurate prediction and classification model assess-

ment in the ETDS, under extreme-weather event conditions. 

Similarly, other objectives in this study, based on the additional research questions and to test the 

proposed approach, two scenarios are defined and detailed as follows: 

2. Scenario-1: Influence of a winter storm in the electricity market price and demand fore-

casting in New York City, using Knowledge Discovery framework as a data analysis 

process. The objectives for this scenario are: 

a) Datasets collection, preparation, and visualization as first steps in the KDP, to 

clean, normalize, and transform data into optimized datasets, including data 

analysis to find patterns, connections, and relationships for further modeling. 

b) Model using a Non-linear Autoregression exogeneous as a Data mining tech-

nique, then discuss the model performance. 

c) Complete a data analysis using Machine Learning by the use of pre-processing 

in data preparation for better model accuracy and performance. 
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3. Scenario-2: Power outages assessment in Houston area from the impact of Hurricane 

Harvey. The objectives for this scenario are: 

d) Datasets collection, preparation, and visualization as first steps in the KDP, to 

clean, normalize, and transform data into optimized datasets, including data 

analysis to find patterns, connections, and relationships for further modeling. 

e) Identify variables (meteorological, geographical, loads, phasor values), that can 

be used in the architectures of machine learning and deep neural networks, to 

be the most effective modeling to define the level of weakness of the critical 

components in the ETDS, and to predict and classify the contingent-states, and 

critical-loads in Energy Transmission and Distribution systems (ETDS) as a 

consequence of power faults, during the unfolding stages of the hurricane, re-

spectively, then, discuss outcomes. 

f) Identify how the variables should be represented in order to draw accurate pre-

diction and classification modeling in the ETDS, during the unfolding stages of 

a hurricane, then, discuss outcomes. 

g) Based on the assumptions of prior data analysis, test all approaches, modeling 

analyses to identify and understand the most effective models (machine learning 

and deep learning), for accurate prediction and classification tasks, then discuss 

model performance, and approaches, followed by research directions. 

Due to the characteristics of the complex problem statement, several tasks will be tested. Data used 

will be from benchmark data, as well as data from specialized software simulations. 

1.6.3 AIM OF STUDY 

The contribution of this research study includes the following: 

1) Two major literature surveys. The first provides a broad review of metrics and chal-

lenges in the Electricity Transmission and Distribution systems power operation 
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under extreme-weather events. This survey provides the readers with the infor-

mation to make knowledgeable decisions about techniques and opportunities avail-

able to analyze the ETDS under an extreme-weather event. The second literature 

review covers the major works in prediction and classification modeling with an 

emphasis on evaluation metrics and model performance in Machine Learning and 

Deep Learning. This survey provides the data analytics scientist with a concise 

summary of the state-of-the-art machine learning and deep learning techniques and 

how these techniques can be used as a tool to predict and classify the two scenarios 

selected, as a critical operation of the ETDS during an extreme-weather event. Ad-

ditionally, a discussion is provided on opportunities in the impact of this novel re-

search field. 

2) Creation of knowledge discovery framework methodology to consolidate data min-

ing and modeling techniques with simulation of the critical operation in the ETDS 

through the challenge of an extreme-weather event. Additionally, given the uncer-

tainty of the data, the point-of-view Markov-state based and Empirical-based prob-

ability sampling techniques are provided. Furthermore, a deterministic sampling is 

developed in this study. These methods allow researchers to accurately predict and 

classify the critical operations in the ETDS during the unfolding of extreme-

weather events. 

3) Finally, this dissertation provides several evaluation procedures for learning algo-

rithms dealing with labeled and unlabeled data. These evaluation methods provide 

researchers with solid material examples on how to test learning algorithms in 

power energy systems. 

1.6.4 STUDY AREA 

From the observations in section 1.2, and to evaluate our approach from previous sections, 

we present two scenarios: a winter storm in New York, and a hurricane storm, in the Houston area. 
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Thus, to address Scenario-1, based on a winter storm, the geographical region of New York is 

selected because (i) it is one of the major cities in the U.S.; (ii) the electrical infrastructure of New 

York plays a key role in the U.S. economy; and (iii) the electric infrastructure is connected to 

others major cities in the U.S. including the interconnection with Canada. On the other hand, to 

address Scenario-2, based on a hurricane storm, the geographical region of Texas is selected be-

cause (i) it is one of the largest states in the U.S.; (ii) the electrical infrastructure of Texas has an 

independent interconnection named the Electric Reliability Council of Texas (ERCOT); and (iii) 

Texas is the largest energy-producing state and the largest energy-consuming state in the U.S., 

since the consumptions are by the industrial sector, refineries, and petrochemical plants. Figure 

1.7 shows the geographical location of these two geographical regions in the United States. 

 

 

 

 

 

 

Figure 1.7: Map of the United States showing the study areas. 

1.6.5 SCOPE OF STUDY 

The scope of this study includes the natural disaster of two scenarios with vastly different 

sets of characteristics. Both cases impacted the coast cities of the United States of America (USA), 

as discussed in section 1.6.4, and are used in this study as a proof of concept. Other geographical 

regions in the USA and other countries are not considered, due to time constraints of the study, but 

results may be applicable to other regions of the USA, and of the world. The methodology is gen-

eralizable and can be applied in other types of storms. 
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An outline of this dissertation is as follows: Chapter 2 is a background discussion of dif-

ferent concepts in the critical operation of the ETDS system under extreme-weather events. Fur-

thermore, chapter 3 presents a brief review of the Knowledge Discovery Process (KDP). Chapter 

4 presents a review of the data mining techniques in AI used as experimental techniques in this 

study. Chapter 5 presents the detailed development of a generic framework based in KDP, with 

adaptation techniques from chapter 4, including the deep learning technique applied in the critical 

operation of the ETDS in an extreme-weather approach. This generic methodology framework is 

able to provide a roadmap to seek and extract new and useful knowledge in data. The latter is 

followed by discussion of its implementation using two different scenarios, as previously dis-

cussed. Chapter 6 discusses the winter storm. An extension of the approach is discussed and mod-

eled in chapter 7. Chapter 8 discusses conclusions. Finally, Chapter 9 provides the summary con-

clusion of this dissertation, and future research directions. Appendices A to D are included for 

completeness, in that they contain notations and supported references.   
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CHAPTER 2: METRICS OF THE CRITICAL OPERATION OF THE ETDS 

SYSTEM UNDER EXTREME-WEATHER EVENTS 

Knowledge of the difference in behavior during normal operation and extreme-weather event op-

eration in the ETDS is critical in order to understand when the event is occurring. This section 

presents a brief overview of classical electric power grid configurations and the state-of-the-art 

metering systems to acquire data from the ETDS to detect a power failure. The current state and 

availability of the components, power plants, and grid infrastructure across the ETDS is a chal-

lenging task. Thus, as a way to tackle the complexity of the ETDS, a probabilistic risk analysis in 

the ETDS by using Markov analysis is presented in Chapter 7, as a method of experimentation to 

obtain systematic uncertainties. Additionally, this section discusses power fault metrics and power 

systems resilience that can be measured to assess the effectiveness of power system operation 

under the impact of an extreme-weather event.  

2.1 Power electric grid configurations 

 The analysis of power energy in transmission and distribution networks is performed 

mostly in two major configurations, as stated by Panigrahi [Pani17] and Vorobev [Voro17]: Ra-

dial, as a single representation, and Interconnected, as a ring or loop representation. Figures 2.1 

and 2.2 depict radial and interconnected configurations, respectively.  
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Figure 2.1: ETDS radial configuration, image taken from [Elec18]. 

 

 

 

 

 

 

 

Figure 2.2: ETDS Interconnected configuration, image taken from [Elec18]. 

On the other hand, many authors use IEEE Reliability Test Systems (RTS) to prove their 

findings [Kuma14], [Gonz13], and [Peng15]. Figure 2.3 and 2.4 show the IEEE 9-bus modified 

system and the IEEE 14-bus modified system, respectively. In this study, scenario-2 simulations 

conducted using IEEE 9-bus modified are presented. IEEE14-bus modified systems (future work) 

are cited from the author [Deme17] to prove our findings, because in the presence of a hurricane, 

the power system is vulnerable to severe contingencies propagated along the power system leading 

to power system instabilities, as explained in chapter 7. Both of the IEEE systems are used for 

analysis of transient instabilities, exposing the failure to retain the synchronism of the main com-

ponents of the power system (generators to the rest of the system) after a severe disturbance. On 
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the other hand, the synthetic Texas electric network (ERCOT) from the authors in [Birc17], intro-

duces the methodology to generate synthetic line topologies in a 2000 bus case using realistic 

parameters that satisfy loads, generations, and transmission lines. This case includes realistic geo-

graphical placement of the substations, using real energy and population demand from the selected 

study area. Figure 2.5 shows the AC power flow solution (without any manual intervention, e.g. 

system operator best decision options detailed next in section 2.2) of the Texas 2000-bus. The 

reliability test busses data from the IEEE 9-bus, IEEE 14-bus, and Texas 2000-bus are presented 

in Appendix A.2. 

 

 

 

 

 

 

 

 

Figure 2.3: IEEE 9-bus reliability system, image taken from [Deme17]. 
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Figure 2.4: IEEE 14-bus reliability system, image taken from [Deme17]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Texas 2000-bus reliability test system, image taken from [Birc17]. 
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2.3 ETDS state-of-the-art data acquisition 

Recently, modernization in the ETDS allows the generation and acquisition of big data, by 

means of new technology devices like RTUs, Phasor Measurement Units (PMUs), and smart me-

ters within the Advanced Metering Infrastructure as discussed in section 1.3.2. and 1.3.4. Further-

more, the recent deployment of distributed intelligent devices and PMUs was used to enhance 

system stability, by detecting and isolating disturbances caused by different events as a short-cir-

cuit, equipment failure, temporary damage, or an extreme-weather generated fault as stated by Yu 

[Yu17] and Nakafuji [Naka17]. Assessment in the power distribution system components are cru-

cial to strengthening the ETDS system reliability under normal conditions, as well as increasing 

resilience under extreme-weather conditions. 

Data acquisition in the ETDS by the Wide-Area Measurement Systems (WAMS) using 

PMUs is increasing. Today, the number of entities sharing data flow is increasing in number, add-

ing more PMU units and syncrophasor data communication networks along the power grid.  Figure 

2.6 depicts PMU locations in North America and related Data flow during 2015 reported by Ener-

getic Incorporated [Ener16]. 

 

 

 

 

 

 

 

 

 

Figure 2.6: PMU locations in North America and related power flow during 2015, image 

from [Ener16]. 
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PMU is a sophisticated monitoring device that can measure the instantaneous voltages, 

currents and frequencies as a measure of phasor, frequency, and rate of change of frequency 

(ROCOF). Equation 2.1 represents the AC signal x(t) with constant frequency and magnitude.  

𝑥(𝑡) =  𝑋𝑚 cos (wt + 𝜑𝑜)      (2.1) 

  Where 𝑋𝑚 represents the signal peak value, the angular frequency is w= 2𝜋𝑓, and 𝜑0 

represents the initial phase of the signal. The complex phasor is represented in equation 2.2 as 

follows: 

𝑋̅ = 
𝑋𝑚

√2
𝑒𝑗𝜑0 =  

𝑋𝑚

√2
(𝑐𝑜𝑠𝜑0 + 𝑗𝑠𝑖𝑛𝜑0) =  𝑋𝑟 + 𝑗𝑋𝑖      (2.2) 

Where 𝑋𝑟 and 𝑋𝑖 represent the real and imaginary rectangular components of the complex 

phasor representation, respectively. The RMS value of the sinusoid is 
𝑋𝑚

√2
⁄  and ROCOF is rep-

resented by ROCOF = 
𝑑𝑓

𝑑𝑡
 [Mont16]. Figure 2.7 shows the phasor representation of sinusoidal sig-

nal. 

 

 

 

 

 

 

Figure 2.7: Phasor representation of a sinusoidal signal. (a) Sinusoidal waveform signal. 

(b) Phasor representation. 

 The phase measurement is estimated via the orientation, based on the global time reference 

from the Global Positioning System (GPS) situated in a specific location on the grid. In this study, 

steady-state modeling and ROCOF estimation was not conducted. The data from the PMU is re-

ceived by a Phasor Data Concentrator (PDC), which concentrates and manages the information of 

a wide geographical area from multiple PMUs located in optimum locations in the ETDS for fully 
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observability. Figure 2.8 shows an IEEE 9-bus with PMUs located in predefined buses, including 

a Phasor Data Concentration (PDC) unit, modified from [Dyna19]. 

 

 

 

 

 

 

 

Figure 2.8: IEEE 9-bus with PMUs located in predefined buses, including a Phasor Data 

Concentration (PDC) unit, modified from [Dyna19]. 

 The PMU is able to detect frequency variations that occur in a wide range of disturbances, 

e.g. harmonics (102 -103 Hz), inter-harmonics (0-103 Hz), network resonances (103 -104 Hz), power 

swings (0-10 Hz), power faults (104 -105 Hz) and lighting (as fast transients, 106 Hz). Phadke 

[Phad08] states that the PMUs are able to acquire data at high speeds, 100 times faster than 

SCADA systems. Additionally, Monti [Mont16] confirms that PMUs have their communication 

systems interconnected to different points (nodes) in the wide area of the ETDS, as mentioned 

above and depicted in Figure 2.4, allowing utilities to measure the state and health of the electric 

grid over vast expanses of geography in near real-time. With this approach, a situational awareness 

is provided to the monitoring systems between the large interconnected systems in the ETDS by 

giving the availability to track what is happening over time and space, and be able to take appro-

priate action if necessary.  

On the other hand, a Smart Meter (SM) measures energy consumption in real time and in 

more detail than conventional meters, which are only capable of recording the household con-

sumption without reporting any other energy activity. Recently, with the concept of “smart grids,” 

SM usage is growing across America covering 43% of U.S. homes. Other countries are imple-
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menting those smart measures devices as well. The SM is also a component of the Advanced Me-

tering Infrastructure (AMI) that realizes the transmission of data from the customer houses to the 

Meter Data Management System (MDMS) to the network, collecting data measurement in time 

intervals of 15 or 30 minutes. In a bi-directional or two-way communication technology, the 

MDMS executes a request to the smart meter and then the results are sent back by the use of 

wireless communication, as stated by Tan et al [Tan17]. This enhances the utilities’ ability to in-

tegrate the smart meter data into outage management systems, allowing the identification of power 

outages on distribution networks, without sending crews to search the physical areas.  

Of interest here, we can start by implementing PMUs to monitor and track power faults 

during extreme-weather events, by means of wide-area visualization (topology), and smart meters 

to detect household interruptions, as well as a demand management during the evolving time pe-

riod of the extreme-weather event.  

2.2 Power fault metrics 

Probabilistic and statistical analyses are required to measure power faults in the ETDS, in 

a standard form. Over the past decades, terminologies like reliability and availability incorporate 

statistics and probability into the analysis of power faults, which have been the most used measures 

by several utilities to quantify the performance of the components of the ETDS. Using both metrics 

can define the dependability of the components, or the system, as stated by Short [Shor04]. This 

is important because the purpose of the components working together is to deliver energy in a 

reliable fashion. Climate change, as discussed in section 1.1, increases the frequency, intensity, 

and duration of extreme-weather events, impacting system reliability over time in the ETDS 

infrastructure. EWPR analysis is a key approach to localize weak power system components as 

mentioned in previous section. Increasing the landfall of a hurricane results in the dramatic 

decrease of reliability measures in the ETDS. As mentioned above, Reliability (R) is one of the 

cost-effective measures in the ETDS. By estimating the system performance, it is capable of war-

ranting continuity, and quality in the electric grid, as this is the apparent goal of the ETDS. Several 
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methods were proposed by several authors like Short, Kumar, Cheng and Espiritu [Shor04], 

[Kuma14], [Chen09], [Espi07], for the analysis of reliability in the ETDS systems. Moreover, the 

technique most frequently used was the Monte Carlo or Sequential Monte Carlo method. These 

techniques work well, but in complex conditions, such as those resulting from the addition of the 

variable extreme-weather, become a limitation in assessing the impact of the extreme-weather. 

Authors Gaver et al. [Gave64] and Billinton et al. [Bill68], were the first in separating the distinc-

tion between normal condition power faults and under the influence of weather-related failures, 

to model the sudden increment in the failure rate of the components, and the probability of over-

laying during an extreme-weather events.  Other authors like Bhuiyan and Billinton [Bhui94], 

[Bill02], use this approach based on a two-states model: Normal and Extreme. Other effects of the 

extreme-weather events are the physical damage of the components in the ETDS from the increas-

ing in intensity, frequency, and duration of such events, as discussed in sections 1.1, 1.3.3, and 

1.5.2. Aged components are more likely to be more vulnerable to extreme-weather conditions as 

stated by Bruch et al. [Bruc11] and Shafieezadeh et al. [Shaf14]. 

Due to the this assumption, reliability measurements need to be separated into two major 

metrics: Typical Power Failures Metrics (TPFM) and Extreme-Weather Power Failures Metrics 

(EWPFM), both are reviewed below to understand distinctions. In addition, critical components in 

the ETDS system need to be considered, therefore, the component reliability importance metric is 

also presented.   

2.2.1 TYPICAL POWER FAILURES METRICS 

Utilities typically use reliability indices in their calculations to categorize service quality. 

The most common metrics in a reliability analysis are: SAIFI (System Average Interruption Fre-

quency Index), SAIDI (System Average Interruption Duration Index), CAIDI (Costumer Average 

Interruption Duration Index), CAIFI (Costumer Average Interruption Frequency Index), and ASAI 



 

25 

(the Average Service Availability Index). All of these represent the portion of time that the cus-

tomer has received electricity during the elapsed period reported and suggested as standard by the 

IEEE Power and Energy society [Ieee12].  

2.2.2 EXTREME-WEATHER POWER FAILURES METRICS 

The metrics used in EPFM for reliability and availability differs from the TPF, since the 

utilities do not include the extreme-weather related power faults metrics as described above. The 

Storm Average Interruption Index (STAIDI) is used, instead of SAIDI, with momentary interrup-

tion using MAIFI as proposed by Brown et al [Brow97]. Moreover, the Potential Storm Event 

(PSE) is used by the same author to predict STAIDI, described as the probability density function 

of the duration, and root mean square (RMS) of wind speed during its time interval. 

2.2.3 COMPONENT RELIABILITY IMPORTANCE METRICS 

 It is understandable that some ETDS infrastructure components are more critical than oth-

ers. The component importance index, then, is used to rank and classify target components which 

need to be enhanced in the reliability process. Different measures are used in probabilistic risk 

analysis to establish the importance of an ETDS component. Likewise, the importance of a com-

ponent depends on two factors: location within the system, and reliability of the component. The 

most popular measures, including the factors for component importance analyses as Rausand et al. 

states [Raus04] are: Birnbaum’s measure (BM), Improvement potential measure (IPM), Risk 

achievement worth (RAW), Risk reduction worth (RRW), Critically importance measure (CIM), 

Fussell-Vesely’s measure (FVM). 

Espiritu [Espi07] suggests a modification of the component importance measure to be used in 

Electrical Transmission System (ETS), in which traditional measures as described above cannot 

be directly used because they are not properly characterized for probability of failure or success 

for the specific mission. It is then suggested to use individual component sustained outage rates 

and system unavailability (increase, decrease) instead of a specific probability of failure that the 
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standard methods use. Other authors, Hilber et al. [Hilb07], propose the use of customer interrup-

tion cost as a measure of system performance instead of the use of every load point, in order to 

identify critical components in the system by reducing the calculation of the whole network.  

2.3 Power systems resilience definition and metrics 

 The Electric Transmission and Distribution Systems has been increasingly at risk mostly 

by the effect of the extreme weather in recent years. The resilience in the ETDS changes during 

the high impact of these events. Resilience is, at the present, the foremost indicator for power 

delivery during and after an extreme-weather event and also for the enabling of restoration of the 

ETDS system. To understand the concept of resilience the following is a broad definition taken 

from Carlson et al. [Carl12]: “The ability of a system to anticipate, resist, absorb, respond to, adapt 

to, and recover from a disturbance.” Power faults are always present at some time in the ETDS, 

where the system is mostly prepared under the N-1 criterion (reliability), but in an extreme-weather 

event (e.g. a hurricane) the N-1 criterion is exceeded, and numerous instantaneous power faults 

could occur through the components and through the system, caused by the physically compro-

mised exposure of several components in the ETDS systems (i.e., generators, transmission lines, 

transformers, or other equipment contributing to the overall performance of the ETDS system) 

through the route of the hurricane. It is necessary to treat all the stages of an extreme-weather 

event, using the state-of-the-art technology, methodologies, modeling and software to enhance the 

resilience in the ETDS. Resilience is a feature that is distinguished from the conventional princi-

ples of reliability. The distinguishing factors are: 1) Inclusion of all hazards and events (reliability 

does not include hurricanes, for example); 2) Quantification of all transition times through the 

states; and 3) Capture of the effects damages to customers (reliability captures only the number of 

customers impacted), grid operators and staff, and infrastructure [Tech18, Kahn17]. Despite the 

fact that resilience is an abstract concept and is also difficult to quantify, several metrics have been 

proposed by several authors [Pant17, Azad17, Azad15, Kahn17]. Therefore, finding a standard 

procedure is a challenging task, thus, there is no universal procedure to be used. However, a good 
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explanation and evaluation of resilience is found in the work of Lin et al. [Lin16b], where the 

authors measure the resilience of a system using qualitative and quantitative evaluation methods. 

This study will not explore the challenges in the measurement of resilience, but the job of the 

resilience metric quantification used by Panteli et al. [Pant17], based on multi-phase resilience 

trapezoid (MPRT), is depicted in figure 2.9. This method is taken in this study as a suitable refer-

ence. The MPRT defines a set of metrics to capture the performance during the unfolding of an 

extreme weather event. Moreover, the same authors divide the resilience into two main subjects: 

operational resilience, referring as the ability to guarantee uninterruptible energy supply to cus-

tomers in the case of extreme weather; and infrastructure resilience, referring to the physical abil-

ity to mitigate the section of the system that is lost, damaged, or nonfunctional in the case of ex-

treme weather. The motivation for using MPRT as a resilience metric emerges from the contribu-

tion to providing a big picture of the resilience level, by including the operational and infrastructure 

perspective.  

 

 

 

 

 

 

 

 

Figure 2.9: Multi-phase resilience trapezoid, image taken from [Pant17]. 

The pre-disturbance resilience begins at 100 percent, which indicate the normal operation 

of the power system. At Phase I, during time 𝑡𝑜𝑒 to 𝑡𝑒𝑒 , the resilience drops through the disturbance 

progress. At Phase II, during the post-disturbance degraded state, the power faults in the ETDS 
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system remains until the load restoration is initiated, the duration depends on the resilience of the 

covered region in the path of the hurricane i.e., fragility of the ETDS. Phase III, the restoration 

state, has times 𝑡𝑜𝑟 and 𝑡𝑖𝑟, where the operational and infrastructure restoration, respectively, are 

initialized. The occurrence of 𝑡𝑜𝑟 is faster than 𝑡𝑖𝑟, because in real world customers are reconnected 

first, then flooded substations or collapsed transmission systems are restored later. The three 

phases of resilience are dependent on many factors, as studied by Adderly [Adde16]. These factors 

could be, for example, frequency of blackout, magnitude, time of the year, time of day, and geo-

graphic location of the extreme-event. Figure 2.10 presents the mathematical expression of the 

resilience metrics proposed by Panteli et al [Pant17]. The different phases of the resilience trape-

zoid are calculated using these metrics to capture the performance through the unfolding of the 

extreme weather event (i.e. hurricane). Moreover, the resilience area defines the timeline during 

the disturbance and degraded states in both operational and infrastructure resilience, respectively. 

 

Figure 2.9: Mathematical expression of resilience metrics, modified from [Pant17]. 
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The proposed resilience metrics from Panteli et al. [Pant17], were successfully tested in 

their work, and is, therefore, a good approach to quantify the resilience in the area of interest.  

2.4 Optimal power flow analysis in transmission and distribution systems 

The controlled generating unit as a real power output in a selected area to sustain a given 

load under minimal total operating costs is named Economic Dispatch (ED). However, the only 

weakness of the ED is that “it ignores the limits imposed by the devices in the transmission lines” 

as stated in [Glov12]. Moreover, in reality the transmission lines and transformers can only handle 

a limit of the volume of power that can be transmitted through it, as the effect of the thermal, 

voltage, or stability restrictions. The United States, as well other countries, operates under a regu-

lated market, i.e. ERCOT, as mentioned in section 1.6.4, where the cost associated with active 

transmission lines is an important factor. Enforcing the generation transmission lines to act with 

the ED is what today we know as Optimal Power Flow (OPF) [Glov12]. The most used power 

solvers simulators are: Powerworld (used in this study), Matpower, Powerfactory, and Digilent. 

Scenario-2 of this study is based on the power solver Powerworld ver. 21. The next section briefly 

discusses the representation of DC power flow and the DC OPF used in this study. Since this study 

focuses only on the development of KDP using ML and DL, the theory behind electrical circuit 

analysis and their representations will not mentioned here, but more detail can be accessed in 

[Glov12].  

2.4.1 DC POWER FLOW 

An effective power system operation under normal balanced three-phase operation in a 

steady-state condition entails the four conditions [Glov12] below: 

• Generation needs to deliver the needed demand (load) plus losses; 

• Bus voltage magnitudes need to remain close to rated values; 

• Generators need to operate within the specified real and reactive power limits; and 

• Transmission lines and transformers need to be under overloaded limits. 
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The computation of the voltage magnitude and phase applied in each bus of the power 

system under a balanced three-phase steady-state condition, is named power flow problem.  In an 

AC power grid, the n buses and the m transmission lines constitute a complex network. The AC 

power flow analysis in each node i is labeled as one of the following [Glov12]: 

a) Slack bus (or Swing bus). In the analysis, there exists only one slack node indexed 

as node 1 (in many cases), with voltage typically 1.0 with 0 angle per unit as input 

data. Also, the slack node computes the active power 𝑃1 and the reactive power 𝑄1. 

in the power flow solver. 

b) Load (PQ) bus. The active power 𝑃𝑖 and the reactive power 𝑄𝑖 are input data, which 

need to be known for the power solver, where 𝑉𝑖 and 𝜃𝑖 are computed with the 

program. 

c) Voltage Controlled (PV) bus. The active power 𝑃𝑖 and the voltage magnitude |𝑉𝑖 | 

are input data, which need to be known, and the reactive power 𝑄𝑖 also with the 

angle 𝜃 need to be computed with the power flow solver. 

AC power flow is a nonlinear system, with respect to their voltages. DC power flow pro-

vides a linearized approximation of the active power flow presented in the AC model. Many au-

thors use DC power flow approximation instead of using AC power flow in their analysis for sim-

plicity purposes [Wang17], [Sang19]. The DC linearization needs to follow the conditions 

[Glov12] below: 

a) The difference between the voltage phase angles of every coupled neighboring bus 

needs to be small, such that 𝜃𝑖𝑘 ≈  𝜃𝑖𝑘  and cos 𝜃𝑖𝑘 ≈ 1. 

b) The active power losses need to be negligible, thus, 𝑌𝑏𝑢𝑠  ≈ 𝑖𝐵 (B is the admittance 

matrix, imaginary part), which in the computation, the line resistance is neglected. 

c) The voltage magnitudes’ |𝑉𝑖| variation need to be small, and it is assumed that |𝑉𝑖| 

= 1 ∀𝑖. 
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Consequently, under the above assumptions and given the active power 𝑃𝑖 at each bus 

I, the angle of the buses can be estimated by 𝜃̃𝑖  using the DC power flow approximation. 

Equation 2.3 and Equation 2.4 are the DC power flow formulation equations. 

𝑃𝑖 =  ∑ 𝑃𝑖𝑘
(𝐷𝐶)𝑛

𝑘=1 𝑘≠1 =  ∑ 𝐵𝑖𝑘(𝜃𝑖̃
𝑛
𝑘=1 𝑘≠1 −  𝜃𝑘̃)   (2.3) 

Or reduced in a matrix form with the real power balanced to a complete linear problem, 

𝑃̃ =  −𝐵𝜕̃      (2.4) 

Where, 

B is the imaginary part of the 𝑌𝑏𝑢𝑠  𝑃̃ = [𝑃𝑖̃,  𝑃𝑖, 𝑃𝑖]
𝑇 , and  𝜕̃ = [𝜕̃1, … , 𝜕̃𝑛]𝑇 

are the matrices estimated by assuming that the phase angle at the slack bus (first entry) is 0.  While 

the DC power flow lines are lossless, therefore, Equation 2.5 can be used to estimate the phase 

angle on the buses by solving Equation 2.4. 

𝑃𝑖̃ +  ∑ 𝑃𝑖
𝑛
𝑖=2 = 0     (2.5) 

2.4.2 DC OPTIMAL POWER FLOW 

 As mentioned in section 2.2, the OPF plays an important role in planning and system op-

erations derived by the action of the TSO. Different optimization techniques exist to solve the OPF 

problem, the most common are Linear Programming (LP), Dynamic Programing (DP), Newton-

Rapson (NR). Powerworld OPF solver uses LR technique. All of these methods have their ad-

vantages that will not be discussed in this study. The goal of the OPF, as discussed in section 2.2, 

is to minimize the lost load during an event in the ETDS system. Under this assumption an ap-

proximation of the objective function in a DC Optimal power flow, can be represented by the 

Equation 2.6, taken by [Moha19].  

Minimize ∑ { 𝜋𝑠𝑠  ∑ [ ∑ ( 𝑐𝑔 𝑃𝐺(𝑠,𝑔,𝑡) +  𝑐(𝑔)
𝑁𝐿  𝑢(𝑠,𝑔,𝑡) +  𝑐(𝑔)

𝑆𝑈  𝑣𝑠,𝑔,𝑡 + 𝑐𝑔
𝑆𝐷 𝑥(𝑠,𝑔,𝑡)) +𝑔𝑡

 ∑ (𝑐(𝑛)
(𝑙𝑠ℎ)

 𝑝(𝑠,𝑛,𝑡)
𝑙𝑠ℎ )𝑛 +  ∑ ( 𝑐(𝑔)

𝑜𝑔
 𝑃(𝑠,𝑔,𝑡)

𝑜𝑔
 )]}𝑔       (2.6) 

Where generation cost is represented by the first term, which includes: power generation 

cost (no load cost, start-up cost, and shut-down cost), load shedding cost is represented by the 
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second term, and overgeneration cost is represented by the third term of Equation 2.6 above. Equa-

tion 2.6 has constraints which, as a plain reference without mathematical expressions, can be sum-

marized below: 

• Generation ramping limits (maximum and minimum), 

• Minimum Up Time and Down Time constraints of generators, 

• Nodal injected power calculation (when load shedding and over generation are al-

lowed), 

• Power Flow of Lines (ensuring the flow on the lines that should be monitored stay 

within limits), 

• Calculate the power flow for such lines accounting for changes in topology, 

• Power balance (allowing load shedding and over-generation), 

• Ramp-Up and Ramp-Down limitation over generation limits, and 

• Other constraints, i.e. generator status added by the operator. 

2.5 Extreme-weather probabilistic risk analysis (EWPRA) 

The use of an EWPRA is a useful technique to localize weak spots in the ETDS. Moreover, 

extreme-weather risk analysis aims to prepare contingencies in the ETDS for rapidly recovering, 

and to prevent or mitigate the impact of similar events. HAZUS simulator, created by the Federal 

Emergency Management Agency (FEMA), is used to estimate damages and loss of buildings and 

essential facilities from Earthquakes, Floods, Hurricanes, and Tsunamis and to visualize such 

events. HAZUS was used in this study to visualize the hurricane event. Moreover, Stochastic meth-

ods like Monte Carlo, Sequential Monte Carlo, and several other methods are widely used as stated 

by the authors Brown et al. [Brow97], Alvehag et al. [Alve08], and Balijepalli et al. [Bali05] to 

assess the risk analysis in the infrastructure due to extreme-weather. Furthermore, HURDAT2 is a 

historical dataset collected since 2005 to the present, and regularly upgraded with data collected 

by the Oceanographic and Meteorological Laboratory at National Oceanic and atmospheric Ad-

ministration (NOAA). HURDAT2 contains broad six-hourly information about hurricanes, which 



 

33 

includes data like the maximum wind speed, location, central pressure, etc. HURDAT2 [Hurr18] 

is a comma-delimited text format dataset (CSV), and is commonly used in literature for analyses 

in atmospheric predictions and other applications, like HAZUS, in our case.   Furthermore, 

HAZUS uses Geographical Information System (GIS) technology to estimate physical, economi-

cal, and social impacts of disasters which can identify high-risk locations due to the extreme event 

as previously mentioned. Additionally, HAZUS can use customized data input in the model to 

generate new scenarios, but only scenarios offered by the HAZUS software can be created. The 

geoprocessing data from HAZUS needs to be merged into ArcGIS software, specifically ArcGIS 

ver. 1.5.1. ArcGIS version 1.7.x and ArcGIS Pro can manage Deep Learning in their platform as 

a smooth means. Deep Learning concepts are explained in further chapters. In this study, deep 

learning is not evaluated under those versions, only supervised and unsupervised machine learning 

is used to evaluate the vulnerability in the ETDS under Scenario-2. Scenario-2 and Machine Learn-

ing algorithms are presented and discussed in further chapters, respectively. All ArcGIS versions 

including that required by HAZUS, requires a subscription to allow the access to the ArcGIS plat-

form. Some versions are costly, especially the version including Deep Learning. This study uses a 

student subscription of ArcGIS to access only the HAZUS requirement to evaluate the perfor-

mance and validate the accuracy of the proposed model, specifically in Scenario-2. The reason that 

DL under GIS systems is not compared is that DL algorithms under those platforms are not avail-

able with the software. ArcGIS software, ENVI, QGIS and other platforms can be used to create 

and manage GIS information. Specifically, ArcGIS software is administered by the Environmental 

Systems Research Institute (ESRI), created in 1969. Many databases and projects under ESRI were 

developed by NOAA, NASA, IEA, etc., which generated lot of geodatabases, raster data (mosaic 

data structure for managing multidimensional raster and imagery data), and vector data (shape-

files). Geoprocessing data from the platforms mentioned above are mostly shared on the web. 

Therefore, geoprocessing data from authors’ findings shared on ArcGIS and Geoplatform is used 

in this study (Scenario-2), since the purpose of this study is not an analysis in the prediction of 

hurricanes, winter storms, or any other extreme event. In this manner, the hurricane path modeling 
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is only under the assumption of HAZUS software ver.4.2 [Fema19]. Analyses of the Supervised 

and Unsupervised Machine Learning can be accomplished with photos taken before and after the 

hurricane, in order to visualize the damaged location as a geographical asset using satellite image 

or other technology, i.e. Light Detection and Ranging (LiDAR). ENVI software offers a good 

approach to those assets. 

2.6 Conclusion 

The vulnerability analysis in the ETDS during an extreme-weather event needs to be deep-

ened by the examination of the components. The components’ failure rates need to be detailed in 

a fragility curve, according to the potential damage of the wind under the extreme-weather event 

[Li14], to estimate the power failures in the ETDS as a first rule. A second rule, on outage assump-

tions can be deterministic. In the case of using the deterministic rule, it is necessary to corroborate 

real outage history by the utility companies in the geographic area of study, or by means of obser-

vations using remote sensing techniques, with digital image analysis (image in Tagged Image File 

Format (TIFF) with ML techniques.  The outcomes can be taken as an action from the TSO, by 

pondering current and future topology states in the ETDS. On the other hand, failures in the ETDS 

can result as input data representing the system states [Wang17], or scenarios [Sang19] in the OPF 

solver. DC OPF can be a simplified method to solve the optimization problem in the ETDS, in-

cluding the spatial-temporal translation of the extreme-weather. In the next section, a novel meth-

odology is proposed to aid the resilience in the ETDS by predicting load, detecting critical loads, 

and as a tool to help operators to make better decisions. 

 

 

  



 

35 

CHAPTER 3: KNOWLEDGE DISCOVERY PROCESS FRAMEWORK  

 The use of raw data in data analytics presents several issues in data quality. Raw 

data often contains outliers, data errors, noise, and possible hidden trends. Additionally, massive 

data generation can cause scalability problems, as well as insufficient feature description, fashion-

ing impractical datasets for Modeling. From this assumption, the data driven problems can be 

solved following a road map of process called Knowledge Discovery Process (KDP). Thus, this 

chapter presents a KDP multistep framework implemented to solve the problem in the datasets, as 

results of raw data acquisition from the operation of the Electricity Transmission and Distribution 

Systems (ETDS) under extreme-weather events. These latter KDP processes are a source of inspi-

ration of many data scientists that have worked with data mining projects, and are adapted in chap-

ter 5 for the purpose of this study.  

3.1 Knowledge discovery process framework 

Knowledge Discovery Process consists of multiple steps that are executed in a sequence. 

As mentioned in section 1.5.1, its main purpose is to seek new knowledge by finding interesting 

hidden patterns in data from a certain domain. Gullo [Gull15] proposes five steps, as shown in 

Figure 3.1. This figure was briefly modified from [Gull15] to show the steps, which are described 

below. 

 

Figure 3.1: Knowledge discovery process, briefly modified from [Gull15]. 
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Step 1.- Selection is the assessment of the situation in which discovery has to be achieved, 

by generating target data (i.e. collection of initial data, selection of subset of variables or data 

samples, exploration of data, and verification of data quality); 

Step 2.- Preprocessing is the cleansing of data by completion of diverse operations, like 

removal of outliers, dealing with noise and missing values in data, and accounting for time-se-

quence information. 

Step 3.- Transformation consists of using techniques for selection and extraction algo-

rithms (reducing dimensionality), by derivation of new attributes (i.e. discretization), and summa-

rization of data (data granularization), in order to meet suitable representation (final data set) to be 

used as input, to be fed in the data mining tools in the next step; 

Step 4.- Data Mining involves the use of several methods to extract interesting patterns 

(knowledge) from preprocessed data by choosing specific data mining methods or tasks (i.e. clas-

sification, clustering, regression, etc.), proper algorithm(s) for completion of the assigned mission, 

and suitable representation of the output results; 

Step 5.-Interpretation/evaluation is supported by interpretation of the visualization of 

patterns, models, or data, and by the understanding the results. Often, replication into the previous 

step is necessary. 

Furthermore, many authors are using KDP and Data Mining in their studies, like material 

science and engineering and many other areas. Other authors such as AbuOmar, Fayyad, Gull, 

Cheng, Thomas, and Bandaru [Abuo13, Fayy96, Gull15, Chen18, Thom17, Band17a], and 

[Band17b] are in favor of KDP to manage large amounts of raw data, validating the efficiency of 

the KDPs.  A discussion of data mining techniques is presented next. 
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CHAPTER 4: EXPERIMENTAL DATA MINING TECHNIQUES 

 In the introduction (Chapter 1), some data mining characteristics were briefly men-

tioned, and in the previous section (Chapter 3) the knowledge discovery process framework was 

discussed. In this chapter, the subject of Data Mining techniques is furthered expanded. Data Min-

ing forms the core step in KDP, and some of the most used algorithms in Machine Learning and 

Deep Learning Neural Networks are also discussed in this chapter, including their characteristics 

and a discussion of their state-of-the-art programming frameworks and libraries. Their interesting 

performance approaches in prediction and classification are further coupled and adapted to the 

proposed framework in Chapter 5, to further solve the problems in Chapter 6. 

4.1 Data Mining techniques 

 One of many definitions collected by the author [Gull15] of “data mining”, is “au-

tomated exploration and analysis of large quantities of data in order to discover meaningful pat-

terns.” The patterns and trends can be collected and defined as a data mining model. Thus, data 

mining is a method to discover actionable information from large sets of data. Data mining uses 

mathematical exploration to derive patterns and trends that exist in data, mostly as unsupervised 

data in some domains, which is less expensive as supervised data, that deal with known input 

corresponding to known output (expert needed to determine this relation). Typically, these patterns 

cannot be discovered by traditional data exploration because the relationships are too complex, or 

because there is too much data. The methods of constructing data mining models are discussed in 

section 1.5.3 are reviewed next. 

4.1.1 MACHINE LEARNING 

Machine Learning evolved out of the subfield known artificial intelligence. Artificial In-

telligence, defined by Shapiro [Shap87] as “The study of ways in which computers can be made to 

perform cognitive tasks, at which, at present, people are better.” The same author includes expert 
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tasks in AI as representation and inferences in order to diagnose diseases, design computer sys-

tems, etc., by processing relevant knowledge and creating search-based problem-solving as meth-

ods to take advantage of “knowledge.” Therefore, AI is designed to solve problems. Since 1842 

AI has been evolved over decades as cited by lady Lovelace [Love10], and first launched in 1950 

by Alan Turing [Shap87].  

On the other hand, Murphy [Murp12] defines machine learning as the “set of methods that 

can automatically detect patterns in data, and then use the uncovered patterns to predict future 

data, or to perform other kinds of decision making under uncertainty.” Similarly, Mitchel [Mitc97] 

states that a “computer program is said to learn from experience E with respect to some class of 

tasks T, and performance measures P, if its performance at tasks in T, as measured by P, improves 

with experience E.” Kelleher [Kell15] coincides with the previous authors by defining machine 

learning as an automated process to extract patterns from data.  

Murphy classifies Machine Learning in two major types of learning: Predictive or Super-

vised and Descriptive or Unsupervised, and one minor type, Reinforcement Learning. 

Supervised Learning (SL), utilizes an x → y mapping from input x to output y, where the repre-

sentation in a D-dimensional vector of numbers representing features, attributes or covariates, SL 

is represented in equation 4.1. 

𝐷 =  {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁       (4.1) 

where D is the training set and N is the number of training examples. 𝑥𝑖(input) may contain com-

plex structured recipients that are regularly stored in an (N x D) design matrix, such as an image, 

a sentence, a time series, a graph, etc. The output is typically of two types: Classification (pattern 

recognition) or regression, both tasks are used in this study and detailed in chapter 5. In SL, clas-

sification has the goal to predict a class label, which is a selection from a predetermined list of 

possibilities.  

 In simple words, SL uses historical data, previously labeled (dependent variable), and a 

teaching algorithm to define a decision surface, thus resulting in prediction of the target value in a 

generalized way. 
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Unsupervised Learning (UL), is of the form z → y, where only the inputs are given. D- 

dimensional vector represents this technique in equation 4.2, where 𝑥𝑖 and N represents the same 

case as equation 4.1. 

𝐷 =  {(𝑥𝑖)}𝑖=1
𝑁       (4.2) 

The trainer does not exist in unsupervised learning. Instead, the algorithm must learn, by 

itself, to make sense of the data. 

Reinforcement Learning (RL), involves an algorithm that interacts with the environment 

to learn how to act or behave in a certain state or situation, when the occasional signal is rewarded 

or punished. Therefore, a feedback loop exists between the learning system and its involvement 

employing a set of inputs and some outputs which are graded as a training data [Good16]. Equation 

4.3 represent this technique. 

𝐷 =  {(𝑥𝑖, 𝑦𝑖𝑒 , 𝑦𝑔)}
𝑖=1

𝑁
     (4.3) 

where, 𝑦𝑖𝑒  is some output interaction with environment, and 𝑦𝑔 a grade received as opti-

mum output. where 𝑥𝑖 and N represents the same case as equation 4.1. RL is not discussed in this 

study for simplicity and time constraints. 

ML algorithms extract knowledge from an example (i.e. data), learning by the example, 

and generalizing this learning properly to deal with new examples [Beng11]. Machine Learning 

(ML) is used to generate predictive models that can be exploited to forecast an event (i.e. hurricane 

scale, demand forecast) or classify a task.  Flach [Flac12] focuses on the model as a central part of 

machine learning, figure 4.1 shows this concept. 

 

 

 

 

Figure 4.1: Main components of Machine Learning [Flac12]. 
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Many techniques have been used to solve ML problems. The most common are depicted 

in Figure 4.2 [Math18b]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Machine learning assortment models, divided by supervised and unsupervised char-

acteristic [Math18b]. 

4.1.2 NEURAL NETWORKS 

Neural Networks are one type of model for machine learning as shown in figure 4.2. Deep 

Learning a subfield of Machine Learning, which was inspired by the analogy of biological neural 

networks. These networks have been used by many scientists, in many applications such as com-

puter vision, natural-language processing, and generative models, with a rise in usage because of 

the dramatic improvement of the computational resources. A brief description of this kind of ar-

chitecture is described next, in order to understand the architecture of the neural networks. 
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Since 1943, the McCulloch-Pitts model [Mccu43] was a seminal work, as the model re-

sembles the structures in the human brain. The neuron is the main unit of the human brain, which 

contains approximately 100 Billion neurons with about 6,000 connections from each neuron to 

other neurons [Budu17]. The aim of the neurons is to optimize the information received from other 

neurons, processing this information in a distinctive way. The basic artificial neural network 

(ANN) structure consists of basic units called nodes, which simulate the operation of a neuron 

within a neural network. The operation is similar to its biological counterparts, where the activation 

occurs when the sum of the total input signals exceeds the activation threshold. The nodes transmit 

the signals between them by mean of connections, which simulate the operation of biological syn-

apses. These signals, sent by a neuron, passed from one to the next, can behave as a filter. Each 

neural network has its own number of nodes to receive the input signals from the outside, where 

the first group of nodes represents the first layer, called the input layer. The second group is an 

intermediate position the neural network, and is referred to as a hidden layer. The last layer is 

called the output layer, which sends the results directly to the outside [Nell18]. In a broad point of 

view, the basic operation of a neural network is the flow of data that enters the neural network 

from left to right, by processing the data in a more or less complex way depending of its structure, 

and finalizing in an output result. Figure 4.3 describes the function of the structured biological 

neuron, and Figure 4.6 shows a deep neural network.   

 

 

 

 

 

 

Figure 4.3. Biological neuron and its resemblance to an artificial neuron [Budu17]. 
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 The relationship between neural networks and machine learning is that we have a neural 

network (the process of defining the model) instead of a model, and the learning rule instead of 

machine learning [Kim17]. Figure 4.4 shows both processes.  

 

 

 

 

 

 

Figure 4.4. Relationship between Machine Learning and Neural Networks [Kim17]. 

The artificial neural network, is represented by Candel [Cand17] a single neuron as shown 

in Figure 4.5. The nonlinear activation function is represented by f, and the neuron’s activation 

threshold is represented by b (bias). 

 

 

 

 

 

Figure 4.5: Representation of a single neural network [Cand17]. 

The same author represents the basic unit modeled by the Equation 4.4, where f (𝛼) is the 

output signal transmitted by the linked neuron. 

𝛼 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1                                 (4.4) 
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4.1.2.1 Connection weights, Biases, and Neuron Activation Function 

 Connection weights as discussed before are mostly represented by a “𝑤” as a mathemat-

ical representation of a neural network, in which lines/arrows connected from one point to another 

point in the direction of information flow: input signal given a weight on the connections as a 

coefficients scale to amplify or minimize the input [Patt17]. 

Biases are generally noted as a ‘𝑏”, which are scalar values added to the input to ensure 

that at least a few nodes per layer are activated regardless of the signal strength throughout the 

learning process, allowing the action in the event of low signal by giving a try of  new interpretation 

or behaviors to the network [Patt17]. 

 Activation function is the function which governs the artificial neuron’s behavior, by 

transforming the inputs, weights, and biases into a convenient range (0 to 1 or  1 to -1) to the next 

node layer which acts as an input. This transmission of that input is known as a forward propaga-

tion. The activation of the artificial neuron occurs when the neuron passes a nonzero value to 

another artificial neuron [Patt17]. There are three main of neuron activations in Neural Networks 

that allow nonlinearity in the data, these are: (1) Logistic Sigmoid Function. The S-shaped prop-

erty of this function allows it to work with probability distribution in deep learning, and is com-

monly used [Good16]. (2) Hyperbolic Tangent (tanh) Function. This is an S-shaped nonlinear-

ity, similar to the sigmoid function, but is rescaled and shifted with symmetry around 0 (ranged 

from -1 to 1), allowing faster convergence of the training algorithm [Weis18]; and (3) Rectified 

Linear Unit (ReLU). This neuron activation function has the shape of a hockey-stick, which is 

one of the most popular for authors because it can be used in many tasks, especially in computer 

vision [Budu17].  

4.1.3 THE LEARNING PROCESS 

 The learning process of a neural network is named the learning phase, as discussed before 

the weighs of the synapses “𝑤” is slightly modified in each predetermined cycle of operation in 

the neural network. Each learning cycle is named as an “epoch.” The most well-known algorithm, 
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is the back-propagation algorithm which is a gradient-based algorithm with numerous variations 

(depending on data), and the Levenberg-Marquardt algorithm, which is commonly more efficient 

but with a higher computational cost (memory). In order to perform learning in the neural network, 

the result must be evaluated. It is necessary to use the appropriate input data to achieve some 

confidence by use of a random mechanism like simple hold-out validation or k-fold validation, to 

separate the experimental data into tree nonoverlapping and independent data sets [Izen08]. Simple 

hold-out validation, sets apart a fraction of the data to form the test set. Training (or learning) is 

accomplished with the remaining data, so evaluation takes place on the test set. K-fold on the other 

hand, splits the data into K partitions of equal size [Chol18]. The splitting of the available data into 

three sets to perform the model are: 1) Training or Learning data set, 2) Validation data set, and 

3) Test data set. In the training set for each input value an output value is expected, where all the 

optimization activities are guided by the performance index. The validation set is used for model 

selection, by comparing the output values produced by the neural network with the expected ones, 

and by monitoring the learning process which could present a different tendency. The test set is 

used to assess the performance of a completely specified final model, by the analysis of another 

set of inputs whose results are known in a supervised learning, and some performance measures 

are computed. The evaluation of the differences between the values obtained and the ones expected 

defines the ability of the neural network to solve the problem, this value is mostly presented as the 

accuracy of the neural network [Nell18]. 

The developing of a learning model involves the tuning of the neural network configura-

tion, by choosing the numbers of layers or the size of layers in the network, this is called hyperpa-

rameters of the model. The process of tuning is by using the feedback signal, which is the perfor-

mance of the model on the validation data [Chol18]. ML and DL have progressed and are intro-

ducing additional learning algorithms. To wit, at the beginning of this study, the number is so great 

that not all can be discussed in this document. 
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4.1.4 DEEP LEARNING NEURAL NETWORKS 

ANN Learning dates from 1940’s, but since 2006, it has become popular because the ad-

vent of computational power coupled with the increment of massive data. Most recently, a varia-

tion referred to Deep Learning has been adopted. In addition, DLNNs are a variation of ANNs 

known by several different names, such as feedforward deep network, feedforward neural network, 

and multilayer perceptron (MLP) [Good16]. Deep Learning Neural Networks (DLNN) are the 

embodiment of Artificial Neural Networks (ANN) using Deep Learning Algorithms, as seen in 

section 4.1.2. DLNN have a distinct structure from the previous neural network, as it contains 

several layers of interconnected single neuron units, resulting in multiple hidden layers. The name 

“deep” was inspired by the use of deep structures, which resemble the biological brain [Good16]. 

Subsequently, a family of algorithms known as neural networks has recently seen a revival under 

the name “Deep Learning.” Deep Learning Neural Networks is a Learning technique which is 

getting a lot of attention recently by authors like Babri [Babr96], Villmann [Vill17], and Angelov 

[Ange17], used to approximate some function for classification and regression, since its models 

can achieve state-of-the-art accuracy with substantial computing power reduction in training time. 

One objective of the work in this document is to incorporate this approach.  

Deep Learning models have the capability to learn directly from the data set, where the 

training process is achieved by using a large set of labeled data and neural network architectures 

containing many layers. DLNN structure model begins with an input layer, followed by multiple 

nonlinear layers which include the bias units in each layer, and includes an output layer (linear 

regression or classification layer). Figure 4.6 shows a relatively simple DL neural network known 

as multilayer perceptron (MLP) also known as (Vanilla) feed-forward neural network [Mull17], 

showing weights and biases where the superscript n, w, and 𝜃 refers to the first or second layers 

[Koiv18]. MLP can be seen as the generalization of a linear model that perform several stages of 

processing as a way to derive a solution (classification or regression). 
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Figure 4.6. Deep Learning Neural Network or MLP representation [Koiv18]. 

The learning process occurs when the weights are adjusted by minimizing the error in the 

labeled data, representing the objective function (sometimes referred to as the cost function or 

error function). This learning process is represented as equation 4.5 [Cand17]: 

L (W, B | j),       (4.5) 

In this study we used the structure of the MLP neural network, presented in chapter 7. Thus, 

for better understanding Figure 4.7 shows a single node in an MLP neural network. Here, the 

neuron is represented by i with a summer and a nonlinear activation function g. The weights 𝒘𝒌𝒊 

are multiplier with the inputs  𝒙𝒌 , k=1 ,…, K in the neuron, and summed all together with the 

bias 𝜽𝒊, next, 𝒏𝒊 is the input to the activation function g. 

 

 

 

 

 

 

Figure 4.7. Single node of an MLP neural network [Koiv18]. 
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The output in node i is represented by the output 𝑦𝑖. Equation 4.6 shows this representation. 

Subsequently, Equation 4.7 represents the connections between the several parallel and series 

nodes which at the final results the structure form of the MLP neural network [koiv18]. 

𝑦𝑖 =  𝑔𝑖 = 𝑔[∑ 𝑤𝑗𝑖𝑥𝑗 + 𝜃𝑖
𝐾
𝑗=1 ]    (4.6) 

In the equation 4.7 below 𝒚𝒊  represents the output of the MLP neural network. 

𝑦𝑖 =  𝑔[∑ 𝑤𝑗𝑖
2𝑔(𝑛𝑗

1) + 𝜃𝑗
2)3

𝑗=1 = 𝑔(∑ 𝑤𝑗𝑖
23

𝑗=1 𝑔[∑ 𝑤𝑘𝑖𝑥𝑘 + 𝜃𝑗
1𝐾

𝑘=1 ] + 𝜃𝑗
2  (4.7) 

The conclusion is a nonlinear parameterized neural network that maps the data from the 

input space 𝑥 𝜖 𝑅𝐾  to output space 𝑦 𝜖 𝑅𝑚  . This particular structure has an arrangement of n = 3 

layers. including the parameters of the weights 𝑤𝑗𝑖
𝑘 , biases 𝜃𝑗

𝑘 , and the activation function g, which 

is assumed to be the same in each of all the layers. Thus, the design for the utmost performance of 

an MLP neural network or other types of neural networks, is a data fitting problem. Starting with 

a given input-output data set of (𝑥𝑖, 𝑦𝑖), i =1,…, N the objective is to determine the parameters of 

(𝑤𝑗𝑖
𝑘, 𝜃𝑗

𝑘) respectively, during the learning process. The learning process follows several needed 

steps as discussed in the section above, and this study follows several steps in approaching the 

problem in the next chapters. The basis of DLNN is the employment of several layers of nonlinear 

processing units arranged in a successive manner, where the output from a previous layer is, in 

turn, the input to the subsequent layer. The simple recipe of a deep learning algorithm is the com-

bination of a dataset, a cost function, an optimization procedure, and a model [Good16]. The num-

ber of hidden layers can be settled by trial and error method [Cios07]. Although other methods can 

be used to decide the number of hidden layers, those will not be covered in this dissertation for 

simplicity. Thus, by adding more layers, a deep network can characterize complex learning func-

tions (i.e. language, vision, etc.), resulting in the mapping of the input (raw data) to the output 

(predictions) directly from the data. In simple worlds: “a chain of simple, continuous geometric 

transformations mapping one vector space into another” [Chol18]. 

Research groups like Toronto, Microsoft, Google and IBM, as presented in [Hint12], ob-

served the capability of deep learning in acoustic modeling. Similarly, deep learning has been 

demonstrated to be an excellent solution for managing applications such as speech recognition 
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reported by authors Cui et al. [Cui16], Mateju et al. [Mate15], Liao et al. [Liao13], and Dahl et al. 

[Dahl12], natural language progressing reported by Galea et al. [Gale18], and computer vision 

analyses reported by Yang et al. [Yang17b]. Other fields derive benefits from the use of deep 

learning, such as the management of big data applications, as proposed by Wang et al. [Wang16b], 

where a multilevel deep learning model is proposed for the analysis of system stability and emer-

gency management. 

4.1.5.1 Deep Learning Neural Networks Structure 

 The neural network spotlighted in the previous section was a simple one. In fact, there are 

many types of neural networks, used for different tasks. The following is the taxonomy of deep 

learning represented by [Goll16] 

 

 

 

 

 

 

 

 

 

Figure 4.8. Deep Learning Neural Network taxonomy, taken from [Goll16]. 

A more complex MLP is represented by LeNet architecture, which was the “first architec-

ture” for Convolutional Neural Networks (CNN) created by Yann LeCun [Lecu98]. It consists of 

two sets of convolutional, activation, and pooling layers, followed by a fully-connected layer, ac-

tivation, another fully-connected, and finally a softmax classifier. Figure 4.9 shows a CNN used 

with the original LeNet model [Lisa15]. 
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Figure 4.9. CNN used with LeNet model architecture, taken from [Lisa15]. 

4.1.6 MAIN CHALLENGES IN MACHINE LEARNING AND NEURAL NETWORKS 

 Two main challenges in learning techniques are: Optimization and Generalization. These 

challenges are briefly discussed next. 

 Optimization. This encapsulates all problems of obtaining the best item or best value 

among a set of alternatives by minimizing (or maximizing) an objective function (or criterion) via 

an iterative process. This function can be linear, quadratic, or more complex. Stochastic gradient 

descent (SGD) is one popular technique used for the optimization problem [Shal14]. Thus, as 

stated by Goodfellow [Good16] “Optimization refer to the process of adjusting the model to get 

the best performance possible on the training data”.  

The critical points that are neither maxima nor minima, are referred as saddle points. Figure 

4.10 depicts the gradient descent optimization technique, with different types of critical points and 

multiple local minima. Image taken from Goodfellow [Good16]. 
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Figure 4.10. Optimization based. (a) Gradient descent algorithm, (c) Types of critical points, (b) 

Approximate minimization for multidimensional function [Good16]. 

 Generalization is when an algorithm performs well on new or previously unseen (or un-

observed) data inputs. This is exhibited when the machine learning model is trained with a set of 

training values. During this process, training errors are identified as generalization error or test 

error, and used to reduce the overall error. When the model begins to degrade after a number of 

iterations (epochs) on the training data, it said that the model is starting to overfit.  

 
(a) 

 
(b) 

 
(c) 
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Two factors define the performance of a machine learning algorithm [Good16]: 1) Small 

error training (underfitting), and 2) Small gap between training and test error (overfitting). Figure 

4.11, shows these two factors [Good16]. 

 

 

 

 

 

 

 

Figure 4.11. Relation between underfit, overfit and optimal capacity [Good16]. 

A technique to test overfitting is validation of a part of the training data (by dividing the 

training data from the validation set), and used to observe the performance of the model. There are 

many other techniques used by researchers [Salm15], such as cross-validation (randomly selection 

of the validation dataset) [Murp12]; confusion matrix based on: true positive rate (TPR), true neg-

ative rate (TNR), false negative rate (FNR), and false positive rate (FPR), which convert the raw 

numbers from the confusion matrix into percentages; Precision, Recall, and 𝐹1measure, which can 

be calculated directly from the confusion matrix [Kell15]. 

The process of preventing overfitting is called Regularization. There are many training 

error techniques, such as Regularization L1, and L2 also called weight decay [Good16]. Authors 

like Shen [Shen18] and Yu [Yu10] use dropout and pretraining, respectively, to help in the model 

optimization and generalization. The following list is the most adopted methods for generalization 

in the literature [Kepl17], including the ones mentioned before: 

• Adding more training data (Data Set Augmentation), 

• Choosing a specialized model (Bagging or bootstrap aggregating), 

• Lowering model complexity (Norm penalties as constraint optimization), 
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• Pretraining, 

• Early stopping, 

• Weight decay, and 

• Dropout. 

4.1.6 DATA PREPROCESSING IN DATA MINING 

 This section is dedicated to the importance of the preprocessing in data for machine learn-

ing and deep learning neural networks, and as discussed in section 1.5.3 and section 3.1 KDP 

workflow data preprocessing or data preparation as many authors call it, is the second step before 

the model development in data mining. Data preprocessing is also known, by many authors, as 

feature engineering. The unsupervised transformation of the dataset are the algorithms that create 

a new representation of the data which might be easier for machine learning or deep learning neural 

networks. This can define any data transformation or analytics that extracts information from a 

raw dataset which may be useful in a modeling context. Data preprocessing also includes vectori-

zation, normalization, handling missing values and feature extraction as mentioned before 

[Chol18].  Some of the algorithms have the task of dimensionality reduction, which takes a high-

dimensional representation of the data, containing many features to a new way of representing the 

data, which could summarize the essential characteristics with fewer features than before. Other 

algorithms, on the other hand, have the task of partitioning the data into distinct groups of similar 

items. For example, the clustering algorithm carries out this particular task. Figure 4.12 shows this 

concept taken by Thom [Thom17]. 
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Figure 4.12. Data Mining algorithm approach in a KDP [Thom17]. 

In the case of deep learning neural networks, extracting the features completes automati-

cally, so the net can learn all features in one pass rather than being adjusted by human intervention. 

This approach allows the use of less resources and solves a problem with less data [Chol18]. 

In conclusion, data mining is not a best method that fits all data, but the selection depends 

on the size, type, and perception of the project and how it will be used. This could be in many 

cases, by trial and error method. A list of its analysis purposes [Mcki18] is shown below: 

• Classification: SVM, nearest neighbors, random forest, logistic regression, etc.; 

• Regression: Lasso, ridge regression, etc.; 

• Clustering: k-means, spectral clustering, etc.; 

• Dimensionality reduction: PCA, feature selection, matrix factorization, etc.; 

• Model selection: Grid search, cross-validation, metrics; 

• Preprocessing: Feature extraction, normalization. 

4.2 Conclusion 

Data Mining Algorithms are implemented by the use of Scikit-learn toolkit module for 

Python machine learning [Thom17], which contains an extensive selection of standard supervised 

and unsupervised machine learning methods. Regardless of the importance of feature engineering 
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in Machine Learning, this research work does not cover the analysis of the evaluation of features 

in data, only the discussion of feature selection to provide a measure of importance for each fea-

ture, for simplicity. On the other hand, deep learning neural networks makes problem-solving 

much easier by automating feature engineering and, in the case of the need to manage larger data-

bases, also, the multi-layer approach allows the learning of the model at the same time by the joint 

representation of the layers. At the time of this study, the above methods, algorithms, neural net-

work architectures, and tools, suggest a better performance on many problems. Thus, from these 

observations, this work uses the approach discussed previously. 
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CHAPTER 5: GENERIC EXPERIMENTAL FRAMEWORK MODEL 

 This chapter discusses the development of an experimental KDP framework model 

adapted to solve the main objective discussed in section 1.6.2 of this dissertation, based on two 

domains:1) The critical operation of the ETDS systems under an extreme-weather event with con-

cepts discussed previously in chapter 2; and 2) the KDP framework with concepts discussed pre-

viously in Chapter 3 and 4. From the previous background concepts, a comprehensive generic 

framework based on KDP is proposed. Figure 5.1 shows the suggested methodology in this dis-

sertation study to incorporate both domains. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Generic framework based in KDP to incorporate both domains. 
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CHAPTER 6: SCENARIOS-1 EXPERIMENTAL FRAMEWORK MODEL 

 This chapter discusses the development of a KDP framework from the assumption 

in chapter 5, adapted to solve the problem discussed previously in section 1.6.2. Discussion in 

Chapters 3, 4 and 5 serve as the foundation of the work described in this chapter. Here, a novel 

methodology framework to assess the critical operation of the ETDS under an extreme-weather 

event is detailed. The goal of Scenario-1 is to verify the feasibility of the proposed method, fo-

cused on two data analyses of a short-term electricity market price and demand consumption from 

New York city. The two analyses are based on: 1) De-noised wavelets and NARX neural network; 

and 2) A complete machine learning data pre-processing analysis, and evaluation of standard 

algorithms by improving the results on the Machine Learning model. The experimental framework 

is presented first for both analyses by the following development, analysis, and observation during 

each step of the proposed framework. 
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6.1 Experimental Framework model Scenario-1 analysis-1. 

 Figure 6.1 shown the methodology used to incorporate both domains in Scenario-1. Only 

one model was used in this scenario to assess the impact of an extreme-weather event in the ETDS 

based in a KDP framework. 

 

Figure 6.1. Experimental framework model Scenario-1 analysis 1. 

6.1.1 SCENARIO-1 (S1) ANALYSIS -1 AND 2: WINTER STORM IMPACT IN NEW YORK AREA 

The characteristic of this scenario is focused in the influence of a winter storm in the 

electricity market price forecasting in New York City. 

 Task: 

a) Short-term price and demand prediction under winter storm. The main ob-

jective is to develop a price and demand prediction during a winter storm in 

New York city, which occurred on February 2015 as Case study-2; and a 

price and demand prediction of a previous year (2010) as Case study-1. 
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6.1.2 STEP 1: PROBLEM FORMULATION 

In this step, both analyses were focused on a winter storm, reported during the year of 2015 

in the geographical region of New York, as discussed previously in section 1.6.4 of this disserta-

tion.  

Due to the implication of the non-linearity, high volatility, and seasonality factors in the 

electricity price forecasting, and the demand uncertainty during an extreme-weather event, these 

factors need to be addressed with accurate forecasting models to minimize cost of wholesale power 

by serving proper loads during the critical operation of the system under stress [Vill19]. Thus, 

scenario-1 has two targeted analyses. Analysis-1 includes two case studies to verify the feasibility 

of the proposed experimental KDP framework shown in Figure 6.1. Analysis-2 is presented in 

section 6.2, which includes a predictive regression analysis.  

6.1.3 STEP 2: DATA EXTRACTION AND SELECTION 

In this step, data extraction and selection are explained next.  

6.1.3.1 Data Extraction 

Data extraction is from the NY-ISO databases, which have vast amounts of data, containing 

8760 entries, with high quality numerical values for prediction purposes and represents the system 

perfectly with the best data sources. The second step of the KDP is data extraction, thus, open-

sources of electricity data information were selected from utilities, electricity market, and the 

United States Energy Information Administration availability. On the other hand, the meteorolog-

ical events are selected based on the geographical path of their passages of the storm information 

availability. Data collection was acquired from two data sources: benchmark data obtained from 

hurricane or winter storm based in historical computer modeling simulation, and hypothetical data 

obtained from power flow and microgrid analysis simulation based on power system specialized 

software. Appendix A shows a data acquisition flow for the data used in this scenario. 
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6.1.3.2 Data Selection 

The data collection is based on information from the New York Independent Service Pro-

vider (NY-ISO) web site [NYIS19], and temperatures data is based on information from the Net-

work for Environment and Weather Applications web site [NEWA19]. Both load and price data 

are based on a time sequence from the two case studies carried out in preparation for this scenario. 

The time horizon for point of prediction is shown in Figure 6.2 and Figure 6.3. The electricity price 

and electricity demand consumption for 2010 and 2015 was used for this purpose in [Vill19]. Three 

evident fluctuations are observed in the months of January, August, and October in 2010; and two 

fluctuations in winter and summer during 2015. Fluctuation occurring during 2010 are attributed 

to the occurrence of high temperatures mostly during the months of June-August [Weat19]. Simi-

larly, high extreme temperature fluctuations during the month of August in the same year directs 

a considerable variation in the electricity consumption levels. On the other hand, a winter storm 

occurred in New York area in February of 2015 and the high extreme fluctuation during the month 

of August in the same year, directs fluctuations in the electricity consumption levels. 

 

 

 

 

 

 

 

Figure 6.2. NY-ISO electricity price in 2010. 
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Figure 6.3. NY-ISO electricity demand in 2015. 

6.1.4 STEP 3: DATA PRE-PROCESSING 

In this step, missing values and outliers was removed. Similarly, data was prepared in tab-

ular format, suitable to be used for the methods of analysis in step 4 and 5. Data from previous 

steps was used in two case studies: Case 1, was a price forecasting case study using data from one 

year (01- 01-2010 to 12-31-2010), which is a short-term forecasting based mainly on an hour-

ahead prediction. Price, in this study, is based on market clearing price (MCP), which is the price 

established by the ISO, in this case NY-ISO. MCP establishment is based on three factors, supply 

and demand, transmission congestion, and market rules. Case 2, was a demand forecasting using 

168 data points. In this study, the demand forecasting takes into account a winter storm from a 

cold wave that occurred during February of 2015 in New York city. This case study was used as 

proof of an extreme-weather demand forecasting application. Appendix A.1.1 shows a workflow 

of data preprocessing with a portion of the data sets for both cases. 

6.1.4.1 Feature Engineering 

 Assuming the various factors that affect electricity consumption and electricity price, we 

employ feature engineering to identify the factors that affect both of them, but without taking into 

account economic factors, pollution or air quality factors like author Gou et al. [Gou18] report, for 

simplicity of this study. We split the data only into two categories: 1) Date-related factors (week-

day, weekend, and Festive day), and 2) Weather-related factors (daily temperature, winter storm 

day report).  
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6.1.5 STEP 4: DATA TRANSFORMATION 

In this step, data was transformed from time domain to a wavelet signal. Wavelet denoising 

was used to normalize price non-linearity to make different samples seen more similar to each 

other. The selection of the correct wavelet representation of the original signal is important for 

effectively achieving of the desired results. Wavelet transform technique consists of the time-fre-

quency decomposition. This technique allows the identification of hidden trends in the signal by 

the processing of the time series main frequency component, and the abstraction of local infor-

mation. The wavelet decomposition is based on two types of filters: 1) The low-pass filters, which 

correspond to the approximated series “𝑎𝑛”, and 2) The high-pass filters, which correspond to the 

detailed series “𝑑𝑛”.  Figure 6.4 shows an example of a wavelet Daubechies type 3 with the low 

and high frequency representation, containing three coefficient levels decomposition, illustration 

taken from the work of Nazaripouya and lightly modified for better understanding [Naza16]. 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Example of a wavelet Daubechies type 3 with the low and high frequency representa-

tion, image lightly modified from [Naza16]. 

   In Case-1, because of the nature of electricity pricing data was analyzed as a signal, the 

chosen wavelet was the Daubechies type 3 with 7 coefficient levels. Figure 6.5 and Figure 6.6 
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show the wavelet decomposition (approximation and coefficients) for fall and winter seasons, re-

spectively. 

 

 

 

 

 

 

 

 

 

Figure 6.5. Fall electricity price wavelet decomposition signal: approximations (blue), coeffi-

cients (green). 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Winter electricity price wavelet decomposition signal: approximations (blue), coeffi-

cients (green). 
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The wavelet de-noising setting and selection procedure can be described with the following 

steps: 

1) Use a wavelet transform to reconstruct the signal (price) from a noisy signal 

(original price). In this study, the chosen level was 7. 

2) Select the appropriate threshold limit at each level to remove the noise. This study 

uses soft thresholding to smooth the signal, preventing loss of important features. 

3) Use an inverse wavelet transform of the thresholder wavelet coefficient to obtain 

the de-noised signal.  

4) Finally, electricity price emerges from the previous step as preprocessed data, ready 

to be the input on the Neural Network. 

In Case-2, because of the nature during a winter storm the electricity demand data was 

analyzed as a signal, the chosen wavelet was the Daubechies type 3 with 3 coefficient levels. Figure 

6.7 shows the wavelet decomposition (approximation and coefficients) for the winter seasons. 

The wavelet de-noising setting and selection procedure can be described with the same 

steps as Case-1. All the parameters were normalized by the same procedure but with different data 

(Demand). 

 

 

 

 

 

 

 

 

 

Figure 6.4. Winter electricity demand wavelet decomposition signal: approximations (blue), co-

efficients (green). 
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6.1.6 STEP 5: DATA MINING 

In this step, the data mining model setting and training was developed. A supervised learn-

ing Non-linear Auto-regression eXogeneous Neural Network (NARX) was used, with feedback 

connections to several layers of the network, and one-layer delayed feedback.  

6.1.6.1 Supervised Learning-based NARX neural network for electricity consumption fore-

casting 

A block diagram of the proposed short-term electricity market price and demand forecast-

ing based in de-noised wavelets and NARX neural networks framework is shown in Figure 6.7. 

The implementation of the NARX model in this study uses a multidimensional input as 

shown in Figure 6.7, employing the feature engineering from step 3: actual price (𝑃𝑡), actual de-

mand (𝐷𝑡),  week-ahead price temperature (𝑇𝑃𝑡−168), week-ahead demand temperature (𝑇𝐷𝑡−168), 

week-ahead (168 minutes) electricity price (𝑃𝑡−168), and week-ahead  (168 minutes) electricity 

demand (𝐷𝑡−168). Output value of the NARX is the forecasted electricity price (𝑃𝑡+168) and the 

forecasted electricity demand (𝐷𝑡+168)  which is the estimated output of the nonlinear dynamic 

system.  

 

 

 

 

 

 

 

 

 

Figure 6.7. Proposed short-term electricity market price and demand forecasting based in de-

noised wavelets and NARX neural networks framework. 
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The neural network for the two cases was implemented in the same manner with 3 inputs, 

1 output, and 10 hidden neurons. The training method used was the Levenberg-Marquardt. 

6.1.6.2 Supervised Learning-based NARX neural network typical representation 

The NARX model is represented by Siegelmann [Sieg97] in equation 6.1. 

𝑦(𝑡) = 𝑓(𝑢(𝑡 − 𝑛𝑢), … , 𝑢(𝑡 − 1), 𝑢(𝑡), 𝑦(𝑡 − 𝑛𝑦), … , 𝑦(𝑡 − 1)   (6.1) 

where function f is a nonlinear function, u(t) and y(t) represent the input and output of the 

network at time t. Additionally, 𝑛𝑢 and 𝑛𝑦 are the input and output order, respectively.  

6.1.7 STEP 6: INTERPRETATION / EVALUATION 

In this step, the interpretation is shown first and then the evaluation of the de-noised 

wavelet for Case-1 and Case-2. 

6.1.7.1 Interpretation 

All seasons values in Case-1 and winter season values are obtained in the same manner. 

The threshold selection rule was soft in both cases, with rigorous SURE for case-1 and fixed for 

case-2. Figure 6.8 and Figure 6.9 show the original fall and winter electricity price forecasting and 

the de-noised wavelet signal, respectively for case-1. For case-2 the original winter electricity de-

mand forecasting and the de-noised wavelet signal is shown in Figure 6.10. 

 

 

 

 

 

 

 

 

Figure 6.8. Fall electricity price showing original signal (red) and de-noised signal (black). 
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Figure 6.9. Winter electricity price showing original signal (red) and de-noised signal 

(black). 

 

 

 

 

 

 

 

 

 

Figure 6.10. NY-ISO electricity demand in 2015. 

Case-1: A comparison of the electricity price statistical characteristics is shown in Table 

6.1. Specifically, original signal and de-noised signal values from the fall season are shown for 

comparison. Table 6.2 contains similar information but for winter season. 
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Table 6.1: Fall season statistical results from original and de-noised data signal from Case-1. 

 

Fall Original Signal De-noised Signal 

Mean 31.83 31.66 

Median 32.81 31.94 

Max value 114.4 85.75 

Min value -45.34 -24.73 

Stardard 

deviation 
22.36 18.22 

Table 6.2: Winter season statistical results from original and de-noised data signal from Case-1. 

 

Winter Original Signal De-noised Signal 

Mean 39.07 39.05 

Median 34.29 36.21 

Max value 505.9 178.9 

Min value -3.13E-10 17.53 

Stardard 

deviation 
37.95 19.8 

 

Case-2: A comparison of the electricity demand statistical characteristics is shown in Table 6.3. 

Specifically, original signal and de-noised signal values from the winter season are shown for 

comparison.  
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Table 6.3: Winter season statistical results from original and de-noised data signal from Case-1. 

 

Fall 
Original 

Signal 

De-noised 

Signal 

Mean 6293 6160 

Median 6223 6267 

Max value 7284 7512 

Min value 4643 4552 

Stardard 

deviation 
833 756.5 

6.1.7.2 Evaluation 

The three case studies were analyzed for all the Scenarios, which are presented in the fol-

lowing paragraphs. 

NN Scenarios studies  

The NN is modified in three main configurations as explained below. Each has the same input, 

hidden and output constraints. The actual price (𝑃𝑡), actual demand (𝐷𝑡), week-ahead price tem-

perature (𝑇𝑃𝑡−168), week-ahead demand temperature (𝑇𝐷𝑡−168), week-ahead price (𝑃𝑡−168), and 

weak-ahead demand (𝐷𝑡−168) are provided to the input layer in the neural network. shown in Fig-

ure 6.7. The output of the neural network is the week-ahead forecasted price (𝑃̂𝑡) for case 1, and 

for case 2, it is the week-ahead forecasted demand (𝐷̂𝑡), also shown in Figure 7. 

The typical performance metric for evaluating forecasting methods are the Mean Absolute 

Percentage Error (MAPE), which can be conducted using Equation 6.2.  

𝑀𝐴𝑃𝐸 (%) =  
100

𝑁
 ∑ |

𝑃𝑡− 𝑃𝑡̂

𝑃𝑡
|𝑁

𝑡=1     (6.2) 

where 𝑃𝑡 and 𝑃̂𝑡 are the actual price and the forecasted price, respectively, and N is the 

number of samples for case 1, and for case 2 the electricity demand was applied in equation (1). 

CASE-1:  
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1) Scenario-1 [NN NARX only] 

The NARX NN is utilized to forecast the electricity price in an NY-ISO market in 2010. 

The historical price data is divided into four seasons, as described in the previous section. Since 

the selected data for output is week-ahead (168 mins), this data is used as the training target.  

2) Scenario-2 [De-noised Wavelet before NN NARX (DW-NN NARX)] 

This case utilizes the proposed model, where the de-noised wavelet technique is applied first to 

actual electricity price (𝑃𝑡), taking into account the fact that it is a noisy signal. De-noised wavelet 

process results are the input of NARX NN. 

3) Scenario-3 [NN NARX after de-noised Wavelet (NN NARX-DW)] 

In this scenario, the de-noised wavelet process is applied after the electricity price forecasting by 

the NN NARX network. 

Comparison Analysis and Results for Case-1 

The comparison between the results in the three scenarios is detailed below. 

Table 6.4 shows the comparison between Scenarios 1, 2 and 3. 

Table 6.4: CASE-1: MAPE (%) results for Scenario-1, Scenario-2 AND Scenario-3. 

SEASON 
MAPE (%) 

NARX NN 

MAPE (%)  

DW-NARX NN 

MAPE (%)  

NARX NN-DW 

Spring 13.58 14.83 10.72 

Fall 62.28 46.15 53.47 

Summer 11.44 12.79 21.55 

Winter 23.09 21.63 18.05 

 

Examination of the three scenarios’ result for the spring season, shows that the NARX NN-

DW model presents better performance with 10.72 % (MAPE). The average MAPE obtained with 

the three methods (scenarios) result in 27.6 %, 23.85 % and 25.95 %, respectively. These results 
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exhibit a better performance using the de-noising wavelet input as a pre-processed step, by han-

dling non-linearity feature in the price forecasting. 

CASE-2: 

1) Scenario-1 [NN NARX only] 

The NARX NN is utilized to forecast the electricity demand in an NY-ISO market in 2015. The 

historical price data is divided into four seasons, as described in the previous section but only 

winter season was taken into account (winter storm case). The data for output is week-ahead (168 

mins), this data is used as the training target as explained in Case-1.  

2) Scenario-2 [De-noised Wavelet before NN NARX (DW-NN NARX)] 

This case utilizes the proposed model, where the de-noised wavelet technique is applied first to 

actual electricity demand (𝐷𝑡), taking into account the fact that it is a noisy signal. De-noised 

wavelet process results are the input of NARX NN. 

Comparison Analysis and Results 

The comparison between the results in the three scenarios is detailed next. 

1) Scenario-1 and Scenario-2 results 

Table 6.5 shows the comparison between Scenarios 1 and 2. 

Table 6.5: CASE-2: MAPE (%) results for Scenario-1, Scenario-2, and Scenario-3. 

SEASON 
MAPE (%) 

NARX NN 

MAPE (%)  

DW-NARX 

NN 

Winter 0.039 0.032 

 

Examination of the two scenarios’ result for the winter season, shows that the DW-NARX 

NN model presented the best performance with 0.032 % (MAPE).  This result exhibits a better 

performance using the de-noising wavelet as input, to handle non-linearity feature in the processed 

signal and in the demand forecasting signal in the case of a winter storm. 

6.1.1 Conclusion Scenario-1 (S1) Analysis -1 
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The electricity price and demand forecasting can be enhanced using a de-noised wavelet 

as a prepossessing technique. Similarly, data mining allows better electricity price and demand 

forecasting in an extreme-weather event. The proposed model shows accurate electricity price and 

in a nonlinearity winter storm case, where the MAPE comparisons between the cases clearly shows 

that the proposed signal treatment with the de-noising wavelet is well suited to forecast the 

electricity price and demand. In the next section, machine learning as data mining technique to 

manage the nonlinearity in the electricity price and demand under an extreme-event are presented. 

6.2 Experimental Framework model Scenario-1 analysis-2. 

 Figure 6.2 shows the methodology used to incorporate both domains in Scenario-1. As 

discussed in section 6.1, only one model in the KDP framework was used in scenario-1 to assess 

the impact of an extreme-weather event in the ETDS. However, to prove the generalization of the 

proposed KDP framework model, Scenario-2 used several models, as presented in the next chapter. 

Analysis-2 implies different data transformation and data mining techniques as shown in Figure 

6.2. As discussed in the previous analysis, step-1 and 2 are assumed to be the same since the 

development of this analysis is under the winter storm that hit New York city during 2015. 
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Figure 6.2. Experimental framework model Scenario-1 analysis-2. 

6.2.1 STEP 3: DATA PRE-PROCESSING 

Missing values and outliers were removed similarly as analysis-1, in which, the same da-

taset (excel tabular format) was used to perform this analysis and shown in Appendix A. However, 

to better understand the data features, selection techniques like descriptive statistics and visualiza-

tion was used in this step. The objective is to apply the python software tool to descriptive statistics. 

The modeling technique is divided into 9 main steps. Appendix A.1.2. 

 The task selected in this analysis is predictive regression, thus, the libraries chosen are in 

Appendix D. The dataset contains a total of 8759 data points with a time horizon of one year 

(January – December’ 2015), including information on temperature, demand, price and hour 

value. The pairwise correlation applying the Pearson’s correlation coefficient between variables 

is shown in the correlation matrix on Figure 6.4 with the corresponding values shown in Table 6.6, 

respectively. 
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Figure 6.4. Correlation matrix of data attributes in Scenario-1 analysis-2. 

Table 6.6: Pearson’s correlation coefficient Scenario-1, analysis-2. 

 hourvalue 
tempera-

ture 

load price 

hourvalue 1.00 0.11 0.43 0.15 

tempera-

ture 
0.11 1.00 

0.45 -0.52 

load 0.43 0.45 1.00 0.27 

price 0.15 -0.52 0.27 1.00 

 

Scale 
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Figure 6.5. Descriptive statistical analysis winter storm dataset. a) Correlations between 

variables b) Histogram of each set of data points.  

The observed correlation between temperature-price pair shows a negative correlation in-

dicating the adverse consequence in the electricity price by increasing the values when the tem-

perature decreases, i.e. winter storm. “Temperature” correlation between “load” and “dayvalue” 

(weekday or weekend) present better correlation.  Moreover, the most affecting variable is price as 

shown in the density curves and histograms in the Figure 6.4a and Figure 6.4b, respectively.  In 

this study, data deep analysis based on histogram and density prediction is not included, for sim-

plicity purposes. On one hand, the “price” attribute shows an exponential distribution. On the other 

 
(a) 

 

 
(b) 
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hand, the remaining variables “hourvalue,” “load,” and “temperature” show a more gaussian dis-

tribution. In analysis-1, those singularities are observed, but are more evident here, with the assis-

tance of data descriptive statistics. 

6.2.2 STEP 4: DATA TRANSFORMATION 

In this analysis, data was normalized and standardized during the process of data mining. The 

reason is to acquire a better selection of the type of standardized and normalized method, according 

to the behavior of the datasets observed in step 3 in this analysis to reach better results as discussed 

in chapter 4. 

6.2.3 STEP 5: DATA MINING: 

The whole dataset was divided in two groups: training set with the 80% of the data used in this 

analysis, and validation set and the 20 % representing the rest of the dataset. The division percent-

age of each set depend on the total size of the dataset. As evidenced in chapter 4, a good number 

is 80% for training and 20% for validation, as used in this analysis. The validation set is discussed 

in the next step. The training set is applied during the process of machine learning modeling im-

plied in this analysis. Additionally, this set was specified as a random seed ensuring that the data 

was divided in sets of seven, randomly to ensure generalization and prevent overfitting as dis-

cussed in chapter 4. The problem formulation from step 1 and the observation in the data behavior 

in subsequent steps shows two types of data: linear and non-linear, which can be modeled as a 

regression model. Thus, a machine learning regression prediction is proposed here, to solve the 

price prediction problem during a winter storm. Several machine learning algorithms for regres-

sion analyses discussed in chapter 4 were performed, for extended explanation refer to [Mull16]. 

The libraries explored are shown in Appendix D 2.1. The results are shown in next step, under 

interpretation sections. 

6.2.4 STEP 6: INTERPRETATION / EVALUATION 

In this step, the interpretation is shown first and then the evaluation of the machine learning 

algorithms follows. 
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6.2.4.1 Interpretation 

Machine learning algorithms performance can be estimated before final modeling, by using 

a method of validation. There exist several methods to do this. Under the assumptions observed in 

step 3, the score method named cross validation is good approach. The k-fold cross validation is 

a good approach to estimate the performance of the experimental machine learning performed in 

this analysis. Splitting the data in K partitions of equal size, where i partition represents the evalu-

ation partition of a remaining K-1 partition for training. The final score is obtained with the average 

of the K scores obtained [Choll18]. The set was split into 10 k-parts named k-fold by several au-

thors [Choll18], [Mull17] to estimate the accuracy of the models. For better performance of the 

model, the K-fold needs to be applied several times. The results are expressed in terms of mean-

square-error which represents the magnitude of the error during the prediction. Table 6.7 shows 

the results of the preliminary evaluation of the experimental machine learning regression predic-

tive algorithms (MLRPA). The meaning of the six different algorithms is listed below. 

Linear Algorithms: 

LR: Linear Regression 

LASSO: Least Absolute Shrinkage and Selection Operator 

EN: Elastic Net. 

Non-Linear Algorithms: 

KNN: K-Nearest Neighbors. 

CART: Classification and Regression Trees. 

SVR: Support Vector Regression Machines. 

Table 6.7: Mean-Square-Error and Standard deviation of the preliminary MLRPA algorithms 

from Scenario-1, analysis-2. 

 LR LASSO EN KNN CART SVR 

MSE 403.677513 403.712163 403.693367 292.121420 336.249711 1051.81143 

SD 32.637604 31.672115 31.710627 34.894623 51.560274 95.499186 
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 The observed estimation accuracy of the models shows a tight distribution between the 

algorithms LR, LASSO, and EN. Since data is not yet standardized probably KNN and SVR algo-

rithms are far from the rest. Next, standardization of the datasets, including the scaling in the da-

taset are applied as a data transformation to avoid error in the performance. Table 6.8 shows the 

results of the second evaluation of the experimental Machine Learning Regression Predictive 

Algorithms (MLRPA) applying standardization and scalation on the datasets. 

Table 6.8: Mean-Square-Error and Standard deviation of the second MLRPA algorithms test. 

Standardization and scalation on datasets. 

 LR LASSO EN KNN CART SVR 

MSE 403.677513 408.659687 543.317283 217.084419 327.868396 316.458567 

SD 31.637604 34.145117 51.876025 28.050340 49.544664 37.687113 

 The observed estimation accuracy of the models shows KNN with the lowest error. To 

improve the performance of this wining (best) algorithm it is necessary to perform a tuning in the 

hyperparameters to achieve better results. Thus, different hyperparameters are applied in this anal-

ysis to find the optimum. The values used are n_neighbors: 1,3,5,7,9,11,13,15,17,19,21. Table 6.9 

shows the different parameters for the n_neighbors.  

Table 6.9: Mean-Square-Error and Standard deviation of the different tuning hyperparameters 

used in KNN algorithm. 

N_neighbors: MSE SD 

1 341.789383 48.572649 

3 239.811523 34.469458 

5 217.283144 28.063716 

7 205.888775 26.469730 

9 203.673945 29.790342 

11 201.384079 29.075794 

13 202.071956 26.285250 
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15 203.709268 26.608291 

17 205.180865 26.671462 

19 206.430158 27.390771 

21 207.468043 27.644827 

The observed estimation accuracy of the different hyperparameters shows the 11 N_neigh-

bors as the best with 201.38 of MSE. Moreover, there is evidence that combined multiple machine 

learning techniques are proven most effective for better performance. The multiple combinations 

of machine learning is named ensemble methods [Mull16]. In this study, four different ML algo-

rithms were combined to prove this assumption. Table 6.10 shows the results of the evaluation of 

the experimental machine learning assembled models. The meaning of the four different algo-

rithms is listed below. 

Assembled Algorithms: 

AB: ADA Boost Regressor. 

GBM: Gradient Boosting Regressor. 

RF: Random Forest Regressor. 

ET: Extra Trees Regressor. 

Table 6.10: Mean-Square-Error and Standard deviation of the different ensemble algorithms. 

Ensemble al-

gorithm: 
MSE SD 

AB 364.003558 38.524053 

GBM 200.884489 23.230503 

RF 209.222170 31.994737 

ET 230.672360 38.038168 

The observed estimation accuracy of the different ensembles shows GBM as the best with 

200.88 of MSE. Thus, the GBM algorithm needs to be tuned, as discussed before, to test different 
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hyperparameters. The values used were n_estimators: 50, 100, 150, 200, 250, 300, 350, 400. Table 

6.11 shows the different parameters for the n_estimators. 

Table 6.11: Mean-Square-Error and Standard deviation of the different tuning hyperparameters 

used in GBM algorithm. 

N_estimators: MSE SD 

50 207.939351 24.373456 

100 200,977390 23.066173 

150 197.413899 23.714248 

200 195.835571 24.312499 

250 196.335381 26.018445 

300 196.599757 25.488279 

350 196.583230 25.156887 

400 196.399710 25.686521 

The observed estimation accuracy of the different hyperparameters shows the 200 estimators with 

195.84 as the best for the GBM algorithm. 

6.2.4.2 Evaluation 

This final step presents the final configuration of the model as “the final model,” in this 

analysis the Gradient Boosting Regressor demonstrates having the least MSE. Thus, the final 

model needs to be trained with the entire training dataset. Prior to this, the data need to be stand-

ardized and scaled to better modeling performance as discussed above. The final MSE result of 

the GBM is estimated as 194.11357825. 

6.3 Conclusion 

In this chapter we demonstrate a novel method to solve one task in the Electricity and 

Transmission Systems during an extreme-event. Data Mining Algorithms was implemented by the 

use of MATLAB and Python software to solve a Supervised Learning Non-linear Auto-regression 
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eXogeneous Neural Network (NARX) Neural Network and Regression Predictive Machine Learn-

ing. Moreover, all the experimental data in this chapter was acquired of truthful sources as a base 

of data mining in the ETDS during a winter storm. In the next chapter GIS techniques and Deep 

Learning Neural Network techniques are explored to solve abroad problem during the unfolding 

of a devastating hurricane. 
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CHAPTER 7: SCENARIOS-2 AND ITS EXPERIMENTAL FRAMEWORK 

MODEL 

A number of uncertainties exist in the ETDS during the unfolding of an extreme-weather 

event. Observation from the previous chapter indicates that the proposed KDP methodology offers 

a better result for price and demand forecasting in the case of a winter storm. Moreover, in chapter 

2, the optimal operation of the ETDS can be approximated using the DC Optimal Power Flow 

(DCOPF) by including all the system constraints. Thus, a complex methodology is needed to over-

come an extreme-weather event, and at the same time to enhance the resilience in the ETDS. Thus, 

this chapter presents a solution for such problem including an extension of the method proposed 

in the previous chapter.  

7.1 Experimental Framework model Scenario-2 

It is pointed out that under the stressed ETDS system, involves multiple problem-solving 

tasks, e.g. prediction, classification, etc. including many datasets. A solution for such problem is 

the reformulated model proposed in Scenario-2. Three models were used for assessing the impact 

of an extreme-event in the ETDS based on the KDP framework presented on chapter 5. The refor-

mulated model is a Multi-Domain Triple Rehearsal Dynamic System (MDTRDS), in which, 

three different interactives dynamic models are included: a) Extreme-weather model, b) Compo-

nent model, and c) System model. Figure 7.1 shows the experimental MDTRDS generic model. 

 

 

 

 

 

 

Figure 7.1: Generic Triple Rehearsal Dynamic System (MDTRDS) model. 
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7.2 Scenario-2: Hurricane Harvey (Texas – 2017) 

This section is devoted to the analysis of Scenario-2. Step 1 from the KDP (problem for-

mulation) is presented first. Taking into account the three phases of the multiphase resilience trap-

ezoid discussed in chapter 2, scenario-2 looks at phases 1 and 2 during the unfolding of the hurri-

cane (also shown in figure 2.9 on section 2.3), which correspond to the window time in scenario-

2. Thus, the three models have the same problem formulation (step 1). A brief synoptic history of 

Hurricane Harvey is presented next [Hazu18]. A more detailed account can be found in Appendix 

B.1, which includes information from NOAA and the National weather services [Blak18]. 

7.2.1. HURRICANE HARVEY. 

Formed: August 17, 2017    Dissipated: August 31, 2017  

Peak Winds: 130 mph (Category 4)   Lowest Pressure: 938 mb 

Stage 1:       Stage 2: 

Landfall 1: August 26, 2017 – Rockport, TX  Landfall 2: August 30, 2017 – Camron, LA  

Landfall Winds: 130 mph (Category 4)   Landfall Winds: 45 mph (Tropical Storm) 

Important Observation: After landfall, Harvey continued north and then north-northeast, 

weakening to a tropical depression over central Louisiana on August 30. The last NHC Advisory 

was issued on August 31, 2017, at 0300 Coordinated Universal Time (UTC).  

 

7.2.2. STEP 1: PROBLEM FORMULATION (ALL MODELS TRDS). 

As an observation, the critical operation of the ETDS needs to be assessed due to the im-

plications during an extreme-weather event. One of the required analyses is to take into account 

the path of the hurricane that could affect a specific section of the electric grid. Under the assump-

tion of the existing hazard, one question arises: how vulnerable is the equipment in the ETDS that 

are in the path of the hurricane? The analysis of Scenario-2 was focused in a hurricane storm 

reported during the year of 2017 in the geographical region of Houston named “Harvey.” As dis-

cussed previously in section 1.6.4 of this dissertation, the electrical infrastructure of Texas is the 
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one of the largest in the United States and is also one of the major producers in the supply of 

energy.  

With this motivation and the important observation from the synoptic history presented 

above, a power failure assessment in the Houston area impacted by Hurricane Harvey is presented 

with four targeted major objectives, to verify the feasibility of the proposed TRDS model by using 

techniques from chapter 4. 

Task: 

a) Objective explored: Critical Hurricane path analysis (T-A). Based on his-

torical environmental parameters i.e., approximate landing position, maxi-

mum sustained surface wind speed, temperature, Saffir-Simpson category, 

central pressure and affected cities (geographic location), identification of 

the critical hurricane path footprint in the electrical transmission and distri-

bution network.  

b) Objective explored: ETDS components vulnerability analysis (T-B). 

Based in the previous analysis (Subsection A), the probability of failure of 

the critical components by considering their physical strength i.e., aging, 

demand stress (i.e., classification of critical components by ranking the de-

mand), and environment deterioration under the recurrent normal and ex-

treme-weather influence. 

c) Objective explored: Critical system operation modeling (T-C). ETDS Op-

timal power flow prediction under a sequential power fault through the 

storm event (disconnection cases). The tests were used as a base to estimate 

the contingent-states by ranking the final results. 
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7.2.3 DETAILED EXPERIMENTAL FRAMEWORK MODEL SCENARIO-2 

To solve the targeting tasks from step 1, a more detailed of the MDTRDS model for Sce-

nario-2 is presented in Figure 7.2. 

Figure 7.2: Detailed Multi-Domain Triple Rehearsal System (MDTRS) model for Scenario-2. 

7.2.4 MDTRS TRANSLATION STATES ON THE HURRICANE PATH.  

A hurricane moves along a trajectory or path.  Figure 7.3 shows the trajectory of Hurricane 

Harvey (2017) from the creation stage to the extinction stage [Nasa19].  
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Figure 7.3: Hurricane Harvey trajectory from the creation to the extinction stage, image 

taken from NASA Zoom Earth application [Nasa19].  

As the important observation from section 7.2 and the observed from figure 7.3 above, 

Hurricane Harvey makes double landing triggering two major stages: 1) Wind damage, hurricane 

category 4; and 2) Flood damage, tropical storm. Hurricane scales can be referenced in Appendix 

B.1. 

Thus, translated states need to be considered. Figure 7.4 shows the translated states of the 

MDTRS following the path of the hurricane with two unfold major stages: stage-1 (Hurricane 

category 4), and stage-2 (Tropical storm).  

 

 

 

 

 

 

 

 

 

 

 



 

86 

 

 

 

 

 

 

 

 

 

Figure 7.4: Translated states of the MDTRS following the path of the hurricane. 

7.3 Extreme-weather model.  

Extreme-weather model, refer the stage during the unfold of hurricane Harvey. Under this 

analysis, the trajectory of the hurricane was taken into account to solve target T-A from section 

7.2.1. This model is shown in Figure 7.5. Each step is described below. 

Figure 7.5: Extreme-weather model showing the detailed steps. 
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7.3.1 STEP 2. DATA EXTRACTION AND SELECTION 

In this step, data extraction and selection are explained.  

7.3.1.1 Data Extraction 

Data extraction was taken from several sources. Appendix C shows the data flow extraction 

for this analysis. Dataset HURDAT, as discussed in section 2.5, contains the following data: Land-

ing position, approaching angle, translation velocity, central pressure, maximum wind speed, ra-

dius of maximum wind, and gust peak.  

7.3.1.2 Data Selection 

The data collection is based on information from NOAA, NASA, HURDAT web sites. 

Wind damage analysis under HAZUS simulation was taking account the cities that hit Hurricane 

Harvey based on a time horizon on the date and hour of the landfall date and hour used as a point 

of prediction levels. Figure 7.6 show the landfall time and date [Noaa19b]. 

 

 

 

 

 

 

 

 

 

Figure 7.6: Hurricane Harvey landfall date and time, image taking from [Noaa19]. 

Figure 7.7 shows the results of the HAZUS simulation based in ArcGIS 1.5.1 software, showing 

the geographically wind profiles during Hurricane Harvey. 
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Figure 7.7: Hazus wind damage simulation using ArcGIS 1.5.1 version software. 

 Figure 7.8 shows a section of the electricity transmission system most affected during the 

path of Hurricane Harvey [Open19]. 

 

 

 

 

 

 

 

 

 

Figure 7.8: Aransas pass and surrounding areas, showing the most affected Electricity 

transmission system during the path of Hurricane Harvey [Open19]. 

The data from open engines like Open Infrastructure and Open Street was used to visualize 

the components affected during the extreme-event. Figure 7.9 and Figure 7.10 shows the electricity 
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transmission components most affected during the path of Hurricane Harvey in the area of Aransas 

pass city.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: Electricity transmission components most affected during the path of Hurri-

cane Harvey, Aransas pass city [Open19]. 

Several electricity transmission poles were affected during the unfold of the extreme-event. Figure 

7.11 shows the affected area in poles vision level. Figure 7.12 show an evidence of poles damaged 

reported from AEP company [Aept18].  
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(b) 
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Figure 7.11: Electricity transmission poles located in Aransas pass city [Opst19]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: Electricity transmission poles damaged in Aransas pass city [Aept18]. 

The Houston area was hit with a  flood during Hurricane Harvey. Barker reservoir located 

in Harris county and the Rosenberg city located in Fort Bend county, was two of the most affected 

from flooding, caused by the extreme-weather event. As shown in above Figures 7.2 and 7.6 Hur-

ricane Harvey turned into a tropical storm on the second day of landfall on August 27 of 2017. 

Figures 7.13a and Figure 7.13b shows two screen captures of the aerial images of Rosenberg before 

and after the extreme-weather event. Figures 7.14a and Figure 7.14b show two screen captures of 
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the aerial images of Barker reservoir before and after the extreme-weather event. Both pair of 

images were used in this analysis. 

 

 

 

 

 

 

 

 

Figure 7.13: Screen captures of the aerial images of Rosenberg. a) Rosenberg area before 

flood damage, and b) Rosenberg area after flood damages [Goog19]. 

 

 

 

 

 

 

Figure 7.14: Screen captures of the aerial images of Barker reservoir. a) Barker reservoir 

area before flood damage, and b) Barker reservoir area after flood damages [Goog19]. 

7.4.2 STEP 3. DATA PRE-PROCESSING 

Supervised Machine Learning on images need to be preprocessed as digital images format 

such JPG, GIF, TIFF, and RAW. The processing is similar to techniques’ in remote sensing. In 

this analysis the format used was the Tagged Image File Format (TIFF). TIFF format is able to 

   
(b)                                                    (b) 

   
(a)                                                    (b) 
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save information on the four bands in a single file. The bands consist of Red (R), Green (G), 

Blue(B), and near infrared (NIR). The software used in this analysis was ENVI 5.3 version. The 

Region of Interest (ROI) needs to be selected as training data and testing data for supervised 

Machine Learning classification. The images from Figures 7.13 and Figure 7.14 were taken as the 

selected data for this analysis. Thus, the ROI from both images need to be pre-processed. The 

Rosenberg selected ROI’s were: Grass_test, Street_test, Water_test for the testing dataset. 

Grass_train, Street_train, and Water_train  were used for the training dataset. The Barker reservoir 

selected ROI’s were: Water_test, Wet_Street_test, Dry_Street_test for the testing dataset. Wa-

ter_train, Wet_Street_train, Dry_Street_train were used for the training dataset. Figure 7.15a 

shows an image capture of the ROI selection process for Rosenberg, and Figure 7.15b shows an 

image capture of the ROI selection process for Barker reservoir. 



 

93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15: ROI’s selected. a) Rosenberg ROI’s, and b) Barker reservoir ROI’s. 

7.4.3 STEP 4. DATA TRANSFORMATION 

Point plots or scatter plots can be useful way of examining the relationship between the 

ROIs. In this exploratory data analysis, a group of variables in the ROIs was analyzed with scatter 

plots. Figure 7.16a shows the scatter plot of ROIs in Rosenberg, and Figure 7.16b shows the scatter 

plot of ROIs in the Barker reservoir. The observed points show the separation in each ROIs, mean-

ing the features selected are well defined from previous step. 

 
(a) 

 
(b) 



 

94 

 

 

 

 

 

 

 

 

 

 

Figure 7.16: ROI scatter plots. a) Rosenberg ROI scatter plot, and b) Barker reservoir 

ROI scatter plot. 

7.4.4 STEP 5. DATA MINING 

Supervised Machine Learning Classification is implemented in this step for both of the 

selected images. The experimental algorithm was “Maximum Likelihood Classification.” More-

over, techniques like Sieve and Clump classes was applied to clean the isolated pixels and “salt 

and pepper” effect. The final image of both ML image classifications are presented in Figure 7.17a 

and Figure 7.17b for Rosenberg and Barker Reservoir, respectively. 

    
(a)                                                 (b) 
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Figure 7.17: Final image classification. a) Rosenberg, and b) Barker reservoir. 

7.4.5 STEP 6. INTERPRETATION/EVALUATION 

In this step, the experimental algorithm evaluation results were obtained via a confusion 

matrix. Figure 7.18 shows the confusion matrix results for Rosenberg, and Figure 7.19 show the 

confusion matrix results for the Barker reservoir.  
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Figure 7.18: Confusion matrix results of Rosenberg. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19: Confusion matrix results of Barker reservoir. 

A visual comparison of the three images, before-event, after-event, and classification re-

sults are presented in a single image. Specifically, the three different images are superimposed to 

provide a visual comparison, with the “results” portion being the classification of areas (water, 

street, etc.) in this extreme-weather model analysis. In the case of the Rosenberg analysis, shown 
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in Figure 7.20, the image is divided in three, as described above, showing firstly, the after-damage 

image, secondly the before-damage image, and thirdly the supervised Machine Learning classifi-

cation. In the case of the Barker analysis, shown in Figure 7.21, the image was divided in three as 

well. 

 

 

 

 

 

Figure 7.20: Images comparison of Rosenberg. (Before, after, and classified). 
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Figure 7.21: Images comparison of Barker reservoir. (Before, after, and classified). 

7.5 Component model.  

Several components are damaged during the unfolding of an extreme-event. The compo-

nents that fail are those exposed in the path of a hurricane, but the numbers of failures are uncertain. 

Several authors use the fragility curve to show the failure probability against the weather intensity. 

A generic failure rate of components caused by a hurricane can be expressed by Equation 

7.1[Li14]. 

𝜆𝑤𝑖𝑛𝑑[𝑤(𝑡)] = [1 + 𝛼 (𝑤2(𝑡)
𝑤𝑠𝑓

2⁄ − 1)] 𝜆𝑛𝑜𝑟𝑚    (7.1) 

where w(t) represents the wind speed at time t; 𝜆𝑠𝑓 is the extreme-weather wind speed 

based in table B.1 from Appendix B; 𝜆𝑛𝑜𝑟𝑚 represents the failure rate under normal weather con-

ditions; 𝛼 is the electric component parameter. 
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Component model refers to the component analysis during the unfolding of the extreme-

weather event. Under this analysis, the trajectory from the hurricane is taking into account to solve 

the T-B from section 7.2.1, to estimate the probability of the component failure exposed by the 

extreme-weather event. The proposed component model is shown in Figure 7.22. Each step is 

described below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.22: Component model showing the detailed steps. 

7.5.1 STEP 2. DATA EXTRACTION AND SELECTION 

In this step, data extraction and selection are explained.  

7.5.1.1 Data Extraction 

Data extraction was from several sources taking from the results of the extreme-weather 

model.  

7.5.1.2 Data Selection 

The data collection is based on information from ERCOT web site [Erco19]. Load data is 

based on a time sequence from the Hurricane Harvey event, carried out in preparation for this 
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scenario. The time horizon for point of prediction is one year from January to December of 2017. 

The data collection for peak flood analysis is based on the United States Geological Survey 

(USGS) data report [Usgs18]. The data flow is presented in Appendix C.2. Figure 7.23 shows the 

total rainfall and its fragments during Hurricane Harvey [Blac18], taken into account for this anal-

ysis. 

 

 

 

 

 

 

 

 

 

 

Figure 7.23: Harvey observed total rainfall (inches) and its fragments, image taken from 

[Blac18]. 

7.5.2 STEP 3. DATA PRE-PROCESSING  

Missing values and outliers were removed similarly as analysis-1, in which, the same da-

taset (excel tabular format) was used to this analysis.  

 Descriptive statistics and visualization were used in this step for the experimentation of 

machine learning, but was omitted for the experimentation of deep learning neural network algo-

rithms for simplicity purposes. Thus, the objective for ML experimentation is the application of 

the python software tool methodology to descriptive statistics. The same technique was applied 

from the Scenario-2 analyis-2 presented in Appendix A.1.2. 
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 The dataset used in ML experimentation contains a total of 8785 data points with a time 

horizon of one year (January – December’ 2017), including ERCOT data information of the eight 

weather sectors of the hourly electricity demand. The pairwise correlation applying the Pearson’s 

correlation coefficient between variables is shown in the correlation matrix on Figure 7.19 with 

the corresponding values shown in Table 7.1, respectively. The description of the variables used 

are presented below, each variable represents the weather region zones ERCOT clustering.  

ncent: North central region including cities like Dallas-Fort Worth. 

scent: South central region including cities like Austin and San Antonio. 

coast: Coast region including cities like Houston. 

east: East region including cities like Tyler. 

north: North region including cities like Wichita Falls. 

west: West region including cities like Abilene. 

fwest: Far West region including cities like Midland. 

south: South region including cities like Corpus Christi. 

ERCOT: Total regions.  

 

 

 

 

 

 

 

 

 

 

Figure 7.19. Correlation matrix of data attributes in ML experimented algorithms. 
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Table 7.1: Pearson’s correlation coefficient of data attributes in ML experimentation. 

 coast east fwest north ncent south scent west ERCOT 

coast 1.00 0.92 0.78 0.81 0.88 0.94 0.94 0.83 0.96 

east 0.92 1.00 0.85 0.92 0.96 0.89 0.96 0.92 0.98 

fwest 0.78 0.85 1.00 0.85 0.86 0.78 0.84 0.89 0.86 

north 0.81 0.92 0.85 1.00 0.97 0.79 0.90 0.95 0.93 

ncent 0.88 0.96 0.86 0.97 1.00 0.86 0.95 0.95 0.97 

south 0.94 0.89 0.78 0.79 0.86 1.00 0,93 0.84 0.94 

scent 0.94 0.96 0.84 0.90 0.95 0.93 1.00 0.93 0.99 

west 0.83 0.92 0.89 0.95 0.95 0.84 0.93 1.00 0.94 

ERCOT 0.96 0.98 0.86 0.93 0.97 0.94 0.99 0.94 1.00 

The observed correlation between all the pairs variables shows positive correlation indi-

cating the relation between all the divided weather regions. The less correlated regions were the 

pair fwest with the coast, probable of this behavior is the fact that ERCOT electricity production 

are concentrated in the coast (wind generation). Figure 7.20 shows the density function of all the 

regions. 

 

 

 

 

 

 

 

 

Figure 7.20. Density function of the hourly electricity dataset. 
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Most of the attributes of all regions show an exponential distribution with a left tendency. 

This singularity shows electricity demand consumption larger at the beginning of the year. We can 

conclude that electricity demand in Texas was not significatively impacted when Hurricane Har-

vey was hitting Texas during the end of August and beginning on September of 2017. 

7.5.3 STEP 4: DATA TRANSFORMATION 

In this analysis, data was normalized and standardized during the process of data mining with the 

same motivation as analysis-1. 

7.5.4 STEP 5: DATA MINING:  

The whole dataset was divided in two groups: the training set consists of 80% of the data used in 

this analysis, and the validation set consists of 20%, representing the rest of the dataset. The vali-

dation set is discussed in the next step. The training set is applied during the process of machine 

learning modeling implied in this analysis. Additionally, this set was specified as a random seed 

ensuring that the data was divided in a set of 7 to ensure generalization and prevent overfitting in 

data.  

7.6 Experimented Data mining algorithms 

The analysis is split in order to experiment with Machine Learning algorithms and multi-layer 

perceptron algorithm in a Deep Learning Neural Network. 

7.6.1 EXPERIMENTED MACHINE LEARNING ALGORITHMS:  

The problem formulation from step 1 and the observation in the data behavior shows two types of 

data: linear and non-linear, which can be modeled as a regression model. Thus, a machine learning 

regression prediction is proposed here, to solve the electricity demand prediction problem during 

an extreme-event. Several machine learning algorithms for regression analysis were discussed in 

chapter 4. For extended explanation, refer to [Mull16]. The libraries explored are shown in Ap-

pendix D 2.4. The results of this experimentation are reported in the interpretation section, which 

follows. 
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7.6.2 STEP 6: INTERPRETATION / EVALUATION (MACHINE LEARNING ALGORITHMS) 

The interpretation is shown first and then the evaluation of the machine learning algo-

rithms. 

7.6.2.1 Interpretation (Machine Learning algorithms) 

The k-fold cross validation was used in this experimental machine learning. Splitting the 

data in K partitions of equal size, where i partition represents the evaluation partition of a remaining 

K-1 partition for training. The set was split with the same number of k-folds as scenario-1 analysis-

2: 10 k-parts. The results are expressed in terms of mean-square-error. Table 7.2 shows the results 

of the preliminary evaluation of this experimented ERCOT demand prediction of 2017. The mean-

ing of the six different algorithms was detailed in the past section 6.2.4.1. 

Table 7.2: Mean-Square-Error and Standard deviation of the preliminary ERCOT demand pre-

diction of 2017. 

 LR LASSO EN KNN CART SVR 

MSE 2034.782673 2034.78178 2034.781121 2278.88654 2820.99450 49887.73368 

SD 113.288573 113.316929 113.303062 211.223795 150.725277 3819.430337 

 The observed estimation accuracy of the models shows a tight distribution between the LR, 

LASSO, EN and nearly CART algorithms. Since data is not yet standardized, probably the SVR 

algorithm is far from the rest. Next, standardization of the datasets, including the scaling in the 

dataset are applied as a data transformation to avoid error in the performance. Table 7.3 shows the 

results of the second evaluation of the experimental ERCOT demand prediction including the 

standardization and scalation on the demand datasets. 

Table 7.3: Mean-Square-Error and Standard deviation of the second ERCOT ML algorithms test. 

Standardization and scalation on datasets. 

 LR LASSO EN KNN CART SVR 

MSE 2034.782673 2072.213144 3416.104073 1344.06287 2804.72361 4313.07846 

SD 113.288573 131.156155 293.632412 96.594996 156.294500 316.340841 
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 The observed estimation accuracy of the models shows KNN as the lowest error, as anal-

ysis-1. There is evidence of the good performance of the KNN in the literature, thus, the good 

behavior is justified here. Different hyperparameters was applied in this analysis to find the opti-

mum. The values used were n_neighbors: 1,3,5,7,9,11,13,15,17,19,21. Table 7.4 shows the differ-

ent parameters for the n_neighbors.  

Table 7.4: Mean-Square-Error and Standard deviation of the different tuning hyperparameters 

used in KNN algorithm. 

N_neighbors: MSE SD 

1 1790.17186 112.128953 

3 1365.44992 103.016692 

5 1345.89268 96.543729 

7 1382.36021 93.641170 

9 1425.01895 90.818981 

11 1452.79482 90.422161 

13 1482.60760 92.650596 

15 1511.58812 90.140230 

17 1545.26181 88.957689 

19 1577.23062 89.980424 

21 1597.17240 89.160144 

The observed estimation accuracy of the different hyperparameters shows the 5 N_neigh-

bors as the best with 1345.89 of MSE. A combination of several machine learning techniques were 

performed in this analysis. The same algorithms from scenario-1 analysis-2 were used. Table 7.5 

shows the results of the evaluation of the experimental machine learning assembled models. The 

meaning of the four different algorithms was presented in the past section 6.2.4.1. 
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Table 7.5: Mean-Square-Error and Standard deviation of the different ensemble algorithms. 

Ensemble al-

gorithm: 
MSE SD 

AB 2502.59706 128.677489 

GBM 1710.16247 108.256545 

RF 1517.04058 100.424514 

ET 1392.13334 74.118990 

The observed estimation accuracy of the different ensembles shows ET as the best with 

21392.13 of MSE. Thus, algorithm ET needed to be tuned, as discussed before, to test different 

hyperparameters. The values used were n_estimators: 50, 100, 150, 200, 250, 300, 350, 400. Table 

7.6 shows the different parameters for the n_estimators. 

Table 7.6: Mean-Square-Error and Standard deviation of the different tuning hyperparameters 

used in ET algorithm. 

N_estimators: MSE SD 

50 1252.695807 46.907031 

100 1227.791719 53.546919 

150 1232.062253 51.583780 

200 1218.557543 56.043937 

250 1218.747733 60.690772 

300 1217.286517 52.836153 

350 1213.843901 51.624784 

400 1219.510958 55.441221 

The observed estimation accuracy of the different hyperparameters shows the 350 estimators with 

1213.84 MSE as the best for the ET algorithm. 
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7.6.2.2 Evaluation (Machine Learning Algorithms) 

This final step presents the final configuration of the model as “the final model,” in this 

analysis, the Extra Tree Regressor (ET), which demonstrates having the least MSE. Thus, the 

final model needs to be trained with the entire training dataset. Prior to this the data needs to be 

standardized and scaled to better modeling performance as discussed above. The final MSE result 

of the ET is estimated as 1208.36. 

7.6.3 EXPERIMENTED MULTI-LAYER PERCEPTRON (MLP) IN DEEP LEARNING NEURAL 

NETWORK:  

7.6.3.1 Interpretation MLP Deep Learning Neural Network Algorithms (DLNN) 

 From the step-2 in section 7.5.1.2 we formulate a new problem to prove the methodology 

presented in figure 7.22. The new task will solve a Binary Classification problem using peak flood 

data in a Multi-Layer Perceptron framework to experiment Deep Learning Neural Network. As 

discussed in chapter 4, evidence shows that deep learning algorithm improve the performance in 

data. The libraries explored are shown in Appendix D 3.2. The data transformation was using an 

encoded value of [0,1] for binary classification. Moreover, the standardization of the data was 

performed during the evaluation process, within each fold of the cross validation in this experi-

mental analysis. The results are shown in the next step under the interpretation section. 

7.6.3.2 First test DLNN: Parameters 

 Test dataset and train dataset was divided and treated with the same parameters discussed 

in section 7.5.4. Next, the baseline model was created with the following parameters: 

First Dense Layer: 60 neurons.  Activation function: relu. 

Second Dense Layer: 30 neurons. Activation function: relu. 

Third Dense Layer: 1 neuron.  Activation function: sigmoid. 

Data: Standardized.    

Number of epochs: 100.  
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7.6.3.3 First test DLNN: Interpretation/evaluation 

The model used the binary cross entropy as the logarithm loss function with Adam opti-

mization algorithm for gradient descent as discussed in chapter 4. The accuracy results show 

98.01% with a standard deviation of 0.95%. Figure 7.21 shows a screen capture of the results in 

python programming of the First test using MLP Deep Learning Neural Network. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.21. Results in python programming of the First test using MLP Deep Learning 

Neural Network. 

7.6.3.4 Second test DLNN: Dropout regularization 

 In this test, Dropout regularization was implemented in the hidden layers and an increment 

in the number of epochs for better performance as discussed in chapter 4. Additionally, the opti-

mizer was changed to Stochastic Gradient Descent (SGD). Test dataset and train dataset was di-

vided and treated with the same parameters discussed in section 7.5.4. Next, the baseline model 

was created with the following parameters: 

First Dense Hidden Layer: 60 neurons.  Activation function: relu.  

First Dropout: Hidden Layer. 
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Second Dense Hidden Layer: 30 neurons. Activation function: relu.  

Second Dropout: Hidden Layer. 

Third Dense Layer: 1 neuron.   Activation function: sigmoid. 

Data: Standardized.    Learning rate: 0.1 

Number of epochs: 300.   Momentum: 0.9 

7.6.3.5 Interpretation/evaluation first DLNN 

The loss function was binary cross entropy with SGD optimizer. The accuracy results show 

99.60% with a standard deviation of 0.53%. Figure 7.22 shows a screen capture of the results in 

python programming of the Second test using MLP Deep Learning Neural Network. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.22. Results in python programming of the Second test using MLP Deep Learn-

ing Neural Network. 

 

7.7 System model.  

The risk of a blackout in power systems is higher during an extreme-weather event, as 

discussed in section 1.4.2. In such cases, a blackout is a breakdown in the electric power grid 
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covering a large area due to the cascading of power failures, in which the loss of an element in the 

power grid increases the stress on other elements, resulting of a power outage [Ceti18].  Multiple 

power outages could happen in critical zones like hospitals, fire stations, gas stations, water sup-

plied systems, and shelters. 

 In an extreme-weather event, the expected Loss of Load (LOL) is an index to evaluate the 

percentage of failures for reliability proposes. Therefore, it is crucial for the operator to take the 

best decision by evaluating the system in a real-time panorama. The Optimal Power Flow (OPF) 

as discussed in chapter 3 is the most used for a steady state solution on the power network. In most 

countries, the power grid is operated by the Transmission System Operators (TSO). Thus, OPF 

seeks to minimize the LOL. It is also the objective of the TSO. The OPF is the most difficult task 

by the Transmission Systems Operators (TSOs) which consist of two main operation strategies:  a) 

Preventive action, and b) Corrective action. The TSO needs to take into account a series of con-

straints for those two actions, as discussed in section 2.5.1. However, the objective function of the 

DC OPF only applies for one particular instant of time. During the path of an extreme-event new 

scenarios are created in the topology of the power system. Under this dynamic, the TSO needs to 

act in the nearly new topology arrangement. Such a dynamic process should be carried out within 

a dynamic OPF as the stated by the authors [Wang17] and [Sang19].  The transition states proba-

bilities  𝑇𝑝𝑟𝑜𝑏 can be expressed by equation 7.1 [Wang17]. 

𝑇𝑝𝑟𝑜𝑏(𝑆𝑝𝑎𝑡ℎ,𝑡, 𝑆𝑝𝑎𝑡ℎ′ ,𝑡+1) = ∏ 𝑇𝑝𝑟𝑜𝑏(𝑠𝑘,𝑡, 𝑠𝑘,𝑡+1), 𝑝𝑟𝑜𝑏 ∈  𝛺𝑆,𝑡𝑘∈𝛺𝐶,𝑡+1
  (7.1) 

where 𝛺𝑆,𝑡 represents the set of states at time t, and  𝑆𝑝𝑎𝑡ℎ,𝑡 and 𝑆𝑝𝑎𝑡ℎ′ ,𝑡+1 are the time t 

and t+1, respectively. 𝛺𝑆,𝑡 is a set of Markov states. In the next proposed model several cases were 

created to represent the system states. 

The System model refers to the system analysis during the unfolding of the extreme-event. 

Under this analysis, the trajectory of the hurricane is taken into account to solve the T-C from 

section 7.2.1, to estimate the system failures exposed by the extreme-weather event. This model is 

shown in Figure 7.23. Each step is described below. 
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Figure 7.23: System model showing the detailed steps. 

7.7.1 STEP 2. DATA EXTRACTION AND SELECTION 

In this step, data extraction and selection are explained.  

7.7.1.1 Data Extraction 

To simulate several system scenarios (cases) as discussed above, the data extraction is 

taken from the IEEE 9-bus, which is a hypothetical topology, as discussed in section 2.1. Appendix 

A.2 shows details of the IEEE 9-bus used in this analysis. Figure 7.24 shows the experimental 

power grid topology used in this study. 
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Figure 7.24. Experimental power grid topology for system model simulation. 

7.7.1.2 Data Selection 

The power failures are represented as line disconnections between the electric power grid. 

79 cases were developed to represent one-line disconnection and two-line disconnections. Figure 

7.25 shows an empirical outage power sequence, which occurred during Hurricane Harvey, and 

Figure 7.26 shows the hypothetical scenario with the cases created for this analysis. 

 

 

 

 

 

 

 

 

 

Figure 7.25. Empirical outages sequence during hurricane translation, image lightly mod-

ified from [Burf18]. 
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Figure 7.26. Hypothetical scenario with cases created for system model analysis. 

7.7.2 STEP 3: DATA PRE-PROCESSING 

Missing values and outliers were removed, similar to the past models, in which the dataset 

was formatted in Excel as table. Appendix C.3 shows the data flow used in this analysis. Deep 

Learning Neural Network (DLNN) experimentation contains a total of 719 data points. Descriptive 

statistics and visualization were used in this step for the experimentation of machine learning, but 

was omitted for the experimentation of deep learning neural network algorithms for simplicity 

purposes. DLNNs are discussed in a later section. 

 The dataset used in ML experimentation contains a total of 137 data points. The pairwise 

correlation applying the Pearson’s correlation coefficient between variables is shown in the corre-

lation matrix on Figure 7.27. The description of the variables used are presented below.  

0: Injections active power (MW). 

1: Ybus (DC-OPF solution). 

2: 0: No-line disconnected. 1: One-line disconnected. 
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Figure 7.27. Correlation matrix of data attributes in ML experimented algorithms. 

Figure 7.28 shows the density function of the experimental data. 

 

 

 

 

 

Figure 7.28. Density function of the cases dataset. 

Most of the attributes of all regions shows a Gaussian distribution and Double Gaussian 

in the binary column classification as expected. This singularity shows a stable system, which is 

expected for the DC OPF.  

7.7.3 STEP 4: DATA TRANSFORMATION 

In this analysis, data was normalized and standardized during the process of data mining with the 

same motivation as analysis-1. 

7.7.4 STEP 5: DATA MINING:  

The whole dataset was divided in two groups: the training set with the 80% of the data used in 

this analysis, and the validation set consisting of the 20% representing the rest of the dataset.  The 
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validation set is discussed in the next step 6. The training set is applied during the process of 

machine learning modeling implied in this analysis. Additionally, this set was specified as a ran-

dom seed ensuring that the data was divided in a set of seven to ensure generalization and prevent 

overfitting in data.  

7.8 Experimented Data mining algorithms 

The analysis is split in two, with the discussion of Machine Learning algorithms first and multi-

layer preceptor algorithm in a Deep Learning Neural Network second. 

7.8.1 EXPERIMENTED MACHINE LEARNING ALGORITHMS:  

The problem formulation from step 1 and the observation in the data behavior shows linear data, 

which can be modeled as a binary classification model. Thus, a machine learning binary classifi-

cation is proposed here, to solve the DC OPF as two cases (Disconnected or not disconnected) 

binary classification problem during an extreme-event. Several machine learning for binary clas-

sification algorithms were analyzed. The libraries explored are shown in Appendix D 3.3. The 

results are shown in the next step under the interpretation section. 

7.8.2 STEP 6: INTERPRETATION / EVALUATION (MACHINE LEARNING ALGORITHMS) 

In this step, the interpretation is shown first and then the evaluation of the machine learning 

algorithms. 

7.8.2.1 Interpretation (Machine Learning algorithms) 

The k-fold cross validation was used in this experimental machine learning. Splitting the 

data in K partitions of equal size, where i partition represents the evaluation partition of a remaining 

K-1 partition for training. The set was split with the same number of k-fold (10 k-parts) as the past 

models in this dissertation. The results are expressed in terms of mean-square-error. Table 7.7 

shows the results of the preliminary evaluation of this experimented binary classification. The 

meaning of the six different algorithms are detailed below. 

LR: Logistic Regression 
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LDA: Linear Discriminant Analysis 

 KNN: K-Neighbors Classifier. 

CART: Decision Tree Classifier. 

NB: Gaussian Naïve Bayes. 

SVC: Support Vector Classifier Machines. 

Table 7.7: Mean-Square-Error and Standard deviation of the preliminary binary classification. 

 LR LDA KNN CART NB SVC 

MSE 0.605051 0.550673 0.623906 0.899327 0.734175 0.963131 

SD 0.049495 0.023401 0.005724 0.026599 0.025084 0.018687 

 The observed estimation accuracy of the models shows a tight distribution between the LR, 

LDA, KNN and nearly NB algorithms. Since data is not yet standardized, probably CART and SVC 

algorithms are far from the rest, same as the other models. Next, standardization of the datasets, 

including scaling of the dataset, are applied as a data transformation operation to avoid error in the 

performance. Table 7.8 shows the results of the second evaluation of the experimental binary clas-

sification including the standardization and scalation on datasets. 

Table 7.8: Mean-Square-Error and Standard deviation of the second ML Binary classification al-

gorithms tested. 

 LR LDA KNN CART NB SVC 

MSE 0.614478 0.550673 0.660606 0.908586 0.734175 0.789394 

SD 0.021886 0.023401 0.006061 0.035859 0.025084 0.043939 

 The observed estimation accuracy of the models shows CART with the lowest error. Dif-

ferent hyperparameters were applied in this analysis to find the optimum. The values used were 

depth: 4, 5, 6, 7, 8, 9, 10. Table 7.9 shows the different parameters for the n_neighbors.  
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Table 7.9: Mean-Square-Error and Standard deviation of the different tuning hyperparameters 

used in KNN algorithm. 

N_neighbors: MSE SD 

4 0.825688 0.025925 

5 0.770642 0.029628 

6 0.871560 0.035520 

7 0.834862 0.038214 

8 0.899083 0.026598 

9 0.908257 0.035857 

10 0.908257 0.035857 

The observed estimation accuracy of the different hyperparameters shows the 9 depth as 

the best with 0.908257 of MSE. A combination of several machine learning algorithms was per-

formed in this analysis. Table 7.10 shows the results of the evaluation of the experimental machine 

learning assembled models. The meaning of the four different algorithms was presented in the past 

section 6.2.4.1. 

Table 7.10: Mean-Square-Error and Standard deviation of the different ensemble algorithms. 

Ensemble al-

gorithm: 
MSE SD 

AB 0.908586 0.035859 

GBM 0.899327 0.026599 

RF 0.899495 0.044949 

ET 0.890067 0.017340 

The observed estimation accuracy of the different ensembles shows ET as the best with 

0.890067 of MSE. 
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7.8.2.2 Evaluation (Machine Learning Algorithms) 

This final step presents the final configuration of the model as “the final model,” in this 

analysis the Decision Tree Classifier (CART) demonstrates having the least MSE. Thus, the final 

model needs to be trained with the entire training dataset with a max_depth of 9. Prior to this, the 

data needs to be standardized and scaled to better modeling performance as discussed above. The 

final MSE result of the CART is estimated as 0.8571. Figure 7.29 show the confusion matrix 

results of this ML binary classification with only 4 misclassifications. 

 

 

 

 

 

 

Figure 7.29. confusion matrix results of this ML binary classification. 

 

7.8.3 EXPERIMENTED MULTI-LAYER PERCEPTRON (MLP) IN DEEP LEARNING NEURAL 

NETWORK:  

7.8.3.1 Interpretation MLP Deep Learning Neural Network Algorithms (DLNN) 

 From the step-2 in section 7.1 a new problem is formulated to prove the methodology pre-

sented in figure 7.23. The new task will solve a Binary Classification problem using two-discon-

nected lines using a Multi-Layer Perceptron framework to experiment Deep Learning Neural Net-

work. The libraries explored are shown in Appendix D 3.3. The data transformation was using an 

encoded value of [0,1] for binary classification. Moreover, the standardization of the data was 

performed during the evaluation process, within each fold of the cross validation in this experi-

mental analysis. The results are shown in the next step under the interpretation section. 
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7.8.3.2 First test DLNN: Parameters 

 Test dataset and train dataset was divided and treated with the same parameters discussed 

in section 7.5.4. Next, the baseline model was created with the following parameters: 

First Dense Layer: 60 neurons.  Activation function: relu. 

Second Dense Layer: 30 neurons. Activation function: relu. 

Third Dense Layer: 1 neuron.  Activation function: sigmoid. 

Data: Standardized.    

Number of epochs: 100.  

7.8.3.3 First test DLNN: Interpretation/evaluation 

The model used the binary cross entropy as the logarithm loss function with Adam opti-

mization algorithm for gradient descent as discussed in chapter 4. The accuracy results show 

75.92% with a standard deviation of 7.76%. Figure 7.30 shows a screen capture of the results in 

python programming of the First test using MLP Deep Learning Neural Network. 

 

 

 

 

 

 

 

 

 

Figure 7.30. Results in python programming of the First test using MLP Deep Learning 

Neural Network. 
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7.8.3.4 Second test DLNN: Dropout regularization 

 In this test, Dropout regularization was implemented in the hidden layers and an increment 

in the number of epochs for better performance as discussed in chapter 4. Additionally, the opti-

mizer was changed to Stochastic Gradient Descent (SGD). Test dataset and train dataset was di-

vided and treated with the same parameters discussed in section 7.5.4. Next, the baseline model 

was created with the following parameters: 

First Dense Hidden Layer: 60 neurons.  Activation function: relu.  

First Dropout: Hidden Layer. 

Second Dense Hidden Layer: 30 neurons. Activation function: relu.  

Second Dropout: Hidden Layer. 

Third Dense Layer: 1 neuron.   Activation function: sigmoid. 

Data: Standardized.    Learning rate: 0.1 

Number of epochs: 300.   Momentum: 0.9 

7.8.3.5 Interpretation/evaluation first DLNN 

The loss function was binary cross entropy with SGD optimizer. The accuracy results 

show 90.26% with a standard deviation of 2.79%. Figure 7.22 shows a screen capture of the re-

sults in python programming of the Second test using MLP Deep Learning Neural Network. 
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Figure 7.22. Results in python programming of the Second test using MLP Deep Learn-

ing Neural Network. 

 

7.9 Conclusion 

A novel method to solve several tasks in the Electricity and Transmission Systems during 

an extreme-event is presented, and experimental results are summarized. Data Mining Algorithms 

were implemented by the use of Python software to solve regression predictive ML, binary classi-

fication ML, and binary classification DL algorithms. Moreover, Anaconda environment shows a 

good platform in the management of machine and deep learning model design. The Anaconda 

environment was used in all the experimental machine and deep learning algorithms. All the ex-

perimental data in this chapter could be used as a basis for researching other tasks in the ETDS or 

other natural disasters. GIS applications are promising tool as aggregation data to better visualize 

ETDS as a spatiotemporal solution during natural disasters. 
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CHAPTER 8: SUMMARY, CONCLUSIONS, AND FUTURE WORK 

This chapter covers the conclusions of this study and suggests direction of future work on 

a higher level than contributed chapters, in the explorations of new applications identified during 

this research work. 

8.1 Summary 

Analysis of two Scenarios presented in this study are summarized below.  

• Scenario-1 Analysis-1 shows that during price forecasting, the uncertainty and non-linear-

ity in the data contribute to inaccuracy in the results. The new method presented using de-

noised wavelet as a pre-processing contributes to better results outcomes.  

• Scenario-1 Analysis 2, through the observed accuracy of the Machine Learning Regression 

Prediction algorithm, reveals that the best algorithm for the problem of Demand prediction 

during a winter storm was the Gradient Boosting Regressor with a Mean Square Error of 

194.1136. 

• Scenario-2 Extreme-Weather Model, through the observed accuracy of the experimental 

Supervised Machine Learning algorithm, reveals that the best algorithm is the Maximum 

Likelihood Classification for the problem of “image classification” during a Tropical Storm 

(Hurricane Harvey stage-2). It was verified by the Barker Reservoir digital image with a 

Kappa coefficient of 0.9399 and overall accuracy of 97.1968% 

• Scenario-2, Component Model, through the observed accuracy of the Machine Learning 

Regression Prediction algorithm, reveals that the best algorithm for the problem of demand 

prediction (ERCOT) during Hurricane Harvey was the Extra Tree Regressor algorithm, 

with 350 estimators and MSE of 1208.36. A binary classification was presented to solve 

peak flood classification (above 60 inches) with a Deep network using Stochastic Gradient 

Descent optimizer and Dropout in hidden layers. The accuracy of the DLNN algorithm 

was 99.60 %. 
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• Scenario-2 System Model, through the observed accuracy of the Machine Learning Bi-

nary Classification algorithm, reveals that the best algorithms for the problem of one-line 

disconnected in hypothetical cases using the IEEE 9-Bus electric topology during an ex-

treme-event is the Decision Tree Classifier algorithm, with a max-depth of 9 and MSE of 

0.8571. A binary classification was presented to solve two-lines disconnected in hypothet-

ical cases in an IEEE 9-bus, using a Deep Learning Neural Network. The DLNN was set 

with a Stochastic Gradient Descent optimizer, including binary cross entropy, and Dropout 

in hidden layers. The accuracy of the DLNN algorithm was 90.26 %. 

8.2 Conclusions 

This study serves as proof of benefit of the consolidation of the techniques, methodologies, 

and modeling explained in chapters 3, and 4. A previous data analysis was conducted to understand 

the data sets, and its relation to each task in chapter 6 and 7. Moreover, in those chapters a “big 

picture” was framed in two practical scenarios to demonstrate the achievement of the specific task 

in data mining through a knowledge discovery framework, as the methodology proposed in this 

study. The results reveal a powerful tool to solve problem tasks in the area of critical operation of 

the Electricity Transmission and Distribution systems during an extreme-weather events.  

  8.3 Future work 

From the two analyses conducted on Scenario-1, the exploration of more machine learning 

and deep learning algorithms is needed to solve the critical operation including the components in 

the Transmission and Distribution Systems (ETDS) under winter storms. From the multi-model 

analyses conducted on Scenario-2, the observed future work was to add a Multi-objective optimi-

zation analysis (T-D) in a post-storm scenario by including shelters as critical loads, i.e. hospital, 

gas station, etc. Also, it would be beneficial to include neighboring regional interconnectivity, and 

the possibility of using micro-grids and local mini-generators to enhance the rapid recovery of 

electricity during this last stage of an extreme-weather event.  
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Another research area is to conduct several experiments by running different scenarios in 

the ETDS, for example, tornados, earthquakes, or other natural disasters that are currently escalat-

ing, including man-made attacks by the exploration of cyber security areas.  

Additionally, it is necessary to explore more experiments with larger datasets using the 

methods explained in chapter 4. By scaling the datasets, one could use new technology innovation 

in particular to upgrade the computing power achieved by GPUs, cloud platforms, and Hadoop 

systems with Spark platform. Larger data could improve deep learning algorithms for more effi-

cient models for data prediction and classification. Furthermore, the use of real-time database man-

agement to update records to provide real-time problems.  

In general, the use of Machine Learning, and especially Deep Learning, looks promising 

for the solution of several issues in the ETDS. It can be concluded that research in the electrical 

engineering area must be continued in order to better consolidate the ideas presented and the algo-

rithms explained in this study. The work done in this dissertation document is the starting point 

for future applications in finding potential solutions in the Electricity Transmission and Distribu-

tion Systems under critical stress to lessen power failures. 
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APPENDIX A 

Data Collection Scenario-1 

The following section contains the data collection from Scenario-1.  

A.1 DATA COLLECTION FROM SCENARIO-1 ANALYSIS-1 AND 2. 

This section presents only a portion of the data collection from Scenario-1 for demonstration pur-

poses. The data sets collection from Scenario-1 is based in information from the New York 

Independent Service Provider (NY-ISO) web site [NYIS19]. Raw data portion of the electricity 

price and demand consumption from New York for each hour is presented in a .zip file format, 

needed to be uncompressed and transfer in an excel sheet file. Figure A.1.1 shows a flow process 

for the data preparation showing a portion of zip files of price data from NY-ISO web page for 

case-1. Similarly, Figure A.1.2 shows flow process for the data preparation for case-1 but showing 

portion of temperature data from New York area. The data was gathered from Network for Envi-

ronment and Weather Applications web site [NEWA19], and compared with data from Weather 

Underground web page [Weat19]. Figures A.1.3 and Figures A.1.4 shows the data processing for 

case-2 which was used the same data arrangement methodology. 

Fig-

ure 

A.1.1: Flow data preparation showing portion of zip files used for Scenario-1, case-

1 for price forecasting. 
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Figure A.1.2: Flow data preparation showing portion of temperatures files used for Scenario-1, 

case-1 for price forecasting. 

 

Figure A.1.3. Flow data preparation showing portion of zip files used for Scenario-1, case-2 for 

demand forecasting. 
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Figure A.1.4. Flow data preparation showing portion of temperatures files used for Scenario-1, 

case-2 for demand forecasting. 

A.1.1 Analysis-2 Data collection 

Figure A.1.5 shows part of the data processing used for modeling including part of the 

modeling showing the libraries used in analysis-2. 
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Figure A.1.5. Flow of the data showing portion of files used for modeling Scenario-1 

Analysis-2. 

A.1.2 Machine Learning modeling process. 

Figure A.1.6 shows the steps followed in this dissertation for machine learning modeling. 

Figure A.1.6. Machine Learning modeling process. 
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A.2 HYPOTHETICAL DATA COLLECTION 

The following hypothetical data to represent the ETDS system used in scenario-2 of this disserta-

tion. 

The below nomenclature corresponds for both RTS bus systems (IEEE 9-bus and IEEE 14-

bus) proposed by [Deme17] showed in Figures A.2.1 (Machine Data), A.2.2 (Exciter Data), A.2.3 

(Governor Data) for IEEE 9-Bus, and A.2.4 (Machine Data), A.2.5 (Exciter Data), and A.2.6 (Gov-

ernor Data) for IEEE 14-Bus, respectively. 

Nomenclature: 

 

Rated  MVA  Machine-rated MVA; base MVA for impedances 

Rated kV  Machine-rated terminal voltage in kV; base kV for impedances 

      H   Inertia constant in s 

      𝑟𝑎   Armature resistance in p.u. 

      𝑟𝑑   Unsaturated d axis synchronous reactance in p.u. 

      𝑟𝑞   Unsaturated q axis synchronous reactance in p.u. 

      𝑥𝑑
′    Unsaturated d axis transient reactance in p.u. 

      𝑥𝑞
′    Unsaturated q axis transient reactance in p.u. 

      𝑥𝑑
′′   Unsaturated d axis subtransient reactance in p.u. 

      𝑥𝑞
′′   Unsaturated q axis subtransient reactance in p.u. 

      𝑥1 𝑜𝑟 𝑥𝑝  Leakage or Potier reactance in p.u. 

      𝑇𝑑0
′    d axis transient open circuit time constant in s. 

      𝑇𝑞0
′    q axis transient open circuit time constant in s. 

      𝑇𝑑0
′′    d axis subtransient open circuit time constant in s. 

      𝑇𝑞0
′′    q axis subtransient open circuit time constant in s. 

      S (1.0)  Machine saturation at 1.0 p.u. voltage in p.u. 

      S (1.2)  Machine saturation at 1.2 p.u. voltage in p.u. 

      𝑇𝑟   Regulator input filter time constant in s. 
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      𝐾𝑎   Regulator gain (continuous acting regulator) in p.u. 

      𝑇𝑎   Regulator time constant in s. 

      𝑉𝑅𝑚𝑎𝑥   Maximum regulator output, starting at full load field voltage in  

p.u. 

      𝑉𝑅𝑚𝑖𝑛   Minimum regulator output, starting at full load field voltage in  

p.u. 

      𝐾𝑒   Exciter self-excitation at full load field voltage in p.u. 

      𝑇𝑒   Exciter time constant in s. 

      𝐾𝑓   Regulator stabilizing circuit gain in p.u. 

      𝑇𝑓   Regulator stabilizing circuit time constant in s. 

      𝐸1   Field voltage value, 1 in p.u. 

      𝑆𝐸(𝐸1)  Saturation factor at 𝐸1. 

      𝑃𝑚𝑎𝑥  Maximum turbine output in p.u. 

      R   Turbine steady-state regulation setting o droop in p.u. 

      𝑇1   Control time constant (governor delay) in s. 

      𝑇2   Hydro reset time constant in s. 

      𝑇3   Servo time constant in s. 

      𝑇4   Steam valve bowl time constant in s. 

      𝑇5   Steam reheat time constant in s. 

      F   Shaft output ahead of reheater in p.u. 
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 A.2.1 IEEE 9-bus system data 

The numbers shown in the Figure A.5, A.6, and A.7 for the bus numbers corresponds to 

the default test system and the modified system (in parenthesis), respectively, proposed by the 

author [Deme17]. 

 

Fig-

ure 

A.2.1: IEEE 9-Bus modified test system machine data, figure taken from [Deme17]. 

 

 

 

 

 

 

 

 

 

Figure A.2.2: IEEE 9-Bus modified test system exciter data, figure taken from [Deme17]. 
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Figure A.2.3 IEEE 9-Bus modified test system governor data, figure taken from [Deme17]. 

A.2.2 IEEE 14-bus system data 

The numbers shown in the Figures A.8, A.9, and A.10 for the bus numbers corresponds to 

the default test system and the modified system (in parenthesis), respectively [Deme17]. 

 

 

 

 

 

 

 

Figure A.2.4: IEEE 14-Bus modified test system machine data, figure taken from [Deme17]. 
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Figure A.2.5: IEEE 14-Bus modified test system exciter data, figure taken from [Deme17]. 

 

Figure A.2.6: IEEE 14-Bus modified test system governor data, figure taken from [Deme17]. 

A.2.3 TEXAS 2000-bus system data 

Figures A.2.7, A.2.8, and A.2.9 correspond to the Texas 2000-bus used in this study where 

the information was taken from Powerworld viewer simulation ver. 20 [Powe18], suggested from 

the work of [Birc17]. Figure A.11 shows Texas 2000-Bus information, and Figure A.12 and A.13 
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shows the bus power flows for two different ERCOT weather zones (Central and South), in which, 

only the affected sampled areas of this study was taken apart (Wind damage area and Flood dam-

age area). 

Figure A.2.8: Texas 2000-bus information taken from Powerworld viewer simulation ver. 20  

[Powe18], from the work proposed by [Birc17]. 

 

Figure A.2.9: Section from bus flow data from Texas 2000-bus showing the study area (Hurri-

cane Harvey Wind damage), information taken from Powerworld viewer simulation ver. 20 

[Powe18], from the work proposed by [Birc17]. 
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Figure A.2.10: Section from bus flow data from Texas 2000-bus showing the study area (Hurri-

cane Harvey Flood damage), information taken from Powerworld viewer simulation ver. 20 

[Powe18], from the work proposed by [Birc17]. 
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APPENDIX B 

Hurricane Information 

B.1 Saffir-Simpson Hurricane wind scale. 

The Saffir-Simpson hurricane scale (SSHS) was created in 1971 by civil engineer Herbert 

Saffir (civil engineer) and Robert Simpson (director in that time, U.S. National Hurricane Center) 

[Wiki19]. The SSHS scale is from 1 to 5 ratting based on a hurricane’s sustained wind speed 

[Noaa19], with a related two more classifications [Wiki19]. The SSHS estimates potential damage, 

Table B.1 sown this scale and related scale which all winds are using the U.S. 1-minute average 

sustained wind. 

Table B.1: Saffir-Simpson hurricane wind scale (SSHWS) [Noaa19], and [Wiki19]. 

Category 
Winds 

(mph) 

Winds 

(kt) 

Winds 

(kn/hr) 

Potential damage 

Tropical 

storm 
0-38 0-33 

0-34 Initiated a string of tornadoes that damage 

homes, displaced trees, and overturned vehi-

cles as it moves. 

Tropical 

depression 
39-73 34-64 

35-63 Heavy rains and strong winds cause minor 

flooding and property damage 

1 74-95 64-82 
119-153 Very dangerous wind will produce some 

damage 

2 96-110 83-95 
154-177 Extremely dangerous wins will cause exten-

sive damage. 

3 111-129 96-112 178-208 Devastating damage will occur. 

4 130-156 113-136 209-251 Catastrophic damage will occur 

5 
157 or 

higher 

137 or 

higher 

252 or 

higher 

Catastrophic damage will occur 
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B.2 Hurricane Harvey report (AL092017) 

In this section a reported from NOAA and the National Weather Service is briefly pre-

sented, including figures of the reported rainfall, damages areas, etc. 

B.2.1 Reported wind and flood damage. 

 “… Harvey’s maximum winds of 115 kt occurred during a several hour periods concluding 

with its first Texas landfall. That intensity was based on a blend of peak SFMR measurements of 

113 kt near 2122 UTC 25 August and maximum observed 700-mb flight-level winds of 129 kt at 

2037 UTC and 2330 UTC 25 August. Both of those 700-mb winds support a surface wind of about 

115 kt using a typical flight-level wind to surface wind reduction. Another SFMR measurement of 

113 kt at 0419 UTC 26 August is thought to be unreliable due to shoaling. The highest observed 

sustained winds on land were 96 kt near Aransas Pass, with the highest observed gust being 126 

kt near Rockport, Texas…”, “… The highest storm total rainfall report from Harvey was 60.58 

inches near Nederland, Texas…”, “…36 to 48 inches recorded in the Houston metro area…” 

[Blak18]. 

B.2.2 Synoptic history of Hurricane Harvey Texas (17 Aug. 1 Sep. 2017). 

“The wave that spawned Harvey moved off the west coast of Africa on 12 August with a 

large convective mass that had mostly dissipated by late the next day…”, ”... Harvey moved 

quickly westward, south of a western Atlantic ridge, reaching an initial peak intensity of 40 kt 

early on 18 August…”, ”... The remnants of Harvey moved rapidly to the west and west-northwest 

for the next couple of days, staying convectively active while they moved over the Yucatan Pen-

insula on 22 August…”, “...Harvey began to rapidly intensify late on 23 August in an environment 

of light shear, very warm water and high mid-level moisture…”, “... Harvey became a hurricane 

later on 24 August, and by that night a well-defined eye appeared in infrared satellite pictures. The 

hurricane reached category 3 status by midday on 25 August while it approached the middle Texas 

coast and intensified into a category 4 hurricane by 0000 UTC 26 August. Harvey’s center made 

landfall on the northern end of San Jose Island about 5 n mi east of Rockport, Texas at 0300 UTC 
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that day. Sustained winds of 115 kt and a minimum central pressure of 937 mb are estimated for 

that landfall. The hurricane then made a second landfall on the Texas mainland 3 h later, slightly 

weaker due to land interaction, with 105 kt winds and an estimated central pressure of 948 mb 

southeast of Refugio on the northeast coast of Copano Bay west of Holiday Beach. Harvey rapidly 

weakened over land to a tropical storm within 12 h after landfall and maintained a 35-kt intensity 

for the next day or so, aided by the sustaining effects of the southeastern portion of its circulation 

remaining over water…”, “... The storm center moved back offshore around 0300 UTC 28 August 

over Matagorda Bay, its winds slightly re-strengthening with deep convection reforming near and 

north of the center. However, the vertical wind shear was too strong for much intensification, and 

Harvey reached a final peak intensity of 45 kt late on 29 August…”, “... Extremely heavy rains, 

however, continued on the north and northwest side of the tropical cyclone, most concentrated 

then near the Beaumont-Port Arthur area. Harvey made its final landfall in southwestern Louisiana 

at 0800 UTC 30 August near Cameron with 40-kt sustained winds. Thereafter, the cyclone slowly 

weakened over land, becoming a tropical depression late on 30 August. Harvey then moved north-

eastward over the southern United States while producing heavy rainfall, and it transformed into 

an extratropical cyclone by 0600 UTC 1 September over the Tennessee Valley. The cyclone dis-

sipated over northern Kentucky late the next day…” [Blak18]. 
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Figure B.2.1: Best track positions for Hurricane Harvey during 17 August – 1 September, image 

taken from [Blac18]. 

 

 

 

 

 

 

 

 

 

Figure B.2.2: Best track positions for Hurricane Harvey during 17 August – 1 September, 

image taken from [Blac18]. 
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Figure B.2.5: Wind damage during Hurricane Harvey right after the landfall at south of 

Texas, image taken from [Aept18]. 

 

 

 

 

 

 

 

 

 

B.2.5: Water rescues that were ongoing during Harvey in Houston on 27 August 2017, 

image taken from [Blac18]. 
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APPENDIX C 

Data Collection Scenario-2 

The following section contains the data collection for Scenario-2. This section gives a 

glimpse of the data collection from Scenario-2 for demonstration purposes. The dataset collections 

were based on information discussed in chapter 7. Each dataset was used on several formats, some 

of them includes images under the formats of .jpg, TIFF, etc., to achieve better behavior on the 

simulations during this study. Similarly, other data was used as a data arrays for better model 

simulations i.e., xlsx and .csv as an input data in ML or DL. The following are the main sources 

of the collection of data from Scenario-2: NOAA, NASA, ERCOT, Powerworld simulator, 

HAZUS simulator, Open Infrastructure engine, Open Maps engine, Mapillary engine, ArcGIS 

simulator, ENVI simulator. Many other data were acquired from web sources that was exhaust-

ively searched, and applied all the precaution needed to be added to the data collection of this 

study. 

C.1 DATA COLLECTION SCENARIO-2, EXTREME-WEATHER MODEL 

Figure C.1.1 shows the data flow of HAZUS wind damage modeling. A portion of the data 

was shown for simplification purposes. 

 

 

 

 

 

 

Figure C.1.1: Data flow of the HAZUS wind demand modeling. 

C.2 DATA COLLECTION SCENARIO-2, COMPONENT MODEL 

Figure C.2,1 shows the data flow to classify the peak flooding using a Deep Learning neural 

network. A portion of the data was shown for simplification purposes. 
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Figure C.2.1: Data flow of Harvey peak flooding deep learning modeling for Scenario-2. 

The data flow of the modeling ERCOT demand using Machine Learning algorithms is 

shown in the Figure C.2.2. A portion of the data was shown for simplification purposes. 

 

 

 

 

 

 

Figure C.2.2: Data flow of the ERCOT demand modeling for the component model in 

Scenario-2. 

C.3 DATA COLLECTION SCENARIO-2, SYSTEM MODEL 

Figure C.3.1 shows the data flow of the two-disconnected lines for DC OPF modeling, only 

a portion of the data were shown, for simplification purposes. 
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Figure C.3.1: Data flow of the two-disconnected lines for DC OPF modeling for the sys-

tem model in Scenario-2. 
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APPENDIX D 

Simulation setting Scenario-1 and 2. 

In order to simulate all the case studies from chapter 6 and 7. This study used a recent 

efficient developed hardware since the last decade, the GPU (Graphical Processing Units), also, at 

the time of this study, the latest processor generation for commercial laptop, the Intel Core i7 with 

2 GHz as an experimental workstation. Similarly, was used the most novel Machine Learning and 

Deep Learning software tools like: Python, TensorFlow. Additionally, Anaconda ecosystem was 

used in all the settings for this study, there are many other options out there but we choose this 

ecosystem, because has strong attraction between Machine Learning and Deep Learning commu-

nities, at the time of this study with 6 million users as reported in Anaconda web site [Anac19]. 

Anaconda is an open free source which distribute the latest Python packages released, holding with 

the most of the tools needed to setting up the experimentation frameworks for the purpose of this 

study.  Figure D.1 shows the test bed (computers) used in this study. 

 

 

 

 

 

 

 

Figure D.1: Test bed (computers) used in this study. 
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D.1 TERMINOLOGY 

The following terms was used in the both data simulations, machine learning (ML) and 

deep learning: 

   Terms   Purpose of meaning in the context of data modeling 

Instance.    Single row of data in the dataset. 

Feature, attribute,    Single column of data being referenced by the learning 

field, or variable.    algorithms, which some could be inputs or outputs of 

the learning algorithm. 

Feature vector or tuple.  List of features. 

Dimension.    Subset of attributes that describe data  property i.e.,  

     Date dimension = 3 attributes (day, month, and year). 

Dataset .   Collection of data prepared for ML or DL modeling 

     proposed.   

D.2 SETTING UP MACHINE LEARNING FRAMEWORK 

Machine Learning framework was setting up on a Dell CPU Intel core i7. Below we briefly de-

tailed the dependencies needed in this study in order to use some algorithms between the packages 

in machine learning. The Python dependencies can be installed thru pip or conda install. While 

the progress of the ML and DL package, and the ML and DL evolving application areas, in a so 

fast-paced that any current references in the state of the art and current version, is updated at any 

moment, thus, only as a main reference for this study the language version is presented. Further-

more, the steps to setting up the experiment platforms are briefly detailed below.  

Two workstations were employed with different Python versions to evaluate the models in sections 

8: 1) version 2.7 and 2) version 3.6: 

D.2.1 Dependencies ML 

Language Platform: Python 2.7 and 3.6 
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Python Scikit-learn. Is a complete package for machine learning tasks in a Python plat-

form requiring other dependencies like Python Numpy and Python Scipy.  (http://scikit-learng.org). 

Python SciPy. Is a collection of functions for scientific computing in Python. It provides 

function to handle N- dimensional arrays among other functionality like: advanced linear algebra 

routines, mathematical function routines, and statistical distributions.  

Python NumPy. Is one of the essential packages for scientific computing in Python, con-

taining multidimensional arrays, high-level mathematical functions such as linear algebra opera-

tion and other functions. 

Python Pandas. Is a package for data wrangling and analysis. Focusing on reading, writ-

ing, and manipulating data, this dependency as Scikit-learn need the installation prior to install 

Pandas. 

Python Matplotlib. Is one of the most important plotting packages for Python, used to plot 

the accuracy of the model by creating 2D charts and plots from data. 

  D.2.2 ML experimental libraries Scenario-1 Analysis-2 

The following machine learning regression libraries was used in Scenario-1 and Analysis-

2 of this dissertation. 

• LinerRegression 

• Lassso 

• ElasticNet 

• DescisionTreeRegressor 

• KneighborsRegressor 

• SVR 

• Ensemble RandomForestRegressor 

• Ensemble GradientBoostingRegressor 

• Ensemble ExtraTreesRegressor 

• Ensemble AdaBoostRegressor 
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D.2.3 ML experimental libraries Scenario-2, Extreme-weather model. 

The following Supervised machine learning regression libraries was used in Scenario-2 in 

the extreme-weather model analysis. 

• Maximum Likelihood Classification 

• Sieve classes 

•  Clump classes 

  D.2.4 ML experimental libraries Scenario-2, Component model 

The following machine learning regression libraries was used in Scenario-2 in the compo-

nent model analysis. 

• LinerRegression 

• Lassso 

• ElasticNet 

• DescisionTreeRegressor 

• KneighborsRegressor 

• SVR 

• Ensemble RandomForestRegressor 

• Ensemble GradientBoostingRegressor 

• Ensemble ExtraTreesRegressor 

• Ensemble AdaBoostRegressor 

  D.2.4 ML experimental libraries Scenario-2, System model 

The following machine learning binary classification libraries was used in Scenario-2 in 

the system model analysis. 

• LogisticRegression 

• DecisionTreeClassifier 

• KNeighborsClassifier 

• LinearDiscriminantAnalysis 



 

159 

• GaussianNB 

• SVC 

• Ensemble AdaBoostClassifier 

• Ensemble GradientBoostingClassifier 

• Ensemble RandomForestClassifier 

• Ensemble ExtraTreesClassifier 

D.3 SETTING UP DEEP LEARNING WORKSTATION 

Some deep learning applications like image processing using convolutional neural net-

works and recurrent neural networks, or scaling to a larger dataset, is fundamental to set the ex-

perimental environment to handle such restrictions. In this study we set the experimental for deep 

learning in two workstations. 1) Dell (Alienware) GPU Intel® core i7, and 2) Intel® Xeon® CPU 

E5430 @ 2.66 GHz x 8 (CenOS Linux 7) remote cluster. Below we briefly detailed the dependen-

cies needed in this study in order to use some deep learning algorithms between the specialized 

deep learning packages, i.e., to use Keras the installation of TensorFlow or Theano or both in our 

case. The Python dependencies can be installed thru pip or conda install.  

While the progress of the ML and DL package, and the ML and DL evolving application 

areas, in a so fast-paced that any current references in the state of the art and current version, is 

updated at any moment, thus, only as a main reference for this study the language version is pre-

sented. Furthermore, the steps to setting up the experiment platforms are briefly detailed below. 

D.3.1 Dependencies 

Language Platform: Python 3.6.7 

Python Scikit-learn. Is a complete package for machine learning tasks in a Python plat-

form requiring other dependencies like Python Numpy and Python Scipy.  (http://scikit-learng.org). 

Python SciPy. Is a collection of functions for scientific computing in Python. It provides 

function to handle N- dimensional arrays among other functionality like: advanced linear algebra 

routines, mathematical function routines, and statistical distributions.  
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Python NumPy. Is one of the essential packages for scientific computing in Python, con-

taining multidimensional arrays, high-level mathematical functions such as linear algebra opera-

tion and other functions. 

Python Pandas. Is a package for data wrangling and analysis. Focusing on reading, writ-

ing, and manipulating data, this dependency as Scikit-learn need the installation prior to install 

Pandas. 

Python Matplotlib. Is one of the most important plotting packages for Python, used to plot 

the accuracy of the model by creating 2D charts and plots from data. 

Python Keras. Is a minimalist Python package for deep learning, which provides enough 

to achieve an outcome. Keras is a lightweight API that can run on top of Theano or Tensorflow by 

the process of numerical libraries called backends, providing a consistent interface to Theano or 

Python Thensorflow. In this study, be used both backends in Keras: Theano backends and Ten-

sorflow backends.  

  D.3.2 DLNN experimental libraries Scenario-2, Component model 

The following Deep Learning Neural Network (Multi-Layer Perceptron) libraries was used 

in Scenario-2 in the component model analysis. 

• Sequential 

• Dense 

• Dropout 

• KerasClassifier 

• Maxnoem 

• SGD 

• Cross_val_score 

• LabelEncoder 

• StratifiedKFold 

• StandardScaler 
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• Pipeline 

  D.3.3 DLNN experimental libraries Scenario-2, System model 

The following Deep Learning Neural Network (Multi-Layer Perceptron) libraries was used 

in Scenario-2 in the system model analysis. 

• Sequential 

• Dense 

• Dropout 

• KerasClassifier 

• Maxnoem 

• SGD 

• Cross_val_score 

• LabelEncoder 

• StratifiedKFold 

• StandardScaler 

• Pipeline 
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